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CHAPTER I

- INTRODUCTION

The cutting performance of a machine toofzis .
lipited by the power of the drive, or by é&e toolllifc
criterian., Howevef,_at.many‘ihstaﬁces thc-oécurqnce of
chatter is realized to be more predominant cause than
the conventional critcrians in reducing the available
working capacity of a macginc tool. ’Heayy-vibrations
éan be observed at a certéin width of'cué. These
vibratipns will impair the quality of the workpiecc as
well as reduce the tool.life. This vibration pherncmenon
know as chatter drew more and more attenﬁipn with the
introduction of .tape controlled machines and_iaaptive
controlled tools. Prograrmers of tﬁese nachines realized
the nced for some relationship of the chatter behavior,
to avoid any detrimental effects during the automatic
working. Thus, the need to specify'the linits of
utability.for theé existing machines and the inte;csﬁ of
machine tool builders to imprové the pérformance of future
machines focused a great attention to investigate the

dynamic bchavior of machine tools.

Thore are, in general, three types of vibrations

1
]
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“‘of the cutting proccss.

2 A R 2

‘ 2
in nachina tools, the forced vibrations occuring mainly
. : t )
due to the unbalanced forcos, the natural vibrations )

which occur duc to hard spots in workpicce, and the sclf

i

excited vibrations fof which the cnergy is produced in
. ' _ . . ’ \u——-¢f/
cutting process. It is the third type of vibration, also -
knoun as chatter, which '1s the most detrimental to the
pefformance of a machine tool.

In order %to understand fully the correlation

between chatter and machine tool structure, "let us
. 3, L

consider I'ig. 1.

> MACHINE TOOL R
AF - . Y
|

N

CUTTING PROILSRS

The cutting prozess produces a dvnanlc force AF which

-

acts on the nmachine tool structusc and prodnces a

I...-‘.J

deflection ¥ between the teol and workniecc. This

!

deflection then modifics the dynamic cutting force arnd
~ r

- thus they ferm a closcd loop system. Conséqucncly, the

systen is prone to be unstable depending upon the dynaric

behavior of the machine too} structure and thp behavior

fhc dynamic characteristics of a mechanical
structure can be well déscribed in terms of freaucncy
response functions rclaiing the forces as inputs and
the displacements as oﬁtputs. The stability oﬁ‘th?

2
1
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closed loop cutting system, in this way, can be

charactcfgzcd wvith transfer function of the machine

tool stfucéure and the trgnsfér function of ghqigd;finq
' process. The present work is éimeé at the stéé}loﬁ the
machine tool transfer function.‘;_ | o *;‘lxi?ﬁ}
The limit of stability of a closed iboﬁ‘éiéﬁmmj
depends on a set of inpﬁt baramctersl " In machine ;ooi
stability éng}ygis, this paramcter is taken to be the
width of cuﬁqf"Thcre will be a ﬁ;ximuﬁ width of cnt'?lso
known as thé-;imit width of cut, abovc:phich the cutting
process will be unstable. A simple equation given bY%
Tl%sty;a rcl&téé therlimif width\of cut to the real paft-
Bf the'tranéfpr function, alsojbopularly known as the
real réceptance between the tool and the .workpicce.. The

—

equation is

. . 1
b= - '
‘. .lm 2”@‘“’%&:
where

b“m-‘mxinlmn chip width for’'which cutting
: e~ A :

t
becomes unstable. ' L .

n E a positive ;cal\ponstanf-exp;essiqg
- -". ‘ ‘_'~ thcﬂ’cugting-stiffnéss' and dgpending
|  on material bf“workpiéce and on éutiinq
n cbnditiogé;a _ | |
- Giﬁﬁ&;ihe'minimun of“the réal‘reécptanéc.

-~

[
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This relation is also known as the basic theory
in the sense of its significance fof practical use and
it cléarly points.out the importance of structural A
dynamics on the performance of machine tool. The only
existiﬁg precise way of obtaining the value G{(w) . . ‘ i
for the various configurations ﬁf‘a machine tool structure
with respect to,Fhe various‘orientqtioné of the cutting
' process in the machine tool is the experimental way.
While considerable progress.has been achieved inithe
develdpment of techniques of structural computationé,
these still'cannot deliver results satisfactorii§ B}
accurate fo; the rather complicated cast iron structures
of machine tools. ' Apart from the complexity of the
shape of these structures, it is mainly our inability
to compute.damping which prcvcnts_computatiﬁns based on
the_dfawings of the machine to be used for solving
chatter problems and makes it necessary to resort to
meaaurementé on prototypes of machines. Computations
are, however, vaiuﬁble complements of experimental data

in such a way that they help to understand how desirable

changes of parameters may be” obtained by redesigning

- .

the structure.
. .

< Many experimental techniaues have been daveloped

¢

! .
for determining the real receptance. These technigques

basically differ with the type of excitation. Each of

-
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these technigues has its own advantages and disadvantages.
o :

In this thesis, while ékplaininq‘also 6ther techniques
available for thé dctermination of the real receptance,
an attempt is made to formulate a 51mp&e and fast
-expcrlmcntal techn1qu? 51mnle lh the sense of instru-
mentation and fast in ‘the sense of testlng time on thé
machine tool. Thls method uses Shock Fxc1tat10n ans

e

computes the real réceptance using the Fourier Transform
— - .

Technique.

p
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LITERATURE SURVEY o ot >

>
e

/
| J;G. Bollinger:and J.A..Boneshékwere the first

to apply pultc testing iﬁ rachine tool dynamic anglysié.
They'used Laplace Transform'theoxf for determiﬁing the
transfer function from the input and output signals. The.
transfer fgnction was defined as the ratio of Laplace ~
Transform of the output-tetpoﬁte to the Laplac; Transform ° -
of - the input cqmmand. Simpsqh't rule was applied;tor
computing‘the.Laplace integrals.j The tests were done

on a. simulated one mass system. Tﬁéy aeve10ped an
ahaiytital-solgtibn for a Half-sine Qave‘pulsgﬁinbut to;'

onelmass system And studied the effect of syste;‘para-

mqtérs, sampling parameters and the variables of the

input pulse. They concluded that pulse testipg is accurate ,>
and independent of the system p&rametérs."nn impoftaﬁt |
conclusion was that in the c;;e of pulse testing signai

analyais the transient output should be sarpled at least
- to have 10 samplea/cycle at the maximum frequency of:

interest and the sampling shauld be done until the

tranaient dies out coEEletely. They also conducted .

tests on simulated multimass systems and concluded that

the multima-s systems imposed no reltriction on the

1pulse testing techniqqe.' They proposed a.set—up fox
— L. ;




‘automated pulse testing of machine tool structures using
magnetic recording of test-signals, anaiog—to—diqital
‘converters for dlgltizlng the recorded sxgnals and the)
'proce551nq being done in a digital computer in order to
get the recep;ances of the machine tool.

. Ww.J. Kremer 14 studied the variabies'in the'h .
pulse testing using a single degree freedom system
sxmulated on an analog computer. He compared the
transfer functlons obtalned by three different procedures
1) harmonic excitation using Transfer Functlbn Analyser
(TRA): 2) Pulse testing, usimg digital computer for
signel proceésing: 3) Pulce testing using TFA for .

" signal processing. (He found that using Tfi for the
analysis of pulse testing signals did not give results
comparable with the tesults obtained by harmonic testlng
—usxng TFA. The une of digital computer for the pulse
testing‘signa; processing did not yield valuable results o
due to the inefficient sampling‘;rocedure'usingioecillo—.
.scooe traciné and manual digitizingér However, his
conclusions on the variables of the pulse were very |
veluablé.‘ He concluded that extremely short durgtion of \
pulse with relatively'hiqh anplitudes would yield accurate ‘
results. - | ) | ' .

A. w; Rwaickowski and P.E. Bennett.5 N.H. ’Hanna | -
and A.W. ¥waitKowski, 13 a.w.TRwaitkowski and H.M. Al

\

al
. “ . : ' o
SN . . -
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samaria 17 applied random force excitation to the’ ;

determination of the receptance of machine tools.  The’

tests were done on simulated machine tool structures as :/A
well as on actual machine tools. A magnotic_exgiger: N
driven by airandom signal ;enerator with a powér amplifier
was uscd bo excite the machine tool structure. He apblied”
correlation technique™ for signal processisg. Thé'impulsé
rcsponoe of the system was dete;mined from the auto-
coffclat?bn'of the input signal and the cross cornelnfion

of the output—input signals. Then thegtransfer function °

"wag obtained by taking the Fourier T;anéforﬁ of the

. impulse response. They recorded the input and output

signals on a nagnéfic tape recorder and used an onaloq P \\
correlator for obtalning the auto and” cross correlations.
The rcsults obtaincd by random excitation were compared ., 7
withfthe results by harmonic excitation and the agreement LT
of tihe results was gogﬁ owing to tho presence of
vibrators, nostly the experiments wete porformed durinq
non-cutting‘condition without feed motions and only in
sonme cases, with workpiece. rotation. - |

Later in roferdnce 17, ihey used a technique .
where the experiments were pqrforned during cutting and
the naturally occuring random cutting forccs, rather'
than vibrators, provided the required exciting force.

In th;g-method, except~£0r the proviaion‘of transducers,

Y




the experiments were done under‘ideally realistic
conditions.r In all the experiments the gignals were“
recorded in the magnetlc tape recorder and dlgltlzed
on an analog—to-dig%tal converter, ‘They used a computer
prégram to calculate the‘correlation function;; impuise‘
response, power 5pecrruﬁ and réceptances_using tbo:
digitized values of the Input end output signa;s}..ihQYf
conclhdeo that the noise contamination presented no ‘
_problem in the cutting force excitation'technrque.
However; it wasg found that the resglts were not repro—
' ducible'io certain quantitetive aspects,Jmaigly in the
region of machine resonance freqoencieac;‘ '
H. 0pitz§and M. ﬁeck 6,12 applied stochastic
N excitation to determine the dynamic behavior. of machine
topls,under\actual machining conditioos. They‘used‘v //f‘

- " - h -

Epectral density measurem¢nt_procedure for evaluating

L] N\

the transfer function. Three different types of-raqdom

. input signals were used 1) Utilizatiop og/the_raﬂdom

-

cuttiﬁg force generated by cuttiﬂg of .a special randoo
workpiece, 2) generation of random cuttinq force signal
by means of stochastic chip thicknees variation. 3) by ‘ o
_seigmic excitation. “They determined atability charts R ‘ A\
by experimental proce ure and compared them with the

atability charta computed theoretically and found

satisfactory agreement. Their investigations showed
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that;feed rate significantly influence the dynamic
behavior and they concluded that an extcnsive assessment
of the machine tool is only possible if the dynamic
characteristics were measured under actual working
conditions of the machine tool.

hey also applied apecriodic test signals to
the measurerent of anamic compliance ;f machine tools.
Two types of aperiodic test signals were used, 1) Pulse
step function, gepefated by a pneuﬁatic pulse step
,funation generator; 2) pure pulse signal using -a hammer. '~
fouricr Transform techniquc was used in analysing the
test signals in order to obtain the transfer function.
‘Thé results dbtainéd by both ,types of aperiodic test
signals were compared with hafmonié-tests and found a w7
satisfactory agréement They added a very 1nqutant ;
contrlbutlon with respect to the problerms involved in {
the proc0351ng of the aperlodlc input signal and the -
rcsulting.tranéienﬁ output signal._;The-influgnce of (g“
" the shape of the pulgzl the finite observation time
and the digitizing di&ténce of the system response on
the accuracy 6f the résulgs were well analysed. The
rclﬁti?e cfror_d%ithe frcqﬁency response as a function
of the observaé%oniéime and the nurber of digitiied'
points per period were iliustratqd in the graph shown

!

in Fig..i3. They compared the advantages and dis-




advantages of the three different test procedurcs:

harmonic, stochastic and aperiodic, and concluded that
the measurcment of mode shapes were possible only by

. :
moans of harmonic test signals.

A




CHAPTER I1
4
\

TRANSFER FUNCTICN BY FQURIER TRANSFORM TECHNIQUE

f2.l CONCEPT OF TRANSFER FUNCTION IN DYNAMIC ((
- j
CHARACTERISTICS OF STRUCTURES - ‘

s

g

The dynamic chaiacteristic of any lineaf multi-~ -
“dégree freedom system can bc wclllexpresgcd by an nth
order linear ordihary differential cquation with constant
coefficients. If f(t) is the applied force on the systen
and x(t)_ig the rcsult;né displacement, then the

differential cquation dcs@éihing the vibration of the

system can be written as ‘ T
(aoDn_i_alD-n_"_’_ S -'..- - - +a.n)x_ :_r,_f(.t) ~--121
,where-f(tf is a non-homogeneous formland the symbol I?
. dn :

is to designate ;ﬁﬁn

. The functioﬁ ’

. "h_'
V(S) = (Q-os +aQqSsS + - +a~n)

is obtained by replacing the operator D with a number
real or complex and is called the 'characceristic
function” associated with™the equation (1.1):
The equation V(s.) o,that is T
aosn e TR Snk S -+a;-.=0 is the characteristic

equation and its roots uxccharactcristic roots. = -

13
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Then the functlon

p 1
Y(s) =

—

V({s) o ‘aoS” + @, 87 g -+ AR
is called the Transfer Function of the system., '

The lnportant propert; of the Transfer Fuﬁctlon

Y(s) is - that when f{t’):FoG in (1.1), then x = y(s)Fc,@sr
is a particular solution. '
If $={w the particular solution becomes _
| X = Y({iw) ae’f“” 7 o~ 12

~ This equatioh (1.2) describes in cormplex form a
sinusoidal oscillation of circular frequency w. L
~The response has the amplitude / Y (WY A
and av‘q\yf"“ﬂqives f.ht_z nhase difference between the
displacenent anc the force.

=

' éince"yffka a function of the frequenéy - : f
. :

changns the existing force 1nto a d; placcm nt response /J_
by its prescnce as a'multlplicatxon factor. Y rw) is,

also called the ffreqqg#cy response function™. .
This function VY({!wis called a "Receptance"

in the analysis of dynamic characteristic of machine tools.

2. 2 Detcrmination of Transfer Fuhction by Fourier
. Transform Methed 7 ‘

The dynamic information which is usially shown
in frequency response form is obtained by finding functignal
‘- relationships between input and output in frcquenc§ domain.

Several methods are available to dctetminp’the frequency
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response ofisysteH;. o

If the system components a;;r;recieely defined,

a straight forward mathematical analysis‘may be used.

In general, the systems ere such that their components
cannot be defined precisely for straight_foryardvmathe-
matical anaiysis and an exact determination of the recep-
tance is often (practically in all cases because of

. inability to compufe damp%ng) only possible iﬁ the'
ekperimental way . : R

For such a mease;ement, the system is subjected
to a distutbaece and the time response observed. From
the observed feséeﬁse and the given disturbance, the
amplitude and phase relations between the inbuﬁ and the
output signals are computed. To get the frequency response
over a range of frequencies‘of ihtereet, the experiment
should be able to give informations of amplitude and
phase relations of the input and the output over the
whole range of frequencies of interest.

The simplest implementation of a measurement _
technique to get the frequency response is the ﬁse of a
eine-ﬁave input end observe the respoﬁse. Since £he
sine-wave contains only one treQuene§ component, it pfbvides:
a simple wa§ of measuring the.ttqnsfer function using

¢

voltmeters and phasemeters: However, not all the systems

may be measured using sine-waves, because there is no

!
i
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way of inserting such a signal into the system.
Thereforé, a computihg technique is to be
implemehted that would take a more general type of input
and output, in whatever/form they may be, and would
calculate the system's fregquency responserwith thﬁse
input and output data. A very powerful computing for

g'eneral type of input and output waneforms is the 'Fourier

Transform Mcthod'.
The Fourier Transform of any function - can
be found from the equation -J 2ITF Z-a{'[. 2.7
— & e - 2.7
Q. (F) = [x(&
-0
This expression is a means for transforming an

amplitude time function into an amplitude frequency

furiction. Or, to carry out the inverse operation, the

equation , oo Jz p
V2L X
xcp = [ &F)€ Tdf - 22
— O .
is used.
Transfer Function, the mathematical description
of a system, can be defined as

Fourier Transform of output

Transfer Function = Fourier Transform of input

This relationship can be easily proved as follows:
|+
The differential equation describing the response

X () of a linear n-degree freedom system subject to an

input force F(t) can be written

(GQD“ rrd"e - - .- +6n)x = F(8) - -23
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Before proceeding further, it is important to
know what is the Fourier Transform of a derivative of

F(t) . It can be easily proved that 7 :
N - e
SLo"F] =(@Ew™ S, F) m=iz,.-
vhere S [T'F] is the Fourier transform of nth derivative

of the function Fd¥® and SFC'F)lS the Fourler Transform

of tne function K (&)

Now applying Fourier Transform tc both sides of
the differential eguation (2.3) for the response of
linear n degrece freedom éystém, we have o T

[aoci'w)"&-!- @ cce) Ny - .- "+'5an S (£)= S,

and that is )

S.(£) = G(iw) S.(£)

where (7 ((@w) is the Transfer Function

and thus, G ({w) = -...S_f_Ei
' Se C'F)
or
Fourier Transfornm of\oﬁtnut -

Transfer Function = monrter Transform of input

and this is the basic relation in implementing Fourierx

- Transform method to analyse the dynamic characteristic

of systens.

2.3 Practical Implenentation of Fourier Transform
Technique in Signal Analysis

When the characteristics of a signal are -
mcasured, the measurcements most often made are the

spectrum of the signal and the transfer function of the

-




“and transfer functions, especiélly when signals more

v

had
o

systelm. Now the ‘question is how to measure spectra

b

© complex iﬂan simple sine-waves are involved. ‘As

explalned earller, Pourler ‘Trans foxrm methqd readlly

N x

helps to solve the above question by g1v1ng the sxmple

relatlonsh1p that the Transf2£;£unct10n is the, ‘ratio

of output spectrum to the input spectrum Hence, it is

obvious that the practical lmnlementatlon of this

pr1nc1ple is based upon coﬁputatlon of the Fouricr

Integral in equation 2.1.

Ly

The very usefulness of the Fourier Transform
method depends on how easy it is to compute the Fouricr

integral for a given time function. While in principle

_this technique has been partially irplercnted using

“analog instruments, their full development has waited

on tﬁe availability of digital processors with sufficient
q

Bpecd and flexlbxlxty.

Diacrcte Flnxte Transform.zl ‘ ’ A

The Fourier Transform of the time function (b

ia given by . . oo
. - ~J2Ir £ &
:- - : . -:S‘CF) = ‘/f.x(fﬁ e A
. : ~-0o .

‘The time function X (t+) which extends to infinite
t.{me. transfom into t}te real and imaglnary parts of S,;('F)

and S,(:F) is continuous_s over an infinite frequency range.

[ .
"

' . -
- LS a' .
L] N . .
. N .
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Discrete Finite Fourier Transform: 5 - E ..

If the time function is periodie having a
period of T seconds, on the record is available only:
for a finite time which i3 the case with any experim‘;ntal

data, then a finite Fourier transfcgrm is defined as

SCfp) ¢ = fxt'&) e TIRTHEE 40
w=q+22, 00
and its inverse X (0= g S CH) 'eh-'jzﬂ'f-f‘
N - 0D

In this case, S(-F),the amplitude freauency function,
is not continuous but is composed of discrete components
spaced 1/ Nzapart and it still extends over an infinite
range. The lowest frequency that is resqlvéd is® %. H.z‘
and hé:nce',.the recdrd must include one cofnplete period
of the lowest frequency of interest. All the frequency
components are inte_ger _;nultiples of this fundmehtal
freéuency. | N

. In order to implement Fourier Transform _
digitally, the continuous time function X () must be
sampled at certain intervals of time to give the discrete
time series X.Ci‘,‘)\;rhere X(h) is the value of the time
.f?n?ci;“at the sampling instants &o, b, - - - - & i

Let us assume that the samples are spaced

uniformly in time and leparated by an interval ot. In
order to pex!om the integral the samnles must be

P ~

'-aparated by an infinitesimal mnnt of time which means. A!' -»dt-



Due to physical constraints on the analog-to-
. t . - . .
digital converter, this is not possible. ' As a result,

we have to calculate
K=+ao -’

S(hH) = é_ XCtK) e"d 27t

K=-0a
In order to calculate S(4, ) according to the above
- } N

expression, we must take an infinite number of samples
of'the input waveform. As each sample must be separated
by a fir-xite ar‘noun-t of time, it is 6bvious that the cal-
‘culation of S (%,)will never be completed. _ Also, all
the digital memories are discréte and finite in size.
"l‘herefore, the equation for the Fourier Transform must
be changed to a finite sum for digital processing. This
means only a finite number, say N, samples may be taken
and stored. i
. The record léng}:h

- T = N at
The frequency interval AF = 1/ -
Then a discrete finite Fourier Transform pair can be
obtained f.rbm the continuous finite transform pair.

o

They are given by

-t . - F ‘
Sth) =& Xt e

where k2o
. m= o /8, - - N/
and .

L= 7 df

and
X (t,) = Z S Cﬁ.)t? Varn(R)

n= O

20
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Fast Fourier Transform: 1,3.9

The fast Fourier Transform is an ingenious

metﬁod for efficiently computing the Discrete Fourier
. Transform (DéT) of a sampled time functisn.l This is
an algorithum_reéorted by Cooley and Tukey in 1965 and
a¢Vafiation given a yeﬁr.later by Gentleman and Sande
for the computation 6; Fourier coefficients which requires
much less computational effort thix was required in the
past. The FFT takes advantage of thé facttth§t the cal;
-culaﬁion of the coefficienﬁs of the DFT can'be carried -
out iteratively, which results in a considerable savings Q
of computation time. Hhile DFT evaluation by the straight
foxrward procedure requires a computation time proportlonal
to Nz, the FFT algorithum requires a computation t;me—
proportion to N logé N. The reduction in compuiaﬁioﬂ
time is proportional to N/log,N and this reduction: is
'very significant for large N. For example, when N-512
reduction in computation time is approxﬁmately 57: 1.

Many problems of signalﬂanalysiq can be solved substantialiy”
;more economic&liy now than in .the past. Boweybr, the
FFT algorithum places a restriction on N. that it should-
bo a pouer of zr!or the atmpignt implemantation. The
advantago of aaving the computation tims more than con-
pensates this xrstriction. FET is aas#ly-inpdemented in. =
any modern computer and is used ‘wore and moxre in scientitic
. dhta analyuin.
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CHAPTER I11 : 2

-

TECHNIQUES TC DETERMINE THB QECEPTANCE

/s
OF MACHINE TOOL STRUCTURES
S
3.1 INTRODUCTION ' “
[\ . . ) .
. The magnitude and phase relationship between a°
’ ‘ .

sinusoidal force input to structure terminal of machine
tool and the resulting vibration is calleq'the'receptaqce

of'ﬁhehine tool. Receptahce is same as Transfer Function
o :

..and this EEIationship is usually given as a function of

They are listed as follows.

frequeﬁcy in the form of complex exvpression which is

-

commonly known as G(jw). _
There are basically three’ types of experimental

procedures to determine the receptance G(jw). They.ere

eategorized on the basis of'the'tYpe of_excitetion usedkg

1. Ha;mbnic eieitation (steady state input).

2. Random excitation. - N

b
3. Pulse excitation (Transient input).

3.2 HARMONIC EXCITATION

This is the conventional technique.fer’ﬂetermining

- the receptance Gljw). 'Harmonic testing is the easily

understandable and the most direct method for obéiining

)
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G (Fw) . Essentially, this testing involves the follewing

steps. ST 7

a) Exciting the structure with a sinusoidal
force of known amplitude and frequency.
b) Observing the displacement waveform.

¢) Corputinc the ratio of displacement and

" forcd arplitudes and the phase shift between thers

~d) Repeating the procedure over a ranqe of

frequencies of interest.
- . : N .
This teccinique has.-now been fully developed and

. h ° !
perfccted and this is often used very successfully. At

»  many instants the whole test procedure is fully automated

to‘give the. receptance graph over a rﬁhge of frequencics
of intcrest. I // -

| The measurement of absolute reécpﬁahcc cdoes
not give sufficient information for machine toolldynamic
analygfs. As;sfplained in chapter I, in machine toél-
dynamic.analysis, the most impSrtant paramcter to be |
explorqd is the real part of the freqhency'characteristic;
cﬁllcdxﬁhc cross rccepténce between tool and workpiecc.
There arc mainly two purposes for which the real receptance
is used. Onehis.the’minimum of this real receptance
function gives a sta'bnitf limit for ‘the machine if a .
vq;rlsimplified relationship between -the cutting force

and chip thickness is assuﬁc@, and the second purpose-

1

2]

e et —

3 .
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o

- is to identify the vibratory system of the machine and

to explore the possible design alterations to get better

performance.

The above discussion_neceséitatcs that the
Absolute’rcceptﬁnce should‘be dccomposéd into gépi and
;maginary parts. This step requires thé measurcment of
- . 2
the férce signal and the rcsulting.vibrationigiqnal and
to determine the vibration component in phase and out of
phasé with the éxcitiné foree. The block diagram of tiwe
experimental sct-up for Harmbnic excitatiéé téStiAg is
shown in Fig. 2.

The exciter’'E acts on the structure with a force -
r{w) = F 51ncﬂ-and is measurcd by the force lan D.

L SN

vlbratlon is mcasured oy the straln gaugc plck-up P.

,The vibration of the structure would be X sin(wt+p)

where’ ﬂ)ls thc phase dlf‘crcnce .between the force and bhe
displacement. Then the real part of the displacement.
which is in phasc with the forxce is given by

Real(x) =X cos #

L4

and Imaginary part .Hi . ' .
R
Imaq. (x) =X sin ¢

3 - -

‘The output from the force transducer and thc output from .

the strain gauge bridge are fod into thelﬂransfer Function

Analyscr. In the force F(w), the valuc of the amplitude

. -

v - 1‘
. S SN
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F is maintéined constant in the whole range of freguencies.
'The TFA consists of phase sensitive voltmecters. ‘The
outputs from TFA areld.c voltages proportional to Real (x)= Xcosd
aand Imaé(x)=§vsin'ﬁ These outputs are fed to y_co—ordin#tes
of the x-y plottersjwhile the x co-éfdinates'arp fed from
the frequency meter. As the amplitude of the force is
kepf constant, these plots.represeht'the real and imaqginary.
components of the_fransfer Function.

Harmonic testing method th;s is a'straiﬁht forward
procedure. However, in its hpplicatipn, it has been

: . - |
observed that experimental results of the real receptance

N

are reproducible only under fixed test conditions. Alsoy
the harmonic testing mecthod involves the usc of a

p——

vibrator vhich- creates artificial test cond;ﬁions and 1.t:_‘L
‘is questionable whether these results can be fully Qalued'
to explain the machine behavior while cutting. Though |
it could be possible to arfange the test conditionszto
the correct requirements, it still needs a large nurber
of tests to cover a wide range of variations and it is
a timé consuming procedure. Al3zo the devices used in
harmonic testing are rather complicated and expansive
and very often thoy demand non-diaiorted-sinusoidal
waveforrs on both force and vibratiQn sign&ls. |

All these restrictlﬁﬁs 1nvoived in harmonic

testing pecessitates L0 explore the pcosaibilitics of

Lo

- \
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obtaining the Transfer, Function by time domain apprdach
rather than frcéucncy domain approach.

3.3 TINE DONMAIN APPPOACH

-

The basic principle.of time domain approach to
~ -

determine the freaquency response characteristic can be
explained as follows.

All these discussions grc based on‘the assunption
that the system being tested is linear. A system can &
be dcfinéd as being linear whencver supefposition holds,
i.c. a responsce due to the sum of two signals is identical
to Zhe sum of the responses created by eacﬁjof the input
signals annlicd indiviéually. As a result, the frequency
s;ectrum of the oytput siqgnal contains only those com-
ponents prcsent in the input, 1lthcuah the amplitudes:
and phase of the conponcnts can be dlfferent. Dy contrast,
‘a non—line%r system does not obey the superposition

‘fconccpt, and-ncy frequegcy corponents can be present in -
the output whilec some ok all of those in the input
signal specctrum can be eliminated.

A lincar system can be characterized in either
the time doméin or the frequency domain. The time cdomain
characteristic‘is called the unit impulse rcsgonse

.-and is the waveform that would appcar at the nutput if
a Delta function of unit arca were applied at the input.

The freaucncy domain characterxstic is referred to as
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the system Transfer function H&)which is of our interest.
The response of a linear system to any input
slignal in the time domain nay be determined from the
coﬁvolution of the systemn impulse response }l(f) with

the input signal X&) to give the output Yt) ©

RO Y(}) = fk(t) X (t-P> dP

If the Fourier Transform is af)pl-ied to this convolution
integral, then by the relation, convolution in time

domain is multiplication in frequency domain, ‘the simple
relatxonshlp is obtained. If Fourier Transform of input

is § GC), outDut 5 () and of ,‘t‘;he :meulse response H(f) '
then

S = SeeP . HED
5y (P
o A = FH

whiéh‘ is the Transfer Function of the system'as proved
earlier in chapter II. This \s‘hows that the Fouri;r\
Transform of ‘the unit impulse response h(#) yields the
‘Transfer Function. Thus, if t';he"respbnse of a linear
system to a unit impulsc is known, by Fourier 'rrana4- '
formation of this unit :uupulue response, the 'rransfer |
Function can he obtained.
The above diacussion providcs us with two

different approaches to determine the Transfer Function.
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'-1. Correlation ApﬁroacL

2. Power-Spectrum Approach

Both these methodsitequire an input signal which
contains all the frequency components of interest with
sufficient amplitude. Then bf the principle that a
;esponse due to the sum of two signals is identical to
the sum of the responses c;eatéd by each of the input .
signals applied indiwvidually and with linear system the

"
spectrum of output signal contains only those components

.pre;ent in the'iﬁput, it is easily conceivable that
applying an input signal having all the frequencies. in
thé‘freéuency range of- interest is eduiﬁaleht of testing -
the system simultaneocusly with all thg ﬁarmonic signals.
If there is a method available to separate out ‘the input
and output signalé intolfrcqucncy'components, then again
it is easy to understand that the Transfer Finction can
be obtained just by dividing the output frequency-
component by the cogreaponding input frequency component
as there exisgg & qne-to—one frequency rclationship
between the output-ﬁignal and the input signal.

Both correlatién and ﬁower,spectfum methods
require a record of input Ahd-outpﬁt_OVer a'length of
time T. Then ﬁhe wvhole process of obtaining the
Transfcr Function\is pg computation. . The teat duration

is very short and measuring instrumontationlis simple.

-




As.only a short time history of input and output is
recorded, a large number of tests can be carried out
- in a short time and the results can‘be computed latef.
%here_are two types of excitations used in time domain

fpproach: 1) Random; . 2) Pulse. : v

Random Excitation: Most of the éynamic systems undef
conditions of actual uée are often noisy. This typé
of noise genecrated within the syséem itself can be
used as the input to find the‘dynamic charaéteristic.
For example; in case of machine, tools, the-random
force produced during cutting can be used as the
disturbing input signal. Hence, no.input-device is
ndeded; and the system need not be disturbed during
testing, Howé@éf.-the analysis cannot be very specific, -
. §ince oﬁly certain average charait;ristic of input and
rcsponse could be éetermined. Also conmputation of the
Transfer Function -is time consuning as it involves

probability digtributions.

Pulse Excitation: 1In Pulse testing, ;he system is-

given an atbitrary input, usually a step or pulse. The
.analysis of the Transient response yields the Traﬁsfer
| AFunction. In Pulse testing, oniy a simple input dgvice

is réquired. , .

: . .
3.4 CORRELATION TECHNIOQOUE T0 OBTAIN TRANSFER FUNCTION

Definitions

pbr:olagibn is a method of time-domain analysis
. 4 ! - -

,,Z
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o

which is very useful in detérminihg systems Transfer
function. Correlation is a measure of the similarity
between two waveforms. ‘It is computed by multiplying
the waveforms ordinate by ordinate and finding the
average product.

Autocorrelation function

The autocorrelation function R(Mof a waveform
is a graph of the similarity between the waveform and
a time-shifted version of itself, as a function of
the time shift. The autocorrelation of a waveform *CtD

is mathematically defined as:
' T

o ' 4 ' 1 T
Rx,(’l‘).-— f-f".;.__‘_m Tgfx(t) x (t-0)dt

F

That ds, the waveforﬁ X (t) is multiplied by a delayed
Gérsion of itself, X (+-7) ., ané the product is averaqged
over T seconds. An example of typical random signal-
and its autocorrelation function are shown in Fig. 3.
Th? autocorrelation function of a wideband non-periodic
waveform is noh-periodic‘and narrowly peaked. The
widér £he bandwidth, the narrower tﬁe peak. The auto-
correlation funﬁtion of a periodic,;ignal is pericdic
;nd has the same period as the signal waveform. |

-

The autocorrelation has
.a) Symmetry about Tm=o le  RulTD = R, (<)
" b) A positive maximum at T20 equal to the
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Y

mean square value of the signal from which it is
derived, ie R (0D =

c) RXX(O) = R T for a1l T

d) The autocorrelation function and the auto-
power spectrum of a signal form a Fouricr Transform

pair o

. €e) Rxx(?}) IG; ('-F) Cos -‘277'f?7 lf

G}“(':F) ZT R () cos .277}‘?' 47

. -
Cross-correlation

Cross-correlation function shows the simiiarity
between two non-identical wavcforms as a function of -
the timc shift betwecen them., The cross-correlation
between two non-identical signals X (t) and Y(t) is o

- i

defined as

Ry (0) = [ Ct) y(r-v) dt

CrQSS—cérrclation is the most useful function
in signal analysis. .We-will restrict our discussion
to findiné out how cross-corrclation can be used to
deternine system Transfer Function. If h{f) is the
. system's unit impulse 'ieﬁponse and if X(t) is the input
~to “the system, then YC{-). the output response, can:
obtained by the . ) - 7

coxe® gy LY
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convolution of the unit impulée response of the system

-~

with the input. - . . . .
ie. Y = [ hcu) Xt~ du
© .
The circuit configuration for cross-correlation is
. o

shown as below

e Y25 ~L@-?—?>’ﬂ-)'xam)dv .
| - Py O . X'(f“'t’) ny cp)

A
The use of cross-correlation for determining

Translf_:‘er'Punction is based on the fact that the cross-

coi‘x;elation function of the input and output signa-ls'
yields the unit impulse .response of the system which
then transformed w;lil give the Transfer Function of

the systém. ‘The fact that the cross-correlation function

~
-

yields ‘the unit Ampulse ‘fesponse can be proved as follows: .

KOO ——] K — YD

The cross-correlation between X(t)and Y(b is defined

~as o 2,,,(7_’) = fx(e-) ‘yeer At . 31
' | The output response Y{(&) is given by the

convolution . T o = o -
} Y(t) = féc«) x (t-uydu T
- ° ‘ L ) . r
and o _ : ,
Y(t+P)= f/.(u) X (¢t+P-w du 32
replacing ya-,m) by 3.2 in 3 1 :

. ny (n) = fxa-) dt‘ fb(u) X (Er-u) dy
Interchangiug the order of :I.nteqration yields

(ﬂ)n fl;uodufx(f) x(tfz'-u)dt-

L3
2

. \
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The indefinite integial can be recognized as
Ryx (‘P-u) . the autocorrelation function of the inp:gt.
Hence, the cross-correlation between the input and out-

put is given by .
oy (T af/z(a) £ (D-1) du 3.3

which is the convolution of the unit impulse response
bhC¢t) of a linear system and the autocorrelation of
the input signal.

.Let us assume the input signal %X (¥) is from

a white noise source which has a power-density spectrun

given by - A
S, = F

Then, taking the cross-correlation between output ard
input
g, () =fx &) ycerD)dr

which is proved as.

o : -
Ry (T = [ h () Ry (T-e8)
o
Since the autocorrelation function and power

density function form a Fourier Transform pair, it

follows that - g & o
. B (W = S [42]

= f=d ' '
Hence- -

Ry y (D) .j;,(aa - J‘('D—a)du
Rxy® w €32 h(D)

) Thus, the cross-correlation for various time delays -

yields the unit impulse response of a linear system.




34

T o .
P

The distiﬁct stages involved in the overall
programme df getting the Transfer Function Qging
correlation technique may be written as:

l. Exciting thé~system with a white ﬁoise
source and recording the 1nput XCt) and putput yﬁ@
over a sufficient length of tlme perlod T.

2. Computing cross—correlation function
between the output y/¢) and input X(¢#) ané the
solution is_the impulse response h{f) of the system
tested. |

3. Fourier Transformation of*@ﬁé impulse
response to give Transfer Funcéioq.

3.5 POWER SPECTRUM TECHNIQUE TO FIND TRANSFER
FUNCTION OF A SYSTEM

This is a direct way of. finding the Transfer
f;nction without going into the problem of détermining
thedimpulse response of tQélsystem as done in correlation
techﬁique. However, there are exact relationships
batween the:correlation functions- in time domaih and

power spectrﬁg functions in frequency domain‘as:_

correlation functioné and power spectrum functions

form Fourie? Transform pairs. s
i.e. Autocorrelationf' N Auto Power Spectrum
Cross-correlation -4—=: - ' Cross Power Spectrum

The frequency domain and time domain characteristics
are illustrated by the following.- '

A - '
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X(t) hCE) o Y Yt = f 5&) x(t—'i?)df’
S (5 HF) s " ~o

Byt = KOS,

Definitions

Auto Power Spectrum: If S,_ (f) is the Fourier Transform

of signal X (t), then the auto pover spectrum; G (F)
of signal A(t) is formed by multiplying the value of

S&Cf)' by_its own complex conjugate
i-e. S.08) = A HESD ,'
Gixx (F) = OSx (£) - Sx C;F) [A(-C) wgc;)] 4(4‘)—,}5(;_}

Gk (F) = ACFI+ B 2CF)

-Each spectral line of (:1,“(';) J.S proportlonal
to the voltage ,quared at frequenc; (1n case of voltaae
signal) or more precisely, to the vériance of th.e input
wavefofrm at frequency F . | If 5. 0F) is called the lincar
spectrum, then G;x,, (£} is the naqutude squared of tne .
;ineur spectrum. Auto power spcctrum has no 1nacunary
part and it is indcp;;dent of the time position of the
‘input waveform .

"Auto spelctrum i§ very useful in spectral 'anal‘_:sis.' '

Cross Power Spectrum: The ©@ross powWer spectrum Gﬂ.(f)

between'two sicjnals }-/(f') and -X(t) in a proce;:s or
systen is formed by multiplyinq the linear spectrum of o
VLA, by the conplex conjugate of the linear spectru:n
of x(t) measured at the same time. '
G, () = 5, S’ = (Ay #7180 (Ax "J’"‘)

Gu ) = = (Ayf+8ybx)+J (3,Ax -8;57)




This relationshiﬁ shows that the cross spectrun
is not a positive recal quantity like the auto spectrunm,
but in general is. both corplex and bipolar. A physical ..
interpretation of cross speétrum is, if there are com-
ponents at a given frcqucnéy,ih both‘><Cf) and YC¢t) .
the cross spectrum Qill have a magnitude equal to ;he ‘ 7
product of the magnitucdes of the compohents and phase -

- equal to the phase difference between the combonen;;. ¢

It has been proﬁed carlicr in chapter IX X
; . _ Fourier Transform of outnut _.~—/5)
Transfer Functign. Fouriexr Transform of input G-
. Sy ¢F) Co=zlq
fe. - GeF) = 2XE o 3

or'mdltiplying the nunerator and.denominator 'f I
of cquati;ap (5;3.)‘ by \Sx (Ff, the conjugate of Fourier
Sy ). S (r)*
S (£) . Sx(F)7 _
G éF) = Guls) | 35

Transform of input.

G(£) =

Gz (.

Cross Pover Snectrum of Input & Outhut.
Auto Power Spoectrum of Input

i.c. Transfer Punct;on =

Either the expression (3.4) or the power
- gpectrum cxpresgssion (3.5) can be us2d to determine the

Transfcr‘runctioh. Whilec the first onc is sirpler to
] . . \ ]
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-~

[ , | |

implement and less computations why should we go to

'\

L power_spectFungalculation? This could be answered as

follows,

Sinqé the phase information is important and
as the Fourier Transform of siéhals varf widely with *, -
time positianjthé first method requires a time
synchréﬂization_ To avoid this restriction and because
averaging gives a more réii;ble Transfet Function,. the -
sectqd method (Power Spectrum}—ia—m9st cormonly used.
In the second methpd, thgwgggss power épectrum plays
a very -important é:rt as it keeps”éhe phase relation-
ship irfcspgct of .the time position of signals.

lThe}second method is more generally written
e : - | o ‘
. - Averaqe Cross Power Spectrum of InputsOutput
Average -Power Spectrum of Input

Transfer Function =

The iﬁportant poiht ﬁith regar§ to the poﬁer
sﬁectrum approach is the input signal : shpuld
Ocontain components- of all the frequencies olver the
range of frequency o ihtereat with aufficieht‘ampiitdde
for each frequbnc§/c0mponent. In other words, the
 auto spectrum of {tﬁput Gyx should have sufficient
' magnitude over the range of frequencies of interest.
. The difforent typea of signals those Fulfi1l

R

this condition are.

1. Band mmn-.\q White Noise.




' Fourier Transform application in pulse testing are

~discussed in the following chapter 1V,

L}

o~
S 7/

‘\J. .
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1 . ),' ; _ - .
~ ’ 2. Psedo &andom bi;gxy sequence of pulses, -

3. Periodic pulse train.
"4, Single pulse of short time duration.

Any of these excitations can be used in the

power spectrum technigue. The requirementé'of'fhe

~

-parameters of these waveforms and the relative advantages

L}

of these excitatiops are not discussed in this text.

The aim of this work is to use excitation of ~
single pulse type to get the receptance of machine tgbli
'struéturgs. Therefore, only the single pulse type-

excitation and its requirements to suit the Fourier

L - <3 . .
Transform technique and a‘fhoroqgh analysis of Finite

—

5 /-
/
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1 ; CHAPTER IV

APPLICATION OF FOURIER TRANSFORM TO SHOCK EXCITATION

J

4.1 INTRODUCTION

INPUT _ OUTPUT
xcty | oYSTEM Yo

Pulse Testing involves the application of a pulse signal as

an input to the sysg.em. The response to tne pulse input is a transient.

'ii-arxsifmt Pulse Respanse

X(®)

The: input and ut are recorded and by various camputation
techniques, the frequency re e of the syste:nd? éanputed. However,
the most powerful and Mst computation method 13 the spplication of
Fast Fourler Transform to the input and output algnals and get the
" fréquency respnse. Fast Fourler Transform is Digital, Diserete and

-

Finité Transfafm. These terus have been well explatned in Chapter II.

‘The application of FFT needs somt investigation with regard to the parareters
involved in the time mcorﬂ.ofi,.;ﬁm. and output signals.’ The mqu.l.tﬁx'ﬁn;s
ormmngeunééctmmsdirrerdepumxgmunwormt

and output signal involved in the analysis. For exaple, in estimating .
ttepwerspectmorocemmimitisbuptmgtobeucwthatobaexving
Mmmdnmmawumdmmrm,

bm.uuaiamttne Fwwntuiammugallmobmaum

SN
. 39 .
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‘tinedoesmtinarwuayimmvetheestimtimbecmxseevenvewshort

lengths of record contaln the same informaticn as the longer records.
But in case of transilent respanse produced by pulse testing,
it will be shown while using finite transform the time of observation
of transient response 1s a very important f&c\tbr. In this chapter the .
proper use of Fourie_r Transfarm technlque with reference to pulse testing

i1s analysed. ;

g2 mmmmmmmmmmmnsmmmm
FINI‘IERE(I)RDLENGDiAM)DATASAME’LM

"\
§.,2.1. Aliasing Error

o’

The ‘computation of Digital Fourder Transform is done by
evaluating the Fourler integral- by equispaced sampling. If the time
.interval between two sampled data is A t-then the sampling f‘requency
Fy 13 vat, | - ;

By Sharmon's sampling theorem this sampling frequency should
be at least sugith} mare than twice the highest frequency we wish to |
resolve. Translating Shanrkn's theorem into an equation: |

- Frax = Fg/2 _ .
> e, Frox < 1/2atj. ~ r -

'croarvmientlytmscanbeurittmés:{
Fm-lj? t . |
mFmiacalleaunNqutneqw relationship between sampling -

il

a

paremeters: _ )
" time of sampling interval = At
Nuﬂnrofsa:plna‘ = N
‘lbtaltixbotmcctﬂ'r- NOE




Sampling frequency f_ = 1/ At - ' 41

Maxdmm frequency coampanent - -
resolved in transform B Fm fsfz 172 At

Frequencyc;ecslolution in the ' f = 1/T = 1/N-At

anN/Z.Ar

What happens if the signal contains nequencies greater than
the Nyquist frequency 1/2-at ? Amr conpment above 1/2 At or its
m.llf.iples are I‘olQed back onto frequencles be\l" _F — Heme the

resulting DFT will contain misleading information. In cther wards, the
results will contain terms to describe the amplitude of frequencies above
F__, but they will appear at the wrcng place on an anplitude vs. frequency
plot. For example, a corpanent of frequency F/2 + Af gets folded back
and will‘_;appear at F3/2 - Af. Because of this 1npersmat1q:l of another
ﬁequency‘, the effect has became known as “alia.:iing“. f f

In practical measurement situations this altasing does not -
present mich of a difficulty, si.lnoe me can be chosen to include the - |
highest strong -frequency conpanent of the :lnput sig;al, ar a filter can
be‘used'?b'efom the sampler to eliminate any strong coapanents abov‘e Fmax
However, 1t will be shown in paragraph (4.4 that in the case of pulse -
testing this problem is much more involved than just the Shannon's
criterian. N

' To 1llustrate the allasing problen, the anplitude spect
m@mmrawaveromumnmtemdtomm above
theN,yquist frequency are present, 'I!uzspectnnisshmlnl?ig 5.1.
'nnmmwmdm mmmﬂmmhﬂatmmatmm;nwer

sanpling frequency and Figures 5.2 and 5.3 (2] show tmdhta-ted spectrum.

 m
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>
+ 4:2.2 Sampling Window Errar

Any physically realizable device can act anly on signals wni-ch
are lind.ted-.in duration and in band width. If infinitely long signals
with infinite band width are I;assed throug’l any physical device, they will
be time and frequency-band nmited by the device itself. "Ihe_ sinplest
kind of time-1imiting is the application of a square time window. If we
have a function x (t) and we take a T-second long recard of it, say from |
t=0tot= T,.then we have really multiplied x(t) by'a square pulse of:
?-seccnds‘long with unity amplitude and is shoun in Fig. 6.
The finite Fourier Transfarm used in Digital Carputers or
Fourier Analysers assumes that whatever sample it takes is a periodic
function with a period of the record length. However, the transform will
have erroneous a:rplituies: plus side l.obes which can conceal low amplitudek
signals if the sample 'window' was not situated over the'aptfual veginning
and end of the periodic.nmctim. In other words the input signal x(t)
should be periodic inl the sarpling window. If x(t) is not periodic in
‘the satpling window, then each spectral line in S (f) will be smeared
all over the spectrum. This phenomencn is often referred to as the leakage = |
efflect. " _ -
This éffect can be avalded anly by making sure that the function
x(t) is pertodic in the sampling window. Cbviously, this candition can
seldam be satisfied. , .
‘ Let us take the case of a pure sine wave to 1llustrate the leakage
effect. The Digital Fourler Transform of an input sinusold which does
not have an integral number of pericds in the sample window will appear
at mwe than e frequency. The amplitude of aine wave will be reduced
from its true value. This is shown in Fig. Td. This all ocours because

N

-~
&




the Digital Fourler Transi‘orm thinks it i3 operating an a fmction that

looks as shown in Fig. Tc.:

-
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The leakage erfect cannot be eliminated entirely, unless the jnput

in .
function is periodic , the sampling window. However, we can reduce
the leakage effect, and gain accuxjat? arplitude information at the expense
of less precise frequency resolution. This is accomplished tlgy differeht

window shaping methods. The idea of window shaping 1s to make x(t)

samehow "quasi-periodic" in the sarpling window with the least possible

loss of infermation. Among these window-shaping methods "interval-centered

Hanning" has prcved most popular.

Interval centered Hanning modifies the effecﬂ\re shape of the
time window by multiplying the rectangular window by the functicon |

| 1/2 - 1/2 ‘cos (2Tl;t[I‘)J . The effective window then takes an the shapé

of this Hanning function. The rectangular window, the Hafining windcs and

the resulting miltiplied window are shown in Pig. 8. The effective window

eliminates éiscpntimittles at the ends of the sampling window record and

reduces the leakage effect. A function can be interval-centered Hamned

repeatedly to get accurate results.

4,3 SYSTEM OF PULSE TESTL.G

PULSE .Y 0208

GENERATOR

SYSTEM

rd

‘x(t) 1s the input pulse to the aystem and Y(t) is the transient respanse.
of the system. If x(t) is the Dirac-delta function \hich is defined as:

xt) =J) = {o for t ¥ 0

and f[(t)&i .1
-0 v

J

Yt .
—

-
o

[ 8S
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thén the response Y(t). is called the unit impulse respanse. The Transfer

Function G(w) of the system is cbtained by taxing the-Fourier Transforms
_of output and input. If Sy(w) is the Qourier Trensform of output and
- Sx(m) is the Fourier Transform of input,
Transfer Function GW) = S (w) i
oy
Sx(w)

wnen input x(t) is unit impulse Sx(u) = 1

Transfer Function G( ) = Sy(w) = S ()

1
Thus, when input signal is unit impulse the Fourler Teansfarm of the
translent respogse of t"Y.‘ syStcﬁn }tself is Transfer function of the
- system. 'I'hias is because the spectrum of the unit impulse is, constant
over the whole range of frequencies up to infinity ‘as 11_1ustratéd in Fig. 9.
Howéver, the unit irpulse s rot physically realizable in practical
pulse testing of systems. It 1s poss‘lble to generate caly a pulse widch
'has certain tire deviation (T) and measurable amplitude (A). Hence, the

L]

- Fourier Transfort of such a pulse is no mere a canstant; Instead it is
3 .

a mncpion of the pgramcters A axd T, The effect of thesé paraeters
wlll be discussed later in this chapter.

4.4 TRANSFER FURICTIOH OF A LDIEAR SINGIE DEGEEE FREEDQM SYSTEM

The response of a single degree freedon system to a unit .
impulse is given by:-

) : 1 - At '
X(t) = e 8in WRJ1V t _ | )
mun? S C -
where n : '
. N
. ¥ _~ - undanped natural frequency
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A -
-1 — darped natural frequency =W m |
Y(t) 1s the resporse £o a unit irpulse. Then, the Fourler Transform of
Y{t) gives the Tr;néfer Function mgf the system. |

" Trans{er Functiom = j ¥(t) et at
o

oo .
- = j'—e'— et -sin.at.efj"t dt v
o K :

Integrating and separating real and Limaginary parts of the

Transfer Function, the real receptance G(w)
1 a2 (BPrn?_u?) (4.1)

G(w) = 3
K At z-i"(wz +2°) o+ (w2 -.a.2) e

Carputing the value of G(w) for a range of w'wlth a set of parareters
n, kaxd A . Resulting transform is as shown in Flg. 10, The real
part of the transfer function expressed by Equation L.l was obtalned oy
cooputing the Infinite Fourler Transform (IFL) with limits 0 to eo .
The transfom is continucus over the whole range of frequencies up to
infinity.

While using Digital Fourlier Transform only a finite record
length of the respanse s "t:aken, sarmleci and analysed. The effects of
varying the sampling parameters are sometines very siz_niﬂcant. These
effects are proved I,.tb be more significant in analysing tranﬁiemt -;13;13.1.3
These were mah;seé with regard to the linear single degree freedom
mm suﬁject; to an impulse. The following caiclusions are dram.
S&@nrg_rabe: Accarding to the Shannon's Sampling theorem, the sarpling
frequency PB should at least be ::wice the highest frequency cooponent in
the signal. This is, however, true only with signals having harmontc
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campanents of constant amplitude in which case a sampling I‘requency_
slightly more than twice the highest frequency content is enough if
samples are taken over a sufficlent length of time. | But with transient
response of single or mnti—dEg}wee linear systems, the amplitudes of the
natural ﬁbmtim decreases over the tim;.. In other words, the transient
response is a superposition of all the modes of vibrations., For the
transient response ;to be exactly deflned z;t- least ten samples per perlod
of the nignest harmonic ‘should be taken. The larger the rumber of samples
per p.eriod the better is the accuracy of the ret;ults This can be
interpreted as the sampling frequency should be at leasv ten times the

highest natural frequency of tne s?stem.

4,4.2 Total Record Time T : - -

This 1s ﬁ- very important parameter in transient re‘s'pon'se dat;_}‘
analysis. The folicuing problems will be encountered with. the varizble T:.
1. When a Fourier Transform is taken for & finite récord
length T, the result i-_uu be a Pourier Seriés and tre
spectrum is discxet:e with finite frequency resoluticn.
The frequency resolution Af = LT. The spect‘.ral iines
exist only at frequences af, 20!‘ 301‘, ees N/2° A £
where N is thetot.almmherorsanplepoints over time T.
The . minimm requircrent for the value of T 1s, it should
be. g;'e;a.ber than the period of the lowest frequency componient )
of ‘the system. | ] |
.2. In case of systems having sharper resonances end lower
" damping factars, the receptance curve has sharper peaks .
at resonant frequencles. Af is essentlally to be small
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2. (contimed)

‘encugh not to miss the receptance peaks in the conputatioh.'
Ween Af is large and the resonant frequencies are not
integral multiples of Af, the msultingtmceptance curve
will be distarted. An example of this effect is shown
in Fig. 11.
3. The Infinite Fourler Trafdsfam 1s glven by:
S (W) _-of x(t) e Rkt | (4.2)
The Finite Fowrler Transform is defined by .

T
S (w) = '-i_— [ ) e #a | ‘
F _ |

In fintte Fourier Transforn 1imiting the cbservation time-to .~
T seconds is equivalent of tnmcaf:l.tg the integral (4.2). This cbvicusly
means an error in the Finite Fourder Transform which has to be estimated.
The amount ofemédepends on the type of signal to be analysed, This
fact 1s illustrated in the following discussion. L i
The Discrete Fouri€r Transform assuzes that the coserved function
x(t) recorded up to T secands repeats itself with period T for infinite
time. If x(t) is a stationary signal, th'i.*_‘spectnm computed by taki.ngf
any portion of the'_siaial will be 1dentic.al. With stationary random
. signal the effect of varying the total time T is insignificant. An
example is 1llustrated in Fig. 12, °* '
The situation is quite different with transient signals. Far
example, midertpemspuae of a linear single degree freedam system
x(t) “Ae ain.m;
x(t) is product ormemtgnnydecaymgnmctimmﬂaalmuave
of circular frequency.fa. x(t) is a mwmum and dews dom
t.ozeroasymtcticany ‘nuanaumnryimhamucs-sigmluﬂtm

<

v
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exact spectrum can be obtained only with Infinite Transfarm. Obvicusly

this is not possible with practical measurements and onlytm Finite
Transform may be used to compute the spectrum. This.implies an error

‘due to the truncation of the infinite integral after time T.

The DFT assumes that the recard up to T secards repeats itself ©

up to infinity. An exafple of DFI' assumed transient signal is shown in
Fig. 12 d. It can be easily observed that the DFT assumed function over
infinite tine is diff;amnt from the true function and the DFT coamputed
spectrum v:;ll noct be the exact spectrum. | 7
The amount ‘of error with DFT spectrum may be expla.i.ned‘gs
follows. Let us take the impulse résponse shoan in Fig. 12c.
x(t) = Ae” At sin ot
The exact spectrum 5 cal‘gulated with Infinite Fourler Transform
Spppls) = ofA e At sin .Il-t e gt

v

The spectrum by DET 1s glven by: . o -
il Sprp®@) jA e M st eI
it : ° )

The value of the integral from T to infinity is trnuncated.: The

‘ )
difference between tne IFL Spectrum and the DFT Spectrum is the errcr in
the DFT Spectrum. This correction shculd be spplied to,the DFT Specirun

to get the exact valve of the receptance. This correction is related

as follows: T v
C -At -k
(w) =. Ae sinflt e at - P
O
_I‘Ae)‘tsin.atej“t fAe ""’sm.mw
o

| The transient Peapabe is a cmtirmws !\mctiori up to inrinity
and hence the second mteg:ral ¢an be written as:

S = fa:: ’”snmtej""'dt. -—fa,.e Atsin.ﬂ-temdt

A ]
I

at

A\ °

R NPT |



= J‘ sin ot e J“’t d., ‘
o = .

‘ - A - A
SDFT—["'—""E]*SIFI'
A

Sprp@) = - ; . 1 Spgp)

L)

This equation relates _the DFT to. IFT, The exact spectrun is
obtained by multiolying ..nn DFT Spectrum by the correction factor (A/A~ AT)
It can be seen that DFT cenverges to IFT as’ AI‘ approacnes zero, lience,
the sanples should be taken until the response amplitude becames negliginle
compared to the initial arplitude. | )

The influerce of the finite ot%_sei'vatim time and the mmber of
samples'per reriod, over tne cumulative error in ﬁéquency response is _
well illustrated by Opitz and Veck ©, Tne error is related i:o‘a Standardized
servation time which 1s the product the total time Ty, the natural
frequency of the system [, and damping factor D. Simultsnecusly, the
dependancy of the ‘err'or on the nunber .of digitized points per pericd 1s
also taken inté account. The results as obtained t\:y' Opitz and Weck [6]

a.;e st;om in Fig. 13. It can ‘be seen that the jarger the numter of
dlgitized points per period‘arﬂ \the longer the slt;nﬁaxﬂimd cbservaticn
time, the smaller is the mlat'i_ve‘emr. '

4.5 FOURIER TRANSFORM CR A RECTANGULAR PULSE

The rectangular pulse is defined by A
X .
" A 0<t< T : ‘ o 3

x(t) = 1 . A
0__ottmise- ' , Y

Taking Faurier Transform S(w)
- . o d ) -r’
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Integratinb and separating neal and Imaginary parts

S(w) Real = AT, sin wr,' AT) sine(wr,)
wT, :

S(w) Imginary = AT, 1. COS WIy

w T1 .

)| sin (WTy /2)

S(w) (or) Power Spectrum = AT’ _
wTy /2 . AN

= ATy I .sinc (Wl‘l/g),

The Feal, Imaginary and the power spectrum graphs are shoan in Fig. 14,

4.6 ANALYSIS OF VARIABLES CF PULSE _
“The variables of the imput pulse are:
1. Shape of the pulse o L')
2. Aplitude of the pulse (pulse helght) ' $
3. Duration of the pulse

-
I

The effects of these variables are studied to predict their

-(4.3)

appropriate values to suit different- systems to be tested. The Fourler ‘

Transform of 'a rectangular pulse is-shown in Fig. 14. The variables will .

be discussed -from the palnt of view of the requirements of the imput pulse

* such that the nesultihg Transfer Function is reliable.

_ A 6.1 Requirements of the Imut Pulse

'I'ne/!‘mqumcy spectmoramctmlarpulseis shown in
Fig. l4c. The spectrum concists of a genter lcbe and side lcbes. Tne

mmlimdeofthespectnnnismximmarmmn'eqmwanumdmopa
doun Spectnmiszerorormeﬁrsttimataﬁeqmqglvenwml
Tliathedumnmottm;nuse.

where

B
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The accuragy of determining the Transfer function from a shock

respanse of a system dePends on the varlables of the pulse determining
1ts épgctmm. In general, a very rellable Transfer mnction my be
cbtaingd if the variables of the input pulse are chosen to satisfy the
following conditions. - _ )
1. The frequency coh_tent of the pulse 1s able to éxcite
all the i‘mquen‘cies up to the highest frequency of
interest with sufficient magnitude. _
2. 'The magnitude of the spectrum should not be very high
50 as to drive the system to saturation or to amplify
any non-linearitles, J
3. The highest frequency of interest falls within the
frequency of occurence of the first zero of the spec}:rum.
bﬁre p:‘ecisely: the. results will be very accurate if all
the I‘requencies of interest are in the flat porticn of _
- the centr'e lobe N

bl

Some conclusions abcut the r?_s:gting Qpectmm can be made from the
pulse spectrum equation (4.3). High pulse heignt results in la.tge
spectmm ragﬂtudL/wxg pulse does not contain enw@ poJer to

excite hig:er i‘mquences.l Short pulse results in decneased ragnitude at
all fmqqcics_ unless the height 1s increased excessively. The shape

of t\he pulse could"be'rectangular, FEalf sine, triangular ete.
. A Y .

4.7 SAMPLING PROSLEMS WITH PULSE

The 1rput pulse signal exists for anly a very short time as
campared to the transient response. The nunber of samples taken within

R

.l
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the dpration of-the pulse should describe the exact sﬁape of the pulse.
The finite record lencth T seccnds does not introduce any
error in the resulting trénsf‘orm; since only a very short time 1is needed
| to accomdate the pulse width. 1In practicc the finite time T presents
little difficuly, since T chosen to glve a rea'sma.t;le frequency
resoluticn is always greater than the duration of the pulse.
It was e:plained in paragraph ( 4.1) that the sarpling
rate Fs should be at least 10 times the raximam frequency content
of the tréxuéiernt vibration signal. However the sampling r;ate Fg 1s
Cl:)OSeh mainly with respect to digitizing thé force pulse. In practice
the force pulse as a functien of tme is very -close to a half sine
viave, The Fourier Transform of such a force signal becomes zero
f= -i—, vhere T is the duration of the pulse. 7This sipwl is good for
cbtaining fivquency respanse in a renge up to about i
" Fray ©® %'}f‘ ' | . (u'u_)
where F_. 1s the higrest ;:1g;xiii‘icant natural frequency or
. tl.he system. By mﬁa}is of the expression (4.4} the required 7 is ch:'te:".-;-r-.aci
Once the valu.e of Tis chosen it is obvious that for a good representatlon
“of the force signal the sampling interval rust be several tires sharter
‘than . This sanpling interval At should be chosen at least\ to glve
4 samples to represent the pulse, . In other words At is chosen as
TS
8 |
Flgure 16. 11hzsfratcs the variaticn of magnitude and phase spectrum of
a pulse when sampled at sampling rates to glve from 6 samples to 2
' samples within the duration of the pulse. It can be seen that the

et}
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difference in magnitude spectrums 1is not very sipgnificant. However
the Transfer Functions computed in the 3 cases would be widely varying

due to the Iarge difference in phase spectrums. ' N




CEAPTER V

APPLICATION OF SHOCK EXCITATION FOR DE‘I;ERHINING
THE DYNAMIC CHARACTERISTICS OF MACHINE TOOLS

~

V.i.  Experimental Setup:'

ihe experimental sétup waé‘designed to investigate
the relative stability of a lathe in various configurations
and a? well as fot compériné the shock excitation techniqgue
with harmonic excitétion in determining the receptances
and mode shape of the machine tool. Thé experihentél set-
ug_primarily consists of‘an annular plate clémped’to the.
cross-slide of the lathe which makes it possible to clamp
the tool in.différent orientgtions._ Fig. 17 is a photo-
graph of such a tool and plate/attaéhed to the lathe undgr
inﬁestigation. Fig. 18 indicates the ge?en positions of
the tool {directional orientatiaﬁs) ﬁn&'the three config-
u;ations of ‘the workpiece in which tests werk done. The
measurement of every‘£eceptanée’vas done by both harmonic
and shock techniques, oﬁe followed by another, to‘make
sure that the test conditions were‘identical.

In the case of harmonic excitation method, the
excitation force w;s.géngrnted‘by:an electromagnetic
exciter. The exciting force was neasured‘by means of
Bal} Probes glued to the poles and sensing the'magne;ic

4 s4 -
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flux. A Bruel and Kjaar sweep oscillator with a\gome—
_builﬁ solid state amplifier with'a feedback loop from the
Hall Probes was used to‘give a constant excitation force
over the range of testing frequencies; The rélative vib-
ration between workpiece and the téol due to the relative
electromagnetic force between workpiece and tool was
measured using Wayne kerr capacitive probe and the capa-
citance bridge. Bof.h the electromagnet EM and the wvib-
ration probe VP wére attached to-a rigid brgcket clamped
rigigly to the annular piate AP‘ihstea ,0f the tool {(See
Fig. 19). Because only the real part of the receptance,
was required, the methoq suggested by J. Vanek (See Fig.
20) was made uéé of to avoid the complex instrumentations
like transfer function analyser, etc. for processing the
force and vibration signals. ThisAme og'is known as
*DOUBLE MODULATION" and uses a strain gau)“é vibraticn
pickup fed by the force signal. Double msdalation using 
strain éauge bridge is essentially a multiplication
operation of force and vibration signal to separate the
real receptance. Furthéf details of this technique can
be seen in Reference (#1). In our case, as noqatrain‘;
gauge pickup was used, the double modulation principle
wﬁs configured using an analog multiplier whicp was a
part of a standard analog computer. The complete

N
instrumentation in harmonic technidua is shown in photo-

——
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graph (See Fig. 21). Top left is seen the analo§
computer, below it an X-Y plotter, to the right the;
amplifier for the exciﬁer and Wayne Kerr bridge, and at
the bottom , the sweep oscillotor. Puri;h.er details of
harmonic excitation method can be seen in Reference (11).

In the case of shock excitation, the input is a
force impulse of a very,sho;t duration (1 mspc to 2 msec)
and the output is the tranéient vibration. A hammer wés
usefl to generatéd the impulse force and the relative
transient vibration was measured with the same Wayne. Rerr
capacitive pickup and the bridge used for Harmonic‘
excitation. The shock excitation technique i8 illustrated
in Fig. 22. The relative receptance betweeo tool - work-
piece is obtained from the.relative'vibratioﬁ signal and
the relative force signal. - The force 'applied witg.a
hammer is absolute ond the measured vibration is relative
while we aré?looking for relative vibration_oetween topl
and workpiece as a result of force acting between tool
and workpiece. This is achieved by summing up the relative
receptances obtained separately from signals of impact on
workpiece and tool in opposing directions._ In Fig. 23.a.
the impact is applied on the tool bracket and Pig. 23.b.
on the workpiece in the opposite direction.

5.2 FORCE SIGNAL

The impact force }s produced by ﬂittinq the

structure with a hammer. The amount of impact force
\ . )

S
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applied was measured by inserting a crystal type impact
transducer bgtweén the structure and the hammer. The J
transduger used is a sélf;generating piezoelectric ~_
.crystal transducer ﬁaving extfeme rigidity and wide
ldyhamic rénge, 0 - 10 KHZ. 1In response to the'impact-

force, the piezoelectric transducer generates a negative

charge. This charge'siénal is.fed into a Kistler Charge -

Amplifier‘(type 5001). This amplifier has a very high
input impedence with‘capacitive negative feedback
intended to convert the electric charge into a bropdrtional
'voltage on the low impedence output. Fig.‘24 shows tye
settings on the charge amplifier and the flow diagram of
force measﬁremént is shown in Fig.£25; a %

"Fig. 24 shows the front and the back control
panels of the charge amplifier. The foilow}ng are the
steps to set the charge amplifier. .

' 1. Connect the impact- transducer to the input
terminal of the charge ampljfier.

2. Set the OPERATE/RESET/REMOTE toggle switch
to OPERATE position. -

3. Calibration factor setting adjusta\tha
amplijker to the sensitivity of the cannected transducer,
The adjustment is two-fold. |

on the 10 turn potentiometer “TRANS-SENS®

only the numerical order of the transducer sensitivity

3

NI o7
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!
is set regardless of the decimal poxnt. For example, the

transducer sensitlvity of 17 5 PC/1b the switch is set at L
1-75. | - |
) ,ﬁThe 'TRANS—SENS-RANGE' switch is used to set
the decade of thu transducer: sensitivity, in:the above
eiample; for-the”transdu;éi sensitivity of 17.5 PC/1b,
the decade 10-100 must be set. |

- These two settings calibrate the charqe
amplifier output voltage to the input fotce. Force in
lbs. is now dlrectly related to the output voltage by
the scale set oh the "Range Mech. Units/Volt®™ switch.
Range switch seleuts'the appropriate range capacitor.
This is a 12-position switch by which the output voltage
can be adjusted in steps to match the input voltage re-
quirements of the signal proces;sing.equipment. The force _
is calibrated by the Range Switch setting in lbs/volt. !
The charge amplifier output terminal is on the back panel

5.3 VIBRATION SIGNAL

The vibration is measured as the relative dis—-(
placement between the tqdi and workpiece by ueaus of the
Wayne Kerr capucitive prube fixed to the rigid bracket.as
:Euwh in.Fig..lS. The probe with the Wayne Kerr vibrution
meter type 31B énable measurement of distance or vibration
amplitudes nanginglso-micro inches to 100 thousands of arn |

inch over the frequency range 0 to 10 KHZ. The probes,
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vibration meter, and the low noisé connecting cables are
shown in Fig. 26. |

The vibration meter consists of a power supply,
an oscillator and two meter circuits. The probe face is
set against the test structure with appropriate gap between
the probe face and the structure. The principle of operation
is illustrated in Fig. 27. The input referernce signal i;
"to a high gain amplifier is the current passéd by a‘stan—
dard capacitor Cg connected in the circuit of a stable .
50 KHZ oscillator. A current i,, dependeht upon the
amplifier output voltage V, is fed back to the input
throggh_the capacitance_cu between the structure under-
test and the probe. The Eépacitance Cg is chosen to be
comparable with the capacitance C; and the gain of the
amplifier is made very high. Under these conditions,
thé anmplifier output vﬁitage is 1nvérse1y proportional to
the capacitance between the test.structure and the probe,
and the amplifjer output is therq;org directly propor-
tional to the separation between the test structure and
the prose face. Thus, the 50 KHZAoﬁtput from the high
gain amplifier has a mean amplitude determined by the
pean distance between the test structurxe and the probe
and a modulation amplitude dependent upon the peak to
~ peak vibration of the test structure. Two meters are

provided to indicate the distance and amplitude of
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vibration. For output to sign;I analy#e;, the modulated
50 KHZ signal ié.ﬁed through a low—paés-filter, the out-
put of which is the signal pfoportional to the:aﬁﬁlithde
of vibration of the test structure. - «

L3

5.4 CALIBRATION OF VIBRATION SIGNAL

The proceduré,for setting up the pf&be and the
operating instructions for the vibratiqn-meter are'given

in Appendix (see 'Setting'Up\The Probe®). The vibration

\“-.

meter can measure distahéé and vibration amplifude from
50 micro inches to 100 thousands of an inch. A set of.\
5 probes are provided to .-measure "fullh scale ranges 1 ' f
thousands to 100 thousands of a&n inch. The specifications -
of the probes are given in Fig. 28. | | . |
5.4.1,-Céli5ration of DiS%Qﬁpe Mgter_and Vibration Meter.
. thﬁ the probe MCl (full range ib'tﬁou.)‘is used,
the distance and vibration meters are direct reading in .
. ghousands of an in&h on theHUpperrécale.' when the _
.instrument is used with other probes, the meter readings ;

must- be multiplied by the following factors. to obtain .the

feading-in thousands of an inch. ' ' .
/emta/ MAL 1/10
Probe MBl _ 1/2 | : s

| Probe MC1 direct reading _
‘probe MD1 -5 T, -_5.‘?,’
Probe ME1 10 |
3‘ t
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5.4.2 Output Voltage Calibration
'\\?utput to signal analyser is taken from the

'RECORDER DISTANCE' socket providéd on the instrument.
rear panel. This output is connected to the analyser
through a low pass filter. A displacement equivalent
_to tﬁe full\range of a probe givés an output of 1 volt,
For example, a probe of 10 thou. full range w&uld-give
an output of 16b mvolt per 1 thau. Qisplacemené. When

the instrumentzis-used with other probes, the following

calibration factors should be applied.

Probe Mal 1 volt/1 thou.

Probe MBl 200 mvolt/1 thou.
Probe Mél | 100~mvolt/1 thou.
Probe MD1 T 20 mvoit/l thou.

— : " Probe ME1 10 mvolt/l thou.

I



5.4 SIGNAL PROCESSING EQUIPMENT ' -

The shock force and the resulting trarsient
vibration signals areranalysed in ofder-to obtain the
transfer function using the Fouriex Trénsfor; Technique.
The use of this technique to obtain the frequency res-
ponse of systems is explained in chapter IV. The signal
analysis consists mainly of computation of Fourier
“Transform of force and vibration signals. This is very

P

conveniently carried out digitally using Fast Fourfer

Transform algorithum. The force and vibration signals @‘ﬁu
are digitized at regular intervals of time and fhé

digitiied data is fed to the digitél processor. In

our instanée, the 35)5451A Fourier A#alyser system was

used for on-iine receptance measurement. _rhls\fnstrument
can digitize ény ihput that varies with time and pefforﬁ

the Fourier Transform to show the freauency igmponentﬁ.

The HP Analyser performs analysis of time and frequency

ata éontaining frequencies from dc to 25 KHZ.. This
does i digi&ally,'which means it'i‘ more Scchrate and
.}e flexible than analog machineé such as Fhe spectrum
/ZZalyscr.and wave analyser. The HP system consists of
a ha;ic minicomputer (HP 2100A) pius standard input/
06£pup periphéralﬁ. The main feature ofVHP system is

a keyboard on which the user can punch keys for a

variety 6£ mathematical functions tosbe performed on
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the frequcncy data. No knowledge of'computér prograﬁming
is requirca to operaté the Fourier Analyser; all operations
are controlled through the keyboard. The 2100A can also

be used aé a stand-alone cqmpu;gf by setting a Switch

on the keyboérd. "

5.5 HP 5451A FOURIER ANALYSER SYSTE!N DESCRYPTION

The Fourier Analyser system -consists of a basic
system plus a number of customer-chosen options. 1In
our instance, ‘system consists of a HP 2100A computer with

16X mcmory plus the following periphcrais.

-.l‘

Model H5]1-180AR oscilloscope

Model 2748A punched tapeophoto¥cadcr
Model 2752L¢g¢1cprinter

Model 5465A;Analog to Digital Converter
Model 5475A control unit

The computer and the'options are shown in Fig.22.Q.

All the above options are interfaced with
computer. The flow diﬁgfam of the system is shown in

Fig. 29.

HP2100A Comnuter: This is a compact data-processor

featurinog a powerful extended instruction set, plug-in
intcrfaces, and modular software..—-This has és standard
features memory parity generation and checking, memory

input/output protect for exccutive systems, extended

o
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arithmetic cépability anf'power fail'interru;! wiEB
automatic restart—gigs includes an optional feafure of
Dlrcgt Memory Access (DMA); Interfacing of peripheral
devices is accomplished by plug-in'interface cagéé. L
The operating push buttons on the front panel ofithe'

computer are shown in Fig. 30.

Hewlett-Packard Software: Software for the 21003

computer includes four high-level programming languégeﬁz (
HP FORTRAN, HP FORTRAN IV, HP ALGOL, and HP BASIC,

plus an efficient, extended assembler which is.accessiﬁle
through FORTRAN and ALGO%. Utilit; software includes

a debugging routine, a symbolic editor, and a libraff

* of cormonly used c9mputationa1 procedures such as Boolean,
trigonomefric, and flotting functions, real/integér
conver31ons, natural log, square root, etc. The master

Fourier program software is supplied by Hewlett-Packard.

5.6 HEWLETT-PACKARD MODEL 5465A ANALOG-TO-DIGITAL
CONVERTER * (ADC)

The ADC saﬁplés.the continuogs analogq inpué. ) ‘ ‘
Each sample becomes a digital word a;d stored in the .
computer memory for processing. Single or dual channel
input may be selected. In the dual channel input mode,
both channels are sampled simultaneously which is a
must for cross operations such as-transter function.
cross spectrum and cohetanca function. The Fontrol

switches on the ADC are’ lhawn in Fig. 31,

]
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Sample Controls: The sample controls select the sampling

parameters. Two sample modes are provided - settlng a
maximum frequency and time between samples, or alternatively,
setﬁing frequency resolutién and total record length.

The parameteré are. selected by SAMPLE MODE Switch and
NULIIPLIﬁR Switch. frequencies up to 25 KHZ single

channel and. 10 KHZ dual chénnel may be analysed. Sampling
may be controlled by an external clock bf_the clock input
through the bermlnal 'EXI_QPQCK' The UNCAL lamp lights

when the sampling parameters settings’ are not valid.

Input Signal Controls: Single or dual channel inputs

are selectable. Full scale input voltages are selectgble
from + 0.1 volt to + 10 volts with input attenuators on
both channels. The two input channels are called INPUT

A and INPUT B. The OVERLOAD VOLTAGE Light indicates 3

‘when the selected full scale range has been exceeded. o

Coupling nay be Aé or DC on both inputs by setting the

AC/DC selector switches.

Triggering: -Four_ﬁodes of triggering are avai;able: '

LINE, in which triggering occurs at the power linq

frequency; INTERNAL, where trigg$rin§ occurs on ﬁhe' L‘
rise or fall of the input waveform‘itselr ‘through R
channeliA; FREE RUN. in which triqgering occurs as fast

as the digital processor <an ~accept dntai and EXTERNAL,

where triggeting is caused by some external signal
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connécted through the terminal 'EXT TRIGGER'. In our
case, the foFce pulse signal cdnnected t;_INPUT A was

used for triggering either on INTERNA (A) or on 'EXT'
source. The triggering cg% be arranqged either on poéitive
slope (incfeasing side) or on negative slope (decreasing \
side) by setting the SLOPE select switch POS/NEG. .The
voltage level at which trigger occurs is set by the
TRIGGER LEVEL Switch. * This level is normally set at
approximately 0 volts,

| .
Display Input: The DISPLAY INPUT Switch works in

conjunction with REPEATQSINGLE Switch on the keyboard.
The DISPLAY INPUT Switch is set on A/A for single channel
oper;tioﬁ through INPUf A; ADUAL for dual channel
operation with Input A displayed automatically and B

DUAL forjautomatic display of INPUT B in REPEAT mode.

5.7 HEWLETT-PACKARD MODEL 5475A KEYBOARD SYSTEM

Keyboard is the main featﬁfe of the HP Fourief
Analyser. This controls Analyser operations by simple
functional keystrokes. Each key performs a basic “
operation or series of operations such as Fourier
Transform, Correlation, Complex Multiply, coherence | \\
function, calculation, data handling, analog‘input, or
punch output. Typical measurement functions such as E
po&er_apectra, transfernfunction,‘or other measurement

routines are built up f‘RP a few simple keystrokes.

' £

S
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For example, if a time signal is Pourier Transformed
and complex multiplied with itself, the auto power
spectrum results. A series of keystrokes can be combined
into an automatic me;surement routine to be executed by
a single keystroke. This ability is essential in
repetitive operations such as averaging where a given
sequence is to be carried out a numbe; of times. ‘The
keyboard is shown in Fig;-32.a. The kefs are- grouped
into major functional groups.

Data Input/Output: These keys are used to enter data

' from the ADC (buffered or unbuffered), .photoreader,
keyboard (for manual data entry), or mass storage device.
Data output to the teleéfpe, punch, or mass storage
device is controlled by a kefstroke._

Pata Manipulation: Co-ordinate systems may be changed,

data moved between blocks, HANNING performed; and data
channels cleared with this set of keys.

- Measurements: These keys provide measurcments of the

following functions: Fourier Transform, Histograms,
Transfer and Coherance functions, power spectra,
correlations and convolutions, complex measurcments

are made with simple keystrokes.

Arithmetic: The arithmetic keys control complex block
arithmetic such as addition, subtraction, multiplication,
division, cor®x conjugate multiplication, and block
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rotation. Scalar multiplication and divisions are also

&

possible. -

Prograrming: Keystrokes may bevgfbuPed into an auto-
matic routine by using these keys. Count loops,
conditional and uncpnditional skips, and subroutines
provide'powerful capabiiity for automatic operations.'
Up to 200 steps, where each step ié a partiéular key
stroke, may be stored in the Analyser.

Editing: Six editing keys provide an on-lineé resident
editor so that a programmed sequence of steps may be
changed on-line without the need to do off-liney editing,
compiling and testing. |

Other Keys: The remainder of the keys provide for

changing the block size, stopping and starting a key-
board routine, linking user-written software,idisplaying
the data blocks, and switching from the Fourier to

general purpose computer mode.

5.8 HEWLETT-PACKARD 5460A DISPLAY UNIT

The 5460A Display Unit and 180AR Oscilloscope )

combine to display results of all computations. .Digital \

operations assure maxiﬁum accurécy. A piotter output
connector provides complete qontrol for the optional
analog plotter. The ¢ nfggig on the diSplaf gnit-are
shown’ in Fig. 32.b. (’ |
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Scale Factor Display: The vertical axis scaling is

digitally displayed at all times. Domain and co-ordinate

information such as time or freguency domain, rectangular,
a .| . . -

polar cr lO%flthmlC co-ordinate are also displayed.

Scale Switch: The display is always scaled for maximunm

on-screen display. The SCALE Switch permits the y-axis
display to bhe exnanded or contracted.

Hode Switch: Display of .the real/isegnitude, imaginary/

phase spectrum or complex (NYQUIST) plot is selectable
by the FODE Switch. Any portion of the display may be

expanded to fill the scrcen for detailed analysis,

Horizontal Switches: The horizontal akis nay be controlled
to give 10,10.24,_6r 12.8 cm sweep, origin left, origin -
centre, log frcéuency axis, and inicrsity markers evéry |
8th or 32nd point. Thié may be used to facilitate

display intcrﬁretation.

Display Switches: Calibration of the oscilloscope and
optional ploﬁter is checked with the FUNCTION Switch in
the CAL positian Points at the origin and + Full Scale
(+ Fs) facilitate rapid plotter scaling. The PLOT

position and PLOT RATE controls pfovide control over the

~

analog plotter. POINT, BAR, or CONT (continuous) display
offer a choice of displéy'type for easiest interpretation.

5.9 HEWLETT—PACKARD IODEL 2748A PHOTOREADER

Punched tape containing data or programs is =

1
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entered into the Fourier Analyser system via the photo-
reader. The HP photoreadexr is shown in Flg. 33. This
-tape reader photo- electrically