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Abstract 

A major goal of gene expression microarray studies is to identify differentially expressed 

genes. The q-value is widely used to control false positives among all genes called 

significant. It can be derived either by considering the false discovery rate (FDR) of all 

rejection regions containing a gene or by adjusting the usual p-value. Both methods use a 

modified t-statistic, referred to as d-statistic in this study. However there is no associated 

distribution theory for this statistic. We derive its distribution in the two-sample setting 

by numerical integration under normality assumption and taking the adjusting factor to 

be a constant. Because the distribution depends on the true population variance of each 

gene and this is unknown in practice, we propose various estimators to deal with this 

issue. We compare the three methods in terms of d-statistics and t-statistics respectively 

and assess their power to detect differentially expressed genes in simulated data sets and 

real microarray data. Methods based on the d-statistic perform much better as they can 

identify more significant genes with lower false discovery rate. When the distribution of 

gene expressions is close to normal distribution, the d distribution method works better, 

but when gene expressions are heavy-tailed, FDR and permutation methods are more 

powerful. Real data analysis indicates that the estimators proposed are unstable and 

need to be improved. 
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Chapter 1 

Introduction 

1.1 Introduction to the problem 

In today's genomics, DNA micro array technology has emerged as a widely used plat­

form for genomic studies. It has expanded the scale of biological research from studying 

single genes or proteins to studying all genes or proteins simultaneously. DNA microar­

rays powerfully provide a global view of changes in gene expression patterns in various 

disease conditions. In biomedical research, such an approach can determine biological 

behavior of both normal and diseased tissues, show insights into disease mechanisms 

and identify novel markers and candidates for diagnostic, prognostic and therapeutic in­

tervention. Microarray data analysis raises numerous statistical issues such as multiple 

testing, experimental design, and discriminant analysis, etc. 

This study describes statistical methods for the analysis of gene expression data from 

a study of Type 1 diabetes in mice. The goal of the DNA microarray experiments is 

to identify genes that are differentially expressed under two different strains of mice. 
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The biological question can be restated as a statistical problem in multiple hypothesis 

testing: the simultaneous tests for all genes to determine which ones are differentially ex­

pressed. There are two important statistical challenges associated with such microarray 

data analysis. One is that the number of biological samples is usually small compared 

to the huge number of genes tested. Since microarray experiments are still expensive, 

only relatively small sample sizes are possible. This limitation tends to result in less 

statistical power. The other challenge is that the large number of genes tested dramati­

cally intensifies the multiple testing problem. Suppose there are m genes independently 

tested with level a, then the probability of at least one gene falsely called significant 

is 1 - (1 - a)m. However, the number of genes in a microarray experiment is usually 

very large. This probability is increased sharply to be close to 1. Therefore (1) defin­

ing an appropriate error rate measure and (2) devising a powerful procedure to control 

this error rate have been paid tremendous attention in microarray studies (Dudoit et al, 

2003). 

The traditional measure in multiple testing is the family-wise error rate (FWER), 

which is the probability of at least one type I error occurring among all the hypotheses. 

Bonferroni corrections are the classical procedure most widely used to control it. It uses 

aim as the threshold p-value for each test when m is the number of tests. It makes 

the FWER less than a. However, it is very stringent: If 10,000 genes are tested with 

a=0.05, the threshold p-value for each test is 5 x 10-6 . Such a stringent correction seri­

ously increases the rate of false negatives and decreases the power to detect a significant 

test. Although there are other adjustments on the threshold from some authors, such 

as Holm (1979) and Hochberg (1988), they are still very conservative. Since the goal of 

a microarray experiment is to discover as many differentially expressed genes as possi-
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ble, these multiple test corrections are not desirable. Benjamini and Hochberg (1995) 

introduced an error measure called the false discovery rate (FDR), which facilitates to 

know how many of the selected genes (i.e. those that have been called significant) could 

be false positives. Storey (2002) and Storey & Tibshirani (2003a) made a modification 

to Benjamini and Hochberg's FDR with a better estimate by considering the number of 

true nulls (non-differential expressions) among all the tests. This modification improves 

the FDR estimate and provides more power when a relatively large percentage of genes 

is selected. 

In detecting the differentially expressed genes, some traditional parametric tests have 

been applied. The commonly used methods include various versions of the two-sample t­

test. However, the strong normality assumption of the t-test can be violated in practice. 

The problem tends to be complicated by the fact that expressions may have non-identical 

and dependent distributions between genes. In this context, two nonparametric statis­

tical methods are attractive: the Significance Analysis of Microarray (SAM) method of 

Tusher et al. (2001) and the empirical Bayes (EB) method of Efron et al. (2001). Both 

methods depend on constructing a test statistic similar to the t-test to estimate the 

null distribution. In addition, Smyth (2004) proposed the Linear Models for Microarray 

Analysis (LIMMA) method to address the issue that the variability of expressions differs 

between genes. In this study, we will give a brief description of the three methods with 

the aim to have a deeper understanding of the theoretical ideas behind them. We will 

discuss the performance in identification of significant expressions in terms of the two 

different test statistics, the regular t-statistic and the modified t-statistic established in 

SAM and EB. Because there is no associated distribution theory for the modified statis­

tic, we will derive a computational method to find its cumulative distribution function. 
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The related performance will be demonstrated in our simulation studies and real mi­

croarray data analysis. 

1.2 Mouse Model for Type 1 Diabetes 

Diabetes is a complex disease that has been attracted more and more attention from 

health professionals. Public Health Agency of Canada 2005-2006 National Health Survey 

shows approximately 1.9 million Canadians had been diagnosed with diabetes. This 

represents about 1 in 17 Canadians - 5.5 % of all women and 6.2 % of all men. Moreover, 

5 to 10% of people with diabetes have type 1 diabetes (T1D). T1D is an autoimmune 

disease and often develops in childhood or adolescence. It occurs when the cells of the 

pancreas are destroyed by the immune system and no longer produce insulin. Insulin 

is an important protein that the body needs to convert sugar, starches and other food 

into energy for daily life. Worth noting is that Canada has the third highest rate of 

T1D in the world and the incidence is rising. For patients, T1D greatly increases the 

chance of heart attack, stroke, blindness and limb amputation, as well as shortened life 

expectancy. As far as the nation is concerned, T1D cost the Canadian healthcare system 

$1.32 billion in 2002 and is estimated to rise to $1.6 billion by 2010. However, the exact 

cause of T1D is still not fully understood since it is affected not only by multiple genetic 

risk factors but also unknown environmental factors (Benkalhaa and Polychronakos, 

2008). Therefore biologists and computational statisticians have devoted themselves to 

investigate complex genetic factors for T1D in a genome-wide study. 

The data used in our study arise from the mouse model. Because mice breed quickly 

and share 99% genes with human, mouse models can provide a bridge to investigate 
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human disease pathogenesis and to identify which genes control disease susceptibility. 

Biological researchers have found that allelic variation at many genetic regions (loci) 

contribute to susceptibility to T1D. There are at least 20 insulin-dependent diabetes 

(Idd) regions which have been identified in the diabetes-prone NOD mouse (Ivakine et 

al, 2005). In our study, we are interested in three regions among them: Idd4, Idd5 

and Iddl3. They display linkage to TID, especially Idd4 exhibits sex-specific effect on 

T1D. We have two parental strains of mice Non-obese Diabetic (NOD) and Non-Obese 

Resistant (NOR). These two parental mouse strains are identical by descent in 88% of 

the genome. But the rate of NOD mice getting T1D is 82-85% much higher than NOR 

mice (only 3-5%) by the age of six months. One of the reasons is the difference in Idd4, 

Idd5 and Idd13 regions between the two strains. By mating NOD and NOR mice and 

selectively inbreeding multiple generations, two congenic strains NOD.NOR.1dd4 and 

NOR.NOD.1dd5/13 are derived. The NOD.NOR.1dd4 strain is identical to the parental 

NOD strain except for region Idd4 which inherits from the NOR mice. Similarly, the 

double congenic NOR.NOD.1dd5/13 strain is identical to the parental NOR strain except 

for two regions Idd5 and Idd13 which inherit from the NOD mice. In this research, we 

will study the two comparisons: NOR against NOR.NOD.1dd5/13 and NOD against 

NOD.NOR.1dd4. 

1.3 Organization of the thesis 

In the study we derive a new methodology and compare with the currently used meth­

ods to identify differentially expressed genes. Our analysis makes use of a simulation 

study and two real data sets from microarray experiments using Affymetrix GeneChip 
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MGU74Av2 for mice. The thesis is organized as follows: Chapter 2 gives genetics back­

ground and introduces micro array technology. We also review three widely used methods 

for finding differentially expressed genes such as SAM (Significant Analysis of Micorar­

rays), EB (Empirical Bayes) and LIMMA (Linear Models for Microarray Analysis). 

Chapter 3 describes three approaches to calculate the q-value for the selection of dif­

ferentially expressed genes: methods based on the FDR, adjusted permutation p-values 

and adjusted p-values from test statistic null distribution. For the latter approach, we 

derive the distribution of the d-statistics based on the unknown parameter true popula­

tion variance of each gene, and then propose some estimators to deal with it. In Chapter 

4, we conduct a simulation study generating data from various symmetric distributions, 

either with a common variance across genes or allowing the variance to differ. From 

this simulation we assess the power of all of the methods to detect genes known to be 

differentially expressed. Two micro array data sets which are used to evaluate different 

methods are described, and the results of the comparison study are presented in Chapter 

5. Finally, Chapter 6 summarizes our findings and discusses issues for future work. 

6 



Chapter 2 

Genetics Background and 

Microarray Analysis 

2.1 Basic genetics 

Microarrays were designed in response to the need to analyze gene expression data. 

Consequently, a basic understanding of genetics becomes useful in understanding how 

the data are collected and how they should be handled. This section will introduce the 

main concepts of genetics and how they relate to micro arrays. 

A cell is the smallest unit of life. Almost every cell contains a complete copy of 

its genetic material in the form of DNA. The genetic information stored in DNA can 

be copied as mRNA to form functional proteins. Proteins are the most important 

determinants of the properties of the cells and organisms. Take TID disease in our 

study for example. Insulin is a protein in the human body that plays a major role in 

decreasing the levels of sugar in the blood. Lack of it makes humans suspectable to 
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TID and other complications. The production of proteins are controlled by genes which 

are encoded in DNA. The DNA is a double-stranded compound molecule composed of 

nucleotides. Each nucleotide comprises a phosphate, a sugar and a base. There are 

four different types of base: guanine (G), cytosine (C), adenine (A) and thymine (T). 

The bases on the two strands are paired according to the Watson-Crick pairing rule: 

G in one strand binds only to C in the other, and A binds only to T. Therefore, the 

two strands are each other's complement so that each strand stores the same sequence 

information. This biological fact is the basic property by which microarrays work. A 

gene is a segment of DNA that specifies a functional mRNA (Lee, 2004). The mRNA 

is a single-stranded molecule made up of G, C, A and U bases. The U base stands for 

uracil and replaces T when DNA is transcribed into mRNA. The mRNA delivers DNA's 

genetic message to the cell where proteins are made. Biologically speaking, the mRNA 

is similar to one single strand of DNA. The mRNA are targets applied in micro arrays 

to find their complementary siblings. 

The process by which genetic information from the DNA template of a gene is used 

in the synthesis of a functional gene product, mRNA and eventually protein, is called 

gene expression. For a gene, expression level is the amount of mRNA that is used to 

synthesize protein. The process from a gene to protein involves two essential stages, 

known as transcription and translation. During transcription, mRNA is produced using 

one DNA strand as the template. An mRNA molecule includes nucleotide sequences that 

correspond to amino acid sequences of its protein. During translation, three nucleotides 

co dons in the mRNA sequence are read, and corresponding amino acids are assembled 

into protein with the help of corresponding tRNAs. Microarray technology utilizes these 

properties of binding of a single strand of DNA to mRNA to measure expression levels 
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for many genes. 

2.2 Microarray technology and Affymetrix GeneChip 

Most cells in human body contain identical genes, but not all the genes are active in each 

cell. Some genes are turned on, or expressed, when needed. Studying which genes are 

active in different cell types can help biologists know how these cells function normally 

and how they are affected when related genes do not perform properly. When a gene is 

activated, cell begins to copy certain amount of mRNA of that gene. Due to Watson­

Crick complementarity, the mRNA produced by the cell can bind to the original segment 

of one DNA strand from which the mRNA was transcribed. Therefore the expression 

for a gene can be obtained by measuring the amount of mRNA produced by the gene. 

In the past, biologists were limited to study a few genes per experiment. With the rapid 

development of DNA micro array technology, however, they can more easily examine tens 

of thousands of genes simultaneously and compare the expression of the same genes in 

different samples at the same time (McLachlan et al, 2004). 

Typically, a microarray is a glass slide onto which known DNA sequences are immo­

bilized in an orderly manner at specific spots. A microarray contains tens of thousands 

of spots and each spot contains a few million copies of identical DNA sequences. The 

DNA in a spot may either be genomic DNA or short stretch of oligonucleotide strands 

that correspond to parts of a gene. The spots are printed onto the glass slide by a robot 

or are synthesised by the process of photolithography. To explain the application of 

micro arrays to measure gene expression levels, Figure 2.1 gives a general picture of the 

experimental steps involved. (1) mRNA Extraction. The mRNAs are extracted from 
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sample because it is an indicator of which genes are being used in a specific cell. (2) 

Labeling and hybridization. These mRNA molecules are reverse transcribed into cDNA 

by using an enzyme and labeled with a fluorescent dye. In this step, any labeled cDNA 

sequence is hybridized to specific spots containing its complementary sequence accord­

ing to base pairing property. (3) Scanning and detecting. After washing away all of the 

mRNA molecules which are not hybridized, the microarray slide is scanned by an opti­

cal detector device to get a fluorescent image. Researchers can look at the microarray 

image and see which RNA remains stuck to spots. Since we know which gene each spot 

represents and the mRNA only sticks to the gene that encoded it, we can determine 

which genes are expressed in samples. The amount of fluorescence corresponds to the 

amount of mRNA. If a gene is very active and producing many mRNA molecules, the 

corresponding spot will be very bright. In contrast, if a gene is less active with less 

mRNA molecules, the spot will be darker. A black fluorescent spot indicates none of 

mRNA molecules are produced and that gene is inactive. 

Several technological platforms have been developed, differing in array design, man­

ufacturing procedure (standardised printing or randomised microbeads), experimen­

tal design (absolute or relative expression level) and target oligonucleotide sequence 

length (Wilder et al, 2009). The most advanced and predominantly used platforms are 

Affymetrix GeneChip (Santa Clara, California) and Illumina Sentrix BeadChip (San 

Diego, California) (Wilder et al, 2009). In our study, our microarray data were from ex­

periments using MGU74Av2 chip produced by Affymetrix. MGU74Av2 chip is a murine 

genome array chip containing 12,488 probe sets (Takahashi et al, 2005). Therefore, we 

will introduce here particularly Affymetrix array and its principle in measuring gene 

expression. GeneChip is a prefabricated oligonucleotide chip. Its probes are synthesized 
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Figure 2.1: An mzcroarray experiment flowchart. Graphics from http://irfgc.irri.org. 

Image Courtesy: Dr. Madan Babu Mohan. 
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in situ using a photolithographic method with marks directly on the surface of the chip. 

This method can produce many high-density arrays of the same design with consistent 

quality. The probes are 25 nucleotides long and organized as perfect match (PM) versus 

mismatch (MM) pairs. A probe set usually consists of 16-20 probe pairs. The PM probes 

are made perfectly complementary to the mRNA of target gene, while the MM probes 

are identical to the PM probes except for the central position. The design of PM-MM 

contrast in each probe set is intended to subtract out non-specific binding to the probes. 

After arrays are scanned and images generated, we can obtain an intensity value vector 

of two readings for each probe, one for PM and the other for MM. This intensity value 

represents how much hybridization occurred. In the end, all data about intensities and 

physical locations of probe sets are stored in .CEL files. To make biological sense of these 

.CEL files, the .CDF files are created to store the information about mapping probes to 

probe sets. 

2.3 Robust Multi-array Average (RMA) 

In the analysis of microarrays, our ultimate goal is to compare the expression values 

of each probe set from different chips. The measured intensity values in each chip 

are usually not directly used for comparison because some non-biological variation may 

have many different effects on them. The variation could be caused by optical noise, 

non-specific hybridization, probe-specific effects and measurement error, during all ex­

perimental steps (mRNA preparation, labeling, hybridization and scanning) (Irizarry et 

ai, 2003b). Therefore it is necessary to minimize non-biological variations using a pro­

cess called normalization so that biological differences can be more easily distinguished. 
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In our project, we normalize raw data stored in .eEL files using Robust Multi-array Av­

erage (RMA) method by rma function in R package Affy (Irizarry et aI, 2003a; Gautier 

et aI, 2004). 

There are typically three steps to obtain an expression measure from raw data. (1) 

Background correction. Many expression measures are based on PM-MM (Affymetrix's 

AvDiff) or 10g(PM/MM) (Affymetrix's Average Log Ratio) with the assumption that 

the MM value represents the background. However, many MM values contain signals 

and in many cases the MM value is larger than the corresponding PM value (Irizarry et 

al, 2003b). So the RMA method completely ignores the MM values and only uses PM 

values. This method converts original PM probe intensity into an exponential signal 

and normal noise by maximum likelihood deconvolution (Irizarry et aI, 2003a). After 

background correction, each PM probe intensity is transformed in log base 2 scale. (2) 

Normalization. These background corrected and log transformed PM intensities are 

normalized by quantile normalization method proposed by Bolstad et al(2003). This 

method makes the empirical distribution of these PM intensities the same for arrays 

i = 1,2, ... , I. The normalization maps probe level data from all arrays so that an 

I -dimensional quantile-quantile plot follows the I -dimensional identity line (Bolstad et 

aI, 2003). (3) Estimating expression. For a particular probe set, the normalized PM 

intensities follow a linear model, 

Yij=/-Li+CY.j+Eij, i=l, ... ,I, j=l, ... ,J, 

where I and J are number of arrays and probes within the probe set respectively. For 

the probe set, Yij denotes the normalized PM intensity for the ith array and the jth 

probe within the probe set, /-Li denotes the log-scale expression for ith array, CY.j denotes 
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probe effect for the jth probe, and Cij denotes random error with mean O. The sum of D'-j 

for all probe are assumed o. To protect against outlier probes, a robust procedure such 

as median polish, is used to estimate parameters (Irizarry et al, 2003b). The estimated 

!-Li is referred to as the log scale expression corresponding to the probe set for the ith 

array. 

2.4 Significance Analysis of Microarray (SAM) 

After microarray raw data are normalized, the next task is data analysis to identifY dif-

ferentially expressed probe sets, which comes to the topic of multiple hypothesis testing. 

For each probe set, the null hypothesis that there is no difference in mean expression 

under two groups is tested against the alternative hypothesis that there is a difference 

in mean expressions. If there is enough evidence to show a difference, we reject the null 

hypothesis. For m probe sets we have m pairs of hypotheses: 

{ 

HjD : probe set j is not differentially expressed 

Hja : probe set j is differentially expressed, 

where j = 1,2, ... , m. 

Normally there are tens of thousands of probe sets (m > 10000) tested simultane-

ously for a microarray experiment. In this context, the situation becomes much more 

complicated. Multiple hypotheses testing concerns how we measure the probability that 

probe sets are falsely rejected (i.e. false positive) and the probability that probe sets are 

correctly rejected (i.e. power). A suitable overall error measure is required so that we 

can identifY many differentially expressed probe sets without too many false positives. 

Significance Analysis of Microarray (SAM) is a commonly used method for detecting 
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significant features in DNA microarrays, first proposed by 'lUsher et al. (2001). SAM 

calculates a statistic dj for each probe set on the basis of change in gene expression 

relative to the standard deviation. Probe sets with dj value in a rejection region are 

declared significant. Asymmetrical rejection regions are chosen in SAM since nobody 

knows in advance how many differential expressions are in the positive and negative di-

recti on respectively. Particularly SAM includes some recently developed methodologies 

for estimating FDR and q-values. 

Traditionally, a test statistic for assessing differential gene expression is the standard 

t-statistic: 
- -
X'2 - X'l 

tj = J J ,j = 1,2, ... , m 
s· J 

(2.1) 

where Sj is the pooled standard error for probe set j, and Xj2 - Xjl is the difference of 

the average gene expression for probe set j under two groups. Let nl and n2 be the 

number of arrays in group 1 and 2 respectively. The pooled standard error Sj is defined 

as: 

Sj =. (~ + ~) . (nl - l)sJl + (n2 - l)sJ2, 

nl n2 nl + n2 - 2 
(2.2) 

where S;l and S;2 are the sample variance in the two groups. However, the t-statistic 

is formed using only information from the probe set itself and might obtain large value 

when the difference in gene expression is near zero with very small Sj. 'lUsher et al. 

(2001) add a positive constant So to increase the value of the denominator of tj such 

that the variance of tj is independent of the gene expressions. The modified t-statistic 

is defined as follows: 
- -
X'2 - X'l 

dj = J J ,j = 1,2, ... , m. 
Sj + So 

(2.3) 

The extra term So IS the function of Sj, taken as a percentile of {Sl' ... , sm} which 
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minimizes the coefficient of variation of dj . Therefore, the modified t-statistic can not 

only borrow strength across the probe sets but also downweight the effect of probe 

sets with very low variances as compared to all genes. Chu et al. (2005) provide the 

procedure for computing so: 

1. Let sD' be the percentile of Sj. The dj is defined as 

- -
d~ = Xj2 - Xjl 

J s. + sD' . 
J 

2. Compute the percentiles of Sj, denoted by min{sj} = qo < ql < q2 < ... < qlOO = 

3. For each a E (0,0.05,0.10, ... , 1.0), compute vi by 

VlOO = mad(djlsj E [qgg, qlOO]). 

where mad is the median absolute deviation from the median, divided by 0.64. 

Then compute the coefficient of variation of the Vi by 

() 
sd(vi) 

eva = ------=----=---=----
mean (vi) 

4. Choose a as value which minimizes cv(a) and compute So = s&.. 

The algorithms for identifying significant probe sets are given as follows (Storey & 

Tibshirani, 2003a): 

1. Compute the ordered statistics: dCI) S d(2) ... S dCm). 
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2. Make B sets of permutations of the group labels. For each permutation b, compute 

d~ and get corresponding order statistics dh) ::::; dr2) ... ::::; drm). From the set of B 

permutations, estimate the expected order statistics by d(j) = (liB) L~=l drj). 

3. Plot the expected order statistics from the permutations d(j) against the observed 

statistics d(j), and form the pairs data (dC1) , d(1)), ... , (dCm) , dCm)). The point at 

median of expected null order statistics {d(1) , ... , dCm)} is denoted by M which 

divides the data into two regions. The region with d(j) ~ M is called upper region, 

the other is called lower region. 

4. For a fixed threshold il, starting at this point M and moving up to the upper 

region, find the first probe set j = j1 such that (d(jl) - d(jl)) > il and d(jl) ~ M. 

All probe sets with d(j) ~ d(jl) are declared to be positive. Similarly, moving down 

to the lower region, find the first probe set j = j2 such that (d(j2) - d(j2)) < -il 

and dCh) ::::; M. All probe sets with d(j) ::::; d(j2) are declared to be negative. If 

j = j1 or j = j2 do not exist, we declare that there are no positive or negative 

significant probe sets. 

Thus, the threshold il can be adjusted to yield larger or smaller sets of significant probe 

sets. The larger il, the fewer the number of significant probe sets detected. 

2.5 The false discovery rate (FDR) and q-values 

When identifying significant probe sets, we also need to consider some suitable measures 

of error. In a microarray setting, Table 2.1 describes the possible error one can make 

while testing m probe sets. There are ma true null hypotheses and R probe sets identified 
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Declared non-significant Declared significant Total 

True Ha ma- V V ma 

False Ha m-ma- S S m-ma 

Total m-R R m 

Table 2.1: Outcomes from m hypothesis tests. 

significantly differentially expressed. Among those probe sets, there are V false positives 

(Type I errors) and S true positives. The most traditional method is the familywise error 

rate (FWER) which focuses on controlling Type I errors, i.e. FWER = Pr(V ;:::: 1). 

However, the FWER is so conservative that a very limited number of probe sets can be 

called significant. Benjamini and Hochberg (1995) proposed a new error measure, the 

false discovery rate (FDR) which is the expected proportion of false positive findings 

among those differential expressions, 

FDR = E[V/RIR > OJ· Pr(R > 0). (2.4) 

Microarray data analysis is an exploratory method to extract potential candidates for 

further investigation. Several false findings will not distort the conclusions during the 

investigation, as long as their proportion is small in comparison to the number of the 

rejected hypotheses (Reiner et al, 2002). Therefore the FDR control is more appropriate 

and practical. 

The FDR aims to control the false positives among those probe sets called significant. 

If all null hypotheses Ha are true, i.e. ma = m, the control of FDR is equivalent to the 

control of FWER. Otherwise, when some null hypotheses are true and some are false, 

i.e. ma < m, FDR is less strict than FWER and so is more powerful. Bcnjamini and 
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Hochberg (1995) derived a sequential p-value method to control the FDR: For a desired 

FDR level a, the ordered p-value PCi) is compared to threshold level (i/m) . a, then 

reject H (1)' ... ' HCk) if k = max{i : PCi) ::::: (i/m) . a} exists. When the test statistics are 

independent, this procedure guarantees the FDR is controlled at a desired level a, i.e. 

FDR::::: (ma/m) . a ::::: a. Benjamini and Yekutieli (2001) extended the same procedure 

to more general dependence structures, such as positive regression dependence. This 

procedure was shown to also control the FDR under the dependence situation. 

Storey (2002) proposed a variant of the FDR, termed the positive false discovery rate 

(pFDR): 

pFDR = E[V/RIR > 0] (2.5) 

provided that at least one positive finding has occurred so that Pr(R > 0) = 1. The 

pFDR control is as liberal and powerful as the FDR control. Storey (2002) showed that 

pFDR and FDR are asymptotically equivalent for a fixed rejection region when data set 

is high-dimensional such as microarray data with large m. Instead of fixing the error rate 

and estimating its corresponding rejection region in Benjamini and Hochberg method, 

Storey (2002) proposed the opposite approach: fix the rejection region and then estimate 

its corresponding error rate. These two methods originally worked under the assumption 

of independent p-values. However Storey (2003) relaxed this assumption and found that 

the properties of the pFDR and FDR still hold approximately under weak dependence 

(e.g. dependence exists in finite block genes). 

For a fixed rejection region threshold L1, we may use a simple estimate of the FDR, 

which is the ratio of the average number of significant probe sets in B permutations 

and the number of significant probe sets. Since permutations make all probe sets non-
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differentially expressed, the average number of significant probe sets called in B per-

mutations represents the number of false positives. However, this estimate tends to be 

biased upward. So Storey (2002) and Storey & Tibshirani (2003a) consider the prop or-

tion of non-differentially expressed probe sets (?fa) to improve the simple estimate of the 

FDR. Then the estimate of FDR is obtained by multiplying by an estimate of ?fa, 

-D (A) _ A the average number of significant probe sets from B permutations 
F R D. -?fa . . . 

the number of sIgmficant probe sets from observatIOns 

The estimate of ?fa can be obtained by either of these two methods. 

Method A suggested by Chu et al. (2005): Take three-quarter q.75 and one-quarter 

q.25 quartiles of all permutation d-statistics. m is the total number of probe sets and 

B is number of permutations, then we get m X B such d-statistics. Then calculate 

the proportion of the original statistics fall in this interval divided by the proportion of 

permutation statistics in the interval, i.e. 

0.5·m 

Method B suggested by Storey & Tibshirani (2003b): Set>.. to a range of >..=0, 

0.01, 0.02, ... , 0.95. Take 100 intervals in the form of (>../2,1 - >../2). Using the above 

method for these intervals, calculate corresponding KaS. Then fit a natural cubic spline 

with three degrees of freedom. The spline evaluated at >.. = 1 is the final Ka. 

The FDR gives a global measure of the overall accuracy of a set of significant probe 

sets. But it does not provide a specific measure of the significance of each probe set. For 

this purpose, Storey (2002) introduced a measure in terms of the FDR, which is called 

the q-value. The q-value of a observed statistic is the minimum FDR over all rejection 

regions containing that statistic. For probe set j, the largest rejection region threshold 
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6. for which that probe set is called significant is denoted by 6. j , the q-value is estimated 

by (Storey & Tibshirani, 2003a) 

(2.6) 

Storey (2002) also gave a simpler definition of q-value when statistics are the independent 

p-values. The rejection region takes the form [0, 'Yl and the q-values in terms of p values 

can be rewritten as 

p. 'ira'Y 
qj = Illllly:;:'PPr(p ::; 'Y). (2.7) 

Storey & Tibshirani (2003b) proposed the following algorithm for calculating q-value in 

terms of p-values in practice: 

1. For m probe sets, compute and order the p-values Pl,P2, ···,Pm· Let pel) ::; P(2) ::; 

... ::; P(m) be the ordered p-values. 

2. Estimate?fo from either method A or method B mentioned above. 

3. Calculate the q-value for the largest p-value P(m) by the formula 

A( ). ?fam . 'Y A 
q P(m) = mllly:;:,p(rn) #{ . < } = 'ira . P(m)· 

p. - 'Y 

4. For i = m -1, m - 2, ... , 1, calculate 

5. The estimated q-value for the jth most significant probe set is q(P(j)). 

As we know, the p-value can provide a measure of significance for an individual 

probe set. Similarly, the q-value accomplishes the same goal with respect to FDR. 
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The smaller q-value, the more significant the differential expression of that probe set. 

But there are two major discrepancies between the q-values and p-values. Firstly, The 

q-value gives each probe set individual measure of significance in terms of the FDR, 

whereas the p-value in terms of the Type I error. Secondly, because the q-value is 

defined in terms of the FDR, the q-value automatically takes into account the fact that 

tens of thousands of probe sets are simultaneously being tested, while the p-values say 

little about the multiple comparison. Therefore, in microarray data analysis, a q-value 

threshold is more practical since it directly provides potential significant probe sets list 

for the future investigation in biology and also controls the FDR at a desirable level. 

2.6 Empirical Bayes Analysis in Microarray 

Efron et al. (2001) proposed an empirical Bayes (EB) method using a simple inference 

model and explained the application to comparative microarray experiments: a probe 

set is either differentially expressed or non-differential expressed by the condition of 

interest. Similar to SAM method, the EB method constructs the same modified t­

statistic denoted by Z where So is chosen as the 95th percentile of Sj values. The EB 

method also establishes a null statistic denoted by Z* by permutation. The null statistic 

Z* is used to provide an approximate null distribution for Z. Based on this test statistic 

Z, a mixture density model is established and resulting statistical inference is made. 

The methodology is implemented in the R package EBarrays (Yuan et al, 2007). 

Let PI be the probability that a probe set is differentially expressed and Po = 1 - PI 

be the probability non-differentially expressed; h(z) be the density of Z for differentially 

expressed probe sets and fo(z) be the density of Z for non-differentially expressed probe 
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sets. Then the nllxture density of the two populations can be constructed as: 

f(z) = Pofo(z) + Plfr(Z). 

Here f(z) is estimated directly from all score Zj, j = 1, ... , m. The null density fo(Z) is 

approximated by the empirical distribution of the null scores { z;} obtained by permuting 

the condition labels. 

According to Bayes' rule, posterior probabilities Pl(Z) and Po(z) from the mixture 

model can be calculated by the following two equations: 

fo(z) 
Pl(Z) = 1- Po f(z) 

fo(z) 
Po(z) = 1 - Pl(Z) = Po f(z) . 

where Pl(Z) is the posterior probability for differentially expressed probe sets and Po(z) is 

the posterior probability for non-differentially expressed probe sets. Thenpl(z) andpo(z) 

are the function of ratio fo(z)/ f(z) and Po. The estimate of fo(z)/ f(z) is determined 

by relative densities from observed z statistics and permuted z* statistics. We consider 

values of z statistics as "success" and values of permuted z* statistics as "failure". In 

the logistic regression model, the probability 7f(z) of a success at point z is defined by 

f(z) 
7f(z) = f(z) + Bfo(z) ' 

where B is the number of permutations. Thus the ratio fo(z)/ f(z) is rewritten as 

fo(z) 1 - 7f(z) 
f(z) B7f(z)· 

By logistic regression the 7f(z) is estimated so that the estimate of ratio fo(z)/ f(z) can 

be obtained. So for the determination of Po, Efron et al. (2001) suggests taking the 

23 



upper bound of fo(z)/ fez) for Po from the following relationships since the posterior 

probabilities are nonnegative for all z statistics, 

. {f(Z)} PI ~ 1 - mlllz fo(z) 

and 

. {f(d)} 
Po < mlllz fo(z) . 

The EB method for microarray data can be summarized in the following algorithm 

(Efron et al, 2001): 

1. Compute the statistics Zj for observed expressions, j = 1, ... , m. 

2. Generate B sets of permutations of the condition labels. For each permutation, 

compute statistics z;. 

3. Estimate the ratio fo(z)/ fez) by using logistic regression. The ratio fo(z)/ fez) is 

based on the relative densities of Z and Z*. 

4. Take the upper bound of fo(z)/ fez) to estimate Po. 

5. Find the posterior probability PI(Z) for each probe set by Bayes' rule. 

Efron et al. (2001) points out that the empirical Bayes analysis is closely related to 

Benjamini and Hochberg's FDR criterion. Benjamini and Hochberg's FDR is a global 

definition. In empirical Bayes analysis, a false discovery rate for a gene is defined as 

fo(z) 
fdr(z) = Po fez) 

This quantity is called the local false discovery rate (fdr). The fdr(z) is a posterior prob-

ability Po(z) that a probe set with statistic z is non-differentially expressed. To estimate 
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global FDR for a rejection region A, we need to permute the observed z statistics. Then 

the estimated FDR for a rejection region A is obtained by 

FDR 
_ h L-~=1 #{ z;b E A} 

>.. -Po' . 
B· #{Zi E A} 

Therefore, we establish a connection between the estimated posterior probabilities and 

the FDR, thereby allowing for the analyst to handle multiple testing issues that arise 

when dealing with a large number of simultaneous tests. 

2.7 Linear Models for Microarray Data (LIMMA) 

Smyth (2004) developed a linear model approach for general micro array experiments 

with two or more groups, based on the hierarchical model of Lonnstedt and Speed 

(2002). A single linear model proposed by Kerr et al. (2000) was used to fit an entire 

microarray experiment and assumed the equal variance for probe sets. However, LIMMA 

is designed to fit a linear model for each gene and also assume different variances across 

probe sets. The methodology is implemented in the R package limma (Smyth, 2005). 

Suppose we have a set of n micro arrays yielding a response vector yJ = (Yjl, ... , Yji, ... , Yjn) 

for the jth probe set. Each component Yji represents the expression of probe set j in 

array i (j = 1, ... , m; i = 1, ... , n). In our case, n is the total number of arrays under two 

different conditions. Then we obtain a linear model for the jth probe set: 

where X is a design matrix, O'.j is a coefficient vector, and Wj is a known nonnegative 

definite weight matrix. The contrasts of interest are defined by {3j = CT O'.j where C is 

contrast matrix. We can fit this model for each probe set to obtain coefficient estimators 
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aj, estimators s; of a}, estimated covariance matrices var(&j) = Vjs; where Vj is a 

positive definite matrix, and contrast estimators {3j = cr &j with covariance matrices 

A T 2 A 

var(f3j) = C VjCsj . In our study of two-sample comparison, the contrast estimator f3j 

is scalar. 

Given the large number of gene-wise linear model fits arising from a micro array ex-

periment, there is need to take advantage of the parallel structure where the same model 

is fitted to each probe set. Lonnstedt and Speed (2002) define a hierarchical Bayesian 

model for this purpose, that describes how the unknown coefficients f3j and unknown 

variance a} vary across probe sets. This is done by assuming prior distribution for these 

sets of parameters. Prior information on f3j is assumed to be normally distributed and 

a} is assumed to follow approximately a scaled chisquare distribution. The posterior 

mean of 0-] given s} is obtained by 

s~ = E((J~ls~) = dos5 + djs; 
J J J do + dj . 

The posterior values shrink the observed variances s} towards the prior values s5 with 

the degree of shrinkage depending on the relative sizes of the observed and prior degrees 

of freedom. The posterior variance is used to replace the usual sample variance in the 

regular t-statistic. The modified statistic is called moderated t-statistic, defined by 

The moderated t statistic is shown to follow a t distribution with degrees of freedom 

dj +do. The added do degrees of freedom reflect the extra information which is borrowed 

across probe sets. The moderated t has the advantage over the regular t-statistic that 

large statistics are less likely to arise only from underestimated sample variances. The 
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posterior variance 5] offsets the small sample variances heavily in a relative sense while 

larger sample variances are moderated to a lesser relative degree. The p-values from the 

tj will be calculated and then used to identify differentially expressed genes. 

The moderated t-statistic is established on the basis of the given do and s6 values. 

For an microarray experiment, do and s6 can be estimated directly from observed gene 

expression in an empirical Bayes manner. Smyth (2004) proposed a computationally 

intensive method to estimate these two parameters. The logs] instead of s] is used 

because the moments of logs] are finite for any degrees of freedom and the distribution 

of logs] is more nearly normal so that moment estimate is more efficient. Estimate of 

do is obtained by solving 

'I/J'(do/2) = mean{(ej - e)n/(n - 1) - 'I/J'(dj /2)} 

where ej = logs] -'l/J(dj /2) + 10g(dj /2), e is mean of ej for all n number of array, and 'l/JO 

and 'I/J' 0 are the digamma and trigamma functions respectively. So s6 can be estimated 

by 

s~ = exp{e + 'I/J(do/2) -10g(do/2)}. 

This estimate for s6 is usually somewhat smaller than the mean of the s]. Therefore a 

set of sample variance s] leads to the estimates of do and s6 which are the important 

quantity in the moderated t-statistics. Then an empirical Bayes log posterior odds 

statistic called B can be obtained by equation (7) of Lonnstedt & Speed (2002), which 

is proportional to a function of the moderated t-statistic, i.e. 

1 +t~ 
Bcx J 

P 
1 + J 

l+nc 

where n is sample size of each condition and c is a hyperparameter in the normal prior of 

the nonzero means. The B statistic is an increasing function of the square of the modified 
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t-statistic tj and used to rank genes in order of evidence for differential expression. Hence 

large absolute values oftj lead to large values of B. Note that the adjustment factor 86 

in the modified t-statistic tj is made to the sample variance whereas in the case of SAM 

it is made to the standard error. 

In summary, the procedure for general microarray experiments with two or more 

groups essentially involves three steps. The first step is to reset data in the context 

of general linear models with appropriate design matrix. The second step is to derive 

estimators for parameters do and 86. The third step is to calculate B statistic in terms 

of the moderated t-statistic in which posterior standard deviations are used in place of 

regular standard deviations. 
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Chapter 3 

Test statistics and q-values to 

identify differential expressions 

In our study, we are interested in determining which probe sets show a statistically 

significant difference in expression between different strains. For simplicity, we limit 

the discussion of methodology to the case where there are two strains and all samples 

are independent. Therefore, the null hypothesis for each probe set is that there is no 

difference in mean expression between two strains, i.e. HjD : fJ,jl = fJ,j2, j = 1, ... , m, 

where fJ,jl and fJ,j2 denote the population mean expression in strain 1 and 2 for probe set 

j, respectively. There are often tens of thousands of probe sets tested simultaneously in a 

micro array experiment. In such experiments, gene expression data have three properties: 

(i) the dimension of data (m) is much larger than sample size, (ii) some probe sets are 

correlated, and (iii) a large proportion of the null hypotheses are expected to be true 

(Pollard & Van der Laan, 2004). So gene expression studies have motivated us to better 

understand multiple testing issues such as forming test statistic, calculating the null 
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distribution for the test statistic, choosing rejection region and controlling the number 

of false positives. 

3.1 Test statistics 

A test statistic quantifies the evidence in the data against the null hypothesis being 

tested. We must make sure that the statistic used is appropriate. Because different 

statistics may give different p-values and q-values for each probe set, and therefore they 

can lead to different conclusions. A commonly used statistic for testing difference in 

the means of two strains is the well-known two-sample t-statistic which was applied to 

identify differential expressions by Dudoit et al. (2002). 

Tusher et al. (2001), Efron et al. (2001) and Smyth (2004) modified this regular 

t-statistic with an offset standard deviation So. Since the number of RNA samples 

measured for each strain is always small, the variability for each probe set may not 

be stable. For example, if standard error (Sj) from one probe set is small, by chance, 

the t value becomes larger even when the corresponding difference between two average 

expressions (Xj2 - XjI) is small (Cui & Churchill, 2003). So adding the extra term So 

offsets this instability. T'usher et al. (2001) estimated So by minimizing the coefficient 

of variation of test statistics. In Chapter 2 we have introduced the procedure to get So, 

which was proposed by Chu et al. (2005). Efron et al. (2001) chose the 95th percentile 

of the distribution of all sample standard deviations which ensures less information 

loss. Smyth (2004) estimated So by solving equations with respect to sample standard 

deviations and degrees of freedom of the distribution of modified t-statistics. In our 
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study, we focus on the statistic proposed by Thsher et al. (2001), defined by 

- -
D. = Xj2 - Xjl 

J 
So + Sj 

(3.1) 

We will refer to this as the d-statistic. As introduced in Chapter 2, it borrows information 

across all probe sets, while the regular t-statistic only uses information from one probe 

set at a time. 

3.2 Null distribution and p-values 

A key feature of hypothesis testing is the null distribution of the test statistic. The choice 

of a proper null distribution is crucial in order to ensure a desirable control of FDR. In 

our study, we consider two choices of null distribution for both d-statistic and t-statistic: 

(1) numeric integration method to derive a null distribution; (2) permutation method 

to estimate a null distribution. In this section we focus on the t-statistic whose null 

distribution was derived under some assumptions (Welch, 1937; Best and Rayner,1987). 

We also introduce permutation method for t-statistic, which has been discussed widely 

(Dudoit and van der Laan, 2008). 

3.2.1 t distribution and the calculation of p-value 

If gene expressions for each probe set are normally distributed, the null distribution of 

Tj follows Student t-distribution, Tj rv tv, (Student, 1908). In our study we make the 

assumption that variances under two strains are equal for a given probe set. Under 

this assumption, t-statistic follows a t distribution with degrees of freedom nl + n2 - 2. 

The p-value is hence easily calculated by the cumulative distribution function of the t 
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distribution. For two-sided alternative hypothesis, p-value for the t-statistic is: 

Here we expect both overexpression and under expression probe sets so hypothesis testing 

is two-sided. 

Note that, although the variability of the raw expression values increases with the 

mean, the effect of normalization and the log transformation will tend to attenuate this 

relationship and so the assumption of equal variances seems justified. We have not, 

however, examined the effect of unequal variances by strain in our study. 

3.2.2 Permutation method and the calculation of p-value 

In practice it may not be valid to assume that the null distribution of Tj is a t distribution, 

especially as small sample sizes are very common in a micro array data and samples may 

not come from normal distributions. So we apply the permutation method to estimate 

the null distribution without limitation on sample size and any parametric assumption. 

By permutation, the estimated null distribution can be obtained by calculating all 

possible values of the test statistic under rearrangements of strain labels in a manner of 

sampling without replacement. This method requires that all observations are exchange-

able under null hypothesis Ho where two strains have identical expression patterns. Each 

arrangement may be viewed as a permutation of the nl + n2 expression values with nl 

values assigned to strain 1 and the remainder assigned to strain 2. There are B such 

permutations in two-sample case, where 

B = (nl +n2)!. 
nl!n2! 
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Observed expression values t 

B Xjll Xj12 Xj13 Xj14 Xj15 Xj21 Xj22 Xj23 Xj24 Xj25 statistic 

b1 1 1 1 1 1 2 2 2 2 2 t~ 
J 

b2 1 1 1 1 2 1 2 2 2 2 t~ 
J 

... .. . . .. 

b251 2 2 2 2 1 2 1 1 1 1 t~51 
J 

b252 2 2 2 2 2 1 1 1 1 1 t~52 
J 

Table 3.1: Simple demonstration of a permutation test for probe set j. 

For example, in our simulation study where nl = n2 = 5 then B=(5+5)!f(5!5!)=252. 

When Ho is true, the p-value for probe set j is the fraction of the B permuted t-statistics 

denoted by t~ that are greater or equal to the observed t-statistics denoted by tjbs in 

absolute value, i.e. 

. #{b : It~1 ~ It£?bsl} 
p-value for probe set J = J

B 
J . 

Table 3.1 shows a simple illustration of a permutation test for probe set j in our simu-

lation study. The strain vector is (1 1 1 11 2 2 2 2 2). The observed expression values 

are denoted by Xjik, where j = 1, ... , 10000 denotes probe set, i = 1,2 denotes strain and 

k = 1, ... ,5 denotes the number of sample under each strain. Permutation matrix of each 

probe set is a 252 x 10 matrix in terms of strain labels (Table 3.1). Then each probe 

set has an observed test statistic as well as a set of 252 permuted test statistics. When 

we combine all probe sets together, we get a 10000 x 252 matrix in terms of permuted 

test statistics shown in Table 3.2. Because we permute the entire vectors of expression 

values, the correlation between expression values can be maintained. By pooling over 
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probe setl 

probe set2 

probe setj t~ 
J 

probe set10000 tioooo 

t~ 
J 

tIoooo 

t252 
2 

t252 
10000 

Table 3.2: Simple demonstration of permutation test by pooling all probe sets. 

all m probe sets, the p-value for probe set j is given by 

. ~ #{i : Itfl 2:: Itjbsl, i = 1, .. , m} 
p-value for probe set J = L. . 

b=l m13 
(3.3) 

Here we assume that the test statistics have the same null distribution across probe sets 

so that all m x 13 permuted values are used in the calculation of the p-value. We also 

assume independence of the test statistics which is unlikely to be true in practice but is 

unlikely to badly affect the p-value calculation. 

In summary, the calculation of p-value using the permutation distribution of the test 

statistics Tj , j = 1, ... , m, is carried on by the following algorithm. 

1. Permute the elements in strain vector (1 1 1 1 1 2 2 2 2 2) as in Table 3.1. The 

number of permutation 13 is calculated by equation (3.2). 

2. For each probe set, compute observed t-statistics tjbS and a set of 13 permuted 

t t t · t· . t1 tB · - 1 -s a IS IC. j' ... ' j , J - , ... , m. 

3. Establish a m x 13 permutation matrix in terms of permuted t-statistic as in Table 

3.2. 
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4. Compare the absolute values of all m x B permuted t-statistics with the absolute 

value of the observed statistic Itjbs I for probe set j. Calculate the proportion of the 

absolute values of permuted t-statistics which are greater or equal to Itjbsl. Thus 

the proportion is the p-value for probe set j defined by equation (3.3). 

3.3 The distribution of d-statistics under null hy-

pothesis 

The d-statistic in the equation (3.1) has been widely used in practice, such as in SAM 

method of Thsher et al. (2001) and empirical Bayes of Efron et al. (2001). These 

methods employ the above permutation technique to estimate the null distribution, 

however, do not have an associated distribution theory. In this section, we use numeric 

integration method to derive the distribution of d-statistic when Ho is true. 

3.3.1 Derivation of d distribution and calculation of p-values 

Suppose Z is standard normal variable and W has a chi-square distribution with r 

degrees of freedom that is independent of Z, then the variable 

T= Z 
JW/r 

is t distributed with r degrees of freedom. When a positive constant c is added in the 

denominator, a new variable is defined by D as: 

D= Z 
c+ JW/r 
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T variable is a special case of D variable when c is zero. In our study, we only derive 

the cumulative distribution function of D since we only need to calculate p-values. Let 

X = JW/r, then W = X2r rv X(r) with probability density function 

_ 1 r/2-1 -w/2 
fw(w) - 2r/2f(r/2) w e 

And, 

Fn(d) = P(D ~ d) = P (c:X ~ d) = P(Z ~ d(c+X)). 

To compute the probability of Z ~ d( c + X), we need to get the joint distribution 

of X and Z. Since Z and W are independent, X and Z are independent. Given Z 

being standard normal, the marginal density function of X can be attained by changing 

variable, 

fx(x) 1 (x2ry/2-1e-x2r/2 .2xr 
2r / 2 f(r /2) 

1 rr/2xr-le-x2r/2 
2r / 2- 1 f(r /2) 

Thus the joint distribution of X and Z is 

fx,z(x, z) fx(x) . fz(z) 

Then the cumulative distribution function of D is obtained by integrating fx,z(x, z) over 

z E (-00, d(x + c)) and x E (0, +00), 

Fn(d) P(Z ~ d(c + X)) 

r+oo jd(X+C) 
io -00 fx(x) . fz(z)dzdx 
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Therefore cdf F D (d) is denoted by 

1+= 1 2 

FD(d) = 2rx /2 ( / ) (rx2
y/2-1e-X r/2 . <T?(d(x + c))dx. 

o 2r fr 2 
(3.4) 

where 2rx 2T/ 2 /(r/2) (rx2Y/2-1 e-x
2
r/2 is probability density function ofthe random variable 

X where W = X2r "-' X(r), and <T?(.) is standard normal cumulative distribution function. 

Under the assumption of common variance for each probe set, the degrees of freedom 

r = nl +n2 -2. 

Because the numerator of D is standard normal variable whose distribution is sym-

metric about 0, the distribution of D is symmetric about 0 too. For two-sided alternative 

hypothesis, the p-value for d-statistic is 

p-value for probe set j = 2(1- FD(ldjl)), for all dj. 

In our simulation study, sample size for each strain is 5 so r = 5 + 5 - 2 = 8, and c is 

defined in the following section. Since it is cumbersome to know the true underlying d 

distribution, we collected d-statistics (d.null) for those truly non-differentially expressed 

probe sets in Simulation 1 and drew empirical cdfplot using plot(ecdf(d.null» in 

R. In Figure 3.1, the thin curve of FD(d) from numeric integration fits empirical plot 

(thick curve) perfectly, indicating that FD(d) is the true cumulative distribution function 

of d. 
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Emperical cdf and cdf from numerical integration 

q 

'" ci 

<0 
ci 

E 
r:: 
u. ... 

ci 

'" ci 

a 
ci 

- _cd! 
- - edt from numerical integratio 

-1.0 -0.5 0.0 0.5 1.0 1.5 

x 

Figure 3.1: The fitting of empirical cdf and FD(d) from numeric integration. 

3.3.2 Determination of c in D 

Suppose we have two independent random samples from strain 1 and 2 for probe set j, 

f.1,j2, CT;C;l + ';2))· Under null hypothesis, d-statistic for probe set j in equation (3.1) is 

defined as: 

D· J 

XjI - Xj2 
So + Sj 

(XjI - Xj2 - O)/JCT;(-!:; + ~) 
(so + Sj)/ JCTJ(-!:; + ~) 

(XjI - Xj2)/ JCT;(-!:; + ~) 

so + 
2( 1 1) 

OJ n1 + n2 
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S· (nl-l)s\ d (n2-1)s22 h Ch· d d· ·b· . h d f fr d 1 mce 2 J an 2 J ave I-square lStn utlOn WIt egrees 0 ee om nl -
~j ~j 

and n2 - 1 respectively, it can be shown by moment generating function that 

(nl - l)S;1 + (n2 - 1)S;2 2 
2 rv Xn1+n2-2· O"j 

By plugging in equation 2.2, thus 

D· -
(Xjl - Xj2)/ VO"](-::; + ~) 

J -
s~ 

J 

N(O,l) 

N(O, 1) 

(nl-l)s~l +(n2-1)s~2 
(nl +n2-2)~J 

2 
Xn1+n2 -2 
nl+n2-2 

The first term in the denominator of d-statistic so is denoted by 
2 ( 1 1) ~j nl + n2 

So 
(3.5) 

which is a function of So and sample sizes when common variance O"J is known. In 

practice, however, O"J is unknown and needs to be estimated. Here we consider the 

following estimates of O"J and corresponding estimates of Cj. 

The pooled estimate of O"J: S;;pool. Since both strains for probe set j are assumed 

to have the same population variance, we naturally consider the pooled variance S;;pool 

defined by 

(3.6) 
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Correspondingly, the estimate of Cj is defined with respect to the pooled variance Slpool 

by 

So (3.7) 

Note that the denominator of C] is Sj from equation (2.2). The denominator of the 

d-statistic moderates this using Sj + So so we considered using the same here to get 

1 
(3.8) 

which is the function of C]. Since So is always positive, then cJ is always smaller than C]. 

The null estimate of a}: SJ;null. Since there is no difference in expressions under 

two strains when null hypothesis is true, all samples come from the same population. 

We propose an estimator called null sample variance, SJ;null for probe set j, treating all 

samples {XjII, ... , X jInll X j2I , ... , X j2n2 } as a random sample, then the sample variance 

can be computed by: 

(3.9) 

where Xj is the average expreSSIOn over two strains for probe set j. As a result, an 

estimate of Cj is denoted by c;, as 

(3.10) 

The pooled estimate in (3.6) and the null estimate in (3.9) assume that each probe 

set has a different variance. We also propose two more estimates by considering some 

cases where all probe sets may share a common variance. By taking the average of Slpool 

across all probe sets, we construct a common pooled variance for each probe set, 

-2 1 ;:-.. 2 
Spool = - L...J Sj;pool' 

mj=I 
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the corresponding estimate of Cj is denoted by c; as 

Similarly, 

and 

A4 So 
c- = . 

J j-2 (1 1 ) 
Spool nl + n2 

-2 1 ~ 2 
Snull = - L.J Sjjnull, 

ffi j =l 

A5 So 
C- = . 

J j-2 (1 1 ) 
Snull nl + n2 

3.4 Selection of probe sets via q-values 

(3.12) 

(3.13) 

(3.14) 

As we know, the p-value can be used to assign to each probe set a level of significance in 

terms of the false positive rate. A p-value threshold of 5% yields a false positive rate of 

5% among all null hypotheses being tested. However, it dose not provide a measure of 

the errors among the probe sets called significant. Information on this is provided by the 

FDR, which gives a measure of the proportion of false positives among significant probe 

sets. Moreover, the q-value with respect to FDR provides an individual measure of the 

significance of each probe set. If a q-value threshold a is chosen, then we can call all 

probe sets with q ::; a significant. Then a set of significant probe sets can be produced. 

For the large number of probe sets being tested, the F DR::; a so that the proportion of 

false positives among all significant probe sets is controlled at level a. Therefore q-value 

not only gives individual measure of significance for a probe set but also control the 

FDR at the prechosen level a. 

In our study we calculate the q-value for a probe set by two methods. One method 

is based on equation (2.6) in terms of FDR. In this method we need to find the largest 
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rejection region threshold ~j where a particular probe set is called significant and esti-

mate FDRs over all larger rejection regions containing that probe set. The method is 

implemented in SAM.R written by Dr. Angelo Canty (2005). It cycles through all probe 

sets starting from the median M of expected order statistics {d(l), ... , d(m)} and moving 

outwards to find the values of ~j for each probe set, it then finds the FDR for each such 

value of ~j,j = 1, ... , m and uses the minimum as the q-value by 

where ~j is the largest rejection region threshold for which probe set j is called signifi-

cant. 

The other method is based on equation (2.7) in terms of p-value. In this method, we 

need to first compute p-values for all probe sets. If the null distribution of test statistics is 

very clear (e.g., the null distribution of a t test is the t distribution when gene expressions 

are normally distributed), then p-values can be computed directly from that distribution. 

Otherwise we apply permutation method mentioned in previous section to estimate null 

distribution. After ordering p-values as Pel) :::; P(2) ... :::; P(m), q-value for the probe set 

with the largest p-value P(m) is first estimated by 

and then q-value for (m - l)th most significant probe set is estimated by 

A() . { 1fom. P(i) A( )} £. 1 1 q P(i) = mm i ,q P(i+l) ,or 'l, = m - , ... , . 

The ordering of probe sets in terms of their q-values is the same as that in terms of their 

p-values. The algorithm for estimating q-value in terms of p-value (Storey & Tibshirani, 
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2003b) has also been presented in Chapter 2 and contained in qvalue package written 

by Dabney and Storey (2009). We wrote an R function qvalue.pval1 based on this 

software to implement the algorithm. 

3.5 Summary of methods used in our study 

The classical approach to hypothesis testing is to calculate a statistic and associated 

p-value. When the test statistic has a known null distribution, then we can easily 

get p-value from the null distribution. Otherwise we use permutations of replicated 

measurements to estimate a null distribution and then calculate the permutation p-value. 

Whether p-value is based on a known null distribution or estimated null distribution, 

p-value provides a good approach to achieving q-value for each probe set. We denote 

this approach as q-value in terms of p-value. According to different method to get p­

values, we denote the approach using distribution to obtain p-values by DIS and the 

approach using permutation by PERM. On the other hand, the SAM method proposes 

a different approach by using original test statistic instead of its associated p-value to 

estimate the q-value for each probe set. We denote this approach as q-value in terms of 

FDR by FDR. The biggest advantage of FDR method is that we directly use original 

test statistic regardless of its null distribution. 

As discussed in previous sections, we consider two types of test statistics, regular 

t-statistic and d-statistic, and would like to compare their performance when calculating 

q-values from FDR method and p-value method. Therefore we add .t and .d in the end 

of FDR, DIS and PERM in order to distinguish which test statistic is used. Table 3.3 

lists six methods we discuss in our simulation study and real data analysis. When we 
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I Methods I d-statistic It-statistic 

FDRmethod FDR.d FDR.t 

p-values from permutation PERM.d PERM.t 

p-values from distribution DIS.d DIS.t 

Table 3.3: Six methods discussed in simulation study and application. 

calculate d-statistics for all probe sets, we implement three methods to get q-values which 

are FDR.d, PERM.d and DIS.d. Similarly, the three methods FDR.t, PERM.t and 

DIS. t are calculated based on regular t-statistics. 

We will pay a closer attention to the distribution method based on d-statistic, DIS.d. 

The p-value is calculated from the cdf of d distribution which is based on true population 

variance 0-]. In practice, however, it is unknown and need to be estimated. From the 

previous discussion, we consider four estimates: S]iPool and S]inull , and their average 

·t· -2 d -2 B d 2 d -2 thr t· t f . hI quanti les Spool an Snull· ase on SjiPool an Spool' we propose ee es Ima es 0 Cj. cj ' 

C] and c;. We also have other two estimates cJ and cJ associated with S]inull and S~ull. 

Therefore we discuss five methods in terms of d distribution: DIS.d.dl, DIS.d.d2, 

DIS.d.d3, DIS.d.d4 and DIS.d.d5. Table 3.4 lists these methods and associated 

estimates of oJ and Cj. 
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I Methods I o-J 

DIS.d.dl 2 1 [(nl - l)S~l + (n2 - 1)s~2] Al So 
SjjpOOI = C· = 

nl +n2 - 2 J :1s~ (..!... +..!...) 
Jjpool nl n2 

DIS.d.d2 2 1 [(nl - l)S~l + (n2 - 1)s~2] A2 1 
Sjjpool = c·=--

nl +n2 - 2 J All +1 
Cj 

1 nl+n2 
A3 So DIS.d.d3 2 L (Xji - Xj)2 Sjjnull = C· = 

nl +n2- 1 J :1s~ (..!... +..!...) i=l Jjnull nl n2 

DIS.d.d4 -2 1 f 2 A4 So 
Spool = - Sjjpool C· = 

J :1-2 (1 1 ) m j=l Spool nl + n2 

DIS.d.d5 -2 1 2:m 2 A5 so 
Snull = m j=l Sjjnull C· = 

J :1-2 (1 1) Snu!l nl + n2 

Table 3.4: Distribution method based on d-statistics when using different estimates of a} 

and Cj. 
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Chapter 4 

Simulation Studies 

We implemented and evaluated the six methods proposed in Chapter 3 for identification 

of differentially expressed probe sets in microarray data: FDR method, permutation 

method and distribution method in terms of d-statistic and t-statistic, respectively. The 

evaluation includes application to both simulated data and real micro array data. In 

this chapter we investigate the performance of the six methods using simulated data 

sets. Since we know which probe sets are truly differentially expressed during data 

generation, we can compute the real FDR to compare which method can get the most 

accurate results. In addition, we conducted a simulation study to observe the power for 

detecting true differences from each method. 

4.1 Simulation study design 

We generated 100 simulated data sets, of the expressions of 10,000 probe sets from 

2 strains of 5 samples each. Each data set is denoted as YlO,OOOXIO data matrix. For 
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convemence, we did not consider day effect. The first five columns in data matrix 

Y are viewed as samples from strain 1; the second five are the samples from strain 

2. We denote by entry Yji the expression level for probe set j from the i-th sample, 

j=1,2, ... ,10,000 and i=1,2, ... ,10. In order to examine the FDR behaviors of all methods, 

we specifically set the first 10% probe sets/rows in Y matrix as differentially expressed 

and the remaining as non-differentially expressed. Thus the proportion of true null 

hypotheses 'iro is (100 - 10)% = 90%. 

In Simulation 1, we consider an extremely simple case where expressions are normally 

distributed and all probe sets have the same variance 1. The expression for probe set j 

from the ith sample can be modeled as 

(4.1) 

where /-Lji=2, 

-3 + 4~9(j -1) j = 1, ... , 500;i = 6, ... , 10 

dji = 1 + 4~9 (j - 501) j = 501, ... , 1000; i = 6, ... , 10 

o otherwise. 

and Eji "-' N(O, 1) (i = 1, ... , 10, iid). Thus all probe sets share the common variance 1. 

The model (4.1) makes the first 500 probe sets negatively differentially expressed with 

different amounts of differential expressions between -3 and -1, the second 500 probe 

sets positively differentially expressed with different amounts of differential expressions 

between 1 and 3, and the remaining 9000 probe sets equally expressed. 

In Simulation 2, we assume that the data are heavy-tailed and the error term Eji is 

distributed as Eji "-' t(3) /.J3, where .J3 is the standard deviation of t distribution with 

3 degrees of freedom. In practice the sources of variability may vary across probe sets, 
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Error term distribution 0"- - 1 J- O"j rv XZ2o)/20 

N(O,l) simulation 1 simulation 3 

t(3)/J3 simulation 4 simulation 2 

t(S)/ JS/3 simulation S 

t(10)/ JlO/8 simulation 6 

Laplace(O, 1) / v'2 simulation 7 

Table 4.1: Description of seven simulations by distribution and variability of variance 

so we assume different variances 0"] for probe sets, which are generated from XZ2o)/20 

distribution. Therefore the expression for probe set j from the ith sample conditional 

on O"j can be modeled as 

(4.2) 

where Cji rv t(3)/J3 (i = 1, ... , 10,iid), f-Lji and dji are the same as in Simulation 1. 

Then we consider two more cases between Simulation 1 and 2, normally distributed 

data with different variances (Simulation 3) and heavy-tailed distributed data with equal 

variance (Simulation 4). Simulation 3 is the same as Simulation 2 in model (4.2) except 

that we generate Cji from N(O, 1). Simulation 4 is the same as Simulation 1 in model 

(4.1) except that we generate Cji from t(3)/J3 distribution. 

Furthermore we consider the bigger degrees of freedom for t distribution error terms 

when assuming equal variance 1 across all probe sets. We perform Simulation S using 

model (4.1) where Cji rv t(5)/ JS/3, and Simulation 6 where Cji rv t(lO)/ JlO/8. In 

Simulation 7, we assume error terms follow symmetric Laplace distribution with mean 0 

and parameter b = 1 divided by its standard deviation v'2, i.e. Cji rv Laplace(O,l)/v'2. 

In summary, Table 4.1 lists the simulations we performed by error term distribution 
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and variability of probe sets. When all probe sets have the common variance 1, we con­

sider gene expressions following normal distribution N(O,l), t distribution with different 

degrees of freedom and Laplace(2,1) separately. When variances across all probe sets 

are varying, we only consider gene expression following normal distribution N(O,l) and t 

distribution with 3 degrees of freedom. Each simulation can be implemented as follows: 

• Step 1: Generate a simulated data set using an appropriate model. 

• Step 2: Apply methods listed in Tables 3.3 and 3.4 to the data sets generated in 

Step 1, record the number of probe sets called significant and the number of probe 

sets falsely called significant, and calculate true FDR, for each method. 

• Step 3: Repeat 100 times Step 1 and Step 2. For each method, compute the 

average number of probe sets called significant, the average number of probe sets 

falsely called significant and the average of true FDRs. 

4.2 Power simulation 

To investigate the powers of the methods presented in Tables 3.3 and 3.4 for detecting 

true differences between strains, we conducted power simulation where we generated 

100 simulated data sets of 13200 genes from 2 strains of 5 samples each. Similar to 

Simulation 1, gene expression values came from normal distribution and variances oJ 

were fixed at 1. There are 3200 truly differentially expressed probe sets so the proportion 

of true null hypotheses is (1 - 3200/13200) x 100% = 75.76%. True negative differences 

are the set of Al = {-4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5} and true positive differences are the 

set of A2 = {0.5, 1.0, 1.5,2.0,2.5,3.0,3.5, 4.0}. Then all true differences are the union of 
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sets AI, A2 and {O}. Each true difference point is denoted by 8k where k = 1,2, ... , 17 

and 8k E Al U A2 U {O}. The median of true differences 89=0 indicates probe sets are 

non-differentially expressed. Increasing true differences allowed us to test robustness 

of the methods. For the first 1600 truly differentially expressed probe sets, an amount 

in set Al was added to the expression of samples. For the second 1600 probe sets, an 

amount in set A2 was added to the expression of samples. There are 200 probe sets at 

every true difference point 8k excluding k = 9 and 10000 probe sets at 89=0. Therefore 

the expression for probe set j from the ith sample can be modeled as 

(4.3) 

where !-Lji=2, k=1,2, ... ,17, 

o j = 1, ... , 13200; i = 1, ... , 5 

8}i j=1, ... ,200,i=6, ... ,10 

d~. = JZ 

8Ji j = 1401, ... , 1600 and i = 6, ... , 10 

8}f j = 1601, ... , 1800 and i = 6, ... , 10 

8}l j = 3001, ... , 3200 and i = 6, ... , 10 

o j = 3201, ... , 13200 and i = 6, ... , 10 

and f.ji AJ N(O, 1) (i = 1, ... , 10,iid). For the first 3200 probe sets, the model (4.3) makes 

200 probe sets differentially expressed at each true difference point with the same amount 

of differential expressions. The remaining 10000 probe sets are equally expressed. 

To study the effect of true difference in expression on power, we concentrated on the 

three specific effect sizes, denoted by EI = ±4, E2 = ±3 and E3 = ±2. The signs + 
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and - represent the effect size in positive and negative directions respectively. Here we 

only generated one data set for each El , l = 1,2,3, and assigned 500 probe sets at the 

positive and negative effect sizes respectively. We refer to RUNI for El = ±4, RUN2 for 

E2 = ±3 and RUN3 for E3 = ±2. The expression for probe set j from the ith sample 

in the lth run can be modeled as 

(4.4) 

where /-Lji=2, 

-lEd j = 1, ... ,500;i = 6, ... , 10 

d ji = lEd j = 501, ... , 1000; i = 6, ... , 10 

o otherwise. 

tji rv N(O,I) (i = 1, ... , 10; j = 1, ... , m, iid). Model (4.4) makes the first 500 probe 

sets negatively differentially expressed with the same amount of differential expressions, 

the second 500 probe sets positively differentially expressed with the same amount of 

differential expressions and the remaining 9000 probe sets equally expressed. 

4.3 Results 

4.3.1 Simulations 1-4 

Simulation 1. Here gene expressions are normally distributed and share a common 

variance across probe sets. From Table 4.2, we observe that the methods based on d­

statistic detect many more significant probe sets with less false positives so that they 

control true FDRs at the relatively lower leveL Therefore the methods based on d­

statistic appear to be more powerful in this case. For any specific statistic, FDR method 
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and permutation method come up with fairly similar results in detection of significant 

probe sets and controlling of FDR; the distribution methods can detect more significant 

probe sets and control the true FDR close to the nominal level 5%. 

When employing d distribution method to calculate q-value, we proposed four esti­

mates S];pool' S;ool' S];null and S;;'ull of unknown (j]. In this simulation, true (j] was fixed 

at 1 and hence all related quantities based on different estimates reported in Table 4.3 

must be close to ones from true (j] to show a good performance. It is clear from Table 

4.3 that when cutoff level is at 0.05, DIS.d.d1 yields much greater number of signifi­

cant probe sets than DIS.d. Among those probe sets, however, quite a lot of them are 

truly non-differentially expressed, leading to a rather high FDR of about 20%. Methods 

DIS.d.d2 and DIS.d.d3 are too conservative and detect very few significant probe sets. 

Since S;ool and s;;'ull assume the common variance across probe sets, their performances 

are quite close to DIS.d. In particular, DIS.d.d4 based on 3;001 is the best in this case. 

Here we will take a closer look at the performance of methods for a single simulated 

data set. 

In Figure 4.1(a)-(c), we make comparison on the q-value performance across three 

methods based on d-statistics. We can see that FDR.d and PERM.d display the similar 

performance. In Figure 4.1(a) we see the q-values from both methods are very close and 

fall in the diagonal. In Figure 4.1 (b) and (c) we also see that the q-values from DIS.d 

method are generally a little smaller than those from the other two methods. Methods 

based on t-statistics have the same pattern of q-values. 

Figure 4.2(a)-(c) presents the relationships of q-values among methods based on 

different statistics. Vertical line in each panel represents the cutoff level. We further 

observe that q-values based on t-statistic are bigger than d-statistic, implying that meth-
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d-statistic t-statistic 

Simulations 
FDR.d PERM.d DIS.d FDR.t PERM.t DIS.t 

#sig 461.70 459.94 557.50 166.69 162.24 189.06 

Simulation 1 V 11.27 11.01 26.43 7.46 7.14 9.28 

FDR 0.0244 0.0239 0.0473 0.0438 0.0428 0.0487 

#sig 648.63 647.49 527.63 532.28 530.87 445.82 

Simulation 2 V 22.54 22.19 5.84 23.09 22.80 12.50 

FDR 0.0347 0.0342 0.0110 0.0433 0.0429 0.0280 

#sig 404.36 402.30 559.70 166.30 161.78 188.63 

Simulation 3 V 10.13 9.89 26.55 7.44 7.14 9.24 

FDR 0.0250 0.0245 0.0474 0.0437 0.0428 0.0486 

#sig 660.49 659.32 535.46 532.10 530.71 445.55 

Simulation 4 V 22.12 21.70 5.44 23.07 22.79 12.46 

FDR 0.0334 0.0329 0.0101 0.0433 0.0429 0.0279 

Table 4.2: Comparison of 6 methods between Simulations 1-4 at q-value cutoff 0.05. 

Simulation 1: Yji f'J N(O, 1) and a-] = 1; Simulation 2: Yji f'J t(3)/J3 and a-] f'J XZ2o)/20; 

Simulation 3: Yji f'J N(O, 1) and a-] rv XZ2o)/20; Simulation 4: Yji rv t(3)/J3 and a-] = 1. 
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true 0-
2 2 Al 

Sjpool, Cj 
2 A2 

Sjpool, Cj 
2 A3 

SjnulZ, Cj 
-2 A4 
Spool' Cj 

-2 A5 
Snull, cj 

Simulations DIS.d DIS.d.d1 DIS.d.d2 DIS.d.d3 DIS.d.d4 DIS.d.d5 

#sig 557.50 732.84 0.02 0.05 557.84 502.37 

Simulation 1 V 26.43 165.78 0 0 26.47 16.35 

FDR 0.0473 0.2260 0 0 0.0474 0.0325 

#sig 527.63 656.93 508.57 455.27 519.16 500.44 

Simulation 2 V 5.84 64.72 12.73 12.28 5.76 4.59 

FDR 0.0110 0.0984 0.0250 0.0269 0.0110 0.0091 

#sig 559.70 737.20 0.26 1.03 543.70 484.23 

Simulation 3 V 26.55 168.01 0 0 32.87 20.89 

FDR 0.0474 0.2276 0 0 0.0603 0.0431 

#sig 534.57 673.88 496.32 452.62 536.05 514.32 

Simulation 4 V 5.41 70.70 9.89 11.60 5.63 4.05 

FDR 0.0101 0.1047 0.0199 0.0256 0.0104 0.0078 

Table 4.3: Comparison of estimates of o-J and Cj at q-value cutoff 0.05 between Sim­

ulations 1-4. Simulation 1: Yji rv N(O,l) and o-J = 1; Simulation 2: Yji rv t(3)/v'3 

and o-J rv X(2o)/20; Simulation 3: Yji rv N(O,l) and o-J rv X(2o)/20; Simulation 4: 

Yji rv t(3)/v'3 and o-J = 1. 
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Figure 4.1: Plots of pairwise relationship of q-values among three methods based on 

d-statistics for one data set in Simulation 1. 
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Figure 4.2: The plots of relationships of q-values among FDR method, permutation 

method and distribution method based on different statistics for one data set. 
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Figure 4.3: Plot of the relationship of q-values from FDR method using d~fferent statistic 

for one data set. 

ods based Oil t-statistic will detect fewer significant probe sets at cutoff level 0.05. This 

justifies the finding in Table 4.1 where there are only a half and even less number of 

probe sets called significant from t-statistic. In order to figure out more reasons why 

t-statistic gives fewer significant genes than d-statistic, we will take FDR method for 

example. 

Figure 4.3 shows the relationship of the q-values based on two different statistics. 

This plot is separated into four regions by cutoff levels. Some probe sets with small q-

values «= 0.05) based on both two statistics fall in the lowest left region. Among them 

q-values based on t-statistic are uniformly bigger than based on d-statistic except two 

probe sets. For the probe sets with small q-value «= 0.05) based on t-statistic, there 

are only five probe sets with large q-values (> 0.05) based on d-statistic, whereas for the 
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probe sets with small q-values based on d-statistic, there are lots of probe sets with large 

q-values based on t-statistic. Under the same cutoff level, methods based on t-statistic 

tend to generate a larger q-value for the same probe set so that they can't detect as many 

as possible number of significant probe sets. Within the upper left region, there are 302 

probe sets with small q-values based on d-statistic but large q-values based on t-statistic. 

If we choose the method based on t-statistic, there are 296 truly differentially expressed 

probe sets which are unable to be detected. This feature explains why t-statistic gives 

fewer differentially expressed probe sets than d-statistic. 

In Figure 4.3 the five probe sets with small q-value based on t-statistic but large 

q-value based on d-statistic are ID 1535, 5197, 5493, 7291 and 7848, which fall in the 

lower right region. If we choose a method based on t-statistic and set the same cutoff 

level, then these five probe sets must be called significant. However, these probe sets 

are actually non-differentially expressed since only the first 1000 genes are differentially 

expressed. Take probe set ID 1535 for example. It is extremely different between the 

values of d-statistic (0.6457) and t-statistic (6.2815) and the corresponding q-values as 

well (q-value based on d is 0.6457 and one based on t is 0.02474). Given the d and t 

statistics and So = 1.3421, we can get the difference expression Xj1 - Xj2 = 0.96 and 

standard error Sj = 0.153 where j = 1535. Such a small standard error makes the 

t-statistic quite large which would mislead us to call this probe set significant. However 

adding extra term So can damp down this effect and the associated d-statistic can be 

sharply decreased so that we can correctly call this probe set non-significant. Since probe 

set 1535 is actually non-differentially expressed, the conclusion based on d-statistic is 

correct, while conclusion based on t-statistic is incorrect. It indicates that method based 

on t-statistics is more likely detect some false positives. 
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Take another probe set ID 903 for example, which falls in the upper left region in 

figure 4.3. The two test statistics for this probe set are slightly different (d = -1.1036, t = 

-2.5932) but the q-values based on them are quite different (q-value based on d is 0.0455 

and one based on t is 0.3166). Then we can get Xj1 - Xj2 = -2.85 and Sj = 1.1. Since 

probe set 903 is actually differentially expressed, the conclusion based on d-statistic that 

it is significant is correct, whereas the conclusion based on t-statistic is wrong. This 

indicates that methods based on t-statistic will miss some truly differentially expressed 

probe sets. Therefore above two examples give the good evidences to explain why it is 

necessary to add So in the denominator of regular t-statistic. 

Simulation 2. We generated gene expressions from heavy-tailed t-distribution and 

allowed variance to differ for each probe set. From Table 4.2, we observe that methods 

based on d-statistics are more powerful and they can identify more significant probe sets 

and control the FDRs at the relative lower levels, and that FDR method and permutation 

method are almost the same in performance. These findings are similar to ones in 

Simulation 1. However, distribution methods (DIS.d and DIS.t) become conservative in 

this simulation because they identify less significant probe sets and control the FDRs at 

quite low level compared to the other two methods based on the same test statistic. We 

also observe from Table 4.3 that DIS.d.d1 method is still liberal. DIS.d.d2 and DIS.d.d3 

methods can work here, but have false discovery rate larger than that of DIS.d. DIS.d.d4 

and DIS.d.d5 methods assuming a common variance across probe sets are still close to 

DIS.d method, even when probe sets do not have common variance. 

Comparison between Simulation 1 and Simulation 2. From Table 4.2, we 

observe that in simulation 2 both FDR.d and PERM.d methods identify more significant 

probe sets with more false positives, and that the FDRs are closer to nominal FDR 
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5%. When gene expressions follow normal distribution in simulation 1, DIS.d method 

identifies most number of significant probe sets among all methods and controls FDR 

closest to nominaL However, when gene expressions follow a heavy-tailed distribution 

in simulation 2, it becomes conservative and controls FDR at fairly low level (only 

1 %). The methods based on t-statistic exhibit quite different performance between two 

simulations. There are around 500 probe sets called significant in simulation 2 while 

only about one-third as many probe sets called significant in simulation 1. FDR.t and 

PERM.t methods control FDRs at almost the same level (about 4%) in two simulations. 

DIS.t method seems more accurate in simulation 2 because it controls FDR at much 

lower level (2.8%) when identifying more significant probe sets. 

From the above comparison, those methods (except DIS.d) in Simulation 2 appear 

more liberal. Table 4.4 and Figures 4.4-4.7 can give some further explanations. Table 

4.4 shows the distributions of estimated proportion of non-differential expressions ?To, 

fudge factor So and associated percentile. Compared to Simulation 2, we find out that 

?To in simulation 1 is more overestimated which might produce bigger q-value for each 

probe set so that smaller number of probe sets can be identified. We also find out that 

So in simulation 1 was taken by the maximum among standard errors Sj, while So in 

simulation 2 was chosen at less than the 5th percentile of Sj. Such a large value of 

So tends to shrink down d-statistic in equation (3.1) and results in smaller values of 

d-statistic. Therefore fewer number of probe sets are called significant in simulation 1. 

Next we will take a closer look at the distributions of four quantities for a particular 

data set in each simulation: standard error Sj, difference in expression ( diffj ), t-statistic 

and d-statistic, for all probe sets. It can be seen from Figure 4.4 that the distribution 

of Sj in simulation 2 are skewed with very long tail, while distribution in simulation 1 
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Quantity Simulation Min 1stQu Median Mean 3rdQu Max: 

Simulation 1 0.9004 0.9185 0.9228 0.9241 0.9306 0.9518 

Simulation 2 0.8862 0.9033 0.9107 0.9104 0.9154 0.9330 

'ira Simulation 3 0.8974 0.9192 0.9249 0.9251 0.9298 0.9538 

Simulation 4 0.8892 0.9052 0.9104 0.9115 0.9166 0.9388 

Simulation 1 1.200 1.254 1.292 1.290 1.320 1.422 

Simulation 2 0.1698 0.1753 0.1776 0.1791 0.1793 0.2366 

sO 
Simulation 3 0.8237 1.1160 1.4980 1.4120 1.5640 1.7880 

Simulation 4 0.1895 0.1976 0.2164 0.2150 0.2233 0.2825 

Simulation 1 100 100 100 100 100 100 

Simulation 2 1 1 1 1.12 1 5 

sO. percentile 
Simulation 3 88 99 100 99.51 100 100 

Simulation 4 1 1 2 1.96 2 8 

Table 4.4: The comparison of the distributions of 'ira, So and so.percentile between Sim­

ulations 1-4. Simulation 1: Yji rv N(O, 1) and 0-; = 1; Simulation 2: Yji rv t(3)/V3 

and a} rv X(20)/20; Simulation 3: Yji rv N(O,l) and a} rv X(20)/20; Simulation 4: 

Yji rv t(3) / V3 and a} = 1. 
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are symmetrical, and from Figure 4.5 that there are most of probe sets concentrated 

within ±2 in both simulations but simulation 2 has longer tail in negative direction. In 

figure 4.6 and 4.7, we can see that when So was taken 0, the distribution of t-statistics 

in simulation 2 in Figure 4.6 has longer tails; When adding So, the distribution of d­

statistics in simulation 2 spread out with longer tails, while distribution in simulation 1 

is more concentrated around O. These figures altogether explain why simulation 2 can 

detect many more significant probe sets. 

Comparison across Simulations 1-4. From Table 4.2 and Table 4.3 we observe 

that simulation 1 and 3 where gene expressions follow normal distribution are similar in 

performance, and that simulation 2 and 4 where gene expressions follow a heavy-tailed 

distribution are similar in performance. We also observe that whether or not each probe 

set has different variance does not have much effect on the performance of methods. The 

similarities can also be seen from the performance of 1fo, So and associated percentiles 

in Table 4.4, the distributions and differences in expression, standard errors, t-statistics 

and d-statistics in Figure 4.4, 4.5, 4.6 and 4.7. 

4.3.2 Simulations 5-7 

In this section we only consider the cases where gene expressions are generated from t 

distribution with different degrees of freedom, and assume probe sets share a common 

variance. We also examine the performance of methods in Simulation 7 where gene 

expressions were generated from a symmetric Laplace distribution with mean 0 and 

scale parameter 1. Table 4.5 shows the comparison across Simulation 5,6 and 7 with 

respect to the number of significant probe sets, false positives and true FDR. Comparing 
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Histogram of Sj in Simulation 1 Histogram of Sj in Simulation 2 
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Figure 4.4: The histogram of the distribution of standard errors of all probe sets for the 

first data set in Simulations 1-4. 
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Histogram of diff.j in Simulation 1 Histogram of diff.j in Simulation 2 
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Figure 4.5: The histogram of the distribution of differences in expression of all probe sets 

for the first data set in Simulations 1-4. 
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Histogram oft.j in Simulation 1 Histogram oft.j in Simulation 2 
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Figure 4.6: The histogram of the distribution of t-statistics of all probe sets for the first 

data set in Simulations 1-4. 
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Histogram of d.j in Simulation 1 Histogram of d.j in Simulation 2 
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Figure 4.7: The histogram of the distribution of d-statistics of all probe sets for the first 

data set in Simulations 1-4. 
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Simulation 5 and 6 in Table 4.5 with Simulation 4 in Table 4.2, we observe that when 

degrees of freedom are increased, number of significant probe sets and false positives and 

true FDR level are monotonically decreased in FDRd, PERM.d, FDRt and PERM.t 

methods. In DIS.d method, the number of false positives and FDR level have positive 

relationship with degrees of freedom, but the number of significant probe sets does not 

display any clear relationship. In DIS.t method, the number of significant probe sets 

and false positives have negative relationship with degrees of freedom yet FDR level 

has positive relationship. We also see that when degrees of freedom is as large as 10 

(Simulation 6), the performances of all six methods are quite close to Simulation 1 where 

gene expressions are normally distributed. This is due to the fact that t-distribution 

approaches the normal distribution as degrees of freedom are increased. In addition, 

Simulation 7 where data was generated from Laplace distribution is between Simulation 

4 and Simulation 5 in terms of the number of significant probe sets and false positives 

and true FDR 

Table 4.6 presents the impact of gene expression distribution on the performance of 

the estimates when applying d-distribution method to calculate q-value. We observe 

that DIS.d.d1 is always liberal no matter which distribution gene expressions follow. 

DIS.d.d2 and DIS.d.d3 method can not work when expressions approximately follow 

normal distribution, but can identify significant probe sets when gene expression distri­

bution have heavy tails. Since DIS.d.d4 and DIS.d.d5 assume a common variance across 

probe sets, they are very close to DIS.d in various data set. As degrees of freedom are 

decreasing, false discovery rates in both methods become lower and lower. 

Table 4.7 shows the performances of distributions of estimated proportion of non­

differential expressions 11-0 , fudge factor So and associated percentile among Simulation 
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Test statistic d-statistic t-statistic 

Simulations 
FDR.d PERM.d DIST.d FDR.t PERM.t DIS.t 

#sig 540.66 539.23 526.99 338.97 337.25 288.58 

Simulation 5 V 15.04 14.71 12.83 14.46 14.02 9.63 

FDR 0.0277 0.0272 0.0243 0.0426 0.0415 0.0333 

#sig 472.13 471.02 565.62 238.22 234.29 218.98 

Simulation 6 V 9.37 9.33 24.49 9.97 9.52 8.18 

FDR 0.0197 0.0197 0.0432 0.0416 0.0403 0.0370 

#sig 551.72 550.42 502.76 407.60 405.93 296.43 

Simulation 7 V 15.87 15.68 9.37 16.16 15.92 6.27 

FDR 0.0288 0.0285 0.0186 0.0395 0.0391 0.0210 

Table 4.5: Comparison of 6 methods between Simulation 5-7 at q-value cutoff 0.05. 

Simulation 5: Yji rv t(5)/ J5/3 and a} = 1; Simulation 5: Yji rv t(10)/ JlO/8 and 

(5] = 1; Simulation 7: Yji rv Laplace(O, 1)/V2 and (5] = 1. 
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true 0"2 2 Al 
SjpooZ, Cj 

2 A2 
SjpooZ, Cj 

2 A3 
SjnuZZ' Cj 

-2 A4 
SpooZ' Cj 

-2 AS 
SnuZZ, cj 

Simulations DIS.d DIS.d.d1 DIS.d.d2 DIS.d.d3 DIS.d.d4 DIS.d.d5 

#sig 526.99 682.96 149.49 234.10 526.54 487.00 

Simulation 5 V 12.83 111.45 0.20 3.80 12.77 8.05 

FDR 0.0243 0.1628 0.0012 0.0159 0.0242 0.0165 

#sig 565.62 744.45 0.02 0.67 566.21 509.17 

Simulation 6 V 24.49 158.15 0 0 24.65 14.32 

FDR 0.0432 0.2121 0 0 0.0434 0.0281 

#sig 502.76 624.71 256.01 274.96 502.67 469.87 

Simulation 7 V 9.37 79.18 0.92 3.35 9.38 6.29 

FDR 0.0186 0.1264 0.0033 0.0121 0.0186 0.01334 

Table 4.6: Comparison of estimates of 0"2 and Cj at q-value cuto.ff O. 05 between Simulation 

5-7. Simulation 5: Yji rv t(5)/ )5/3 and 0"] = 1; Simulation 6: Yji rv t(10)/ )10/8 and 

0"] = 1; Simulation 7: Yji rv Laplace(O, 1)/J2 and 0"] = 1. 
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Quantity Simulation Min 1stQu Median Mean 3rdQu Max: 

Simulation 5 0.8948 0.9127 0.9190 0.9189 0.9246 0.9436 

110 Simulation 6 0.8910 0.9179 0.9234 0.9236 0.9298 0.9442 

Simulation 7 0.8930 0.9100 0.9159 0.9154 0.9232 0.9382 

Simulation 5 0.4075 0.5502 0.5950 0.5919 0.6368 0.7529 

sO Simulation 6 1.076 1.558 1.681 1.660 1.812 2.793 

Simulation 7 0.2998 0.3984 0.4395 0.4448 0.4966 0.5816 

Simulation 5 16 46 56 54.67 64.25 81 

sO. percentile Simulation 6 99 100 100 99.89 100 100 

Simulation 7 5 17 24 25.84 35 52 

Table 4.7: The comparison oj the distributions oj 110 , So and so.percentile between between 

Simulations 5-7. Simulation 5: Yji rv t(5)/ J5/3 and a} = 1; Simulation 5: Yji rv 

t(10)/ JlO/8 and a} = 1; Simulation 7: Yji ~ Laplace(O, 1)/J2 and a} = 1. 

5,6 and 7. We observe that as degrees of freedom increasing, ira is more overestimated, So 

is increased and taken the larger percentile of Sj. From Table 4.2 and 4.7, we also observe 

that Simulation 6 is close to Simulation 1 and Simulation 7 is between Simulation 4 and 

5 in terms of the ira and So, which are consistent with the findings in Table 4.6. 

4.3.3 Power simulation 

Since we know which probe sets are truly differentially expressed and how many probe 

sets are truly differentially expressed at each true difference point, we can calculate the 

power for detecting true positives at each point. In this simulation, we define the power 
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Figure 4.8: Comparison of the powers for detecting differentially expressed genes at all 

true difference points across six methods when setting cutoff level 5%. 

as the ratio of the number of detected significant prove sets over 200 truly differential 

expressions. For non-differential expressions, we define the power as the proportion of 

probe sets rejected among them. Then the equation of power is defined by 

{ 

#{detected significant probe sets} 

f3 
_ 200 for every true difference point dk, i.e.,k #- 9; 

k-
#{rejected probe sets} 

13200-3200 for non-differential expressions, i.e.,k = 9. 

(4.5) 

Figure 4.8 exhibits the "U" shape concave-down curves of the behavior of the power 

for detecting true differences from six methods. The X-axis represents the true differ­

ence points, and the Y-axis shows the proportion of such probe sets that were called 

significant with cutoff 0.05. For all methods, powers go up as absolute values of true 

differences increase. When absolute value of true difference exceed 4, the corresponding 

powers approach to 1. At the true difference -2.5 or 2.5, the powers sharply increase 

70 



k I Diff I FDR.d I PERM.d I DIS.d I FDR.t I PERM.t I DIS.t 

1 -4.0 0.9983 0.9983 0.9998 0.9815 0.9816 0.9841 

2 -3.5 0.9889 0.9889 0.9978 0.9385 0.9382 0.9454 

3 -3.0 0.9302 0.9299 0.9801 0.8286 0.8290 0.8425 

4 -2.5 0.7641 0.7637 0.8975 0.6486 0.6472 0.6643 

5 -2.0 0.4870 0.4865 0.6977 0.4205 0.4205 0.4373 

6 -1.5 0.2162 0.2160 0.4016 0.2132 0.2131 0.2251 

7 -1.0 0.0581 0.0576 0.1499 0.0790 0.0790 0.0848 

8 -0.5 0.0098 0.0097 0.0353 0.0199 0.0199 0.0220 

10 0.5 0.0107 0.0107 0.0374 0.0230 0.0227 0.0244 

11 1.0 0.0576 0.0571 0.1505 0.0751 0.0749 0.0804 

12 1.5 0.2137 0.2130 0.4001 0.2077 0.2073 0.2183 

13 2.0 0.4894 0.4879 0.6994 0.4238 0.4230 0.4393 

14 2.5 0.7654 0.7648 0.8967 0.6550 0.6535 0.6719 

15 3.0 0.9323 0.9319 0.9800 0.8316 0.8311 0.8434 

16 3.5 0.9877 0.9874 0.9972 0.9369 0.9366 0.9429 

17 4.0 0.9990 0.9990 0.9999 0.9848 0.9847 0.9871 

Table 4.8: Comparison of the powers for detecting differentially expressed probe sets at 

all true difference points across six methods with cutoff level 5%. 
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Figure 4.9: Comparison of the powers for detecting differentially expressed genes at 

all true difference points across DIS.d, DIS.d.dl, DIS.d.d2, DIS.d.d3, DIS.d.d4 and 

DIS. d. d5 methods when setting cutoff level 5%. 

up to over 70% for methods based on d-statistic and over 60% for methods based on 

t-statistic, which can be verified by Table 4.8 listing the power at each true difference 

point for all methods. In Figure 4.8, we can also see that methods based on d-statistic 

are generally more powerful at every true difference point than methods based on t 

statistics. Particularly, DIS.d method is most powerful if population variance for each 

probe set is known. FDR.d and PERM.d methods have almost the same power behavior 

since their power plots are overlap. Similarly, FDR.t and PERM.t methods have the 

same power, and DIS.t method is slightly more powerful but not clearly. 

To test the powers of methods based on estimates of unknown variance a}, we cal­

culated the power at each true difference point (Table 4.9) and drew associated plots 
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k Diff DIS.d DIS.d.dl DIS.d.d2 DIS.d.d3 DIS.d.d4 DIS.d.d5 

1 -4.0000 0.9998 0.9989 0.3744 0.9771 0.9998 0.9990 

2 -3.5000 0.9978 0.9932 0.1918 0.9239 0.9978 0.9930 

3 -3.0000 0.9801 0.9649 0.0680 0.7955 0.9801 0.9498 

4 -2.5000 0.8975 0.8764 0.0179 0.6023 0.8974 0.8091 

5 -2.0000 0.6977 0.7027 0.0030 0.3659 0.6982 0.5512 

6 -1.5000 0.4016 0.4519 0.0002 0.1733 0.4017 0.2623 

7 -1.0000 0.1499 0.2119 0.0001 0.0571 0.1502 0.0789 

8 -0.5000 0.0353 0.0721 0.0000 0.0138 0.0355 0.0145 

10 0.5000 0.0374 0.0723 0.0000 0.0149 0.0375 0.0156 

11 1.0000 0.1505 0.2112 0.0000 0.0556 0.1505 0.0779 

12 1.5000 0.4001 0.4465 0.0003 0.1688 0.4001 0.2591 

13 2.0000 0.6994 0.7010 0.0030 0.3722 0.6992 0.5506 

14 2.5000 0.8967 0.8762 0.0186 0.6043 0.8967 0.8083 

15 3.0000 0.9800 0.9645 0.0708 0.8020 0.9801 0.9512 

16 3.5000 0.9972 0.9921 0.1877 0.9215 0.9972 0.9912 

17 4.0000 0.9999 0.9991 0.3817 0.9804 0.9999 0.9994 

Table 4.9: Comparison of the powers for detecting differentially expressed genes at 

all true difference points across DIS.d, DIS.d.dl, DIS.d.d2, DIS. d. d3, DIS.d.d4 and 

DIS.d.d5 methods with cutoff level 5%. 
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(Figure 4.9) at q-value cutoff 0.05. Since we know the true variance a}, we may compare 

the power of each method to DIS.d at each point. If a method is closest to DIS.d, we 

may conclude that the method is most powerful. In Figure 4.9, we see that the power 

plot of DIS.d.d4 is identical to the power plot of DIS.d. It is due to the fact that we 

assume all gene expressions share a common variance in power simulation design. The 

power plot DIS.d.d1 is quite close to DIS.d when the absolute value of true difference is 

larger than 2. However it includes many false positives when true difference is extremely 

small. Both the power plots of DIS.d.d3 and DIS.d.d5 fall under DIS.d plot. Compared 

to DIS.d.d3, DIS.d.d5 is closer to DIS.d since it assumes a common variance across probe 

sets. DIS.d.d2 is least powerful because it is far down away DIS.d. 

For the 10,000 non-differentially expressed probe sets (59 = 0), we estimated the 

number of probe sets falsely declared significant among these. This is essentially an 

estimate of the Type I error after adjustment for multiple testing. A Bonferroni family­

wise error rate correction would use a level of 0.05/10000 for this so we would expect 

the power curve to approach 0.000005. In our study, however, we are still using the 

more liberal FDR control and so the power curves do not get this low. For the FDR and 

permutation methods of q-value calculation based on the d-statistic we get an estimated 

Type I error rate of 0.0019 and for that based on the distribution of the d-statistic 

using the known variance it is 0.0099. For the other methods in Table 4.S based on 

the t-statistic the estimate are 0.0074 for the FDR and permutation based methods and 

O.OOS for the method based on the t distribution. When looking at the various methods 

for estimating the common variance when using the distribution of the d-statistic the 

method using the average pooled standard deviation (DIS.d.d4) gives the same estimate 

as using the true variance (0.0099). DIS.d.d1 has the highest estimate of Type I error 
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(0.0317) whereas DIS.d.d2 failed to declare any of these significant. Using DIS.d.d3 and 

DIS.d.d5 gave estimates of 0.0044 and 0.0031 respectively. These are in keeping with 

the results we found for the power to detect truly differentially expressed probe sets in 

that those methods with lower power also tended to make fewer Type I errors. 

Table 4.10 and Figure 4.10 give the distributions of permuted d-statistics and t­

statistics when true differences are ±4, ±3 and ±2 for 9,000 non-differential expressions. 

We observe that the distributions of permuted test statistics for non-differential probe 

sets are identical no matter how big effect size is. Furthermore we observe that given the 

same effect size, permuted d-statistics are more concentrated around 0, while permuted 

t-statistics spread out very much with longer tails. Such long tails could make us incor­

rectly call some probe set significant. Table 4.11 and Figure 4.11 show the distributions 

of permuted d-statistics and t-statistics for all probe sets. Adding differentially expressed 

probe sets, we observe that the tails of the distributions become longer as effect size is 

increased for both permuted test statistics. This indicates that more significant probe 

sets can be detected when effect size is larger. 

Table 4.12 shows the comparison of six methods. At effect size of 4 or -4, methods 

based on d-statistic detect as many as possible significant probe sets with very few false 

positives and false negatives. DIS.d method not only detect all true positives but also 

contains some false positives. Methods based on t-statistics falsely call some probe sets 

significant and miss some truly differential expressions as well, although they detect 

more significant probe sets than methods based on d-statistics. At effect size of 3 or 

-3, however, methods based on d-statistic can detect more significant probe sets and 

control FDR at much lower level. At effect size of 2 or -2, methods based on t-statistic 

work badly that only about 100 probe sets are called significant and FDR is unable to 
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Figure 4.10: Comparison of distributions of permuted d-statistics and t-statistics in runs 

1-3 for 9, 000 non-differentially expressed probe sets. 
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Run Min 1stQu I Median 1 3rdQu I Max 

Run 1 -1.6610 -0.2188 0 0.2188 1.6610 

d-statistic Run 2 -1.6610 -0.2188 0 0.2188 1.6610 

Run 3 -1.6610 -0.2188 0 0.2188 1.6610 

Run 1 -12.67 -0.7068 0 0.7068 12.67 

t-statistic Run 2 -12.67 -0.7068 0 0.7068 12.67 

Run 3 -12.67 -0.7068 0 0.7068 12.67 

Table 4.10: Comparison of distributions of permuted d-statistics and t-statistics among 

runs 1-3 for 9, 000 non-differentially expressed probe sets. 

Run Min 1stQu I Median 1 3rdQu I Max 

Run 1 -3.449 -0.2295 0 0.2295 3.449 

d-statistic Run 2 -2.814 -0.2267 0 0.2267 2.814 

Run 3 -2.178 -0.2238 0 0.2238 2.178 

Run 1 -23.38 -0.7029 0 0.7029 23.38 

t-statistic Run 2 -19.07 -0.7045 0 0.7045 19.07 

Run 3 -14.77 -0.7057 0 0.7057 14.77 

Table 4.11: Comparison of distributions of permuted d-statistics and t-statistics among 

runs 1-3 for all 10, 000 probe sets 

77 



Effect size = 4 and -4 Effect size = 4 and -4 

~ 1 
lI) 

~ 1 >. >. a 
0 a 0 + c a c Q) 
Q) a Q) to 
::> a ::> 
0- lI) 0-
~ Q) 

lL u: a a 
a + 

Q) I a 
-20 -10 0 10 20 -20 -10 0 10 20 

d stats in run1 t stats in run1 
(a) (b) 

Effect size = 3 and -3 Effect size = 3 and -3 

~ 1 
lI) 

~ 1 
>. >. a 
0 a 0 + c a c Q) 
Q) a Q) to 
::> a ::> 
0- lI) 0-
~ Q) 

lL u: a a 
a + 

I Q) 
a 

-20 -10 0 10 20 -20 -10 0 10 20 

d stats in run2 t stats in run2 
(c) (d) 

Effect size = 2 and -2 Effect size = 2 and -2 

>. 

~ 1 
>. lI) 

J 
0 a 0 a c a c + Q) a Q) Q) 
::> a ::> C') 
0- lI) 0-
~ ~ 
lL lL a 

a 
a + I Q) 

a 
-20 -10 0 10 20 -20 -10 0 10 20 

d stats in run3 t stats in run3 
(e) (f) 

Figure 4.11: Comparison of distributions of permuted d-statistics and t-statistics in runs 

1-3 for all 10,000 probe sets. 
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d-statistic t-statistic 

Effect size 
FDR.d PERM.d DIST.d FDR.t PERM.t DIST.t 

#sig 1002 999 1043 1019 1018 1023 

±4 V 5 3 43 48 48 52 

rna - (R- V) 3 4 0 29 30 29 

FDR 0.0050 0.0030 0.0412 0.0471 0.0472 0.0508 

#sig 660.49 659.32 535.46 532.10 530.71 445.55 

±3 V 12 10 43 34 33 38 

rna - (R- V) 77 80 38 264 261 248 

FDR 0.0128 0.0108 0.0428 0.0442 0.0427 0.0481 

#sig 474 477 612 129 111 111 

±2 V 10 10 27 7 6 6 

rna - (R- V) 536 533 415 878 895 895 

FDR 0.0211 0.0210 0.0441 0.0543 0.0541 0.0541 

Table 4.12: Comparison of 6 methods among different effect sides when setting cutoff 

5%. rna - (R - V): the number of false negatives. 
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be controlled. In contrast, methods based on d-statistic perform well even though effect 

size is as small as ±2, they identify about 400 significant probe sets and also control 

FDR at a desirable level. Overall, methods based on d-statistic are more powerful for 

detecting significant probe sets at each effect size and even small effect size. 

4.4 Conclusions 

In general, the methods based on d-statistic outperform the methods based on t-statistic 

because they can identify more significant probe sets with lower false discovery rate. 

When the absolute value of difference in expression is as large as 4, methods based 

on both statistics can identify the large amount of significant probe sets but t-statistic 

methods produce much more false positives. When the absolute value of difference in 

expression is as small as 2, methods based on t-statistic do not work well that very few 

probe sets can be identified and FDR exceeds threshold. Therefore methods based on 

d-statistic are more accurate and stable. Power plots in Figure 4.S also indicate that 

methods based on d-statistic are more powerful because their associated power plots are 

generally above plots from methods based on t-statistic at true differences greater than 

2 or less than -2. 

For each test statistic, FDR and permutation methods are essentially the same in 

that they identify almost the same number of significant probe sets and control the 

false discovery rate at almost the same level. However distribution method has different 

behavior depending on the distribution of gene expressions. If gene expressions are 

normally or approximately normally distributed, distribution method can identify more 

significant probe sets than FDR and permutation methods (Simulation 1 and 3). But if 
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gene expressions are heavy tailed, it identifies less significant probe sets and controls FDR 

at quite lower level (Simulation 2, 4, 5, 6 and 7). It is due to the fact that distribution 

method is established under the normality assumption. Once this assumption is violated, 

distribution method becomes conservative. 

According to comparison among Simulation 1, 2, 3 and 4, we find out that the dis­

tribution of gene expressions would affect performance of methods. For instance, both 

Simulation 1 and Simulation 3 where gene expressions were generated from normal dis­

tribution have similar performance, although Simulation 1 assumed a common variance 

across probe sets and Simulation 2 allowed variances to differ. Similarly, both Simu­

lation 2 and Simulation 4 have similar performance since their expression data were 

generated from the same t distribution. Moreover, for t distribution data, we consider 

different degrees of freedom. From the comparison among Simulation 4,5 and 6, we find 

out that when decreasing degrees of freedom, the larger number of significant probe sets 

are identified, and that the FDRs are still less than nominal 5%. In addition, the study 

on the different type symmetric distributed data sets consisting of normal distribution 

data (Simulation 1 and 3), t distribution data (Simulation 2,4,5 and 6) and Laplace dis­

tribution data (Simulation 7), indicates that methods based on d-statistic are superior 

to methods based on t-statistic if gene expressions are symmetrically distributed. 

Compared to the t distribution method, the d distribution method works better in all 

situations we discussed, when true variance of each probe set is known. When gene ex­

pression distribution has heavy tail, the d distribution method can not only identify more 

significant probe sets but also control FDR at quite lower level. When data approach 

normal distribution, the d distribution method can identify much more significant probe 

sets although control FDR at almost the same level as the t distribution. Therefore, 
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no matter what distribution gene expressions follow, the d distribution method always 

outperforms the t distribution method if true variance is known. 

However, a big issue faced when employing the d distribution method is that true 

variance a} is usually unknown in practice. Under this circumstance, we proposed four 

estimates: the pooled variance (Slpool), the null variance (Slnull), the average of pooled 

variances S;ool and the average of null variances S;ull' and applied them to the various 

data sets. We find out that the method using the pooled variance (DIS.d.dl) is overly 

liberal in all cases. It can be verified by power plot (Figure 4.9) where the number 

of probe sets called significant from DIS.d.dl is much greater than DIS.d, when true 

differences in expression are small « 2 or > -2). So DIS.d.dl must falsely call some 

probe sets significant which are truly equally expressed. The methods using the pooled 

variance and transformed Cj (DIS.d.d2) and using the null variance for each probe set 

(DIS.d.d3) are distribution-dependent. They only work in the case where data have 

heavy tails. The methods using the same variance across all probe sets (DIS.d.d4 and 

DIS.d.d5) work very well in both normal distribution and t distribution data even when 

probe set do not have a common variance. Particularly the method using a common 

pooled variance (DIS.d.d4) is closest to the method using the true variances across probe 

sets and the method using a common null variance (DIS.d.d5) is somewhat conservative. 
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Chapter 5 

Application to real Microarray data 

To further test the performance of all methods introduced in Chapter 3, we consider here 

their applications to two real microarray data sets, which were generated from Affymet­

ric MGU74A v2 Gene chips. Each gene chip has 12,488 probe sets. We will compare 

the performances of PERM.d, FDRt, PERM.t and DIS.t with FDRd, in terms of the 

number of differential expressions declared and the ordering of the differential expres­

sions. When applying d distribution method, we will also compare the performance of 

proposed estimates of population variance o} with FDRd. 

5.1 Description of real data sets 

As introduced in Chapter 1, Idd4, Idd5 and Idd13 are of interest among those regions 

identified by recent biological research in mouse model. By inbreeding two strains of 

NOD mice and NOR mice by multiple generations, we can obtain two congenic strains 

NOD.NOR Idd4 and NORNOD-.Idd5/13. We firstly consider the data set with gene 
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expression levels between NOR and NORNOD-.ld5/13. The entire data set comprise 

1=10 tissue samples and J=12,488 probe sets. The first five samples were taken from 

NOR mice and the last five samples from NORNOD-.ld5/13 mice. The hybridizations 

were completed in two days. The first three samples of each strain were measured in 

Day 1 and the last two samples in Day 2. After reading and normalizing raw gene 

expression values in ReadAffy and rma functions from Affy package in R (Gautier et 

al, 2004), a data matrix can be defined as Yji, where i=1,2, ... ,10 and j=1,2, ... , 12,488. 

The corresponding strain vector is (1 1 1 1 1 2 2 2 2 2) where 1 and 2 denote NOR 

and NORNOD-.ld5/13 strains respectively, and day effect vector is (1 11 2 2 111 2 2) 

where 1 and 2 denote Day 1 and Day 2, respectively. 

Since region Idd4 exhibits sex-specific effect on TID, we focus here on the comparison 

of gene expression data between female NOD mice and female NOD.NOR-.ldd4 mice. 

This data set contains 1=8 tissue samples and J=12,488 probe sets. The first four sam­

ples were taken from female NOD mice, two of which were hybridized in Day 1 and Day 

2 respectively. Similarly, the last four samples were taken from female NOD.NOR-.ldd4 

mice and also hybridized on these two days. Then the corresponding strain vector is (1 

1 1 1 2 2 2 2), and day effect vector is (1 1 2 2 1 1 2 2). 

5.2 Discussion on methods when day effect present 

The FDR and Permutation methods in terms of d and t statistics introduced in Chapter 

3 involve permutation tests, which assume that expression values are exchangeable under 

null hypothesis. In each real data set, however, expression values were generated from 

two different days. The day on which hybridization is done can change the distribution 
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of expression values and thus expression values might not be exchangeable between the 

two days. Therefore it is necessary to consider day effect as a factor as it produces 

non-biological variation. The linear model for a given probe set j is 

(5.1) 

where Di is the day indicator for the ith sample, Si is the strain indicator for the 

ith sample, {Jjl and (Jj2 are corresponding regression coefficients, and error term Eji rv 

N(O,o-;). 

Permutation within day. For the first application, samples 1,2,3,6,7 and 8 came 

from Day 1, and samples 4,5,9 and 10 came from Day 2. We allow permutation of the 

samples within two days separately, but not across the two days. Within Day 1, samples 

1,2 and 3 and samples 6,7 and 8 were taken from two different strains, so there are 

(3 + 3)! 
Bday1 = 3! x 3! = 20 

permutations by equation (3.4). Similarly, there are 

B _(2+2)!_6 
day2 - 2! x 2! -

permutations within Day 2. Hence the total number of possible permutations is 

Btotal = Bday1 x B day2 = 120. 

For each probe set, we obtained a 120 x 10 permutation matrix in terms of strain labels 

and then calculated a set of 120 corresponding permuted test statistics. When pooling 

all probe sets, we got a 12,488 x 120 matrix of permuted test statistics. 

For the second application, samples 1,2 and samples 5,6 came from two different 

strains within Day 1, so there are 

(2 + 2)! 
Bday1 = 2! x 2! = 6 
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permutations. Similarly, there are the same number of permutations within Day 2. Thus 

the total number of permutation is 

Btotal = Bday1 x Bday2 = 6 x 6 = 36. 

For each probe set, we obtained a 36 x 8 permutation matrix in terms of strain labels 

and a set of 36 corresponding permuted test statistics. When pooling all probe sets, we 

got a 12, 488 x 36 matrix of permuted test statistics. 

Test statistics. The t-statistic is now defined as the estimated {3j2 for the strain 

effect in model (5.1) divided by the standard error of fj2, i.e. 

(5.2) 

Under the normality and constant variance assumptions, tj follows a t distribution with 

(nI - 1) + (n2 - 1) - (Nday - 1) where Nday is the number of levels of D i . Similarly, 

the d-statistic is defined by 

d . = (3j2 
J A 

se({3j2) + So 
(5.3) 

where So is found using the algorithm in section 2.4 with Xj2 - XjI replaced by fj2 and Sj 

replaced by se(fj2)' Thus dj follows the d distribution with (nI-1)+(n2-1)-(Nday-1) 

degrees of freedom. 

The estimates of or Since day effect is present in applications, the non-biological 

variance sources are not only from strain effect not also from day effect. The equivalent 

ofthe pooled variance estimate Slpool is the mean square error from the model (5.1) with 

these two effects. But the equivalent of the null variance estimate Slnull is the mean 

square error from the model with only day effect, i.e. 

(5.4) 
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where Cji '" N(O, aD. Because the null variance estimate is established under null 

hypothesis where all samples are regarded as the same population and then strain effect 

is removed. Accordingly, the estimates in DIS.d.d4 and DIS.d.d5 are simply the average 

of them over 12488 probe sets. 

5.3 Comparison of methods in microarray data 

Worth noting here is that DIS.d method is not applicable in real data sets since we are 

unable to observe true variance 0]. We test FDRd, PERM.d, FDRt, PERM.t, DIS.t 

and d distribution methods using various estimates. Since the SAM methodology which 

FDRd method is based on has been widely applied to identify differential expressions in 

microarray analysis, we will compare other methods with it in finding lists of significant 

differential expressions and examining behaviors of q-values. 

5.3.1 NOR V NOR.NODJdd5/13 

Firstly, we test the performance of the methods on gene expreSSIOns of NOR and 

NORNOD.ldd5/13 mice. In this application, we obtained 80=0.0308 and the estimated 

proportion of differentially expressions 1 - KO = 1 - 0.66 = 0.34. F~om Figure 5.1 we 

can see that the pooled standard deviations across all probe sets are right skewed with 

variance 0.0033, indicating that all probe sets are not equally variant. Figure 5.2 exhibits 

the distributions of d-statistics and t-statistics in this application. We can see that two 

distributions are symmetric about 0, but the distribution of d-statistics is narrower with 

shorter tails and that of t-statistics spreads out more with longer tails. 

Table 5.1 presents the number of significant expressions declared by various methods. 
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FDRd PERM.d FDRt PERM.t DIS.t 

88 80 63 57 62 

DIS.d.d1 DIS.d.d2 DIS.d.d3 DIS.d.d4 DIS.d.d5 

1024 76 45 86 69 

Table 5.1: Number of significant probe sets identified at q-value=O.05 level using different 

methods and estimates for NOR V NOR.NODJdd5/13. 

From this table, we can see that PERM.d method is closest to FDRd method, methods 

based on t-statistics produce smaller number of significant probe sets. We can also see 

that DIS.d.d4 method with the pooled variance estimate assuming a common variance 

across probe sets is closest to FDRd method among d distribution methods. DIS.d.d1 

method with the same estimate but allowing variance to differ is very liberal. 

Table 5.2 and 5.3 show the top 20 probe sets as ranked by q-values from FDRd 

method. Each table includes Probe set rD, test statistic and q-value calculated by 

various methods. From Table 5.2, we can see that q-values from PERM.d give almost 

the same ordering as FDRd although the former are slightly bigger, whereas methods 

based on t-statistics give a different ordering and also several q-values exceeds cutoff 

level 0.05. From Table 5.3, we can see that the q-values from DIS.d.d4 and DIS.d.d5 are 

generally smaller ones from FDRd and do not change ordering of q-values much. We 

can also see that the top 20 probe sets declared by FDRd are also declared by DIS.d.d1 

with much smaller q-values, whereas a few of the 20 probe sets get larger q-values when 

testing DIS.d.d2 and DIS.d.d3 methods. 

Furthermore, Figure 5.3 and 5.4 give the behaviors of q-values of probe sets declared 

significant from FDRd method at cutoff 0.05 against other methods. In each panel of 
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q-values 

Probeset ID d.stats t.stats FDR.d PERM.d FDR.t PERM.t DIS.t 

97206_at 15.1273 19.2036 0.0055 0.0109 0.0109 0.0164 0.0018 

101845_1Lat -7.8347 -9.5681 0.0073 0.0109 0.0201 0.0226 0.0156 

96336_at -13.0317 -17.7337 0.0073 0.0109 0.0137 0.0164 0.0018 

100606_at -6.9533 -10.8032 0.0077 0.0109 0.0170 0.0208 0.0125 

100908_at -7.0921 -9.9785 0.0077 0.0109 0.0191 0.0219 0.0148 

10467Lat -6.3664 -8.5011 0.0079 0.0109 0.0246 0.0279 0.0244 

96562_at -6.2092 -14.9188 0.0079 0.0109 0.0146 0.0197 0.0040 

97916_at -6.1728 -9.7750 0.0079 0.0109 0.0191 0.0226 0.0156 

99580-B_at -5.6518 -6.9936 0.0088 0.0131 0.0383 0.0444 0.0423 

102965_at -5.5352 -10.5737 0.0090 0.0135 0.0170 0.0208 0.0125 

104183_at -5.2498 -7.2883 0.0091 0.0135 0.0371 0.0421 0.0396 

9557Lat 7.1063 12.6885 0.0091 0.0109 0.0164 0.0197 0.0072 

98015_at -5.0918 -10.5309 0.0097 0.0148 0.0170 0.0208 0.0125 

102348_at 5.3585 6.8765 0.0133 0.0135 0.0452 0.0444 0.0423 

92397_at -4.8303 -8.3123 0.0140 0.0164 0.0257 0.0292 0.0244 

96606_at -4.7999 -5.8879 0.0140 0.0164 0.0580 0.0587 0.0603 

103346_at -4.5488 -7.9412 0.0144 0.0171 0.0286 0.0312 0.0290 

95520_at -4.6260 -8.5573 0.0144 0.0171 0.0246 0.0279 0.0244 

99146_at -4.6014 -9.1994 0.0144 0.0171 0.0201 0.0226 0.0189 

102851-B_at -4.4038 -8.3749 0.0153 0.0186 0.0250 0.0281 0.0244 

Table 5.2: q-values of top 20 probe sets detected from FDR.d method against other 

methods (PERM.d, FDR.t, PERM.t and DIS.t) for NOR V NOR.NOD_Idd5/13. 
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q-values 

Probeset ID d.stats FDR.d DIS.d.d1 DIS.d.d2 DIS.d.d3 DIS.d.d4 DIS.d.d5 

97206_at 15.1273 0.0055 0.0000 0.0000 0.0017 0.0000 0.0000 

101845.B_at -7.8347 0.0073 0.0001 0.0009 0.0187 0.0000 0.0000 

96336_at -13.0317 0.0073 0.0000 0.0000 0.0017 0.0000 0.0000 

100606_at -6.9533 0.0077 0.0000 0.0001 0.0178 0.0000 0.0000 

100908_at -7.0921 0.0077 0.0000 0.0002 0.0187 0.0000 0.0000 

10467Lat -6.3664 0.0079 0.0001 0.0015 0.0293 0.0001 0.0001 

96562_at -6.2092 0.0079 0.0000 0.0000 0.0082 0.0001 0.0002 

97916_at -6.1728 0.0079 0.0000 0.0002 0.0187 0.0001 0.0002 

99580.B_at -5.6518 0.0088 0.0009 0.0075 0.0469 0.0003 0.0006 

102965_at -5.5352 0.0090 0.0000 0.0001 0.0187 0.0004 0.0008 

104183_at -5.2498 0.0091 0.0002 0.0051 0.0410 0.0007 0.0014 

9557Lat 7.1063 0.0091 0.0000 0.0000 0.0106 0.0000 0.0000 

98015_at -5.0918 0.0097 0.0000 0.0002 0.0187 0.0011 0.0020 

102348_at 5.3585 0.0133 0.0008 0.0075 0.0469 0.0006 0.0012 

92397_at -4.8303 0.0140 0.0000 0.0016 0.0334 0.0020 0.0035 

96606_at -4.7999 0.0140 0.0034 0.0247 0.0669 0.0020 0.0035 

103346_at -4.5488 0.0144 0.0000 0.0028 0.0379 0.0032 0.0055 

95520_at -4.6260 0.0144 0.0000 0.0015 0.0317 0.0029 0.0049 

99146_at -4.6014 0.0144 0.0000 0.0009 0.0285 0.0029 0.0050 

102851.B_at -4.4038 0.0153 0.0000 0.0021 0.0337 0.0045 0.0074 

Table 5.3: q-values of top 20 probe sets detected from FDR.d method against d distribu­

tion when applying different estimates for NOR V NOR. NODJdd5/13. 
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Figure 5.3: Plots of the q-values of significant probe sets from FDR.d against those from 

other methods at q-'ualue cutojj=O.05 for NOR V NOR. NODjdd5/13. 
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Figure 5.4: Plots of the q-values of significant probes from FDR.d against those from 

other estimate methods at q-value cutoff=O.05 for NOR V NOR.NOD_Idd5/13. 
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both figures, X-axis represents the q-values calculated from FDRd method and Y-axis 

represents the q-values calculated from other methods. Points in panel are the probe 

sets which are declared significant from either FDRd method or other methods when 

cutoff is 0.05, therefore points in left bottom corner of each panel between vertical line 

(x=0.05) and horizontal line (y=0.05) are probe sets declared significant by both FDRd 

and anyone of other methods. In Figure 5.3, we can observe from the first panel that 

the behaviors of q-values from FDR.d and PERM.d are quite similar and probe sets 

declared are concentrated in the left bottom corner, implying that two methods can 

produce similar differential expression lists. From the bottom panels and the right top 

panel in this figure, we find that although some probe sets are simultaneously called 

significant by FDRd and methods based on t-statistics, quite a few probe sets detected 

by FDRd cannot be called significant by others, and conversely some probe sets not 

detected by FDRd are called significant by others. In Figure 5.4, the left top panel 

indicates that DIS.d.dl not only detects the majority of probe sets produced by FDRd 

but also calls more probe sets significant which are not detected by FDRd. The right 

top panel and the left middle panel in this figure show that there are quite a few probe 

sets called significant by FDRd which cannot be identified by DIS.d.d2 and DIS.d.d3 

methods. The rest of panels in this figure exhibit that the majority of probe sets called 

significant by FDRd are also declared by DIS.d.d4 and DIS.d.d5. So these two methods 

appear closer to FDRd. 
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FDRd Perm.d FDRt Perm.t DI8.t 

56 38 10 7 14 

DIS.d.d1 DIS.d.d2 DIS.d.d3 DIS.d.d4 DIS.d.d5 

1290 20 8 380 266 

Table 5.4: Number of sign~ficant probe sets identified at q-value=0.05 level using different 

methods and estimates for female NOD V NOD.NORJdd4. 

5.3.2 Female NOD V NOD.NOR_Idd4 

Secondly, We test the performance of the methods on gene expressions of NOD and 

NOD.NORldd4 female mice. In this application we obtain 80=0.0680 and the estimated 

proportion of differentially expressions 1 -11-0 = 1 - 0.80 = 0.20. Compared to the first 

application, the pooled standard deviations in this application are more concentrated 

and distributed with the mean 0.0656 and variance 0.001 (Figure 5.5). The distribution 

of test statistics are more varying because they have much longer tails (Figure 5.6). 

From Table 5.4, we can see that PERM.D method still works closest to FDRd method 

with relatively less probe sets declared, methods based on t-statistics produce much 

smaller number of probe sets. We can also see that DIS.d.d1 declares extremely large 

number of probe sets, while DIS.d.d2 and DIS.d.d3 only yields small number of probe 

sets. DIS.d.d4 and DIS.d.d5 using common variance estimate declare 200-400 signals 

out of 12488 probe sets which seems too high. But we are not sure the reason why these 

two methods call so many probe sets significant in this application where the pooled 

standard deviations are relatively concentrated. 

Table 5.5 and 5.6 show the top 20 probe sets as ranked by q-values from FDRd 
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q-values 

Probeset ID d.stats t.stats FDR.d PERM.d FDR.t PERM.t DIS.t 

101992-.-at 13.4183 32.9731 0.0222 0.0334 0.0371 0.0371 0.0019 

93427_at 11.1455 27.7614 0.0222 0.0334 0.0389 0.0389 0.0028 

100277_at 4.5916 11.2561 0.0304 0.0430 0.0677 0.0667 0.0509 

10185Lat 3.9798 8.1601 0.0304 0.0430 0.0947 0.0950 0.0736 

102424_at 4.3053 10.3468 0.0304 0.0430 0.0767 0.0739 0.0544 

102736_at 4.1741 7.5962 0.0304 0.0430 0.0965 0.0976 0.0766 

103235_at 3.8043 9.7141 0.0304 0.0430 0.0776 0.0773 0.0544 

104094_at 5.9220 16.7526 0.0304 0.0420 0.0519 0.0544 0.0173 

104100_at 3.3610 7.3959 0.0304 0.0445 0.1004 0.1017 0.0798 

160679_at 3.4886 6.7208 0.0304 0.0433 0.1040 0.1067 0.0863 

92642_at 5.7207 9.7825 0.0304 0.0420 0.0776 0.0772 0.0544 

93037 j_at 3.6906 7.1768 0.0304 0.0431 0.1004 0.1017 0.0825 

9387Lat 3.9755 10.1345 0.0304 0.0430 0.0767 0.0739 0.0544 

94429_at 3.4493 7.7955 0.0304 0.0433 0.0956 0.0976 0.0737 

96047_at 6.9835 12.6312 0.0304 0.0408 0.0653 0.0649 0.0444 

100946_at 3.3343 7.9029 0.0311 0.0456 0.0956 0.0976 0.0737 

101676_at -7.6618 -21.3755 0.0311 0.0408 0.0350 0.0408 0.0069 

103935_at -10.5311 -54.6905 0.0311 0.0408 0.0222 0.0371 0.0004 

93403_at -7.4484 -15.4338 0.0311 0.0408 0.0417 0.0544 0.0230 

101506_at 3.2235 9.7298 0.0313 0.0465 0.0776 0.0773 0.0544 

Table 5.5: q-values of top 20 probe sets detected from FDR.d method against other 

methods (PERM.d, FDR.t, PERM.t and DIS.t) for female NOD V NOD.NOR_Idd4. 
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q-values 

Probset ID d.stats FDR.d DIS.d.d1 DIS.d.d2 DIS.d.d3 DIS.d.d4 DIS.d.d5 

101992_at 13.4183 0.0222 0.0000 0.0000 0.0038 0.0000 0.0000 

93427_at 11.1455 0.0222 0.0000 0.0000 0.0061 0.0000 0.0000 

100277_at 4.5916 0.0304 0.0000 0.0015 0.1560 0.0000 0.0000 

10185Lat 3.9798 0.0304 0.0000 0.0248 0.1858 0.0000 0.0000 

102424_at 4.3053 0.0304 0.0000 0.0038 0.1681 0.0000 0.0000 

102736_at 4.1741 0.0304 0.0000 0.0324 0.1858 0.0000 0.0000 

103235_at 3.8043 0.0304 0.0000 0.0120 0.1858 0.0000 0.0000 

104094_at 5.9220 0.0304 0.0000 0.0000 0.0455 0.0000 0.0000 

104100_at 3.3610 0.0304 0.0000 0.0564 0.1858 0.0000 0.0000 

160679_at 3.4886 0.0304 0.0000 0.0770 0.1858 0.0000 0.0000 

92642_at 5.7207 0.0304 0.0000 0.0019 0.1681 0.0000 0.0000 

93037_Lat 3.6906 0.0304 0.0000 0.0511 0.1858 0.0000 0.0000 

9387Lat 3.9755 0.0304 0.0000 0.0073 0.1856 0.0000 0.0000 

94429_at 3.4493 0.0304 0.0000 0.0486 0.1858 0.0000 0.0000 

96047_at 6.9835 0.0304 0.0000 0.0000 0.0712 0.0000 0.0000 

100946_at 3.3343 0.0311 0.0000 0.0511 0.1858 0.0000 0.0000 

101676_at -7.6618 0.0311 0.0000 0.0000 0.0205 0.0000 0.0000 

103935_at -10.5311 0.0311 0.0000 0.0000 0.0038 0.0000 0.0000 

93403_at -7.4484 0.0311 0.0000 0.0000 0.0455 0.0000 0.0000 

101506_at 3.2235 0.0313 0.0000 0.0341 0.1858 0.0000 0.0000 

Table 5.6: q-values of top 20 probe sets detected from FDR.d method against d distribu­

tion when applying different estimates for female NOD V NOD. NORjdd4. 
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method. From Table 5.5 we can see that q-values from PERM.d still give almost the 

same ordering as FDRd, similar to the first application. Methods based on t-statistics 

not only give the different ordering but also quite a few q-values exceed 0.05. In table 

5.6 the top probe sets declared by FDRd are all declared by DIS.d.dl, DIS.d.d4 and 

DIS.d.d5 which yield extremely small q-values. DIS.d.d2 and DIS.d.d3 methods detect 

quite small number of probe sets. 

In Figure 5.7, we observe that the behaviors of q-values from FDRd and PERM.d 

are similar, which is consistent with the first application. From the rest of panels, we 

find that only a small portion of probe sets declared by FDRd can be declared by the 

methods based on t-statistics. Figure 5.8 presents the behaviors of q-values of probe sets 

which show different patterns from the first application when testing various estimates. 

We observe that quite a lot of probe sets declared by DIS.d.dl, DIS.d.4 and DIS.d.d5 

are not declared by FDRd so the three methods are very liberal and might include 

many false positives. In contrast DIS.d.d2 and DIS.d.d3 are so conservative that they 

are missing some signals and only detect few probe sets. 
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Figure 5.7: Plots of the q-values of significant probe sets from FDR.d against the ones 

from other methods at q-value cutojj=O.05 for female NOD V NOD.NOR_Idd4. 
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Figure 5.8: Plots of the q-values of significant probe sets from FDR.d against the ones 

from other estimate methods at q-value cutoff=O. 05 for female NOD V NOD. NORJdd4. 
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Chapter 6 

Discussion and Future Work 

In this study, we have compared the performances of the FDR, permutation and ana­

lytical distribution methods based on d and t statistics respectively for identifying the 

differential expressions using micro array data sets. The methods were compared using 

both real gene expression data sets and the simulated data sets. These six methods 

can be classified as nonparametric and parametric approaches. The nonparametric ap­

proaches include FDR.d, PERM.d, FDR.t and PERM.t. The basic idea of methods is to 

estimate the null distribution of the test statistic from permutations rather than assum­

ing a specific form of null distribution. The parametric approaches include DIS.d and 

DIS.t which assume the test statistics follow a specific distribution under null hypothe­

sis. DIS.d method depends on the true population variance of each probe set which is 

generally unknown in practice. We proposed five estimators to deal with the unknown 

variance and evaluated their performance using simulated and real data sets. 

Overall, methods based on the d-statistic perform better than methods based on 

t-statistic because they can identify more significant differential expressions with lower 
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false discovery rate. We find in simulation studies that for a variety of gene expression 

distributions, some with quite heavy tails, methods based on d-statistic can identify 

more significant differential expressions and control false discovery rate very well. In 

contrast, methods based on t-statistic appear to be weak in that they identify far less 

significant probe sets and control false positive rates very close to nominal FDR. It can 

be clearly shown by our power simulation analysis (say Figure 4.8) that the powers of 

methods based on t-statistic are lower than methods based on d-statistic and also get 

more Type I errors when true differences approach o. So we can draw a conclusion that 

methods based on d-statistic are more accurate and powerful for identifying differential 

expressions. This has been confirmed by the results in two real data analyses (Table 5.1 

and 5.4) where FRD.d and PERM.d always identify more significant probe sets than 

FDR.t and PERM.t. Moreover, we notice that methods based on t-statistic surprisingly 

identify quite small number of differential expressions even when the true gene expression 

distribution is Gaussian. This would not be in accordance with what we expected 

because t-statistic only consider information from one probe set at a time and most likely 

falsely call significant those expressions with small fold changes and smaller variance. So 

we may need more work to examine the performance of the methods based on t-statistic 

in future. 

FDR and permutation methods usually give similar results whether d-statistic or 

t-statistic is applied. FDR method considers the FDR of all rejection regions containing 

a probe set and takes the minimum of FDR as the q-value for that probe set, while 

permutation method permutes array labels and derives p-value as the fraction of the 

permuted test statistics greater or equal to the observed statistics. The performance 

similarity of these two methods implies that q-values calculated from the original statis-
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tics are approximately equivalent to ones from their p-values. In simulation studies, we 

suppose gene expressions are independent and consequently their statistics and p-values 

are independent too. Therefore the two methods are almost identical in calling signifi­

cant probe sets and controlling FDR. However, the results of two real microarray data 

sets indicate that permutation methods are little conservative with a smaller number of 

probe sets declared and the slightly larger q-values. One primary reason could be ex­

plained by the fact that some probe sets are dependent on each other in real microarray 

data. We may relax the independence assumption in our simulation study in future to 

explore the effect of dependence on the performance of these two methods. 

The d distribution method combines the strengths of other methods based on d­

statistics and the t distribution method. Similar to FDR.d and PERM.d, the d dis­

tribution methods construct test statistics by adding a small positive constant (so) in 

the denominator of regular t-statistic, which ensures that those probe sets with small 

fold changes will not be incorrectly selected as significant. In simulation study and real 

data analysis, we found that the distribution of d-statistics tends to have shorter tails 

and is more concentrated compared to t-statistics. We can conclude that the d distri­

bution method could better control false positives and avoid missing true positives. In 

addition, the d distribution method similar to the t distribution method can directly 

calculate p-values without any permutation of test statistics. So it calculates q-values 

very fast compared to other nonparametric methods which are often computationally 

intensive. However, the d distribution method has some weakness. First, the d distribu­

tion method depends on population variances which are generally unknown in practice, 

although it appears to be the most powerful in our power simulation. Therefore its 

performance is determined to a large extent by the estimate of variance. Second, the 
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d distribution method is sensitive to- violation of normality assumption. In our simula­

tion study analysis, we found that it is conservative and identifies less significant probe 

sets when gene expression distribution is heavy-tailed. In contrast, it identifies more 

significant probe sets and control false discovery rate close to nominal one (5%) when 

gene expression data follow a normal distribution. Therefore the estimate of population 

variance and the distribution of gene expression are two main factors influencing the 

performance of d distribution methods. Sample size might be another factor since large 

sample size ensures that normality assumption is satisfied by central limit theorem. So 

how big sample size can improve the performance of the d distribution methods could 

be examined in future. 

In our study we also proposed five estimators for population variances across probe 

sets. DIS.d.d1, DIS.d.d2 and DIS.d.d3 methods allow different variances across all probe 

sets, while DIS.d.d4 and DIS.d.d5 methods assume a common variance. The results of 

simulation studies indicate that DIS.d.d4 method using the average of pooled sample 

variances is closet to DIS.d method using the known population variances in all cases, 

followed by DIS.d.d5 method, while DIS.d.d1 method is always overly liberal and falsely 

calls many probe sets significant which have small fold changes actually. DIS.d.d2 and 

DIS.d.d3 methods work poorly and identify very few significant probe sets when gene 

expressions follow a normal distribution, while they become workable when gene expres­

sions are heavy-tailed. In real data analysis, the performances of DIS.d.d1, DIS.d.d2 

and DIS.d.d3 methods are consistent with simulation. However, DIS.d.d4 and DIS.d.d5 

appear to be unstable. In the first application, they are quite close to FDR.d in terms 

of the number of significant probe sets, which is nicely consistent with the finding in the 

simulations. Because we use the same sample size in simulation and this application. 
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In the second application, however, these two methods unexpectedly identify over 5-fold 

significant probe sets than FDR.d. The reason might be the fact that the sample size for 

each strain in this application is smaller and corresponding degrees of freedom become 

smaller when applying d distribution methods. Such an instability of the performances 

of DIS.d.d4 and DIS.d.d5 within applications needs more study in future work. Further­

more, the distributions of the pooled standard deviations across all probe sets in two 

applications indicate that all probe sets are not equally variant (Figure 5.1 and 5.3). 

Therefore DIS.d.d2 and DIS.d.d3 methods taking into probe set variability account are 

supposed to be more applicable than DIS.d.d4 and DIS.d.d5. But they appear to be 

quite conservative and produce very limited number of significant probe sets. It forces 

us in the future to find a better estimator of population variance so that d distribution 

method will be closer to FDR.d method and more applicable in practice. 
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Appendix A 

Partial R codes 

A.1 R codes for calculating p-values from permuta­
tion 

pvalues <- function(perm.t.stats,obs.t.stats){ 

} 

# pvalues function is used to calculate p-values by permutation 
# method. This function implements the formula (3.3). 

# The following values should be input into pvalues function. 
# perm.t.stats = permuted test statistics 
# obs.t.stats = observed test statistics 

# The output of this function is a vector with the length of m. 

m <- length(obs.t.stats) 
# calculate the number of permutations for each probe set 
b <- dim(perm.t.stats) [2] 
perm.t.stats <- abs(perm.t.stats) 
obs.t.stats <- abs(obs.t.stats) 
p <- rep(NA,m) 
for(i in 1 :m){ 

p[i]<-mean(perm.t.stats >= obs.t.stats[i]) 
} 
return(p) 
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A.2 R codes for calculating p-values from d-distribution 
method 

fx <- function (x,k,r,c){ 

} 

# fx function is used to calculate cumulative distribution function of 
# d-statistics under null hypothesis in the formula (3.4). 
# x is a random variable whose distribution is of our interest; 
# k is a point of distribution and r is degrees of freedom. 
# c is a positive constant number. 

# When calculating p-values from the cdf of d-statistics, we 
# need to input following values into integrate function so 
# that we can obtain p-values. 
# obs.t.stats = observed d statistics 
# k = negative absolute value of observed d-statistics 
# nl = sample size in strain 1 
# n2 = sample size in strain 2 
# c = a function of sO in the formula (3.5) 
# sd = standard deviation of probe sets 

d <- obs.t.stats 
p <- rep(NA,length(d)) 
for (j in l:length(d)) 

p[j] <- (integrate (fx, 0, Inf, k=-abs(d[j]), r=(nl + n2 - 2), 
c = sO/(sd[j] * sqrt(l/nl + 1/n2)))$value) * 2 

A.3 R codes for calculating q-values in terms of p­
values 

qvalue.pval <- function(p,piO,genes){ 

# qvalue.pva function is used to calculate q-values in terms 
# p-values. This function is applicable to the p-values either 
# from permutation method or analytical distribution method. 
# This function implements the algorithm in Storey and Tibshirani 
# (2003b) and borrows some codes in qvalue package wrote by Dabney 
# and Storey (2009). 
# The function performs PERM.d, DIS.d, DIS.d.dl, DIS.d.d2, DIS.d.d3 
# DIS.d.d4, DIS.d.d5, PERM.t, DIS.t methods. 

# The 
# p = 
# piO 
# 

following values should be input into qvalue.pval function. 
p-values either from permutation or from distribution 

the estimated proportion of non-differentially expressed 
genes 

108 



} 

# genes = probe set ID or name 

# The output of this function is a four-dimension data frame. 

u <- order(p) 
m=length(p) 
qvalue.rank <- function(x) { 

idx <- sort.list(x) 

} 

fc <- factor(x) 
nl <- length(levels(fc)) 
bin <- as.integer(fc) 
tbl <- tabulate(bin) 
cs <- cumsum(tbl) 
tbl <- rep(cs, tbl) 
tbl[idx] <- tbl 
return (tbl) 

v <- qvalue.rank(p) 
qvalue <- pia * m * p/v 
qvalue[u[m]] <- min (qvalue[u[m]], 1) 
for (i in (m - 1):1) { 

qvalue[u[i]] <- min (qvalue[u[i]], qvalue[u[i + 1]], 1) 
} 

data. frame (pvalues=p, qvalues=qvalue, pia = pia, genes = genes) 

A.4 R codes for calculating p-values from d distribu­
tion when applying various estimators of popu­
lation variance in simulations 

# Since d distribution method depends on the true population 
# variances across all probe sets which are generally unknown in 
# reality, we propose five estimators and associated estimated c. 

# following values need be prepared 
# sd1 = standard deviation of expressions for each probe set in strain 1 
# sd2 = standard deviation of expressions for each probe set in strain 2 
# n1 = sample size in strain 1 
# n2 = sample size in strain 2 
# obs.t.stats = observed d statistics 
# y = data matrix of gene expression under two strains 
# m = the number of probe sets 

d <- obs.t.stats 
p1 <- p2 <- p3 <- p4 <- p5 <- rep(NA,length(d)) 
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# 1. The pooled estimate: s2p in formula (3.8) 
# associated estimated c in formula (3.9) 

s2p <- ((nl-l)*sdl-2 + (n2-1)*sd2-2)/(nl+n2-2) 
for (j in l:length(d)) 

p.dl[j] <- (integrate (fx, 0, Inf, k=-abs(d[j]), r=(nl + n2 - 2), 
c = sO/sqrt(s2p[j] * (l/nl +1/n2)))$value)*2 

# 2. The null estimate: s2p in formula (3.8) 
# associated estimated c in formula (3.10) 

for (j in l:length(d)) 
p.d2[j] <- (integrate (fx, 0, Inf, k=-abs(d[j]), r=(nl + n2 - 2), 
c = sO/(sO + sqrt(s2p[j] * (l/nl +1/n2))))$value)*2 

# 3. The pooled estimate: ss in formula (3.11) 
# associated estimated c in formula (3.12) 

ss <- apply(y,l,var) 
for (j in l:length(d)) 

p.d3[j] <- (integrate (fx, 0, Inf, k=-abs(d[j]), r=(nl + n2 - 2), 
c = sO/sqrt(ss[j] * (l/nl +1/n2)))$value)*2 

# 4. The average of the pooled estimates across all probe sets 
# in formula (3.13) 
# associated estimated c in formula (3.14) 

ave.s2p <- sum(s2p)/m 
for (j in l:length(d)) 

p.d4[j] <- (integrate (fx, 0, Inf, k=-abs(d[j]), r=(nl + n2 - 2), 
c = sO/sqrt(ave.s2p * (l/nl +1/n2)))$value)*2 

# 5. The average of the null estimates across all probe sets 
# in formula (3.15) 
# associated estimated c in formula (3.16) 

ave.ss <- sum(ss)/m 
for (j in l:length(d)) 

p.d5[j] <- (integrate (fx, 0, Inf, k=-abs(d[j]), r=(nl + n2 - 2), 
c = sO/sqrt(ave.ss * (l/nl +1/n2)))$value)*2 

A.5 R codes for simulations 

# We use the following functions to generate m*(nl+n2) 
# simulated data set y. 
# m = the number of probe sets 
# ml = number of differentially expressed probe set 
# mu = mean of normal distribution 
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# sd = standard deviation of normal distribution 
# n1 = sample size of strain 1 
# n2 sample size of strain 2 

# According to different error terms assumption and variance 
# variability across probe set, we generate data by the following 
# different function. 

# 1. Generate data from normal distribution N(0,1) with a common 
# variance across probe sets. The following function generate data 
# for simulation 1. This function is applicable to simulation 
# 4,5 and 6 replacing rnorm() as rt(). 

genes.data.1 <- function(m, n1, n2, m1=m*0.1, mu, sd){ 

} 

diff1 <- c(seq(-3, -1, length=m1/2), seq(1,3,length=m1/2)) 
diff <- c(diff1,rep(0, m-m1)) 

# sd = 1 in this simulation 
strain1 <- mu + matrix(rnorm(m * n, 0, sd), nrow = m)*sd 
strain2 <- mu + diff*sd + matrix(rnorm(m * n, 0, sd), nrow m)*sd 
cbind(strain1, strain2) 

# 2. Generate data from t distribution t(3)/sqrt(3) allowing 
# different variance from chi-square distribution with df=20 
# divided by 20. The following function generate data 
# for simulation 1. 

sdi <- sqrt(rchisq(m,20)/20) 

genes.data.2 <- function(m, n1, n2, m1=m*0.1, mu, sdi){ 

} 

diff1 <- c(seq(-3, -1, length=m1/2), seq(1, 3, length=m1/2)) 
diff <- c(diff1, rep(0,m-m1)) 

z1 <- matrix(rt(m*n1,3)/sqrt(3), nrow=m) 
strain1 <- mu + sdi*z1 
z2 <- matrix(rt(m*n2,3)/sqrt(3), nrow=m) 
strain2 <- mu + sdi*(diff+z2) 
cbind(strain1, strain2) 

# 3. Generate data from normal distribution N(0,1) allowing 
# different variance from chi-square distribution with df=20 
# divided by 20. The following function generate data 
# for simulation 3. 

sdi <- sqrt(rchisq(m,20)/20) 
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} 

genes.data.3 <- function(m, nl, n2, ml=m*O.l, mu, sdi){ 

set.seed(seed) 
diffl <- c(seq(-3,-1,length=ml/2),seq(1,3,length=ml/2)) 
diff <- c(diffl, rep(O,m-ml)) 

zl <- matrix (rnorm(m*n , 0, l),nrow=m) 
z2 <- matrix (rnorm (m*n , 0, l),nrow=m) 
strainl <- mu+sdi*zl 
strain2 <- mu+sdi*(z2+diff) 
cbind(strainl, strain2) 

# 4. Generate data from other various symmetric distributions with 
# a common variance in each data set. The following function implement 
# simulation 7. 

A.6 

genes.data.4 <-function (m, nl, n2, ml = m * 0.1, mu, sd) { 

} 

diffl <- c(seq(-3, -1, le~gth = ml/2) , seq(l, 3, length = ml/2)) 
diff <- c(diffl, rep(O, m - ml)) 
zl <- matrix(rexp(m * nl, 1) * (2 * rbinom(m * nl, 1, 0.5) 

- 1)/sqrt(2) , nrow = m) 
strainl <- mu + sd * zl 
z2 <- matrix(rexp(m * n2, 1) * (2 * rbinom(m * n2, 1, 0.5) 

- 1)/sqrt(2) , nrow = m) 
strain2 <- mu + sd * (diff + z2) 
cbind(strainl, strain2) 

R codes for applications 

# When testing methods in applications, we use linear model (5.1) 
# to calculate test statistics which take into account day effect. 
# Accordingly the degrees of freedom of d and t distribution methods 
# become (nl-1)+(n2-1)-(Nday-l) where Nday is the number of levels of 
# day effect. Worth noting is that the estimates of variance when day 
# effect is present are the mean square errors. The pooled variance 
# estimate is the mean square error from model (5.1) and the null variance 
# estimate is the mean square error from model (5.4). 

# Y = the full gene expression matrix with each row representing a probe set 
# strain = strain effect vector 
# day = day effect vector 
# n = sample size of each strain 
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# 1. Calculate test statistics, sO and piO 
# Calculate observed test statistics 
blockstats <- block.stats(y, strain, day) 
dstats <- blockstats$d.stat # d statistics 
tstats <- blockstats$t.stat # t statistics 
sd1 <- blockstats$sd1 
sd2 <- blockstats$sd2 
sO <- blockstats$sO[1] 

# Calculate permuted test statistics 
perm.matrix <- perms.block(strain, day) 
d.stats.perm <- function(strain, day, exprs, sO) 

block.stats(exprs, strain, day, sO, return.all=F) 
permuted.d.stats <- apply(perm. matrix , 1, d.stats.perm, 

exprs=y, sO=sO, day=day) 

t.stats.perm <- function(strain, day, exprs, sO=O) 
block. stats (exprs , strain, day, sO=O,return. all=F) 

permuted.t.stats <- apply (perm. matrix, 1, t.stats.perm, 
exprs=y, sO=O, day=day) 

# Calculate piO 
piO <- calc.piO(dstats, permuted.d.stats) 

# 2. Test methods FDR.d, PERM.d, FDR.t, PERM.t and DIS.t 
g.name <- row.names(y) # take out probe set ID 
# A. Calculate q-values from FDR.d 
observed.ordered.d <- sort(dstats) 
ordered.permuted.d <- apply(permuted.d.stats, 2, sort) 
expected.permuted.d <- rowMeans(ordered.permuted.d) 
result1 <- qvalue1.new(dstats, expected.permuted.d, 

permuted.d.stats, piO, g.name) 

# B. Calculate q-values from PERM.d 
p.d <- pvalues1(permuted.d.stats, dstats) 
result2 <- qvalue.pva11(p=p.d, piO=piO, genes=g.name) 

# C. Calculate q-values from FDR.t 
ordered.permuted.t <- apply(permuted.t.stats, 2, sort) 
expected.permuted.t <- rowMeans(ordered.permuted.t) 
result3 <- qvalue1.new(tstats, expected.permuted.t, 

permuted.t.stats, piO, g.name) 

# D. Calculate q-values from PERM.t 
pvalues <- pvalues1(permuted.t.stats, tstats) 
result4 <- qvalue.pva11(p=pvalues, piO=piO, genes=g.name) 

# E. Calculate q-values from DIS.t 
t <- tstats 
p.t <- 2*pt(-abs(t),df=2*n-2-1) # day effect would affect linear model 
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result5 <- qvalue.pva11(p=p.t, piO=piO, genes=g.name) 

# F. d distribution method 
d <- dstats 
p.d <- p.d1 <- p.d2 <-p.d3 <- p.d4 <- p.d5 <- rep(NA,length(d» 

sigma2 <- matrix(NA, nrow=nrow(norandidd), ncol=2) 
for (i in 1:nrow(sigma2» { 

# take out Residual standard error and then get "pooled estimate" 
sigma2[i,1] <- summary(lm(norandidd[i,]-day+strain»$sigma-2 
# take out Residual standard error and then get "null estimate" 
sigma2[i,2] <- summary(lm(norandidd[i,]-day»$sigma-2 

} 

# method 1 - pooled variance 
s2p <- sigma2[,1] 
for (j in 1:length(d» p.d1[j]=(integrate(fx, 0, Inf, k=-abs(d[j]), 

r= (2*n-2-1), c=sO/sqrt(2*s2p[j]/n»$value)*2 
result.d1 <- qvalue.pva11(p=p.d1,piO=piO,genes=g.name) 

# method 2 - pooled variance and transformation of c 
for (j in 1:length(d» p.d2[j]=(integrate(fx, 0, Inf, k=-abs(d[j]), 

r=(2*n-2-1), c=sO/(sqrt(2*s2p[j]/n)+sO»$value)*2 
result.d2 <- qvalue.pva11(p=p.d2,piO=piO,genes=g.name) 

# method 3 - null variance 
ss <- sigma2 [,2] 
for (j in 1:length(d» p.d3[j]=(integrate(fx, 0, Inf, k=-abs(d[j]), 

r=(2*n-2-1),c=sO/sqrt(2*ss[j]/n»$value)*2 
result.d3<- qvalue.pva11(p=p.d3, piO=piO, genes=g.name) 

# method 4 - the average of pooled variance 
ave.s2p <- mean(s2p) 
for (j in 1:length(d» p.d4[j]=(integrate(fx, 0, Inf, k=-abs(d[j]), 

r= (2*n-2-1),c=sO/sqrt(2*ave.s2p/n»$value)*2 
result.d4 '<- qvalue.pva11(p=p.d4, piO=piO, genes=g.name) 

# method 5 - the average of null variance 
ave.ss <- mean(ss) 
for (j in 1:length(d» p.d5[j]=(integrate(fx, 0, Inf, k=-abs(d[j]), 

r= (2*n-2-1),c=sO/sqrt(2*ave.ss/n»$value)*2 
result.d5 <- qvalue.pva11(p=p.d5, piO=piO, genes=g.name) 
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