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Abstract

Resolving the wide range of spatial scales simultaneously present in the

formation of stars and star clusters is a challenge for numerical simulations.

Methods such as adaptive hydrodynamics codes must be used in many gas­

dynamical simulations where gravity is also present, and constructs known as

"sinks" are commonly used to avoid the computational expense of directly

simulating the dense regions within protostars. Despite being essential to in­

vestigations of star formation over long timescales, numerics can often play an

undesired role in the behaviour of these point-mass accretors, causing artificial

accretion. In this thesis, the use of sink particles as models of protostars is

investigated using the Gasoline N-body + smoothed particle hydrodynamics

code. Motivated by observations of disks and accretion rates onto protostars,

physical viscosity using the a-parametrization was implemented. Tests of both

spherical and rotating protostellar accretion were performed. In spite of their

importance to star formation) previously presented rotating tests are subject

to several numerical problems; efforts were made in this work to simulate a

three-dimensional viscous accretion disk where such issues were identified and

minimized. Simulations were performed for varying strengths of viscosity and

sink radius, as well as with inner boundary conditions known as "sinking"

particles. Angular momentum transport was present and behaved physically

in all cases with a > 0, and the average radial velocities and mass-accretion

rates in the disks matched finite-difference estimates of corresponding analytic

expressions.
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Chapter 1

Introduction

1.1 Star Formation: the Origin of the IMF

Important quantitative measures of star-formation such as the initial mass

function (IMF) , multiplicity, and the formation times of different stellar pop­

ulations in a cluster are likely determined by how self-gravitating regions form

in molecular clouds, and how the matter accretes within these regions. While

analytical methods are always best, they are often only appropriate to use in

idealized situations. One must turn to numerical simulations to attempt to

solve the highly coupled non-linear physics of star-formation. For example, the

molecular clouds out of which stars are eventually born are generally thought

to be turbulent (Larson, 1981), but turbulence is a physical process for which

an analytic theory does not exist.

There are currently two main origin models for the IMF in star clusters

competing in the literature (see Klessen et al. (2009) and Bonnell et al. (2007)

for recent reviews) that use different fluid dynamics formulations. Smoothed

particle hydrodynamics codes (SPH: see §2.1.2) follow individual elements of
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the fluid, whereas grid codes discretize the simulation volume into fixed cells

through which fluxes of fluid quantities are calculated. In the competitive ac­

cretion model (e.g., Bate et al., 2003; Bate & Bonnell, 2005), SPH simulations

show that the characteristic mass of the IMF is set by a combination of the

thermal Jeans mass M J for gravitational fragmentation (as defined in Binney

& Tremaine (1987)):
5/2

M =~ c3 C-3/ 2 p-l/2
J 6 s (1.1)

(where Cs = b P / p)1/2 is the local sound speed of the gas, P is the thermal

gas pressure, p is the mass-density, and '"Y is the ratio of specific heats, or the

adiabatic index), and the density at which dust opacity in the self-gravitating

gas becomes significant (the "opacity limit1
"). All protostellar systems begin

at this same mass and accrete gas from their natal surroundings (a "bottom-

up" paradigm). High-mass stars form in the centre of star clusters, since the

gravitational potential there attracts the most gas. Protostars that are ejected

from the central regions by close encounters with other protostars are unable

to accrete as much gas, thus forming the low-mass population.

The turbulent fragmentation model (e.g., Padoan & Nordlund, 2002), de­

veloped mainly using grid simulations, proposes that the IMF is specified by

the statistical properties of turbulence. The probability distribution func-

tion for supersonic turbulence can create a power-law spectrum of density

1 The opacity limit is a minimum value for this characteristic mass. A collapsing proto-

stellar core that reaches this stage can no longer efficiently radiate away the gravitational

potential energy that is liberated as it contracts. This alters the equation-of-state of the

gas from isothermal to adiabatic, making the core stable to further fragmentation (Low

& Lynden-Bell, 1976; Masunaga & Inutsuka, 1999; Bate et al., 2003).
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enhancements. Some of these regions will be dense enough to be become self­

gravitating (Mac Low & Klessen, 2004) and collapse to form protostars (a

"top-down" paradigm). This is often framed as arguing that turbulence sets

the bound prestellar-core mass function, which can be directly mapped to the

IMF subject to an efficiency factor. Matzner & McKee (2000) and Shu et al.

(2004) calculate efficiency factors of rv 30% due to feedback from protostellar

outflows; observations of molecular cores in the Pipe Nebula suggest a similar

efficiency (Alves et al., 2007).

Both theories are able to reproduce the qualitative picture of the IMF.

An interesting point is that both competitive accretion and turbulent frag­

mentation seem to play to the specialities of the numerical method out of

which the theory was born (respectively, incorporating sink particles in SPH,

and simulating turbulence in grid codes). The addition of more physics (such

as different types of feedback, chemistry models, etc.) along with improved

resolution will hopefully help to break the degeneracies between these models.

1.2 Accretion Disks

Self-gravitating cores of dense, cool molecular gas are thought to be the

precursor to main-sequence stars. The observed physical parameters of cores

vary within and amongst star-forming regions, with temperatures T rv 8 - 12

K, masses m rv 0.2 - 20 M0 , and radii r rv 0.02 - 0.2 pc (Bergin & Tafalla,

2007; Ward-Thompson et al., 2007; Lada et al., 2008). As these cores collapse

gravitationally down to objects several million times smaller, even very slow

rotation in the progenitor cores will be greatly amplified, exceeding the rate a

3
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star can withstand without breaking apart. Angular momentum conservation

dictates that a disk will form; only parts of the core with high specific angular

momentum will be able to counteract the inward gravitational acceleration)

and only in directions perpendicular to the axis of rotation. Dissipation will

settle opposing vertical gas motions into a flat disk (de Pater & Lissauer)

2001; Clarke & Carswell) 2007). Observations suggest that young protoplane­

tary disks (i.e. surrounding T Tauri) or pre-main-sequence stars) have masses

in the range 0.001 - 0.1 M0 (Andrews & Williams) 2005) and outer radii

of r-..J 200 AU from submillimeter dust-continuum measurements (Andrews &

Williams) 2007) although molecular gas observations indicate material with

high specific angular momentum at ;S 800 AU (Mundy et al. 2000; also see

§1.2.1). Statistical studies have suggested lifetimes for these disks of;S 6 mil­

lion years (Haisch et al., 2001). Dusty debris disks have also been directly

imaged around young (r-..J 10 - 100 Myr) main-sequence stars at optical wave­

lengths (e.g.) Smith & Terrile) 1984; Kalas et al.) 2004) 2005). Disk masses

derived from submillimetre imaging show that these disks only have up to a

few lunar masses of dusty material) suggesting any possible planet formation

will have already taken place in these systems (Holland et al.) 1998; Kalas

et al., 2004).

1.2.1 Accretion Disks: Viscous 'fransport

Gas in an accretion disk is in centrifugal balance. This directly leads to

the conclusion that the angular velocity n in the disk is Keplerian) or pro­

portional to r-3/ 2 . As the gas rotates in such a differentially rotating disk,

4
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random motions cause gas parcels to diffuse across streamlines, redistributing

momentum; this mechanism is known as shear viscosity.

Dissipative interactions within a disk will cause some of the orbital energy

in the gas to be thermalized (converted to internal, or thermal energy). fur­

ther, the radiative cooling timescale for the gas is often assumed to be fast

(compared to the timescale for the transport of angular momentum), so the

gas will readily lose orbital energy until the orbit is circularized. In order to

be accreted by the central star, gas in the disk must then move to a lower

orbit by losing angular momentum. As parcels of gas in the disk slide past one

another, a radially exterior streamline will experience a viscous torque due to a

radially interior streamline, gaining angular momentum at its expense. Gas in

the interior streamline can sink lower in the potential well, and as it continues

to lose orbital energy and angular momentum, it will spiral inward in the disk

where it is eventually accreted by a protostar. Gas in the exterior streamline

can in turn transfer angular momentum to a streamline further exterior and so

on, causing angular momentum to be transported outward in the disk (Frank

et al., 1985).

The question of what form of viscosity may be present in accretion disks is

an open one. "Molecular" viscosity, defined as viscous interactions associated

with a length scale of order the mean free path of molecules .e moving with

random thermal velocities rv Cs (Frank et al., 1985; Clarke & Carswell, 2007),

is almost always present in real fluids. The dimensionless Reynolds number

Re can be defined as a ratio of inertial to non-inertial, or viscous, terms in

the Navier-Stokes momentum equation (2.6) (Frank et al., 1985), or by simply

5
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constructing a ratio using a characteristic length scale L and velocity scale V

for the flow at a given viscosity v (Landau & Lifshitz, 1987):

Re = LV = LV = LV
v csf! cs(nO"m)-1

(1.2)

where we have approximated the molecular viscosity v rv csf! as interacting

over a distance given by the product of the number density n of molecules

and the cross-section O"m for their interaction. Adopting values derived from

a minimum mass solar nebula (MMSN) disk model (Hayashi, 1981) for gas at

L = 1 AU, the circular velocity V ~ 3 X 106 cm S-1 at 1 AU, a sound speed of

Cs ~ 105 cm s-\ a number density of n ~ 4 X 1014 cm-3 , and the collisional

cross section for molecular hydrogen O"m = 2x 10-15 cm2 (Chapman & Cowling,

1970) gives a Reynolds number of Re rv 1014 . Since Re » 1, this suggests

that molecular viscosity is negligible in accretion disks; in fact, accretion due

to molecular viscosity alone gives timescales for angular momentum transport

in a MMSN disk that are greater than a Hubble time (Clarke & Carswell,

2007). The magnitude of the Reynolds number is also indicator of turbulence

in a flow; laboratory fluids typically become turbulent beyond Re rv 10 - 103 ,

suggesting that accretion disks are most likely turbulent (Frank et al., 1985;

Clarke & Carswell, 2007).

The magnetorotational instability (MRI) has been proposed as a source of

the turbulence in magnetized disks (Balbus & Hawley, 1991). It can be shown

(Balbus, 2003) that magnetized disks are stable to growth of perturbations in

the orbital plane if and only if the criterion:

dD,2
->0
dR -

6
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where n is the angular velocity and R the radial distance from the rotation

axis, is satisfied at all points in the disk. The criterion (1.3) is not satisfied for

Keplerian disks since n ex: r- 3/
2

, implying that this instability may be com­

mon among astrophysical disks. Magnetic field lines connecting neighbouring

fluid elements act analogously to a simple spring. If the elements are radi­

ally displaced, the torques exerted by this spring-like force act as a mediator

for viscous transport; further, as the radial displacement increases, the ten­

sion increases alike, thus increasing the torques, which (for a sufficiently weak

spring/magnetic field) leads to a runaway process. The non-linear growth of

the instability results in the onset of sustained turbulence (Hawley et al., 1995).

The random bulk motions caused by turbulence act as an effective viscosity

associated with scales equal to the size of the largest turbulent eddies, as well

as the turnover velocity (Frank et al., 1985), although unlike purely hydrody­

namic turbulence, energy can be transported to both smaller and larger scales

for turbulence arising from the MRl.

In disks where self-gravity is significant, gravitational torques due to spiral

modes or gravitational instability in the disk can also be an effective transport

mechanism over large spatial scales (e.g, Lodato & Rice, 2004), although such

instabilities may be short-lived (rv 106 years) depending on the strength of any

viscosity present (Vorobyov & Basu, 2009).

1.2.2 The a-prescription

The kinematic viscosity, v, is equal to the dynamic, or shear viscosity

coefficient 'TJ divided by the fluid density p, and is non-zero in the presence of

7
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a shearing flow (see also the discussion following equation (2.5)). In general,

the kinematic viscosity may vary with radius in the disk, however, as noted

in §1.2.1, the source of the viscosity in accretion disks is not well-constrained,

leaving the functional form unknown. Shakura & Sunyaev (1973) introduced a

parametrization for the kinematic viscosity based on dimensional arguments.

Assuming that the effective viscosity in accretion disks is turbulent in nature,

one can reason that the largest turbulent eddies can be no larger than the disk

scale-height H = cs/D, where Cs is the sound speed and D, isthe angular velocity

(see also equation (2.29)). One can further argue that the maximum speed

at which the flow can become turbulent is the sound speed Cs (Frank et al.,

1985). The product ofthese quantities has dimensions appropriate to viscosity,

and the dimensionless a parameter is introduced to scale the proportionality,

giving:

(1.4)

Using this allows one to approximate the effect of a viscosity of varying mag­

nitudes in a calculation without detailed knowledge of the source.

Typical values for a can vary but are less than unity in stable disks by

construction. Hartmann et al. (1998) find a f'J 0.01 for disks around T Tauri

stars over scales of 10 - 100 AU. There is also the possibility of a varying

throughout the disk; using a similar technique as the Hartmann et al. group,

Isella et al. (2009) found that a decreases with radius from as large as a = 0.5

at 1 AU to as small as a = 10-4 at 100 AU in disks around pre-main-sequence

stars. Theoretical models (MRI) predict values over a similar range of a =

5 x 10-3 - 0.6 (Balbus, 2003). Groups studying gravitational instability as a

8
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transport mechanism have determined effective values of a = 0.05 (Lodato &

Rice, 2004). Vorobyov & Basu (2009) have found from two-dimensional models

of viscous self-gravitating disks, that the dominant mode of transport depends

on the size of the viscous a. They find an effective a due to gravitational

torques of rv 10-4 - 10-3 for nearly inviscid self-gravitating disks. Viscous

transport becomes dominant in their disks for a > 10-2
.

1.2.3 Theory of Ideal Disks

The equations governing the radial structure of a thin axisymmetric ac­

cretion disk are given below, following Frank, King, & Raine (1985, Ch. 5).

Define R as the usual radial displacement in cylindrical coordinates, VR the

velocity in the radial direction, and 2:; = J~oo p dz as the surface density of the

disk, where p is the volume mass-density. Imposing mass conservation,

(1.5)

the equation for conservation of angular momentum in the disk, including

transport due to the net effect of viscous torques G,

(1.6)

where

(1.7)

and assuming Keplerian angular velocities n = JGM / R3 (where G here is

Newton's gravitational constant), the evolution of the surface density of the

disk is determined by:

(1.8)

9
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Using (1.6) and (1.7) one can find an expression for the radial velocity:

_ _ 3 [) [ 1/2]
VR - ~R1/2 [)R lJ~R (1.9)

which is, as expected, dependent on the viscosity in the disk. The radial mass­

flux (or accretion rate) at a point R in the disk is then related to the viscosity

through the radial drift velocity by:

(1.10)

1.3 Sink Particles

At some point in the star formation process, gravity will cause gas to ac-

crete onto a much denser protostar. During this time, commonly observed

statistical measures such as the initial mass function and stellar multiplicity

are likely determined to some degree, perhaps by dynamical interactions with

the larger star-forming environment. In such accretion processes, mass-density

increases, posing a problem for numerical studies. The Courant stability con-

dition:

(1.11)

is one of the criteria2 used to define the largest locally allowable timestep in

a hydrodynamical simulation, where 6.x is the width of a resolution element

(equivalent to the "smoothing length" scale h in Smoothed Particle Hydrody­

namics further discussed in §2.1.2) and Cs is the local sound speed (or more

2 Additional timestep criteria are invoked in this work that take into account the accel­

eration, viscous forces, and expansion cooling of the fluid element being modelled (see

Wadsley et al. (2004) for details).

10
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generally, the maximum local wave speed). The condition (1.11) can be un­

derstood as requiring that the domain of numerical dependence include the

domain of physical dependence. In other words, this imposes a limit on the

extent to which a signal may propagate during a timestep.

It is clear that, as density p increases, llt must decrease (note that llx also

decreases with increasing p for adaptive methods). In star-formation however,

the range in densities required between the initial state (PGMC rv 10-21 g em-3)

and end-point (P0 rv 1 g cm-3) means that as protostars form, timesteps in the

densest regions must be reduced to increasingly smaller intervals, effectively

halting the entire simulation. In fact this is true for almost any dynamical

time used to set the timesteps (e.g. the orbital time of particles in a Keplerian

disk gives llt rv r3/ 2 ).

The simplest workaround to this problem is to manually limit the reso­

lution of a simulation. As the number of particles at this minimum density

increase however, the order of the calculation can increase locally, which can

also halt a simulation. If modelling such dense objects is not of primary inter­

est, "sink" particles are frequently invoked to replace these regions and prevent

densities from increasing, allowing the simulation to continue. Sink particles

only interact with gas in a simulation gravitationally. A variety of methods

have been suggested to implement sink particles.

1.3.1 Bate, Bonnell, & Price (1995)

A collisionless point-mass sink particle is introduced to replace dense, col­

lapsing regions of gas. An accretion radius race for the sink is defined at run

11
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time that effectively sets the hydrodynamic resolution near the sink. Accretion

onto the sink is based on the following criteria for gas particles passing within

the accretion radius:

1. The gas particle must be bound to the sink (i.e. potential energy +

kinetic energy < 0), and more tightly than to any other sink in the

simulation volume.

2. The specific angular momentum of the gas particle with respect to the

centre of the sink must be less than that required to form a circular orbit

at race - in other words, it must be on a decaying/plunging orbit.

Mass, as well as linear and angular momenta from accreted particles, are

transferred to the sink, and the gas particles are removed from the simulation.

These sinks also consume the thermal energy from accreted particles that

would otherwise go into heating the gas.

An evacuated region is created around a sink due to the absence of particles

within the accretion radius. Particles near the edge of the sink therefore see

fewer neighbouring particles, leading to errors in the determination of density

and pressure. Also, angular momentum transport in disks depends on there

being material to transport it from/to; the unresolved region in a sink can

therefore corrupt this process, causing unphysical accretion. Since mass is a

primary observable in star-formation (see §1.1), it is essential that accretion

onto a sink is physical.

Boundary conditions have been described that are designed to correct for

these errors. For a given gas particle, the general method is to estimate the

12
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gradient for a quantity from its neighbours and correct for the missing contri­

bution to that quantity (Bate et al., 1995). In the case of pressure and viscous

acceleration corrections, an equal and opposite force is applied to the sink;

however, due to concerns about the treatment of viscous accretion and poten­

tially unlimited angular momentum transfer out of the sink, these boundary

conditions are in fact no longer used by the author (priv. comm.).

Tests were presented examining the accretion rate onto central sinks in

disks. Results with boundary conditions reduced the amount of artificial ac­

cretion, but did not quite bring the final sink masses in line with a non-sink

result for the total mass "accreted", suggesting that they could be improved.

The results seemed to indicate that angular momentum transport is depen­

dent on the choice of accretion radius, thus changing the final sink masses.

The only viscous interaction present in these tests was the explicit artificial

viscosity used in SPH (see §2.1.3.1). This however is problematic due to its

non-linearity, and resolution dependence (equation (2.19)). The accretion rate

and results of the simulation, are by extension also dependent on resolution.

These sinks have been included in a number of star cluster formation sim­

ulations investigating the stellar IMF (Bate et al., 2003; Bate, 2009a,b), and

brown dwarfs (Bate et al., 2002; Bonnell et al., 2008).

1.3.2 Krumholz, McKee, & Klein (2004)

A sink is again represented by a point-mass non-gaseous accreting particle.

An analytically determined accretion rate is used to set the amount of mass to

be removed from an accretion "zone", (and effectively the back-pressure oppos-

13
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ing the accretion). Sink accretion is modelled as Bondi-Hoyle accretion (Hoyle

& Lyttleton, 1939; Bondi & Hoyle, 1944; Bondi, 1952), defined as spherical ac­

cretion onto an object moving with respect to a background flow, implemented

using the approximate accretion rate given in Ruffert (1994). For anisotropic

accretion and rotating flows, radial velocity and angular momentum are both

preserved in the gas, in contrast to the Bate et al. method. Some angular

momentum, however, must be lost from the gas in an accretion disk in order

to explain the outflows observed in many young stellar objects.

Tests presented for spherical accretion (based on the singular isothermal

sphere of Shu (1977)) were well-handled, with deviations of a few percent from

the analytic expectations for density, velocity and accretion rate. A rotating

ring test performed however revealed the presence of a significant resolution

dependent viscosity, in other words, numerical diffusion. Since this numerical

viscosity is implicit, it can be difficult to characterize. A disk test performed

likely suffers from unphysical transport due to this diffusion, as well as other

numerical problems, such as an unresolved scale-height at the edge of the

accretion zone. As well, the disk was only simulated for about 0.4 periods at

the edge of the disk, which is not long enough to fully examine global disk

dynamics.

In addition to the tests discussed in Krumholz et al. (2004), this methodol­

ogy for sinks has been extended to include a more detailed protostellar model

(specifying characteristics such as stellar radius and luminosity) for use in a

radiation hydrodynamics code (Krumholz et al., 2007b). This has been ap-

14
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plied to studies of the collapse and fragmentation of massive cores as well as

individual massive-stellar systems (Krumholz et al., 2007a, 2009)

1.3.3 Bromm, Coppi, & Larson (2002)

Particles in dense regions are merged to form a single massive gaseous

particle. Bromm et al. claim that the particle is over-pressured compared to

its surroundings, preventing spurious accretion. In the limit of a very large

mass, the particle behaves as if it were collisionless. This methodology was

presented in the context of examining the collapse and fragmentation of a

primordial, metal-free molecular cloud.

1.4 Overview

Accretion rates observed in protostars suggest that disks are dominated

by viscosity, however this is not modelled in many simulations. In chapter 2,

a review of viscous hydrodynamics and the SPH numerical method used in

this work, including an implementation of physical viscosity, is presented. An

overview of the methodology used to construct initial conditions for the simu­

lations performed is also presented. As well, the various models for sinks used

in these simulations are described. In chapter 3, results from these simulations

are presented along with accompanying discussion. The spreading of a viscous

ring in orbit is presented as a test of the physical viscosity implementation in

SPH. Simulations are also performed for the collapse of an isothermal sphere,

and the structural evolution of a three-dimensional accretion disk. These cor-

15
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respond to the two major modes of quiescent accretion in protostars: spherical

collapse and azimuthal accretion. Although there are likely times during the

formation of stars in which the accretion fluctuates (e.g., Vorobyov & Basu,

2009), simulating these "simpler" cases allows for comparison with known so­

lutions, and the identification of any numerical issues. In chapter 4, the results

from these simulations along with possible implications are summarized, along

with some speculative remarks on future work.
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Chapter 2

Methods

2.1 Smoothed Particle Hydrodynamics

2.1.1 Gas Dynamics

Gas flows of Mach number M ;:::, 1 (where M = v / Cs is the gas bulk speed

v in units of the local sound speed cs ) are frequently present in astrophysical

fluids. As such, interstellar gases must be modelled using the machinery of

compressible fluid dynamics. A system of conservation laws describing these

gases can be developed for mass, momentum, and energy, known as the Euler

equations (e.g. Landau & Lifshitz, 1987; Chorin & Marsden, 1990; Clarke &

Carswell, 2007). The system can be closed by choosing an appropriate equation

of state.

Conservation of mass is expressed through the continuity equation:

ap + \7 . (piJ) = 0at

or
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dp ....
- +p'\l,v = a
dt

(2.1)

where p is the local fluid mass-density, and v is the flow velocity. The full

time- or material-derivative in hydrodynamics is defined as:

~=~+v.'\I
dt ot

(2.2)

The extra term in the full time-derivative is due to the advection of the parcel

of fluid under consideration.

The momentum evolution equation describes the rate of change of momen-

tum for an inviscid fluid:
dv '\Ip ....
-=--+9
dt P

(2.3)

where P denotes the thermal gas pressure and fJ represents external "body-

forces" per unit mass (i.e. accelerations) such as gravity.

More generally, the pressure force can be included with other surface forces

in the momentum equation as part of the stress tensor Ta(3 written using the

standard summation convention:

(2.4)

where the a and f3 subscripts represent spatial coordinates (e.g. a E {x,y,z}

in Cartesian coordinates) and oa(3 is the Kronecker delta. The stress tensor is

symmetric, with the pressure supplying the diagonal components. The stress

tensor can also include components, by virtue of the term 0"a(3, that describe

the transfer of momentum between fluid parcels due to viscous diffusion; this

term is known as the viscous-stress tensor:

(
OVa OV{3 25; ....) /"5; n ....

O"a{3=r] OX(3 +ox
a

-"3Ua{3'\1·v +",ua{3Y'V
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where 'J7 and <;: are the dynamic and bulk viscosity coefficients respectively.

Single subscripts denote vector components, and the generalized spatial co­

ordinate x is used in equation (2.5), hence a derivative with respect to X a is

understood to mean "with respect to any spatial coordinate labelled by a".

The first part of the tensor (2.5) describes the dynamic viscosity (commonly

known as the shear viscosity) which is present in regions of velocity gradients

perpendicular to the direction of flow (e.g. in accretion disks); the second part

of this tensor describes the bulk viscosity which operates in the direction of

flow, and is important in compressive regions of the gas (such as shock fronts).

Including this in equation (2.3), we re-define the momentum equation as:

where Va is OCYap/Oxp.

dii VP -> Va
-=--+g+-
dt p p

(2.6)

For non-isothermal viscous or supersonic flows, an energy equation is also

necessary. The rate of change of total energy pE within a given volume is the

sum of three things: external heating (or cooling) q per unit volume, the work

done by body-forces (on the volume) and by forces at the bounding surface

for that volume (such as pressure and viscosity), and the energy flux through

the surface. The result (using the summation convention) is:

(2.7)

While total energy pE is the conserved quantity, equation (2.7) can be further

decomposed into relations for the specific kinetic energy ~ Ilv2 11:

(2.8)
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and specific internal (thermal) energy u, using the first law of thermodynamics:

du = Tds - PdV (2.9)

where T is the gas temperature, ds is the infinitesimal entropy change per unit

mass, and dV is the infinitesimal specific volume (i.e. per unit mass). Con­

verting all terms to time-derivatives, and using dV = d(p-l) allows replacing

the adiabatic work term PdV with -PIp2 dp:

(2.10)

and applying the continuity equation (2.1) gives:

(2.11)

The irreversible processes contributing to the Tds term are specified as the

viscous dissipation of heat, conduction, and external processes. Combining

these processes with the PdV work in equation (2.11) gives:

du P --> 1
- = --\7. v + 1jJ + -\7. (K\7T) + q
dt P P

(2.12)

where K is defined as the thermal conductivity of the gas and the rate of viscous

dissipation 1jJ is:

(2.13)

(e.g., Landau & Lifshitz, 1987, pg. 194). Comparison with equation (2.5) allows

us to identify the contributions from the shear and bulk viscosities respectively.

Instead of equation (2.7) a thermal energy equation like (2.12) is often evolved

in hydrodynamic codes where the kinetic energy is likely to be comparatively
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much larger. This ensures that the internal energy will not become negative

due to small integration errors (Price, 2004).

Assuming an ideal gas, the equation of state P = ('Y - 1) pu (where 'Y is

the adiabatic index, and is constant for a polytropic l gas: 7/5 for a diatomic

gas, and 5/3 for a monatomic gas) along with appropriate boundary conditions

fully specifies this system (equations (2.1), (2.6), and (2.12)), collectively called

(in the viscous case) the Navier-Stokes equations.

2.1.2 The SPH Method

Smoothed particle hydrodynamics (SPH) was developed by Lucy (1977)

and then Gingold & Monaghan (1977). Reviews by Monaghan (1992, 2005)

and Price (2004) explore this method in detail. A continuous fluid is de­

composed into discrete particles that move with the flow. In this so-called

Lagrangean formulation, the derivatives are co-moving, necessitating the use

of the material derivative (2.2) in the gas dynamics equations. As such, explicit

advection terms are not required, so bulk gas flows, including orbital motion,

are correctly modelled. The major practical advantage of this formulation is

that it is naturally adaptive; regions with greater densities will necessarily have

a greater number of particles sampling that region of fluid, while low density

regions will be sparsely populated. In contrast to grid schemes, complex ge­

ometries pose no additional problems. A smoothed form of any fluid quantity

1 A polytropic gas has the property of pressure varying inversely with volume to some

power (Landau & Lifshitz, 1987).
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A can be calculated for each particle i, using a volume-weighted contribution

of values from neighbouring particles j, and is known as the "interpolant" Ai:
n

Ji. = "" A.mjW(f. - f· h· h·)t L....J J t J' t, J
j Pj

where Aj is the unsmoothed fluid quantity A at particle j, mj is the mass of

fluid particle j, Pj is the density at particle j, and h is a characteristic length

scale called the smoothing length. Using integration by parts, derivatives can

be transferred from A to the weighting function W.

The weighting function or kernel must be normalized, and must become

a delta-function in the limit of h -7 O. The kernel typically resembles a

Gaussian, but is usually constructed from a cubic-spline function to truncate

the summation over a finite number of neighbours n. In three dimensions, the

following form for the kernel is given by Monaghan (1992):

3 2 3 3
1 - 2rh + ith if 0 :::; rh :::; 1

~(2 - rh)3 if 1 :::; rh :::; 2
4

(2.15)

o otherwise

where we have defined 'Gj = 'G - f} and rh = rij/hi . To satisfy Newton's

third law (momentum conservation), a symmetric kernel Wij = Wji is re-

quired to calculate forces between neighbours. This can be ensured by using

a kernel-average Wij = ~(W('Gj, hi) + W(f}i, hj)) (Hernquist & Katz, 1989).

The characteristic width of the kernel is given by the smoothing length h, and

is a measure of the spatial resolution of an SPH simulation.

Discretized versions of the Euler equations presented in §2.1.1 may be de­

rived using the general form of the interpolant (2.14). Following Monaghan
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(1992), the continuity equation is replaced by the SPH calculation for density

of a particle:
n

Pi = LmjWij
j

This formulation conserves mass exactly. The SPH form for the momentum

balance equation (2.3) is usually written in symmetrized form:

(2.17)

(2.18)

which conserves both linear and angular momentum exactly (Monaghan, 1992).

The gradient is taken with respect to the co-ordinates of particle i. The ar-

tificial viscosity term IIij will be discussed in §2.1.3.1. Finally, neglecting the

physically dissipative and conductive terms, the specific internal energy equa­

tion (2.12) can also be written in symmetrized form, or alternatively (Evrard,

1988) as:

dUi Pi Ln
->- - - m·v··· \7'VV;"dt -? J tJ t tJ

Pt j

It can be shown (Wadsley et al., 2004) that equation (2.18) behaves similarly

to formulations where internal energy is calculated via an entropy function

(e.g., Lucy, 1977; Springel & Hernquist, 2002), which is dynamically evolved

instead of the internal energy; as well, equation (2.18) is more robust than the

symmetrized forin in regions of highly variable pressure.

The simulations presented in this thesis use the parallel hydrodynamics

code Gasoline (Wadsleyet al., 2004). Gasoline builds on the N-body gravity

code Pkdgrav (Stadel, 2001). The code uses a spatial binary tree to determine

the hierarchical mass-distribution at each particle when calculating gravity,

making the process O(N log N), where N is the number of resolution elements
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(in this case, particles) in the calculation. SPH summations are computed

using a fixed number of neighbours O(N), which are found using a balanced

k-dimensional, or K-D tree (Bentley, 1975). The K-D tree is a tree data struc­

ture composed of cells that correspond to regions in the simulation volume

with approximately equal numbers of particles (Stadel, 2001). The implemen­

tation of the gas dynamics equations is mostly based on the one presented

by Monaghan (1992), and summarized above. For computational efficiency,

the current version of Gasoline computes a one-sided sum for density, that is,

the kernel (2.15) is not averaged between neighbouring particles for the den­

sity calculation. Standard test results using this version of the code have not

changed from those presented in Wadsley et al. (2004), which were performed

using an averaged kernel. To retain momentum conservation, this change was

not implemented for force calculations.

Time-integration is accomplished using a second-order leapfrog scheme,

known as Kick-Drift-Kick (Quinn et al., 1997). For each iteration, particle

velocities are first updated by a half-timestep ("half-kick"), followed by a full

timestep position update ("drift"). Finally, the velocities are synchronized

with the positions by another half-kick. A predictor step is used prior to the

final half-kick to update the thermal energy and (SPH) acceleration (Wadsley

et al., 2004). Gasoline assigns timestep sizes individually to particles, resulting

in further efficiency.

24



(2.19)

M.Sc. Thesis - Victor Kumar Arora - McMaster University - Physics and Astronomy - 2009

2.1.3 Viscosity in SPH

2.1.3.1 Artificial Viscosity

Numerical viscosity is required in all hydrodynamics codes to stabilize the

scheme in question, and for SPH also to ensure proper entropy generation

in shocks. Monaghan (1992) implements an explicit artificial viscosity by

combining the term
-aavCijf.-Lij + {3f.-Ltj

IIij = --~~---"'-

Pij

with the pressure terms within the parentheses in the momentum evolution

equation (2.17), where Ci is the sound speed at particle i and

f.-Lij = If'..12 + 0 01h?
tJ • tJ

(2.20)

where Cij, Pij, and hij are average quantities between neighbours, and Vij =

Vi - Vj' The aav term in (2.19) (not to be confused with the physical viscosity

parameter a in equation (1.4)) produces artificial shear and bulk viscosities

and the {3 term is needed to capture high Mach number shocks. The coefficients

are typically assigned values of aav = 1 and {3 = 2 (Monaghan, 1992), but may

be given other values to control the strength of the dissipation (as in §3.3).

The diffusion due to (2.19) should ideally be absent in non-convergent flows

(\7 . V > 0 Of, equivalently in SPH, Vij . 'Gj > 0) and minimized in rotating

shear-flows such as disks. The use of constructs such as the Balsara (1995)

switch is intended to accomplish the latter; the artificial viscosity term (2.19)

is multiplied by the factor:

1\7· vi
1\7 . vi + I\7 x vi
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averaged between neighbours. Equation (2.21) is r-.J 1 in regions of strong

convergence (IV· vi dominates) and is a minimum in regions of high vorticity

(IV x vi dominates), effectively reducing artificial viscosity in strongly rotating

regions. The explicit dependence of (2.19) on the smoothing length means

that numerical diffusion decreases with additional resolution and conversely

increases with poorer resolution, which may be undesirable.

2.1.3.2 Physical Viscosity

As discussed in §1.2.1, viscosity controls angular momentum transport in

accretion disks. Since this sets the accretion rate onto the disk's central object,

it is essential that the transport of angular momentum is correctly reproduced

in simulations. To better model the shear-stresses in rotating flows, we have

added a true, physical viscosity into a version of Gasoline using the formulation

described by Flebbe et al. (1994). Following this formulation, the gradient of

the viscous stress tensor in SPH becomes:

(2.22)

which may be added to the right hand side of equation (2.17) to give the SPH

version of the viscous momentum conservation equation (2.6). The Gasoline

implementation uses a two-sided summation for equation (2.22) but a one­

sided summation for the viscous stress tensor (2.5) itself (see §2.1.2). The

components of the tensor are given as:

(2.23)
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omitting the bulk viscosity. Flebbe et al. also give an energy equation that

may be compared with the differential version (2.12). This expression was not

included in the Gasoline implementation since all simulations for this thesis

were performed with a fixed temperature profile.

2.1.4 Sinking Particles

The tests performed in this thesis compare three different models of accre­

tion centres for simulations of star-formation:

1. A non-accreting, collisionless particle ("star") or a fixed r-1 gravitational

potential imposed at the origin. Gravitational calculations are subject

to a softening parameter E which is intended to to prevent divergence in

the gravitational forces at the origin2 by smoothly decreasing the force to

zero there, thus setting a gravitational-resolution limit (and effectively,

a minimum timestep) for gas-particles (see e.g., Wadsley et al., 2004).

Since we are not concerned with gravitational accuracy interior to the

dense accretor in this work, E is set approximately equal to smallest initial

particle separation. Similarly, a minimum smoothing length (chosen to

be some fraction of E) is sometimes imposed to set a minimum SPH­

resolution (e.g, Petitclerc, 2009), however, this removes the requirement

of a fixed number of neighbours, and the SPH method locally becomes

V(N2
) rather than its usual V(N). A minimum smoothing length is not

used in this work.

2 Or more generally, between two self-gravitating particles as their separation vector ----7 O.
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2. Sink particles following Bate et al. (1995) without the explicit boundary

corrections at the accretion radius advocated for therein (see §1.3.1).

Particles within the accretion radius are immediately accreted onto a

point mass based on energetic and dynamical considerations. This is the

method for sinks currently available in Gasoline, and will be referred to

in this work as "standard" sinks.

3. A sink particle formulation based on Bate et al. (1995); however, particles

interior to the accretion radius are evolved kinematically, thus acting as

a boundary condition at the accretion radius. A gas particle that crosses

the accretion radius r aee (subject to the normal Bate et al. criteria) is

tagged as "sinking" (figure 2.1). An inwards spiralling Keplerian trajec-

tory for the particle is calculated from its radial and tangential velocities

(Vro ' Vto) when it crossed the threshold using:

(
R ) -1/2

Vt = Vto Race

(2.24)

(2.25)

Since the future motion of the sinking particles is thus analytically de-

termined, they are not included in the calculation for timesteps. As

they in-spiral, the sinking particles can however act as neighbours for

normal gas particles exterior to the accretion radius. This is intended to

prevent the problems associated with having an evacuated region inside

the sink (e.g. an artificial pressure gradient or unphysical angular mo-

mentum transport, leading to enhanced accretion). Further, the finite

lifetime of a sinking particle limits how long angular momentum can be

transferred from a particle inside the sink to the rest of the simulation.
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Hydrodynamic quantities are not retained for these particles; to conserve

momentum, any forces applied to sinking particles are added directly to

the sink. Sinking particles are finally removed from the simulation as

in the Bate et al. sinks, when they reach a user-defined radius, usually

:::; O.lracc ' The sinking particle's mass is added to the sink at this point.

2.2 Constructing Initial Conditions

Care must be taken in constructing a particle distribution that is in a ('re­

laxed" or minimum-energy state at the start of a simulation. Since particle

locations are in a relaxed state at the end of a run, using this type of distribu­

tion for an initial condition ensures that the fluid is optimally sampled at the

outset as well. For particles of equal mass, this also helps avoid any transient

behaviour that may occur upon starting a simulation with a more regular ini­

tial distribution. This relaxed state is also known as a "glass", because of the

absence of crystalline structure, in analogy with real glass. Non-uniformities

in the distribution are gradually smoothed out by evolving the distribution

dynamically to an equilibrium configuration, subject to a damping force. All

simulations performed in this thesis used equal mass particles; the use of vari­

able mass particles or a different form for the kernel (2.15) will result in a

different relaxed state (Monaghan, 2005).
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Figure 2.1: "Sinking particles" inner boundary condition. A gas particle that
satisfies the criteria for accretion (solid, outlined) is now tagged as sinking
(hollow). The sinking particle follows a spiral trajectory given by its velocity as
it crossed the accretion radius. Sinking particles that fall within the interaction
region of a normal gas particle (solid) act as neighbours for that particle.
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2.2.1 Singular Isothermal Sphere

The singular isothermal sphere (SIS: Shu, 1977) was presented as a test of

spherical accretion by Krumholz et al. (2004) and Cha & Whitworth (2003),

and will also be presented here. The desired initial state is a 1 M@ sphere

containing rv 50000 gas particles arranged in a r-2 radial density profile. A

standard periodic glass box containing 163 gas particles arranged in a uniform

density was replicated until the desired number of particles were present, re­

sulting in a unit-box centred on the origin. Next, the Cartesian coordinates

for the particles were re-scaled by multiplying each coordinate by the radial

distance vector squared (i. e. by r2 = x 2 + y2 +Z2), with particles beyond r = 1

removed, thus yielding an r- 2 density profile for the unit-sphere. The sphere

of particles was then allowed to relax in a fixed gravitational potential corre­

sponding to a radial acceleration of ar ex: r-1, subject to an equation of state

where T ex: r 2 ; particle velocities are damped as they move toward a uniform

pressure state corresponding to the desired density distribution. When par­

ticle motions became negligible the evolution was halted; particle velocities

were zeroed in all directions, and assigned a temperature of T = 29 K. The

temperature chosen must be small enough that the sphere remains unstable

at the centre and must match the external pressure at the edge of the sphere

(see §3.1), but is otherwise arbitrary.

2.2.2 Keplerian Ring

To verify the implementation of physical viscosity in Gasoline, the evolution

of a pressureless ring of viscous gas in a Keplerian orbit (v</J rv r-1/ 2) at R = Ro
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and total mass m about a 1 M0 star was simulated. The initial state for this

test presented in Pringle (1981) specifies the surface density as ~ = ~oo(R­

R o) where ~o = m/27rRo, and o(R - R o) is the Dirac delta function. The

subsequent evolution is given according to an analytic expression:

~(x, T) = 7r~5 T:1/ 4 exp (-1: x
2

) / 1/ 4 (2;) (2.26)

where x = R/R o) T = 12vt/R5, v = 'TI/p is the kinematic viscosity, and

h/4 is the modified Bessel function of the first kind of order 1/4. For the

initial condition) we used the surface density profile of the solution (2.26) at

dimensionless time T = 0.016. The standard glass box was replicated 16 x 16

times in the xy plane, and a slice 1/16 thick was taken in the z-direction to

create a 2562 glass in two dimensions. A particle distribution matching the

surface density at the given time was determined by a Runge-Kutta method)

and was used to scale the radial positions of the particles in the 2D glass. To

approximate the pressureless state, the isothermal gas was set to a temperature

of T -,--- 10-6 K. The ring was centred on the origin, and was truncated at inner

and outer radii 0.7 Ro and 1.3 Ro respectively. Keplerian velocities were then

applied to the particles.

2.2.3 Accretion Disk

Since a significant fraction of the mass accreted by a forming star is likely

from a circumstellar disk) studying how this accretion would proceed in the

presence of a sink is essential. Disk simulations previously presented in the

literature may suffer from numerical issues (see §§1.3.1 and 1.3.2). Part of the

reason for this may be due to choosing disk parameters that are numerically
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intractable. To study the effect of introducing the sink, it is important to

create a simple, yet fully three-dimensional disk model where the results from

that model are not adversely influenced by numerics. Rather than choosing the

most realistic disk parameters, we elected to model a disk where the physical

structure, such as the scale height, was resolved at all radii.

The standard periodic glass box was again replicated to create a wafer-like

structure composed of 322,776 particles, with an overall aspect ratio of HIR =

0.09 (where R = Jx2 + y2 is the usual cylindrical radial coordinate), with the

centre-of-mass at the origin. The surface density of the disk is constant out to

R = 1 and linearly goes to zero at R = 1.25. A surface density ~ ex: RP where

p > - 2 will guarantee a finite mass as R ---* O.

A temperature profile of T rv (r +c:)-2 where c: = 0.05 was imposed on the

gas. This profile was motivated by the need for adequate vertical resolution

throughout the disk. Assuming vertical hydrostatic equilibrium, the vertical

acceleration from (2.3) is:

which in the thin-disk approximation (Rdisk » Zdisk) becomes:

(2.27)

lap

paz

GMz
---

R3 (2.28)

(2.29)

and using 8PI8z rv PIHand z rv H, along with the specified temperature

profile, the resulting scale-height H for a disk in orbit around a central mass

M should vary as

H'" C, (GR~) -1/2 ~ R1/ 2

(Frank et al., 1985), which is a smoothly varying function throughout the disk.
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Figure 2.2: The initial state for accretion disk simulations: a slice y > 10.051
through the disk is shown.

To recover this vertical profile, the disk was relaxed vertically in the fixed

potential of a 1 M0 homogeneous spheroid of radius 0.05 Rdisk at the origin,

with self-gravity switched off and an external pressure approximately equal

to the minimum thermal gas pressure at the edge of the disk. All (cylindri­

cally) radial accelerations and velocities in the disk plane were zeroed at every

timestep, and the radial positions R were fixed. Particles were free to move

in the vertical direction subject to a damping force, until vertical motions

approached a minimum.

At this stage, the disk particles were assigned circular velocities to balance

the radial component of gravitational acceleration in the disk plane due to

the spheroid potential. The resulting initial condition for future simulations

is shown in figure 2.2.

As a final note, Shen (2006) found that the scale-height in simulated disks

should be resolved by several particle spacings to prevent artificial fragmenta­

tion. Since the disk inside r = 0.05 will be unresolved by construction (due to
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the presence of a sink of accretion radius race ~ 0.05), we found a minimum

ratio of scale-height to smoothing length h ~ (m/p)1/3 at this radius of:

(2.30)

where m and p are the gas-particle mass and density, which indeed satisfies

this criteria.
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Chapter 3

Results

3.1 Isothermal Collapse

A singular isothermal sphere (Shu, 1977) was created following the method

in §2.2.1, and as previously tested with sinks by Krumholz et al. (2004) and

eha & Whitworth (2003). An isothermal sphere is initially in a r-2 radial

density profile, with a fixed confining pressure. While the sphere is initially

in hydrostatic equilibrium, the nature of the density distribution makes the

central region unstable to collapse. A standard sink particle was placed at the

centre of the sphere, immediately initiating a collapse under self-gravity.

The sphere was composed of 50,025 gas particles of total mass 1 M0 , rs =

4125 AU in radius. The gas was set to a temperature of T = 29.4 K and an

external pressure of Pext = 7.6 X 10-10 dyne cm-2
Rj p(rs ) c; was applied. The

central sink particle was 2 x 10-5 M0 with accretion radius race = 124 AU,

and was incorporated without any inner boundary corrections.

As described in Shu (1977), the expected behaviour is an inside-out col­

lapse, as layers of static gas above already in-falling material experience a
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pressure gradient, thus acquiring an inward radial velocity. As a result, an

expansion wave propagates outward from the accretion centre at the sound

speed Cs = 3.3 X 104 cm S-l. This is manifested as a "knee" in the radial den­

sity profile (figure 3.1) where the gas interior to the wave follows p ex: r-3
/

2
.

The collapse time tcollapse = (GMs)j(0.975c~) is defined as the time necessary

for the sink to accrete all of the matter in the surrounding singular isothermal

sphere (Cha & Whitworth, 2003). In particular, note that t = 0.5 tcollapse cor­

responds to the time when the rarefaction head hits the edge of the sphere. At

this point, the entire sphere is in free-fall with v ex: r- 1
/

2
. The accretion rate

onto the sink remains constant at dmjdt = 0.975 c~jG (McKee & Ostriker,

2007) until all of the mass has been accreted (figure 3.2).

The scatter ("noise") in the density and velocity distributions gives an

estimate of the uncertainty in the simulation result. In this respect, the mean

values of the particle distributions of both quantities compared favourably

with the exact solution given in Shu (1977) (i.e. are within the noise) around

the location of the expansion wave head, which itself propagated at the correct

rate. The greatest deviation from the exact result was in and around the sink

itself. Although qualitatively correct, the average density of the in-falling gas

was deficient inside the sink at early times, and enhanced at later times as one

approaches the sink. This is in phenomenological agreement with a Godunov­

type SPH simulation by Cha & Whitworth (2003). Similarly, the magnitude

of the radial velocity of the gas inside the sink appeared to be (on average)

overestimated early on and underestimated approaching the sink later. This

did not, however, seem to cause large errors in the accretion rate.
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Figure 3.1: The density and radial velocity profiles of the SIS at different
fractions of tcollapse = 3,73 X 1012 s. The exact solution from Shu (1977) is
plotted as a solid line over the result from the simulation.
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Sink Mass for the SIS as a function of time
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Figure 3.2: The accretion of mass by the central sink particle (Msink in units
of total sphere mass Ms ) as a function of total collapse time. The diamonds
indicate the numerical result and the solid line is the analytic expectation.

In particular, the accretion rate was constant, and matched the theoretical

expectation well. Upon starting the simulation, the accretion rapidly reached

the correct rate at the correct sink mass; from t = 0.35 to 0.8 the deviation

from the expected mass was less than 0.1%. The slight discrepancy at late

times can be attributed to worsening spatial resolution, as most of the initial

sphere was accreted. We conclude that spherical accretion, for a static particle

accreting from a static gas, was well modelled by this sink. Similar agreement

was found using the sink implementation in Krumholz et al. (2004), in addition

to the Cha & Whitworth (2003) results, who used the Bate et al. sink method.
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3.2 Viscous Keplerian Ring

To better model the shear viscous force in our disk simulations, we have

added physical viscosity into a version of Gasoline using the formulation de­

scribed by Flebbe et al. (1994) (see §2.1.3.2 for a detailed description). To

test the implementation, the evolution of a ring of gas particles in a Keplerian

orbit was simulated. The ring was set up to be approximately pressureless

so that it evolves only under gravitational and viscous forces. Viscosity acts

to spread out the surface density profile; a ring annulus will impart angular

momentum to an annulus that is radially exterior. Consequently, the exterior

annulus gains orbital energy, whereas the interior annulus loses both orbital

energy and angular momentum, moving radially inward. This process happens

at all radii throughout the ring. The result is that most of the mass eventually

spirals into the central accretor while most of the angular momentum is trans­

ferred to parts that subsequently move radially outward (Frank et al., 1985).

This diffusive process is completely driven by viscosity (see §1.2.1).

The ring was composed of 12,784 particles of total mass m = 3 x 10-6 M0

that were placed in a Keplerian orbit centred on Ro = 1 R0 around a standard

sink particle of mass 1 M0 , and accretion radius race = 0.0038~. The gas

particles were set to a temperature of T = 10-6 K The ring was allowed

to evolve viscously, with the constant kinematic viscosity set to 1/ = 7.7 X

1014 cm2 s-l. The evolution of the surface density of such a ring is given by

Pringle (1981) via the scale-free equation (2.26).

The surface density evolution of the ring shown in figure 3.3 matches the

analytic expectation and proceeds at the appropriate viscous timescale. Some
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spurious waves were seen to propagate in the surface density profile but do

not appear to alter the global behaviour of the ring. Only 45 particles, or

approximately 0.35% of the initial gas was accreted by the sink by T = 0.171.

The evolution of the identical ring was also simulated without physical

viscosity (i.e. v = 0). Any spreading of the ring in this case would be due

entirely to numerical effects, such as the artificial viscosity (2.19) or more

complex forms of numerical diffusion (e.g., Krumholz· et al., 2004). The arti­

ficial viscosity coefficient was set to the commonly used value of O!av = 1.

The inviscid ring was observed to retain its surface density profile to several

dynamical times (figure 3.4). Calculating the RMS ofthe binned-profile about

Ro suggests that some minor diffusion occurred by 40 orbital times; at t =

40T the RMS was ((R - RO)2)1/2 = 1.09 compared to the initial RMS of

0.179. Despite this, this still demonstrates the efficacy of the Balsara switch

in suppressing artificial viscosity within shear flows at this resolution. By

t = 40 T, 95 particles, or about 0.7% of the initial ring was accreted by the

sink. By comparison, 6.6% of the initial gas in the viscous ring was accreted

by T = 0.779 (about 40 orbital periods at R = 1). The relative behaviour of

artificial and physical viscosity is examined further in the following section,

particularly §§3.3.1 and 3.3.3.
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Figure 3.3: The surface density I; of a viscous Keplerian ring in azimuthally
averaged radial bins (diamonds) at various dimensionless times T. T = 0.171
corresponds to about 8 orbital periods at R = Ro. The solid black line is the
analytic solution for the same ring. The solid grey line shows the initial state.
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Figure 3.4: The surface density I; of an inviscid Keplerian ring in azimuthally
averaged radial bins (diamonds) at time in units of orbital period T at R = Ra.
The initial surface density is shown by the solid grey line. 40 T is approxi­
mately T = 0.779 for the same ring with v = 7.7 X 1014 cm2 S-l.

3.3 Viscous Accretion Disks

3.3.1 Fiducial Case: a = 0.1, race = 0.05

A disk initially at constant surface density and with a fixed temperature

profile T = 5(r + c)-2 (see §2.2.3) was evolved for 10 orbital periods at the

initial "edge" of the disk (defined as the radius where the surface density

is no longer constant (see §2.2.3), corresponding to R = 1 code unit = 2 x

1015 cm ~ 134 AU). The disk was in orbit around a standard sink particle

of mass M = 1 M0 and accretion radius race = 0.05 code units. Physical

viscosity was parametrized using a = 0.1 (see §1.2.2). A circumstellar envelope
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was crudely modelled by applying a fixed external pressure of Pext = 2.08 X

10-9 dyne cm-2
, intended to help confine the disk radially.

While this disk was at reasonably high resolution compared to disks in

a typical star cluster simulation, the SPH artificial viscosity parameter was

additionally lowered to aav = 0.1 to ensure that evolution due to physical

viscosity dominated. A rough estimate of the relative strengths of the artificial

and physical viscosities can be made by approximating the artificial component

as I/av = aavcsh (where h is the SPH smoothing length); then for 1/ > I/av the

condition:
a h
->­
aav H

(3.1)

must be satisfied, where we have used the a-prescription (equation (1.4)) for

physical viscosity 1/. For this disk, this holds for all values of R (see equation

(2.30)). This criteria does not take into account the effectiveness of the Balsara

switch (equation (2.21)) in suppressing artificial viscosity; in the presence of

the switch, physical viscosity may dominate even if the condition (3.1) is not

strictly satisfied. For another comparison of artificial and physical viscosity in

the disk simulations see figure 3.12.

All accretion disk tests were performed in the fixed homogeneous spheroid·

potential (§2.2.3) with self-gravity turned off. This allowed us to study mech-

anisms for transport in disks apart from gravitational instability. This is well-

justified in general if the Toomre parameter:

(3.2)

is larger than 1 for the disk under consideration (where f'i, is the epicyclic

frequency, Cs is the sound speed, and L; is the surface density). Physically,
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this implies that the disk is stable to the growth of axisymmetric perturba­

tions (Binney & Tremaine, 1987, pg. 362). For the Keplerian disk used in

the simulations presented here, the epicyclic frequency K, is equal to angular

rotation rate [1, giving a minimum Q rv 50 at R = 1, implying that the disk

is very stable to both the formation and growth of spiral modes and gravita­

tional fragmentation. Comparison between runs performed with self-gravity

on and off gave identical outcomes, confirming that transport due to gravita­

tional torques in this disk is negligible. In addition, the run with self-gravity

calculations omitted finished approximately twice as quickly.

If other timescales of interest are much longer than the viscous timescale

tVisc = R2
/ v, the disk structure may be compared to the steady state case.

Applying the a-prescription for viscosity (§1.2.2) to this disk (c; ex T ex r-2 )

gives v ex R 1
/

2
. Assuming that a power-law surface-density profile ~ ex RP

is an equilibrium solution for this disk in the steady-state, equation (1.9)

gives V r ex R-3/ 2 . If time-derivatives vanish, equation (1.5) gives that the

product R~VR = -in/27f is constant; to ensure this, the exponent in the

surface density profile must be p = 1/2 (if the power-law equilibrium solution

is a valid assumption). The evolution of the surface density of the disk is

plotted in figure 3.5, and a fit to the surface density at t = 1.4 T is shown in

figure 3.6.

It is important to recognize that the ideal steady-state model implicitly

assumes a disk with a boundary at infinity, implying a divergent total mass as

R extends to infinity. Such a situation is difficult to replicate in a simulation.

Effects from the boundary do seem to alter the structure of the simulated disk
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Surface Density Evolution (race = 0.05, ex = 0.1)
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Figure 3.5: The azimuthally averaged surface density ~ of an a = 0.1 accretion
disk at (dotted lines from top to bottom) t = T, 5T, and lOT in units of the
orbital period T at R = 1. The initial surface density is shown by the solid
line.

fairly rapidly; in fact, no part of the disk can retain its initial surface density

beyond t = 1.4 T. The surface density profile at this time, however, does not

readily appear to follow a simple power law over any radius in the disk. Two

power-law fits are made to the inner region of the disk (where the evolution is

not yet likely affected by the outer boundary) as shown in figure 3.6. Fits are

made with exponents rv 0.5 and rv 0.7. One can argue that both cases fit the

profile equally well visually (e.g. within the uncertainties) in the inner-most

region of the disk R ;S 0.3, but poorly elsewhere (e.g. out to R rv 0.6). As

shown in figure 3.5, however, the surface density undergoes significant changes

beyond the time t = 1.4, leading one to conclude that this disk is not likely

to reach a steady-state at all; however the evolution does appear to follow

the qualitative expectation for viscous disks. The global decrease in surface
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Figure 3.6: Least-squares fits to the surface density profile in code units at
t = 1.4 T. The dashed line is fit to a range R = 0.1 - 0.4 with the result
~ <X RO.53 . The solid line fit is performed over R = 0.1 - 0.25 with the result
~ <X RO.72 . If plotted, the binning uncertainties in the surface density profile
at this scale would be slightly smaller than the size of the diamond symbols.

density implies that transport must be occurring, with the inner part of the

disk initially in-falling and the outer part initially spreading.

While the surface density plots indicate that mass is moving inwards, fig­

ure 3.7 shows that the angular momentum distribution does in fact become

weighted to larger radii as the simulation proceeds and the disk radius grows,

again in agreement with viscous disk theory.

Transient features were also identified in this disk. A "kink" in the surface

density was seen to propagate outward from the interior disk immediately upon

starting the simulation. This was observed in all simulations using this disk,

including ones without a central sink. This is likely due to an over-pressured
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(code units) in radial bins of width 0.02 in the fiducial disk at (dotted lines
from top to bottom) t = T, 5T, and 10 T in units of orbital period Tat R = 1.
The initial angular momentum distribution is shown by the solid line,

interior region, making the velocities needed to balance gravity there slightly

sub-Keplerian; the transient is probably a result of the disk adjusting to this.

As well, the outer edge of the disk was initially seen to oscillate radially,

however these oscillations slowly decay as the simulation proceeds, and the

disk still showed an overall increase in radius, as expected for a viscous disk.

The accretion rate (1.10) can be related to the rate of change of the surface

density via the continuity equation (1.5):

o'L,
8t

1 om
----
21fR 8R

(3.3)

So for a steady disk, the accretion rate should also be constant throughout.

The simulated disk, however, has a surface density that is everywhere decreas-

ing with time, so plots of the accretion rate should show a negative slope. To
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Radial Velocity (race = 0.05, ex = 0.1, t = lOT)

0.2

0.0

-0.2

.~' .

,'. '

-0.4

0.1
R

1.0

Figure 3.8: The particle distribution of radial velocities (code units) in the
fiducial disk at t = lOT.

examine the accretion rate, an estimate of the radial velocity in the disk plane

VR = Jv~ + v~ is required. The expectation is that radial velocity will be

negative near the accretion centre, and increasing with radius. Due to noise in

the pressure forces within the simulated disk, the radial velocity distribution

has a broad dispersion (figure 3.8).

The dispersion in velocities makes visually interpreting this representation

of the data difficult. To get around this, the azimuthally averaged radial

velocity in radial bins 0.02 code units in width was calculated (the disk is

initially 1.25 code units in radius). The result is plotted in figure 3.9.

The averaged radial velocity profile is now clearly apparent. A root in this

curve can now be identified where VR < 0 interior and VR > 0 exterior. This

is a division between the parts of the disk where mass transport and angular
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Radial Velocity (race = 0.05, a = 0.1, t = lOT)
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Figure 3.9: The mean radial velocity measured in radial bins of width 0.02
in the fiducial disk at t = lOT. Error bars (standard deviation of the mean)
are plotted for points where the errors are larger than the diamond symbols
at this scale. The grey arrows indicate the approximate location where VR

changes sign. A finite-difference (f.d.) calculation of VR using equation (1.9)
is over-plotted.

momentum transport successively dominate. This is also inconsistent with a

steady-state disk, for as angular momentum moves outward, the transition

radius (where VR = 0) moves outward as well, causing previously outgoing

mass to fall inward. A finite-difference estimate of the radial velocity profile

in a viscous disk using equation (1.9) and the measured surface density is also

plotted, which the SPH estimate matches well qualitatively. The largest per-

centage deviations from the finite-difference curve are where the curve crosses

the R-axis (VR ~ 0-), and near the outer edge, where the disk continues to un­

dergo mild radial oscillations. Large percentage deviations are not unexpected

in the former case since the value in the quotient will be nearly zero. Away
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Figure 3.10: The accretion rate (1.10) (code units) in the fiducial disk as a
function of position, calculated using the binned-average radial velocities (3.9).
The expected curve using the finite-difference estimate for vR is also plotted.

from these regions, the percentage deviation from the finite-difference curve is

10-20%. It is worth pointing out that the percentage deviation is within the

same range in the inner-most region of the disk (near the sink), even though

the absolute deviation may be larger.

A well-determined radial velocity profile allows the calculation of the ra­

dial mass flux, or accretion rate rh in the disk from equation (1.10) and the

measured surface density. The resultant profile is plotted in figure 3.10, along

with a finite-difference estimate using the finite-difference values of VR.

As expected from equation (3.3), the curve has a negative slope across

much of the disk, although it is nearly constant for a large portion of the inner

disk. The region of greatest rate-of-change of rh appears consistent with figure

3.5 for the surface density evolution (and equation (3.3): 8'E,j8t ex: 8rhj8R).
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Interestingly, this seems to be at the radius in the disk where "decretion", or

outward mass flux begins. The exceptions to the negative slope are near the

sink, where the surface density (and thus m) goes to zero, and the disk edge

(not shown), where the oscillatory behaviour is altering the mass flux rate and

surface-density rate-of-change. The binned-average and finite-difference curves

match well, using the local spread of points in the binned-average accretion

rates as an estimate of the uncertainties. The noisiness of the finite-difference

curve is an artifact of its construction as a product of previous finite-difference

calculations of the radial velocity and surface density.

The mass accretion history of the sink particle is plotted in figure 3.11.

The sink immediately accretes the entire mass within race. After this, the sink

mass grows slightly sub-linearly with time, while the rate dm/dt decreases

monotonically. It is unclear if the accretion rate at the sink will asymptotically

approach a constant value. At 10 orbital times, the rate has dropped to

dm/dt = 1.7 x 10-6 code units. This value compares favourably with the

accretion rate from in figure 3.10, using the approximately constant value in

the region just beyond the sink of mrv 1.5 X 10-6 code units.

Finally, a comparison of the contributions to the tangential acceleration in

the disk can be made (figure 3.12). The SPH binned-averages for the total

tangential acceleration match the finite-difference estimate well. The compo­

nent due to just physical viscosity is nearly coincident with the total, and the

artificial viscosity component is rv 0 throughout most of the disk. This serves

as a check that the physical viscosity is dominant by 1-2 orders of magnitude,

roughly agreeing with the estimate made in equation (3.1), although artifi-
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Figure 3.11: The sink mass and its accretion rate as a function of time in the
fiducial case.

cial viscosity may be becoming a minor factor at R < 0.1. A change in sign

at R rv 0.7 indicates a change in the direction of torques in the disk, which

is yet another marker for the transition radius between radially-inward and

radially-outward mass flux in the disk.

3.3.2 No-sink Case

The simplest method to avoid any potential pitfalls of using sink particles is

to attempt a simulation without them. A goal for any sink formulation should

be to reproduce the result from an identical case without sink particles. A

simulation identical to the fiducial case from §3.3.1 is performed but without

a central sink particle. An a = 0.1 viscous disk evolves in a 1 M0 homogeneous
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Tangential Acceleration (race =0.05, ex, =0.1, t = lOT)
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Figure 3.12: The artificial and physical viscosity components of the tangential
acceleration in the fiducial disk at the end of the run. The total tangential
acceleration and a finite difference estimate (f.d.) are also shown. Absolute
values are plotted; the cusp at R rv 0.7 corresponds to a change in sign.

spheroid potential, and is subject to a gravitational softening length of E =

0.005 code units in length, which is the same value as for the fiducial case.

While the shape of the mass-accretion curves are similar, the no-sink case

has only accumulated about 7% oftotal disk mass within r < 0.05 by t = lOT,

whereas the sink accreted 12%; this is suggestive that the sink is causing

artificial accretion in the fiducial case. The dm/dt curve exhibits the lower

accretion rate for the no-sink case, and is also monotonically decreasing with

time, albeit less smoothly than in the sink case.
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Figure 3.13: The mass contained within r < 0.05 and the accretion rate for
that region as a function of time in the no~sink case. The fiducial case is
plotted in grey.

3.3.3 Varying a

The a parameter can vary widely between different accretion disks, and

even within them (§1.2.2). Viscous evolution should occur on shorter timescales

with larger values of a. To test this, simulations identical to the fiducial case

were performed with a set to 0.2 and 0.4 respectively, and with standard sink

particles.

Figure 3.14 demonstrates that the disks do appear to evolve faster with

higher values of a, with the a = 0.4 case showing the greatest radial in-fall

velocities and accretion rates. For the same simulation time, the decretion

radius in the mass accretion plots is greater with larger a, further indicating

that viscous evolution is proceeding faster. The SPH binned average estimates

agree qualitatively with the finite-difference estimates with similar percentage
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Figure 3.14: Binned-average radial velocities and mass accretion rates at
t = 10 T in the disks evolved with a = 0.2 and 0.4. For clarity, a box­
car smoothing of width 6 has been applied to the finite-difference (f.d) mass
accretion rate estimates. The local spread in binned-average values estimate
the uncertainty in the mass-accretion rates.
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deviations to the fiducial case, demonstrating that the formulation is reason­

ably accurate over at least this range of a.

Figure 3.15 shows that the sink mass growth is functionally similar even

at larger a, and an accretion rate of a few times 10-6 is observed at late

times independent of a > O. Although the accretion rate (1.10) scales linearly

with radial velocity (and therefore viscosity), this is of course only true if the

surface density is not changing greatly, which it surely is through most of the

simulation. Very early in the simulation, one can argue for a rough linear

relationship between the plotted accretion rate and a. Note that a run with

a = 0 is also plotted, and extrapolating this linear relationship suggests that

the effective a due to artificial viscosity alone is several times 10-2 .

3.3.4 Varying the Accretion Radius

The accretion radius race of the sink sets the spatial resolution of a simula­

tion at that location. For relatively small changes in the size of the accretion

radius, the dynamics of the simulation some distance away from the sink should

not change. This was tested by simulating the fiducial case with a larger sink

radius of race = 0.1. The result is shown in figures 3.16 and 3.17.

A sink with a larger accretion radius can accrete a greater amount of mass

in a disk, since the total mass flux is larger through a larger total (circum­

ferential) surface area, although from equation (1.10), this also depends on

how the radial velocity and surface density change with radius. To facilitate a

comparison between the two cases, the mass of the sink in the fiducial case is

replaced with the entire mass (sink + gas) within a radius of r = 0.1. When
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Figure 3.15: A comparison of the sink mass as a function of time for the disks
evolved with a = 0, 0.1, 0.2, and 0.4.
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Figure 3.16: A comparison of the mass contained within r = 0.1 and the
accretion rate for that region as a function of time for the fiducial case (race =
0.05) and the r acc = 0.1 case.

the two runs with different accretion radii are compared this way, the accre-

tion rates seem as if they are converging to a similar value at late times (figure

3.16), although they may remain offset from each other by a fixed amount.

By this time, however, the larger accretion radius sink is about 20% heavier

than the small accretion radius sink; even if the simulation is run longer and

accretion rates become the same, this difference in sink mass will remain.

At the end of the simulation, figure 3.17 indicates that the accretion rate

in the disk with the large accretion radius sink is marginally larger than the

fiducial case from just beyond the sink accretion radii (R rv 0.2) to around

R rv 0.7, although the rates are nearly within uncertainties estimated from the

local scatter in values. The negative mass flux in the outer, expanding part

of the disks match fairly well between both cases, however the boundary may
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Figure 3.17: A comparison of the mass accretion rates (SPH binned averages)
in the disk for the fiducial case (race = 0.05) and the race = 0.1 case.

be exerting an influence for R > 1. Evidently, one must choose an accretion

radius with care if the final mass result is to be robust (see also Bate et al.

(1995)).

3.3.5 Sinking Particles as a Boundary Condition

It may be that the artificial accretion observed in the fiducial case is in

fact due to the lack of pressure support inside the sink and artificial angular

momentum transport due to missing neighbours that was pointed out by Bate

et al. (1995). A "sinking particles" boundary condition (described in §2.1.4)

is applied to the sink in the fiducial case to investigate how this affects the

accretion onto the sink.
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Figure 3.18: A comparison ofthe binned-average radial velocity in the fiducial
case (fid.) and the case with a sinking-particles boundary condition (Be) as
well as corresponding finite-difference estimate (f.d). The thick vertical line
represents the sink accretion radii.

Figure 3.18 plots the radial velocity with a sinking particles boundary con-

dition. Through most of the disk the binned-average and finite difference

estimate agree qualitatively) particularly beyond the transition/decretion ra-

dius. The average VR is constant interior to the accretion radius, as defined

by the boundary condition. The finite difference estimate in this case suggests

that the magnitude of the radial velocity is overestimated in this region. This

overestimate is due to two factors: firstly, the surface density of the disk in

this case does not go to zero inside the sink accretion radius, but instead spikes

due to the extant sinking particles; secondly, the radial drift velocity of the

sinking particles imposed at the accretion radius does not vary as the parti­

cles in-spiral within the sink. This can be contrasted with the fiducial case,
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Figure 3.19: A comparison of the binned-average mass accretion rate in the
fiducial disk (fid.) and the case with a sinking-particles boundary condition
(B.C.). A finite-difference estimate for the accretion rate is also plotted for
the case with the sinking-particles boundary condition.

where the radial velocity inside the sink immediately goes to zero (or rather,

is undefined, as is manifest in the finite-difference estimate curve).

The mass-accretion in the disk (figure 3.19) can be explained by appealing

to the same reasoning - interior to the sink, the binned-average accretion

rate is roughly constant in the sinking particles case, and the finite-difference

estimate is smoothly defined to R = O. Figure 3.20 compares the mass in the

sink with the standard sink case as well as the no-sink case.

It is clear that the sinking-particles boundary condition has inhibited ac-

cretion compared to the standard sink, however the total mass accreted is still

larger than the no-sink case. While this is an improvement, the difference in

final mass is still significant.
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no-sink, and sinking-particles boundary condition case.
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Figure 3.21: A comparison of the total z-component of the final angular mo­
mentum in radial bins of width 0.02 in the fiducial disk, the sinking-particles
disk, and the standard sink disk.

3.3.6 Angular Momentum Distribution

As a comparison of the global behaviour of the disks with different central

accretors, the total z-component of the angular momentum is plotted in ra­

dial bins (as in figure 3.7) at the conclusion of the simulations. The fiducial

case, the no-sink case, and the sinking-particles boundary condition case are

compared in figure 3.21.

The distributions in all three cases are nearly identical, and nearly coin­

cident in the outer half. This indicates that angular momentum transport is

behaving correctly on a global scale, especially in the region where outward

transport is occurring. In the inner half of the distribution, the curves are ver-

tically displaced (particular obvious from R rv 0.5 inwards), with the no-sink

case largest, followed by the sinking-particles and standard sink cases. Inte-
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Table 3.1: Comparison of Sink Mass at t = lOT in fractions of mdisk

race BC a m(r < 0.05) m(r < 0.1)

nla nla 0.1 0.0840
0.05 none 0.1 0.118 0.119
0.05 none 0.2 0.181
0.05 none 0.4 0.261
0.05 none 0.0 0.0369
0.1 none 0.1 0.150
0.05 sinking 0.1 0.103

grating these distributions shows that, indeed, the no-sink simulation has re­

tained the most z-angular momentum, only losing 0.119% of the initial amount.

The sinking case loses about 1.98%, and the standard sink case loses 3.10%.

Some of the discrepancy can be accounted for by the spike in the distribu-

tion near the origin for the no-sink run, corresponding to a large number of

gas particles that would otherwise have been accreted by a sink. A loss of

some angular momentum from a disk to a protostar is expected, which in turn

releases this via centrifugally driven outflows, but it is not clear how much

should be lost.

Table 3.1 summarizes the amount of mass in the central accretor for all the

cases presented. Standard sinks are labelled with "none" in the BC (boundary

conditions) column. The no-sink simulation is labelled as "n/a" in both the

BC and race columns.
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Chapter 4

Conclusion

The use of three different mechanisms for handling accretion processes

in star-formation were investigated using the Gasoline N-body+SPH code:

gravitational softening (or "no-sink"), "standard" Bate et al. sinks without

boundary conditions, and a sink with a "sinking-particles" boundary condition.

Simulation of a singular isothermal sphere using a standard sink without

boundary conditions gave results in good agreement with the exact solutions of

Shu (1977). This suggests that boundary conditions are not required in cases

with rapid isotropic accretion. The rapid rate of accretion may be why many

groups, using different sinks (e.g., Krumholz et al., 2004; eha & Whitworth,

2003), are able to successfully do this test.

We argue that tests of accretion onto sinks in rotating flows previously

presented in the literature (Bate et al., 1995; Krumholz et al., 2004) are non­

convergent due to the lack of a physically motivated process governing accre­

tion in the simulation. Physical viscosity (e.g. via turbulence from the MRI ­

see §1. 2.1) could potentially be used to serve this purpose. Physical viscosity

was implemented using the Flebbe et al. (1994) formulation and tested on a
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pressureless viscous ring in a Keplerian orbit; the time-evolution gave results

matching the analytic expectation (Pringle, 1981). The identical test showed

little evolution when performed without physical viscosity, suggesting that the

artificial viscosity in Gasoline was diminished suitably in rotating shear flows

using the Balsara switch, and aav = 1.

A high-resolution three-dimensional protostellar accretion disk with a well­

resolved scale-height was evolved to investigate how accretion onto sinks be­

haves with physical viscosity. A number of results can be summarized:

1. The rapid evolution of the disk surface densities meant that they never

reached a steady-state. It was concluded that steady-state disks are

mainly useful as theoretical constructs, and not readily realizable in a

simulation. Moreover, in a viscous simulation with a bounded disk ra­

dius, a steady-state is not possible due to angular momentum transport,

which is clearly apparent in the simulated disks. Although steady-state

disks also undergo this transport, their implied infinite extent means

that angular momentum is transported to infinity, and there is an infi­

nite reservoir of mass to replenish any changes in surface density.

2. Physical viscosity in the simulated disks was seen to dominate over arti­

ficial viscosity by up to a factor of 100 for the same value of the artificial

and physical viscosity coefficients (i.e. aav = a = 0.1); this is in excess of

a back-of-the-envelope estimate, implying that the Balsara switch again

served its intended purpose. Values of a that make up the lower range

found in accretion disks (see §1.2.2) may then also be testable.
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3. While the radial velocity distribution is noisy, the mean values in radial

bins match qualitatively the expectation from a finite-difference estimate

of the radial velocity using a closed-form expression. A similar agreement

is found for the mass-accretion rate in the disk, particularly at radii that

have a net outward mass-flux (e.g. figure 3.10). This holds for all cases

presented.

4. The mass-accretion onto sinks was seen to follow a weak power-law over

the time simulated, and increased with increasing a (figure 3.15), or with

a larger accretion radius (figure 3.16). From figure 3.15, the accretion

rates onto the sinks for a > 0 varied within a factor of two after 10

orbital times, and the variably rapid initial accretion creates a hierarchy

of final sink masses within a marginally larger factor.

5. A sink with "sinking-particles" interior to the accretion radius is tested

as a possible inner boundary condition. The total mass-accreted is the

closest to the non-sink simulation of all the variations presented, but is

still not in complete agreement.

The velocity, mass-accretion rate, and angular momentum profiles all seem

to indicate agreement with analytic estimates (or with each other, for the an­

gular momentum) particularly well in the outer regions of the disk, defined as

those regions with positive average radial velocities. In particular, the mass

accretion rate in the disk beyond this radius did not show a dependence on

the sink model (figures 3.19 and 3.17). One could potentially use this radius

to identify the most trustworthy regions in sink simulations. There are, how­

ever, at least three problems with this: firstly, this radius is intended to move
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outward with time, eventually beyond the majority of the mass in the disk,

limiting its utility; secondly, this radius may be conservatively large - although

the qualitative match to these quantities (radial velocity, mass accretion rate)

may appear better in the outer regions, the percentage differences from the

finite-difference calculations were in general not markedly improved over in­

ner regions; thirdly, the outer regions of the disk may not have evolved long

enough for discrepancies to appear.

4.1 Future Work

In addition to evaluating the modelling of physical viscosity itself, a main

goal of this work is to evaluate if using a physical process to set accretion rates

creates a situation where the use of sinks can be examined as a protostellar

model. That the radial in-fall velocities of particles to be accreted matched the

expected values is encouraging in this regard. An important point is what value

should be used to assign a radial in-fall velocity to the sinking particles. In

this implementation, the radial velocity used is that with which the candidate­

particle crosses the accretion radius; however, as demonstrated in figure 3.8,

the velocities can be rather noisy in this region. If a candidate-particle crosses

the accretion radius with a very low radial-velocity, it takes an unrealistically

long time to be accreted and remains tagged as "sinking" indefinitely. One

option could be to use the the finite difference value, which agrees well with

the binned-average. In simulations with self-gravity, gravitational instability

can also drive transport processes within a disk; this can create an effective

value of a rv 1, corresponding to a very high accretion rate. With these
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concerns in mind, a finite-difference estimate for VR may be best incorporated

as a minimum radial velocity for sinking particles.

Both observations and theoretical considerations indicate that physical vis­

cosity must be present in accretion disks, and that it is critical to disk evolu­

tion. Including physical viscosity in simulations is therefore well-justified. It

is also well known that standard sinks over-accrete mass relative to equiva­

lent no-sink simulations (§1.3.1). In the absence of a formal physical viscosity

implementation, accretion disk simulations necessarily rely upon an artificial

mechanism for accretion and angular momentum transport; such numerical

mechanisms are unphysical. This will in general lead to incorrect results for

star-formation (such as over-accretion). Our physical viscosity implementa­

tion in Gasoline gives the expected results for mass flux and radial velocity in

an accretion disk, and should be included in any simulations claiming physi­

cal results involving accretion disks; however, over-accretion onto the central

sink was still observed in the simulations presented. Since the mass accre­

tion rate within the disk follows expectations from physical viscosity, and it

was shown that artificial viscosity is negligible for the results presented in this

work, further investigation into potential inner boundary conditions is likely

warranted.

It should be noted that physical viscosity may be negligible in certain

instances if some other transport process is dominating the evolution. Grav­

itational instability in a massive disk for instance can transport matter over

large distances in a disk, with an effective a much larger than that due to

turbulent physical viscosity alone. If the accreted mass from the disk is not
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replenished however (e.g. from a protostellar envelope), the importance of disk

self-gravity will diminish, and a regime for physically viscous evolution may

later be reached.

Running the disk simulations longer can also help determine if the varia­

tion in final sink-mass among the different models is retained. Since the disk

becomes rarefied as it expands and since particles are continually removed

from the simulation by the sink, a concern is ensuring that the disk remains at

a high enough resolution everywhere at all times. Using lower values of physi­

cal viscosity can help to slow the accretion, however the timescale for viscous

evolution varies inversely with viscosity, so very long integrations may be nec­

essary to examine the behaviour throughout the entire disk. A ('in-flow" outer

boundary condition that can continually provide mass to the disk, effectively

creating an infinite disk, could be helpful, although a straightforward method

of implementing this does not currently exist.

The simulations examined here are all at high-resolutions. The target appli­

cation for these sinks however is in star-cluster formation, where the resolution

will be much poorer at the same physical scale. This means that the contri­

bution of artificial viscosity will eventually be greater than physical viscosity,

and will increase the rate at which particles are accreted. Additional work will

need to be done on examining low-resolution counterparts of the disks pre­

sented here. While the Balsara switch has proven effective in high-resolution

cases, a different treatment may be needed in low-resolution situations.
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