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Abstract 
As one of the main objectives of Enterprise Business Applications, high 
availability is becoming more and more important and is a widespread 
concern of customers, architects and developers. But, until now there are 
still no models for computing and evaluating accurately the value of a sys­
tem's availability, and no any feasible and systematic methods to improve 
the availability 'of a software system, which may be made up of several 
patterns, and may be very complex. PBSA(Part Based Software Architec­
ture), as a new analytical model for predicting a complex software system's 
availability, is based on the availability of each component, the properties 
of some main architecture patterns, and the architectural structure of the 
software system itself. It uses a Markov model to translate the evaluation 
process of a system's availability into a Markov Thansfer process, and uses 
the properties of Markov Chains to calculate and predict the probability 
of the whole system's availability. Then based on the model, a sensitivity 
rank for architecture components and factors can be given, and systematic 
strategies for improving the availability property of a complex applica­
tion system can be given. As one of the strategies for improving system 
availability, a new component, named the HA(high availability) manager 
component, is defined and introduced, together with some idea of an HA 
Hierarchy. 
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Introduction 

Early quality prediction at the architecture design stage is highly desired 
by software managers and developers, as it provides a means for making de­
sign decisions and thereby facilitates effective development processes [17]. 
If a design flaw, especially in a large scale software system, is detected in 
the implementation or testing stage, it is more difficult and more expen­
sive to make changes and corrections than at the architecture design stage. 
We claim that a system with low availability without satisfying the quality 
requirement of a system is such a big flaw. Software architecture analysis 
aims at investigating how an architecture meets its quality requirements 
[29], based on the structure and the correlation among the components 
of the software. It not only facilitates component-based software develop­
ment, but also provides a means for early quality prediction. Therefore, 
the quality of component-based software can be predicted by using software 
architecture analysis methodologies. 

Software architecture, which describes the structure of software at 
an abstract level [3,13,16]' consists of a set of components, connectors, and 
configurations. Furthermore, a repeatable pattern that characterizes the 
configurations of components and connectors of a software architecture is 
considered an architecture pattern [4, 18]. Many architecture patterns have 
been identified, with new ones continuously emerging [4, 18, 19]. Thus, an 
architect is faced with the challenges of selecting suitable patterns, or mod­
eling the configuration of selected patterns, for designing the architecture 
for a given software specification. A method or model to predict or evaluate 
the availability of a complex software system, which may be composed of 
heterogeneous patterns, can certainly provide a means through which de­
signers can reconfigure the architecture to best fit their availability quality 
requirements. 

Although high availability is becoming more and more important, 
and is a widespread concern of customers, architects and developers, un­
til now there are still no concrete and quantative models for computing 
accurate value of a system's availability, and no feasible and systematic 
methods to improve the availability of a large scale software system, which 
may be made up of several different patterns, and may be very complex. 
Some qualitative models have been introduced for architecture patterns 
during the past years. But, as we know, many large scale systems are 
composed of several heterogeneous patterns or styles, and may be very 
complex, so using the qualitative model is very hard for practitioners and 
architects to decide how to improve the availability of such a very complex 
software system. In this thesis, we present an analytical model PBSA(Part 
Based Software Architecture), for quantitatively predicting and evaluat-
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ing the availability of a software architecture-based system, based on the 
availability of each component, the properties of some main architecture 
patterns, and the overall architectural structure bf the system. Then based 
on the model, we define a method to build a sensitivity rank for all compo­
nents and availability factors, and then give some feasible and systematic 
strategies for improving the availability property of any general application 
system, which may be made up of different patterns and may have different 
contexts, by spending the least amount of money to get the most efficient 
availability contribution. The model is based on Markov chain properties 
and the transformation from an Architecture view to a state view, and the 
basic concepts of availability. In addition, a new component, named HA 
(high availability) manager component, is introduced, as a tool for helping 
to improve the availability of the whole system, and some idea for an HA 
Hierarchy are given as well. 

In Chapter 1, we give some background for availability and software 
architecture and architecture patterns (styles), and give the relationship 
between availability and reliability. In Chapter 2, we present some quali­
tative analytical models for availability quality analysis. In Chapter 3, we 
introduce a new availability analytical model based on parts, and on soft­
ware architecture, which may be composed of different patterns or styles. 
In this Chapter we also introduce an example to show how to compute 
the availability of an existing system architecture. We introduce a pro­
cedure for reducing a complex large scale system to a pure part normal 
architecture system. In Chapter 4, we present the strategies for choosing 
the most significant components and factors to improve the availability of 
individual components and how to use the strategies together to improve 
the availability of a whole system. Using the same example, we show that 
the availability is improved significantly by adopting the strategy. 

2 
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1 Background 

1.1 Availability 

All kinds of software systems, especially real time and embedded 
systems, are now a central part of our lives. Available functioning of these 
systems is of paramount concern to the millions of users that depend on 
these systems every day. Unfortunately, most such systems still fall short 
of expectation of availability. There are still lots of this or that kind of 
failure. Before discussing the notion of availability, we would like to first 
introduce the characteristics of failures. 

1.1.1 Failure Characteristics 

We can first classify failures into two groups, 00ne of which is hard­
ware failure; the other is software failure. 

Hardware Failure 
Hardware failures can be typically characterized by a bath tub 

curve l . The chance of a hardware failure is high during the initial life 
and during the end life of the module. But the failure rate during the mid­
dle of the life of the product is fairly low. So the hardware vendors offer 
a guideline of failure probability for different terms during the life cycle of 
their products. 

Hardware failures during a product's life can be attributed to the 
following causes: 

• Design failures This class of failures take place due to inherent design 
flaws in the process of system design. In a well designed system, this 
class of failures should make a very small contribution to the total 
number of failures. 

• Random failures Random failures can occur during the entire life of 
a hardware module. These failures can lead to system failure. This 
class of failures can not be avoided totally, but we can find someway 
to make the lost be minimal. HA components and Redundancy are 
such ways, provided to recover from this class of failures. 

• Infant mortality This class of failures cause newly manufactured hard­
ware to fail. This type of failures can be attributed to manufacturing 
problems like poor soldering, leaking capacitor etc. These failures 
should not be present in systems, after leaving factory, as these faults 
will show up in factory system burn in tests. 

lThe curve represents the number of failure times over a time unit. 
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• Wear out Once a hardware module has reached the end of its useful 
life, degradation of component characteristics will cause hardware 
modules to fail. This type of faults can be weeded out by preventive 
maintenance of hardware. 

• Unsuitable use This class of failures cause hardware to fail by not 
giving it a suitable environment. For example, the power system of 
a lab is unsuitable or the air conditioner of the lab is not sufficient. 
This class of failures can be avoided by giving hardware suitable en­
vironment, and meanwhile redundancy can be used to decrease the 
lost. 

Software Failures 
Software failures can be characterized by keeping track of software 

defect density2 in the system. This number can be obtained by keeping 
track of historical software defect history. Defect density will depend on 
the following factors: 

• Complexity of the software. 

• Size of the software. 

e Experience of the team developing the software. 

• Percentage of code reused from a previous stable project. 

• Rigor and depth of testing before product is shipped. 

• Software process used to develop, design and code. 

• Management of a software development life cycle. 

Defect density is typically measured in number of defects per thou­
sand lines of code (defects/KLOC). 

Here are some examples of why Software failures occur: 

• Heap space runs out ---+ memory can not be allocated. 

• Server (or client) goes down ---+ message cannot be sent. 

• File or disk space runs out ---+ file cannot be written. 

• Input is in wrong format---+ data cannot be read or transferred. 

2Number of defects per unit of lines in source code 
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• Interpreter passed a program with a run-time error ---+ cannot inter­
pret . 

• Number is a ---+ cannot divide. 

We have reviewed the concept of failures and know that there are 
two groups of failures, hardware failure and software failure. And we know 
what they are. Then, we now present the idea of availability. 

1.1. 2 What is Availability 

Availability refers to a level of service provided by applications, 
services, or systems. Highly available systems have minimal downtime, 
whether planned or unplanned. Availability is frequently expressed as the 
percentage of time that a service or system is available, for example, 99.9% 
for a service that is unavailable for 8.75 hours per year. 

To define it more clearly and formally, we will introduce some no­
tations first. 

1. MTBF Mean Time Between Failures MTBF, as the name suggests, is 
the average time between failures of hardware or software modules. It 
is the average time a manufacturer estimates before a failure occurs in 
a hardware module or the average time between failures of a software 
system module or component or the entire software system [21]. 

MTBF for hardware modules can be obtained from the vendor for off­
the-shelf hardware modules. MTBF for inhouse developed hardware 
modules is calculated by the hardware team developing the board. 

MTBF for software can be determined by simply multiplying the 
defect rate with KLOCs, executed per second. (We will not talk 
more about this notion, because this is not the most sensitive factor 
affecting the entire system availability). 

2. MTTR Mean Time To Repair (MTTR) , is the time taken to repair a 
failed hardware module or to recover from a failed software module, 
component or software system. In an operational system, repair gen­
erally means replacing the hardware module. Thus hardware MTTR 
could be viewed as mean time to replace a failed hardware module. 
It should be a goal of system designers to allow for a high MTTR 
value and still achieve the system availability goals. In a redundant 
environment, the MTTR for hardware is still the MTTR for a sin­
gle component, and we do not compute the MTTR of a redundancy 
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component groilp, but actually there is MTTR in a redundancy com­
ponent group, we ignore it here, just because it may be small enough 
for us to ignore it, if we use correct HA strategies. 

The MTTR for a software module can be computed as the time taken 
to reboot or maintain after a software fault is detected. The main 
goal of system designers, especially developers, should be to keep the 
software MTTR as low as possible. 

Now we can define the availability of a module3 as follows. 

Definition 1.1 Availability of a module is the percentage of time when 
the module is operational. 

So, the availability of a hardware/software module can be obtained 
by the formula given below: 

MTBF 
A= MTTR+MTBF 

(1) 

Availability is typically specified in nines notation. For example 3-
nines availability corresponds to 99.9% availability. A 5-nines availability 
corresponds to 99.999% availability. 

According to the definition of availability, we know there is a corre­
sponding notion of Downtime. Downtime per year is a more intuitive way 
of understanding the availability. The table below compares the availability 
and the corresponding downtime. 

I Availability I Downtime 

90% (I-nine) 36.5 days/year 
99% (2-nines) 3.65 days/year 
99.9% (3-nines) 8.76 hours/year 
99.99% (4-nines) 52 minutes/year 
99.999% (5-nines) 5 minutes/year 
99.9999% (6-nines) 31 seconds/year 

1.1.3 Why we need high availability 

In the above section, we defined what the availability is. Now, some­
body may have some idea of improving availability by using redundancy or 
by using other means to decrease MTT R or increasing MT B F. All these 
methods clearly first occurred in our mind when we think of availability. 
Except for how to use these methods, we may think it is expensive of the 

3The module here can be a process, a component or a system. 
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methods themselves, and we may doubt whether it is worthy doing them. 
Let us think about a scenario, a simple server crash, and what it costs our 
company. The following is a list of what could happen, in sequence: 

1. A company uses a server to access an application that accepts orders 
and does transactions. (This translates to 'how the company collects 
cash from customers'.) 

2. The application, when it runs, serves not only the sales staff, but 
also three other companies who do business-to-business (B2B) trans- . 
actions. The estimate is that, within one hour's time, the peak money 
made exceeded 30 million dollars. 

3. The server crashes or the application goes down and you do not have 
a High Availability solution in place. 

4. This means no failover, redundancy, or load balancing exists at all. 
It simply fails. 

5. It takes you (the Systems Engineer) 5 minutes to be paged, but about 
15 minutes to get on site. You then take 40 minutes to troubleshoot 
and resolve the. problem. One hour's time is very conservative. 

6. The company's server is brought back online and connections are 
reestablished. The system is tested and deemed physically and logi­
cally fit. 

Everything appears functional again. The problem was simple this time-a 
simple application glitch that caused a service to stop and, once restarted, 
everything was okay. 

Now, the problem with this whole scenario is this: although it was a 
true disaster, it was also a simple one. The systems engineer happened to 
be nearby and was able to diagnose the problem quite quickly. Even better, 
the problem was a simple fix. This easy problem still took the companies' 
shared application down for at least one hour and, if this had been a peak­
time period, over 30 million dollars could have been lost, and even more, if 
there is a lots for other business vendors, then according to the contract, 
your company may pay the compensation for the lots. So now, we may 
wish we had that high availability solution. How much money would it 
take for the company to lose before we paid for the redundancy, the staff 
and their lunches for a year by being proactive? High Availability is based 
on proactive thinking. We are planning for disaster so we will not have to 
react and regret it once it occurs. 

7 
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Another issue that could result in harm from the no protect from 
disaster is losing customer or vendor faith in your company. The companies 
you connect to and do business with as well as your own clientele may start 
to lose faith in your ability to serve them if your web site is not accessible or 
defaced, your database is corrupted, your ERP application is not accessible 
and holding them up from doing business. This could also cost you revenue 
and the possibility of acquiring new clients moving forward. People talk 
and the uneducated could take this small glitch as a major problem with 
your company's people, instead of the technology. 

Let us look at this scenario again, except with a High Availability 
solution in place: 

1. A company uses a Server to access an application that accepts orders 
and does transactions. 

2. The application, when it runs, serves not only the sales staff, but 
also three other companies who do business-to-business (B2B) trans­
actions. The estimate is, within one hour's time, the peak money 
made exceeded 30 million dollars. 

3. The server crashes, or the application fails, but you do have a Highly 
Available solution in place. (Note, at this point, it does not matter 
what the solution is and what kind of redundancy you added into the 
service.) 

4. Server and application are redundant, so when a glitch takes place, 
the redundancy spares the application from failing. 

5. Customers are unaffected. It is transparent for them that our system 
has a switching operation, according to our high availability strategy. 
Business resumes as normal. Nothing is lost and no downtime is 
accumulated. 

6. The one hour cost we saved for our business in downtime, is enough 
for us to pay for the entire Highly Available solution we implemented. 

vVith a plan or policy in place, planning for proactive design and 
use of redundant and resilient services can help us to avert most disasters. 

The days when a daily backup provided adequate protection for a 
business's critical processes are long gone. Today, downtime, any down­
time, translates to real and significant costs, in lost productivity because 
employees can not work, lost business because orders can not be taken, and 
customer dissatisfaction as our downtime translates to their downtime. A 
recent study of 80 large organizations by Infonetics Research found that 
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overall downtime costs averaged an astounding 3.6% of annual revenue. 
Can you afford that kind of bite out of your margins? Well over half 
of all downtime is unplanned. Of that, 80% is due to software and user 
errors: unknown and irreproducible bugs, accidental deletion or configura­
tion changes, batch jobs corrupting important data, and errors from the 
use of hard-to-understand management tools [37]. More importantly, many 
of these occur at predictable times, for example, during database mainte­
nance or batch processing runs. Hence, we need high availability for our 
critical systems. But how to get it? That is a problem of planning first. 

1.1.4 Plan a high availability system 

To plan a high Availability System, we should first get clear the 
requirement of availability. 

Defining the Availability Requirement 

The availability of a service is a complex issue that spans many 
disciplines. Many different approaches can be taken to deliver the required 
levels of availability, each with their own cost implications. 

However, availability requirements can frequently be expressed in 
relatively simplistic terms by the customer and without a full understanding 
of the implications. This situation can lead to misunderstandings between 
the customer and the IT organization, inappropriate levels of investment, 
and ultimately to customer dissatisfaction through inappropriate expecta­
tions being set. 

One expressed requirement for 99.9 percent availability can be dif­
ferent from another requirement for 99.9 percent. One requirement may 
discuss the availability of the hardware platform alone, and the other re­
quirement may discuss the availability of the complete end-to-end service. 
Even the definition of complete end-to-end service availability can vary 
greatly. It is important to understand exactly how any availability require­
ments are to be measured. For example: 

• If all hardware and software on the primary server is functioning 
correctly and user connections are ready to be accepted by the appli­
cation, is the solution considered 100 percent available? 

• If there are 100 users but 15 percent of them can not connect because 
of a local network failure, is the solution still considered 100 percent 
available? 

• If only one user out of the 100 users can connect and process work, 
is only 1 percent available? 

9 



Master Thesis - Rongshu Yi - McMaster - Computing and Software 

• If all 100 users can connect but the service is degraded with only two 
out of three customer transactions being available, or performance is 
poor, how does this affect availability measurements? 

The period over which availability is to be measured can also have 
a significant effect on the definition of availability. A requirement for 99.9 
percent availability over a one-year period allows 8.8 hours of downtime. 
A requirement for 99.9 percent availability over a rolling four-week window 
only allows 40 minutes downtime in each period. 

It is also necessary to identify and negotiate periods of downtime 
for planned maintenance activity, service pack, and software updates. The 
amount of planned downtime that can be tolerated has a significant effect 
on the definition of availability requirements. 

In [30], a scenario-based method for availability requirement defini­
tion is shown. There is a very popular approach to define the availability 
requirement for a software system today. This will be discussed in detail 
in Chapter 2. 

Planning for High Availability 

To ensure that systems are available for requests when called upon, you 
have to plan for the failure of those same resources that are being re­
quested. Hard drives have MTBF (mean time between failure), viruses go 
undetected. There are many ways that a disaster can happen. The only 
way to keep systems 'available' to those who request them is to deploy 
those systems in a manner that will keep them available to those requests 
under these scenarios. 

Either with disk arrays or clustered servers, planned redundancy 
is always a good bet to take when planning for high availability. In this 
thesis we will look at what you need to know to plan for a high availability 
solution that will keep services online and available to those who need them, 
and depend on them. High availability takes some work and effort in the 
beginning. Taking the time to plan and design is the key to maximizing 
the possibility of a successful deployment. The same care must go into 
the design process. High availability design is often complex and requires 
knowing a great many areas within IT to get it right - or the team used 
to plan the high availability solution ends to be diverse. Call that, high 
availability assures uptime, uptime may be the core of the business, so we 
should consider the costs of implementing a highly available solution; one 
failure that causes your serious downtime may be all it takes to have paid 
for the solution in the first place. 

So, to get high availability of a system, we should have a plan first. 

10 
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To build a plan, we should first know exactly the requirement of availability. 
Then as we said in the introduction, if a design flaw, especially in a large 
scale software system, is detected in the implementation or testing phase, 
it is more difficult and more expensive to make changes and correction than 
at the architecture design stage. The low availability, which cannot satisfy 
the quality requirement of customers, of a system is such a great flaw. So, 
it is the responsibility of an architect to make the design decisions to satisfy 
the availability requirement at the architecture design stage. 

We know a lot of approaches to improve high availability, but we do 
not know exactly how to. For example, we know redundancy can be used to 
improve the availability significantly, but which component or components 
should be chosen to use redundancy on? It is unnecessary and impossible 
to use redundancy on all components, especially on clients desktops, except 
if we have too much to spend. In addition, we should know before we make 
decisions at the design stage, which means are the best or most useful 
ways to improve the availability of a system or component. There are 
many ways we can take to improve the availability of a system, such as 
Redundancy, better maintainability, heartbeat monitor, Watchdog and so 
on. The best way is to choose the most sensitive components, use the most 
sensitive means and satisfy the requirement of availability using the least 
cost. In Chapter 3, we show how to calculate the entire system's availability 
using some models, based on component, architectural style(pattern), and 
architecture structure. Then, in Chapter 4, we indicate how to choose the 
most sensitive components and most sensitive means and how to improve 
a single component's availability and how to improve the entire system's 
availability. 

So, we may have the following steps and strategies to build a plan 
for high availability: 

1. Get the requirement for availability, based on the scenarios method 
(see Chapter 2). 

2. Use the model of PBSA (Part Based Software Availability) to com­
pute the availability of current system, based on the PBSA model 
and current architecture structure. 

3. If the result of the availability computed above does not fit for the 
requirement, use availability improvement methods, i.e. choose the 
most sensitive component, and use the most sensitive means, or 
tune the architecture structure to improve the availability of the sys­
tem. Replace the current architecture structure by the improved one, 
delete current component from the sensitivity order list (SOL). 

11 
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4. Repeat steps 2 and 3, until the availability computed satisfies the 
requirement. 

Before we present the PBSA model, we would like to give some 
foundational background for Architecture and Architectural style, and to 
avoid confusion, we would first compare availability with reliability. 

1.1.5 Availability and Reliability 

Availability is defined as the probability that the system is operating 
properly when it is requested for use. In other words, availability is the 
probability that a system is not failed or undergoing a repair action when 
it needs to be used. If not considered carefully, it might seem that if a 
system has a high availability then it should also have a high reliability. 
However, this is not necessarily the case. 

Reliability represents the probability of components, parts and sys­
tems to perform their required functions for a desired period of time, with­
out failure in specified environments and with a desired confidence [8]. 
Reliability, in itself, does not account for any repair actions that may take 
place, while it accounts for the time that it will take the component, part 
or system to fail while it is operating, or the probability of not failing while 
running. It does not reflect how long it will take to get the unit under 
repair back into working condition. 

As we defined earlier in Chapter 1.1.2, availability represents the 
probability that the system is able to offer its function when it is called 
and the system is not failed or undergoing recovery. So clearly, it is not 
only a function of reliability, but also a function of maintainability. 

Below is a relationship table between Reliability, Maintainability, 
and Availability by the eMagazine for the Reliability Professional (Issue 26, 
April 2003), in which an increase in the maintainability means a decrease 
in the fix time when a system fails. 

I Reliability I Maintainability I Availability I 
Constant Decrease Decrease 
Constant Increase Increase 
Increase Constant Increase 
Decrease Constant Decrease 

As we can see from the table, if the reliability is held constant, then 
even at a high value, this does not directly imply a high availability. As 
Maintainability decreases, or the time to repair increases, the availability 
decreases. Even a system with a low reliability could have a high availability 
if the time to repair(MTTR) is very short. 
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So, we can conclude that to increase Availability, there are two ways 
we can go. The first one is to increase reliability, and the second one is to 
increase maintainability. We know that increasing reliability can increase 
MTBF, but the availability of a system is equal to 

IvITBF 

MTTR+MTBF 

Then, to increase availability, we could increase reliability and de­
crease MTTR or at least keep it constant. That increasing Maintainability 
can decrease MTTR is a well known idea [12,20]. 
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1.2 Software Architecture and Quality Attributes 

What is software architecture and how to make the quality attribute 
be one of the concerns an architect may consider when doing architecture 
design? These are concerns in building high availability systems. 

1.2.1 Software architecture 

What is software architecture? There are many many definitions of 
it, and we will choose one of the most popular and reasonable ones and 
also the most useful one for our use in PBSA. This definition is from [3], 
which represents a reasonably common view: 

Definition 1.2 The software architecture of a program or computing sys­
tem is the structure or structures of the system, which comprise software 
components, the externally visible properties of those components, and the 
relationships among them. 

The key elements of this definition include: 

• Architecture is an abstraction of a system or systems. It represents 
systems in terms of abstract components which have externally visible 
properties and relationships (sometimes called connections, although 
the notion of relationships is more general than connections, and can 
include temporal relationships, dependencies, uses relationships, and 
so on). 

• Because architecture is about abstraction, it suppresses purely local 
information; private component details are not architectural. Just 
like an object in Object-Oriented Design (OOD), with its encapsula­
tion, you can only see its interfaces. 

• Systems are composed of many structures (commonly called views). 
Hence there is no such thing as the architecture of a system, and no 
single view can appropriately represent anything but a trivial archi­
tecture. Furthermore, the set of views is not fixed or prescribed. An 
architecture should be described by a set of views that support its 
analysis and communication needs. This does not mean we should 
use different views for one purpose, actually in this thesis, we would 
like to use the structure view only for architecture representation. 

• Externally visible properties are those assumptions other elements 
can make about an element, such as its provided services, perfor­
mance characteristics, fault handling, shared resource usage, and so 
on. 
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Architecture plays a very important role in software system design 
and development. Although an architecture is a technical description of 
an engineering blueprint of a system, it affects everyone involved with the 
system. Each stakeholder of a system, customer, user, project manager, 
coder, tester, etc. is concerned with different characteristics of the sys­
tem that are affected by its architecture. For example, a user is concerned 
that the system is usable, reliable and available; a customer is concerned 
that the architecture can be implemented on schedule and to budget; a 
manager is worried (in addition to cost and schedule) that the architecture 
will allow development teams to work largely independently, interacting 
in disciplined and controlled ways; a developer is worried about achieving 
all of those goals through coding; a tester wants to prove (or disprove) 
that these goals will be met. Architecture provides a common language 
in which different concerns can be expressed, negotiated, and resolved at 
a level that is intellectually manageable even for large, complex systems. 
Without such a language, it is difficult to communicate and comprehend 
large systems sufficiently to make the early decisions that influence both 
quality and usefulness. 

Component and Connector 

In an architecture, the main elements are runtime components (which are 
the principal units of computation) and connectors (which are the commu­
nication vehicles among components). Component-and-connector struc­
tures help answer questions such as: What are the major executing com­
ponents and how do they interact? What are the major shared data stores? 
Which parts of the system are replicated? How does data progress through 
the system? \iVhat parts of the system can run in parallel? How can the 
system's structure change as it executes? 

Components are abstract and have externally visible properties and 
relationships. One of the externally visible properties is the availability, 
which is the key property we are going to discuss and focus on in this thesis. 
The availability of a component is the probability that the component is 
available. It is the main foundation of the PBSA model. 

So, what is the significance of the connectors? Do the connectors 
mean that the elements communicate with each other, send data to each 
other, control each other, synchronize with e.ach other, use each other, 
invoke each other, share some information-hiding secret with each other, 
or some combination of these or other relations? What are the mechanisms 
for the communication? What information flows across the mechanisms, 
whatever they may be? All these are key questions the architect will pay 
attention to when he or she is designing an architect for the connection 
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between components. But we will neglect all these questions, and pay 
attention to the probability of successful transition from one component to 
another one. The mechanization of how they communicate with each other 
is not what we concern about, while the probability of the transition will 
be, because it may affect the entire system's availability. 

In PBSA, we will view a connector as a special component 
and even a special Part and say it has an availability, just as a 
component does. 

Architectural Structure 

As described in [ 3 ], in a house, there are plans for the structure of the 
house, the layout of the rooms, for electrical wiring, plumbing, ventila­
tion, and so forth. Each of these plans constitutes a "view" of the house. 
These views are used by different people. The electrician primarily uses the 
wiring view. The carpenter primarily uses the structural view. Each spe­
cialist uses their own view to achieve different qualities in the house. The 
carpenter is primarily interested in making the walls straight and square 
and in assuring that joists are of sufficient strength to support the floors. 
The electrician is primarily concerned with providing appropriate electri­
cal capacity in convenient locations, and in doing so in such a way as to 
safeguard the house's occupants. 

According to [3] and [16], common architecture views include: 

• logical view 

• code view 

• development view 

• concurrency (or process/thread) view 

• physical (or deployment) view 

The definitions and classifications are still being debated, but we 
should not care about that, because we will only use the logical or functional 
view for PBSA. 

The logical or functional view is an abstraction of system functions 
and their relationships. The components of the functional view are: func­
tions, key system abstractions, and domain elements. The connectors or 
relationships between components found in the view are dependencies and 
data flow. In this thesis, all the relationships will be presented as a transi­
tion from one component to the other, as in data flow. The dependencies, 
such as a call/reply will be described as a special relationship between two 
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components, and will be discussed in detail in the Chapter of architectural 
patterns. As we mentioned above, all connectors will be viewed as special 
components, so we can forget about connectors in this thesis. 

An example of a purely logical or functional view is shown in Fig­
ure 1. This is an application of the Business Intelligence for a bank data 
warehouse. 

Figure 1: The Logical view of BI Bank Architecture 

In this figure, we set all the components to be functional and let 
the connectors be some special components. The directed connection line 
indicates the data flow from one component to the other and indicates the 
control transition from one component to the other most of the time, ex­
cept for the only connections between Data Manage and Helper, Decision 
Analysis and Helper, Business Intelligent and Middle AgentO, Business In­
telligent and Middle Agentl, Middle AgentO and Data WarehouseO, Middle 
AgentO and Data Warehousel,Middle Agentl and Data Warehouse1, Mid­
dle Agentl and Data WarehouseO. These connections are relationships, 
named Call and Return, Parallel Computing, Redundancy, which are some 
of the special architecture patterns, which we will present in next Chapter. 

1.2.2 Software Architecture and Quality Attributes 

In essence, software architecture design, like any other design pro­
cess, focuses on making decisions, guided by requirements and the current 
environment. These decisions may involve: 
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• Separating one set of responsibilities from another component sepa­
ration; 

• Duplicating responsibilities if needed; 

• Allocating responsibilities to processors (decomposition); 

• Determining how discrete elements of responsibilities cooperate and 
coordinate (define the relationship between or among components) 

At the architecture design level, we need not define much about the 
details of implementation and refinement of the components, but we should 
define clearly the quality attributes, for example, availability, security, per­
formance and so on. 

Let us consider various attributes at this level. Availability intu­
itively implies redundancy and other HA strategies for the most sensitive 
components. Performance depends on processes, their allocation to proces­
sors, communication paths between them, and other factors. Maintainabil­
ity requires dependency chains. In each case, architecture design decisions 
are necessary to achieve the appropriate level for the respective attribute. 
In addition, these decisions require very little knowledge of functionality, 
especially for the quality of availability. 

Now let us see how a software architecture decision can affect the 
quality attribute. Suppose we separate one collection of responsibilities 
from another. As a result of this decision, we can ask a number of qual­
ity attribute questions: What is the impact on modifiability? What are 
the availability implications? Does this separation have any effect on per­
formance, security, or usability? All of these questions should be asked 
and, in some cases, answered as a result and effect of the decision. Thus, 
every decision (including the separation and the other main classes of de­
cisions) embodied in a software architecture can potentially affect quality 
attributes. At least, each decision raises questions about its effect on the 
quality attributes and often these questions cannot be answered by exam­
ining the decision, but are answered in the context of additional decisions. 
We originally separated the collections of responsibilities for a reason; for 
example, we might have wanted to support later modifications or to allo­
cate separate portions to different processors to increase performance. At 
some time, we might have wanted to separate computations to improve 
reliability. Our decision could have been for other reasons. 

In each case, we can discuss how the decision supports those goals. 
And sometimes, one decision for benefiting a quality attribute, may hurt 
the other attributes, such as availability and performance. To improve 
availability, we may make a decision to use voting redundancy, presented 
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in Chapter 2, but this component may decrease the performance of the 
system. 

To summarize, software architecture is closely coupled to how well 
a system achieves various quality attributes. The following are the main 
properties of the relationship between software architecture and quality 
attributes: 

• Quality attributes constitute some of the main goals of software ar­
chitecture design; 

• One architecture decision may affect one or more quality attributes; 

• A software architecture designed without considering the quality at­
tributes will be fragile and easily lead to project failure; 

• When we consider quality attributes, we cannot focus our attention 
only on one quality; most architecture design decisions are a tradeoff 
between different quality attributes. 

But that does not mean that we will discuss all the quality attributes 
in this thesis. We will focus our attention on the availability attribute, 
without considering much about the other quality attributes, because the 
main purpose of this thesis is to give availability calculation models and 
availability improvement strategies. Other quality attributes will also be 
very important, depending on the requirement. If we are doing architecture 
design, and availability is the main object of the design, we can use this 
thesis to help; otherwise, we can use this thesis as one of the references, 
when evaluating the side effect of one architecture design decision, because 
we rank the availability sensitivity of components and factors, which affect 
the availability attribute. 

In the following Chapter, we give some background about the rela­
tionship between architecture pattern and architecture and the relationship 
between architecture pattern and quality. 
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1.3 Architecture Pattern 

1.3.1 What is Architecture Pattern 

There are many kinds of definition of architectural patterns or archi­
tecture styles, just like the definition of software architecture. We choose 
the definition of Frank Buschmann [4], 

An architectural pattern is a description of element and relation 
types together with a set of constraints on how they may be used. A pattern 
can be thought of a set of constraints on an architecture- on the element 
types and their pattern of interaction and these constraints define a set or 
family of architectures that satisfy them. 

An architectural pattern expresses a fundamental structural orga­
nization schema for software systems. It provides a set of predefined sub­
systems, specifies their responsibilities, including rules and guidelines for 
organizing the relationships between them. 

We can think of architectural patterns as templates for concrete 
software architectures. They specify the system-wide or infrastructure level 
structural properties of an application, and have an impact on the architec­
ture of their sub-systems. The selection of a software architectural pattern 
is a basic and fundamental design decision when developing a software ap­
plication. The reason is obviously because the software architectural pat­
terns are repeated and tested by many application designing architects, and 
there is no need to totally design by yourself for every concrete application. 

But a software architecture pattern is not only an architecture. One 
of the most useful aspects of patterns is that they exhibit known quality 
attributes. Some patterns are chosen for performance problems, some are 
for high-security problems and some are for high-availability. They are also 
called architectural styles. 

A pattern is made up of three related parts: 

1. Context.' Design situation giving rise to a design problem. 

2. Problem. Set of forces repeatedly arising in the context. 

3. Solution. Configuration to balance and release the forces, including: 
Structure of components and relationships, and Run-time behaviour. 

Here the Context is the running environment for a software system, 
which will suggest the architecture pattern as its basis for architecture 
design. 

The problems are what we are going to face when we design a soft­
ware architecture. They are composed of a set of forces, which cou.1d be 
grouped into two classes, one of which is functional forces and the other is 
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quality attribute forces. All aspects of the problem must be solved using 
the pattern. Of course, there may be lots of special problems in a concrete 
application and a pattern cannot solve all kinds of such special problems. 
It only matches the common problems which it is designed to solve, such 
as fault tolerance, voting redundancy, load balancing and so on. 

The solution is presented as a structure, most often as a logical 
structure which can solve the problems, most of which are quality problems. 
This is the main part of a pattern, and we will first think of the structure 
when we mention a pattern. 

Different patterns have different benefits and liabilities and can solve 
different problems, 

Shaw and Garlan first published a collection of architecture patterns 
in [31]. The collection includes: 

• Independent components: communicating processes, implicit invoca­
tion, explicit invocation; 

• Data-centric: repository, blackboard; 

• Data flow: batch sequential, pipe and filter; 

• Machine: interpreter, rule-based system; 

• Layer: main program and subroutine, object-oriented, layered. 

Buschmann and others [4] entended the collection, adding some 
new patterns, like MVC (Model View Controller), Fault Tolerant, Par­
allel pipeline and so on. Buschmanns categorized the patterns into the 
following four new groups: 

• From Mud to Structure. Patterns in this category help you to avoid 
a 'sea' of components or objects. In particular, they support a con­
trolled decomposition of an overall system task into cooperating sub­
tasks. The category includes the Layers pattern, the Pipes and Filters 
pattern, and the Blackboard pattern. 

• Distributed Systems. This category includes one pattern, the Broker, 
and refers to two patterns in other categories, Microkernel and Pipes 
and Filters. The Broker pattern provides a complete infrastructure 
for distributed applications. Its underlying architecture is soon to be 
standardized by the Object Management Group (OMG). The Micro­
kernel and Pipes and Filters patterns only consider distribution as 
a secondary concern and are therefore listed under their respective 
primary categories. 
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• Interactive Systems. This category comprises two patterns, the Model­
View-Controller pattern, well-known from Smalltalk, and the Pre­
sentation -Abstraction -Control pattern. Both patterns support the 
structuring of software systems that feature human-computer inter­
action. 

• Adaptable Systems. The Reflection pattern and the Microkernel pat­
tern strongly support extension of applications and their adaptation 
to evolving technology and changing functional requirements. 

Note that this categorization is not intended to be exhaustive. It 
works for the architectural patterns described in [4,18]' but it may become 
necessary to define new categories if more architectural patterns are added. 

1.3.2 Relations of Different Patterns 

A close look at many patterns reveals that, despite initial impres­
sions, their components and relationships are not always as 'atomic' as 
they first appear to be. A pattern solves a particular problem, but its ap­
plication may raise new problems. Some of these can be solved by other 
patterns. Single components or relationships inside a particular pattern 
may therefore be described by smaller patterns, all of them integrated by 
the larger pattern in which they are contained. 

Most patterns for software architecture raise problems, some of 
which can be solved by smaller patterns. . Patterns do not usually exist 
in isolation. 

Each pattern depends on the smaller patterns it contains and on 
the larger patterns in which it is contained. This means all the patterns 
in different levels of a hierarchy of patterns are dependent on each other. 
A pattern may also be a variant of another. From a general perspective, a 
pattern and its variants describe different or similar solutions to very similar 
problems. These problems usually vary in some of the forces involved, 
rather than in general character. 

Patterns can also combine in more complex architecture structures 
at the same level of abstraction. This happens when the original problem 
includes more forces than can be balanced and solved by a single pattern. 
In this case, applying several patterns and combining them in some way can 
solve the problems, and each such smaller pattern can resolve a particular 
subset of the family of forces. 

All three kinds of relationship refinement, combination, and variants 
help in using patterns effectively. Refinement supports the implementation 
of a pattern, combination helps you compose complex design structures, 
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and variants help when selecting the right pattern in a given design situa­
tion (design environment and problem). 

Now, we know all the patterns can be chosen singly to solve some 
concrete problems or can be chosen to solve a set of problems cooperatively. 

1.3.3 Architecture Pattern and Quality Attributes 

According to the definition of architecture pattern, it is very clear 
that one pattern is used to achieve one or more quality attributes. And 
most of the time, more than one pattern can achieve the same quality 
attribute, and one pattern can have the properties for more than one quality 
attribute. 

Using a pattern to realize the quality attribute requirement is now 
very popular in practice, because it is reliable and economical. The patterns 
are repeatable for the same or similar problems, but most of the time, we 
are going to solve the problem for more than one quality attribute, that 
will need more than one pattern to work together and get the best balance 
tradeoff, which we can relate to the relation of combination of different 
patterns described above. 

1.3.4 Architecture and Architecture Pattern 

In designing a software architecture, as we describe above, the main 
objective is to achieve the quality attribute requirement. Each architecture 
pattern is designed for one or more quality attribute strategies. We define a 
quality attribute strategy as a method or tactic used to achieve the quality 
requirement during system design and development. 

For each quality, there are identifiable strategies (and patterns that 
implement these strategies) that can be used in an architecture design to 
achieve a specific quality. Each strategy is designed to achieve one or more 
quality attributes, but the patterns in which they are embedded may have 
an impact on other quality attributes. In an architecture design, a com­
position of many such strategies is used to achieve a balance between the 
required multiple qualities. Achievement of the quality and functional re­
quirements is analyzed during the refinement step. The availability quality 
is the main focus for this thesis, and of course, there are several special 
patterns designed for implementing the strategies for high availability; but 
our emphasis will be on how to improve the availability of an entire ar­
chitecture of a system, composed of different patterns, which may not be 
designed particularly for high availability. 

But, a single pattern cannot enable the detailed construction of a 
complete software architecture, while it just helps us to design one aspect 
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of our application. Even if we design one aspect correctly, the whole archi­
tecture may still fail to meet its desired overall quality requirements. To 
meet the needs of software architecture as much as possible, we need a rich 
set of patterns that must cover many different design problems. The more 
patterns that are available, the more design problems that can be addressed 
appropriately, and the more we are supported in constructing software ar­
chitectures with defined properties. On the other hand, the more patterns 
that are available, the harder it is to achieve an overview of them. As we 
have already pointed out, there are many relationships between patterns. 
When applying one pattern, we want to know which other patterns can 
help refine the structure it introduces. We also want to know which other 
patterns we can combine with it and which other variant patterns we can 
choose to achieve the same property and some other properties at the same 
time. 

Of course choosing the pattern is one part of software architecture 
design, and there are lots of other jobs to do for completing the architecture 
design, such as the task of integrating the application's functionality with 
the framework, and detailing its components and relationships, perhaps 
with help of design patterns and idioms. The selection of an architectural 
pattern, or a combination of several, is only the first step, but the most 
important step, when designing the architecture of a software system. 
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1.3.5 Architecture Decision and Availability 

We notice that redundancy is now becoming popular for Server 
farms, and redundancy is the most sensitive factor that can improve avail­
ability. We will discuss this in the Chapter on Availability Strategies. In 
addition, load balancing is a kind of special strategy, which can improve 
performance quality and availability at the same time. 

Both of these strategies are good strategies for improving availabil­
ity, and many others will be introduced in Chapter 4. But how an architec­
ture strategy decision may influence the quality attributes, or availability 
attribute is a problem we will discuss in this thesis first. The relationship 
among Context, Architecture Patterns, Architecture decisions and High 
Availability strategies can be illustrated below in figure 2 

HA Quality Requirement Context 

Architecture Pattern Decisions 1+-----1 HA Strategies 
~-----,-----.~ 

Architecture Properties f-+-~ HA quality Attribute parameters 

Architecture Evaluation 

Actual Behavior Predicted Behavior 

Figure 2: Architecture Design Decision and Predicted Behaviour 

This figure illustrates the relationship between the context and ar­
chitecture choice and, at the same time, describes the relationship among 
quality requirements and architecture (pattern) decisions, the quality strate­
gies, quality property parameters, and the evaluation of the architecture 
structure. 

The HA requirement is based on some context, and it will decide the 
architecture decision and HA strategies decision in addition to the context. 
The architecture pattern decision will decide the architecture properties, 
which will decide the HA quality attribute parameters, like the redundancy 
policy, take-over policy, detect time and roll-over time. Based on the ar­
chitecture properties, including the logical structure of the architecture, 
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and the HA parameters, like individual availability of a component, we can 
evaluate the availability of a system by using the PBSA model . By com­
paring the result of evaluation with the HA requirement, we can decide on 
the more strategies to take or the completion of an architecture design for 
high availability. 

We will discuss how to predict or analyze the availability from ar­
chitecture structure, based on pattern decisions. How to make the pattern 
choice is not what we want to discuss here, but the availability strategy 
decision will be discussed later. 
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2 Qualitative Availability Analysis 

2.1 Why do we need Quality Analysis? 

As we described in Chapter 1, the main purpose of architecture 
design is to make some decision about how to separate functional prop­
erties, how to choose architecture patterns and how to realize the whole 
requirements for functional and qualitative needs. 

But, the choices of architecture patterns are based on the concrete 
quality requirements, which may be defined by customers or by architects, 
according to different scenarios. 

During the requirement definition or specification, the execution 
environment or context is very important, because it sometimes can decide 
whether the requirement is achievable or not before actual architecture 
design, for example a six 9 availability requirement using only one server. 

After making the architecture pattern decision, and getting an origi­
nal architecture structure, how do we know whether the architecture design 
can fit our requirement or not, especially our quality requirement? As we 
know, there is no actual mechanism to decide whether the quality attribute 
of an architecture fits for our requirement. This is because, firstly, the re­
quirements for quality attributes are not quantitatively described in most 
practical projects and, secondly, our predictive model for these qualities 
are not quantitatively defined. 

So, until now, most of the time architects have to use a scenario­
based model [10], to do availability qualitative analysis. Also, Mark Klein 
[17] introduced a Markov model based method for qualitatively analyzing. 
Neither of the models can really answer a question like: "What is the 
exact availability of the system?". Someone may answer this question as 
some nin~s for the servers, but call that the servers are only some of the 
components of a system. It cannot represent the entire system. In addition, 
without a quantitative model, we can not know exactly how to improve the 
availability and we don't know how to choose the most sensitive component, 
and maybe we spend much money on the system, but the reward in terms 
of the quality still remains not as good as we expect. 

So, we need a model for quantitative analysis. And in this Chapter, 
we will first introduce a qualitative model, introduced by Mark H. Klein, 
Rick Kazman, Len Bass, Jeromy Carriere, Mario Barbacci, and Howard 
Lipson first [17], and we will see how it works, then we will introduce 
another qualitative method for quality analysis. And we will introduce a 
quantitative model of availability in the next Chapter. 
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2.2 Scenario-Based Quality Analysis 

2.2.1 What is Scenario-Based Quality Analysis? 

Rick Kazman, Gregory Abowd, Len Bass, Paul Clements defined a 
Scenario-Based method for quality analysis in [10]. Scenarios are important 
tools for exercising an architecture in order to gain information about a 
system's fitness with respect to a set of desired quality attributes. In the 
thesis [10], Kazman and others presented a set of experiential case studies 
illustrating the methodological use of scenarios to gain architecture-level 
understanding and predictive insight into large scale, real-world systems of 
various domains and a structured method for scenario-based architectural 
analysis is presented, using scenarios to analyze architectures with respect 
to achieving quality attributes. 

Scenarios have been widely used and documented as a technique 
during requirements refinement and elicitation, especially with respect to 
the user and maintainer of the system [10]. They have also been widely 
used during design as a method of comparing design alternatives. Experi­
ence also shows that programmers use them to understand an already-built 
system, by asking how the system responds (component by component) to 
a particular input or operational situation. Before being presented by Kaz­
man [10] for quality analysis, scenarios had already been well used as a tool 
in the requirements stage and in the design and programming stages. 

Kazman and others used Scenarios as a tool for analysis of quality 
in this thesis. They use scenarios to express the particular instances of 
each quality attribute important to the customer of a system. Then they 
analyze the architecture under consideration with respect to how well or 
how easily it satisfies the constraints imposed by each scenario. 

Scenarios used in the analysis of quality should include all the roles 
involved in the system, from operator to manager and maintainer. And 
also Scenarios, for the future use of the system, should be considered; this 
property leads to the fact that not all the scenarios can be listed at the 
architecture design stage. 

Recall that a scenario is a brief description of some anticipated or 
desired use of a system [10]. It may be the case t~at the system directly 
supports that scenario, meaning that the anticipated use requires no mod­
ification to the system in order to be performed. This would usually be 
determined by demonstrating how the existing architecture would behave 
in performing the scenario. If a scenario is not directly supported, this 
means that there must be some change to the system that we could repre­
sent architecturally. 
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2.2.2 A Method of Scenario-based Analysis 

A particular method for doing a scenario-based architectural anal­
ysis is SAAM (Software Architecture Analysis Method). SAAM was origi­
nally developed to enable comparison of competing architectural solutions 
[32]. Not all of the experience of architectural analysis has strictly followed 
the method prescribed by SAAM, and it has not always been the case that 
we were comparing competing candidate architectures. Nevertheless, in all 
cases, scenarios were used as the foundation method when qualitatively il­
luminating the quality properties of an architecture, and from this body of 
experience, we get a set of stable activities and their dependencies, which 
organized a method SAAM, and we can use it appropriately. 

SAAM includes these steps: 

1. Describe candidate architecture. The candidate architecture or 
architectures should be described in a synta~tic architectural notation 
that is well-understood by different parties involved in the architec­
ture analysis. These architectural descriptions need to indicate the 
system's functional computation properties and data components, as 
well as all component relationships, which we call connectors. There 
are many such syntactic architecture description languages we can 
use, i.e. Wright, Acme and so on. 

2. Develop scenarios. Develop task scenarios that illustrate those 
activities the system must support and those changes that it is antic­
ipated may be made to the system when using it or in the future. In 
developing these scenarios, it is important to consider all important 
roles of a system. Thus the scenarios designed will represent tasks 
relevant to different roles such as: end user/customer, marketing, 
system administrator, maintainer, and developer. 

3. Perform scenario evaluations. For each indirect task scenario 
(which means that the current system does not support it, and some 
changes should be made to support it), list the changes to the archi­
tecture that are necessary for it to support the scenario and estimate 
the cost of performing the change. A modification to the architecture 
means that either a new component or connection is introduced or an 
existing component or connection requires a change in its specifica­
tion. By the end of this stage, there should be a summary table which 
lists all scenarios (direct and indirect). For each indirect scenario the 
impact, or set of changes, that scenario has on the architecture should 
be described. A tabular summary is especially useful when compar­
ing alternative architectural candidates because it provides an easy 

29 



Master Thesis - Rongshu Yi - McMaster - Computing and Software 

way to determine which architecture better supports a collection of 
designed scenarios. 

4. Reveal scenario interaction. Different indirect scenarios may need 
changes to the same components or connections. In this case we 
say that the scenarios interact in that component or connector. So, 
in some point, determining scenario interaction is a helpful process 
for identifying scenarios that affect a common set of components or 
connectors. SAAM favors the architecture with the fewest scenario 
conflicts. 

5. Overall evaluation. Finally, weight each scenario and the scenario 
interactions in terms of their relative importance and use that weight­
ing to determine an overall ranking. This is a subjective process, 
involving all of the stake-holders in the system. The weighting cho­
sen will reflect the relative importance of the quality factors that the 
scenarios manifest. In addition, the ranking can help discover the 
most important concern of a system, whether it be availability or 
performance or something else. 

Note: there may be several method or views to represent an archi­
tecture of a system, as we discussed before, but in the SAAM method, we 
only need a simple one, maybe a functional or logical view to represent the 
architecture. Of course, it will be useful to choose the most suitable one for 
your own company or organization, as long as most of the analysis team 
members can understand what the architecture represents. 

2.2.3 Analysis and Conclusion 

This method is a very useful method for us to evaluate an architec­
ture design, especially to help for us to choose between different competing 
candidates. 

But as we know, the scenarios are different and vary according to 
different users and roles. And different stake-holders may have different 
concerns, and the quality requirement is very difficult to elucidate. Even the 
users with the same responsibility and same role will have different concerns 
and can give different scenarios according to their different experience. So, 
clearly, it is very hard to evaluate a system design very precisely using the 
SAAM. 

The reason why we say it is hard to evaluate a software architecture 
design is because the method is a qualitative method; different analysts 
can come to different results. So we need some quantitative model with 
absolute evaluation data for quality analysis. 
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2.3 Another Qualitative Model 

In [ 17], Mark H. Klein, Rick Kazrnan, Len Bass, Jeromy Carriere, 
and Mario Barbacci introduced a qualitative model for availability. 

They first introduced a pattern for some problem and, by improving 
the pattern, they hope to get better availability. They use a Markov model 
to qualitatively describe this improvement. 

2.3.1 A Simplex Pattern 

A pattern, named simplex, is introduced in [17], which belongs to 
a general family of Availability patterns that could be called redundancy 
patterns. The general pattern for a redundancy pattern is shown in Figure 
3 below. 

Input R1 DSR 

Detector 

Input R2 

( Switcher Output 

Recovery 

Input Rn 

Figure 3: A Redundancy Specific Architecture Pattern 

The pattern, from an availability point of view, consists of multiple 
redundant components. Data flows into one or more redundant compo­
nents, which then send their output to another component (or possibly 
components), which is (are) responsible for detecting failures, switching to 
a working component and possibly initiating recovery of the failed compo­
nent, according to the situation, whether we find a failure or fault2 . 

This is a pattern for the quality of availability, which is used to 
increase the availability of component R1 , the "leader" of the redundancy 
components. The outputs of all the redundant components are input into 
the component DSR, which will compute an algorithm, using all the out­
puts as its inputs to choose a correct one. If the algorithm runs with a 
failure output from Rn , it will call a process to switch the lead component 

2We will not differentiate fault and failure in this thesis. 
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Rn to Rn+l, and call a recovery process to make Rn recover and let it be a 
new back up component.. 

The Simplex pattern, as shown in Figure 4, is a variant of the re­
dundancy pattern, in which the redundant. components are processes. The 
components do not. necessarily receive the same input or generate the same 
output. Moreover, the components are not all peers. The components 
are analytically redundant, meaning they are redundant with respect to 
the general effect their output has in controlling their environment, but. 
not necessarily redundant in t.he algorithms used or the output produced3 . 

The "leader" component, the other redundant components (Rl and R2 ) 

and the "safety" component are analytically redundant. 

Leader 

R1 Decision DSR 

R2 Switcher 
Output 

( Recovery ) 

Safety 

Figure 4: Simplex Architecture Pattern 

The "leader" is typically the upgraded version of a critical com­
ponent, which we will call the most sensitive component.. All components 
execute concurrently. The leader's output is used if it passes the acceptance 
test applied by the DSR unit. The acceptance test is based on a model 
of the cont.rolled environment and the ability of the safety component to 
recover from actions of the other components. If the leader does not pass 
this test, a new leader is picked (either Rl or R2). The "safety" component 
is a simple, highly available analytically redundant component that is used 
as a last resort. The safety might be used t.o affect a recovery to the point 
where one of the other (more able) components can once again take over. 
Note that the DSR component receives a copy of the input and uses it as a 
basis for performing its acceptance test. The Simplex pattern assumes that 
mechanisms exist t.o bound the execution time of the components, thereby 
preventing timing overruns. Another (related) pattern would address per­
formance issues. The Simplex patt.ern also assumes that the concurrent 

3This is just like the relationship between the AB S and a foot brake; although they do 
the same braking work, the procedure, the performance and the result may be different. 
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units are processes with address space protection, thereby preventing the 
propagation of system faults such as memory overruns. 

The main improvement of this pattern from the original redundancy 
pattern is that it need not choose which one is the correct one, and it can 
quickly recover from one leader component's failure, because of concur­
rency. That will reduce the time of recovery, and increase the availability 
for this component Rl or R2 . 

2.3.2 Modeling the Simplex Pattern 

Let n = 3 for the pattern, illustrated in Figure 3. The Voting 
algorithm needs at least 2 or all 3 components producing results that agree, 
otherwise the system has failed. Let us look at all the states the system can 
be in and offer normal service. The system can be in one of three states: 
it has 3 working components; or it has 2 working components; or it failed. 
If there are F failures per year and a component failure repair takes on the 
average l/R years, then the Markov model shown in Figure 5 can be used 
to show the quality of availability (that is, the proportion of time that the 
system is not in the failed state). 

Figure 5: A Markov Model for Majority Voting 

The representation of a Markov model in Figure 5 can be viewed as 
a state diagram. State "3" represents the state in which 3 components are 
available, state "2" represents the state in which 2 components are available 
and the grey state "F" is the failed state. The transition arrows between 
these states are labelled with failure (F) and repair (R) rates. Since each 
component fails independently with an average rate of F, 3 components 
fail with an average fail rate of 3F and hence the label for the transition 
from state "3" to state "2" is 3F . 

The steady state solution of the Markov model yields the long-term 
proportion of time that the system is in each state. Therefore the avail­
ability of the majority voting case is the proportion of time in which the 
system is in state "3" or state "2", and hence not in the failure state "F". 

This is only a model for qualitatively illustrating the availability 
of a system component, not for the entire system. It has not give us the 
absolute value of availability, and we will see how it is used to show the 

·0 
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improvement of availability. 

Modeling the Simplex Pattern 

The Simplex pattern achieves a relatively high level of availability of the 
high performance (e.g., a very precise algorithm) variant by using a highly 
available but lower performing (e.g., a less accurate algorithm) variant to 
recover from faults. To illustrate the concept consider a system with two 
redundant components (Rl and R2), a safety component, and a monitor­
ing, decision and recovery unit. The Simplex pattern preserves the total 
number of active components, but allocates functions to components differ­
ently depending on their states, and hence the components have different 
failure properties. The Markov model for this style is shown in Figure 6. 

Figure 6: A Markov Model for Simplex 

The system starts in state "2" with two functional high performance 
components, the outputs of which will be compared. If they agree, we 
assume that they are correct; this means we assume no common mode 
failure4 , but rather random failures. If they disagree, one is picked. If the 
right one is picked, the model transfers from state "2" to state "1". If the 
wrong one is picked the model transfers from state "2" to state "Kl", where 
Kl stands for a state in which the safety component becomes active. Since 
one of the high performance functional components continues to work, the 
transition from "Kl" to "I" is relatively quick and thus has a quick repair 
(QR) rate: We assume that QR = n X R, for some n ?: 1. If a failure 
occurs while the system situation is in state "1", the system also transfers 
to the safety component, but in this case the repair rate is that of a normal 
repair (i.e. a software or hardware fix). 

Of course, the algorithm is trying to guarantee that there is a com­
ponent available, while every time it transfers the system state to a state, 

4This assumption will be throughout this thesis, so, in this thesis, no common mode 
failure will be considered 
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in which the safety component is activated. If both the functional com­
ponents have failed, the system will be in failure state "K2", even if the 
safety component is activated. So, each time, when the safety component is 
activated, the controller of recovery component will call for recovery work 
for the failed component at the same time. 

A key to the availability properties of this pattern is the relatively 
quick repair rate (QR) from state "Kl" to state "1". To see this, imagine 
that QR is so quick that virtually no time is spent in state "Kl". In this case 
the model in Figure 6 closely approximates the model in Figure 7, below. 
The availability properties of the model shown in Figure 7 are better than 
for majority voting (shown in Figure 5) due to the higher transition rates 
for majority voting. The higher transition rates for majority voting are a 
consequence of needing a majority of the redundant components to agree 
in order to detect a failure, whereas this pattern uses a semantic check of 
the output for failure detection. 

Figure 7: An Approximate Markov Model for Simplex 

So, the main difference between these two variants of the redun­
dancy pattern is in the algorithms, which the decision component uses to 
decide which one is the correct answer for output. The algorithm for the 
Majority Voting pattern is based on the agreement of more than 1 compo­
nent, and the algorithm for Simplex is to choose the output semantically. 
The difference in the performance of these two algorithms implies the dif­
ferent performance of the redundancy patterns, and the difference in the 
availability property. 

2.3.3 Analysis and Conclusion 

In the section above, we introduced two variants of the redundancy 
pattern, used by Marks for their attribute~based architecture pattern. These 
two patterns are redundancy patterns for the availability attribute. They 
clearly show that availability is improved by using these patterns and they 
also show that the Simplex pattern is better than the Majority Voting one 
in performance and availability, by using Markov Model. 

We now know these two patterns can be used to improve the avail­
ability of a key component. But the problem is still there, that is how 
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to choose the critical component, and how to demonstrate that the entire 
system, including more than one architecture pattern, has an improved 
availability property after using such a redundancy pattern? 

Mario R. Barbacci and some others improved this Markov Model 
for redundancy architecture pattern [35], and gave some algorithms for 
calculating the availability of Servers. 

To conduct the availability analysis, they assign each component a 
failure rate and a repair rate, the rate at which this component recovers 
from a failure, obtained from questionnaires or checklists, depending on the 
maturity of the domain or prior experience with similar components. To 
understand the availability of the RTS, they use a machine repair model 
with S machines and one repairman. The amount of time each machine 
operates before breaking down is exponentially distributed with mean 1/)" 
(the failure rate of machines is ).,). The amount of time that it takes to 
repair is exponentially distributed with mean 1/ fJ, (the repair rate is fJ,). 

Both A and fJ, are discovered parameters needed by the availability model. 
In the machine repair model [35], they say that the system is in 

state n whenever n machines are not it use. They say that the system is 
available (albeit with diminished capacity) whenever at least one server is 
operating (available) and they say that the system is down whenever all S 
servers are down. The long-run proportion of time that the system is not 
in state S (i.e., the system is available, by their definition) is given by 

(2) 

But we can also see this as a special pattern for component redun­
dancy, because they only consider the availability of redundant servers, 
which in an architecture structure may be only a component or a pat­
tern, but there remains the problem of how to calculate the entire system 
with many patterns and how to choose the critical components(s) for the 
redundancy pattern? This is what we want to introduce next. 

In summary, we now know that there are at least two models for 
quality analysis, one of which is Scenario-based quality analysis model; the 
other one is a model based analysis method. Both of them are qualitative 
quality attribute analysis methods, and they have the following drawbacks: 

1. No accurate assessment for availability; 

2. No hint for improving availability; 

3. Difficult for complex architecture. 

36 



Master Thesis - Rongshu Yi - McMaster - Computing and Software 

2.4 Fault Tree Analysis 

In the technique known as fault tree analysis (FTA) , an undesired effect 
is taken as the root ('top event') of a tree of logical expressions. Then, 
each situation that could cause that effect is added to the tree as a node 
characterizing that cause, in terms of a logic expression. When fault tree 
nodes are labeled with actual numbers about failure probabilities, which are 
often in practice unavailable because of the expense of testing, computer 
programmers can calculate failure probabilities from fault trees. 

Sometimes, this is a useful method for Reliability and Safety cal­
culation and prediction for some computer systems. The Tree is usually 
written out using conventional logic gate symbols. The route through a 
'Thee between an event and an initiator in the tree is called a Cutset. The 
shortest credible way through the tree from Fault to initiating Event is 
called a Minimal Cutset. For different systems, we can analyze and obtain 
all their Fault Trees and, according to the testing result, we can get the 
probabilities of all their initiators and events, even though it will be very 
hard work. 

The prediction and calculation of Reliability and Safety of some 
computer systems using Fault Tree Analysis are based on these probabil­
ities of initiators and fault events. Using this technique, we can calculate 
the failure probability of a computer system, if we can create all failure 
trees and get all the probabilities for the initiators and events. But for 
calculating availability, we still need to know the information about re­
pair time. According to the definition of availability, and the difference 
between availability and reliability, we cannot calculate availability using 
Fault Tree Analysis technology currently, because of the lack of such repair 
time information from FTA. 

In summary, Fault Tree Analysis is a good and feasible technol­
ogy for Safety and Reliability calculation and prediction, if we can get all 
the probabilities of initiators and events. But, we cannot calculate and 
predict availability using FTA, because we cannot get information about 
repair time from it. So we have defined the PBSA model for availability 
calculation and prediction. 
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3 Quantitative Availability Analysis 

3.1 Simple Part Availability Calculation 

To model how to calculate the availability of a complex system with 
complex structure and multiple patterns such as the one shown in Figure 
1, the Business Intelligence system, we should first look at how a simple 
part is calculated. 

The availability of a simple system or basic part of a system is cal­
culated by modeling the system part as an interconnection of components 
in series and parallel. The following rules are used to decide if components 
should be placed in series or parallel: 

• If failure of a component leads to the combination becoming inoper­
able, the two components are considered to be operating in series 

• If failure of a component leads to the other component taking over 
the operations of the failed one, the two components are considered 
to be operating in parallel. 

So, we define a part as: 

Definition 3.1 A Part of a system is a subset P of a set of components 
AJ which can be viewed as a new component C J with the same availability 
relation with the other components outside of P in A as the availability 
relation between P and AJ that is R( C, A - P) = R(P, A - P). 

In Figure 8, both of (a) and (b) are parts of an architecture structure. 
( a) is a series part and (b) is a parallel part. 

(b) 

Figure 8: Parts of Architecture Structure 

But Figure 9 shows a structure, which cannot be viewed simply as 
a part of such an architecture structure, and we can call it a Non-Part, 
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because we cannot reduce it to a single part, using current rules (Will be 
discussed later). 

Figure 9: An Example of Non-Part 

We call this a non-part because firstly, if one of the two components Band 
C fails, the system will still be available on the other path, so it is not 
series; secondly, component B(C) will not take the role of C(B) when C(B) 
has failed. 

And we can view one component as a part too, so we have: 

Axiom 3.1 A component in an architecture structure can be a Part. 

3.1.1 Availability in Series 

As stated above, in Figure 8(a), two components A and B are consid­
ered to be operating in series, if failure of either of the components results 
in failure of the combination. The combined system is available only if 
both component A and component B are available. From this, it follows 
that the combined availability is a product of the availability of the two 
components, just like the reliability calculation for this structure in [ 8 ]. 
The combined availability is shown by the equation below: 

(3) 

where AA and AB are the availability of components A and B respectively. 
We assume that the availability of a single component, like AA is known, 
according to the experience of existing systems and technical reports from 
vendors of different products, like a server. 

The implications of the above equation are that the combined avail­
ability of a part in series is always lower than the availability of its indi­
vidual components. Because AA :s;; 1 and AB :s;; 1, so A :s;; 1. Consider the 
system in Figure 8(a) above, where component A and B are connected in 
series. The table below shows the availability and downtime for individual 
components and the series part. 
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I Component/Part I Availability I Downtime 

A 99.9% 8.76 hours/year 
B 99.99% 52 minutes/year 
Part(a) 99.89% 9.64 hours/year 

The above table clearly shows that even though a very high avail­
ability component B was used, the overall availability of the system was 
pulled down by the low availability of component A. This just proves the 
saying that a chain is weaker than the weakest link. 

3.1.2 Availability in Parallel 

As stated above in Figure 8(b), two components are considered to be op­
erating in parallel if the part is considered failed when both parts fail. The 
combined system is available if either of them is available, in other words, 
only one of them failed .. It follows that the availability of the parallel part 
is 1 - Pr {both components are unavailable}, as in the reliability evaluation 
in [ 8 ] for the same structure; the difference is that the latter one uses the 
reliability of those components, but we use availability. The parallel part 
availability is given by the equation below: 

(4) 

The implication of the equation above are that the parallel part 
availability of two components in parallel is always much higher than the 
availability of its individual components. Consider the system in Figure 
8(b). Two instances of component A and B are connected in parallel. The 
table below shows the availability and downtime for individual components 
and the parallel combination. 

I Component/Part I Availability I Downtime 

A 99.9% 8.76 hours/year 
B 99.9% 8.76 hours/year 
Part(b) 99.9999% 31.54 seconds/year 

The table above clearly shows that, even though a very low availabil­
ity component A was used, the overall availability of the system is much 
higher. Thus parallel operation provides a very powerful mechanism for 
making a highly available system from low availability components. 
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This is a simple pattern of redundancy. If we add more components 
in the parallel part, the overall availability will become even stronger. We 
will introduce the detailed way to calculate the availability of this pattern. 

Note: the meaning of parallel here is different from the usual par­
allel pattern. In a parallel pattern, the availability of the parallel pattern 
part is defined as Pr { All the parallel components are available }. Actually, 
parallel for a part is very much like a simple redundancy pattern, which 
we will introduce later. 

A vailability in a Combinatorial Part 

Consider the problem shown in Figure 10. Components (B, B') and (G, G') 
are working in parallel, meanings that if either of them fails, the other one 
will take over its role. Components Band B' are working in series, com­
ponents C and G' work in series too. 

Figure 10: An Example of Combinatorial Parts 

Now, we want to calculate the overall availability of this system. 
We consider this system as a system with 4 parts, three of them are series 
parts and one parallel part. We illustrate it as in Figure 11 below. 

i::.--------------------------------------------------------------------------------------------- ... 

r-;:::::::::::::~:::::::::::::;-l 
! : 1: 

Figure 11: A Part View For Figure 10 

Suppose we already know the availability for all the components A, B, B', G, G' ,and 
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D, and they are listed in the table below, then we can calculate the avail­
ability of different parts as follows, 

I Component/Part I Calculation I Availability I Downtime(hour) I 
A AA 99.9% 8.76 /year 
B AB 99.9% 8.76/year 
B' AB, 99.9% 8.76 /year 
C Ac 99.9% 8.76/year 
C' Ac' 99.9% 8.76 /year 
D AD 99.9% 8.76 /year 
Part(B) AB X AB, 99.8% 17.52/year 
Part(C) Ac x Ac' 99.8% 17.52 /year 
Part(BC) l-(1-Ap(B)) x (1 - Ap(c)) 99.9996% 3.504/year 
System(A(BC)D) AA x Ap(BC) XAD 99.7997% 17.5463 /year 

Without considering common mode failure, the availability of a sim­
ple combinatorial part is easy to calculate by looking at the lower level part 
as a new component, and extending the definition of part into a new part 
which can be made up of smaller parts, which are in series or in parallel. 

In the example above, the part(BC) is made up of two smaller parts: 
part(B) and part (C); they are working in parallel, so part(BC) is a new 
parallel part, made up of 2 series parts. And the system can be looked 
at as a big series part, which is made up of three components, component 
A, component BC, and component D. Component BC is the part (BC), 
which can also be viewed as a component. 

So, we have the following definition and axiom. 

Definition 3.2 A Superpart is a part, which is made up of more than 
one smaller parts in series or parallel. 

Axiom 3.2 A part can be viewed as a component, and a component can 
be viewed as a part in a logical architecture view. 

Axiom 3.3 A transition from a component-based view architecture struc­
ture to a part-based view of an architecture structure will not change the 
functional property and the availability property of the system. 

Now, that we know how to calculate the availability of a simple 
combinatorial part, we will introduce some more complex pattern-based 
combinatorial parts below. 

Can we claim that the availability of each system will be calculable 
using this simple part calculation method? Let us look at an example below 
in Figure 12. 
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Figure 12: A Complex Architecture Structure 

We can see from above Figure 12, components C8 and C9 are working 
in parallel, and component C6 and C7 are working in parallel too. We can 
change this component-based view of an architecture structure into a part­
based view of an architecture structure, as in Figure 13 below, by reducing 
some of the patterns into single parts, according to AEAR (Architecture 
Equipollence Availability Reduction), which will be introduced later. 

Figure 13: A Part-Based Architecture View 

Obviously, this system still includes too complex a structure for our 
simple part calculation method to calculate the availability of the overall 
system. Many components or parts have more complex relationships than 
simple series or parallel as described above. So, we would like to introduce 
a new model, based on the simple part calculation idea and Markov Tran­
sition systems, to predict and calculate the overall system availability for 
such a large scale complex system. 
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3.2 A PBSA Model 

3.2.1 Markov Chain 

Before we introduce the PBSA Model, we would like to introduce 
some ideas about Markov Chains, which is the foundation of PBSA. 

In mathematics, a Markov chain, named after Andrey Markov, is a 
discrete-time stochastic process with the Markov property. 

A Markov chain describes the states of a system at successive times. 
At these times the system may have changed from the state it was in the 
moment before to another state, or it may have stayed in the same state. @ 

The changes of state are called transitions. 
The Markov property means that the conditional probability dis­

tribution of the state in the future, given the state of the process currently 
and in the past, depends only on its current state and not on its state in 
the past. This has three meanings: 

1. the state transition from state 1 to state 2 only depends on the current 
state 1, not the history of the system; 

2. the state transition from state 1 to state 2 will not depend on other 
states; 

3. each transition is a discrete-time stochastic process. It may be con­
tinuous, but in this thesis we may think it is discrete. 

So, we have the definition of a Markov Chain, as in [33]: 

Definition 3.3 A Markov chain is a sequence of random variables Xl, X 2 , X 3 , ••• 

with the Markov property) namely that) given the present state) the future 
and past states are independent. Formally) Pr[Xn+1 = xlXn = Xn, ... ,Xl = 

Xl, Xo = Xo] = Pr[Xn+1 = xlXn = Xn] 

The possible values of Xi from a countable set S are called the state 
space of the chain. 

Here are some important properties of a Markov Chain: 

• Define the probability of going from state i to state j in n time steps 
as, P0 = Pr[Xn = jlXo = i] 

• The single-step transition as, Pij = Pr[X l = jlXo = i]. 

• The n-step transition satisfies the Chapman-Kolmogorov equation, 
th t f 0 k n - '" k (n-k) a or any < < n, Pij - L. PirPrj 

rES 
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• The marginal distribution Pr (Xn = x) is the distribution over states 
at time n. The initial distribution is Pr(Xo = x). The evolution of 
the process through one time step is described by, Pr (Xn+1 = j) = 
L: prjPr[Xn = r] = L: P~jPr[Xo = r] 
rES rES 

• The superscript (n) is intended to be an integer-valued label only in 
this thesis; 

A Markov Chain corresponds to a transition matrix; an element of 
the matrix is the probability of transition from one state to the other, and 
the matrix should satisfy the property above. 

An example of using a Markov model is introduced by Cheung, 
for his model of reliability in [5], and another example of using a Markov 
Chain is introduced by Clegg, for his Internet Traffic Model in [34]. We 
will also use the properties of a Markov Chain and the Transition Matrix 
as a foundation during the building of our part-based availability model. 

3.2.2 PBSA Model 

Now, we will introduce a quantitative PBSA (part-based software 
model for availability), which can be used to calculate the entire availabil­
ity of a complex system, where we assume that all the components are 
simplified or reduced into pure parts. 

Definition 3.4 A pure part is a part, which can functionally work 
independently, which means it is available independently. 

Because the parts in the structure are pure parts, we can consider 
them as different independent states in a Markov chain. We first look at the 
structure as a directed graph, each node of the graph is a part, and an edge 
of the graph represents the relation between one part and the other; this 
relationship may be the sequencing of different functions, or the data flow 
among different parts. We do not care about what kind of relationships 
they are, and we just think of the relationship as a transition from a state 
to another. And the availability of the second part will not depend on the 
previous one, and we will see how to make sure of this in the next Chapter. 

The independence here has two different meanings, one of which 
is that the independence of a part means that the part can execute a 
function independently, and its failure will not cause the other part to be 
unavailable. For example, in a CIS pattern system, a failure of a client part 
will not compensate to make the server fail too. And even if there is such 
a possibility, for example a virus, we assume that they are independent 
and are not compensating. The second meaning of independence is that, 
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if a part is unavailable, it cannot be taken over by an other part, as in a 
redundant pattern. So, we say in our model, if a part is unavailable, the 
total system will be unavailable at this moment. Remember, here the part 
is an independent part, and its availability will not be affected by any other 
parts, and a redundancy pattern should be reduced into a pure part before 
we use PBSA. 

Because a part is composed of some components, and we assume in 
this model that the availability of a component is defined and will remain 
invariant, until something updated for it. We will discuss how to improve 
the availability of a component in the next Chapter. Here, we first assume 
that we already know the availability of each component, and so each part. 
The calculation of the availability of a part is discussed in the previous 
section and we will discuss it further in the next section together with the 
reduction of an architecture structure, using AEAR. 

Definition 3.5 A Normal Architecture Structure has a set of pure 
parts, a start part, and an end part. 

In this thesis, we suppose that every system architecture structure 
is normal. If there is a system with more than one start part and more than 
one end part, it is very simple to add a super-start part and a super-end 
part, just as the famous Flow Control algorithm does. As in the Figure 
below, we have a set of start parts (51,'" ,5m ), and a set of end parts 
(E1 ,'" ,Ek ), and we add a super-start part 50 with availability 1, and a 
super-end part Eo with availability 1, and the system becomes a normal 
structure. 

Figure 14: A Variation of Normal Architecture Structure 

State Diagram 
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The state diagram of a normal architecture structure is nearly the 
same as the normal architecture structure itself, with two additional states 
Failure and Available as in Figure 15, which is a state diagram for the 
architecture structure illustrated in Figure 13. Each state in the diagram 
corresponds to one part of a normal architecture structure, except for the 
failure state and available state. We can see that the main purpose of 
using the state diagram is to evaluate the availability of the software sys­
tem, and the availability of the software system is related to or dependent 
on the corresponding architecture parts and the path of their availability 
checking. So, each state represents the moment that a virtual checker is 
checking whether this part is available. The transition from one state to 
another means the checker passed the checking of the availability of the 
previous part and chose the current part and began to check the current 
part. For example, an edge from Si to Sj, means that the checker has passed 
the availability checking of Si, and chose part Sj and began to check the 
availability of Sj. If it failed, or the transition from Si to Sj failed, this 
means it has not passed the check of Si. Please note: availability checking 
here means finding whether the part is available or not, it does not mean 
the checking of the probability of when the part is available. But the prob­
ability of success of passing the current part's availability checking is the 
availability of that part. 

To make sure the entire system with n parts is available, the checker 
should check all the n parts, this is, there should be at least n transitions 
from state 1 to state n. And also there is the possibility of repeat checking 
the same part or transfer to the same state in a state diagram. So, there 
may be 1 to infinity transitions from state 1 to state n. 

Because the next state to be checked will only depend on the avail­
ability of current state to pass the check, and it has nothing to do with the 
history of the availability of the current state, the state diagram has the 
Markov property. Based on the Markov chain view, as described above, 
the transition between states is assumed to be a Markov process. 

Now, we have a state diagram and we have made clear the relation­
ship between the Markov chain and the state diagram. It is possible for 
us to define a transition matrix, according to the definition of transition 
possibility and the state information above. As we defined above, a state 
diagram is a directed graph, each node Si represents a state and each di­
rected edge (Si, Sj) represents a transition from state Si to Sj. Ai denotes 
the availability of state Si of passing the check, that semantically means 
that the availability of part Si is A. And because the transition (Si, Sj) 
only depends on the availability of Si to pass the check and the probabil­
ity of choosing Sj to check, and has nothing to do with the history of the 
availability of Si or all other states, we say that Ai Vij is the probability for 
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the transition (Si, Sj), where Vij is based on the connection Eij , which is 
defined as, 

Eij = { 1, 
0, 

if there is directed edge from Si to Sj 

otherwise 

(5a) 
(5b) 

So, now our model is, given a set A = (AI,' .. ,An) of all the avail­
abilities of different parts, and an architecture structure, with the Part 
space S..:...- (Sl,'" ,Sn), and a set of connections E = {(i,j)1 there is a 
path from Si to Sj and 1 ( i, j ( n} , then Sand E are combined together 
to construct the state graph (G), which can be described by a matrix: 

G= 

where 

Ell E12 El(n-l) 

E2l E22 E 2(n-l) 

E(n-l)l E(n-l)2 E(n-l)(n-l) 

Enl En2 En(n-l) 

_ {I, if(Si' Sj) E E 
Gij -

0, otherwise 

and the out-degree of part i is di = I: Gij 
j 

original transition matrix 

E ln 

E 2n 

(6) 

E(n-l)n 

Enn 

(7) 

Then, without considering part availability, we may obtain the orig­
inal transition matrix V below, according to the out degree di of the 
connecting part. 

Vll V12 Vl(n-l) V ln 

1121 1122 V 2(n-l) V 2n 

V= (8) 

Vcn-l)l V(n-l)2 V(n-l)(n-l) Vcn-l)n 

V nl V n2 Vn(n-l) Vnn 

where Vij = ~:j means the probability of choosing state Sj from 
state Si as the next state to check. It is a random choice, and the probability 
is the mean proportion of 1, according to the out-degree di . Note: the 
transition probability is independent of the in-degree. This is different 
from those models for Reliability evaluation in [ 8,5 1 because we do not 

49 



Master Thesis - Rongshu Yi - McMaster - Computing and Software 

consider an operational environment; the Markov process here in PBSA is 
a process for checking whether each state is available; if any part has not 
passed the check, it goes to a state of Failure. So, choosing the next state 
for checking is a totally random process. 

Then we define the part availability matrix as, 
Part Availability Matrix 

Al 0 0 0 
0 A2 0 0 

P= 

0 0 A(n-l) 0 
0 0 0 An 

And we define the Basic transition matrix as 
Basic Transition Matrix 
M=PxV 

AIVU A I V 12 Al Vi(n-l) 

A 2V 21 A2V22 A2 V2(n-l) 

A n - l V(n-l)l A n- l V(n-I)2 A n- l V(n-l)(n-l) 

AnVnl AnVn2 An Vn(n-l) 

(9) 

AlVin 

A2V2n 

An - l V(n-l)n 

AnVnn 

(10) 

Where .A1ij=Pr [successful transition from state Si to Sj in one step] 
the Basic Transition Matrix must have the following properties: 

• V(i,j) E S x S,Mij ~ 0 

• V(i,j) E S x S,Mij:S; 1 

• V(i,j) E S x S,lvlij = AiVij 

• V(i,j) E S x S, ~Mij :S; 1 
j 

where Ai is the availability of part Si, and Vij is the value of the 
connection function V. 

Adding the states A (Availability) and F (Fault), we get the Markov 
transition matrix Ma j , 

Markov Transition Matrix 

50 



Master Thesis - Rongshu Yi - McMaster - Computing and Software 

F A 1 ~ N 

F 1 0 0 0 0 
A 0 1 0 0 0 
1 I-AI 0 AIVn AIVli AlVIn 

T= 
~ 1- Ai 0 AiViI Ai Vii AiVin 

N 1- An AnVna AnVnl AnVni AnVnn 

This matrix is a Markov transition matrix, and obviously it is a 
stochastic matrix with property 1\(2:T[i, k] = 1), besides the properties 

i k 
of M. 

The states F and A are absorbing states, because we have T[F F] = 
1/\ T[AA] = 1, and from any state Si, it is possible to go to F or A (not 
necessarily in one step). So the Markov chain here is an absorbing Markov 
chain. 

Definition 3.6 The states F and A are absorbing states in an absorbing 
Markov chain for PBSA. 

Definition 3.7 All states, except F and A, are transient states in a ab­
sorbing Markov chain for PBSA. 

This means all other states are transient, and when k ---t 00, we 
have Mk[i, j] = 0, because all the states in M are transient states [1]. 

Then we can rewrite the Markov transition matrix T as a form as, 

FA TR 

T= ~~ (~ ~) 
where I is a 2 x 2 identity matrix, 0 is a 2 x n zero matrix, Q is a non­
zero n x 2 matrix, and M is a n x n matrix. FA represents the states of 
absorbing and T R represents the transient states. 

A standard matrix algebra argument shows that Tn has the form of 

FA TR 

Tn = FA (I 0 ) 
TR * Mn 

51 



Master Thesis - Rongshu Yi - McMaster - Computing and Software 

where the * stands for the n x 2 matrix in the left-bottom corner 
of Tn (This submatrix will be described later.) The form of Tn shows that 
the entries of Mn give the probabilities for being in each of the transient 
states after n steps for each possible transient starting state. 

According to the theorem 11.3 of [ 1 ], we have that in an absorbing 
chain (with absorbing matrix), the probability that the process will be 
absorbed is 1. This means that Mn is going to be 0 when n --7 00. 

Because we do not consider the situation where, after checking the 
current state, we choose it again as the next state, we have the axiom 
below: 

Axiom 3.4 The probability of the transition (5i , Si) in transition matrix 
M is OJ so there are no transitions from 5i to 5 iJ where 5 i =I=- A /\ 5i i- F. 

So, Mii = 0, where 1 ~ i ~ n, in the transition matrix above. 
Based on this information, we can determine that the availability 

checking process in state 5i at time n will be that for state 5j at time n+k, 
using the Chapman-Kolmogorov equations: 

W(··) 5 5 ( k) ~T ~T (n+k) _ '" (n) (k) v ~,J E x /\ n, E l'l X l'l,Pij - ~ Pim . Pmj 
mES 

(11) 

where p~;) means the probability of moving from state 5i to state 
5j in n steps. 

Now, we say the availability of the whole system obtained from the 
Markov transition matrix is as follows. 

The availability of a software system with a general normal archi­
tecture structure is (1 - M)-l[l, n], where M is the basic transition matrix 
of the system, n is the number of the parts, and 1 is the identity matrix 
with size n x n. 

proof: 
According to the definition 11.3 of [1], given an absorbing Markov 

chain T, such as the one shown above, we call the matrix N = (1 - M)-l 
the Fundamental Matrix for T. 

And according to the theorem 11.6 of [1], if B is an n x 2 matrix 
with entries bij , where bij is the probability that an absorbing chain will be 
absorbed in the absorbing state 5j , from a transient state 5 i , then we have 

B=NQ (12) 

where N is the fundamental matrix defined above, and Q is the n x 2 
matrix described above in the definition of T. 
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The proof of this is very easy) that is: 

.z= .z= m~~) qkj < According to the definition of Bij 

n k 

.z= .z= m~~) qkj 

k n 

.z= nikqkj < Because 
k 

(NQ)ij 

.z= M n = (I - M) -1 = N > 
n 

> 

So) it is very clear that b1a ) the probability of being absorbed into the 
absorbing state A from the transient state S1) will be (NQhA =(NQh2) 
because state A is in the second column of Q. 

SO we have the availability of the whole system 

A = (NQh2 = (I - Mt1 [1) n] x An V na (13) 

where I is an identity matrix of size n x n) and An is the availability of 
part Sn and Vna is the probability of choosing state A from state Sn. 

And in this thesis we assume that there are no edges going out of 
transient state Sn to other transient states. So we get that Vna = 1) and 
A = (I - M)-l[l) n] x An. 

This completes the proof. 
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3.3 Using PBSA 

Now, we will show an example of how to calculate the availability of 
the entire software system, illustrated in Figure 12. The software system of 
Figure 12 has 12 parts, in which C1 is the input part and C lD is the output 
part. After doing step one below, we get an normal architecture structure 
as shown in Figure 13. As we described in last section, we assume that the 
availability of all parts are now constant, before any updates are done to 
them, and the transitions will be shown in the state diagram below. 

The part availability matrix is: 

0.907 0 0 0 0 0 0 0 0 
0 0.912 0 0 0 0 0 0 0 
0 0 0.956 0 0 0 0 0 0 
0 0 0 0.935 0 0 0 0 0 

p= 0 0 0 0 0.982 0 0 0 0 
0 0 0 0 0 0.903 0 0 0 
0 0 0 0 0 0 0.952 0 0 
0 0 0 0 0 0 0 0.915 0 
0 0 0 0 0 0 0 0 0.983 

Now, we begin to calculate the overall availability of this software 
system. 

Step 1: We reduce the software system architecture to be a normal 
architecture structure. We will discuss how to do this in next section, using 
AEAR. The purpose of this is to make sure that the state diagram from 
this structure will satisfy the qualifications and preconditions of a Markov 
chain. \7Ve assume that we have completed the work and obtained the 
normal structure as in Figure 13. 

Step 2: translate the normal architecture structure from Figure 13 
to the state diagram below in Figure 15, because we assume the part-based 
architecture structure is a normal architecture structure with pure parts, 
in which all parts have availability independently. 

We translate this into a state diagram matrix as 
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Figure 15: A State View of Software Architecture in Figure 13 

0 1 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 1 1 
0 0 0 0 1 1 1 0 0 
0 0 0 0 1 0 1 0 0 

G= 0 0 1 1 0 1 0 0 0 
0 0 0 0 1 0 1 0 1 
0 0 1 1 0 1 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 

Then the original transition matrix is: 

0 1 0 0 0 0 0 0 0 
0 0 1/3 0 0 0 0 1/3 1/3 
0 0 0 0 1/3 1/3 1/3 0 0 
0 0 0 0 1/2 0 1/2 0 0 

V= 0 0 1/3 1/3 0 1/3 0 0 0 
0 0 0 0 1/3 0 1/3 0 1/3 
0 0 1/3 1/3 0 1/3 0 0 0 
0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 
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Step 3: Model the state diagram by a basic transition matrix ac­
cording to the state diagram above. 

M=PxV 

0 0.907 0 0 0 0 0 0 0 
0 0 0.304 0 0 0 0 0.304 0.304 
0 0 0 0 0.3187 0.3187 0.3187 a 0 
a 0 a a 0.4675 a 0.4675 a a 
0 0 0.3273 0.3273 a 0.3273 0 a a 
0 0 0 a 0.301 0 0.301 a 0.301 
a 0 0.3173 0.3173 a 0.3173 0 0 0 
a a a a a 0.915 0 0 a 
a 0 0 0 0 a a a a 

And we get the Markov transition matrix T to be 

F A 1 2 3 4 5 6 7 

F 1 a a a a a a 0 a 
A 0 1 a a a a a 0 0 
1 0.093 a a 0.907 a 0 0 0 a 

8 

a 
a 
0 

2 0.088 a a 0 0.304 0 0 0 a 0.304 
3 0.044 a a a a 0 0.3187 0.3187 0.3187 a 
4 0.065 a a a a 0 0.4675 0 0.4675 a 
5 0.018 a a 0 0.3273 0.3273 a 0.3273 0 a 
6 0.097 0 a 0 a a 0.301 0 0.301 0 
7 0.048 0 a 0 0.3173 0.3173 a 0.3173 a a 
8 0.085 a 0 0 a 0 a 0.915 a 0 
9 0.017 0.983 0 a a 0 0 0 a a 

Step 4: Calculate the overall availability of the software architecture. 
We know that n = 9, and 

N = (I - M)-l 
N[l, n] = Q[l, 9] = 0.5832 
So, the overall software availability is: 
A = An X N[l, 9] 
= 0.983 X 0.5832 = 0.5733 
This means the overall availability of this software system is 57.33%. 
We will introduce later the AEAR (Availability Equipollence Ar-

chitecture Reduction), which reduces an architecture structure from any 
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software architecture with different patterns to a pure part architecture 
structure, and make it comply with the qualifications and preconditions of 
PBSA; then, we can use it to calculate the overall availability using PBSA. 
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3.4 A vailability Equipollence Architecture Reduction 

3.4.1 Why we need reduction 

In a large scale complex system, there may be a lot of patterns 
embedded in it, the components of some kinds of which may have related 
availability, which makes the structure conflict with the requirements and 
preconditions of PBSA and makes the calculation of availability using the 
PBSA model fail. 

Definition 3.8 A related availability means that a transition from Si to 
Sj depends not only on the availability of the previous state Sil but also on 
other states Ski where k i=- i. 

In Figure 16, the component-based software architecture includes 4 
states, in which state 3 and state 2 are parallel or redundant components. 
This means if component 2 fails, component 3 will take over its role and 
make the system available without any breaking (In practice, there should 
be some other component for monitoring and switching, we omit them to 
make the example more clear and straightforward). 

Figure 16: An Example of Related Availability 

Suppose that we give the part availability of this software system as 

C
907 0 0 

o.L) p= 0 0.912 0 
0 0 0.956 
0 0 0 

And the state diagram as: 

Translate it into a graph matrix Gas: 

58 



Master Thesis - Rongshu Yi - McMaster - Computing and Software 

Figure 17: A State View of System in Figure 16 

And the original transition matrix is: 

( 

0 1/2 1/2 0) 
V= 0 0 0 1 

o 0 0 1 
o 0 0 0 

Then, the Basic transition matrix of this software system is: 

( 

0 0.4535 0.4535 
o 0 0 

M=PxV= 0 0 0 

o 0 0 

0.~12 ) 
0.956 

o 

And the markov transition matrix Tis: 

F A 1 2 3 4 

F 1 0 0 0 0 0 
A 0 1 0 0 0 0 
1 0.093 0 0 0.4535 0.4535 0 
2 0.088 0 0 0 0 0.912 
3 0.044 0 0 0 0 0.956 
4 0.065 0.935 0 0 0 0 
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Then according to PBSA, we have 
N = (I - M)-l 
Q[l, n] = Q[l, 4] 
= 0.8471 

So, the overall software availability is: 
A = An X N[1,9] 
= 0.8471 X 0.9939 = 0.8419 
Obviously, the overall system availability of this software system is 

now 84.19%. 
But according to the simple part availability calculation method 

introduced in Chapter 3.1, the availability of this system should be 

Ap = Al X (1 - (1 - A 2) (1 - A3 )) X A4 

0.907 X (1 - (1 - 0.912) (1 - 0.956)) x 0.935 

0.907 x 0.9961 x 0.935 

0.8447 

They are different, so something must be wrong. 
Let us look at the transition state diagram. Suppose P34 is the 

transition from 8 3 to S4, and P34 obviously depends on the availability of 
8 3 , but it still depends on the availability of S4, because, in our redundant 
system, part 2 and part 3 are backups to each other, so if one of them 
fails, the other will take over its role, timplying there is nearly no break 
for the overall system. And the unavailability of state 3 will not make the 
transition P34 fail. This conflicts with the property of a Markov chain, in 
which any transition only depends on the current situation of its previous 
state, not on its history and not on the other states. 

So we have to reduce this architecture structure to an availability 
equipollent one, in which every part is a pure part, and has no relationship 
between its availability and that of other pure parts. 

Definition 3.9 An availability equipollent architecture is an architecture 
structure which has the same availability property as the original software 
architecture. 

To reduce an architecture structure to an availability equipollent 
architecture and to a normal architecture structure, in which every part 
is availably independently, or has no related availability property, we use 
Availability Equipollence Architecture Reduction (AEAR). 

Definition 3.10 Availability Equipollence Architecture Reduction(AEAR} 
is a transition process, by which an original architecture structure, with one 
or more patterns, can be translated to an availability equipollent normal 
architecture structure. 
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Because a software architecture may be heterogeneous, with differ­
ent kinds of pattern, and a pattern is designed to solve some quality at­
tribute problems, there are some semantically defined relationships among 
the components in a pattern, and these relationships may lead to related 
availability properties. So we will introduce approaches for AEAR accord­
ing to the nature of an architecture pattern. Different patterns may have 
different rules for AEAR, but there exist some of the patterns, which have 
same properties for AEAR. So we would like to introduce some approaches 
for AEAR by classifying the most popular architecture patterns according 
to their availability properties. 

The pattern classes we are going to introduce include: Redun­
dancy/Fault Tolerance/Cluster patterns, Layers/Brokers/Batch-sequential/pipeline 
patterns, Blackboard/Repository patterns, Parallel/Pipe-Filter patterns, 
and Interactive/MVC patterns. We will not introduce all patterns, be-
cause it is impossible to include all patterns in one paper and actually we 
doubt if there is a set including all patterns, because every day there are 
new patterns defined. We class these patterns into 5 classes because each of 
the classes has a special availability property. The layers pattern, including 
the client-server pattern and the Browser-Server pattern, are similar to the 
Brokers, Batch-Sequential and Pipeline patterns. The redundancy pattern 
is a kind of Fault tolerance pattern, and so is the Cluster pattern. 

We are going to introduce 5 kinds of approaches for AEAR, ac­
cording to 5 classes of patterns, to get availability equipollent normal ar:... 
chitecture structures. For each of the patterns, we will present a typical 
architecture structure for it, and give a superpart for the reduced part of 
the new availability equipollent normal architecture structure. We will use 
Ai to represent the availability of original component Gi , and we will use 
Pij to represent the probability of the transition from state Si to Sj, where 
states Si and Sj correspond to the components Gi and Gj . 

[8] introduced two kinds of rules of reduction for simplifying network 
architecture for reliability calculation. As we mentioned in Chapter 3.1, its 
rules are based on series and parallel structure. AEAR is another reduction, 
and its purpose is to make sure that the transition process between two 
connected components is a Markov process. In addition, AEAR is based on 
the pattern's structure, and of course it may include the series and parallel 
structure. 

The reduction rules will be named using the pattern name. 
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3.4.2 Redundancy Rule 

Figure 18 is a typical redundancy, fault tolerance or cluster pattern, which 
consists of a leader component and a set of backup components. There 
may be different kinds of algorithms or strategies for the monitor/detector, 
switch decision and recovery, just as we introduced in Chapter 2.3, A sim­
plex structure may be better than this in performance and availability using 
a different algorithm. But here we will use the most simple and popular 
one.· We suppose that all components are placed in parallel, which means 
they are executing parallel and, when the leader fails, one of the backup 
components will be chosen to be a new leader and, without loss of gener­
ality, we choose the first backup component as the new leader. In Figure 
18, component Rl to component Rn are backup components to the leader 
"Leader" component. 

DSR 

Detector 

SWitcher) 

( ReCOVery) 

Figure 18: Redundancy or Fault Tolerance or Cluster Pattern 

Now, we begin to reduce this structure. To reduce this structure, we 
should know first that all the components, including the leader component 
and the backup components have related availabilities, which means that 
all the components of leader and backups, including the DSR (Detector, 
Switching and Recovery) component have related availability. So, they 
should be reduced into one part. 

We suppose that the i-th backup component has availability A, and 
the leader component has availability Al . Then, according to our strategy 
for this redundancy structure, if the leader component fails, the first backup 
component Rl will take over its role, and at this time we should make sure 
the component Rl is available, or we should choose the second component 
R2 as the new leader component, or .... So, the availability AT of the 
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reduced part can be: 

n-l 

AT = Al + (1 - AI)Al + (1 - AI)(1 - Al)A2 + ... + II (1 - AI)(1 - Ak)An . 
k=l 

n k-l 

= Al + (1- AI) I) II (1- Am)Ak) (14) 
k=l m=l 

The state diagram of the reduced architecture of the original struc­
ture, shown in Figure 18, can be like that shown in Figure 19. 

DSR 

( Detector ) 

( In put )I---"~ ~",fil{;~~1~t1r:!j!i~i-' --.. ( Switcher ) 

( Recovery ) 

Figure 19: Reduced Structure for Redundancy Pattern in Figure 
18 

Now, we look back to the example shown in Figure 16. It consists 
of a redundancy pattern, so we should reduce it into a new state diagram 
below in Figure 20, from that original state diagram, shown in Figure 17. 

Figure 20: A State View for Reduced Architecture of Figure 16 

The reduced superpart here is S23, and its availability can be com­
puted from the equation (14) as: 
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So, the part availability matrix should be: 

( 

0.907 0 
P = 0 0.9961 

o 0 

And the state Graph matrix is now: 

G=(H n 
And the original transition matrix is: 

v=(H n 
So the basic transition matrix is: 

( 

0 0.907 0 ) 
M = P x V = ~ ~ 0.9g61 

And the Markov transition matrix Tis: 

F A 1 2 

F 1 0 0 0 
A 0 1 0 0 
1 0.093 0 0 0.907 
2 0.0039 0 0 
3 0.065 0.935 0 

Then according to PBSA, we have 
N = (I - M)-l 
N[l, n] = N[l, 3] = 0.9035 

0 
0 

3 

0 
0 
0 

0.9961 
0 

And the overall availability of this system is 
A = N[l, n] x A3 = 0.9035 x 0.935 
= 0.8447 = 84.47% 
This is the correct availability of this software system. 
There are lots of algorithms for redundancy reduction, for example 

the simplex structure, and the model we introduced in Chapter 2.2.3, first 
defined by Mario [36]. The cluster model defined by Mario is an excellent 
one for clusters. 
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To conduct the availability analysis, they assign each component a 
failure rate and a repair rate, the rate at which this component recovers 
from a failure, obtained from questionnaires or checklists, depending on the 
maturity of the domain or prior experience with similar components. To 
understand the availability of the RTS, they use a machine repair model 
with S machines and one repairman. The amount of time each machine 
operates before breaking down is exponentially distributed with mean 1/ A 
(the failure rate of machines is A). The amount of time that it takes to 
repair is exponentially distributed with mean 1/ f.l (the repair rate is f.l). 
Both A and f.l are discovered parameters needed by the availability model. 

In the machine repair model [ 35 ], they say that the system is 
in state n whenever n machines are not it use. In a server availability 
calculation, they say that the system is available (albeit with diminished 
capacity) whenever at least one server is operating (available) and they say 
that the system is down whenever all S servers are down. The long-term 
proportion of time that the system is not in state S (i.e., the system is 
available, by their definition) is given by 

(15) 

Using this equation, we can reduce a cluster into one availability 
equipollent part. 

Of course, we cannot list all the algorithms here, because there may 
be new ones every day, but redundancy or clustering is a very good pattern 
for increasing availability. Further research in this area will be worthwhile. 

3.4.3 Sequential Rule 

All Layers, Brokers, Batch-Sequential and Pipeline Patterns are exe­
cuting in a sequential order. Of course, there may be some small difference, 
for example, Batch-Sequential should obtain its output after all its inputs 
are fully processed, and pipeline will not have to. Brokers is a kind of 
variant pattern from Layers, and they are both representative sequential 
patterns. 

The figure below shows the character of a sequential pattern's ar­
chitecture. 
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Figure 21: Layers, Brokers and Batch Pattern Architecture 

Its very clear that the Figure 21(A) is showing a sequential architec­
ture, just as we introduced in Chapter 2.3.1; the availability of the reduced 
part can be calculated as 

n 

Ap = Al X A2 X ... x An = II Ak 
k=1 

(16) 

The premise of this calculation of the reduced part availability is 
that, from 0 1 to On, there are only two connections to outside components, 
one is the input from outside component to component 0 1 and the other 
is the out-direction connection from On to other components not in the set 
of components which will be reduced. 

For example, the following two architecture structures cannot be 
calculated using equation (16). 

Figure 22: Exceptional Example for Sequential Patterns 

In Figure 22(a), the sequential pattern can only start from compo­
nent O2 , and the reduced availability equipollent architecture should have 
a structure like: 
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(a) (b) 

Figure 23: Reduced Structure For Example in Figure22 

In the example of Figure 22(a), the reduced structure is shown in 
Figure 23(a), the part R2 representing the reduced part for components 
C2 , .•. , Cn and its availability is 

n 

AR2 = IT Ak (17) 
k=2 

In the example of Figure 22(b), the reduced structure is shown 
in Figure 23(b), the part Rk represents the reduced part for components 
C1 , ... , Ck and the availability is 

(18) 

Now, consider the structure shown in Figure 21(b), from component 
C2 on, there are branches, each of which is still a sequential pattern; there 
are no algorithms for redundancy between these branches. This is still a 
sequential pattern, but a special one. 

Let us consider its availability attribute. These branches are choice 
branches and the execution sequence is decided by component C2 semanti­
cally, so the probability of choosing each branch is decided by the operation 
profile; precisely, it is decided by the business logic and the class of input 
data. We will forget about the impact of operation profiles in this thesis 
and suppose that the probability of choosing each branch is the same. 

Now, suppose that in Figure 21(b) there are k branches overall, 
and each branch i has Xi simple sequential components, each of which 
has availability of Ax; . Then the availability of the reduced part of this 
architecture structure is, 

(19) 

where -l is the probability of choosing one of the branches. 
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3.4.4 Parallel Computing Rule 

Parallel Computing and Pipe Filter Patterns are totally different patterns 
from Sequential patterns described above. In modern software system, es­
pecially inlarge concurrent computing systems, including most of the large 
scale database systems, it is very popular and necessary, because a perfor­
mance property is the key concern for these software systems. The main 
difference between these patterns and sequential patterns focuses on the se­
quence of component execution. In Parallel Computing patterns, a big task 
comes from a previous component, then it is divided into several logically 
related subones, each of which is sent to one of the concurrent components 
to be executed simultaneously, according to a predefined policy. After all 
the components complete their execution, the combination component will 
collect all the results from the concurrent components and go to the next 
component. So, all the concurrent components are executing simultane­
ously, and they may be working on different processors or working on one 
processor, by dividing time. The former working style is called the Parallel 
Computing pattern, the latter is called the Pipe Filter pattern. 

But the Sequential Patterns cannot have concurrent components 
working simultaneously, and all the components should work sequentially. 

Now, consider the figure below, showing a Parallel computing pat-
tern. 

Figure 24: Parallel Computing and Pipe Filter Pattern 

There are k concurrent components in this pattern structure, shown 
in Figure 24. And component Co distributes each divided tasks to corre­
sponding components from C1 to Ck. Then after they finish their compu­
tation, component Cn will collect all their results and do some integration 
and verification work to make sure all components successfully completed 
their calculation and then integrate all results according to a predefined 
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policy, then go out . 
Now, consider the availability property of this pattern. It is very 

clear that if there is any fault during the execution of any of the con­
current components, or we say that if one of the concurrent components 
{C1 , ..• ,Ck } fails when executing, then the integration component Cn can­
not get all results from component C1 to Ck, so the component Cn will be 
always waiting and cannot go further. This means the software system 
fails. 

So, the availability of this pattern is the probability that all the 
concurrent components are available before the system transfers from com­
ponent Co to them and also they should be available when subtasks assigned 
to them are being executed. The reduced Parallel Pattern is shown below. 

Figure 25: Reduced Parallel Computing Pattern from Figure 24 

We suppose all the transitions from component Co, which will be 
So if we translate the architecture structure to a state diagram, to the 
concurrent components will depend only on the availability of component 
Co, then the availability of the reduced part(Part Clk in Figure 25) will be 

k 

Ap = Al X A2 X ... X Ak = II Am (20) 
m=l 

We would like to restate that why we can reduce the parallel com­
puting like this is because that we understand that the transition from C1 

to Cn is dependedent not only on the availability of C1 , but also on the 
component of C2 , C3 ,' .• ,Ck , in other words, in a state diagram, thetran­
sition from Sl to Sn does not satisfy the precondition of PBSA, so we have 
to reduce it and make it comply with the precondition, that is to make 
sure that the transition process from Si to Sn is a Markov process. And 
the reduction rule is based on the semantic understanding of the Parallel 
Computing pattern. 

If we have a parallel computing structure, with some concurrent 
components, from C1 to Cn, replaced by a sequential pattern, then we 
can first reduce the sequential pattern into one reduced part, then use the 
Parallel Computing pattern rule to reduce the overall Parallel Computing 
pattern. 

Note: All the concurrent components should be working in parallel, 
with no intersection and no branching. Here are two kinds of exceptional 
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architectures which can not be reduced using Parallel Computing pattern 
rule. 

(a) (b) 

Figure 26: Exceptional Parallel Computing Pattern 

The structure of the Parallel Computing pattern is very similar to 
the structure of the Redundancy Pattern, but they are semantically differ­
ent. So we must be careful when reducing systems with these two patterns. 
One may ask how one knows what the pattern is if they have the same 
structure view.. We know what the pattern of the structure is because we 
are the architects designing the architecture structure and we choose the 
pattern; so we know which one is the concurrent computing pattern and 
which one is the redundancy pattern. 

This leads to an important conception that an arbitrary, original 
architecture structure for reduction (A EAR) is a view of components and 
relationships, which tells us that the relationship between two components 
or among some components shows not only the connection between two 
components, but also the semantic relationship between the two or more 
components, such as the relationships in redundancy and parallel comput­
ing. 

3.4.5 Blackboard Rule 

In the Blackboard, Repository, and Call-and-Return patterns, the exe­
cution of a calling component may invoke some services from the other 
component or components, and after the called component or components 
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finish executing their job, the controller will come back to the calling com­
ponent before it goes to other components [4,18]. 

In Figure 27, there are two examples of Call-Return patterns. The 
first one, in Figure 27(a) , is a typical repository or call and return pattern 
structure, which has one called component C2 and offers services for calling 
component C1 . So, in the state diagram of this pattern, in Figure 28(a), 
there is a transition from state Sl to state S2, and at the same time there 
is a transition from state S2 to state Sl. 

(a) 

Figure 27: Blackboard and Repository Pattern 

(a) 

Figure 28: State view of Blackboard Repository Pattern 

And Figure 27(b) is a typical Blackboard pattern, where C1 is a 
control component, it calls a service of component C2 , and C2 may call 
another service on a blackboard component C3 , and then· .. Ck, then Ck 
returns the result to C1 , then C1 may recall another service of C2 , and so 
on. This is a calling cycle. 

We suppose that there is no return transition from S2 to Sl in 
Figure 27(a), then it's clear that S2 and Sl from a sequential pattern, and 
its availability is 

Ap = Al X A2 
Now we add the transition from S2 to Sl; because the availability 

of the transition is 1, we say that the availability of the call-return and 
repository pattern is 

Ap = Al X A2 X 1 = AIA2 
Using the same idea, we can obtain the availability of the Blackboard 

pattern as 
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k 

Ap = Al X A2 X ... X Ak = II Am (21) 
m=l 

Then the reduced part can be as in Figure 29(a) and 29(b), respec-
tively. 

(a) (b) 

Figure 29: Reduced Blackboard Repository Pattern 

where, in Figure 29(a), the reduced part is G12 , and the availabil­
ity of it is AlA2 and, in Figure 29(b), the reduced part is Glk and the 

k 

availability of it is n Am· 
m=l 

Note that, if there is another out-direction connection between G2 

and an other component, other than Gl , as in Figure 30(a), this pattern 
rule will be broken; this is because it is not a call-return or repository 
pattern any more. Similarly, if in Figure 30(b), there is an out-direction 
connection from Gi , where i E {2,'" ,k}, to other components, then the 
pattern rule· will be broken too, and then this will not be a blackboard 
pattern. 

(a) 

Figure 30: Exceptional Blackboard and Repository Pattern 

3.4.6 Interactive Rule 

Today's applications requires a high degree of user interaction, many 
of them achieved with the help of graphical user interfaces. The objective 
of user interaction is to enhance the usability of an application. Usable 
software systems provide convenient access to their services, and therefore 
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allow userS to learn the application and produce results quickly [ 4 ]. The 
core property of the architecture of such systems is to keep the functional 
core independent of the user interface and is based on the functional re­
quirements for the system. User interfaces, however, are often asked to do 
some changing and adaptation to support different user interface standards, 
user's feelings and manager's wishes or interfaces that must be adjusted to 
fit into a customer's business processes. This requires architectures to sup­
port the adaptation of user interface parts without causing major effects 
to application-specific functionality or the data model underlying the soft­
ware. 

There are two particular patterns for interaction systems, the Model­
View-Controller (MVC) and Presentation-Abstraction-Control (PAC). The 
MVC pattern provides probably the best-known architectural organization 
for interactive software systems. It was first introduced in the Smalltalk-
80 programming environment [2]. MVC divides an interactive application 
into the three areas: processing, output, and input. The model component 
encapsulates core data and functionality and it is independent of specific 
output representations or input behavior.The view components display in­
formation to the user and they obtain the data from the model. Each view 
has an associated controller component, which receives inputs, usually as 
events that encode mouse movement, activation of mouse buttons, or key­
board input. Events are translated to service requests for the model or the 
view. The user interacts with the system only through controllers. 

In Figure 31, there are two scenarios of a MVC pattern, representing 
two scenarios of MVC. Figure 31(a) shows how user input that results in 
changes to the model triggers the change-propagation mechanism: changes 
can be sent to the model to call the services integrated in the model compo­
nent and then the changes can be propagated to be displayed through the 
view component. Or the view component requests changes from the model 
component and displays what the changes by itself. The model component 
can update the controller component, making its functionality increase or 
decrease or change. 

Figure 31(b) adds references between controller and view compo­
nents, when initializing. The view component created a controller com­
ponent for it and the controller component can manipulate the display by 
directly calling some service on the View component. 

The scenario of Figure 31(b) is the structure of initialization of 
MVC, so we need not use it for calculating availability. Therefore Fig­
ure 31(a) is the basic structure for us to calculate availability. We view it 
as a combined blackboard or repository pattern with a shared component 
model. 

According to the Blackboard rule, we get the availability of MVC 
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Figure 31: MVC pattern 

as, 

(22) 

If the connection between controller and view components are al­
ways there, as Figure 31(b) shows, we have the avaiiability of MVC as, 

(23) 

Sometimes, we have a MVC structure like Figure 32. Although it is 
a MVC pattern structure, we cannot use the interactive rule for it. 

J+-___ -J... Main 

Figure 32: A Special MVC pattern 
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3.5 Using AEAR 

We introduced 5 rules for Reduction and we justified why we need 
to reduce. So, we now see how we can do an example of architecture 
availability prediction, using PBSA and AEAR. 

Suppose we have the architecture structure shown in Figure 33 be-
low. 

Figure 33: An Example for Using AEAR 

The structure shown above is composed of 5 kinds of patterns. 

1. Parallel Computing pattern, composed of components C6 and C7 , 

2. Redundant pattern, composed of components C8 and C9 , 

3. Sequential pattern, composed of components C6 and C9 , or C7 and 
C8 , 

4. Blackboard pattern, composed of components Cn and C12 , 

5. MVC pattern, composed of components C31 , C32 and C3 , 

And the availability of these components are as in the table below: 
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I Components I Availability I 
C1 0.99987 
C2 0.99999 
C3 0.99987 
C31 0.99999 
C32 0.99987 
C4 0.99996 
C5 0.99987 
C6 0.99995 
C7 0.99987 
C8 0.99993 
C9 0.99987 
ClO 0.99929 
Cll 0.99987 
C12 0.99919 
C13 0.99929 

Now, we have all the resources for calculating the availability of the 
system. 

First, let us reduce the structure using AEAR. As noted above, there 
are 5 kinds of patterns in the structure, and using the rule we introduce 
before, we can reduce these patterns into related parts, using corresponding 
rules. 

So, the detailed steps of reduction can be listed as below: 

1. Reduce the Redundant pattern, including components G8 and G9 , 

into part G89 , and the availability of this part is: A89 = 1 - (1 -
A8 ) (1 - A9 ) = 0.999999. 

2. Reduce Sequential patterns, composed of components G6 and G89 , 

or G7 and G89 , into G689 and G789 , and using the rule in the se­
quential pattern, their availabilities are A6 x A89 =0.999949 and 
A7 x A89 =0.999869 respectively. 

3. Reduce the Parallel Computing pattern, including components G689 

and G789 , into part G6789 , and its availability is: A689 X A789 = 

0.999818 

4. Reduce the Blackboard pattern, composed of components Gll and 
G12 , into part G112 , whose availability is: Au X A12 = 0.99906 

5. Reduce the MVC pattern, composed of components G31 , G32 and G3 , 

into part G3x , whose availability can be calculated as: A31 x A32 X A3 = 
0.999730 
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We have now finished the reduction of the system and we now get 
the reduced structure in Figure 13, and using PBSA we can easily calculate 
the availability of this system. 
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3.6 Extend PBSA to include hardware 

We all- know that software systems are running on hardware, so 
the availability of a hardware will obviously influence the availability of 
software system, as well as the whole system. 

Because the failure of a hardware component will automatically lead 
to a failure of the software component running on it, we can make the hard­
ware a component of the part, which composes the hardware component 
and the software component running on it in series. Figure 34 shows a 
software component B, which runs on a hardware component A, so the 
availability of this part can be calculated using simple part calculation in 
series: 

Figure 34: Software component Running on Hardware compo­
nent 

Figure 35(a), part of a redundant pattern, is composed of two soft­
ware components Band C, running on the same hardware A, we should 
view this part as a superpart which is composed of a hardware component 
part and a software part, which is composed of two software components 
in parallel. 

(a) 

(b) 

Figure 35: Redundant Pattern in Hardware 

so the availability can be calculated as 

But in Figure 35(b), we have two hardware components, with the 
same availability AA, and have two software components running on them, 
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respectively, and both of the two hardware machines and software compo­
nents are in a redundant pattern or in parallel. Then the availability can 
be calculated as 

Obviously, the second one (as shown in Figure 35 (b)) is better for 
availability. 

In summary, we introduced 5 rules, based on 5 classes of patterns. 
Each rule hasits own character and all the rule are defined according to 
their semantic definitions. 

Some patterns may have the same view of structure, but with dif­
ferent semantic definition. So we have different rules for them. There are 
still many patterns with their special semantic definition and they may be 
defined in future works. 

79 



Master Thesis - Rongshu Yi - McMaster - Computing and Software 

4 Strategies for Improving Availability 

In this section, we will try to give some strategies for improving the 
availability attribute of a system. The strategies may include two kinds of 
methods, Black Box and White Box. 

In Black Box method, we will try to do two kinds of work to im­
prove the availability attributes of a system. One is to try to tune the 
architecture structure of a system, to improve the availability, keep the 
functionalities, and at the same time get the tradeoff between availability 
and other quality attributes. The other way is to find the most sensi­
tive component(s) or part(s), and improve the whole system's availability 
by using redundant component(s) on this(these) sensitive components to 
improve their availability. 

In White Box method, we will try to improve the availability of a 
component by increasing its reliability and maintainability, and decreasing 
the detect on time and recovery time for dealing with failures. 
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4.1 Ranking Component Availability Sensitivity 

As we know from the previous section, according to our model, the 
availability of a system can be calculated using a Markov Transition Matrix. 
And if we use different variables for availability of different parts, we can 
represent the system's availability as a formula, composed of all the part 
availability variables. 

Using the example, shown in Figure 15, we let the part availability 
matrix be like: 

Al 0 0 0 0 0 0 0 0 
0 A2 0 0 0 0 a 0 0 
0 0 A3 0 0 0 0 0 0 
0 0 0 A4 0 0 0 0 0 

p= 0 0 0 0 As 0 0 0 0 
0 0 0 0 0 A6 0 0 0 
0 0 0 0 0 0 A7 0 0 
0 0 0 0 0 0 0 A8 0 
0 0 0 0 0 0 0 0 Ag 

Then we get the Markov Transition Matrix: 

F A 1 2 3 4 5 6 7 8 9 

F 1 0 0 0 0 0 0 0 0 0 
A 0 1 0 0 0 0 0 0 0 0 
1 1- Al 0 0 Al 0 0 0 0 0 0 0 
2 1-A2 0 0 0 A 2/3 0 0 0 0 A2/3 A2/3 
3 1- A3 0 0 0 0 0 A 3/3 A 3/3 A 3/3 0 0 
4 1- A4 0 0 0 0 0 A4/2 0 A4/2 0 0 
5 1- As 0 0 0 As/3 As/3 0 As/3 0 0 0 
6 1- A 6 0 0 0 0 0 A 6/3 0 A 6/3 0 A 6/3 
7 1- A7 0 0 0 Ad3 Ad3 0 Ad3 0 0 0 
8 1- As 0 0 0 0 0 0 A8 0 0 0 
9 1- Ag Ag 0 0 0 0 0 0 0 0 0 

So, the system's availability, if we consider Ag to be 1, is: 
A=(I-M)-1[1,9] 

= 1/3 X Al x A2 x (2 X A6 x As X As X A3 + A6 X A3 X As X A4 + 6 X As X A3 + 
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2 X A6 X A8 X A 7 X A3 + A6 X A3 X A 7 X A4 - 6 X A6 X A3 + 6 x A 7 X A3 + 
3 X A6 X A8 X A5 X A4 + 6 X A6 X A5 + 9 X A5 X A4 - 18 X A6 x A8 + 
3 X A6 X A8 X A7 X A4 + 6 X A6 X A7 - 54 + 9 x A7 x A4) 
/ (6 X A6 X A5 + 6 X A6 X A 7 + 2 X A6 X A 7 X A3 + 2 X A6 X A5 X A3 + 6 X 

A5 X A3 + 9 X A5 X A4 - 54 + 9 x A 7 X A4 + 6 x A 7 X A3) 
From Al to A8 , if we set all the other variables to be constants, 

with one variable remaining, for example A5 , we can get a formula for the 
system's availability like, 

as, 

A = aA5 + b 
eA5 +d 

where a,b,e,d are some constants, independent of A5. 

(24) 

And if we have the variable A4 , we can get the system's availability 

AI = dA4+bl 
dA4 + dl 

where al,bl,d,dl are some constants, independent of A4. Now, we want to 
compare A5 and A4, to see which one is more sensitive for the calculation 
of A. To compare this, we can calculate their derivative to be, 

and 

d _ ad - be 
5 - ( cA5 + d)2 

aldl - bId 
d4 ----­

- (dA4 + dl )2 
And then we compare d5 with d4 , by calculating their difference and 

using a variable x to represent both variables A4 and A5, and then checking 
which one of d5 and d4 is bigger, when x E (O,lJ. 

It can be shown, that the availability of a system, calculated using 
a Markov Transition Matrix, can be represented by the formula similar to 
(26), 

(25) 

Where n is the number of parts, and ai,bi,ci,di are constants, independent 
of Ai 

And the derivatives can be calculated as, 

di = An X aidi - biCi for i = 1 ... n - 1 (26) 
(CiAi + di)2 " 

where ai, bi, ei, di are constants, independent of Ai. 
By, comparing all diS, we can get a ranked list for all parts of the 

system; then, we choose the most sensitive one(s), to do some efficient 
availability improvement work (to be discussed later), and try to obtain 
the expected system availability. 
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4.2 Ranking Availability Related Factors 

According to the PBSA model, we know that the availability of a 
system is affected by the following factors, 

• The architecture. structure of a system, including all kinds of patterns, 
like redundant patterns; 

• The reliability of a component or part; 

• The Maintainability of a component; 

• The detection time and recovery time of a failure and recovery pro­
cess. 

It may be argued that the last factor should be included in the third one. 
But we separate them here, because the recovery time here is not the 
traditional notion of recovery; it may represent the process of taking-over, 
and the maintainability may include the process of fixing and recovering 
the failed component or part. 

4.2.1 Architecture Structure Tuning 

Because the availability of a system is decided by the architecture 
structure, according to the PBSA model, more precisely speaking, the 
Markov Transition Matrix being the decision factor for system availability, 
we can improve system availability by tuning the architecture structure of 
a system and tuning the structure of the corresponding Markov Transition 
Matrix. 

A very simple example of this kind of tuning is to change two com­
ponents from running in Series to running in parallel, and the parallel here 
is the same as redundant. The availability of this part is increased sig­
nificantly as we mentioned before (may increase from three nines to six 
nines). 

The architecture structure tuning may include: 

1. Architecture pattern tuning: tune the architecture pattern and in­
crease the availability of an individual component or part, conse­
quently increasing the whole system's availability. 

2. Using the redundant pattern in some sensitive components or parts, 
to increase the availability of the components or parts, consequently 
increasing the whole system's availability. 
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3. Tune the structure of an architecture: tuning the structure of an 
architecture may lead to the tuning of the Markov Transition Matrix, 
consequently tuning the availability of the whole system. 

The first 2 methods of tuning of the architecture structure may 
increase availability with no or low risk, and are controllable. But the 
third one may have some risk, because: 

• It may change the system's functionality. For example, if we change 
two series components into parallel components, and the relationship 
between these two components are on invoking relation, this will lead 
to a change to the system's functionality. 

• Sometimes, the result of such tuning is unpredictable, because the 
model of PBSA is based on the structure of an architecture, and based 
on the Markov Transition Matrix, and it is hard to predict the result 
of PBSA, when tuning the structure of such a matrix. Sometimes, 
the result availability after tuning may decrease, and be the opposite 
of what you wish. 

• The structure tuning may affect other quality attributes. Sometimes, 
one quality attribute is improved, but other quality attributes may 
be weakened at the same time. 

In conclusion, to do the structure tuning, we should 

1. Keep the functionality of a system. Even if the availability of a sys­
tem is your key requirement, and you can get some tradeoff between 
functionality and availability, it is still hard to decide what the trade-. 
off is, and it may need to be decided by all stakeholders. And the 
decision process itself is a complex one. 

2. Overall quality attribute evaluation is very important when architec­
ture tuning. Because of the side effect of architecture tuning, the 
overall evaluation is the promise of getting to tradeoff between avail­
ability and other quality attributes. How to evaluate other quality at­
tributes, like Performance and Reliability, is discussed in other works 
like [ 5, 24]. 

Note: We will introduce a new notion of subcomponents, which 
form a component or part in an architecture structure. We can improve 
a component's availability by tuning its structure of subcomponents. The 
method of tuning the structure made up of subcomponents is the same as 
the tuning of those of components or parts. 
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4.2.2 Reliability and Maintainability 

These two are the other important factors influencing availability, 
even though they are not as important as the structure of a system. We 
know that the availability of a component is calculated using the formula: 

MTBF 
A= MTTR+MTBF 

We see MT BF as some kind of evaluation of Reliability, [8] and 
[21], and MTT R as some kind of evaluation of Maintainability. Then, we 
can do an experiment to see which one of Reliability and Maintainability 
is more sensitive for the increase of Availability. Consider the table below, 

I Reliability I Maintainability I Availability I 
500 10 98.04% 
500(1+10%) 10 98.21% 
500 10(1-10%) 98.23% 

If reliability and maintainability are increased by 10%, respectively, 
the availability is increased in different percentage. Obviously, Maintain­
ability is more sensitive to Availability than Reliability. 

Axiom 4.1 Maintainability is more sensitive to Availability than Reliabil­
ity, if we see MTBF as Reliability5, and MTTR as Maintainability 

[Proof:] 
Let MTBF = b, and MTTR = c, then the availability a is 

b 
a=--

b+c 

We increase first b by a percentage p and get an availability of 

(1 + p)b 
aT = 

(1 + p)b + c 

And then increase Maintainability by percentage p, and get another avail­
ability of 

b 
am = ----,----,---

b + (1 - p)t 

5There are lots of definitions for Reliability, but we choose MTBF as an easy and 
comparable way to study them. 
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Then we compare these two availabilities by calculating their quotient as 

(1+p)b 2 
~ = (1+p)Hc = (1 + p)b + (1 - p )c < 1 
am H(lb_p)c (1 + p)b + c 

So, we get aT < am, which means if we increase the value of Reliabil­
ity and Maintainability by the same percentage, the availability increases 
more by the increase of Maintainability than that of Reliability. This means 
availability is more reactive to Maintainability than Reliability. 

4.2.3 Detection and Recovery 

Suppose that we have already tuned the structure and used some re­
dundant components for the most sensitive components or subcomponents, 
then what can we do to improve the availability more? 

As we defined above, the availability of a system is the probability 
that a system is available, or the probability that a system is not in fixing 
or recovery or failure. So, let us look at a common scenario for a system's 
failure, 

1. A company system fails. 

2. The system has redundancy for the most sensitive components. 

3. But the system has no detective method for any failures 

4. Having received a user's complaint, the administrator of the system 
realizes that the system failed, and begins to recover using a redun­
dant component. Till now, half an hour has already passed since 
system failed. 

5. The system has no hot backup; the administrator has to rebuild the 
system's running environment and clear system's log and get the re­
dundant component to the checkpoint at which the system failed. 
This course of action took 1 hour 

6. the system now runs well again, but one and a half hours have passed 
since the system failed. 

Now, let us see what we can do to decrease the unavailable time. The 
unavailable time focuses on two parts. One of them is detection time, which, 
in the scenario above, is half an hour. We can find a lot of ways to detect 
failures of a system, like Heartbeat Failure Detector [6], and Randomized 
failure detection [7]. And we can also define better components for total 
failure detection, which means it can not only detect the failure at process 

86 



Master Thesis - Rongshu Yi - McMaster - Computing and Software 

or thread level, it can also detect the level of a component. This will be 
introduced in the next section. 

The other part of unavailable time, in the scenario above, is the 
recovery time, which is 1 hour in this scenario. There are also a lot of ways 
to decrease the recovery time, like using hot recovery, realtime checkpoint, 
etc. 

All these methods, used for decreasing detection time and recovery 
time can make the unavailable time decrease and so increase the availability 
of a system. 

Because the methods mentioned above are related to the structure 
of a system, we can make this factor part of the structure tuning. So we 
get a ranking of factors which influence the improving of the availability of 
a system: 

1. Structure Tuning 

2. Maintainability improvement 

3. Reliability improvement 
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4.3 White Box Availability Improvement 

To improve the availability of an individual component, we can per­
form three kinds of tasks, as mentioned in the previous section. 

1. Structure Tuning 

2. Maintainability improvement 

3. Reliability improvement 

4.3.1 Tune the structure of a component 

The most sensitive or effective way is to tune the structure of the 
component. 'lYe may look at a component as a structure, which is composed 
of subcomponents and all these subcomponents may be connected together 
as a subsystem. A component is such a subsystem. So we can use PBSA 
for the evaluation of the subsystem and by using redundancy or tuning the 
other patterns or the whole structure, we may get better availability. 

Note that, redundancy is just one of the structure tuning options, 
and there may be other options for structure tuning, such as tuning some 
other patterns, like parallel computing to balance load. This kind of tuning 
may also improve the availability of a subsystem, a component or part. 

But, as mentioned in the previous section, there are some risks when 
doing such structure tuning. So care must be taken when doing that, 
because as is often said, high profit means high risk. 

4.3.2 Get better Maintainability 

Software Maintainability evaluation and improvement methods can 
be accessed from a large amount of literatures, like Welker, who quantified 
maintainability via a Maintainability Index (MI), in [11], Measurement and 
use of the MI is a process technology, facilitated by simple tools, that in 
implementation becomes part of the overall development or maintenance 
process. These efforts also indicate that MI measurement applied during 
software development can help reduce life cycle costs. The developer can 
track and control the MI of code as it is developed, and then supply the 
measurement as part of code delivery to aid in the transition to maintenance 
[12]. 

Maintainability includes two levels of contents, one of which is to 
enable the system failure to be diagnosed and fixed very quickly, and the 
other is to enable the system to be updated smoothly. 

There is much research and many strategies for improving the main­
tainability and obtain tradeoffs with other attributes, as in [20]. 
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4.3.3 Get better Reliability 

Achieving better reliability is today still a popular topic for many 
researchers and companies. There is also much research and efforts on it. 

[5],[22] and [23] discuss how to evaluate Reliability and [24],[25],[26] 
discuss how to increase Reliability in different situations. 

In summary, the white box availability improvement included some 
interesting methods and strategies for improving availability. The methods 
and strategies are based on the PBS A model and based on the ranking of 
the availability factors. We give strategies here for advising how to choose 
strategies to improvement our system's availability. The detailed methods 
and strategies for each of the suggestions are in many of the literatures as 
listed above or in future works. 
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4.4 Black Box Availability Improvement 

In this section, we will outline some notions about how to improve 
availability of a system on the component or part level, without digging into 
the subcomponent level. Of course, one of the ideas about "Redundancy 
hierarchy" will involve some digging into subcomponent and even process 
or thread levels. 

4.4.1 Hierarchy HA manager components 

The HA manager component here is a component, which is em­
bedded into a system at different levels, from the process level, subsystem 
or component level, to the system level, to monitor the process, compo­
nents, and system's running situation, do management, diagnosis, fail over , 
data recovery and component switching work. The purpose of this kind of 
component is to make a system run with high availability. 

A typical kind of system structure with an HA manager component 
can be illustrated as below in Figure 36, 

Client Client Client 

o Process • HA Component 

Figure 36: HA Component in a CS System 

In this Figure, one may see lots of HA components, This is because 
we put different levels of HA components in the system, and the size of HA 
components shown in the figure correspond to the level of the HA compo­
nents. The lowest level of HA component has the smallest size in Server, 
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shown in Figure 36. They are used to monitor the running of processes of 
services in servers of a CS system. If some of the process has a problem, it 
can quickly detect the failur'e and switch the role of that process to an other 
process, according to the existing policy and real-time checkpoint environ­
ment. we do not want to describe more details about how to monitor and 
how to switch the role, and how to set the policy, including the checkpoint 
interval. The reader can refer to many publications[27]'[28]' to find such 
designs or strategies. What we are discussing here is the different levels of 
HA components and the HA architecture. 

Different levels of HA components are organized together to form an 
HA architecture and different levels have different responsibilities. If there 
is some problem, which cannot be solved by the lower level HA components, 
it will be transferred to a higher level HA component. For example, if all 
the backup process of a server are in deadlock, the HA component, which is 
directly in charge of them cannot solve the problem, it will ask for help from 
its higher level HA components, and the higher level HA components may 
switch the Server itself to another one, according to their existing policy, 
and if both of the servers are failed, the HA component may transfer the 
problem to an even higher HA component, and that component may switch 
the role of local servers to a remote server, according to their existing policy. 

This is the notion of Hierarchy HA Components, using which we can 
save much time for failure detection and recovery, and improve availability. 

4.4.2 Redundancy Strategy 

Even if we can detect a failure in a very short time, we cannot 
shorten the recovery time of a system and improve availability if we have 
no redundancy policy or redundant components for the failed one. 

So we use redundancy. As we described in the last section, tun­
ing the architecture structure is the most sensitive factor for improving 
availability. And redundancy is one of the most effective methods to tune 
architecture structure. It can improve the availability significantly on num­
ber of nines. So, we may say it is the safest way to improve the availability 
of a system. 

Partial Redundancy 
The Partial Redundancy Strategy means that we can partially choose 

some of the most sensitive components to use a redundancy method for the 
purpose of improving an entire system's availability by improving the avail­
ability of these parts or components. 

Most systems can realize their availability requirements by partial 
redundancy. But some of the critical systems, e.g., a satellite launching 
system, need extreme high availability and reliability, so some of them may 
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need a full redundancy strategy. 
Full Redundancy 
A full redundancy strategy means using redundancy for all the com­

ponents or parts to realize the abnormal requirements of a critical system. 
Using a full redundancy strategy requires great economic means. No 

such an application system using a full redundancy strategy exists. 
Redundancy Hierarchy 
As noted in the last section, HA manager components can have 

hierarchical structure, in which all levels of HA manager components are 
organized together to achieve high availability, and greatly reduced detec­
tion time and recovery time. 

When HA components at some level detects a failure, they may 
invoke corresponding recovery procedures or take-over procedures to acti­
vate corresponding redundant components or processes. So, sometimes, to 
achieve extreme high availability, we should set different levels of redundant 
components, use different levels of redundancy strategies, corresponding to 
different levels of HA components. This is what we call a hierarchical 
redundancy strategy. 

Just like the full redundancy strategy, the hierarchy redundancy 
strategy is also a kind of redundancy strategy option for those who need 
and can afford it. Detailed instructions about how to use it will be left as 
future work. 

4.4.3 Architecture Structure Tuning 

Architecture structure tuning is the most sensitive way to improve 
architecture availability. But, as we mentioned before, there are many 
limitations and risks exist when we try to do this. If you cannot realize 
your availability requirements after using all kinds of redundancy strategies, 
you may need to do this kind of tuning. 

So, we classify this strategy as a last option to be chosen, not only 
because of its difficulty and risk, but also because of its sensitivity. 

Detailed research on how to tune the architecture structure accord­
ing to the PBSA model will be left as future work. 

In summary, we have introduced some strategies for black box avail­
ability tuning according to the PBSA model. All the tuning should be done 
not affecting the system's functionality. So we only give some suggestions 
for availability tuning according to our PBSA model, the detailed work 
about how to do the tuning work, and how to make sure getting the trade­
offs among all the quality attributes are left as future work. 
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5 Conclusion and Future work 

In this thesis, we reviewed the notion of availability, and the differ­
ence between availability and reliability. We gave reasons for why we need 
high availability and why we need to evaluate availability. We reviewed 
the relationship between architecture and architectural patterns, and the 
relationship between architectural patterns and system qualities. 

We introduced two qualitative methods, Scenario based method and 
Markov Model based method, for system availability analysis. These two 
methods are useful to availability analysis of some components of a system. 
But they cannot give accurate availability prediction and calculation to a 
complex system, including all components. 

To achieve the availability prediction and calculation function of a 
complex system, we have defined the PBSA quantitative model, and also 
defined the AEAR methods and rules for reducing a complex architecture 
structure to make it comply with the preconditions of PBSA, and then we 
can use PBSA for availability evaluation. 

The PBSA model is based on the Markov model, and the AEAR 
rules make a system satisfy the preconditions of a Markov Chain. Then 
the availability prediction model can make us obtain an absorbing Markov 
Transition Matrix, with two additional states, Failure and Available. The 
prediction result of the availability of a system comes from the absorbing 
Markov Transition Matrix naturally. 

All AEAR rules come from the semantic definitions of different pat­
terns. These idea comes from much similar research, such as reliability 
evaluation reduction. But the purpose and method of AEAR are different. 
We use AEAR for simplifying and reducing the system to make it satisfy 
the precondition of PBSA, or the precondition of the Markov properties. 

Before making any architecture decisions for high availability, we 
can first evaluate the absolute value of availability by using PBSA, then 
according to the defined' rank of availability sensitivity, and the rank of 
availability factors, we can choose some strategies to improve availability, 
including white box and black box strategies. 

All strategies for improving availability quality of a system come 
from the PBSA model. But we haven't given the details about how to plan 
and implement each strategy. We gave the method, using which we can 
calculate and compare the sensitivity of the availabilities of all components 
and obtain the ranking of them. In addition, we gave the ranking of avail­
ability factors inside a component, and we gave white box and black box 
methods for availability improving. 

There is still a lot of work left for future research, even the model 
itself need more research and verification work. such as: 
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