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This study investigates a response elimination model of
paired-associate learning. The structure of the model is identical
to that of the one-element model except that tﬁe assumption of the
latter of & qpﬁstant probability of guessing before learning is
replaced by an assumption that subjects guess from é pool of unass-
ociated responses, It is found that the response elimination model
fails to provide an exact description of performance before learning,
although it does improve on the one-element model, A three-state
model is also investigated and it is found that with four parameters

much of the data can be accounted for.
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The one-~element conditioning model was developed by
Bower (1960, 1961) and represents a special case of ﬁore general
models of stimulus sampling theory (Estes, 1959), The model has -
been applied extensively (e.g. Bower, 1962; Suppes and Ginsberg,

1963; Millward, 1964) and while there has been close ‘correspondence
between experimental data,and values predicted from the model, there
have been contradictions in at least one aspect of the data.

Suppes and Ginsberg observed that the one-element model
gssumption of a constant guessing probability or stationarity of
response probability prior to learning implies a binomial distribution
of responses prior to the last error, Goodness-of-fit tests of the
property of stationarity and of the binomial properties of the sequence
of responses prior to the last error have been critical in evaluating
the one-element model. For example, Suppe$ and Ginsberg épplied such
tesfs to the data from seven experimeﬂts in various areas, including
human paired-associate learning, and did nét.find that the prediction
of stationarity was substantiated. Hintzman (1967) demonstrated
stationarity when there were two available responses, but found non-
stationarity for fourteen.

A strategy which may be adopted when a particular model
fails in one or more of its predictions is to retain the basic structure
of the model but to modify one or more of its assumptions. The one-

element model of paired-associate learning assumes that there are two



. learning states, an unconditioned state C and a conditioned state C.
It is further assumed that a subject guesses a correct response to
a stimulus item with a constant probability'on each trigl as long as
that item is in state C, and that on any trial the item may become
conditioned (i.e. move to state C) with a constant probability ¢ which
is known as the learning parameter, The aim of this study is to
investigate a model which is based on a modification to the one-
element model assumption of a constant probability of a correct guess
in state G. This model will be referred to as the response~elimination
model, and will be applied to data from a paired-associate learning
experiment,

The proposed model assumes that the probability of guessing -
correctly on unlearned items increases as the number of unconditioned
responses decreases. Considering the §implést case where there are
as many responses as stimuli, it is sﬁpposed that once a response has
become associated to its proper stimulus then that response is no longer
made to other stimuli, and is not included in the 'pool! of responses
from which the subject can guess. Thus as more items are learned the
subject guesses from a progressively smaller pool, Hence non-stationarity
of response probability prior to the last error is expected.

The data to which the response elimination model will be
applied will be obtained from an experiment designed to allow each subject
to develop what might be called a response pool strategy, where responses
made to unlearned items are selected from a pool of as yet unassociated

responses,



To avoid confusion a few terminological points need to be
clarified. In this study the term "trial' will be used to refer to
each exposure to the subject of a stimulus-response pair. This differs
from the earlier use of the term to refer to a complete showing of all
the items in the paired-associate list, for which the term "c¢ycle' will
'Be used here.

Application of the response elimination model requires con-
sideration of trialmbyétrialrevents since on any trial in any cycle there
can be a decrement in the size of the response pool, In this respect
data analysis derived from the response élimination model differs markedly
from that of the one«elemenf model where, since responses within a cycle
are assumed to be independent, it is only necessary to consider the cycle
by cycle responses made to each stimulus item. A discussion by Batchelder
(1966) of the level of a data analysis is relevant to fhis difference
between the two models. A standard method in paired-associate data
~analysis is to isolate subject-item protocols, the records of responses
made to each item throughout the course of the experiment by a particular
" subject., Batchelder terms this the paired-associate or 'Pf-level of
analysis, and it is appropriate for analysis derived from the one-element
model. Batchelder points out that eother levels of analysis are possible,
défined by the organization of the data and the requirements of the model
under consideration,

Analysis in terms of the response elimination model requires

an estimate of the guessing parameter for each trial of each cycle. A



s tpt.]evel anglysis can provide this estimate for the first trial of

each cycle, by the use of a matrix whose states are the number of
unconditioned items at the beginning of a cycle (Estes,1959)., Consider
for example the case of a three item list. At the start of the first
cycle all three items are assumed to be in the unlearned state U; at the
end of this cycle there may be from zero to three items in state U, The
transition matrix P beiow specifies transition probabilities on the ith,

cycle.

# of unconditioned items at end of
cycle 1.
© N
0 1 2 3
# unconditioned items at 0 1 0] o 0
start of c¢ycle i 1 c l-c 0
¢®  2¢(l-c) (1-c)° o
3 L ¢ 3c2(1-c) 30(1—0)2 (1-c)?

The start vector S(i) for the ith., cycle expresses the
probabilities associated with there being j unconditioned items (j=0,3)

at the start of cycle i. Then 8(0) is the initial start vector as follows:-

s(0) =(000. . .01) }
Then s(1) = P . S(0)
s(2) =P . s(1)



S(n) = P . S(n-1)
Alternatively,
s(n) = P* . 5(0)

However events within a cycle are dependent on the order
of presentation of the stimuli and cannot be described easily in
'general terms., Hence an alternative to the 'P' level analysis will
be used later in this study to provide an estimate of the guessing
parameter on any trial within a cycle.

An alternative application of the strategy of modifying
a basic assumption when a model is shown to be inadequate in some
way has been to postulate the existence of an intermediate state S
between the learned and the unlearned states of the one-element .
model .(states L and U respectively). Suppes and Ginsberg (1963),
Kintsch and Morris (1965) and Suppes, Groen and SchlagQRey (1966)
have applied a three;state model to learning data, and a similar model

will be investigated in the present study.



METHOD

Subjects

The subjects were 36 male and female summer school students
at McMaster University. Each subject was paid $1.50 for participation
in the experiment, Subjeclts were tested individually and each experimental
.session lasted approximately one hour. Data from one subject were
discarded because of his failure to follow instructions.
Apparatgi

The apparatus consisted of a PDP/8I computer and a Teletype.
Only the numerical keys of phe Teletype kéyboard were exposed to the
subject, with the exception of keys O and 9., A metal shield was attached
to fhe Teletype to restrict the amount of typing area exposed to the
subject. Thé computer was located in a control room adjoining the ex-
perimental room, |

Both the PDP/8I and é C.b.C. 6&06 computer were used in the
analyses of the data.
‘Materials

The stimuli were 14 consonant trigrams; constructed in such
a way that each consonant appeared twice only. No consonant appeared
in the same position in different trigramss; or was used twice in any
one trigram, The trigrams used were DHY, RBM, ZTX, QRV, PCJ, GZB, MWF,
INP, VKS, XSG, FQH, JDW, CYK and TLN, The stimuli were all of less than

>21% association value (Underwood and Schultz, 1960).
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The responses were 14 two-digit numbers in which the digits
were always adjacent numerals, There were exactly fourteen responses
available to the subjects; these were 12, 23, 34, 45, 56, 67, 78, 21,

32, 43, 54, 65, 76l and 87,
Procedufe

The computer was programmed to present to the subject by
means of the Teletype a succession of stimulus-response items to be
learned by the standard method of anticipation. The stimulus item was
typed first., After the subject's two-digit response, or after 10 seconds
if no fesponse had been made, the letter C was typed if the response was
correbt; the letfer E if an error, The correct responsé was then typed
and was available for study for 2.3 seconds; after this intérval the
stimulus-response pair was moved out of sight behind the Teletype shield.
The inter-item interval was also 2.3 seconds, Figure 1 is a representation
of events within an experimental trial.

Each experimental session consisted of 23 cycles of 14 trials
each (i.e. a total of 322 trials) per subject. Each new cycle was intfoduced
by the words "HERE IS THE LIST AGAIN", In each cycle the 14 stimulus-
response items were presented in random order. Two randomization tapes were
used,; each for 18 subjects; the numerical responses were assigned randomly
to the stimuli for each set of 18 subjects.

Fach subject was seated in front of the Teletype and was read
instructions on how to respond in the experiment (seé Appendix I for the

instructions used). He was réquested to respond by pressing any one of
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Figure 1. » Representation of events within an experimental trial.



the available keys (i.e. numbers 1 - 8) and then immediately to press
either of the two adjécant keys (except in the case of keys '1' or '8!
where there is only one adjacent key.) The instructions terminated with
_ a‘few prqcedural'questions. If the subject failed to answer any of these
éuestions or was unciear aﬁoutvany part of the procedﬁre the relevant
parts of the instructions were re-read.

The subject was left to work through the 23 cycles without
interruption. The experimental record of stiﬁuli and responses was

stored on punched paper tape for each subject.

£



RESULTS

Subject #2 did not follow the instruction to press only
adjacent keys and his data were discarded.

Fach subject's complete record of responses was first

‘transformed into fourteen subject-item protocols of the form

A A A seoA s where A is O or 1 according to whether
J»1 3s2 343 Jji23 Jsi ’
the response to stimulus Jj on cycle i was correct or incorrect. A
complete listing of the 490 (i.e. 35 x 14) protocols appears in
Appendix II, The criterion for learning for each protocol was taken
to be four consecutive successesy and a protocol which met this
criterion was labelled criterion protocol. There wefe 399 criterion
protocols in the set of 490 protocols obtained from the 35 subjects.
Basic propertiés of the data were extracted from the 490
protocols by means of a comprehensive 'Pl'~level (in Batchelder's
terminology) analysis program which was run on the C.D.C, 6400 computer.
The scope of this program can be seen from the listing of its table of
contents in Appendix III, It includes information about the learning
process (e.g, error probability on each cycle; distribution of the

cycle of last error; etc.), error and success statistics, and there is

a section covering goodness~of-fit tests for the binomial properties

‘of the sequences of pre~criterion responses.

Further analysis in this section will consist of three sec-

tions. In the first section the data are analysed in terms of the basic

10



one-element model, showing that the discrepancy mentioned in the
Introduction, i.e. the lack of stationarity prior to the last error,

is also a characteristié of the data collected in this experiment,
Secondly, an attempt is made to apply the responsefelimination model,

It will be seen that although this model goes some way toward accounting
for pre-criterion responses,; it is not altogether satisfactory. 1In the

third section a three-state model is investigated.

11
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I. Analysis in terms of the One~Element model:

The section of the analysis program dealing with goodness-
qf»fit tests for the binomial properties of the sequences of pre-
criterion responses demonstrates that the assumption of a constant guesse
ing probability prior to last error, on the basis of which the binomial
properties are predicted, is not valid,

Firstly, the null hypothesis that_responsesAon successive
cycles are'statistically independent was rejectéd very decisively. Table
I shows the frequencies of transition from success or error on cycle n
to success or error on cycle n+l., The test for independence of these
transition frequencies gave xf = 132,05, with one degree of freedom,

Table II shows the results of applying Vincent's procedure
of dividing the responses before last error into quartiles. There is a
substantial increase in the probability of a correct response over the
successive quartiles. CX? ; 196,69, d.f. = 3). '

Table III shows the analysis of the data in terms of the
distribution of each of the sixteen possible sequences of errors and
sucéesses when.the pre-criterion responses are looked at in biocks of
four cycles. The proportion of each type of sequence differs significantly
from those predicted on the basis of the binomial law. CX?: 193.%2, d.f.=15).

Suppes and Ginsberg formulate a statistical test of station-
arity in terms of the null hypéthesis that there is no change in the prop-
ortion of correct responses over cycles, The responses to be investigated

are divided into t blocks of cycles. Then the appropriate chi-square test is



Table I _ Independence of responses on successive cycles.

cycle n + 1

cycle n success . error
success ] 199 411

. error 525 3233
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Table II Vincent Quartileé.
' Quartiie Successes Errors Pr(Success) x°
1 67 96l .065 65.831
2 128 903 .12 8.353
3 161 870 156 0,004
4 291 740 .282 122.499
647 3h77 .157 196.686




Table IIX Distribution of sequences of responses in lb~trial

blocks,
( O : success 1l : error)
Sequence Probability Chi-Square
Observed Predicted . Component
0000 ~ ,0000 .000k 376
0001 . .0039 .0023 1.166
0010 .0058 .0023 5.691
0011 ' .013%6 L0142 .027
0100 L0107 .0023 31.923%
0101 _ L0116 » L0142 72
0110 L0145 L0142 .010
0111 .0l7 .0885 : | 25.477
1000 ' L0155 - ,0023 ’ 79.468
1001 ,013%6 ’ L0142 _ .027
1010 B .0165 L0142 ‘ .385
1011 0504 .0885 4' 16.851
1100 .0%01 L0142 © 18,326
1101 .0689 .0885 ’ L 476
1110 0844 .0885 ' .194
1111 6188 5516 8.455

‘Potals 10000 1,0000 193, 324
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=

where n (t) is the number of correct (i=0) or incorrect (i=1l) responses
in block t .5 n(t) is theitotal number‘of responses in biock t; and N is
the total number of responses summed over all blocks., Forward and backward
stationarity chi-square teéts are included in the section of goodness~of-
fit tests for the binomial properties of the sequences of pre-criterion
responses of the analysis program, Forward sfationarity examines response
probability on cycle j for all those protocols whose c¢ycle of last error
is greater than or equal to j. This may introduce a bias toward a high;
error probability since the laét pre-criterion response of each protocol
which is considered is always an error, Backward stationarity corrects
for this by working backwards from the last error, i.e, response prob-
ability is estimated‘at a distance of j cycles from the last error, where
jZl, so that the last error itself is not inciuded. Reéults of the back-~
ward stationarity test are shown in Table IV. The second column in the
table shows the number of protocols which enter into the estimate of
response probability at a distance of j cycles from the last error. The
total chi-square from this test is 189.52, with 15 degrees of freedom,
Hence these tests provide evidence against a one-element model
with a constant guessing probability prior to the last error since the
implication of a binomial distribution of pre-criterion responses is not

validated,



Table IV Backward stationarity test.

Cycle # of protocols " Probability Chi~square

3 ~ involved of error :
B 470 689 8. 96
> ‘ 146 73 39.68
3 o 416 805 .66
b 388 8 o2
5 361 88  0.04
6 332 : .871 1.80
7 305 869 1.46
260 .842 ' 0.00
9 . 230 : .870 1.16
10 ' a5 ,930 12,20
n 195 876 1.4
12 177 .893 3.21
13 155 897 : 3.31
14 .  1hk2 ) .901 | 358
15 126 .897 2.69
16 118 ‘ | .890 1.90
17 104 .990 | 16.96
18 98 o .908 3.69

19 T 91 L9k5, 7.09



Predictions for the mean learning curve were obtained using
an estimate of the learning parameter of O;lOO. This estimate was
obtaihed from the totai number of errors per subject-item statistic,
The chi-square on the learning curve prediétions was 46,71, which is

unsatisfactory with 17 degrees of freedom. (see Figure 3 later)

18
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II. Analysis in terms of the Response-Elimination Model:

To investigate the response~elimination model a different
mode of analysis waé used. A "P" level analysis (in ﬁatchelder‘s termin-
ology) was used to identify the cycle of last error, if any, for each
subject~item protocol. The subsequent analysis was not on the "p" level,
and required no transformation of the primary data. The subjects' complete
records of pre-criterion responses were utilized,

Listings were made of the two stimulus presentation orders
_gsed in the expefiment. The positions of the n trials of last error (n§l4)
were then located exactly; for example, if the cycle of last error for
item 12 was identified earlier in the "P" level analysis as being the 6th.
one; then the particular trial on which item 12 was presented in cycle 6
would be determined by 1$oking at the presentation order,

_A tfial~by—trial and sdbject-bymsubject analysis then
proceeded as follows. For each trial the response made was categorized in
one of the following three ways:-

(i) as a "guess", if the response was made before the last
error for the presented stimulus (i.e. in cycle k, where k < j is the pre-
viously determined cycle of last error for the presented stimulus). 2 sub-
categories contained correct and incorrect guesses.

(ii) as a "conditioned response", if it was made after the
last error for the presented stimulus.

(iii) as an actual "trial of last er?or" error (there can

of course be no more than 14 responses in this category)
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The-next step involved faking counts of the number of
type (i) responses occurring between two type (iii) responses. For subject
.y fheré were Xy block counts of this sort, where Xy is the number of crit-
erion protocols cobtained from subject y. A count of the number of correct
guesses in each block was also made.

A pooling of individual subjects' data was next obtained.
Ali Tguesses'! which all sﬁbjects made beforg the first appearance of a trial.
of last error were summed and associated with a pool size of 1k, since no
responses had as yet been eliminated through conditioning. This set of
guesses was.labelled Bléck 1; similarly all the guesses made between the
first and the second trials of last error were collected together from all
subjects and labelled Block 2y and so on. In the same way totals for the
sub-category of correct guesses were obtained for each block. (See Tabie V)

This method of analysis is not unliké Vincent's method of

dividing the pre~criterion responses’ into quartiles as a test of station-

arity; this procedure differs in one major respect, which is that since the
blocks are defined by the events of the experiment, they are of unequal size.
For each possible response-pool size the proportion of
correct responses by guessing prior to the last error was thus found, and
compared with the probability of a correct guess predicted by the response~
elimination model, which is 1/X where X is the associated response pool
size, Figure 2 compares the stationarity prediction of the one-element
model with the observed data.
Predictions from the response-elimination model while im=-
proving on thpse of the one~element model do not adequately‘describe the

data (X° = 133.75, d.f = 13,)



Table V Block size‘s and proportion of correct guesses in

each block.

Block # Ttems Total # of # of correct Proportion
# in pool responses responses Correct
1. 1k 1055 88 0834
2 13 839 71 ‘ 0846

L3 12 63k 87 .1372
b 1. 669 99 1480
5 10 586 97 L1655
6 9 279 46 .1649
7 8 341 59 .1730
8 % 217 53 . 2396
9 6 235 ‘52 .2213%

10 5 176 L6 2614
1 b 136 39 2868
12 3 120 53 4077
13 2 48 16 <3333
14 1 | 46 14 . 3043

21
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Figure 2
Proportion of correct responses prior to last

error using modification of Vincent's method
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JIT Analysis in terms of a three-state model:

A three-state model is now proposed in'.an attempt to describe

the data more adequately, and a 'P'-level analysis is again approﬁriate.
| The three states as described in the Introduction are a long;

term memory_stat L, an intermediate or short-term stage S which must be

passed through in the transition out of an unlearned_state U. The mqveé

from state to state are specified by the transition matrix below, together

with the response and start vectors.

P(Ll’Sl‘Ul):(o,o’l)

- Ih+1 Sn+l Un+l PFO&eg_g¥é)
) h (" 3
N L , 1 0 0 0
n
8 b 1-b 0 q
n
LI 0 c l-c r
n .
.
- \_ o

Genérally the parameter r, representing the probability of
an error in the initial‘state U, is takenrto be unity (Theios, 1963;
Kintsch and Morris, 1963; Greeno, 1968; and others)., Suppes and
Ginsberg attemptea to define a relationship between parameters q and r
in early research on a threé—State model (1963), In.this ;tudy the

parameter r is less than unity because subjects were restricted to a

finite response set and the probability of a correct response by chance

22
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on the first presentation of any item is not zero, but is taken to be
the reciprocal of the number of responses in the response set. Hence
r, the error rate in state U, is an observable parameter (in the term=-
inology of Greeno and Steiner, 19645 with an expected value of (1-1/n),

where n is the size of the response set.

Derivations from the model

1. Learning curve:-

Pr (x,=1) = Pr (U )) .r +Pr.(S) .q
n-1l . .
= (1) e n . @)t el (aep) PO
i=l - 4 ’

~ n-1 i/' .
(1“=C)n"1.r+c‘,q,(1-=-b)n'“2 N 1-c i-1
n--1 n-1 -
(1-¢)"™" ur+ c.q o ((L=c) "~ = (1~b)
¢-b

i

i

2, Cycle of last error:-
Pr (I=k) = Pr (error on cycle k). Pr (no more errors)
Define:-

f = Pr (no more errors after a response in state §)

fars) : S
=% (1-b)9 . (Q=q)d . b
j=0
f = b

o

1-(1=b)(1=q)

g = Pr (no more errors after an error in state U)
5 Wj-1 j-1
= 5% (Aee)dTT (@-r)dT ¢ (1-q)f
3=1

le(l=c)(le=r)

Pr (k) = (1o0) U r g+ e g f [y L (goeyf
C-n
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3, DNumber of error cycles before the first success.
This statistic is derived by considering the probabilities
associated with
(i) an initial error run of length k in U, where k>0, followed b&
the first success in either state 8§ or state U,
.<ii) an initial error run of length x in U, where leS (k-1), followed
by an error run of length (k-x) in S (k>0) and the first success
in states S or L.,
Hence the probability P of there being exactly k errors
béfore the first success (where k>0) is given by:=-

p = (1-0)N ((1-c) (1-2)4c(1-q))

k-1 k-1 k-1 k-1
q r

+ ¢ qr [bs(l-b)(1-q)I[(1~b) - (1-c) 3

and when k=0;:«

P = 1l-r

L, Total number or errors:

The probability of there being k total errors is derived by
considering the probabilities associated with a sequence of responses
in state S of which (k-x) are errors.

The appropriate expression is as follows:=-

k 1) 5]
£ |z 6‘;’“ (1-0)" 2 (2=r)" r¥e & G‘“i{‘:ﬁ (1-b) (1) D
) n=0 R

X:O m=0

The inner summations do not form a closed expression but can

be estimated by means of an iterative computer algorithm.
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Tstimation of Parameters

A chi-square minimization procedure was used to estimate
the three remaining parameters b, ¢ and q.

Firstly, the theoretical expressions were derived for
.probabilities of occurence of the sixteen possible four-tuples of
responses over both cycles two through five and six through nine (sece
Appendix 111 for these expressions). A program was written for the
C.D.C. 6400 computer to extract from the daté (in the form of subject-
item protocols) the number of occurences of each type of four-tuple in
each cycle set, énd to evaluate the chiwsqﬁare on the difference. A
wide range of b, ¢ and g values was covered, with each parameter in-
creasing in steps of .005 from initial values of ,050 for b and c and
of .200 for q. The step size for b and ¢ was decreased to ,001 as the
search became finer, and those b - ¢ - q‘combinations which gave relatively
low chi-squares were stored. In order to choose final values from the
set of values in storage, the learning curve predictions were used in a

further minimization procedure, The resulting final parameter values were:-

b = ,230 c = .11k q = .415
(Xiz = 32,91, 4,f. = 28, for the four-tuple dataj
ZXZZ = 6,48, d.f. = 15, for the learning curve data).

Figure 5 plots the mean learning curve, which is the best fitting
one by virtue of the parameter selection by chi-square minimization on the
learning curve data., Also shown in Figure 3 is the predicted learning

curve from the one-element model,



Figure 3
Learning curve with one~element model and

three-state model predictions
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Figure 4 shows that there is reasonable fit of the cycle of
last error predictions to the data (m? = 39,97, d.f. = 15, p < ,005) in
view of the irregularity of the data around cycle 8;:X? for cycle 8
itself is 9.96.

There is fairly good fit of the predictions for the number of
error cycles before the first success (X? = 31,09, 4.f. = 15, .010 > p >

.005) as shown in Figure 5.

Figure 6 compares the predicted and observed probabilities

.ution is satisfactory; 3? = 24,40, d4.f. = 15, .05 < p < .10,

for the total number of errors per subject-item, The predicted distrib- _

26




26a

Figure 4
Distribution of the cycle of last error

with three-state model predictions
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Figure 5
Distribution of k, the number of errors before the

first success, with three-state model predictions
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Figure 6
Distribution of T, the total number of errors, with

three-state model predictions
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DISCUSSION and CONCLUSION

The response elimination model performed belter then the
one-element model with respect to pre-criterion responses but still fell
short of ﬁroviding an accurate description of these responses. This of
course was the one‘aspect of the learning data which the model might have
handled particulgrly well since the design 6f the experiment maximized
the chances of a subject developing a responsé pool strategy, in that the
response set was of a finite size, and each cycle was separated from the
precediﬂg one, Since the model failed to describe the pre~criterion re-
sponses accurately, further analysis was not felt to be Qorthwhile, and .
no attempt was made to develop an analytical- procedure to isolate the
conditioning parameter,

Insofar as the proposed three-state model has been investigated,
it appears that with four parameters tﬁe data can be accounted for satis-
factorily., If tﬁe parameter r, the error rate in the unlearned state U,
is taken to be unity instead of the factor (lui/n) of the preceding analysis
(where n is the.number of response alternatives) a simpler three-parameter
three-state model is obtained. In the same way that the one-element model
assumption of a constant guessing probability before learning implies that
there is a binomial distribution of résponsesAprior to the last error, so
'fhe threé—state model assumption of a constant guessing probability q in the
intermediate state § imélies a binomial distribution of state S responses,

For the three parameter version the sequence of responses from the first
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success through the last error is necessarily a sequence of state S
responses, and stationarity of these responses is predicted if the
binomial assumption holds, Figure 7 shows that in fact good station-
arity was obtained between the first success and the last error (3? =
| 6.62, d.f. = 12). |

A three-parameter model analysis was therefore attempted,
despité two obvious errors in the data. The first of these lies in the
expectation that the probability of a success‘dn.the first cycle would
be zero, since all items start in state U and all state U responses are
zero, The second error is that the intermediate responses between the
first success and the last error, as shown in Table VI,'were not statis=
tically independent; x° = 3.66, with one degree of freedom. The parameter
q is observable; it is the proportion of errors between the first success
and the lasf error. Howevef it was found that no combination of values of
the parameters b and ¢ could lead to good learning curve predictions. The
choice then was either to introduce a start vector to allow a prOporfion of
the items to'start in state S§; or to establish the value of ¥ as somefhing
less than unity. Each of these alternatives allows successes té occur on
the first cycle; the second was chosen since only one new parameter is
introduced and it is a parameter which is directly observable from the
error rate on the first cycle., Also it seeﬁs unreasonable to assume that
- ény asséciation has occurred prior to the start of the éxperiment.
The axioms of the one-element model are stated for a single item

in the paired-associate learning list, and it is assumed that the learning
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Figure 7
Stationarity between the first success

and the last error
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Table VI

Independence of responses between>the first

success and the last error.

cycle n + 1

cycle n success error
success 140 368
error 149 508
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of stimulus-response. pairs proceeds independently. However the items in
the list can be expected to mutually effect each other, and this was
postulated in the response-elimination model; performance on a particular
8-R pair was assumed to depend both on its own present state (i.e. learned
or_unleérned) and also on the present state of the other items in the list
(since the guessing probability is assumed to be inversely proportional to
the number of unconditioned items at any moment)., Since the response-
eliminétion model postulates item interactions in this way it would be
better expressed in terﬁs of a set of axioms to describe the events that
can habpen to the entire list. In this study it was found to be impossible
to apply a conventional or 'P!'-level analysis and further use of the‘model
had it proved more s#tisfactory would have required an alternative axiom-
ization along fhe lines laid down by Bétchelder (1966, ch. 4).

While the 'P'-level analysis could not be used when the data
were analysed in terms of the response-elimination model, it is also true
that anything other than a single-item analysis is inappropriate when the
three-state model is used. Consequently this sfudy is not able to make
direct comparisons of predictions from the twa models. In fact the only
statistic which might be available for comparison is the pre-criterion
responses rate, since the response elimination model was developed no
furthér than_this. .However there is a major problem associatfd with this
.statisﬁic which results from uncertainty as to the exact location of the
cycle of transition into the final learned state; it can be the cycle of

last error itself or any of the success cycles following the last error,
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The analysis in terms of the response-~elimination model
assumed that the cycle of last error was itself the transition cycle,
This cycle marked the point of a unit decrement in the size of the
response pool, wifh the resultant expectation of an ihcrease in the
success-by~guessing rate, The error introduced by faking the cycles
of'last error to be. transition cycles is an over-estimation of the
pre~criterion success réte because the response pool dgcrements are
effected at the earliest possible moment, However tﬁe response pool
predictions of the pre-criterion success rate, even with this error
working towards an over-estimation, were consistently below the ob=-
tained values. The response-elimination model curve in4Figure 2 is
therefore the best that can be expected from the model and ény attempt
to &J}ow for the error outlined above would only increase the dis-
crepancy between observed and predicted data points.

In the case of the three~state model the uncertainty about the
location of the cycle of transition from state § to state L would also
result in an inaccurate count of the pre-criterion success rate, and an
attempt to derive predictions of this statistic from the model waé not
felt to be worthwhile in view of the availability of other statistics
which provide more conclusive evidence about the model,

In conclusion, the attempt to apply a two-state model to
paired~associate learning data was unsuccessfulj Bower's one-element
model fails on the prediction of stationarity of pre«criterion responses,

as has been previously reported in situations where there were more than
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two responses; the response elimination model, with the modification‘
to the assumption of a constant guessing probability prior to learning,
was also unable to predict the nature of the.pre-criterion responses.,
The three-state model which was then proposed has been able to describe
much of the data. FYor the time being at least it is considered an

acceptable model of the learning process.
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APPENDIX

I Instructions to Subjects

This experiment is one of a series in which we are studying
learning processes. At the beginning of the experiment a three letter
word will be typed by the teletype in front of you, You are to press
any one of the keys number 1 - 8 on the teletype keyboard, and then
press either of the adjacent keys, except in fhe-case of 1 or an 8 when
there is only one available key. For example, if the first key you
pressed typed the number 5 then you should next press either the L or
the 63 but if the first numbef you pressed was 8 then the second one
must be 7. You must try to press both these keys within 10 seconds. As
soon as you have done this the letter C or the letter E will be typed.

If ybu have not responded by the end of 10 seconds the letter E is always
typed. Each word has a correct two-digit number, which always appears

after the letters C or E have been typed. The letter C means that you

typed the correct number; the letter E means that you typed the wrong
pqmber. Each of the 14 words you will se has its own correct number; no

two words have the same oﬁe, You will have two seconds to study each

word and its correct number together. You will be shown each word several
times during the course of the experiment and you will be expected to

respond witﬁ the right number., If yéu cannot remember which number goes with
a word make your best guess as to what the number shéuld be and press the

appropriate keys. Remember that the number which is typed is always the
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correct number for.that particular word, and is the same as the one you
typed only if you were &ight., You will be shown the list of 14 words
and numbers several times, but each time the order of the words will
change. Do you have gny questions? Just to make sure that you under-
stand the procedure I'm going to ask you a few questions. Firstly, what
'éhould you do if you can't remember the correct answer? ........ ‘What
does the appearance of an E mean? ........ Could the number 74 be a
correct answer? ........ Why not? ........ O.K, Start as soon as

the first word is typed. Please keep going until no more words are typed.



II Subject-item protocols

The first section of the paired-assoclate learning program
lists the data in fhe form of subject~item protocols. The first seven
digits under the heading 'ID' serve as identification for each protocol
listed. The second and third columns identify the subject by numbef;
the sixth and the seventh columns identify the stimulus to which the
sequence of responses in the progocol was givenﬂ

The column lgbelled 'LE' identifies the cycle of last.error;
i.e, for criterion protocols it contains the number of the cycle of the
first error to be followed by four consecutive successes; for non-
criterion protocols, which are marked by an asterisk, this column con-

tains the number of the cycle on which the last error was made.
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1.1 PROTOCOLS
(AN ASTERISK INDICATES A NON=CRITERION PROTOCOL)
1o 20 30 49
ID TRIALS LE / / / /

2012301 23
2012302 23
2012303 23
2012304 23
2012305 23
2012306 23

11100100000000000000000
11111110110100000000000
10110100000000000000000
11111100000000000000000
10011001000000000000000
11111111000000000000000

Dt |

2012307 23
2012308 23
2012319 23
2012309 23
2012311 23
2012312 23

17011100000000000000000
10111100000000000000000
11111110010000000000000
11010001100000000000000
00100110100000000000000
11111010100000000000100 .

Yt €

2012313 23
2012314 23
2032301 23
2032302 23
2032303 23
2032304 23

11111100000000000000000
11110000000000000000000
10000000000000000000000
11110100000000000000000
11111000010000000100000
10110000000000000000000

11110001000010100000000
10110000000000000000000
10010010000000000000000
©11001001000000000000000

11111011000000000000000
11111100000000000000000

2032305 23
2032306 23
2032307 23
2032308 23
2032309 23
2032310 23

2032311 23
2032312 23
2032313 23
2032314, 23
2042301 23
2042302 23

11101000000000000000000
11110000000000000000000
11000000010010010000000
10000000000000000000000
11111110000000000000000
11110111111110000000000

-

2042303 23
2042304 23
20423085 23
2042305 23
2042307 23
2042308 23

01T00111000000000000000
10101000000000000000000
01111101110001010000000
11111101001000000000000
11111110000000000000000
11111111000000000000000

P —y

2042309 23
2042310 23
2042311 23
2042312 23
2042313 23
2042314 23

11111111111111001000000
11111111110110001000000
10111110110000000000000
11111000000010000000000 .
01111111100000000000000
11000000001000000000000

ot s et <
WU S NNOODN O U RWN~NNPUNSP O NS PN~ OO OO O

2002301 23 12 11111101011100000000000
2052302 23 23 # 110111111101211111101111
2052303 23 7 11111110000000000000000
2052304 23 2a # 11111130111112111111110

2052305 23 11900000000000000001000

10111111101100000000000

-
NN

2052305 23



2052307 23 12 11111011100100000000000
2052308 23 10 11100101010000000000000
2052309 23 17 111113121111111111000000
2052312 23 23 # 1111111101l011101110111 39
2052311 23 23 # 101111111211111011111111
2052312 23 23 # 11111111111111111111101
2052313 23 15 T T11I71001111111100001000
2052314 23 5 11111000000000000000000
2062301 23 19 01111110111111111110000
2062302 23 4 11110000000000000010000
2062303 23 19 111112111111111n1110000
2062304 23 22 # 111111111101111111101210
2062305 23 23 #FIITITIT11I 100171110701
2062306 23 23 # 10110111111111111110101
2062307 23 11 11111111111000000000000
2062308 23 15 11111111111110100000000
2062309 23 23 # 11111111011111110101111
2062310 23 23 # 11111111112111111111111
2062311 23 23 # 111011111101101111111131
2062312 23 14 11110111211011000000000
2062313 23 11 11111110111000000000000
2062314 23 9 11111101100000000000000
2072301 23 9 11110101100000000000000
2072302 23 21 #0111111131111111111000100
2072303 23 0 00000111010000000001001
2072304 23 15 111111211110100100000000
2072305 23 8 10001111000010001100000
2072306 23 17 11111011111110011000000
2072307 23 10 11111110010000001000000
2072308 23 12 11110111111100001010000
2072309 23 14 111111113111111000000010
2072319 23 23 # 11110111111111111111101
2072311 23 - 23 # 111111110111111p1111111
2072312 23 16 o 111111111110110710000000
2072313 23 14 11110111110001000000001
2072314 23 1 100600000000000000000000
2082301 23 7 01100010000000000000000
2082302 23 8 01110111000000000000000
2082303 23 8 11000111000000000000000
2082304 23 2 11000000000000000000000
2082305 23 10 11111101110000000000000
2082306 23 7 11111110000000000000000
2082307 23 7 11011010000000000000000
2082308 23 2 11000000000000000000000
2082309 23 9 11111100100001000000100
2082310 23 9 11110111300000000000000
2082311 23 8 01100101000000000000000
2082312 23 7 11111010000000000000000
2082313 23 2 11000000000000000000000
2082314 23 4 11010000000000000000000
2092301 23 13 11101111011010000000000
2092302 23 16 01101100010010010000000
2092303 23 14 11111101110111000000000
2092304 23 13 11111010111010000000000
2092305 23 13 11111111111110000000000
2092306 23 14 11111111111111000000000
2092307 23 10 11111110110000000000000
2092308 23 17 00110101111000101000000
2092309 23 19 11111111110001100010000
2092310 23 17

111111111113110101000000



2092311 23 13 11111110111110000000000
2092312 23 9 11111111100000000000000
2092313 23 5 11001000000000000000000
2092314 23 7 ©11111110000100000000000
2102301 . 23 21 # 111111131111111111111100 40
2102302 23 6 11111100000000001101000
2102303 23 11 I1111111011000010000000
2102304 23 18 11111311111111101100000
2102305 23 23 #-11111111101111111111101
2102306 23 23 # 11111111101111111111111
2102307 23 4 11110000000000100000000
2102308 23 16 11111111101100010000000
2102309 23 22 # 11111111111011110110010
2102319 23 23 # 1111111131li01211111131
2102311 23 5 11111000010100101001000
2102312 23 23 # 110111101110111311111011
2102313 23 21 # 110111111211111011111100
2102314 23 5 11111000010100000000000
2112301 23 10 01111111110000000001000
2112302 23 19 011111111111111p1110000
2112303 23 20 # 101111113111111110111000
2112304 23 12 111131111111100000000000 "
2112305 23 6 11111100000000010000000
2112306 23 11 11131111101000000000000
2112307 23 8 11011011000000010000000
2112308 23 14 11111111101101000000000
2112309 23 21 # 11111101111110111100100
2112310 23 17 11111000110111111000000
2112311 23 7 010111100000111310001000
2112312 23 15 11111100111101100000000
- 2112313 23 13 11111111101010000000000
2112314 23 5 11111000000000000000000
2122301 23 21 # 11111011111001100110100
2122302 23 21 # 11111111111111211111100
2122303 23 4 10110000060000000000000
2122304 23 23 # 11111110001221111111111
2122305 23 23 # 1111111111 l111l11111111
2122306 23 23 # 11111110111111311111111
2122307 23 23 # 110111113111111111111011
2122308 23 23 ¥ 111111110001110011121111
2122309 23 14 11111111111101000000000
2122310 23 23 # 111111110121101010111111
2122311 23 23 # 11111111111111011111101
2122312 23 23 # 11111111101111001011001
2122313 23 2 11000000000000000000000
2122314 23 5 11111000000000000000000
2132301 23 11 11111111011000000000000
2132302 23 8 11111111000000000000000
2132303 23 7 11111110000000000000000
2132304 23 7 11110010000000000000000
2132305 23 13 110111131111010000000000
2132306 23 12 11101101101100000000000
2132307 23 5 10111000000000000000000
2132308 23 12 11110111011100000100000
2132309 23 13 11111111111110000000010
2132319 23 15 10111111111011100000000
2132311 23 11 11111111101000000000000
2132312 23 9 11111111100000000000000
2132313 23 12 11111111112100000000000
2132314 23 5 11111000000000000000000




2142301 23 21 # 11011101111010001111100
2142302 23 22 # 11111111111111011110110
2142303 23 21 # 11111111111101111111100
2142304 23 23 # 11011111131111111111111 41
2142305 23 23 # 111111113111211111111111
2142306 23 23 # 11111111110111111131111
2142307 23 23 # 1111111110111l
2142308 23 23 # 111113011111111131111111
2142309 23 12 11111111111100000000000
2142319 23 23 # 11111111110111011111111
2142311 23 23 % 111111111111110311000101
2142312 23 10 11111100110000000001001
2142313 23 15 11101111111101100000000
2142314 23 4 11110000000000000000000
2152301 23 8 11110101000000000000000
2152302 23 12 11111110110100000000000
2152303 23 2 11000000000100000000000
2152304 23 9 11111111100000000000000
2152305 23 11 10011110001000000000000
2152306 23 8 11100101000000000000000
2152307 23 8 11111101000000000000000
2152308 23 3 11100001110000000000000 °
2152309 23 8 11111001000000000000000
2152310 23 8 11101101000000000000000
2152311 23 14 11100011101011000000001
2152312 23 9 ©11111111100000070000000
2152313 23 13 1n111110101110000000000
2152314 23 8 11111001000000000000000
2162301 23 21 4 11101111111110111001100
2162302 23 23 # 1111111101d111111111111
2162303 23 23 # 11111111111101111311111)
2162304 23 17 111111101111112111000000
2162305 23 23 # 11111111100111100111111
2162306 23 23 # 11111111111100010101111
2162307 23 11 11001111101000000000000
2162308 23 23 # 11011111113111111101111
2162309 23 23 #olriilitniininialiliom
2162310 23 23 # 111111011111118011131101
2162311 23 23 # 11111111111010121111111
2162312 23 23 # 11111100110010131011111
2162313 23 22 # 110111121101101311011130
2162314 23 11 11111111001000000000000
2172301 23 20 # 01111111013 111111111110
2172302 23 18 11111111111111100100000
2172303 23 18 J11111111111112111100000
2172304 23 9 00111100100000000000000
2172305 23 2 11000010100000000000000
2172306 23 15 01111111111111100001100
2172307 23 14 11111111111111000000001
2172308 23 20 # 111111111131112111121000
2172309 23 15 2111111111311110100000100
2172310 23 13 111111111111100090001110
2172311 23 23 # 11111111111111111311111
2172312 23 13 11111111111110000000110
2172313 23 14 111111110111131000000100
2172314 23 13 11111111111110000000000
2182301 23 4 10010000000000000000000
2182307 23 1 10000000000000000000000
2182303 23 3 11100000001000000000000
2182304 23 2 11000000000000000000000




2182305 23 1 10000000000000000000000
2182306 23 3 11100000000000000000000
2182307 23 2 11000000000000000000000
2182308 . 23 0 00000000000000000000000
2182309 .23 6 01111100000000000000000 L2
2182310 23 4 11010000000000000000000
2182311 23 3 11100000000000000000000
2182312 23 2 01000000000000000000000
21823113 23 3 11100000010000100000000
2182314 23 2 11000000000000000000000
2192301 23 13 11111011111110000000000
2192302 23 21 # 1111111100%111101000100. ..
2192303 23 23 # 11111101111111010011101
2192304 23 7 11111110000000000000000
2192305 23 13 11111111010010000000000
2192306 23 8 11011001000000000000000
2192307 23 8 11111111000000000000100
2192308 23 9 1111111311100000010000000
2192309 23 21 # 111111111111111011201100
2192310 23 21 # 111111111011100011111200
2192311 23 22 # 11111011110100131101010
2192312 . 23 3 11100000000000000000000
2192313 23 2 11060000000000000000000
2192314 23 3 11100000000000000000000
2202301 23 8 01110101000000000000000
2202302 23 5 ©11111800000000000000000
2202303 23 5 C11111000000000000000000
2202304 23 3 01100000000000000000000
2202305 23 8 11111111000000000000000
2202306 23 10 11160100210000000020000
T 2202307 23 4 11110000000000000000000
2202308 23 6 11111100000000000000000
2202309 23 3 N11100001000000000000000
2202310 23 6 11111100000000000000000
2202311 23 6 11101100000000000000000
2202312 23 5 11111000000000000000000
2202313 23 4 11110000000000000000000
2202314 23 3 11100000000000000000000
2212301 23 10 11101111110000000000000
2212302 23 & 11011111000000000000000
2212303 23 6 11111100000000000000000
2212304 23 3 11100000000000000000000
2212305 23 17 11011111111100011000000
2212306 23 9 11111000100000000000101
2212307 23 5 11111000000000000000000
2212308 23 2 11000010100000000010000
2212309 23 11 J1111011111000000100000
2212310 23 13 11111111111010000100001
2212311 23 4 10110000100000000100000
2212312 23 8 11111111000000000000000
2212313 23 11 11111101001000000000000
2212314 23 13 11111111100010000000000
2222301 23 18 11001100010001000100000
2222302 23 1 10000000100001000000000
2222303 23 4 11110000000000000000000
2222304 23 7 11110010000000000000000
2222305 23 19 11111101110001100010000
r222306 23 6 11110100000000000000000
2222307 23 1 10000000000001010000000
2222308 23 4 11110000000000000000000




2222309 23 8 11111111000000000000100
2222319 23 8 11111101000001101000000
2222311 23 17 01111111010010001000000
2222312 23 8 11111111000010000000000 43
2222313 23 5 11011000000000000000000 '
2222314 23 4 11010000000000000000000
2232301 23 8 I1111111000000000000000
2232302 23 5 11001000000000000000000
2232303 23 11 10010111101000000000000
2232304 23 3 . 10100000000000000000000
2232305 23 2 11000000000000000000000
2232306 23 7 11011110000000000000000
2232307 23 0 00000000000000000000000
2232308 23 1 10000000000000000000000
2232309 23 1 10000000000000000000000
" 2232310 23 7 11111110000000000000000
2232311 23 3 .11100000000000000000000
2232312 23 11 11111111111000000000000
2232313 23 3 11100000100000000000000
2232314 23 7 T 11111110000000000000000
2242301 23 8 11111111000000000000000
2242302 23 8 01111101000000000000000
2262303 23 10 11101111110000000000000
2242304 23 8 11101101000000000000000
2242305 23 9 11111111100000000000000
2242306 23 7 11101010000000000000000-
2242307 23 1 10000000000000000000000
2242308 23 1% 11111101101100100000000
2242309 23 & ©11011100000000000000000
2242310 23 5 11111000000000000000000
2242311 23 13 11111111001010000000000
2242312 23 5 11111000000000000000000
2242313 23 2 11000000000000000000000
2242314 23 3 011100000000000000000000
2252301 23 16 11111110111101110000001
2252302 23 14 11111111101101000000000
2252303 23 9 11111000100000000000000
2252304 23 16 11110110101110010000000
2252305 23 11 11111010111000000000000
2252306 23 6 11111100000000000000000
2252307 23 11 11110100111000000000000
2252308 23 10 11100110010000000000000
2252309 23 9 11111111100001000000100
22523190 23 15 10111111101111100000000
2252311 23 22 # 11111111110110001010110
2252312 23 11 11111111111000000000000
2252313 23 3 10100000000000000000000
2252314 23 S} 11111100000000000000000
2262301 23 12 11001111010100000000000
2262302 23 17 D1111111101011101000000
2262303 23. 3 11100000000001000000000
2262304 23 9 11111111100001000000000
2262305 23 8 11111011000000000000000
2262306 23 9 11111111100000000010000
2262307 23 6 11000100000000000000000
2262308 23 3 11100000000000000000000
2262309 23 13 11111111010010000000000
2262310 23 12 11111111000100000000000
2262311 23 11 11111111001000000010000
2262312 23 6 11111300000000000000000




2262313 23 2 11000000000000000000000
2262314 23 8 01101001000000000000000
2272301 23 3 01100000000000000000000
2272302 23 7 11111110000000000000000 nn
2272303 23 3 11100000000000000000000
2272304 23 8 01111101000000000000000
2212305 23 5 11111000000000000000000
2272306 . 23 6 11111100000000000000000
2272307 23 6 11111100000000000000000
2272308 23 4 11110000000000000000000
2272309 23 8 11110111000000000000000
2272310 23 6 11011100000000000000000
2272311 23 8 11111111000000000000000
2272312 23 2 11000000000000000000000
2272313 23 1 10000000000000000000000
2272314 23 3 11100000000000000000000
2282301 23 17 10101000101110101000000
2282302 23 21 # 101101111131111111110100
2282303 23 22 #11121011111111111110010
2282304 23 19 1101101111111113110%0000
2282305 23 2l # 11111111101000100010100
2282306 23 23 # 111111111111011112211311
2282307 23 8 11101111000000000000000
2282308 23 17 11111111111111101000000
2282309 23 16 11111111111111110000000
2282310 23 23 # 11111111101111111000101
2282311 23 19 11011111111000111110000
22823172 23 21 # 1111111p111101111011100
22823113 23 7 £1111110000000000000000
2282314 23 0 00000000000000000000000
- 2292301 23 21 # 11111111111101000100100
2292302 23 21 # 11111111110111011120100
2292303 23 18 11111111111110111100000
2292304 23 18 11111001111111110100000
2292305 23 8 11111111000000000000000
2292306 23 8 11011111000000000000000
2292307 23 15 11111111110011100000000
2292308 23 2 11000000000000000000000
2292309 23 8 11111111000000000000000
2292310 23 22 # 11101111101101111110010
2292311 23 17 00211111111111011000000
2292312 23 20 # 111121111111111111111000
2292313 23 7 11111010000000000000000
2292314 23 6 11111100000000000000000
2302301 23 3 11100000000000000000000
2302302 237 7 11111110000000000000000
2302303 23 6 11111100000000000000000
2302304 23 3 01100000000000000000000
2302305 23 3 11100600000000000000000
2302306 23 8 11111111000000000000000
2302307 23 7 11110110000000000000000
2302308 23 4 11110000000000000000000
2302309 23 8 11111011000000000000000
2302310 23 12 11111111000100000000000
2302311 23 5 11111000000000000000000
2302312 23 7 10010010000000000000000
2302313 23 8 11191011000000000010000
2302314 23 4 . 11110000000000000000000
2312301 23 22 # 11111111111110011111110
2312302 23 15 11111111100111100000000




2312303 23 7 11111110000011011001100
2312304 23 23 # 11111100111111101211001
2312305 23 22 # 11111101111111110101110-
2312306 23 11 11011110011000000000000 L5
2312307 23 9 11101111100000000000000 ‘
2312308 23 9 11111101100001100000000
2312309 23 14 11111111101011000000000
2312310 23 23 # 11111111110111110111111
231231 23 23 # 11111111111111111111011
2312312 23 .73 # 1111211111130111131111111)
2312313 23 7 11101110000000000000000
2312314 23 4 11110000000000000000000
2322301 23 6 11111100000000000000000
2322302 23 9 11111011100000000000000
2322303 23 5 11111000000000000000000
2322304 23 5 11111000000000000000000
2322305 23 9 11111100100000000000000
2322306 23 3 11100000000000000000000
2322307 23 9 11111000100000000000011
2322308 23 4 11110000000000000000000°
2322309 23 10 11111011010000000000000
2322319 23 11 11110011101000000000000
2322311 23 5 11111000000000000000000
2322312 23 4 10110000000000010000000
23223113 23 8 11111111000000001000000
2322314 23 4 10110000000000000000000
2332301 23 0 00001001011000000000000
2332302 23 13 1111101p110110000000000
2332303 23 9 11111111100000000000000
2332304 23 9 11011111100000000000000
2332305 23 9 11111111100000000000000
2332306 23 7 11111110000000000000000
2332307 23 11 10100011101000000000000

$ 2332308 23 15 111311010111010100000000
2332309 23 10 11110101010000000000000
2332310 23 14 11111111101111000000010
2332311 23 12 11111110100100000000000
2332312 23 12 11111111111100000000000
2332313 23 10 11110100010000000000000
2332314 23 6 11110100000000000000000
2342301 23 9 11111111100000000000000
2342302 23 23 # 111101111110111711110001
2342303 23 23 # 11111111111111110011111
2342304 23 2e # 11111110111001111010110
2342305 23 16 110001011011111100000090
2342306 23 23 # 11111111111111011100011
2342307 23 4 11110000000000000000000
2342308 23 15 11101111010101100000000
2342309 23 9 11010011100000000000000
2342310 23 23 # 11111111100111111111101
234231 23 23 # 11111111111110010111011
23423172 23 23 #011111312111201111111111111
2342313 23 23 ¥ 11101111100100100011111
2342314 23 2 11000000001000000000000
2352301 23 2 11000000000000000000000
2352302 23 3 ©11100000000000000000000
2352303 23 5 11101000000000000000000
2352304 23 3 ©11100000000000000000000
2352305 23 5 11111000000000000000000
2352306 23 3

11100000000000000000000



2352307 23 3 10100000000000000000000
2352308 23 1 10000000000000000000000
2352309 23 2 01000000000000000000000"
2352310 23 4 11110000000000000000000
2352311 23 3 11100000000000000000000
2
1

2352312 23 11000000000000000000000

2352313 23 10000000000000000000000

2352314 23 1 ©10000000000000000000000
2362301 23 13 11111111110010000000000
2362302 23 .15 111111111113111100000000 -
2362303 23 11 11111101011000000000000
2362304 23 13 11111331111110000000000
2362305 23 21 # 111111110111011311100100
2362306 23 21 # 11111111111111111110100
2362307 23 1 10000000000000000000000
2362308 23 15 11111101111111100000000
2362309 23 4 01110000000100000000000

2362319 23 22 # 1111111110113111111111110

2362311 23 28 # 0l0l11l1111i111111111010

2362312 23 13 ©11111111111110000000000°
2362313 23 6 10111100000001000000000
2362314 23 4 111110000000000000000000
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Theoretical Expressions for probabilities of sequences

of responses in 4-cycle blocks.

cycles 2 through 5

The sequences are obtained by reading the sequence number

as a b-bit binary number.

Probability

¢ (1-q) (b4b(1-b) (1-q)+b(1=b)Z(1~q) %4 (1b)”
(1-9)7) (10 ) (1or) (1) (1-r) ((1=c) (1)

#(1-0)7 (17 e (1=q)+0 (1) (b+(1-b) (1+q) ) +c(1-q)
((1-bF (1-q)“4+(1-b) (1~q)bsb))
©a(1-b)7(Leq) 24 (Le ) (1) (( (e ) (1-0) *( (1m0
+09) +0(1-b) (1q)q((1=c) (1-r)+ (1=b)(1~q)))"

e (1-0)2(1-q) 2 (b (1-b) (1-q) )+ (=0 ) (L-r ) (1-c)

(1-r) ((1~c)r(c(l-q)+(1=c)(1-r))+cq(b+(l-b)(1~q))

+¢q(1-~b)(1-q) (b+(1~b)(1~q))

(1) 2(1q) 26 (1-b) 4 (10) (Lor) (1) (Lor) ( (L)

r(eqe(1-c)r)se(l-b)dic(1-q)(1-b)%g")

¢(1-D)(1=q)q (b+(1-b) (1~q)b+(1-0)(1-q) %) 4 (1-6)

(L-2)((1~c)r((1-c)(Q=r)((1-c)(1-r)+c(1l~q))

+c(l~q)(b+(l—b)(1~q+cq(b+(1~b)(1-q)b+(l~b)2
(1-q)%))

p) 22 R
¢ (1-0)2(1-0) a7+ (1-0) (1) ((L-0)r (1-0) (1or) (cq

+(l=0)r)+c(1--b)(lwq)q)w(lmé)(lmb)aq2
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11

12

14

15
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(1) (1-0)°q7 (b4 (1-b) (1-q) )+ (1) (L-r ) ((1-c)r
((1-c)x(e(1-q)+(1-c) (A1) )+cq(be(1-b) (1~q))) +oq°
(1-D) (b+(1-b) (1-q))
€(1-b)(1-q) (1=b)7q 4 (1=c ) (1-r) ((1=8)r ((L-c)r

(cq+(L=c )r)+cq€’(l-=-b))+Cq(1mb)2q2)-

6q(0+(1-b) (1=q)bab(1-b)Z(1-q) 4 (1-b)7(1-q)" )+

Lc)r((3=c)(1er)((1~c)(1-r) (c(1~g)+(l=c)(L~r))
+0(12q) (D+(1=b) (1=0) ) +6.(1=q) (b+(1-b) (1=q )b+ (1)
(1-q(%)) |
¢(1-5)2(1-q) 2% e (1=c)r( (1-0) (1=r) ((1-c) (1-r)

(g (Lmc)r)+c(1-b) (1-q)g)+e(1-b)2(1=q)%q)
¢(1-0)2(1-q) (b4(1-5) (1=q) )g+ (L1 )r ((1-¢) (1-r)
((A=c)r(c(l=g)+(L=c)(Ll=1))+cq(b+(1l-b)(1=-q)+c(1~Db)
(1~q)q(b+(1~b)(1~q))

a2 (1-0)2(1=q) 4 (L=c )r ((Le ) (1=r ) ((L-c)r (cqe
(1-c)r)4eq b))io (1q) (1-b)%G%)

€(1-0)q" (b4 (1b) (1-q)bi (1) (1-q) %) (1= )r
(1-c)r((1-c)(A=r)(c(l-q)+{1~c)(1-r))+c(l~q)
(04(1=b)(1=q))) +6q (b4+(1-b)(1+q)b+(1-b) % (1=q)%))
¢(1-0)247 (1=q) (L=¢ e ((1-c )r( (1~c) (L-r)(cq
(1-0)r)e(1-b)(1-q)q)e (1q) (1-b)°¢7)

©(1-b)77 (b+(1-b) (1-q) ) +(1wc )r ( (1-c)r ((1-c )x
(C(1~q)+(1~C)(i~r))+cq(b+(1-b)(l~q))+cq2(l—b)
(b4(1-b)(1-q)))
g(l~b)3q4+££:§2T((l-C)r(0§+(lmc)r)+cq20rb))+

C(l«b)EqB)
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(31)

cycles 6 through 9

In the above expressions ¢ 1s replaced by:-

o (1-0) 10 (1-b) (1m0 ) 240 (102 (1m0 ) 240 (1-b) (10) Pse (1)
and (l-c) is replaced by (1»0)5, to allow for the
possible outcomes of the precéding cycles. In
addition, sequence O needs an additional e#pression

to allow for the possibility of starting cycle 5 in
state Li~

eb(1m ) +eb(1c ) (Le(1-b) ) 4e (L= Ib(L+(1- b)+(1-b)Z)4cb

(14(1=b)4(1=b) 24+ (1-b)")
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