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Abstract 
The dynamical state of galaxy groups at intermediate redshifts can provide informa

t ion about t he growth of structure in t he universe . vVe examine t hree goodness-of-fi t 

tests, the Anderson- Darling (A- D), Kolmogorov and X2 tests , in order to determine 

which statistical tool is best able to distinguish between groups that are relaxed and 

t hose that are dynamically complex. V'le perform Monte Carlo simulations of these 

t hree tests and show t hat the X2 test is profoundly unreliable for groups wit h fewer 

t han 30 members. Power studies of t he Kolmogorov and A- D tests are conducted to 

t est t heir robustness for various sample sizes. vVe t hen apply t hese tests t o a sam

ple of the second Canadian Network for Observational Cosmology Redshift Survey 

(CNOC2) galaxy groups and find that the A- D t est is more reliable and powerful 

at detecting real depart ures from an underlying Gaussian distribut ion than the more 

commonly used X2 and Kolmogorov test s. Vve use this statistic to classify a sample of 

the CNOC2 groups and find that 34 of 106 groups are inconsistent wit h an underlying 

Gaussian velocity distribution, and thus do not appear rela}ced. In addit ion , we com

pute velocity dispersion profi les (VDPs) for all groups wit h more than 20 members 

and compare the overall features of the Gaussian and non-Gaussian groups, finding 

that the VDPs of the non-Gaussian groups are distinct from those classified as Gaus

sian. We also compare group properties of both rich individual groups and stacked 

groups t o determine if any t here are any t rends amongst the classified Gaussian and 

non-Gaussian groups. 
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J b::l 
Introduction 

1.1 Galaxy Groups 

The group environment represents an intermediate size and density scale between 

individual galaxies and rich galaxy clusters. With roughly half of the present day 

galaxy population in groups (Geller & H uchra, 1983; Eke et al. , 2005) , this environ

ment plays an important role in the formation and evolution of galaxies. Despite 

the fact t hat a large fraction of galaxies reside in groups, relatively little is known 

about t he group environment , especially in comparison to field galaxies and rich clus

ters. Only recently have there been large scale surveys of galaxy groups, such as the 

second Canadian Network for Observational Cosmology (CNOC2) (Carlberg et al. , 

2001) , the Two-degree Field Galaxy Redshift Survey (2dFGRS) (Eke et al. , 2004) , 

the Sloan Digital Sky Survey (SSDS DR4) (Yang et al , 2007) and the high-redshift 

second Deep Extragalactic Evolutionary Probe (DEEP2) (Gerke et al. , 2005) group 

catalogs. The lack of observational data results from t he extreme difficulty in finding 

the groups themselves. Unlike rich galaxy clusters , groups have relatively little con

trast with respect to the background, making t hem difficult to detect optically, thus 

increasing the probability of interlopers and false detections (Mamon, 2007). Galaxy 

groups also tend to have significant ly lower hot gas density, in comparison to clusters , 

1 



2 A. HOll - MSc. Thesis 

(Li & Vee, 2008) , making detection of extended X-ray emission from groups difficult 

(see §2 of this chapter for further discussion) . 

\Nith no clear distinction between a "rich" group and a "poor" cluster , the most 

challenging aspect of studying groups is the relatively arbitrary way in which they can 

be defined. Even within the field there is large debate as to what exactly constitutes 

a group . Theoretical astronomers tend to view groups as galaxies in virialized sys

tems sharing one dark matter halo , while optical astronomers have a looser definition , 

viewing groups as over-densities of galaxies in space. Groups not only suffer defini

t ional problems at the "rich" end , but also at t he lower limit of members, with optical 

astronomers requiring a minimum of 3 member galaxies and X-ray astronomers view

ing groups as having tens of galaxies. 

In order to identify group membership , both photometric and spectroscopic data 

is needed to ensure proximity in bot h position- and redshift-space. There are several 

group finding algorithms, and one of the more commonly used methods determines 

group membership using a friends-of-friends (FOF) search algorithm, first developed 

by Huchra & Geller (1982) . The FOF algorithm searches through a catalog of galaxy 

positions, redshifts and magnitudes and identifies t he first galaxy in the catalog not 

assigned to a group. It t hen searches for companion galaxies, or friends, within a pro

jected separation in posit ion- , D12 (Equat ion 1.1) , and redshift-space , VJ.2 (Equation 

1.2), from the initial galaxy, defined as: 

(1.1 ) 

where V = (Vi + V2 )/ 2, Vi and V2 are t he red shifts of the init ial galaxy and its friend , 

mi and m 2 are their magnitudes , e is their angular separations, D L is t he spatial 

linking length parameter and , 

(1.2) 
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where VL is t he redshift linking length parameter. T his process is then carried out 

for each companion galaxy added to the list of group members, and is repeated unt il 

no more companions are found. 

Although t his method appears relatively simple, t he defini t ions of the linking 

lengths, D L and VL , are arbitrary, with no strict or standard values , and changing 

t hem can drastically alter group membership. If the linking lengths are too restric

tive t hen t he FOF algorit hm will find only compact groups that are likely already 

virialized , omitting more dynamically complex groups that may include interacting 

galaxies . Conversely, if the linking lengths are too relaxed t hen t he defined groups 

tend to have very large group-centric radii , sometimes on the order of several Mpc, 

resulting in systems that may not be real. However , one can optimize t he FOF search 

parameters by first testing out the algorit hm on simulat ed galaxies. Nolt henius & 

White (1987) used cold dark matter (CDM) N-body simulations to find optimal link

ing lengt hs to find groups in the Center for Astrophysics (CfA) redshift survey. In 

general, with t he appropriate choice of linking lengths and high quality spectroscopic 

data, the FOF algorit hm generally picks out groups that are t rue associations of 

galaxies , while minimizing the contamination of interlopping galaxies due to chance 

alignments along the line of sight. 

The majority of the available gala,-xy group catalogs have been generated using t he 

FOF algorit hm, but the need for observationally expensive spectroscopic data limits 

these catalogs to eit her t he local Universe or small patches of the sky. Recent ly Li 

& Yee (2008) have developed a new group finding method , the probability friends

of-friends (pFOF) algorithm, which uses photometric-, rather t han spectroscopic

redshifts, allowing group surveys to be extended to both larger areas of t he sky and 

higher redshifts. T his method uses the FOF algorithm in t he RA/ DEC posit ion 

space and photometric-redshift probability densities in the direction along the line 

of sight. Although this method allows for wider/ deeper surveys , t he uncertaint ies in 

photometric-redshifts can be 50-100 larger than spectroscopically determined values , 
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result ing; in higher false detection rates (Li & Yee, 2008) . Also, the pFOF algorithm 

can only reliably det ect groups with more than eight members (Li & Yee, 2008) , while 

current group catalogs include groups with as few as three galaxies. Improvements in 

photometric-redshift techniques will undoubtedly reduce the current errors associated 

with the pFOF group finding algorit hm. 

Understanding the group environment provides not only information about t he 

evolut ion of galaxies and t heir properties, but can also be used to probe the sur

rounding dark matter haloes . Yang et al. (2005) developed a halo-based group finding 

algorithm t hat defines groups as galaxies which share a common dark matter halo. 

The first st ep of this algorithm involves defining a potent ial group , and group center , 

using t he FOF algorithm. From this potential group , Yang et al. (2005) t hen compute 

the total luminosity of t he group and the mass-to-light ratio , which in t urn allovvs 

for estimates of the halo mass and radius, the virial radius and velocity and finally 

the velocity dispersion. Group membership is then assigned based on t he computed 

properties of the associated dark matter halo. The group center and halo properties 

are re-computed as new members are added and t he process is repeated until no 

new members are assigned to the group. Yang et al. (2005) applied t heir halo-based 

method on mock catalogues and concluded that t heir method was more successful 

at assigning galaxies to common dark matter haloes than the t raditional FOF algo

rithm. 

The recent advances in both observational techniques and group-finding algo

rithms have significant ly increased our ability to study galaxy groups, and t he impor

tant role they play with respect to galaxy evolut ion, as well as their use as probes of 

dark matter haloes on smaller scales. These surveys allow for detailed studies of the 

group environment and comparison wi th both the cluster and field environment. In 

particular, one can compare galaxy evolut ion in groups and in clusters and invest igate 

which star formation truncation mechanism dominates in each environment . 
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1.2 Group Dynamics 

Although t he majority of galaxies live in a group environment only a small fraction 

of galaxy groups are actually relaxed or virialized systems (:Mamon, 2007). Since t he 

velocity dispersions of groups are relatively low, the group environment allows for a 

higher rate of galaxy interactions and mergers (Brough et al. , 2006) than clusters. 

Major and repeated minor mergers can greatly alter t he morphologies of galaxies in 

groups (Osmond & Ponman, 2004) , changing t he overall group properties. Another 

consequence of the frequent galaxy-galaxy interactions in galaxy groups is its affects 

on the star formation rates (SFR) of the member galaxies (Zabludoff & Mulchaey, 

1998; Hashimoto et al. , 1998; Tran et al. , 2001). In fact , it has been suggested t hat 

a large portion of the evolution of galaxy properties occurs in t he group environment 

(Balogh et al. , 2004). Presumably the dynamical state of groups is correlated with 

star formation , mergers and other indicators of galaxy evolution. 

T he dynamical states of galaxy clusters are generally investigated using X-ray 

observations, i.e., X-ray luminosity (Lx ) and X-ray temperature (Tx ), which can 

provide information on the group centroid and depth of the group potential well (Os

mond & Ponman , 2004) . Although t his method is 'well-established for clusters , it is 

not always applicable t o galaxy groups , as some groups are not sufficiently massive to 

produce detect able diffuse X-ray emission. In fact , X-ray emission is generally only 

found in groups with a high fraction of early-type galaxies , which contain a centrally 

dominant galaxy or brightest group galaxy (BGG) (Mulchaey & Zabludoff, 1998; 

iVIulchaey et al. , 2003; Osmond & Ponman, 2004). These X-ray bright groups are sys

tems t hat are believed to have already reached dynamical equilibrium (Jeltema et al. , 

2006) , and since we wish to study both relaxed and dynamically complex systems, 

X-ray temperature observations 'would not provide enough information, restricting us 

to galaxy groups in a small range of dynamical states. Fortunately, Tx is not the 

only way to obtain dynamical information. The virial theorem states t hat t he line of 

sight dispersion of t he velocities of t he member galaxies is also a measure of t he grav-
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itational potential. Thus, in order to probe both virialized and dynamically complex 

systems, 'vve use optical observations of the velocity distributions to investigate t he 

dynamical state of galaxy groups. 

The usual assumpt ion is t hat t he underlying velocity distribution of galaxy clus

ters and groups is Gaussian in nature , but t his is strictly true only for systems in 

dynamical equilibrium. On the other hand , groups with non-Gaussian velocity distri

but ions could mark systems in t he process of a merger or t hose t hat are in the early 

stages of evolut ion. To study group (or cluster) dynamics we need a reliable method 

of distinguishing between relaxed systems with Gaussian velocity distribut ions and 

more complex systems wit h non-Gaussian dynamics . 

Previous analyses of cluster velocity distribut ions have resulted in differing views 

on t he dynamics of t hese systems. Yahil & Vidal (1977) used the a-test, u-test and 

Shapiro-\iVilks W-test for non-normality to show t hat t he observed radial-velocity 

distribut ions of clusters of galaxies, with as few as 10 and as many as 122 members, 

are always consistent with an underlying Gaussian distribution . More recently, evi

dence of substructure has been found in clusters (Dressler & Shectman, 1988; Bird, 

1994; Burns, 1998) , indicating that cluster dynamics may be more complicated than 

initially assumed . 

Beers et al. (1990) emphasize t he difficulty in determining that a given velocity 

distribut ion differs significant ly from Gaussian , stating that the goodness-of-fit tests 

used by Yahil & Vidal (1977) are sensit ive to different departures from a true Gaussian 

distribution . That is to say one test may be sensit ive to skewness , rejecting systems 

with asymmetrical shapes , but may not be able to detect non-Gaussian features in 

the wings, or edges, of the velocity distribut ion. Thus, t he same system may be 

classified as either Gaussian or non-Gaussian depending on the statistic used. These 

difficult ies are more severe when studying smaller systems , as in the case wit h galaxy 

groups. Since group membership can range from 3 to 50 or more galaxies, we need a 

statistical test that is reliable even for extremely small sample sizes . \iVe also require 



1.2. GROUP DYNAMICS 7 

a test t hat is robust, or unaffected by small departures from normality, to ensure 

that t he rejections are a result of real deviations from a Gaussian distribut ion and 

not sensit ivit ies inherent to t he test. The goodness-of-fit tests used to analyze rich 

clust ers are generally not applicable to groups, where the challenges of small number 

statistics become relevant. 

In t his t hesis we test t hree goodness-of-fi t tests in order to determine which one 

in particular is best able to distinguish between Gaussian and non-Gaussian velocity 

distribut ions, especially for small sample sizes . In Chapter 2, we discuss the st at ist i

cal tools we use to determine departures from Gaussianity and present t he results of 

our Monte Carlo simulations of t he X2 , Kolmogorov and Anderson- Darling tests , as 

well as our povver studies of t he Kolmogorov and Anderson- Darling tests. In Chapter 

3, we apply t he goodness-of-fit tests to the CNOC2 galaxy group data and compare 

the results. In Chapter 4, we apply the Anderson- Darling test to the CNOC2 group 

catalog and classify the dynamical stat e of the groups . In Chapter 5, we compare the 

group properties of both individual and stacked Gaussian and non-Gaussian groups 

and discuss the implications of our results and in Chapter 6 we summarize our find

ings. 

Throughout t his t hesis we use ACDM cosmology with 0,M = 0.3 , 0,1\ = 0.7 and 

Ho = 75 km S- 1 Mpc-1 . 
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I 

j ~~----------------------------~ 
Statistical Tools 

2.1 Goodness-of-Fits Tests 

Since groups can contain anywhere between 3 to 50 (or more) member galaxies, 

proper statistical analysis of groups requires a goodness-of-fit test that is reliable and 

robust for even extremely small sample sizes. The Pearson 's X2 test (Equation 2.1) 

is arguably the most commonly used goodness-of-fi t test. However, this statistic was 

developed as a large sample theory and its reliability begins to break down as one 

approaches small sample sizes (n). For small n, D'Agostino & Stephens (1986) (here

after DA86) suggest t he use of goodness-of-fits tests based on Empirical Distribut ion 

Functions (EDFs) , such as t he Anderson- Darling (A- D) and t he Kolmogorov tests. 

2.1.1 The Pearson's X2 Test 

The Pearson 's X2 Test is defined as: 

2 ~ (0 bserved i - exp ectedi ) 
2 

X = ~ . expectedi t = l 

(2.1 ) 

9 
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The crit ical points of t he X2 test were developed for large samples and it is difficult 

to determine exactly where, at small n, this t heory begins to break down (DA86). 

Alt hough t here is no standard method to apply t he X2 test , it is often suggested t hat 

t he bin widths be constructed such t hat t hey have t he same number of data points 

in each bin. For small sample sizes Vessereau (1958) claims t hat it is not the number 

of data points per bin t hat is important but rather the total number of data points. 

Vessereau (1958) also finds t hat as long as n 2: 10 and one uses t he 1% or 5% crit ical 

values, t he X2 test should not produce a significant amount of error (with respect to 

false posit ives or negatives) . Koehler & Larntz (1980) claim t hat for k-l degrees of 

freedom, the Pearson 's X2 test is 'reasonably adequate ' when k 2: 3 and n 2: 10 and 

Roscoe & Byars (1971) also find that \ovhen t he degrees of freedom are> 1, t he X2 

t est does not produce significant false posit ives, remaining robust against t hese type 

of errors. 

The X2 test is often performed on binned data, testing t he variance between his

tograms and a cont inuous Gaussian distribut ion. Unfortunately, binning can add 

addit ional errors to the test, a problem which becomes worse at small n. The choice 

of bin width can alter t he results of t he X2 test , even causing t he same data to be 

classified as both Gaussian and non-Gaussian, depending on t he bin widt h. Several 

aut hors (e.g., Heald (1984) ; Scott (1979)) have attempted to reduce this effect by 

minimizing the sampling fluctuations. With testing, Heald 's opt imal bin width was 

selected, where t he bin widt h is defined as: 

Ox = u (~ ) 1/ 5 (2 .2) 

where u is the standard deviation. 

The degrees of freedom in the system are given by DOF = N - 1 - k , where 

N is t he number of bins and k is the number of free parameters in the assumed 

distribut ion. Thus, for a Gaussian distribut ion t here are two free parameters (k = 2), 
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f..1, and U, and t he minimum number of bins is N = 4. 

2.1.2 The Kolmogorov Test 

The popular Kolmogorov test (DA86 and references therein) is a goodness-of-fi t test 

based on supremum statistics, which makes use of t he existence of a unique least upper 

bound or maximum value in the data set. For the Kolmogorov test , the supremum 

values is the measured maximal vertical difference between the empirical distribution 

function (EDF), Fn(x) , of the ordered data Xi and the cumulative distribution function 

(CDF), F(x) , of a given model l
. The EDF statistic computed for the Kolmogorov 

test is t he D value , which is derived from t he D+ and D- values, and is defined as: 

Z 
D + = supremum l- - F(x)l , 

n 

(i - 1) 
D - = supremumlF(x) - --I, 

n 

where Fn(x) = * for D +, Fn(x) = (i~l ) for D - and 1 ::::: i ::::: n . 

(2.3) 

(2.4) 

(2 .5) 

Stephens (1974) has simplified the Kolmogorov test with the modification of the 

D-values, called the D* -value (Equation 2.6), which allows for comparison with a 

single critical value table, rather t han computing critical values for specific sample 

sizes and significance levels (iVlassey, 1951). 

( 
c 0.11) 

D* = D v n + O.12 + Vii (2 .6) 

1 It shouid be noted that the Koimogorov-Smirnov test is technically the difference between two 
EDFs, while the Kolmogorov Test measures the difference between a model CDF and EDF. Despite 
this distinction, the I olmogorov test is often referred to as the "Kolmogorov-Smirnov test" , here we 
will refer to it by its proper name. 
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The use of the Kolmogorov test in place of the X2 test for small samples is sug

gested by Lilliefors (1967) . In a comparison of the Kolmogorov and X2 tests , NIassey 

(1951) concludes that the Kolmogorov test is generally more reliable than the X2 test , 

especially for small n , where the effects of binning, required by the X2 test but not 

the Kolmogorov test , can result in a large loss of information. 

2.1.3 The Anderson-Darling Test 

Like the Kolmogorov test , the Anderson- Darling (A-D) test is also based on EDF 

statistics and does not require binning or graphical analysis. Despite these advan

tages, t he A- D test is not commonly used in astronomy. The A- D statistic involves 

the calculation of t he A 2 and A 2* values , starting from t he ordered data {Xi }: 

1 n 

A2 = -n - - 2.:)2i - l )(1n <I> (Xi) + In(l - <I> (Xn+ l-i))) , 
n 

(2.7) 
i= l 

- 1+ - + -A2* _ A2 ( 0.75 2.25 ) 
n n2 

(2 .8) 

vvhere Xi ~ X < Xi+l , <I> (Xi) is the CDF of the hypothetical underlying distribution 

and t he A2* values are the modified statistics for cases where the distribution param

eters are not known a priori. From Equation 2.8, it is clear that A2* approaches A2 

for large n. 

In t his analysis, we take <I>(Xi) to be t he CDF of a Gaussian distribution , given 

as: 

1 ( ( X - M)) <I>(Xi ) = 2" 1 + erf . heJ (2 .9) 

where Xi are t he radial velocities of t he galaxy group members , arranged from lowest 
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to highest , f.." is the computed mean velocity of the group and a is t he computed 

velocity dispersion. T he <I> (Xi) values are then used in the A- D comput ing formulas 

(Equations 2.7 and 2.8) to obtain t he A2* values . These values can either be compared 

to known crit ical or limiting value tables , or used to compute the significance level O! , 

'which gives t he probability of t he null hypothesis (i.e., the underlying distribution is 

Gaussian) being t rue. A more detailed discussion of crit ical values and significance 

levels is given in Chapter 4. DA86 recommend t he A- D test as t he 'omnibus' test 

for EDF statistics when t he underlying distribution is believed to be Gaussian. Fur

thermore , they claim that the A2 and A2* values can be reliably computed dm.vn to 

n = 5. 

A method of quantifying t he robustness of statistical tests involves conducting 

power studies , vvhich investigates t he percentage of false positives a given test may 

produce when the underlying distribution is distorted (i. e., skewed, shifted, wings , 

etc.). For t he Gaussian distribution , t his involves applying t he tests to a variety 

of non-Gaussian samples and determining not only how often a specified test will 

rej ect the distribution as Gaussian, but also t he specific types of departures from 

non-normality t hat affect t he rejection rate (DA86 and references t herein). In a 

compaJ:ison of the Kolmogorov, Cramer-von Mises, Kuiper , Watson and A- D tests, 

Stephens (1974) conducted power studies using a variety of non-Gaussian distribu

t ions and found t he A- D test to be most powerful of t he EDF statistics for detecting 

departures from Gaussianity, while t he Kolmogorov test proved to be least powerful. 

As for t he X2 test, DA86 claim that it is in general not a powerful test for Gaussian 

distributions and do not recommend its use. \ t.,Te discuss t he results of our power 

studies in §2.3. 



14 A. Hall - MSc. Thesis 

2.2 Monte Carlo Simulations 

We test the claim of Stephens (1974) and DA86 that t he A- D test is t he most reliable 

test for Gaussianity for small sample sizes , by performing lVlonte Carlo simulations 

of t he X2
, Kolmogorov and A- D tests . \Ne perform 30 000 iterations for a variety 

of sample sizes , with 5 :::; n :::; 50 and drawing from a random Gaussian distribut ion 

with input values f.J, = 0, a = l.0 , to determine the reliabili ty of the tests and how 

accurately each test can reproduce published crit ical values . 

The results of the X2 Monte Carlo simulations are shown in Figure 2.1 , where 

we have plotted histograms of X2 / DOF for our various sample sizes. Ideally a peak 

should occur at X2 / DOF = l.0 for t he X2 test , but we see that t here is significant 

scatter in the histograms for n < 30 (Figure 2.1). lVlost notable is the n = 5 histogram 

in Figure 2. 1, which has two peaks at X2 / DOF > 10, much higher t han the a = 0.10 

crit ical value (i.e. , t he X2 value above which 10% of values fall ) of 2.41 (DOF = 1). 

Thus for small n, the X2 test tends to overestimate t he number of failed/ non-Gaussian 

samples . It is only for n 2: 30 that we see the expected peak of l.0. Unfort unately, 

the majority of the CNOC2 groups have nmembers < 30, so use of the X2 test to classify 

galaxy group dynamics could result in the false identification of many groups with 

non-Gaussian velocity distribut ions. 
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Figure 2.1: :Monte Carlo simulations of t he X2 test for different sample sizes , using a 
Gaussian random number generator with input values of f-L = 0.0 and aint = l.0 , and 
30 000 iterations. The histograms are generated with a bin width of 0. 5. For n < 30, 
t he X2 test completely fails to recover the input distribution . This is most obvious for 
the n = 5 case , where t he histogram shows two peaks at X2 j DoF = 10, 12 , instead 
of the expected peak value of X2 j DoF = l.0 . Only for n > 30 do the simulations 
recover the expected peak value. It should be noted that for t he n = 5 case , t he 
remainder of the values fall at X2 j DOF > 15. 
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The results of the Kolmogorov Monte Carlo simulations are shown in Figure 2.2, 

where we show histograms of the computed D * values and indicate the a = 0.10 

cri t ical value of 1.224 (DA86) with a dotted vertical line . Unlike the histograms for 

the X2 test , we see no scatter in the D * values, even at n = 5. The histograms of 

t he D * values remain remarkably stable over t he sample size range , indicating the 

the Kolmogorov test is reliable for small n. To determine if our simulations produce 

the expected D * critical values, we compute t hese values from our histograms (Figure 

2.2) and compare them to published values cited in DA86. For each sample size, 

we are able to reproduce all of the given crit ical values for the case where the input 

distribution parameters, f.1 and 0' , are known. 
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Figure 2.2: Monte Carlo Simulation of Kolmogorov test for different sample sizes, 
using a Gaussian random number generator wit h input values of f.L = 0.0 and aint = 

l.0 , and 30 000 iterations. The histograms of the D* values are plotted using a 
bin widt h of 0.05. The results of the simulat ions show t hat even at n = 5, t he 
Kolmogorov test is able to recover t he input distribution . T he histograms for n = 5 
to 50, consistently reproduce t he expected peak values, indicating that the test is 
reliable over a wide sample range . The vertical dotted line represents the D* value 
above which 10% of t he values lie, our computed values are in complete agreement 
vvith t he known 0: = 0.10 critical value of 1.224 (DA86) . 
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In §2.1, we discussed t he use of t he A2* values for the A- D test, but t his is a 

modification for t he case where the distribution parameters are unknown. \iVhen the 

input parameters are known a priori, as in t he case with f\/Ionte Carlo simulations, 

DA86 state t hat no modification for the A- D test is needed and one should use 

the A2 values when comparing to crit ical value tables. The results of t he A- D test 

simulations are shown in Figure 2.3 , where we plot histograms of t he computed A2 

values and indicate the a = 0.10 critical value of 1.933 (DA86) with a dotted vertical 

line. The histograms are similar to t hose of t he Kolmogorov test , showing no scatter 

in t he A2 values over the ent ire sample size range. The stability of the A- D test, even 

at n = 5, supports the claim of DA86 that t he statistic is reliable for all n 2: 5. We 

compute the a = 0.10 critical values for t he A- D test from the histograms in Figure 

2.3 and find t hat our values are in agreement with t hose found in DA86. 
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Figure 2.3: Nlonte Carlo Simulation of Anderson- Darling test for different sample 
sizes, using a Gaussian random number generator with input values of fJ, = 0.0 and 
a int = l.0 , and 30 000 iterations. T he histograms of the A2 values are plotted using a 
bin widt h of 0. 2. The results of the simulations show that even at n = 5, t he A- D test 
is able to recover the input distribut ion . The histograms for n = 5 to 50, consistently 
reproduce t he expected peak values , indicating t hat the test is reliable over a wide 
sample range. The vertical dotted line represents the A2 value above which 10% of 
the values lie. Our computed values are in complete agreement wit h t he known ex = 

0.10 critical value of 1.933 (DA86). 
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2.3 Power Studies of the Kolmogorov and Anderson-

Darling Tests 

Our Monte Carlo simulations indicate the that the X2 test is indeed an unreliable 

statistic for testing Gaussianity in small sample sizes, as suggested by DA86 . Thus, 

we can eliminate the use of this test for classification of t he galaxy group dynamics. 

However , t he results of our simulation also show t hat both t he Kolmogorov and 

A- D statistics are reliable down to n = 5. In order to determine 'which test is 

best able to accurately distinguish between Gaussian and non-Gaussian systems, we 

perform power studies of the Kolmogorov and A- D tests. Nlonte Carlo simulat ions 

of both tests are performed, using a skewed Gaussian distribut ion , F(Xi) (Azzalini & 

Capitanio, 1999), given by: 

(2. 10) 

(2 .11) 

where ¢(x) is the probability density function of a Gaussian distribution , with f1- = 0.0 

and (]' = l.0, <I> (Xi) is the CDF of a Gaussian distribut ion (Equation 2.9) and as is 

known as t he shape or slant parameter. The value of as is proportional to the 

skewness of t he Gaussian distribut ion, wit h higher values of as producing more skewed 

distribut ions and an as = 0.0 producing a non-skewed Gaussian. 

Vve draw various sample sizes, 5 :s: n :s: 100, from a Gaussian random distribut ion 

and apply varying levels of skewness, 0 :s: as :s: 5, to determine the rejection rate of 

bot h the Kolmogorov and A- D tests. The results of our power studies are given in 

Table 2.1 , where Column 1 indicates the test used , Column 2 indicates the as value, 

and Colllmns 3 - 9 indicate the percentage of rejection given a specific sample size . 

The rejection rates are determined using the 10% critical values given in DA86. In 
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order for a test to be considered powerful , t he simulations with high as should have 

higher rejection rates , since the underlying distribution are increasingly less Gaussian. 

From Table 2.1 , it is clear t hat for all levels of skewness and all sample sizes , the A

D statistic rejects more objects t han the Kolmogorov test . For the as = 0.25 and 

n ::; 30 cases the two tests are comparable, but as one increases as , t he percentage 

of rejections for the Kolmogorov test are significantly lower than those of the A-D 

test. Looking at the rejection rates for the as = 1.0 , which is a heavily skewed 

Gaussian , it is clear that the Kolmogorov test underestimates the amount of non

Gaussian systems. This is especially evident when one fo cuses on t he n = 30 case for 

the as = 1.0 distribution, which has a 100% rejection rate for the A- D test , but only 

an 85% failure rate for the Kolmogorov test. 

The results of our power studies indicate that t he Kolmogorov test is much less 

powerful t han the A- D statistic, which is in agreement with the findings of Stephens 

(1974) . T he strongest evidence for this claim is shown in the as = 5.0, a completely 

non-Gaussian distribution , and n = 5 simulation , where the A- D test rejects 100% 

of the sample while t he Kolmogorov test only rej ect s 75% of the sample. 

Based on our Monte Carlo simulations and povver studies, we conclude that the 

A-D test is the most reliable and power statistics , and thus is best able to distinguish 

between dynamically relaxed (Gaussian) and complex (non-Gaussian) galaxy groups. 
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Table 2.1: Results of the Power comparisons of the Kolmogorov and A- D tests using 
various skewed Gaussian distributions. 

test Qs n 
5 10 15 20 25 30 40 50 100 

A2 0.25 15 17 19 21 24 27 32 37 64 
D* 0.25 13 15 16 18 20 22 26 29 46 

A2 0.50 27 38 48 57 66 74 86 93 100 
D* 0.50 20 27 34 41 47 53 63 72 95 

A2 0.75 43 62 77 87 93 96 99 100 100 
D* 0.75 28 42 55 66 74 81 90 96 100 

A2 1.0 59 81 92 97 99 100 100 100 100 
D* 1.0 35 57 72 83 91 85 99 100 100 

A2 1.5 80 96 99 100 100 100 100 100 100 
D* 1.5 50 79 91 97 99 100 100 100 100 

A2 2.0 90 99 100 100 100 100 100 100 100 
D* 2.0 67 86 97 99 100 100 100 100 100 

A2 5.0 100 100 100 100 100 100 100 100 100 
D* 5.0 75 96 100 100 100 100 100 100 100 
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Application of Tests to Data 

3.1 The Data 

The second Canadian Network for Observational Cosmology Redshift Survey (CNOC2) 

was conducted in the redshift range of 0.1 < z < 0.6 and obtained photometry for 

rv 4 X 104 galaxies covering four patches , 1.5 deg2 in area, in the U BV Rc 1c bands 

down to a limit ing magnitude of Rc = 23.0 (Yee et al. , 2000). Spectra of more t han 

6000 galaxies were taken with t he MOS spectrograph on t he Canada-France-Hawaii 

Telescope (CFHT), with 48% completeness at Rc = 21.5 (Yee et al. , 2000) . Over 

200 galaxy groups were identified using a FOF percolation algorit hm in t he CNOC2 

survey (Carlberg et al. , 2001). 

Wilman et al. (2005b) (hereafter \1\105) obtained deeper spectroscopy of 20 selected 

CNOC2 groups and 6 serendipitous groups in the redshift range of 0.3 ::::: z ::::: 0.55, 

with the Mult i-Object Spectrograph Low Dispersion Survey Spectrograph (LDSS2) 

on the 6.5 m Magellan (Baade) telescope at Las Companas Observatory in Chile. W05 

redefined group membership with more relaxed algorithm parameters t han t hose used 

by Carlberg et al. (2001) . The original search parameters were optimized so t hat t he 

group-find ing algorithm would identify dense , virialized groups, while t he VV05 sam

ple included looser group populations . VIle would like to quantify how many of these 

23 
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groups have more complex velocity distributions, potent ially ident ifying merger prod

ucts or systems in the early stages of virialization. 

The centroid of the CNOC2 groups is defined using a luminosity-weighted center 

(W05) . From t he viewpoint of hierarchical structure formation , one would expect 

t hat at t he center of rich clusters lies a brightest cluster galaxy (BCG). Brough et al. 

(2006) suggests that t hese BCGs form in t he group environment and t hat groups 

with extended X-ray emission tend to have a galaxies similar to BCGs close to the 

center of their X-ray emission. Unfortunately, not all groups are massive enough 

to have detectable X-ray emissions and do not always have obvious brightest group 

galaxies (BGG). In some cases , even when a BGG does exist , it does not neces

sarily lie at t he center of t he potent ial well (Osmond & Ponman, 2004) . Brough 

et al. (2006) find t hat only groups in complete dynamical equilibrium have a BGG 

at t he group centroid . Thus, t he luminosity-vveighted centroid does not necessar

ily lie within a particular galaxy, causing some debate as to how to properly define 

the group center (see Chapters 3.2 and 4.2 for further discussion). The somewhat 

arbit rary defini t ion of the group centroid can lead to problems in defining galaxy 

member velocity offsets. In theory, one would expect t he mean group velocity offset, 

c(zmember - zcentroid ), and t he redshift of t he group centroid to have similar values , 

as in the case of Group 208 , whose group cent roid is located at a redshift of 0.269 

and has a mean c(zmember - zcentroid ) of ~ 0 km S-1. However , for a large fraction 

of the CNOC2 groups these values can be drastically different . For example, Group 

237 is located at a redshift of 0.399, while the mean group velocity offset is '"'-'433 km 

S-1 . Assuming t he equivalency of t hese two values can drastically alter the results 

of statistical tests t hat require accurate information about t he mean, /-L , of the group 

(see Chapter 3.2 for further discussion). 

In Figure 3.1 we plot R-band luminosity weighted posit ion plots for 4 CNOC2 

groups, with member galaxies indicated by open circles and the group centroid (\lV05) 

indicated by a red cross , to illustrate the effects of defining a luminosity weighted 
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group centroid. Group 4 (top-left in Figure 3.1) contains 20 member galaxies and it 

is clear t hat t he computed group centroid lies at the center of t he brightest galaxy. 

Group 238 (top-right in Figure 3.1) has 21 members and although the group centroid 

does not lie exactly at the center of t he brightest galaxy, it is relatively close to t he 

centers of t he three brightest galaxies in t his system. Groups 117 (bottom-left in 

Figure 3.1) highlights t he fact t hat even if there is a BGG , t he luminosity weighted 

centroid does not necessarily have to correspond wit h the center of t he BGG. The 

high fraction of galaxies below the BGG in Group 117 causes t he centroid to lie com

pletely outside of the BGG and closer to large grouping of less luminous galaxies . 

Group 320 (bottom-right in Figure 3.1) also contains 20 member galaxies and it is an 

example of a system with no obvious BGG, as there are 4 member galaxies with rel

atively similar R-band luminosit ies. The computed group centroid lies within a close 

grouping of 14 galaxies and is some\ovhat close to t he center of one of the brightest 

galaxies . This group also illustrates the problem with assuming that t he mean group 

velocity offset is equivalent to the redshift of the group centroid, with z = 0.245 and 

a mean c(zmember - zcentroid) of ~ 56 km S-l. 
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Figure 3.1: R-band luminosity weighted position plots of 4 CNOC2 groups, where 
larger symbols correspond to more luminous galaxies and t he red crosses indicate the 
luminosity weighted group centroid. 
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3.2 Estimation of Distribution Parameters 

The X2 , Kolmogorov and A- D statistics were developed under the assumption that 

all of the parameters of the underlying distribut ion were completely specified. Modi

fications to the statistics, with the use of Monte Carlo simulations , have been carried 

out to allow these tests to be applied to cases where the distribution parameters are 

not completely known a priori , but may be estimated from the dat a (DA86) . 

The parameters required to define a Gaussian distribution are the mean, f.L , and 

the dispersion , 0'. In the analysis described in §3 of t his chapter , f.L is calculated 

using the standard mean, and the velocity dispersions are estimated with the Gapper 

Algorithm, given by: 

Vii n- l 

O'G a pper = n( n _ 1) L Wigi 
t=l 

(3 .1 ) 

where Wi = i(n-i) , gi = Xi+ l - Xi , here t he ordered Xi values are given by t he observed 

radial velocities of the group members. For small number statistics, Beers et al. (1990) 

recommend the Gapper Estimator over the canonical rms standard deviation, as t his 

algorithm is insensit ive to outliers and thus more accurately reproduces t he true 

dispersion of t he syst em. 

To ensure t hat t he Gapper Estimator is truly a more reliable method of computing 

the dispersion of a system, we perform Monte Carlo simulations of bot h the Gapper 

algorithm and t he canonical nns standard deviation. 'vVe draw various sample sizes 

(n = 5, 15,20,50) from a Gaussian random number generator (Galassi, 2006) with 

the inputs f.L = 0.0 and O'intrinsic = 100 and t hen compute the dispersion using the two 

aforementioned methods. 

The results are shown in Figure 3.2, where we have plotted histograms of t he 

output dispersions for each sample size. Figure 3.2 t hat for t he n = 5 case the 

canonical nns standard deviation underestimates the t rue dispersion by 25 o/c and 
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t he distribution is heavily skewed to lower values. Although the distribution of the 

Gapper Estimator is also skewed, the peak of the distribut ion occurs at the true 

dispersion value of 100, indicating that this method is indeed insensitive to outliers. 

As we increase the sample size, n = 15 and 20, we can see that the rms dispersion 

cont inues to underestimate t he t rue velocity dispersion , but also that t he two methods 

begin to converge. The histogram for t he n = 50 case shows that t he rms dispersion 

and the Gapper Estimator bot h correctly identify the true dispersion. Thus , based on 

t hese results we choose to use t he Gapper Estimator to compute the group velocity 

dispersion. 
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Figure 3.2: Monte Carlo simulations of t he Gapper Estimator and the rms dispersion 
methods for n = 5 (top left) , n = 15 (top right), n = 20 (bottom left) and n = 50 
(bottom right) . For each histogram, we compute the Gapper and rms dispersions 
using velocities generated from a random Gaussian distribution "vith input values of 
f-L = 0.0 and O'int = 100. This process was done wit h 30 000 iterations. The dotted 
lines indicate dispersion values computed using t he canonical rms standard deviation 
and the solid lines are values calculated using the Gapper algorithm. 
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3.3 Comparison of Tests 

3.3.1 Statistical Analysis 

The X2
, Kolmogorov and A- D tests are applied to a subset of 62 CNOC2 groups con

taining at least 10 members per group. We chose this membership cut based on the 

result of our n = 5 X2 Monte Carlo simulation , shown in Figure 2.1 , which indicated 

that the test was completely unreliable at small n. This cut a lso helps to minimize 

t he effect of binning. The potential complications introduced by the choice of bin 

width are a lso reduced by using t he optimal bin width formula (Equation 2.2). 

Despite our attempts to minimize the various uncertaint ies due to binning, we still 

encounter groups that do not meet the minimum number of bins requirement , N = 4, 

for our applicat ion of the X2 test , with 5 out of t he 62 groups in the sub-sample having 

N < 4. Thus , we apply the X2 test to 57 groups (n 2: 10 and N 2: 4). 

The modification to t he D-statistic (Equation 2.6 ) given in §2.1 is used for the 

case when the input distribution p arameters are known a priori (i. e., IVlonte Carlo 

simulat ions in §2 .2). 'When applying t he Kolmogorov test to real data sets , one must 

estimate the distribution parameters, f.L and a , and thus the modification for t he D

value becomes (DA86): 

D * = D ( J(n ) - 0.01 + 0.85 ) 
J(n) 

where D is given by equation 2.3. 

(3 .2) 

Similarly, in §2.2 we used t he A2 values , but for real data sets one must use t he 

A2* values (Equation 2.8) in order to properly apply t he A- D statistic. Since , t he 

A- D and Kolmogorov tests do not require binned data, we are able to apply both 

tests to a ll 62 groups (n 2: 10). 

The results of our analysis are presented in Table 3.1, \ovhere Column 2 indicates 

the number of groups used to perform the specified test and Column 3 indicates the 
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number of groups t hat failed at t he 0.10 significance level. Our initial findings shoyv 

that these three tests differed in the number of rejected (non-Gaussian) groups, with 

a 21 % rejection rate for the X2 test , a rv 11% rejection rate for the Kolmogorov test 

and a rv 16% rejection rate for t he A- D test. 

Table 3.1: Results of the X2, Kolmogorov and A- D tests applied to a sample of 
CNOC2 groups with n 2:: 10. 

Test umber of Number of Percentage of Significance 
Groups Failed Groups Failed Groups Level 

Pearson's X2 57 12 rv 21% 0.10 
Kolmogorov 62 7 rv 11% 0.10 
A- D 62 10 rv 16% 0.10 

The D-statistic of t he Kolmogorov test is often used to test for goodness-of-fit , 

but bot h Stephens (1974) and DA86 do not recommend its use for testing Gaussian 

distribut ions , based on its lack of power. The results of our own power studies, in 

§2.3, also indicate t hat the Kolmogorov test lacks power and is unable to detect real 

departures from Gaussianity. The relatively low non-Gaussian detection rate in t he 

C OC2 group sub-sample, wit h only 7 out of t he 62 CNOC2 groups failing at t he 

0.10 significance level, further supports t he notion t hat t he Kolmogorov test suffers 

from under-rejection. 

3.3.2 Velocity Distributions 

The reliability of t he A- D test over t he X2 and Kolmogorov tests is furt her demon

strated when one looks at t he velocity distribut ions of specific groups. In Figure 

3.3 , we show t he velocity distribut ions of four CNOC2 groups t hat have either failed 

the X2 , Kolmogorov and A- D tests (non-Gaussian groups) , passed all three tests 
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(Gaussian groups) , fai led the X2 test but passed the Kolmogorov and A- D tests , or 

have passed the X2 and Kolmogorov tests but failed the A- D test. The histograms 

are made using Heald 's optimal bin width (Equation 2.2) and are over-plotted 'with 

a Gaussian distribution generated using the estimated mean and dispersion of the 

group. Although the Kolmogorov and A- D tests do not use binned data, we can look 

at the velocity distributions of groups classified as Gaussian or non-Gaussian by the 

various tests to see if there are obvious visual departures from normality. 

Group llO is classified as Gaussian by the X2 , Kolmogorov and A- D tests and 

from Figure 3.3 we can see that the shape and mean of the velocity distribution 

agrees well with t he underlying Gaussian distribution. Group 208 (Figure 3.3) is a 

group t hat has been classified as non-Gaussian by all three tests , and it is evident 

that the velocity distribution is non-Gaussian , as the histogram shows a double peak. 

\iVhile Groups llO and 208 are examples of systems with obvious Gaussian or 

non-Gaussian features in their velocity distributions , this distinction is not so clear 

for several of the CN OC2 groups. Group 366 represents groups that have failed the 

X2 test , but have passed the Kolmogorov and A- D tests. The histogram for Group 

366 (Figure 3.3), shows no obvious departures from the Gaussian distribution and 

despite the use of Heald 's optimal bin width , the relatively low group membership 

(n = 15) results in binning issues and causes the group to be rejected by the X2 test. 

The Kolmogorov and A- D tests use ordered rather than binned data, and thus do 

suffer from the issues introduced when binning small sample sizes . 

Group 239 represents groups that have passed the X2 and Kolmogorov tests , but 

not t he A- D test. This histogram for t his group (Figure 3.3) appears skewed and and 

has a mean that is slightly shifted from that of the Gaussian distribution. Despite 

these non-Gaussian features , only the A- D test is able to detect these departures 

and rejects Group 239 as having an underlying Gaussian distribution. This group 

highlights the fact t hat the Kolmogorov test lacks power , as discussed in §2.3 , and is 

unable to detect slight depart ures from Gaussianity. 
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Figure 3.3: Velocity Distribut ion histograms for various CNOC2 groups. The dotted 
lines show Gaussian distributions computed using the estimated f-t and (J of t he group . 
It should be noted t hat the histograms are generated using Heald 's optimal bin width 
(Equation 2.2), t hus t he bin widths vary from group to group . It should be noted t hat 
the Kolmogorov and A- D tests do not require binned data and are instead computed 
using ordered data. Also, note t hat t he y-axes differ between plots . 
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~Ll __________________________ ~ 
Classification of the CNOC2 Groups 

Having ident ified the Anderson- Darling test as t he best statistical tool for t he analysis 

of galaxy groups, "ve can now proceed to classify t he CNOC2 groups as being eit her 

relaxed (Gaussian) or dynamically complex (non-Gaussian) systems. Before the test 

can be applied, we have to ensure t hat all galaxies identified by the FOF algorithm are 

truly members of the group . Once our group sample is defined , we can t hen compute 

the distribution parameters , apply t he A- D test and finally classify our groups as 

eit her having an underlying Gaussian or non-Gaussian velocity distribut ion. 

4.1 Maximum Radius Cut 

In our analysis in §3 , we apply only a minimum membership cut , but proper classi

fication requires more detailed treatment of t he group catalog. The relaxed linking 

lengt h parameters used by \lV05 sometimes resulted in groups wit h large radii , wit h 

some members as far as 5.0 Mpc from t he group center. This was done to ensure 

that FOF algorit hm did not ident ify only virialized or relaxed systems, but also in

cluded more dynamically complex groups. Mamon (2007) suggests t hat t he typical 

maximum r200 scale (i.e., t he virial radius) for groups is l.0 Mpc and the typical r200 

for the Carlberg et al. (2001 ) CNOC2 groups is « l.0 Mpc. \ lIle therefore apply a 

35 
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1.0 Mpc radius cut to each of t hese re-identified CNOC2 groups to try and limit our 

sample to true groups rather than very loose associations of galaxies . 

In Figure 4.1 we show both the posit ion plots and velocity distributions of Group 

208 and 226 to illustrate the effects of applying our maximum radius cut . The velocity 

distribution of Group 208 indicates that including all of the ident ified group members 

results in a group with a radius of rv3 Mpc, much higher t han the suggested maxi

mum radius of 1.0 Nlpc. T he position plot for Group 208 shows a compact grouping 

of 10 galaxies near t he luminosity weighted group centroid with 12 galaxies scattered 

around t he central clump. It is clear that once we apply our 1 Nlpc radius cut on 

Group 208, indicated with a red circle centered at the group centroid in F igure 4.1 , 

that the group now only includes the close arrangement of member galaxies at the 

group center. 

Group 208 is a good example of how our maximum radius cut eliminates galaxies 

that a.re not truly members of t he identified groups. Unfortunately, the distinction 

between 'real' group members and false identifications is not as clear for all t he W05 

identified CNOC2 groups, as seen ,"vith Group 226 in Figure 4. 1. From the velocity 

distribution, we can see t hat inclusion of all 86 FOF identified group members results 

in a galaxy group over 4 Mpc in radius. The position plot for Group 226 does not 

show an obvious grouping of member galaxies , but rather several possible sub-groups. 

In spite of the possibility of substructure within Group 226, we apply t he 1 Mpc ra

dius cut around the group centroid , indicated by the red circle in Figure 4.1 , and take 

t he galaxies wit hin this maximum radius as members of Group 226. This is done to 

ensure t hat we apply t he same definition of membership to all CNOC2 groups. 
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Figure 4.1: Left: Position plots of Groups 208 (top) and 226 (bottom) , overplotted 
with a 1 Mpc radius circle around the group centroid. Right : Velocity distributions 
of Groups 208 (top) and 226 (bottom.) 
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Figure 4.2 shows a histogram of the number of group members both before (dotted 

red line) and after (solid black line) our 1 Mpc radius cut . It should be noted that 

Groups 138 (17, = 53) and 226 (17, = 86) are not included in the histogram. From t he 

histograms we can see t hat after our radius cut the majority of groups, rv 76%, have 

5 to 10 members , compared to only rv 55% before our radius cut. Also, 16 of the 

original 122 groups, fall belmv t he minimum group membership of 17, = 5 after our 

radius cut . 
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Figure 4.2: Histogram of t he number of members per CNOC2 galaxy group in our 
sample, with t he solid black line indicating the number of members after a 1 Mpc 
radius cut and considering only groups with 17, 2: 5 and the dashed black line indicating 
the number of members initially identified by W05 . 
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4.2 Computation of the M and (J" values for the 

CNOC2 Groups 

For the distribution parameters , we estimate f./" the mean group velocity offset, 

using the standard mean, and (J , t he group velocity dispersion, by computing t he 

intrinsic velocity dispersion (\1\105) , obtained by first computing t he observed disper-

sion , given by; 

(Jobs = 1.135 * (JCapper (4 .1 ) 

where (JCappe,' is given by equation 3.1. The factor of 1.135 is a correction applied by 

W05 for t heir redshift space cut of 2~. T he next step is to compute t he rest-frame 

velocity dispersion: 
(Jobs 

(Jrest = --
l +z 

(4.2) 

where z is the redshift of t he group centroid. The final step involves removing the 

measurement uncertainty of each galaxy, (5(v)), from the rest-frame dispersion , as; 

where (5(v)) = 142 km S-l for the LDSS2 data and (5(v) ) 

original CNOC2 data (W05). 

(4.3) 

103 km S- l for t he 

Using the method outline above we compute final intrinsic velocity dispersions 

(Tables 4.1 , 4.2 , 4.3 and 4.4) for all CNOC2 groups with n 2: 5 after our 1 l\II pc 

radius cut . 
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Table 4. 1: Computed velocity dispersions for the CNOC2 groups with 17, ~ 5 after a 
1 NIpc radius cut in the 14 hr field. 

Group n f.-L (fobs (f,.est (fint 

km S- 1 km S- 1 km S-1 km S- 1 

1 8 1.12 274 235 211 
2 6 -51.5 492 411 398 
4 8 121 446 371 357 
6 8 -41.6 345 280 261 
8 8 -12.4 326 265 238 
9 8 1.12 277 219 194 
11 12 0.500 269 211 185 
13 11 135 552 434 421 
14 5 0 398 310 292 
16 5 -9.00 358 274 254 
17 6 233 508 388 373 
19 6 161 516 390 376 
20 6 20.5 461 347 332 
21 6 57.5 268 199 170 
23 8 35.2 709 524 510 
24 10 0.900 151 111 41.6 
25 16 29 .6 627 461 445 
28 6 0 279 203 161 
29 9 16.0 465 338 322 
30 11 -1.09 428 307 289 
32 8 -61.8 755 542 532 
33 6 0 235 167 126 
34 6 -1.50 254 173 134 
37 10 -37.2 371 252 225 
38 16 141 1.21 x 103 800 793 
39 13 -42.2 733 477 462 
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I 

1 
Table 4.2: Computed velocity dispersions for the CNOC2 groups with n ~ 5 after a 
1 Nlpc radius cut in the 21 hr field. 

Group n f1. aobs a "est aint 
km S- l km S- l km S- l km S- l 

103 10 -0.300 179 156 118 
104 19 14.5 471 411 398 
107 9 -76.3 286 249 227 
108 7 105 405 353 337 
110 26 -15.3 422 365 350 
III 9 5l.6 452 384 370 
113 7 37.7 614 512 501 
114 5 -70.1 382 314 297 
117 15 -29.2 328 269 248 
120 6 -38.0 248 200 171 
121 13 -0.922 348 280 260 
122 8 -22 .9 599 481 470 
123 12 -5.25 292 231 207 
124 9 -52.6 349 271 251 
126 5 0.600 230 177 144 
127 6 l.00 180 137 90.7 
128 5 130 586 445 433 
129 5 -118 371 282 262 
131 5 101 593 437 424 
132 8 25.5 542 399 382 
134 10 -23.4 471 338 317 
135 7 1.28 379 271 251 
137 8 -0.749 477 334 315 
138 23 -226 l.06 x 103 740 731 
139 10 0.899 363 252 226 
140 5 0 219 149 100 
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Table 4.3: Computed velocity dispersions for the CNOC2 groups with n 2: 5 after a 
1 Mpc radius cut in the 2 hr field. 

Group n f-l Uobs Urest Uint 

km S-1 km S-1 km S-1 km S-1 

201 5 29.4 353 312 290 
202 5 63 .6 423 356 341 
204 6 0 187 153 113 
206 11 90.8 344 280 261 
208 8 -70.5 762 601 592 
211 8 -0.375 234 184 153 
212 11 1.36 333 256 235 
213 7 58 .7 581 446 434 
216 6 -48.0 471 361 346 
217 5 -661 920 704 696 
218 5 252 443 338 322 
220 5 -0.600 353 262 241 
221 6 0.500 171 126 73 .1 
226 25 -174 1.16 x l03 853 847 
227 7 -1 .25 491 360 342 
228 8 0 475 343 327 
230 10 0 212 153. 113 
231 5 82 .1 438 316 299 
232 11 -76.3 443 317 300 
233 7 -61.7 795 568 559 
234 7 0.857 422 302 284 
237 7 534 720 515 505 
238 11 -219 899 638 630 
239 6 -169 869. 617 608 
240 6 111 536 379 365 
241 6 -0.999 316 222 197 
244 15 -0 .999 356 242 211 
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Table 4.4: Computed velocity dispersions for the CNOC2 groups with n 2: 5 after a 
1 Mpc radius cut in the 9 hr field. 

Group n f-t (Jobs (J,.est (Jint 

km S- l km S- l km S- l km S- l 

307 6 220 643 532 522 
308 25 2.52 639 522 512 
312 8 -217 424 344 328 
315 12 11 .7 360 290 271 
317 11 -30.5 382 307 289 
320 14 -50.3 575 462 450 
322 6 -135 545 437 425 
323 7 -88.2 610 490 479 
324 11 112 418 336 319 
333 6 -212 351 265 245 
334 11 128 590 446 434 
336 5 -62 .4 965 708 700 
337 6 -232 797 581 571 
338 9 -13.7 503 367 352 
344 7 8.99 368 268 248 
346 26 -80.4 613 446 434 
349 6 -110 766 555 545 
350 5 226 386 280 260 
351 6 0.500 243 176 42 .6 
352 5 118 581 422 409 
355 5 -161 506 364 349 
356 5 -153 540 388 374 
357 7 -0 .428 234 168 133 
358 11 -19.6 409 294 275 
360 7 295 878 631 622 
363 5 -119 620 424 411 
366 11 71.1 468 317 300 
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'vVe compare our intrinsic velocity dispersion values with t hose computed by W05. 

It should be noted that although we follow the general method outlined by W05, there 

are several differences in our computations of (Jint . \"'05 defines a maximum radius of 

0.5 Nlpc , as opposed to our 1.0 Mpc cut. They also compute (Jobs using an iterative 

process, making several smaller radius cuts (1.0, 0.75 and 0. 5 Mpc), redefining t he 

group center and recalculating (JGapper- after each cut. Once VV05 obtains a stable (Jobs , 

they calculate (Jrest and (Jint using equat ions 4.2 and 4.3. Also, we do not compute 

dispersion values for groups with n < 5 after our radius cut and therefore have fewer 

groups with computed dispersion values t han W05. Despite these computational 

differences, we find t hat for the majority of groups, our intrinsic velocity dispersions 

agree with t hose of \"'05. We plot both values of (Jint in Figures 4.3, 4.4, 4.5 and 4.6 , 

where our dispersion values are plotted in red crosses and \"'05 values are plotted 

in open circles with errors, computed using a jackknife method. This method of 

computing errors involves re-calculating the dispersion on a subset of the data (i.e., 

n - 1 data points) and is computed n times , eliminating a different data point for 

each dispersion. The jackknife error is then obtained by determining the maximum 

difference between the dispersions of the subsets and that of t he entire data set . 

In Figure 4.3 shows the dispersion values for t he CNOC2 14 hour field , where we 

see that for 13 of the 26 groups, our values are exactly the same as those of \"'05. 

For the remainder 18 groups, our values agree within error to 'vV05 (Jint values. V.,re 

plot both intrinsic dispersion values for t he CNOC2 21 hour field in Figure 4.4, and 

find that 17 of the 26 CNOC2 groups have the same (Jint , vvith all but one of the 

remaining values falling within the W05 errorbars. The CNOC2 2 hour field (Figure 

4.5) has a high percentage of matches between ours and 'vV05 (Ji nt values, with 25 out 

of 26 groups having the same intrinsic dispersion. Similarly, the CNOC2 9 hour field 

has a very high fraction of corresponding intrinsic dispersion values (Figure 4.6) , with 

26 of t he 27 (J'int values in complete agreement. Tn Figure 4.7, we plot a histogram 

of the difference between our intrinsic velocity dispersions and those computed by 
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W05 , where we see a sharp peak in the histogram at (Jint - (Jint Wilman ~ 0 km S-l , 

further indicating that the two values are generally in good agreement. 
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Figure 4.3: Comparison of our computed intrinsic velocity dispersion with those of 
Wilman et al. (2005b) in the 14 hr field. Our dispersions are plotted in red crosses 
and Wilman et al. (2005b) dispersions are plotted in open circles with error bars 
computed using a jackknife method. 
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Figure 4.4: Comparison of our computed intrinsic velocity dispersion with those of 
Wilman et al. (2005b) in the 21 hr field. Our dispersions are plotted in red crosses 
and Wilman et al. (2005b) dispersions are plotted in open circles with error bars 
computed using a jackknife method. 
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Figure 4.5: Comparison of our computed intrinsic velocity dispersion with those of 
Wi 1m an et al. (2005b) in the 2 hr field. Our dispersions are plotted in red crosses 
and Wilman et al. (2005b) dispersions are plotted in open circles with error bars 
computed using a jackknife method. 
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Figure 4.6: Comparison of our computed intrinsic velocity dispersion with those of 
Wilman et al. (2005b) in the 9 hr field. Our dispersions are plotted in red crosses 
and Wilman et al. (2005b) dispersions are plotted in open circles with error bars 
computed using a jackknife method. 
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4.3 Application of the Anderson- Darling Test 

\Ne compute the intrinsic velocity dispersion for all V/05 re-ident ified CNOC2 groups 

wit h nmembers 2: 5, t hen classify t he groups based on t he computed A2* values. A 

crucial step in any statistical analysis is to ident ify the appropriate significance level 

or crit ical value used for classification . The crit ical points of t he A- D test , as 'with all 

EDF statistics, change depending on t he accuracy with which one knows t he input 

distribution parameters (DA86). For a Gaussian distribution , there are four cases to 

be considered: 

• case 0: both f..k and ([2 are known a priori , i.e., a fully specified distribution ; 

• case 1: ([2 is known and f..k must be estimated ; 

• case 2: f..k is known and ([2 must be estimated , and ; 

• case 3: both f..k and ([2 must be estimated 

Each of these cases result in different crit ical values , which can greatly alter the 

number of rejections. For example, t he 5% crit ical value is 2.492 for Case 0, 1.087 for 

Case 1, 2.308 for Case 2 and 0.752 for Case 3 (DA86) . ·When testing for Gaussianity 

in data sets , Stephens (1974) suggests t hat Case 3 is t he most practical choice, as 

distribution parameters are in general estimated and not known a priori. In t his 

situation , there are tvvo approaches one can take in distinguishing between Gaussian 

and non-Gaussian systems; t he first involves comparing the computed A2* values 

with crit ical value tables and the other uses t he A2* values to directly compute the 

significance level a , which gives t he probability t hat t he system has an underlying 

Gaussian distribut ion. \Ne chose to follow t he latter method and compute a using 

t he formula; 

( 4.4) 

where a = 3.6789468 and b = 0.1749916 , and both factors are determined via IVlonte 

Carlo methods (Nelson , 1998) . 
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Using Equation 4.4 , we "vere able to determine t he probability of whether or not 

each CNOC2 group had a Gaussian velocity distribut ion , classifying all groups with 

a < 5% as being non-Gaussian. T he results of the A- D test are given in Table 

4.5 , where we see t hat rv32% of t he CNOC2 groups are classified as non-Gaussian 

at the a = 0. 05 significance level and also that the n, z and (j are similar for t he 

Gaussian/ non-Gaussian groups. Using t his classificat ion scheme, we can now in

vestigate specific group propert ies to determine if there are any obvious trends or 

differences between t he Gaussian and non-Gaussian groups. T he properties of t he 

CNOC2 groups t hat are classified as dynamically complex (non-Gaussian) are given 

in Table 4.8. 

Table 4.5: Anderson- Darling Classification of the CNOC2 groups with n 2: 5 after 
t he 1 Mpc cut. 

Classification Number of Percentage of n z aint 

Groups All Groups (km S- l) 
Gaussian 72 rv 68% 9 0.30 347 
non-Gaussian 34 rv 32% 9 0.37 327 

In Tables 4.6 and 4.7 we list several propert ies of the groups classified as Gaussian 

by the A- D test , where Column 1 indicates t he Group , Column 2 gives n after our 1 

Mpc radius cut , Column 3 gives a int , Column 4 gives t he A2* values and Column 5 

gives the values of a (Equation 4.4). Looking at t he number of member galaxies , it is 

evident that the Gaussian groups are not restricted to eit her low or high membership 

groups , wit h 5 ::; n ::; 26. Similarly, the intrinsic velocity dispersion of t he groups 

show no preference for any given dispersion range, wit h t he values ranging from rv 
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Table 4.6: Properties of Gaussian CNOC2 Groups in the 14 and and 21 hour Fields. 

Group n a i nt A2* a 
(km S- l) 

1 8 211 0.293 0.691 
2 6 398 0.240 0.933 
4 8 357 0.287 0.717 
6 8 261 0.392 0.391 
8 8 238 0.437 0.303 
9 8 194 0.270 0.785 
11 12 185 0.379 0.423 
13 11 422 0.451 0.279 
14 5 293 0.283 0.729 
16 5 254 0.607 0.115 
17 6 373 0.720 0.060 
19 6 376 0.472 0.248 
20 6 332 0.396 0.383 
21 6 170 0.390 0.395 
23 8 510 0.453 0.277 
25 16 445 0.608 0.114 
28 6 161 0.646 0.092 
37 10 225 0.717 0.06 
39 13 462 0.685 0.073 
103 10 118 0.623 0.105 
104 19 398 0.277 0.754 
107 9 227 0.271 0.781 
108 7 337 0.251 0.876 
110 26 350 0.200 1.17 
111 9 370 0.353 0.489 
113 7 501 0.440 0.298 
114 5 297 0.243 0.916 
117 15 248 0.682 0.075 
121 13 260 0.459 0.267 
122 8 470 0.210 1.11 
123 12 207 0.656 0.086 
124 9 251 0.339 0.529 
126 5 144 0.742 0.0531 
131 5 424 0.314 0.613 
134 10 317 0.487 0.228 
137 8 31 5 0.407 0.360 
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Table 4.7 : Properties of Gaussian CNOC2 Groups in the 2 and and 9 hour Fields. 

Group n O"int A2* a 
(km S-l) 

201 5 290 0. 204 1.15 
204 6 113 0.498 0.214 
206 11 261 0.360 0. 469 
208 8 592 0.385 0.407 
212 11 235 0.747 0.0514 
216 6 346 0.595 0.123 
217 5 696 0.353 0.489 
220 5 241 0.455 0.274 
227 7 342 0.255 0.859 
228 8 327 0.608 0.114 
231 5 299 0.691 0.071 
232 11 300 0.335 0.543 
234 7 284 0.297 0.674 
237 7 505 0.651 0.089 
238 11 630 0.629 0.101 
239 6 608 0.733 0.056 
240 6 365 0.649 0.090 
307 6 522 0.389 0.399 
308 25 512 0.590 0.126 
315 12 271 0.476 0.242 
317 11 289 0.370 0.443 
320 14 450 0.360 0.470 
322 6 425 0.240 0.931 
323 7 479 0.358 0. 476 
324 11 319 0.406 0.361 
333 6 245 0.625 0.103 
334 11 434 0.432 0.312 
337 6 571 0.208 1.12 
344 7 248 0. 530 0.178 
349 6 545 0.428 0.319 
350 5 260 0.656 0.086 
352 5 409 0.430 0.315 
355 5 349 0.541 0.167 
.3.56 5 374 0.450 0.282 
363 5 411 0.604 0.117 
366 11 300 0.742 0.053 
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The properties of t he groups classified as non-Gaussian by the A- D test are given 

in Table 4.8. Like t he Gaussian groups, the intrinsic velocity dispersions of the non

Gaussian groups show no obvious trend, as t he values range from rv 40 - 800 km S-1 , 

so the more dynamically complex systems are not restricted to low or high velocity 

dispersions. Although , it should be noted t hat the dispersion range for the non

Gaussian groups is slightly larger t han that of the Gaussian groups (Tables 4.6 and 

4.7). Similarly, t here is a wide range in the number of members for failed groups, 

having anywhere between 5 and 26 members, suggesting that the A- D test is not 

biased towards a specific sample size. 
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I 
Table 4.8: Properties of non-Gaussian CNOC2 Groups in all 4 Fields. 

I Group n a int A2* ex 

1 
(km S- l) 

24 10 42 13.4 2.69 x 1033 

29 9 322 0.780 0.0426 
30 11 289 l.18 0.00424 
32 8 532 0.945 0.0166 
33 6 126 l.61 0.000375 
34 6 134 l.67 0.000271 
38 16 793 l.66 0.00940 
120 6 171 0.752 0.0499 
127 6 91 l.18 0.00427 
128 5 433 l.22 0.00342 
129 5 262 0.813 0.0353 
132 8 382 l.31 0.00202 
135 7 251 l.03 0.0105 
138 23 731 0.973 0.0142 
139 10 226 l.39 0.00128 
140 5 100 l.18 0.00432 
202 5 341 0.836 0.0309 
211 8 153 0.892 0.0225 
213 7 434 0.763 0.0469 
218 5 322 0.880 0.241 
221 6 73.1 2.37 4.86 x 106 

226 25 847 l.04 0.00940 
230 10 113 l.25 0.00298 
233 7 559 l.57 0.000463 
241 6 197 0.757 0.0487 
244 15 211 l.35 0.00168 
312 8 328 l.14 0.00545 
336 5 700 0.947 0.0164 
338 9 352 0.822 0.0336 
346 26 434 l.26 0.00277 
351 6 143 0.814 0.0352 
357 7 133 l.80 0.000128 
358 11 275 0.776 0.0436 
360 7 622 0.831 0.0319 
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Comparison of Group Properties 

Although t he majority of our group sample have n ~ 10, we do have 5 CN OC2 

groups with n 2: 20 after our radius cut. As previously mentioned , t here is no clear 

distinction between rich groups and poor clusters, thus one might expect groups with 

a large number of members and underlying Gaussian velocity distribut ions to exhibit 

trends similar to t hose observed in galaxy clusters. We therefore look at our 5 rich 

groups to determine if any t rends exist or if t here are any differences between groups 

classified as Gaussian or non-Gaussian by t he Anderson- Darling test. 

5.1 Individual Group Properties 

5.1.1 Velocity Dispersion Profiles 

One way to investigate t he differences between relaxed and dynamically complex sys

tems is to study t he velocity dispersion profiles (hereafter VDP) of galaxy groups. If 

a classified non-Gaussian group is in fact dynamically more complex than a Gaussian 

one , then t he corresponding VDP may exhibit different features from t hose of relaxed 

systems. In t heir analysis of merging clusters , Menci & Fusco-Femiano (1996) find 

that radially increasing VDPs indicate significant galaxy merging in t he cluster core. 

Girardi et al. (1996) also suggest t hat the presence of neighbouring clusters resulted 

57 
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in a VDP wit h an init ially flat profile, which t hen increased strongly at larger radii . 

\ lIle follow the method out lined in Bergond et al. (2006) to generate VDPs for 

t he CNOC2 groups in which t he radial velocit ies are binned with an exponent ially 

weighted moving window. The window function is given by: 

(5 .1 ) 

where !JR is the widt h of t he window, which can be constant or a function of radius 

R, and the R; 's are the radial positions of the members of the system. The projected 

velocity dispersions are then defined as; 

L::i Wi(R) (Xi - x)2 
L::i wi(R) 

(5 .2) 

where the xi's are t he radial velocit ies and x is the mean velocity of the system. 

This "moving window" prescription for computing VDPs t akes into account the 

cont ribution of every radial velocity measurement at each value of R. It also removes 

the restriction of computing binned projected velocity dispersion. Instead , a smoothed 

profile can be generated , since the projected dispersions can be computed at any 

radius, not just at t he radii corresponding to the observed velocit ies . 

In order to use t his method to probe t he dynamics of a system, one must be 

careful with the choice of windo,"v width , !JR , as a too-large window can wash out 

real features , and a too-small window, or very small n, tends to add spurious features 

in the profile. Since the projected velocity dispersions are computed using weighted 

values of every velocity measurement in the data, any large individual deviations from 

t he mean can alter t he overall shape of t he profile. This effect is significantly more 

pronounced in small samples, as there are not enough data points to counteract or 

outweigh t he effects of an out lier. \iVit h t esting we choose a window width of 0.35 

Mpc, approximately one-t hird t he value of t he maximum radius. \ lIle also enforce a 

minimum group membership of 20 members, after our 1 Nlpc radius cut , to ensure 
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that any visible trend in the VDPs is not a result of outliers. 

There are five CNOC2 groups that meet our minimum group membership criteria, 

two of which are classified as Gaussian, Groups no (n = 26) and 308 (n = 25) and 

t hree as non-Gaussian systems, Groups 138 (n = 23) , 226 (n = 25) and 346 (n = 26). 

The VDPs for t hese groups are shown in Figure 5. 1, where the Gaussian groups are 

shown with filled symbols and t he non-Gaussian groups wit h open symbols. Bot h 

Gaussian groups have decreasing profiles, "vhile two of t he t hree non-Gaussian groups 

(138 and 346) have increasing profiles . The VDP for Group 226 (Figure 5. 1) does 

not exhibit the same overall trend as the other non-Gaussian groups, as t he profile 

increases init ially but t urns over at roughly 0.4 Mpc. Although t he profile for Group 

226 does not continually increase, it does show distinct features from t he profiles 

of the Gaussian groups. It is impossible to make general statements on t he overall 

shape of all Gaussian or non-Gaussian groups based on these five groups alone, but 

the results do support our claim that galaxy groups classified as non-Gaussian by t he 

A- D test are more dynamically complex systems. In their investigation of the relation 

between velocity dispersion and X-ray temperatures in galaxy clusters, Girardi et al. 

(1996) found t hat clusters with rising profiles, such as Abel 3391 and 3395, had a 

neighbouring cluster or group , resulting in velocity anisotropies and sharp increases 

in t heir VDPs. Although we are unable to determine by the VDPs alone whether these 

non-Gaussian groups are indeed undergoing a merger , the clear differences between 

Gaussian and non-Gaussian group profiles suggest t hat these two types of systems 

are dynamically different. 

A closer inspection of t he individual profiles of the Gaussian groups suggests 

another interesting result . The profile for Group no shows an init ial decrease with 

an eventual flattening of t he profile towards the outer radius, a general trend that 

was observed in clusters by Girardi et al. (1996) . The VDP of 308 noes not exhibit 

t he same trend of a flattened profile, continually decreasing towards t he edge of t he 

group. 
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Figure 5.1: Velocity dispersion profiles for t he CNOC2 groups with n > 20 after 
a lMpc radius cut and using a constant window widt h of 0.35 Mpc. The open 
symbols indicate groups classified as non-Gaussian and the closed symbols indicate 
those classified as Gaussian. 
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5.1.2 Colour-Radius 

Along wit h the U BV Rc 1c photometry there is also a set of CFHT ugTiz photometry 

for t he Cl OC2 groups, which have been k-corrected to obtain rest-frame colours. 

Since colour is an indicator of star formation history, we look at colour versus radius 

plots for the five CNOC2 groups, with n 2: 20 after our 1 Mpc radius cut, to inves

t igate possible differences betvveen the classified Gaussian and non-Gaussian groups. 

We also aim to determine if the trend of an increasing fraction of blue galaxies with 

radius observed in galaxy clusters (Butcher & Oemler , 1984), is also present in t he 

group environment . 

In Figure 5.2 , we plot 9 - T versus radius for Groups llO and 308, which are clas

sified as having underlying Gaussian velocity distribut ions by t he A- D test . Since 

Groups llO and 308 are our two largest Gaussian groups, we might expect them to 

exhibit trends similar to t hose observed in galaxy clusters. The colour-clustercentric 

radius relation observed in galaxy clusters out to z rv 0.3 (Goto et al. , 2004) is seen in 

the colour versus radius plots of Groups llO and 308 (Figure 5.2) , which shows a clear 

increase of blue galaxies with radius. In Group llO, the 9 - T value for the galaxies 

within 0.4 Nlpc of t he group center is 0.728 ± 0.033 , while 9 - T = 0. 549 ± 0.044 

for galaxies with radii beyond 0.4 Mpc. Group 308 shows a similar decreasing trend 

with 9 - T = 0.558 ± 0.054 for galaxies within 0.4 Mpc and 9 - T = 0.504 ± 0.054 for 

galaxies outside t his radius. 

The 9 - T versus radius plots for our t hree classified non-Gaussian groups (138, 

226 and 346) are shown in Figure 5.3. Unlike the colour-radius plots for t he Gaussian 

groups (Figure 5.2) , the colour-radius relation is not observed in any of t hese t hree 

groups. In fact , each of t he plots for Groups 138, 226 and 346 (Figure 5.3) show 

some interesting and unexpected features. Group 138 has a rising VDP (Figure 5.1 ), 

a possible indication of a minor or major interaction and one might expect t his group 

to have a high frA ction of blue galaxies , especially at the edge of t he group where 

t idal effects would be the strongest. From Figure 5.3, we see t hat Group 138 has only 
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1 member galaxy wit h 9 - T < 0.5, which lies relatively close to the group centroid 

at 0.3 NIpc. In contrast to the Gaussian groups, t he mean colour of t he galaxies in 

Group 138 appear to remain flat wit h radius, with 9 - T = 0.593 ± 0.047 for members 

within 0. 4 NIpc of the group cent roid and 9 - T = 0.612 ± 0.012 for galaxies between 

0.4 - 1.0 Mpc of t he center. Group 226 also shmvs no significant increase of blue 

galaxies with radius (Figure 5.3) , wit h the 9 - T = 0.569 ± 0.065 for galaxies within 

0.4 NIpc of the group center and 9 - T = 0.510 ± 0.035 for galaxies beyond this radius. 

Similarly to Groups 138 and 226 , the colour-radius relation is not evident in Group 

346 (Figure 5.3) , where the mean values are 9 - T = 0.623 ± 0.057 for galaxies within 

0.4 NIpc of t he group centroid , and 9 - T = 0.630 ± 0.033 for galaxies between 0.4 -

1.0 of t he center. 

Based on t hese results , it would appear that Gaussian groups obviously follow the 

colour-radius relation seen in clusters, with visible negative gradients in their 9 - T 

versus radius plots. The non-Gaussian groups show no visible correlation between 

colour and radius, and the mean 9 - T values remain relatively flat for galaxies wit hin 

0.4 NIpc of the group center and t hose betvveen 0.4 - 1.0 Mpc of t he center. 

as : 

We also look at the fraction of blue galaxies (hereafter ib) of each group , defined 

f _ n(g - T < 0.5) 
J b -

n(all members) 
(5.3) 

\"'e choose a 9 - T value of 0.5 to distinguish between the red sequence and blue cloud 

based on the 9 - T histograms for the stacked CNOC2 groups (Figures 5.10 and 5. 12) 

discussed in detail in Chapter 5.2.2. 

The ib values differ between the two Gaussian groups, with Group no having 

30% blue galaxies and Group 308 having 44% blue galaxies. The range in ib values 

is even more significant when we look at t he non-Gaussian groups. Group 138 has a 

very Imv fract ion of blue galaxies with only 4%, Group 226 has the highest ib value of 

44% and Group 346 has an ib value of 27%. Contrary to what was expected , we do 
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not find any trends or differences in the fraction of blue galaxies in t he five, n 2': 20, 

CNOC2 groups. This result is quite interesting, as the VDPs of the non-Gaussian 

groups show a rising trend with radius (Figure 5.1 ), a possible indicator of galaxy 

interactions or merger activity, which is expected to trigger star formation and t hus 

increase the blue fraction. 

Vife emphasize that although we do not observe correlations in these five groups, 

we do not exclude the possibility that in general a trend may exist in the fb values 

of Gaussian and non-Gaussian groups (see Chapter 5.2.2 and 5.2.3 for discussion on 

the colour-magnitude and -radius plots of stacked groups). 

jGroup 110j jGroup 3081 

0.8 '''. 0.8 . .. 0 0 00 

0 
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0 0.2 0.0 O.G 0.8 0 0.2 0.0 O.G 0.8 
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Figure 5.2: Left: Colour-radius plot for Group 110. Right: Colour-radius plot for 
Group 308. The closed symbols indicate t hat t hese groups have been classified as 
Gaussian by the A- D test . 
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Figure 5.3: Top-left: Colour-radius plot for Group 138. Top-right: Colour-radius 
plot for Group 226 . Bottom: Colour-radius plot for Group 346 . The open symbols 
indicate that t hese groups have failed the A- D test and are classified as non-Gaussian. 
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5.1.3 Stellar Mass 

Balogh et al. (2007) obtained near-infrared (NIR) imaging for 58 CNOC2 groups , from 

the Isaac Newton Group Red Imaging Device (INGRID) on t he vVilliam Herschel Tele

scope and from t he Infrared Array Camera (IRAC) on the Spitzer Space Telescope. 

Of the 58 observed groups, 29(38) of the groups have good INGRID(IRAC) coverage , 

which are listed in Table 1 of Balogh et al. (2007). Using either combined NIR and 

optical or optical only imaging, estimates of the stellar mass per galaxy in the CNOC2 

groups is obtained via spectral energy distribution (SED) fitting. This method in

volves broadband photometry and finding t he best-fit templates to t he SEDs. From 

these fits , one is able to determine properties such as star formation rates (SFRs) , 

metallicities and stellar masses. For t he CN OC2 groups, Balogh et al. (2007) use 

t he Bruzual & Charlot (2003) stellar population model and the two-component dust 

model of Charlot & Fall (2000) to fit the SEDs. 

vVe plot stellar mass per galaxy versus radius for the two Gaussian groups in Fig

ure 5.4, where we see that Groups 110 and 308 show a similar trend of decreasing 

stellar mass content with radius. Both Gaussian groups have a gala..'{y with a maxi

mum stellar mass of rv 2.2 X 1011 j\!I0 close to the group center. Past a radius of 0.4 

lVlpc, we do not observe any galaxies with stellar masses> 3 x 1010 j\10 ' 

The stellar mass versus radius plots for the three non-Gaussian groups (Figure 

5.5) show much more scatter than the Gaussian groups . For Groups 138 and 226 , 

t he galaxy with the maximum stellar mass does not lie close to t he group center, as 

with t he Gaussian groups, but beyond a radius of 0.4 Mpc. Also with t he Gaussian 

groups, we find t hat at larger radii the stellar mass values of the gala..'{ies decreased 

significantly from t hose closer to the group center. This is a trend that we do not 

observe in Groups 138, 226 and 346 (non-Gaussian) , which all have gala..'{ies vvith 

stellar masses> 5 x 1010 j\10 at the very edge of t he group. 

It should be noted that estimates of stellar mass are currently being improved 

with the addition of GALEX and MIPS 24 f.Lm photometry, which will allow for a 
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more accurate comparison between t he Gaussian and non-Gaussian groups. 
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Figure 5.4: Left: Stellar mass vs radius radius plot for Group llO. Right : Stellar 
mass vs radius plot for Group 308. The closed symbols indicate that these groups 
have been classified as Gaussian by the A- D test. 
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Figure 5.5: Top-left : Stellar mass vs radius plot for Group 138. Top-right : Stellar 
mass vs radius plot for Group 226. Bottom: Stellar mass vs radius plot for Group 
346. The open symbols indicate t hat these groups have failed t he A- D test and are 
classified as non-Gaussian . 
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5.2 Stacked Group Properties 

One of t he goals of t his project was to compare group properties of the Gaussian 

and non-Gaussian groups to see if any obvious t rends would emerge . This task is 

extremely challenging due to the small sizes of the majority of the CNOC2 groups 

(Figure 4.2) and it is impossible to dmw conclusions about radial trends, for example, 

for a group wit h 5 members. Analysis of our largest galaxy groups, examined in §1 

of Chapter 5, showed some possible trends, but since our sample contained only five 

groups it is difficult to claim t hat any of t he observed correlations were t rue for all 

Gaussian or non-Gaussian groups. One way to overcome this issue is to st ack the 

groups classified as eit her Gaussian or non-Gaussian by the A- D test and study t he 

stacked group propert ies. This method increases our sample size and thus allows us 

to more adequately search for trends. The st acked Gaussian group is a composite 

of 598 member galaxies that lie wit hin 1 Mpc of the group center and t he stacked 

non-Gaussian groups contains a total of 314 member galaxies which lie within our 

radius cut. 

5.2.1 Velocity Dispersion Profiles 

In §1.1 of this chapter , we presented VDPs for five individual CN OC2 groups, wit h 

n ~ 20 (Figure 5.1 ), and concluded that t he profiles of the rich groups classified as 

non-Gaussian by t he A- D test showed distinctive features , i. e., rising profiles, from 

the classified Gaussian groups. Although, t his result suggests t hat the non-Gaussian 

groups, 138, 226 and 346, are dynamically more complex than Groups 110 and 308 

(Gaussian), we could not make any statements about t he profiles of all groups clas

sified as non-Gaussian (or Gaussian) based on such a small sample. Therefore, in 

order t o search for general t rends we compute VDPs for the stacked Gaussian and 

non-Gaussian groups, following the method out lined in §1.1 of this chapter. T he 

profiles of both stacked Gaussian (open circles) and non-Gaussian (closed t riangles) 
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groups are show in Figure 5.6 . From these profiles it would appear that t he combined 

non-Gaussian groups have a higher ap than t he combined Gaussian groups, wit h a 

peak value of rv 630 km S- l , significant ly more than t he peak Gaussian group ap of rv 

440 km S- l. However , "vhen we compute t he velocity dispersion of the stacked groups, 

using the Gapper algorithm (Equation 3.1 ), we find that aGapper = 462 ± 111 km 

S-l for the stacked Gaussian groups and aGapper = 611 ± 173 km S- l for t he stacked 

non-Gaussian groups, indicating that velocity dispersions of the stacked Gaussian and 

non-Gaussian groups are in fact in agreement within error. 

The profile of the stacked non-Gaussian groups shows an overall rising t rend , span

ning roughly 150 km S-l, which is larger than the mean intrinsic velocity dispersion 

error of 125 km S-l computed by W051 . The rising t rend seen in the non-Gaussian 

groups differs from t he relatively flat t rend seen in Gaussian groups, wit h a projected 

dispersion range of only rv 40 km S-l . 

1 We can quali tatively use the errors computed by VV05 since our fi nal intrinsic velocity dispersion 
values are comparable (see Chapter 4.2) 
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Figure 5.6: Velocity dispersion profiles for all the stacked Gaussian (triangle) and 
non-Gaussian (circles) groups. 
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To ensure that the features shown in Figure 5.6 are indeed real, and not driven 

by the individual rich groups, we compute VDPs of t he stacked groups excluding 

the rich, n 2 20, groups. The stacked Gaussian groups novv contain a total of 547 

member galaxies , while the stacked non-Gaussian groups are now a composite of 

240 members. The results of our stacked (n :s 20) VDPs are plotted in Figure 

5.7, where we see that the higher ap values of t he combined non-Gaussian groups 

over the Gaussian groups almost disappears. The computed velocity dispersions now 

become aGapper = 489 ± 148 km S- 1 for the stacked non-Gaussian groups and 

aGapper = 456 ± 112 km S-1 for t he stacked Gaussian groups. Similarly to t he 

dispersion values when all groups are included, the velocity dispersions of the stacked 

n < 20 Gaussian and non-Gaussian groups are also in good agreement , suggesting 

that there is no significant difference in the velocity dispersions of the relaxed and 

dynamically complex groups. 

The rising trend seen with all non-Gaussian groups combined, is arguably still 

observed when we exclude t he n 2 20 groups, but t he slope is less steep , spanning a 

smaller ap range of rv 110 km S-1 , which is equivalent to the mean int rinsic velocity 

dispersion error (Vi05 ) . The overall shape of t he stacked Gaussian groups , minus 

the two n 2 20 groups (110 and 308) , does not change significantly from t he profile 

that includes all groups, maintaining a generally flat trend and covering the same a p 

range. 
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Figure 5.7: Velocity dispersion profiles of the stacked Gaussian (triangle) and non
Gaussian (circles) groups, excluding the n 2: 20 groups. 
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In general, "vhen we stack all 106 CNOC2 groups in our sample, we find that t he 

VDP shown in F igure 5.8 seems to follow a general fiat t rend , wit h t he projected 

velocity dispersion values covering a range of 100 km S- 1 , which is less t han t he mean 

int rinsic velocity dispersion error of 125 km S- 1. Alt hough, it should be noted t hat 

t he stacked VDP could also be interpreted as increasing with radius. Since the range 

in dispersion values is only slight ly less than the mean int rinsic velocity dispersion 

error , we cannot defini t ively rule out the possibility that the observed rising profile 

is not real feature of t he groups. 

Other methods of comput ing projected VDPs for the CNOC2 groups have resulted 

in confiicting conclusions. Carlberg et al. (2001 ) derived projected velocity dispersions 

of t he CNOC2 groups by modelling t he projection of a three-dimensional velocity 

dispersion. T hey found t hat t he projected VDP rose slowly wit h radius. Conversely, 

Parker et al. (2005) obtained weak-lensing signals for a sample of 116 CNOC2 galaxy 

groups and found t hat t he projected velocity dispersion decreased wit h radius, which 

is similar to t he profiles of observed galaxy clusters (Girardi et al. , 2002; Lokas & 

Mamon, 2003) . In studies of other group catalogs , Zabludoff & Mulchaey (1 998), 

Girardi et al. (2002) and Brough et al. (2006) also found t hat the velocity dispersion 

profiles fell wit h radius. 
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Figure 5.8: Velocity dispersion profile of t he stacked 106 CNOC2 groups wit h n 2: 5 
after a 1 Mpc radius cut. 
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5.2.2 Colour - Magnitude 

T he bimodal nature of t he galaxy rest-frame colour-magnitude diagrams (hereafter 

CMD) is now well established , with the majority of galaxies falling in either the red 

sequence or blue cloud and it is believed that t his trend was already in place by 

z rv 1 (Bell et a1. , 2004). Hogg et a1. (2002) show wit h the SDSS catalog that t he red 

sequence mainly consists of early-type galaxies, wit h little or no star formation, while 

the blue cloud is dominated by late-type (spiral) galaxies , where star formation is 

on-going. In Chapter 1, ,ve discussed how the increased galaxy interaction or merger 

rates in the group environment (Brough et a1. , 2006) could trigger star format ion in 

groups where t hese processes occur. This would suggest t hat t he dynamically com

plex groups should have more galaxies on t he blue cloud t han groups t hat are relaxed 

and virialized . Therefore , if t he groups classified as non-Gaussian by t he A- D test 

are indeed dynamically more complex, we would expect them to have more members 

which are morphologically late-type gala...'Cies . 

In Figure 5.9 we plot colour versus magnitude (g - r vs 1'\1,.) of t he stacked Gaus

sian groups, where we clearly observe a distinct red sequence and blue cloud. The 

bimodality of the stacked Gaussian group CMD is also seen in t he 9 - r histogram 

shown in Figure 5. 10, where we see two clear peaks. From t his histogram, it appears 

t hat 9 - 1" = 0.5 defines t he line between gala...'Cies which are on t he red sequence and 

those that are in the blue cloud. Of the 598 galaxies , only 113 fall below 9 - r < 0. 5, 

indicating t hat over 80% of the Gaussian group members lie in t he red sequence. This 

result is in agreement wit h our claim t hat groups with underlying Gaussian velocity 

distributions are indeed relaxed and virialized systems, similar to observations of t he 

know well-established heavily populated red sequence observed in clusters (Gladders 

& Yee , 2000). 
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In Figure 5.11 "ve plot 9 - r vs NI,. for t he stacked non-Gaussian groups. Here, we 

also see a distinCt red sequence and blue cloud, which is also shown in Figure 5.12 

wit h a double peak in the 9 - r histogram. Similarly to t he colour histogram for the 

stacked Gaussian groups (Figure 5. 10) , t he distinction between red sequence and blue 

cloud appears to lie at 9 - r ~ 0.5. Qualitatively, there do not appear to be a higher 

fraction of galaxies in t he blue cloud of the non-Gaussian groups (Figure 5.11) , but 

when we compute the percentage of members wit h 9 - r < 0.5, t he fb , we find t hat 

"-' 42% of galaxies lie in the blue cloud. Thus, t he stacked non-Gaussian groups have 

2: 20% more blue galaxies t han t he combined Gaussian groups. Since galaxies in 

t he blue cloud are generally late-type star forming galaxies, the results of our stacked 

colour-magnitude diagrams support our claim t hat classified non-Gaussian groups are 

dynamically more complex systems and have increased SFRs. 
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5.2.3 Colour-Radius 

In §1.2 of t his chapter we compared colour versus radius plots of t he five Gaussian 

and non-Gaussian CNOC2 groups wit h n 2: 20 and found that t he two Gaussian 

groups (110 and 308) followed the colour-radius relation observed in clusters, while 

t he non-Gaussian groups (138 ,226 and 346) did not show any obvious correlations . 

Vie now look at t he colour versus radius plots of the stacked Gaussian (Figure 5. 13) 

and non-Gaussian (Figure 5. 15) groups to see if t he trends observed in the individual 

groups are still present. 

When we combine all of t he galaxies in the groups classified as Gaussian by the 

A- D test, we find that the colour-radius relation observed in Groups 110 and 308 does 

not appear to exist in t he colour versus radius plot (Figure 5.13), wit h galaxies pop

ulating the entire colour range of 0.1 ::; 9 - r ::; 0.9 from the center of t he group out 

to 1.0 Mpc and showing no visible gradient. However , when the mean colours for t he 

galaxies within 0.4 Mpc of t he group center are computed, we find that 9 - r = 0.605 

± 0.009 , while 9 - r = 0.508 ± 0.012 for galaxies in the group-centric radius range of 

0.4 - 1.0 Mpc. These mean values suggest that the colour-radius relation observed in 

t he rich individual galaxy groups (Figure 5.2) is still present when one stacks all of 

the classified Gaussian groups. In Figure 5.14, we compute the 9 - r values in bins of 

0.1 Mpc and find that the cluster population gradient , an increase of the blue fraction 

with radius (Ellingson et al. , 2001) , is also observed in t he stacked Gaussian groups. 

"Ale performed a weighted least square fit on Figure 5.14 and found t he slope to be 

consistent with a non-zero negative value. 

Similarly, t he colour versus radius plot for t he stacked non-Gaussian groups (Fig

ure 5.15) show similar features as the rich individual non-Gaussian groups (Figure 

5.3), showing no correlation between colour and radius. Computing t he 9 - T value 

for galaxies in t he inner and outer regions of t he group furt her indicates t hat there 

is no correlation between colour and radius for t he non-Gaussian groups, where we 

find t hat 9 - r = 0.534 ± 0.014 for galaxies within 0.4 Mpc of t he group centroid and 
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g - r = 0.526 ± 0.13 for galaxies beyond 0.4 iVIpc. The lack of a population gradient is 

better observed vvhen we look at t he binned g - r values , shown in Figure 5. 16, where 

we observe a relatively flat trend , as opposed to the clear negative slope observed in 

t he stacked Gaussian groups (Figure 5.14). We carried out a weighted least square 

fit for Figure 5.16 and found the slope to be consistent with zero . 

VVe reiterate that although stacking groups is needed, we cannot claim that the 

colour-radius relation does not exist in the classified non-Gaussian groups, as t he the 

wide range in redshift and velocity dispersion in our group sample may affect our 

results. ' 1I/e would require a large sample of groups at the same redshift and in a 

smaller dispersion range in order to effectively rule out any correlations or alterna

tively applying a more sophisticated method of stacking our groups , with a proper 

normalization scheme which would allow us to better compare groups at different 

redshifts and dispersions. 
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Figure 5.15: Colour-Radius diagram of all stacked non-Gaussian Groups. 
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5.2.4 Star Formation Rate: o [II] Equivalent Widths 

In addit ion to colour , there are other frequent ly used indicators of star formation. 

In particular , indicators of specific star formation rates (hereafter SSFR) , defined as 

t he star formation rate per unit stellar mass , such as Ho: and O[II]A3727 emission 

line equivalent widths (hereafter E\i\T [Ho:] and EvV[OIIJ) and K-band luminosit ies , al

low for the study of how star formation contributes to t he grovvth of galaxies (Bauer 

et al. , 2005) . T he bimodal nature observed in galaxy populations is also present in 

measures of SSFRs. Balogh et al. (2004) used EW[Ho:] as an indicator of SSFR to 

show t hat galaxies that reside in the group environment form two distinct popula

tions , star-forming and quiescent galaxies. This result is similar to the red sequence 

and blue cloud galaxy populations observed in t he CMDs of galaxy clusters. 

Alt hough EW[Ho:] is often used to determine SSFR, the Ho: emission line is not 

visible with t he LDSS2 spectrograph beyond z rv 0. 21 , t hus in t he CNOC2 redshift 

range of 0.3 ::; z ::; 0.55, W05 measures SSFR using EVl[OII], targeting 20 CN OC2 

groups and 6 serendipitous groups. 

The results of our stacked Cj\lIDs (see Chapter 5.2.2) indicated that the non

Gaussian groups had a higher fraction of galaxies in the blue cloud. Based on this 

result one would expect measures of SSFR to also be higher for t he stacked non

Gaussian groups, since blue galaxies are generally star-forming. Following \i\Tilman 

et al. (2005a) we employ a division at EW[OII] = 5 A to distinguish between passive 

(EW[OII] < 5 A) and star-forming (EW[OII] 2: 5 A) galaxies. Based on this definit ion , 

\ve find no significant difference in t he fraction of star-forming galaxies between t he 

Gaussian (Figure 5. 17) and non-Gaussian (Figure 5.1 8) groups. For the non-Gaussian 

groups, there are 144 galEL'Cies wit h measured EW[OII], 52% of which have equivalent 

widths > 5 A. T here are 146 galaxies with measured EVl [OII] for the Gaussian groups 

and 56% have values > 5 A. These results indicate that t he members of the non-

Gaussian groups do not have more star-forming galaxies , which seems to contradict 

t he results of CMDs (Figure 5.9 and 5. ll ) which show t hat the non-Gaussian groups 
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have 20% more galaxies in the blue cloud. 

Alt hough we do not observe any significant differences in t he E\iV [OII] values be

tween the Gaussian and non-Gaussian groups, t here does appear to be a t rend , for 

both categories, wit h radius. From Figures 5.17 and 5.18, it is clear t hat there is a 

large concentration of galaxies with EvV[OII] < 5 A close to t he group center . As you 

move out towards the edge of the group , t he number of star-forming (E\iV [OII] > 5 

A) increases . 

It should be noted t hat alt hough t he o [II] is used an indicator of star formation 

at intermediate redshifts , Jansen et al. (2001) claim that it is in fact not t he best 

measure of SFR due to the effects of reddening and metallicity-dependent excitations 

in the interstellar medium. Addit ionally, t hese aut hor find t hat the O[IIl/Ret ratio is 

higher , by a factor of rv 7, for lovver luminosity galaxies. Current ly better indicators 

of SFRs, using GALEX and t-lIIPS 24 Jlm observations, are being obtained and will 

be available for comparison. 
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5.2.5 Stellar Mass 

In §1.4 of t his chapter , we compared t he stellar mass per galaxy of individual CNOC2 

groups wit h n 2: 20. Here we compare t he stellar mass versus radius plots of t he 

stacked Gaussian (Figure 5.19) and non-Gaussian (Figure 5.20) groups. Both t he 

stacked Gaussian and non-Gaussian groups show a similar t rend ,vit h radius. \ l\Tith 

the except ion of a few galaxies , the stellar mass content of t he galaxies decreases with 

increasing radius, a t rend observed in Groups 110 and 308 (Figure 5.4). Conversely, 

t he scatter seen in the individual non-Gaussian groups (Figure 5.5) seems to disap

pear when we stack all of t he galaxies in the classified non-Gaussian groups together. 

The stellar masses in Figure 5.20 now appear t o follow a stellar-mass versus radius 

trend , although the gradient is stronger in the stacked Gaussian group. The galaxies 

wit h the highest stellar mass per galaxy generally lie close to t he group centers for 

the stacked non-Gaussian groups , where as in Groups 138 and 226, t he high st ellar 

mass galaxies fell closer to the edge of the group. 

Another feature observed in the individual Gaussian groups was that at radii > 

0.4 Mpc, there were no gala-'Cies with stellar masses> 3 x 1010 M0 . This is not t rue 

of the stacked Gaussian groups (Figure 5.19), where t here are several galaxies with 

stellar masses of rv 1 X 1011 M0 out to 1 Mpc. This feature is observed for both t he 

individual and stacked non-Gaussian groups. 

A qualitative comparison of t he stellar mass versus radius plots for the stacked 

Gaussian and non-Gaussian groups appears to show no significant difference between 

t he two categories. Bot h Figures 5. 19 and 5.20 exhibit stellar mass versus radius 

t rends, and have galaxies wit h similar maximum stellar mass content (rv 3 X 1011 

M0 )' In t he fut ure we intend to perform a quantitative comparison of t hese two dis

t ribut ions using a two dimensional Kolmogorov-Smirnov test to accurately determine 

whether or not t hese two distributions are similar. 
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Conclusions 

Analysis of galaxy group dynamics requires t he use of tools t hat are reliable and 

powerful for small sample sizes . We have applied t hree goodness-of-fi t tests , the X2
, 

Kolmogorov and Anderson- Darling tests , to a subset of t he CNOC2 groups in order 

to determine which test can best classify galaxy group dynamics . Based on our init ial 

application of the aforementioned tests and on t he results of our Monte Carlo sim

ulations and power studies, we conclude that t he Anderson- Darling test is the most 

reliable statistic to distinguish between relaxed (Gaussian) and dynamically complex 

(non-Gaussian) groups. The problems introduced by small sample sizes for t he X2 test 

and t he lack of power and sensitivity of t he Kolmogorov test rule out these statistics 

as useful classification tools. 

The results of our ~/Ionte Carlo simulations for t he Gapper Estimator (Equation 

3.1) and rms dispersion calculations indicate t hat for small sample size, n < 50, t he 

Gapper algorithm is a more accurate estimate of t he true velocity dispersion , which 

is in agreement with Beers et al. (1990). 

VVe t hen apply the Anderson- Darling test to all CNOC2 groups with nmembers 2:: 5, 

after a 1 Mpc radius cut , using the mean velocity of the group members as t he es

t imated f-L and the intrinsic velocity dispersion (Equation 4.3) as the estimated o . 

The groups are then classified as being in eit her a relaxed (Gaussian) or complex 

91 
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(non-Gaussian) dynamical system , based on the a = 0.05 crit ical value. T he results 

of our analysis indicate that 34 of the 106, or rv 32% of the sample of CNOC2 groups 

are non-Gaussian. 

To investigate our claim that classified non-Gaussian groups are indeed dynami

cally more complex than Gaussian ones, we look at t he velocity dispersion profiles of 

5 CNOC2 groups wit h nmembers 2: 20. Analysis of t he resulting profiles indicates t hat; 

1. The profiles of t he 2 Gaussian groups (110 and 308) sho,v a declining projected 

velocity dispersion with radius; 

2. Two non-Gaussian groups (138 and 346) have rising profiles , a possible signature 

of merger activity (l\IIenci & Fusco-Femiano, 1996) , and ; 

3. The profile of Group 110 flattens towards larger radii , a trend observed by 

Girardi et al. (1996) in galaxy clusters. 

VIle find t hat the VDPs of the Gaussian and non-Gaussian groups are distinct , sup

porting our claim that the classified non-Gaussian groups are dynamically different 

from the Gaussian systems. 

In our comparison of t he group properties of t he 5 rich , 11, 2: 20, CNOC2 groups, 

classified as either Gaussian (Groups 110 and 308) or non-Gaussian (Groups 138, 226 

and 346) by the Anderson- Darling test , we conclude that: 

1. Groups 110 and 308 appear to follow the colour-radius relation observed in 

clusters , while Groups 138, 226 and 346 show no visible correlation between 

colour and radius, alt hough there is an increase of blue galaxies with radius for 

Groups 226 and 346; 

2. The average stellar mass per galaxy of Groups 110 and 308 decreases wit h 

radius , while Groups 138, 226 and 346 show no obvious stellar mass-radius 

trend; 
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We also look at t he group propert ies for the stacked Gaussian and non-Gaussian 

groups and find t hat in general the trends observed in t he individual rich groups tend 

to disappear when all the galaxies are stacked together. Comparison of t he stacked 

group properties indicates; 

1. The VDP of t he stacked non-Gaussian groups, including all groups with n ~ 5, 

rises with radius, while the stacked Gaussian group profiles is consistent with 

being flat ; 

2. The velocity dispersions, ([Capper , of t he stacked Gaussian and non-Gaussian 

groups are in agreement to within error ; 

3. The VDPs of the stacked groups, excluding the n ~ 20 groups, shows that the 

profile of t he non-Gaussian groups still rises, but less steeply, while t he VDP 

of the Gaussian groups remains flat , and also t he computed velocity dispersion 

for both stacked groups is relatively the same; 

4. Stacking t he galaxies in all 106 CNOC2 groups produces a profile t hat is con

sistent with being flat wit h radius; 

5. We compute the fraction of blue galaxies , lb , from the stacked colour-magnitude 

diagrams and find that t he non-Gaussian groups have 20% more galaxies in the 

blue cloud than the Gaussian groups; 

6. The stacked Gaussian groups show an increase of blue galaxies with radius, 

while t he stacked non-Gaussian groups show no correlation between colour and 

radius; 

7. The EvV [OII] values also show no significant difference between t he Gaussian 

and non-Gaussian groups, alt hough both groups do exhibit a slight trend wit h 

radius; 
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8. Both the Gaussian and non-Gaussian groups have decreasing average stellar 

mass per galaxy with radius; 

\ lI,!e emphasize t hat although we may not observe some t rends, 'love do not exclude the 

possibility that t hey may exist . Combining galaxies in groups from such a wide range 

of velocity dispersion and sizes could wash out real trends. Also, a more sophisticated 

method of stacking the groups, i. e., normalizing the groups to the virial radius or to 

a specific velocity dispersion or mass , would reduce these effects. 

Recent ly, Finoguenov et al. (2009) have observed 25 X-ray selected groups in two 

of t he CNOC2 fields, with 6 groups having CNOC2 optical counterparts , Groups 1, 

11 , 28 , 104, 117, and 138. X-ray bright groups are of particular interest , as only groups 

in a relaxed dynamical state are expected to produce extended X-ray emissions. In 

a preliminary analysis of the 6 groups with both optical and X-ray observations, we 

find that Groups 1, 11 , 28 , 104 and 117 ha;ve all been classified as having underlying 

Gaussian velocity distribut ions by the Anderson- Darling test , as we had expected . 

The really interesting case is Group 138 , which is one of t he brightest X-ray sources 

in t he field , but has been classified as non-Gaussian and also has a rising velocity dis

persion profile. The colour-radius and SFR-radius t rends discussed in §1 of Chapter 

5 also indicate that Group 138 is a more complex environment than one would have 

imagined and further analysis and comparison of optically- and X-ray selected groups 

is required to better understand t he dynamics of galaxy groups. 

Based on our analysis of several statistical tools, we conclude that the Anderson

Darling goodness-of-fit test is the most reliable statistical tool for classification of 

galaxy group dynamics . Although we have used t his test to determine departures 

from normality, its application is not restricted to Gaussian distributions and can be 

used with many continuous or discrete distribut ions. Not only is this test reliable 

and powerful , especially when dealing with small sample sizes, but its application is 

simple and has the potential to be useful in many other areas of astronomy. 

F\lture work will include furt her comparison of group properties , which will be 
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updated with MIPS and GALEX observations, allowing us to better identify corre

lations between the dynamical state of the group and its properties. vVe also plan 

to study the dynamics of X-ray selected galaxy groups (Connelly, J . et aI, in prep; 

Finoguenov et a1. (2009)) in t he CNOC2 fields , comparing optically versus X-ray 

selected groups. A detailed study of simulated galaxy groups will allow us to under

stand the relationship between velocity dispersion and mass for systems in different 

dynamical states. Simulations will also help us to quantify how projection and con

tamination by interloping galaxies affect our measured velocity distributions. Finally, 

we aim to improve our classification of relaxed versus dynamically complex groups by 

adding spatial information to the velocity distribution , allowing us to identify both 

substructure and non-Gaussian velocity distributions. 
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1 Complementary Analysis 

In private communication with John Mulchaey 1 , we obtained a sample of 9 X-ray 

selected gal~'{y groups in the local Universe (:z = 0.0268) , observed at the Chandra 

X-Ray Observatory. The group properties are given in Table 1. 

Table 1: Group Properties of the local X-ray selected Groups obtained from Mulchaey. 

Chandra ID Alt. name RA DEC z 
RXCJ1204.4+ 0154 lVIK\tV 4 181.1065 1.9010 0.0203 
RXCJ1223.1 + 1037 NGC 4325 185.7772 10.6240 0.0255 
RXCJ1324.1 + 1358 NGC 5129 201.0497 13.9792 0.0233 
RXCJ1440.6+ 0328 MKW8 220.1592 3.4765 0.0269 
IL'CCJ1604.9+ 2355 AWM4 241.2377 23 .9206 0.0321 
RXCJ1617.5+3458 NGC 6107 244.3635 34.9367 0.0310 
RXCJ 1627.6+4055 A2197 246.9173 40.9197 0.0307 
RXCJ1658.0+ 2751 AWM5 254.5032 27.8544 0.0347 

NGC 2563 125.1017 21.0961 0.0163 

Since these are rich (n > 20) X-ray bright, local groups, one would expect that 

they are probably virialized and relaxed systems. Thus , we apply the Anderson

Darling test on these groups to determine if their velocity distributions are consistent 

with an underlying Gaussian distribution. The results of our analysis are given in 

Table 2. 

I Observatories of t he Carnegie Institution, 813 Santa Barbara Street , Pasadena, California, USA 
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Table 2: Results of Statistical Analysis of the local X-ray selected Groups obtained 
from M ulchaey. 

Group n O"gCtpper A2* 
RXCJ1204 52 626 0.387 
RXCJ1223 23 362 0.115 
RXCJ1324 23 346 0.442 
RXCJ1440 64 459 0.436 
RXCJ1604 43 463 0.296 
RXCJ1617 57 595 0.161 
RXCJ1627 67 605 0.683 
RXCJ1658 45 564 0.164 
NGC2563 63 370 0.195 

At the 5% confidence level, 8 of the 9 groups are classified as having underlying 

Gaussian velocity dist ributions, with RXCJ1627 failing at t he same level. T his inter

esting result requires further analysis to determine if this group is truly dynamically 

complex or whether this is a false negative. 

We also compute VDPs for these groups following the method outline in §1.1 of 

Chapter 5, using a width t hat is 1/ 3 t he maximum group-centric radius, which are 

shO\ovn if Figure A. 1. It is difficult to comment on any profiles trends without knowl

edge of the velocity errors. The profiles for RXCJ1204, 1617, 1627 and NGC 2563 

appear to be decreasing "vith radius, with their projected velocity dispersions covering 

a range> 60 km S-I. \iVhile RXCJ 1223 and 1440 may have VDPs consistent wit h 

flat profiles , since their projected velocity dispersions cover a much smaller range of 

10-15 km S- I. The groups RXCJ1224, 1605 and 1658 appear to have increasing pro

fi les with radius, but we emphasize t hat this feature may not be real if the velocity 

errors are larger the range in dispersion covered. 
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Figure 1: Velocity dispersion profiles of the 9 X-ray selected local groups observed by 
John Mulchaey. It should be noted t hat t he y-axes ranges differ from plot to plot. 




