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Abstract 

Multi-input multi-output (MIMO) technology has been used to improve wireless com­

munications systems over the past several years. The multiple antennas of MIMO 

systems are used to increase data rates through multiplexing gain and/or increase the 

reliability of the system through diversity gain. It is known that an optimum trade­

off between diversity gain and multiplexing gain can be achieved by having proper 

space-time block code (STBC) designs. The current STBC designs minimizing the 

pair-wise error probability (PEP) of the maximum likelihood (ML) detector are based 

mainly on the rank and the determinant criteria. 

In this thesis, we study a special case of the MIMO system. This consists of a 

coherent communication system equipped with M t transmitter antennas and a single 

receiver antenna, i.e., a multi-input single-output (MISO) system. Such systems are 

often encountered in mobile down-link communications for which a MIMO realization 

may be expensive or for which the mobile receiver may not be able to support multiple 

antennas (e.g. a mobile phone). Given a full-rate data transmission, the PEP of the 

ML detector for such systems can be minimized by using the rotated quasi-orthogonal 

STBC design, which enables full diversity and optimal coding gains for the system. 

The efficiency of fast ML decoding for orthogonal STBC is also largely preserved for 

such quasi-orthogonal STBC. However, for large constellations, the performance of 
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such "optimum" codes deteriorates due to the increase of the number of the nearest 

neighbours per symbol. 

To correct such a deficiency of the code, in this thesis, we propose to include the 

number of nearest neighbors in the design criterion. We show that for the current 

optimal rotated quasi-orthogonal code, the number of nearest neighbours tends to 

infinity when the size of constellation becomes infinite. However, we show that by 

having a particular value of rotation, not only full diversity and maximum coding gain 

will be achieved, but also a small number of nearest neighbours will be maintained 

even for very large constellations. 

Also, at present, STBC designs in a MIMO system are mainly based on the PEP 

(or its upper bound). This is because the geometrical structure of the decision regions 

for a general MIMO channel, equipped with the ML detector, is so irregular that it 

would be impossible to obtain an exact error probability formula for the ML receiver. 

This means that the error probability formula cannot be utilized as a criterion for 

the design of the optimal transmitter for the MIMO systems and the current STBC 

designs may not be truly optimum in terms of the exact error probability. 

To rectify this problem, in this thesis, we first find a closed form algorithm for ML 

detection, for a 4 x 1 MISO system equipped with a ML detector, transmitting signals 

from a four signal quadrature amplitude modulation (4-QAM) constellation. This 

algorithm is derived such that given a received signal and the channel, the transmitted 

signal can be obtained using a threshold decision. Then, using this ML detection 

algorithm, a closed form of the exact error probability of this system is derived. This 

closed form decoding algorithm is then applied to the 4-group decodable STBC, in 

order to obtain the optimal rotation angle to minimize the ML error probability. 
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Notation and Abbreviations 

e.g. A 

e.g. b 

IK 

OK 

ai 

(·)i 

(. )ij 

(. )* 

(·f 
(.)H 

11·11 

1·1 

det (.) 

tr [.J 

E [.J 

(-, .) 

J 

matrices are denoted by uppercase boldface characters 

column vectors are denoted by lowercase boldface characters 

the K x K identity matrix 

the K x K zeros matrix 

the ith column of a matrix A 

the ith elen'lent of a vector 

the ijth element of a matrix 

the conjugate of a vector or matrix 

the transpose of a vector or matrix 

the Hermitian transpose of a vector or matrix 

the norm of a vector or a matrix 

the magnitude operator or the determinant operator 

the determinant operator 

the trace operator 

the statistical expectation operator 

the inner product operator 
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Z the field of integers 

lR the field of real numbers 

<C the field of complex numbers 

lID independent identically distributed 

lSI intersymbol interference 

LD linear dispersion 

MIMO multi-input multi-output 

MISO multi-input single-output 

ML maximum likelihood 

PEP pair-wise error probability 

PSD positive semi-definite 

QAM quadrature an1.plitude modulation 

SNR signal-to-noise ratio 

STBC space-time block code 
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Chapter 1 

Introduction 

1.1 Background Knowledge ofMIMO Systems and 

STBC Design 

Over the last several years, MIMO technology has been used to improve wireless 

communications systems since it offers many advantages over conventional single­

antenna communications. For instance, multiple antennas can be used to increase 

transmission reliability and/or to increase the data transmission rates of the system. 

Increase in transmission reliability in a MIMO system is made possible by having 

an increased number of transmission data copies over the independent fading paths 

from each transmitter antenna to each receiver antenna [2]. This results in a higher 

probability of receiving the correct data by combining all the faded copies of data 

at the receiver. Increase in transmission data rate in a MIMO system, on the other 

hand, is made possible by utilizing the available multiple antennas to increase the 

number of different data streams sent over the independent fading paths from each 
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transmitter antenna to each receiver antenna. This allows for a gain in the amount of 

data transmitted, i.e., a capacity gain, at no additional power or bandwidth require­

ments. Full data rate is achieved when on average, for each transmitter antenna, a 

symbol is transmitted in each time slot. The increase in transmission data rate is 

usually measured by the multiplexing gain [2]. However, from the fundamental limit 

in communication theory, increase in data transmission invariably leads to a decrease 

in system performance. This results in a fundamental trade-off between data rate 

and performance in a MIMO design [3]. From the above discussion, we can see that 

MIMO technology allows for the improvement of data transmission rates as well as 

system performance (measured in terms of probability of error), where each can be 

optimized according to the trade-off limit to provide superior wireless communication 

systems. In addition to the increases in data rate and system performance, lSI and 

interference from other users in a MIMO system can be reduced using certain antenna 

techniques such as beamforming and precoder designs [4]. 

The improvement of transmission data rate and system performance in a MIMO 

system can be achieved by efficient STBC designs. Due to the fact that an increase 

in data rate invariably results in a loss of performance, the current optimum STBC 

designs aim to fix the data rate (usually fix at full rate) and design the code to optimize 

the performance measured in terms of the probability of error in the receiver. In 

particular, the PEP of the ML detector at the receiver is often used as the objective 

of optimal code design. Here, the objective function contains two parts, viz., the 

rank and determinant [5, 6, 7], which respectively govern the diversity gain and the 

coding gain of the MIMO system. More detailed explanations of these two gains 

will be given in Chapter 2. Roughly, the diversity gain refers to the gradient of the 
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probability of error curve against SNR ratio, and measures how fast the probability 

of error decreases with the increase of SNR. The coding gain measures the distance 

between the descending probability of error curve from the ordinate axis and is an 

indication of how high the SNR is before the probability of error curve starts to fall. 

For the MIMO system, we seek to design an optimum STBC to achieve maximum 

diversity gain or full diversity, and maximum coding gain or optimal coding gain. 

A STBC is usually represented by an L x Mt matrix in which each column repre­

sents the transmission symbols of a particular antenna for all L time slots, and each 

row represents the transmitted symbols in one time slot for all NIt transmitter anten­

nas. Thus, each entry in the matrix represents the transmitted symbol of one antenna 

during a particular time slot. Over the past several years, various STBC schemes 

[8, 9, 10, 11, 12, 13, 14] have been developed to take advantage of the MIMO commu­

nication channel. Among these different schemes, orthogonal STBC [15, 16, 17, 18] 

are attractive, since they can provide maximum diversity using a linear processing 

ML detector and provide simple linear optimal decoding. For instance, the Alamouti 

Code was designed for two transmission antennas, and is famous for being the only 

orthogonal STBC to provide full transmission rate [15]. In fact, if the number of the 

transmitter antennas is greater than two, no orthogonal STBC can achieve full data 

rate (i.e., achieving full MIMO channel capacity) [18, 19]. 

To improve on the low transmission rate, Jafarkhani [20], Tirkkonen-Boariu­

Hottinen [21], and Papadias-Foschini [22] proposed STBC with quasi-orthogonal de­

signs. While the quasi-orthogonal structures still support simple, fast ML decod­

ing, they no longer provide optimal linear decoding or achieve full diversity. To 

overcome these shortcomings so that both full diversity and fast ML decoding are 
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maintained, Su and Xia [1] designed a rotated quasi-orthogonal STBC with the opti­

mal coding gain for commonly used square QAM constellations which inspired other 

similar designs which focus on maintaining full diversity and non-vanishing determi­

nants [12, 13, 14], enabling the optimal tradeoff of diversity and multiplexing gains [3]. 

While MIMO systems offer valuable advantages over conventional single antenna 

systems, the expenses associated with implementing critical MIMO designs in order 

to maximize the efficiency of each antenna for both diversity and multiplexing can be 

unrealistically high [3, 5] for some practical applications. One of the main costs for the 

performance enhancements of MIMO communication channels is the cost of deploying 

multiple antennas. The space and circuitry required for these extra antennas, and 

the added complexity required for multi-dimensional signal processing [4], may not 

be affordable in many communication systems, especially when mobility is a factor. 

Thus, in view of the antenna cost in a mobile system, in this thesis, instead of a 

general MIMO system, our attention focuses on the study of a coherent MISO system 

equipped with multiple transmitter antennas and a single receiver antenna. A MISO 

wireless communication system is, in fact, a particular case of a MIMO system. It 

may lose some of the benefits (such as reduction in multiplexing and diversity gains) 

of a general MIMO system, but it reduces the costs in antenna and space required in 

a mobile environment. Thus, MISO systems are often encountered in mobile down­

link communications for which a MIMO system may be too expensive, or the mobile 

receiver (e.g. a mobile phone) may not be able to support multiple antennas. 
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1.2 Contributions 

While the optimum designs of STBC codes for a ML detector focus on the maximiza­

tion of the diversity and coding gains, governed by the rank and determinant factors 

in the criterion of PEP, one problem that has been unaddressed is performance de­

terioration of the "optimum" codes when the transmission symbols are selected from 

a large constellation. This is due to the fact that when the PEP is averaged, the 

average probability of error not only depends on the distance between the pair-wise 

neighbours, but also on the average number of neighbours that are separated by the 

same distance. Furthermore, this average probability of error is dominated by the 

average number of neighbours separated by the minimum distance, i.e., the average 

number of nearest neighbours. To correct this problem, in this thesis, we propose a 

new design criterion which uses the average nearest neighbour number as a novel ad­

ditional factor to the current design criterion of the rotated quasi-orthogonal STBC. 

We first prove that, despite the fact that the rotated quasi-orthogonal STBC with 

angle 7r / 4, proposed by Su and Xia [1], enables full diversity as well as the optimal 

coding gain for the commonly used square QAM constellation, the code is no longer 

optimal in terms of our new design criterion. In fact, by making use of the Pell 

Diophantine equation and Diophantine approximation theory [23], we prove that the 

average number of nearest neighbors tends to infinity for the Su-Xia code when the 

size of the constellation is infinite. Also, we propose a new rotated quasi-orthogonal 

STBC design with a new rotation angle that, in addition to both maximizing the rank 

and the coding gain, attempts to make the average number of the nearest neighbors 

small. Based on verifications using the Pell Diophantine equation, we obtain the new 

rotation angle to be 7r /6 and prove that the resulting rotated quasi-orthogonal STBC 
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not only provides full diversity and the optimal coding gain, but also has an average 

nearest neighbor number per symbol which tends to 8 when the constellation size 

tends to infinity. 

In this thesis, we also address a MIMO system problem which is generally over­

looked: At present, STBC designs in a MIMO system are mainly based on the PEP 

(or its upper bound). This is because the geometrical structure of the decision re­

gions, for a general MIMO channel equipped with the ML detector, is so irregular 

that it would be impossible to obtain an explicit exact error probability formula for 

the ML receiver [5]. This means that the error probability formula cannot be utilized 

as a criterion for the design of the optimal transmitter for MIMO systems, and the 

current STBC designs may not be truly optimum in terms of the exact error prob­

ability. Therefore, the current STBC designs use the union bound instead, which 

sums up all the prior-probability-weighted PEP of the ML detector, to establish the 

rank and determinant criterion of optimizing the error performance dominant term. 

Alternatively, the sphere bound can be employed, instead of the union bound, as a 

design criterion to successfully construct the non-vanishing determinant STBC [14]. 

This enables the optimal tradeoff of diversity and multiplexing gains based on the 

logarithm criterion, which governs the decay order of error performance in terms of 

SNR, but cannot control the coding gain. As a consequence, two distinct STBC, both 

of which enable the optimal tradeoff of diversity and multiplexing gains, may have 

significantly different error performance. 

To rectify this problem, in this thesis, a closed form of the exact error probability 

for a 4 x 1 MISO system, equipped with a ML detector transmitting signals from a 
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4-QAM constellation, is derived based on novel analyses of different Gaussian prob­

ability integrals. For such a system, we first obtain a closed-form algorithm for ML 

detection such that given a received signal and the channel, the transmitted signal can 

be obtained by a simple threshold decision. Then, its decision regions for all the trans­

mitted signal points are completely and explicitly determined. The decision regions 

obtained have a geometrical structure with symmetric properties, allowing for a much 

simplified calculation of the closed form error probability. This closed form error prob­

ability specifically analyzes the asymptotic behavior of its average error performance 

taken over all random channel coefficients, when SNR is high. Finally, this problem 

is specifically employed on the 4-group decodable STBC [24, 25, 26, 27, 28, 29] and 

the optil11.al rotation angle is obtained to minimize the probability of error, based on 

the asymptotic closed form prohahility of error formula. 

To the best knowledge of the author, this thesis is the first attempt to utilize the 

average number of nearest neighbours as an optimization design criterion for STBC 

using a ML receiver. As well, this thesis is the first to derive a closed form algorithm 

for ML detection in a MISO system with the 4-group decodable STBC. 
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Chapter 2 

The MISO Channel, Orthogonal 

STBC and STBC Criterion 

MIMO technology and the orthogonal STBC structure have been used to improve 

the performance of wireless communications systems over the last several years [15, 

16, 17, 18]. In this chapter, the MIMO channel model, and in particular the MISO 

channel which is used throughout this thesis, will be introduced. Additionally, other 

relevant topics such as orthogonal STBC, the ML receiver, and the current STBC 

design criteria for the ML receiver will be discussed in detail. 

2.1 Channel Model and Orthogonal STBC 

Existing MIMO communication systems rely on the use of Mt transmitter antennas 

and Mr receiver antennas which enables the communication system to exploit both 

the high performance provided by the space diversity available, and the high data 

rate provided by the capacity obtainable in the MIMO channels [6, 7]. A MISO 
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system is a particular case of a MIMO system in which there is only one (Mr = 1) 

receiver antenna. A MISO system alleviates the burden of having multiple antennas 

at the receiver which demands extra cost and space often unavailable in a mobile 

environment. A coherent flat fading MISO wireless communication system having 

Mt transmitter antennas and a single receiver antenna operates as follows: For each 

time slot (usually called a "channel use"), each of the Mt transmitter antennas is fed 

a coded symbol for transmission. Each of these transmitter antennas is linked to the 

receiver antenna through a channel hm, m = 1,'" ,Mt . At the receiver of such a 

system, for time slots.e = 1, ... ,L, an L-dimensional signal vector y = [Yl Y2 '" YL]T 

is received, which according to the input-output model of the system, can then be 

written as 

Y = VliX(S)h+e (2.1) 

where X(s) is an L x Mt coding matrix with a normalized average energy MtL, each 

row of which consists of coded versions of the symbols Sk, k = 1,2, ... ,K fed to the 

M t transmitter antennas during a particular time slot, h is an M t x 1 channel vector, 

P is the average SNR per symbol, and e is an L x 1 complex noise vector. Since there 

is only a single receiver antenna in a MISO system, if within one time slot the receiver 

antenna receives all the transmitted K symbols, i.e., L = K, this is called full-rate 

(or rate 1) transmission for the system. The coding of the symbols in X(s) can take 

on different forms. A popular code is the linear dispersion (LD) code which can be 

written as: 

K K 

X(s) L Aksk + L BksZ (2.2) 
k=l k=l 
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where s denotes a K x 1 transmission symbol vector such that s = [Sl S2· .. S K]T 

containing the K information symbols selected from an alphabet, S, of complex 

numbers to be transmitted within the L time slots, where Sk = (Sk)re + j(Sk)im and 

Ak and B k each denotes an L x M t real matrix. 

Definition 1. Let {Ai, Bi} ~1 be a sequence of L x Mt matrices with L ~ Mt . The 

LD code formed using these matrices is said to be a complex orthogonal STBC if the 

following conditions are satisfied: 

o lvIt 

for a.ny 1 <: m, n <: K, where omn ~ { ~ if m=n 

if m#n 

(2.3) 

(2.4) 

Example 1. The following Alamouti orthogonal STBC [l5}, for a wireless commu-

nication system, has two transmitter antennas and a single receiver antenna. For 

this code, we can observe that L = K = 2 (full rate). It is a very important code 

in the sense that it is the only complex orthogonal code that supports full symbol rate 

transmission in a MISO system: 

(2.5) 

where by simple inspection of Eq. (2.5), the coefficient matrices of the code are given 

10 
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by 

Example 2. Another typical example [i'll is a 4 x 4 orthogonal code with a symbol 

rate 3/4, 

Sl S2 S3 a 

-s; s* a -83 
X(s) = 

1 
(2.6) 

-83 a 8* 1 82 

a s; -8; 81 

Here, the code is for M t = 4 antennas, and within L = 4 time-slots, there are only 

K = 3 symbols 81, 82, 83 transmitted making the transmission rate equal to If, = ~. The 

coefficient matrices Ai and B i, i = 1,2,3 can be similarly constructed by inspection 

of Eq.(2.6). 

More examples of orthogonal space-time block codes can be found in [16, 18, 30]. 

Notice that Eq.(2.1) can be rewritten as 

(2.7) 

where Ha and Hb are L x K matrices given by 

[ A1h A2h (2.8a) 

[ Blh B2h ... (2.8b) 

11 
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Taking the conjugate on both sides of Eq. (2.7) leads to 

(2.9) 

Let 

(2.10) 

1{, is the 2L x 2K matrix called the virtual MISO channel. Then Eqs.(2.7) and (2.9) 

can be expressed in a compact matrix form as 

or, 

(2.11) 

Thus, the following property can be deduced: 

Property 1. The following three statements are equivalent: 

1. {Ai, Bi}{~l constitutes a complex orthogonal STBC 

2. XH(S)X(S) = IIsl12IMt for any K x 1 complex vector s 

3. 1{,H1{, = IIhl1212K for any Mt x 1 complex channel vector h 

The proof of the above statement follows directly from Definition 1 and the expres­

sions of X(s) and 1{, in Eqs. (2.2) and (2.10), respectively. From Property 1, one can 

see that orthogonal STBC allow for symbol-by-symbol detection at the receiver end, 
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which is desirable because of the simplicity in implementation. In the next section, 

the general optimal STBC design currently employed in practice will be discussed. 

2.2 PEP Code Design Criterion 

Before the current STBC design criteria can be introduced, throughout this thesis, 

the following statements are assumed: 

Assumption 1. The complex channel vector h = h re + jhim, where h re and him 

are the real and imaginary parts of the channel vector, respectively, and h re and him 

are both independent identically distributed (IID) real Gaussian distributed random 

vectors, with zero-mean and covariance matrix ~IMt' 

Assumption 2. The complex noise vector e = ere + jeim, where ere and eim are the 

real and imaginary parts of the noise vector, respectively, and ere and eim are both 

lID real Gaussian noise vectors with zero mean and covariance matrix ~h. 

Assumption 3. Complete channel state information is available at the receiver and 

ML detection is employed. 

Assumption 4. The transmitted signal vector, s, contains signals, Sk, k = 1,2, ... ,K, 

independently and equally likely chosen from a square 22q 
- QAM constellation, where 

q is a positive integer. 

Under Assumptions 1-4, given a channel realization h and a transmitted signal 

vector s, the probability of transmitting s and deciding in favor of s' =1= s at the ML 

detector can be evaluated as 

p (s -+ s' I h) = Q (d (s;; s')) s' =1= s (2.12) 

13 
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where Q(z) = (1/J21f) Jzoo e-x2
/ 2dx and d (s ~ 8') is the Euclidean distance between 

the received code words ?-ls and ?-lsI; i.e., 

(2.13) 

where X(·) denotes the coding formula given by Eq.(2.2). To evaluate this probability, 

it is convenient to use the following expression for the Q-function [31], 

I11f/2 ( Z2) Q (z) = - exp - . 2 d¢ 
1r 0 2 sm ¢ 

(2.14) 

Also, utilizing the property of trace [32], we can rewrite Eq.(2.13) as 

(2.15) 

where e = 8-8'. By substituting Eqs.(2.14) and (2.15) into Eq.(2.12) and then taking 

the average over the random vector h, whose statistics are given in Assumption 1 

above, the average PEP at the ML detector can be written as [33] 

(2.16) 

Eq.(2.16) expresses the exact PEP, and since i sin¢i ::::; 1, we can replace sin¢ with 

unity in the above integral and obtain the upper bound of the PEP, such that 

(2.17) 

Eq.(2.17) is called the Chernoff bound of the PEP. Thus, the average PEP over 
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possible channels, P (s ---t s'), of transmitting s and deciding in favor of s' #- s at the 

decoder can bounded by 

1 -r(e) r(e) 

( )

-1 

p (S--> s') <: 2 (4~J g Ai (2.18) 

where r( e) denotes the rank of the matrix: X H (e )X( e), and .\ for i = 1,2, ... ,r( e) 

are the non-zero eigenvalues of the matrix XH(e)X(e). Eq.(2.18) is often used as a 

criterion for designing STBC to keep the Chernoff Bound low. This necessitates the 

examination of the following two terms of Eq.(2.18) [5]: 

( ) 

-r(e) 
1. The Rank: At high SNR, 4k in Eq.(2.18) dominates and therefore to 

keep the Chernoff bound as low as possible, we should make the exponent, r ( e), 

i.e., the rank of the matrix X H (e )X( e), as large as possible. The minimum rank 

of X( e) = X( s) - X( s') taken over all distinct pairs {s, s'} is the diversity gain, 

r, and should be maximized, i.e., the matrix XH(e)X(e) should be of full rank. 

Thus, maximum diversity or full diversity occurs when r = Mt if the number 

of channels used, L ~ M t . 

2. The Determinant: The second term consists of the product of the non-zero 

eigenvalues of the matrix XH(e)X(e). The rth root of the minimum. value of 

the second term, taken over all distinct symbol vector pairs {s, s'}, is called the 

( 

r ) 1/r 

coding gain and must be maximized, i.e., mln g Ai must be maximized. 

One can verify that orthogonal STBC are optimal in terms of the above two criteria. 
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Chapter 3 

The Quasi-Orthogonal STBC 

Even though true orthogonal codes satisfy the optimum conditions of maximum rank 

and maximum determinant in the PEP design criterion, they cannot achieve full data 

rate when there are more than two transmitter antennas. To improve on the low 

rate, quasi-orthogonal STBC [20, 21, 22] have been proposed. However, these are 

not optimal in terms of diversity and coding gains. Su and Xia proposed the rotated 

quasi-orthogonal STBC structure [1] which achieved optimality maximizing the rank 

and determinant of PEP design criterion. Here in this chapter, attention is focused 

on the application of the rotated quasi-orthogonal STBC to MISO transmission. In 

particular, the employment of the Su-Xia optimal rotated quasi-orthogonal STBC 

structure [1] will be studied. 

Furthermore, the PEP criterion in Eq.(2.18) only considers a pair of signals in the 

constellation and does not give the average error probability over all pairs. Therefore, 

in this chapter, we re-examine the design criterion by averaging over all possible sym­

bols. This results in a new STBC design criterion which, in addition to the current 
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STBC design factors, includes a new feature of the average number of nearest neigh-

bours. We show that the Su-Xia "optimal" rotated quasi-orthogonal STBC structure 

is no longer optimal by this more general criterion. An optimal rotation angle is then 

obtained to satisfy this new criterion, which is verified to have superior performance 

over the Su-Xia STBC, especially when the transmission signal constellation is large. 

3.1 The Rotated Quasi-Orthogonal STBC and Novel 

Design Criterion 

Quasi-orthogonal codes of full rate have been proposed to overcome the shortcoming 

of orthogonal codes, which cannot achieve full transmission rate. As an example, for 

a four transmitter antennas system transmitting signals from a square 22q-QAM con-

stellation, where q is a positive integer, the special quasi-orthogonal STBC structure 

proposed by Tirkkonen-Boariu-Hottinen [21] has a coding matrix of the form: 

81 82 83 84 

-8; 8* -84 8* 
X(s) = 

1 3 

83 84 81 82 

-84 8* 3 -8; 8* 1 

The symbol transmission rate of this code is one per channel use, and thus is full-

rate. We note that the code is not entirely orthogonal (e.g., (X1,X2) = (X1,X4) = 0, 

but (Xl,X3) #- 0 with Xi being the ith column of X(s)), thus, giving rise to the 

name "quasi-orthogonal". Since signal constellations in the quasi-orthogonal STBC 

schemes are chosen arbitrarily, their codes may not necessarily provide full diversity. 
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For a MISO system with M t transmitter antennas, transmitting K = 2p symbols 

selected from a square 22q-QAM constellation in L time-slots, Su and Xia [lJ proposed 

the rotated quasi-orthogonal STBC designs from the generalized orthogonal STBC 

with the following codeword structure: 

X(s) = (3.1) 

)T _ (T T)T S2p , S - Sl S2 = 

s2pf, and O(Si) for i = 1,2 are any two L/2 x Mt!2 generalized 

orthogonal codes with L 2: M t . For orthogonal codes, the rules governing the restric-

tions on the length, p, of the transmitted signal vectors, Sl and S2, given a specific 

number of time slots, L, can be found in detail in [18J. For example, complex square 

orthogonal designs for Mt = 4,8,16 transmitter antennas, yields a maximum trans­

mitted symbol rate of I = ~,~, 1
5
6' respectively. In this thesis, Eq.(3.1) is presented 

in a slightly different way from the original Su-Xia code, such that each O(Si) is no 

longer required to be a square matrix as in the original Su-Xia code, but is allowed to 

be a "tall" rectangular matrix. Su and Xia [1 J also found that the optimal rotation 

angle for the code to enable both full diversity and the maximum coding gain, with 

reference to the criterion in Eq.(2.18), for the square QAM constellation, is e = 1f/4. 

While the Su-Xia code satisfies the optimality of Eq.(2.18), the criterion only 

considers the probability of error between individual pairs of signal vectors sand s' 

for the ML detector. Therefore, the average error for the transmission for all the 

possible signal vectors is not taken into account. To overcome this shortcoming, we 

can average both sides of Eq.(2.18) by multiplying with the probability, P(s), of each 
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8 and then sum up the product resulting in the following "snug" bound on the average 

block error probability, Pb1e [34]: 

where r denotes the minimum rank among all the possible matrices X H (e )X( e), 

e = 8-8'. With each choice of 8 and 8' (8' =J. 8), we obtain a value of rr:=l Ai. Running 

through all the possible choices of 8 and 8' in the signal constellation, we obtain a 

number of different products, rr:=l Ai, some of which may be equal in value. Let us 

denote each of the different values of the products rr:=l Ai by dn , for n = 1,2" .. ,N, 

and align them in increasing order so that d1 < d2 < ... < dN . Thus, let the average 

number of cases in which dn occurs be denoted by Kn. Then, Eq.(3.2) can be written 

as 

(3.3) 

where Kn = 2:s P(8) 2:s'¥oS,rU=l Ai=d
n 

1. In particular, since d1 denotes the lowest 

value of the product rr:=l Ai, Kl is called the average number of nearest neighbours 

or more descriptively, the average kissing number [35]. 

From the average union bound in Eq.(3.3) one can observe that the rank, r, 

controls how fast the error performance decays with respect to the average SNR per 

symbol, p, and thus, must first be maximized [5]. Then, we note that among all 

the terms of dn , the one that dominates the sum in the brackets is dl, which is the 

coding gain, and is the second most significant factor to affect the error performance. 

Hence, it should be maximized. These are the two current factors in the criterion 
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used for optimal STBC design as discussed in Chapter 2. Since d1 is the dominating 

factor among all dn for the error bound, the average number of nearest neighbours, 

Kl in Eq.(3.3), must also be another significant performance index. Therefore, in 

the following, the average number of nearest neighbours is proposed as a novel third 

factor associated with the criterion to design rotated quasi-orthogonal STBC. We 

have the following statement: 

Assertion 1. For the optimal design of transmission codes for a MISO system equipped 

with a ML receiver, the following three factors have to be optimized: 

1. The minimum possible value of the rank of the matrix X H (e )X( e), r, has to 

be maximized; 

2. The minimum possible value of the determinant of the matrix X H (e )X( e), 

d1, has to be maximized; 

3. The average number of nearest neighbours in the design code, K 1 , must 

be minimized. 

In the following section we will prove that the Su-Xia code, which uses a rotation 

angle of e = 7r /4, is not optimal in terms of the above assertion. 

3.2 Code Properties and Performance Analysis of 

the Su-Xia Rotation Angle 

We now examine the Su-Xia code and discuss the optimality, in terms of Assertion 

I, of setting e = 7r/4 in the rotated quasi-orthogonal STBC. The Su-Xia code has 
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been shown to be optimal in the sense of design factors 1 and 2. In other words, 

the code enables full diversity and the maximum coding gain [1]. However, we will 

show here that it is not optimal according to factor 3. In fact, we will show that 

its average number of nearest neighbors per symbol tends to infinity if the size of 

the QAM constellation is large. To achieve this, we need the following lemma on a 

specific Pell Diophantine equation [23]. 

Lemma 1. The solutions to the Pell equation a 2 - ,,/(32 = 1, specifically for "/ = 2, 

are given by 

(3.4a) 

(3.4b) 

where k E Z. 

Theorem 1. For the rotated quasi-orthogonal STBC in Eq.(3.1) with e = 1r/4, the 

number of nearest neighbors per symbol for a 22q-QAM constellation, with q being a 

positive integer, tends to infinity if q tends to infinity. 

Proof. First, we notice that the codeword matrix, X( s), from a rotated quasi-orthogonal 

STBC in Eq.(3.1) can be decomposed into a block-diagonal, orthogonal, "multi-group 

decodable" STBC [26, 36] in the following way: 

1 [11< 11< j H [ I~ _ 2 2 X(s) 2 

2 11< -11< IUt 
22:1 

I~ j = 

-IUt 
:I 
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Substituting e for 8 in X, we can note that 

I~ j) 
-I~ 

2 

(3.6) 

where e denotes the error vector between the transmitted signal vector 8 and the 

erroneous signal vector 8', i.e., e = 8 - 8', 8 i= 8', and 

[ 

I~ I~ j H 

I~ -I~ 
2 2 

[ 
I~ I~ j ()}\.If 2 

2· 2 = det 21 lI;t = 2 t/ 

I~ -I~ 
2 2 

and using this together with Eq.(3.5) in Eq.(3.6), we have 

det (XH(e)X(e)) 

Since 8 i= 8', there must be at least one non-zero entry in the vector e. Let ek and 

ek+p be such a pair of entries, at least one being non-zero, in e with 1 ~ k ::; p. Then, 
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we have 

(3.8) 

where equality holds if and only if minimum error occurs, i.e., if and only if em = 

em +p = 0 for 'Tn = 1,2, ... ,p and 'Tn i=- k. In addition, we note that 

We also notice, from Eq.(3.9), that 

( + jO )( * -jO * ) - E E ek e ek+p ek - e ek+p - re + im (3.10) 

h E I 12 I 12 d E e*e jO * e-jO were re = ek - ek+p an im = k k+pe - ekek+p Since each ek and 

ek+p,l :::; k :::; p, is the difference between two square QAM constellation points, 

we can observe that Ere is a real integer and Eim is a purely imaginary number. 

Also, it can be observed that the difference between two square QAM constellation 

points is always an even complex integer. Thus, for discussion convenience, we let 

ek = 2ek and ek+p = 2ek+p, with ek and ek+p being two complex integers. Hence, 

Ere = 4(lekl2 - lek+pI2) and Eim = 4(ekek+pejO - ekek+pe-jO). 

Combining Eqs.(3.8) and (3.10), and substituting in the value of e = 1f/4 for the 

Su-Xia code, Eim = 2V2(ekek+p(1 + j) - ekek+p(l- j)). Since 1 + j, 1- j, ek and ek+p 

are all complex integers, let ekek+p = u + jv, u, v E Z. Then, Eim = 4V2j(u + v). 

Therefore, the minimum non-zero value for I Ere I = 4 and the minimum non-zero 

value for IEiml = 4V2, when u = 0 or v = o. Then, the mininmm possible value for 
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det (XH(e)X(e)) occurs when IErel = 4 and IEiml = 0, and thus, the optimal coding 

gain is achieved if and only if the error symbols satisfy the following two Diophantine 

equations: 

±1 

o 

(3.11a) 

(3.11b) 

It is clear that if one of ek and ek+p is zero, then, the other must be ±1 or ±j. Thus, 

we only need to consider the case when both ek and ek+p are not zero. In this case, 

from Eq.(3.11b), we obtain 

(3.12) 

Since Eq.(3.11a) has to be satisfied as well, then the only solutions will be either 

7] = ±1, ±j. 

(3.13a) 

or (3.13b) 

Substituting these two conditions into Eq.(3.11a) leads us to the consideration of the 

Pell Diophantine equation o? - 2f32 = ±l. The second solution also leads to the same 

consideration of the Pell Diophantine equation. Now, Lemma 1 tells us that there 
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is an infinite number of solutions to the equation in the integer ring. This implies 

that the average number of nearest neighbours per symbol tends to infinity when the 

QAM constellation size is infinite. This completes the proof of Theorem 1. D 

3.3 Code Properties and Performance Analysis of 

the Novel Quasi-Optimal Angle 

Since the Su-Xia code does not fully satisfy the optimality factors in Assertion 1, it 

is desirable to seek for angles other than e = 7r / 4 for the rotated quasi-orthogonal 

code to be fully optimal. In this section, we show that by using a novel rotation angle 

of e = 7r/6 for the rotated quasi-orthogonal STBC of Eq.(3.1), the code not only 

provides full diversity gain and optimal coding gain, but also has a fixed small number 

of nearest neighbours per symbol. This result is given in the following theorem: 

Theorem 2. For e = 7r/6 in Eq.(3.1), the resulting rotated quasi-orthogonal STBC 

for a 22q_QAM constellation, with q being a positive integer, have the following prop­

erties: 

1. The code provides full diversity for the ML receiver. 

2. The maximum coding gain Copt = p(2~f-l) is achieved. 

3. The average number of nearest neighbours per symbol tends to 8 when q tends 

to infinity. 

In order to prove this theorem, we need to first establish the following two lemmas: 
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Lemma 2. For a, bE Z, let 

(3.14) 

Then, I~(a, b)1 > 1 for any non-zero integers a and b. 

Lemma 3. For a, b E Z, let 

(3.15) 

Then, I£(a, b)1 > 1 for any non-zero integers a and b. 

The proofs of Lemmas 2 and 3 are provided in Appendix A. We are now in a 

position to prove Theorem 2. 

Proof. The proof of Theorem 2 follows a similar argument from Eq.(3.5) to Eq.(3.10) 

of the proof of Theorem 1. Thus, consider Eq.(3.10) with e = 1f/6, we have 

( + jn: /6 ) (* -jn: /6 * ) - E + E ek e ek+p ek - e ek+p - re im (3.16) 

where Ere = lekl 2 -lek+pI2 and Eim = ekek+pejn:/6 - ekek+pe-jn:/6. Now the proofs for 

statements 1, 2 and 3 are as follows: 

For Statement 1: If Eim = 0, then, we have ekek+p = ekek+pej2n:/6. Since 

ej2n: /6 = ~ + {} j is an irrational number, we conclude that either ek = 0 or ek+p = 

O. Since one of ek and ek+p is not zero, Ere #- O. Now, combining this with 

Eqs.(3.8), (3.9) and (3.16) results in det (XH(e)X(e)) > O. It is clear that the result 

det (XH(e)X(e)) > 0 is also true when E im #- O. Hence, our code with e = 1f/6 yields 
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full rank for the matrix XH(e)X(e), i.e., it enables full diversity for the ML receiver. 

This completes the proof of statement 1. 

For Statements 2 and 3 we consider the following two cases: 

Case 1. Ere i- 0: 

Combining this condition with Eqs.(3.8) and (3.16), we arrive at the fact that the 

optimal coding gain is achieved if and only if the error symbols satisfy the following 

two Diophantine equations: 

±1 

o 

(3.17a) 

(3.17b) 

From Eq.(3.17b), we have eke'k+p = e'kek+pei271-j6. Since ei27f/
6 is an irrational number 

then either ek or ek+p must be zero. Since ek and ek+p cannot be both zero, then to 

satisfy Eq.(3.17a), we must have either ek = 0 and ek+p = ±1, ±j, or ek+p = 0 and 

ek = ±l,±j. 

Case 2. Ere = 0: 

This means lekl 2 
- lek+pl2 = 0 =? eke'k = ek+pe'k+p' Thus, both ek and ek+p are 

not zero because of the fact that one of them is not zero. Let the greatest common 

divisor of ek and ek+p be g. Then, ek = ggk, ek+p = ggk+p, and thus, gkgk = gk+pgk+p, 

where g, gk and gk+p are complex integers, and gk and gk+p are co-prime. Since 

the Gaussian integer ring is the unique factorization ring, i.e., gk and gk+p have 

no other common factor other than the unit, we have gk = 7Wk+p, where 71 is the 

unit, i.e., 71 = ±1, ±j. If 71 = ±j, then, E im = 4IgI2(g'kgk+pei7f /6 - 9kgk+pe-i7f/6) = 

47JIgl2 ((gk)2ei 7f/6 + g~e-i7f/6). If we let gk = a + jb, with a and b being real integers, 

then E im = 87JIgI2((a2 - b2) cos(1f/6) +2absin(1f/6)) = 47JIgI2E(a, b). By Lemma 3, we 
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obtain IEiml > 4, since one of a and b is not zero. 

Similarly, if 1] = ±1, then, Eim = 41]lgI2((gk?eill"/6_g~e-j1f/6) = 4j1]lgI2(-4abcos(1l"/6)+ 

2(a2 - b2) sin(7f/6)) = 4j1]lgI2~(a, -b). Now, using Lemma 2, we know that IEiml > 

4jlgl2 ~ 4 for a#-O and b #- o. It is clear that if either a = 0, b #- 0 or b = 0, a#- 0, 

then, IEiml ~ 41]lg12 ~ 4, where equalities hold if and only if either Igl = 1 and 

a = ±1, b = 0 or Igl = 1 and a = 0, b = ±l. 

Therefore, in this case, substituting either ek = ±1 and ek+p = ±1, or ek = ±j 

and ek+p = ±j, into Eq.(3.7), the optimal coding gain, Gopt = p(2~f-l)' is achieved. 

Therefore, when constellation size is large, we have 8 nearest neighbor points per 

symbol to achieve the optimal coding. This completes the proof of Statements 2 and 

3, and thus, Theorem 2. 

3.4 Simulations 

~ 
g 
w 
i'ii 
G> 

~10-4 . 

~ 
c( 

12 17 
SNR [dB] 

19 20 

D 

Figure 3.1: Performance Comparison of the Su-Xia [1] Rotated Quasi-Orthogonal 
STBC and Our Rotated Quasi-Orthogonal STBC for 16-QAM 
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. ,. .... . .. . ..................... ,.. - - Su's Quasi-STBC 
, ............... "........ - Our Quasi-STBC 
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SNR [dB] 

Figure 3.2: Performance Comparison of the Su-Xia [1] Rotated Quasi-Orthogonal 
STEC and Our Rotated Quasi-Orthogonal STEC for 64-QAM 

In this section, we consider a MISO system with 4 transmitter antennas and a sin-

gle receiver antenna. We examine the performance of the following rotated quasi-

orthogonal STEC, 

S1 S2 e
jB 

S3 ejBs4 

Xes) ~ J 2 (22q3 
- 1) 

-S2 s* -e-jBs* e-jB s* 1 4 3 
(3.18) 

ejBs3 ejBs4 S1 S2 

-e-jBs4 e-jB s* 
3 -S2 s* 1 

where the symbols {Si}, i = 1, ... ,4, to be transmitted are selected from the square 

22q-QAM constellation, where q is a positive integer. Comparing Eqs.(3.18) and (3.1), 

we see that p = 2, and the two symbol vectors to be transmitted are 81 = [S1 S2] and 
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82 = [83 84]. We also note that 

0(81) = l ~:2 :;] and O(~'82) = l-:~::S4 :';::;] 
The code is quasi-orthogonal because the columns of the code matrix in Eq.(3.18) 

are not all orthogonal. For e = 7r / 4, the code matrix yields the Su-Xia code [1]. 

We compare the performance of the Su-Xia code to the performance of the code 

with e = 7r /6, proposed in this chapter. White Gaussian noise is added during 

transmission. In both cases, the ML detector is used to decode the received signal, 

and thus, in both cases, we have the same complexity of decoding. Four symbols form 

the 22q_QAM constellation selected for transmission and are detected at the receiver 

each time. This is repeated 10,000,000 times for each SNR, and the error-rate is 

computed. 

Figs. 3.1 and 3.2 show computer simulation results for both codes when the trans­

mitted symbols are respectively selected from the 16-QAM and the 64-QAM constel­

lations. It can be seen from Fig. 3.1 that the quasi-orthogonal STBC in Eq.(3.18) with 

e = 7r /6 obtains the gain of 0.15 dB over the Su-Xia code at the bit error rate of 10-5 , 

when the 16-QAM signaling points are transmitted. When the QAM constellation 

size is increased to 64, we observe from Fig. 3.2 that the gain is increased to about 

0.3 dB, at the bit error rate of 10-6 . Such observations confirm that, as the size of 

the square QAM constellation increases, the performance using the quasi-orthogonal 

STBC with e = 7r /6 becomes increasingly superior to that of the Su-Xia code, and 

thus the theoretic analysis in this chapter is clearly verified. 
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Chapter 4 

The 4 x 1 MISO Channel and 

Simple ML Detection 

In Chapters 2 and 3 the conventional STBC design criterion and a new design factor 

were introduced for optimization. These optimizations are based on minimizing the 

worst case average of the PEP of the ML detector. This is because the geometrical 

structure of the decision regions, for a general MIMO channel equipped with the ML 

detector, is so irregular that it would be impossible to obtain an explicit exact error 

probability formula for the ML receiver [5]. This means that the error probability 

formula cannot be utilized as a criterion for the design of the optimal transmitter 

for the MIMO systems, and the current STBC designs may not be truly optimum 

in terms of the exact error probability. In this chapter, for the 4 x 1 MISO system 

transmitting signals from a 4-QAM constellation, a simplified closed form algorithm 

will be derived for ML detection such that given a received signal and the channel, the 

transmitted signal can be obtained by a threshold decision. Then, its decision regions 

for all the transmitted signal points will be completely and explicitly determined. This 
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detection algorithm will be specifically employed on the 4-group decodable STBC [24, 

25, 26, 27, 28, 29]. 

4.1 Channel Model and 4-Group Decodable STBC 

TRANSMITTER 

Figure 4.1: 4 x 1 MISO system 

A general model of a MISO system has been given in Chapter 2. This will be used 

specifically for the case where M t = 4 as shown in Fig. 4.1 such that 

Y= ~Xh+e (4.1) 

where Y is a 4 x 1 complex received signal vector, h is a 4 x 1 vector, e is a 4 x 1 

vector, and X is a 4 x 4, complex rotated transmitted signal matrix. Specifically, X 
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is a 4-group decodable matrix [26], where, 

Xl X3 0 0 

-x; X* 0 0 
X= 1 

(4.2) 
0 0 X2 X4 

0 0 -X4' x; 

Here, each symbol Xi, i = 1, ... ,4 represents a rotated version of a symbol selected 

from the 4-QAM constellation. This particular STBC structure was chosen since 

simple ML decoding is possible due to its orthogonal structure, and the fact that 

each group of 4 transmitted signals can be decoded separately. Comparing X in 

Eq.(4.2) to the right side of Eq.(3.5), we can see that this codeword X is a result of 

decomposing a rotated quasi-orthogonal STBC using Eq.(3.5), 

(4.3) 

where R is a real rotation matrix, such that 

and s = (81 82 83 84)T is the signal vector from the 4-QAM constellation prior to 
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rotation. Eq.(1.1) can now be re-written in terms of a channel matrix, 1-£, such that 

1-£= 

Y= VP1-£x+f" 
2 

hI h2 0 

h* 2 -h! 0 

0 0 h3 

0 0 h* 4 

Multiplying both sides of Eq.(4.4) by }p1-£H, 

(4.4) 

0 

0 

h4 

-h* 3 

( 4,5) 

where e = }p1-£Hf". Using the properties of the structure of the STBC in Eq.(4.2), 

we can separately decode the individual blocks of symbols. Thus, taking the real part 

of the first and third rows of Eq.(4.5) and using Eq.(4.3), 

[h = ( :: ) 

re 

(4.6) 
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(
_ _)T 

and (I = 6 6 re' with the variance of (I being 

that 

(4.7a) 

(4.7b) 

(4.7c) 

where 82 = (Sl S2)Tm, 83 = (S3 S4)~ and 84 = (S3 S4)~n' and (2 = (~1 ~3):' 
(3 = (~2 ~4) T and (4 = (~2 ~4)~. Here, (i, i = 1,2,3,4 are all zero mean Gaussian 

re nn 

noise having the same variance. Each of the four simplified MISO systems in Eqs. (4.6) 

and (4.7) consists of similar vectors of real symbols, so we can simply consider all of 

them using the same representation. Thus, whitening the noise in Eq.( 4.6) or Eq.(4.7), 
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the MISO system becomes 

r· t 

- 1 
where H = A"2R and 

i = 1,2,3,4 

McMaster University - Electrical Engineering 

o 1 (i 
-/lh31;+lh41 2 

(4.8) 

4.2 Closed Form ML Decoding Algorithm for the 

4-QAM Constellation 

In the previous section, we have seen that for 4 x 1 MISO system transmitting signals 

selected from 4-QAM constellation, the received signal can be separated into four 

independent groups, each having a general expression given by Eq. (4.8). In this 

section, we are going to develop a closed form ML detection algorithm for these 

received signal groups. Due to the similarity between these received signal groups, the 

algorithm developed will be equally applicable to each and therefore, in the following, 
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we simplify by omitting the subscript denoting these signal groups and write 

(4.9) 

Given that the transmitted symbols are selected from a 4-QAM constellation, we 

note that s is real and its elements 81 and 82 are of the binary set {-I, I}. The ML 

detector at the receiver detects the signal by selecting a signal s which minimizes the 

distance between the received signal r and the ideal received signal Hs. Thus, the 

detection algorithm is: 

mjn II r - Hs 112 
s 

n~n (r - HS) T (r - HS) 
mjn (II r 112 +2zTs + sT As) 

s 
(4.10) 

where 

(4.11) 

and 

(4.12) 

Note that A is a positive semi-definite (PSD) matrix, and substituting the parameters 

of R and A, we have 

r 
Al +A2 + AI-A2 cos 2B AI-A2 sin 2B 1 

2 2 2 

AI-A2 sin 2B Al +A2 - AI-A2 cos 2B 
2 2 2 

(4.13) 

where (hi)re and (hi\m are IID Gaussian random variables with properties given in 
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Assumption 1, then each Ai, i = 1,2, is a chi-squared random variable with 4 degrees 

of freedom, i.e., X~. Now, since II r 112 is the received signal energy and is constant, 

Eq.(4.10) is equivalent to 

mjn (ST As + 2zTs) 
s 

(4.14) 

Also, since this problem is binary, from Eq.(4.14), ansi and a22s~ are constant, and 

Eq.( 4.14) is further reduced to: 

:g1ip (a12s1 S2 + Zl Sl + Z2S2) ( 4.15) 
81,8 2 

Now, the ML objective function has been reduced to Eq.(4.15), consisting ofthree 

terms. To minimize this likelihood function we choose the estimated signals ~1 and 

~2 so that the most dominant two terms are minimized (made negative), with the 

Theorem 3. The optimal estimates of S, ~, for the 4-group decodable STBC with 

signals taken from a 4 -QAM constellation and the ML detector, can be determined as 

follows: 

(a) For a12 ;::: 0: 

(1) IZ11 ;::: IZ21 ;::: al2: Here, IZ11 and IZ21 are the most significant terms. Therefore 

we minimize the Eq.(4.15) by choosing the ML detected output to be 

( 4.16) 

(2) IZ21 > IZ11 ;::: a12: Following the same argument, minimizing Eq.(4.15), the 
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ML receiver output is 

(3) IZll ~ a12 ~ IZ21: Minimizing Eq.(4.15), the ML receiver output is 

(4) IZ21 ~ a12 ~ IZll: Minimizing Eq.(4.15), the ML receiver output is 

(5) a12 ~ IZll ~ IZ21: Minimizing Eq.(4.15), the ML receiver output is 

-sgn(Zl) 

sgn(zl) 

(6) a12 ~ IZ21 ~ IZll: Minimizing Eq.(4.15), the ML receiver output is 
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(b) For a12 < 0: 

(1) IZll ~ IZ21 ~ -a12: Minimizing Eq. (4.15), the ML receiver output is 

(4.22) 

(2) IZ21 ~ IZll ~ -a12: Minimizing Eq.(4.15), the ML receiver output is 

( 4.23) 

(3) IZll ~ -a12 ~ IZ21: Minimizing Eq.(4.15), the ML receiver output is 

-sgn(Zl) 

-sgn(zl) (4.24) 

(4) IZ21 ~ -a12 ~ IZll: Minimizing Eq.(4.15), the ML receiver output is 

(4.25) 

(5) -a12 ~ IZll ~ IZ21: Minimizing Eq.(4.15), the ML receiver output is 

(4.26) 

40 



M.A.Sc. Thesis - Anzhong Wong McMaster University - Electrical Engineering 

(6) -aI22: IZ21 2: IZll: Minimizing Eq.(4.15), the ML receiver output is 

( 4.27) 

If we assume that 81 and 82 are ofthe same sign, then the decisions in cases (a)- (3) 

to (a)-(6), from Theorem 3, represent definitely erroneous decisions contradictory to 

our assumption. On the other hand, if we assume that 81 and 82 are of different signs, 

none of the decisions in case (a) are contradictory to our assumption. If we assume 

that 81 and 82 are of different signs, then the decisions in cases (b)-(3) to (b)-(6), from 

Theorem 3, represent definitely erroneous decisions contradictory to our assumption. 

On the other hand, if we assume that 81 and 82 are of the same sign, none of the 

decisions in case (b) are contradictory to our assumption. 

4.3 Decision Regions for the ML Receiver for the 

4-QAM Constellation 

In the previous section, we have established the decision rules of the ML detector 

for the 4 x 1 MISO system transmitting symbols from a 4-QAM constellation in 

Theorem 3. In this section, we will establish the decision regions for the ML detection 

of the transmitted symbols based on the observed vector z = (ZI Z2)T = -Hr. 

Since there are four cases of signals ~1 = (1 If, ~2 = (1 -If, <;;"3 = (-1 -If, 

and ~4 = (-1 If to decide upon, we need to establish the following four hypotheses: 

(1) HI: S = ~1; (2) H2 : S = ~2; (3) H3: S = ~3; (4) H4 : S = ~4. 
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10 
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(a) Decision Regions for a12 2:: 0 

(a'2,-a'2) 

(-a'2,a'2) 

3 
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10 

I-"~'>I 

-l~!c-O ~---!c-8~~-6-!c-~--!-~-_~2 ~-----;!0:--~-!--~-+-~---+~---C!------"":'1O' 

Z, 

(b) Decision Regions for a12 < 0 

Figure 4.2: ML Decision Regions for Hypotheses Hi) i = 1, ... ) 4 

The decision also depends on the observed value of a12, Therefore, we establish the 

decision regions in the zlz2-plane as follows: 

Theorem 4. The ML decision regions, for each transmitted signal point of the closed 

form ML detector determined in Theorem 3, can be characterized as follows: 

(a) For a12 2: 0: Let us denote the region in which we decide on S = C;i, i = 1, .. , ) 4 

by Zil
a12

2':O' These regions are shown in Fig. 4.2(a}. From Eqs.(4.16} to (4.21) 

in the previous section, we have 

(1) For the decision region for s = C;I, applying the conditions of Eq.(4.16} such 
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that ~1 = -sgn(zl)' ~2 = -sgn(z2), and since both symbols of <;1 are +1, 

then 

(2) Similar to (1), 

{(Zl, Z2) : Zl :::; -a12, Z2 ~ -a12} 

U {(Zl,Z2): IZll:::; a12,Z2 ~ Zl} (4.29) 

(3) Similar to (1), 

(4.30) 

(4) Similar to (1), 

{(Zl,Z2): Zl ~ a12,z2:::; a12} 

U {(Zl,Z2): IZll:::; a12,z2:::; Zl} (4.31) 

(b) For a12 < 0: Let us denote the region in which we decide on s = <; i, i = 1, ... , 4 

by Zil
a12

<O' These regions are shown in Fig. 4.2(b). From Eqs.(4.22) to (4.27) 

in the previous section, we have 

(1) Similar to (a)-{1), 

{(Zl, Z2) : Zl :::; a12, Z2 :::; -a12} 

U {(Zl, Z2) : IZll :::; -a12, Z2 :::; -Zl} (4.32) 
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(2) Similar to (a)-{1), 

(4.33) 

(3) Similar to (a)-{1), 

{(Zl' Z2) : Zl ;:::: -a12, Z2 ;:::: a12} 

U {(Zl' Z2) : Z2 ;:::: -Zl, IZII ::; -a12} (4.34) 

(4) Similar to (a)-{1), 

(4.35) 

The establishment of the decision regions in Theorem 4 facilitates the analysis of 

the performance of the ML detector, developed in Theorem 3. The analysis will be 

presented in the following chapter. 
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Chapter 5 

Symbol Error Probability Analysis 

and Optimal Rotation Angle 

In Chapter 4, we focused our attention on the special case of a 4 x 1 MISO system 

transmitting symbols selected from a rotated 4-QAM constellation. We transformed 

the signal transmission model so that the received signals can be detected pair-wise in 

their real and imaginary parts. This reduces the ML detection to a series of threshold 

detections resulting in different decision regions in the plane of the observables. In 

this chapter, we utilize the decision regions established in Chapter 4 to calculate 

the closed form symbol error probability for the ML detector. This will be achieved 

by evaluating the probabilities of all correct decisions made by our threshold ML 

detector and deriving an asymptotic formula for the average error probability. Using 

this closed form symbol error probability we then find the optimal (yielding the 

minimum probability of detection error) rotation angle for the 4-group decodable 

STBC in Eq. (4.2), of which the transmission symbols are selected from the 4-QAM 

constellation. 
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5.1 Relationships Between Correct Probability De-

cis ion Regions for the 4-QAM Constellation 

From Eqs.(4.11) and (4.12), the observable vector is z = -HTr and A = HTH. 

Substituting the expression of r in Eq.(4.9), we have 

(5.1) 

where Zo = -As and v = - HT
" with the variance of v being 

(5.2) 

From Eq.(4.12), the eigen-decomposition of A is A = RT AR, where A = diag(Al' A2), 

and let A = (AI A2)T. Since v results from a linear transformation of Gaussian 

random variables, then the conditional probability density function of z given Hi, A 

and e, denoted by p(zIHi, A, e), is expressed by 

i=1, ... ,4 

(5.3) 

where Zo is a function of s, and s can assume anyone of the four forms C;i, i = 1, ... ,4 

corresponding to the four hypotheses Hi, i = 1, ... ,4, as mentioned in Section 4.3. 

Therefore, if we let ~ be the detected symbol vector, then, the conditional probabilities 
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of correct decisions can be calculated by evaluating the following integrals: 

J J p(zIHi, A, e)dz i = 1, ... ,4 

zil a12 2':O 

(5.4a) 

J J p(zIHi, A, e)dz i = 1, ... ,4 

zil a12 <O 

(5.4b) 

We note from Eq.(4.13) that a12 = >-1;>'2 sin2e, and, thus, a12 ~ 0 ::::} Al ~ A2 

and a12 :::; 0 ::::} Al :::; A2 for the rotating angle 0 :::; e :::; 1f /2. The range of 0 :::; 

e :::; 1f /2 is the only range of e that needs to be considered, since the 4-QAM signal 

constellation is symmetrical between all four quadrants in the complex plane. Also, 

from Assumption 4, each entry of s is independently and equally likely chosen from 

the 4-QAM constellation. Thus, all hypotheses Hi, i = 1, ... ,4, are equally likely, 

and the average conditional probability of correct decision is simply the arithmetic 

average of the probabilities of correct decisions, such that 

4 

L P(Hi)Pc(~IHi' e, A, Al ~ A2) 
i=1 

1 4 A 

"4 L Pc(sIHi, e, A, Al ~ A2) 
i=1 

4 

LP(Hi)Pc(~IHi' e, A, Al < A2) 
i=1 
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Therefore, the average conditional probability of correct decisions taken over the 

random vector A and given the rotation angle B, denoted by Pc(§IB), is determined 

by 

One of our main goals in this chapter is to obtain the asymptotic formula of Pc(§IB) 

when the SNR is large. To do that, let us explore the relationships among the 

probabilities of correct decisions. From Eqs. (4.28) - (4.35), the ML decision regions 

shown in Figs. 4.2(a) and 4.2(b) possess some symmetric properties directly resulting 

in the following property: 

Property 2. Lel Pc(§IHi , B, A, Al > A2) and Pc(§IHi , B, A, Al < A2) be defined by 

Eq.(5.4). Then, we have 

Pc(§IH1 , B, A, Al ~ A2) 

Pc(§IH2, B, A, Al ~ A2) 

Pc(§IH2, B, A, Al < A2) 

Pc(§IH1, B, A, Al < A2) 

Pc(§IH3 , B, A, Al ~ A2) 

Pc(§IH4 , B, A, Al ~ A2) 

Pc(§IH4 , B, A, Al < A2) 

Pc(§IH3 , B, A, Al < A2) 

Due to this property, we need only consider the probabilities Pc(§IHr, B, A, Al ~ A2) 

and Pc(§IH3 , B, A, Al ~ A2) when a12 ~ 0, and the probabilities Pc(§IH2, B, A, Al < A2) 

and Pc(§IH3 , B, A, Al < A2) when a12 < O. To further simplify the integrals, Eq.(5.4), 

we need to develop an important property on the conditional probability density 

function p(zIHi, A, B), i = 1,2,3. 
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Property 3. The probability density function p(zIHi, -X, B), defined by Eq.(5.3), has 

the following property: 

p(zIHl' ('\1 '\2)T, B) 

p(zIH2' ('\1 '\2f, B) 

p(zIH2' ('\2 '\If, B) 

p(zIH3' ('\2 '\If, B) 

(5.7a) 

(5.7b) 

The proof of Property 3 is given in Appendix B.1. Using this property, we can find 

a relationship between probabilities Pc(§IHi , B, -X,'\1 2: '\2) and Pc(§IHi, B, -X,'\1 < '\2), 

i=1,2,3. 

Property 4. If we let 

Pc(§IHi, B,'\l 2: '\2) 

Pc(§IHi, B,'\l < '\2) 

then, we have 

EAl~A2 [Pc(§IHi , B, -X,'\1 2: '\2)] 

EAlSA2 [Pc(§IHi , B, -X,'\1 < '\2)] 

Pc(§IH3, B,'\l < '\2) 

Pc(§IH2, B,'\l < '\2) 

Pc(§IH2, B,'\l 2: '\2) 

Pc(§IHl, B,'\l 2: '\2) 

i=1,2,3 

i=1,2,3 

(5.8a) 

(5.8b) 

Property 2 and Property 4, the proof of which is given in Appendix B.2, together 

tell us that only the probabilities of the correct decisions, Pc(§IH2, B,'\l 2: '\2) and 

Pc(§IH1 , B,'\l 2: ).,2), need to be considered to obtain the overall probability of correct 

decisions. In other words, the calculation of Pc(§IB), based on Eqs.(5.6) and (5.5), is 
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significantly simplified to the following equation: 

(5.9) 

Therefore, the focus of the remaining sections of this chapter will be calculating 

5.2 Gaussian Probability Integrals and the Q-function 

Since the evaluation ofthe probability of correct decisions in Eq.(5.9) involves the inte­

grals of Gaussian densities, the results will be intimately related to the Q-function [31, 

37]. In this section, we establish two fundamental lemmas which will be helpful to 

simplify the probability integrals involving Gaussian distributions. The Q-function is 

defined as 

1 (Xl (u2
) Q(x) = V21f Jx exp -2 du (5.10) 

Alternatively, the following two equivalent formulae [31, 37] of the Q-function play 

an important role in the diversity analysis of error performance for wireless commu-

nication systems: 

Q(x) li~ ( X2) - exp - d¢ 
7r a 2 sin2 ¢ 

for x ~ 0 (5.11a) 

Iii ( X2) - exp - d¢ 
7r a 2 sin2 ¢ 

for x ~ 0 (5.11b) 
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In the following, we will derive two expressions for a two-dimensional vector, x = 

(Xl X2?, that will be used to simplify the correct probability integrals established 

in the previous section. For notation and discussion convenience, we let f(x) denote 

the function f(x)' exp (-xTpx) , where P is a 2 x 2 PSD matrix, i.e., P?= O. 

15 

10 

'" 0 

oS 

·10 

-15[] 

x2=b 

x2~b 

5 

X, 

Figure 5.1: Integral Domain in Lemma 4 

Lemma 4. Let II = IIv f(X)dx2dxl, where V 

b; a, b ~ O} as shown in Fig. 5.1. Then, we have 

10 

(5.12) 

The proof of Lemma 4 can be found in Appendix C.l. In particular, consider the 

case when P = ~I, a = 0 and b = X in Lemma 4. Then, using the definition of V, we 

have 

II 1= exp ( - ~i)dXl I: exp ( - ~~)dX2 
7r x (1- 2Q(x)) 
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and using the result in Eq.(5.12), we have 

1~ (1- exp (- ~22 )) d¢ 
_7£ 2sm ¢ 

2 

1~ 1~ ( X2) 2 d¢ - 2 exp - . 2 d¢ 
o 0 2sm ¢ 

1~ ( X2) 1f - 2 exp - . 2 d¢ 
o 2sm ¢ 

Therefore, we have Q(x) = ~ Jo~ exp ( - 2s~~2 1» d¢, which is exactly the same as 

Eq.(5.11a). In addition, when P = ~I and a = b = x in Lemma 4, using the 

definition of V, we have 

II 100 

exp ( - ~i)dXl 1: exp ( - ~~)dX2 
21f X Q (x) x (1 - 2Q (x) ) 

On the other hand, using the result in Eq.(5.12), we obtain 

1~ ( ( X2) (X2)) exp - -exp - d¢ 
_ 7£ 2 cos2 ¢ 2 sin 2 ¢ 

4 

1~ ( x2) 1~ ( X2) 2 exp --- d¢- 2 exp --- d¢ 
o cos2 ¢ 7£ cos2 ¢ 

4 

1~ ( X2) -2 exp --.- d¢ 
o sm2 ¢ 

1~ ( X2) 1~ ( X2) 2 exp --.- d¢-4 exp --.- d¢ 
o sm2 ¢ 0 sm2 ¢ 

1~ ( X2) 21f X Q(x) - 4 exp --'-2- d¢ 
o sm ¢ 

Hence, we have Q2(X) = ~ Jo~ exp (- Si~~1» d¢, which is the Eq.(5.11b). This shows 
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that our Lemma 4 is a generalization of Eq.(5.11). 

Figure 5.2: Integral Domain in Lemma 5 

Lemma 5. Let h = Irv f(X)dx2dxI, where V = {(Xl, X2) c - b ::::; Xl ::::; a, -b ::::; 

X2 ::::; Xl - c; a, b, c ~ O} as shown in Fig. 5.2. Then, 

The proof of Lemm.a 5 is given in Appendix C.2. 
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5.3 Analysis of the Average Probability of Correct 

Decision for the 4-QAM Constellation 

Case 1. s = <;1 = (1 If: 

Let us now examine the probability of the correct decision for s = <;1 = (1 If 

under the condition that a12 2: O. From Eqs.(4.28) and (5.4a), we see that 

where p(zIH1'.x, 8) is defined in Eq.(5.3). Now, let z = (Z1 z2f = z - zo, where 

Zo = -As = -A (1 If, then 

where p(zl.x, 8) is defined as 

(5.14) 
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and J1 (A, e), J2 (A, e) and .6.1 (A, e) are defined as 

(5.15a) 

(5.15b) 

(5.15c) 

Case 2. s=~2=(1 -If: 

For this case, from Eqs.(4.29) and (5.4b), and referring to Fig. 4.2(a), the proba­

bility of correct decision for s = ~2 = (1 - If when a12 2 a is given by 

ff p(zIH2' A, e)dz2dz1 

zZla122:0 

Again, let z = (Z1 z2f = Z - Zo, where Zo = -As = -A(1 - If, then 

(5.16) 
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where L~d.\, 8) and ~3(.\' 8) are defined as 

(5.17a) 

(5.17b) 

It is important to note that 

(5.18) 

where J3 (.\, 8), J4 (.\, 8) and J5 (.\, 8) are defined by 

(5.19a) 

(5.19b) 

(5.19c) 

In the following, we will evaluate the expected value of each Ji (.\, 8) for i = 1, ... ,5 

over .\. First, we have 

Property 5. Let J1 (.\, 8), J2 (.\,8) and J3 (.\, 8) be defined in Eqs.(5.15a), (5.15b) 
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and (5.19a) respectively. Then, 

J1(A,()) Q(~) (5.20a) 

J2(A, ()) Q(~) (5.20b) 

J3 (A, ()) 1-Q (v~a22) (5.20c) 

where the Q-function is defined in Eq.(5.10). 

The proof of Property 5 is provided in Appendix B.3. In order to obtain the 

expected value of each Ji(A, ()) for i = 1,2,3, we need the following property: 

Property 6. Let Al and A2 be two independently random variables with each being 

chi-squared distribution X~ and a(A1 , A2) be a homogenous linear function of Al and A2 

such that a(Al, A2) = A2aG~, 1). Considering the range Al 2: A2, we can let Al = uA2, 

where u 2: 1. Then, we have 

(5.21) 

The proof of Property 6 is provided in Appendix BA. Note that all, a12 and a22 

are all of the same form of homogenous linear function as a(Ab A2) in Lemma 6. Now, 

taking advantage of Properties 5 and 6, we can obtain the following Property 7: 

Property 7. Let J1 (A, ()), J2(A, ()) and J3 (A, ()) be defined in Eq.(5.20). If we let Al 

and A2 be two independently random variables, each being of chi-squared distribution 
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x~, then, we have 

1 
(5.22a) -

2 

560(3 - 2 cos2 8) -4 O( -5) 
. 48 P + P 

S111 
(5.22b) 

560(3 - 2 sin
2 

8) -4 O( -5) 

cos4 8 p + P (5.22c) 

1 560(3 - 2 cos2 8) -4 O( -5) 
-2 - . 48 P + P 

S111 
(5.22d) 

The proof of Property 7 is given in Appendix B.5. 

Now, let us turn our attention to the evaluations of the expected values of J4 (.\, 8) 

and J5 (.\, 8), which are more complicated than those of J1 (.\, 8), J2(.\,8) and J3 (.\, 8). 

To evaluate J4 ('\,8), we employ Lemma 4, and in particular, we set a = all and 

b = a22 and then take the expected value. This gives 

Property 8. Let J4 (.\, 8) be defined in Eq.(5.19b). Letting Al = UA2 and expressing 

A2all(U, 1) = all(Al, A2), A2aI2(U, 1) = aI2(Al, A2), and A2a22(U, 1) = a22(Al, A2), then 

the expected value of J4 (.\, 8) is given by 

The proof of Property 8 is given in Appendix B.6. 

We now employ Lemma 5 for the evaluation of J5(.\, 8). Applying Lemma 5 to 

J5 ('\,8), specifically with a = all, b = a22 and c = all + a22 - 2a12, we can then 
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take the expected value of J5 (>", ()). This leads to Property 9, the proof of which is 

provided in Appendix B.7. 

Property 9. Let J5 (>", ()) be defined in Eq.(5.19c). Letting)..1 = U)..2, and again 

expressing )..2an(u,1) = an ()..1, )..2), )..2aI2(U,1) = aI2()..I, )..2), and )..2a22(u,1) = 

a22()..I, )..2), then the expected value of J5 (>", ()) is given by 

dt 

(t2 + 1)5 

dt O( 5) 
(t2 + 1)5 + p-

where c(u, 1) = an(u, 1) + a22(u, 1) - 2aI2(U, 1). 

Now, combining Eqs.(5.13), (5.16), (5.18) and (5.6) with Property 7, we can arrive 

at the following: 

E.\1~.\2 [1] - E.\1~.\2 [J1 (>", ())] - E.\1~.\2 [J2 (>", ())] + E.\1~.\2 [J3 (>", ())] 

- E.\1~.\2 [J4 (>.., ())] - E.\1~.\2 [J5 (>", ())] 

1 _ 35(3 - 2 cos
2 

()) -4 _ 35(3 - 2 sin
2 

()) -4 _ E [J (>.. ())] 
128 sin4 () p 256 cos4 () P .\1~.\2 4 , 

- E.\1~.\2 [J5(>", ())] + O(p-5) (5.23) 
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Using Properties 8 and 9 and grouping together similar terms in the combined equa-

tion, we obtain 

dt 

(5.24) 

where c( u, 1) = an (u, 1) + a22 (u, 1) - 2a12 (u, 1). All the above discussions can be 

summarized as the following theorem: 

Theorem 5. Let Pe(§18) denote the average probability of erroneous decisions) z.e.) 

Pe(§18) = 1 - Pc(§18). Then) for large values of the SNR per symbol) p) we have the 

following asymptotic expression: 

(5.25) 

where G(8) is called the coding gain and is given by 

G(8) = 3080(3 - 2 cos
2 

8) 560(3 - 2 sin
2 

8) G (8) G (8) 
3 . 4/l + 4L1 + 1 + 2 

S111 u cos u 
(5.26) 
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with G1(e) and G2(e) defined by 

and c(u, 1) = an(u, 1) + a22(u, 1) - 2a12(U, 1). 

Theorem 5 provides us with a closed form expression of the probability of error 

in terms of the rotation angle e for the simplified ML detector that can be applied 

in the 4 x 1 MISO system. The optimal rotation angle can then be found in order 

to minimize the probability of error, Pe , when a STBC of the form of Eq.(4.2) is 

employed. 

5.4 Optimal Rotation Angle for the Minimum Prob-

ability of Error for the 4-Group Decodable STBC 

Theorem 5 provides us with an expression for the coding gain, G(e), in terms of the 

4-group decodable STBC rotation angle, e. Here, G(e) consists of a sum of two closed­

form functions of e and two Gaussian integrals, G1(e) and G2(e). These Gaussian 

integrals can be evaluated numerically at different values of e. These together with the 

two closed-form functions of e provides us with the numerical values of G(e) enabling 
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Figure 5.3: The Coding Gain as a Function of the Rotation Angle of a 4-Group 
Decodable STBC 

us to locate the optimal B yielding the minimum average probability of error. The 

numerical evaluation of G(B) is shown in Fig. 5.3, where the optimal B was found to 

be Bopt = 1.043 rad, yielding a minimum G(B), Gmin(B) = 10.737 X 2l2. Thus, Bopt is 

the optimum angle of rotation for the 4-QAM constellation so that the probability of 

error is reduced to a minimum when detected by the simplified ML detector. Note 

that G(B) -t 00 at points B = 0, 7f /4, 7f /2, which should be impossible since Pe ::; 1. 

This is due to the assumptions made in the proofs of Properties 6, 8 and 9, that 

the functions J1,· .. ,J5 all exist as functions of AI, A2 and p-4, for any value of B. 

In other words, we assume full diversity for the system when calculating Pe(§IB) in 

Theorem 5. From Appendix B.4, B.6 and B. 7, one can see that this assumption does 

not hold for B = 0, 7f / 4, 7f /2, and the integrals with respect to u tend to 00 at those 

values of B. 
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Chapter 6 

Summary and Conclusion 

6.1 Summary 

In this thesis, two problems concerning MISO systems have been considered. 

The first problem involved the design of STBC codes for the MISO system. We 

examined the performance of the Su-Xia rotated quasi-orthogonal STBC for large 

QAM constellation and concluded that the deterioration of performance was due to 

the increase of the average number of nearest neighbours. By examining the average 

block error probability instead of the PEP, the average number of nearest neighbours 

was included as a new factor to the conventional rotated quasi-orthogonal STBC 

design criterion. It was shown that the currently accepted optimal rotation angle of 

7r / 4 in the Su-Xia code is not optimal for square QAM constellations in terms of this 

new factor. In fact, by making use of the Pell Diophantine equation and Diophantine 

approximation theory, we proved that the average number of nearest neighbours per 

symbol tends to infinity for the Su-Xia code, when the size of the constellation is 

infinite. This result is shown in Theorem 1. Furthermore, we found a novel rotation 
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angle, 'if /6, and proved that the resulting rotated quasi-orthogonal STBC not only 

provides full diversity and the optimal coding gain, but also has a average number 

of nearest neighbours per symbol that tends to 8, when the constellation size tends 

to infinity. This is shown in Theorem 2. The simulation results obtained verify these 

theoretical analysis. 

The second problem that was examined was the irregular geometrical structure 

of the decision regions, for a general MIMO channel equipped with the ML detector. 

These decision regions are so irregular that it would be impossible to obtain an explicit 

exact error probability formula for the ML receiver. Thus, current STBC designs in a 

MIMO system are mainly based on the PEP (or its upper bound). This means that 

the exact error probability formula cannot be used as a criterion for the design of the 

optimal transmitter for the MIMO systems, and the current STBC designs may not be 

truly optimum in terms of the exact error probability. To rectify this problem, in this 

thesis, a closed form of the exact error probability for a 4 x 1 MISO system., equipped 

with a ML detector transmitting signals from a 4-QAM constellation, was derived 

based on novel analyses of different Gaussian probability integrals. These analyses 

are listed as properties and lemmas in Appendix Band C. For such a system, we 

first obtained a closed-form algorithm for ML detection such that given a received 

signal and the channel, the transmitted signal was obtained by a simple threshold 

decision. This result is shown in Theorem 3. Then, the ML decision regions for all 

the transmitted signal were completely and explicitly determined and are shown in 

Theorem 4, with the decision regions presented in Figs. 4.2(a) and 4.2(b). These 

decision regions obtained have a geometrical structure with sym.metric properties, 

allowing for a much simplified calculation of the closed form error probability, and, 
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thus, a closed form error probability was analyzed utilizing these decision regions. 

Specifically, we analyzed the asymptotic behavior of the average error performance 

taken over all random channel coefficients, when SNR is high. This resulted in an 

asymptotic expression of the probability of error found in Theorem 5. Finally, the 

closed-form expression of the error probability was applied to the 4-group decodable 

STBC, and the optimal rotation angle was obtained to minimize the probability of 

error, based on the asymptotic closed form probability of error formula. This result 

is shown in Fig. 5.3 with the optimal rotation angle being 1.043 rad. 

6.2 Future Work 

Looking forward, there are a number of different problems, yet umesolved by this 

thesis, that can be undertaken. These are listed as follows: 

1. Finding the optimal rotation angle with respect to the average number of near­

est neighbours criterion: In this thesis, the current optimal rotation angle for 

rotated quasi-orthogonal STBC, 7r / 4, was found to be undesirable with respect 

to the average number of nearest neighbours criterion. Thus, a new rotation 

angle of 7r /6 was introduced, which is optimal in terms of the current STBC 

design criterion, and, in addition, performs much better than the STBC with 

an angle of pi / 4, when the QAM constellation size tends to infinity. However, 

it has not been proven if 7r /6 is the optimal rotation angle in terms of this new 

factor. 

2. Creating a closed form ML detection algorithm and closed form error probabil-
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ity analysis for any general square QAM constellation: A closed form ML de­

tection algorithm and closed form ML probability of error were obtained for 

a 4 x 1 MISO system given transmitted signals from a 4-QAM constellation. 

Further research can be done to extend this algorithm to any general square 

QAM transmitted signal constellation. 

3. Extending the closed form ML detection algorithm to the rotated quasi-orthog­

onal STBC structures: The closed form ML detection algorithm was solved for a 

4-group decodable STBC structure. Further research can be done to extend this 

algorithm to different STBC structures, such as the rotated quasi-orthogonal 

STBC. 

6.3 Conclusion 

In this thesis, a new STBC design criterion for the ML receiver and a closed form ML 

detection algorithm for a 4-group decodable STBC were created for a 4 x 1 MISO 

system. The results obtained are very encouraging and shows that these ideas deserve 

further exploration. In the previous section, a few elaborations to this research were 

suggested - these are by no means exhaustive. Until these areas are fully explored, the 

research on this subject will be far from complete, by which time, other theories will 

be put forth, and research on MIMO communications will continue onward, allowing 

for greater knowledge and improvement of wireless communications. 
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Appendix A 

Proofs of Lemmas in Chapter 3 

A.I Proof of Lemma 2 

Proof. First, we consider the case where Ibl = 1. If b = 1, then, b..(a, 1) = 2v'3a + 

a2 - 1. The two roots of quadratic equation a2 + 2v'3a - 1 = 0 are al = -(1 + v'3) 

and a2 = 2 - v'3 and thus, there are only three integers in the interval [al a2], i.e., 

-2, -1, O. In this case, it can be verified by calculation that 1b..(-2, 1)1 = 13 - 4v'31 > 

1 and 1b..(-1, 1)1 = 1-2v'31 > 1. 

On the other hand, we know that function b..(a, 1) is monotonically decreasing and 

greater than 0 for a < al and that b..(a,l) is monotonically increasing and greater 

than 0 for a > a2. The integer closest to al is aL = -3 and the integer closest to a2 is 

aR = 1. Since 1b..(aL' 1)1 > 1 and 1b..(aR' 1)1 > 1, we arrive at Ib..(a, 1)1 > 1 for either 

a ::; aL or a 2:: aR. Therefore, Ib..(a, 1)1 > 1 for any nonzero integer a. Similarly, we 

can also prove that 1 b.. (a, -1) 1 > 1 for any nonzero integer a. 

Hence, in the following, we only need to consider the case where Ibl 2:: 2. We 
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notice that .6. (a, b) can be decomposed into a product of the following three factors: 

We consider the following two cases: 

Case 1: % > -J3. In this case, let 01 = ~ and examine three possibilities: 

1. -J3 < % < 2 - J3 - 01. In this situation, we have 

1.6.(a,b)1 b21%-(2-V3)II%+(2+V3)1 

> 4 x 01 X 1(2 + V3) - V31 

801 = 1 

2. % > 2 - J3 + 01. Similar to Situation 1, we can obtain 

1.6.(a,b)1 b21% - (2 - V3)II% + (2 + V3)1 

> 4 x 01 X 1(2 - V3) + 01 + (2 + V3) I 

401(4 + (1) > 1 

(A.l) 

(A.2) 

(A.3) 

3. 2 - J3 - 01 < % < 2 - J3 + 01. In this situation, for discussion convenience, 

we let U1 = 2 - J3 and fr(u) = u2 
- 4u + 1. Then, fr(U1) = 0 and 

fr (%) - fr(U1) 

(% - u1) (% + U1 - 4) 
(%-u1) (%-(2+V3)) 
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Hence, we have that 

which leads to 

~ - (2 + J3) 
a2 

- 4ab + b2 

b2 (~ - (2 + J3)) 

1 
> 

b2
1 ~ - (2 + J3) I 

1 
(A.5) 

since la2 
- 4ab + b2 1 > 1 for any nonzero integers a and band 0 < ~ < 2 + J3. 

Now, combining Eq. (A.l) with Eq. (A.5) yields 

I~(a, b)1 > 2+J3+~ 
2+J3-~ 

2+J3+~ 
2+J3-~ 

> 1 

Therefore, we can conclude in Case 1 that I~(a, b)1 > 1. 

Case 2: ~ < -J3. In this case, similar to Case 1, let 52 

following three situations: 
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1. -2 - -J3 + 02 < % < --J3. In this situation, we have 

I~(a, b)1 b21~ - (2 - v'3)II~ + (2 + v'3)1 

> 4 x I (2 - v'3) + v'31 X 02 

802 = 1 

2. % < -2 - -J3 - 02. Similar to Situation 1, we can obtain 

I~(a, b)1 b21~ - (2 - v'3)II~ + (2 + v'3)1 

> 4 x 1(-2 - v'3 - 02) - (2 - v'3) I X 02 

402(4 + 02) > 1 

(A.6) 

(A.7) 

3. -2 - -J3 - 02 < % < -2 - -J3 + 02. In this situation, for notational convenience, 

we let U2 = -2 - -J3 and h(u) = u2 + 4u + 1. Then, h(U2) = 0 and 

h (~) 

Hence, we have that 

h (~) - h(U2) 

(~ - u2) (~ + U2 + 4) 
(~ - u2 ) (~+ (2 - v'3)) 

~ - (2 +-J3) 
a2 

- 4ab + b2 

b2 (% + (2 - -J3)) 
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which leads to 

1 
> 

b2 1% + (2 - J3)1 
1 

b2 (-% - (2 - J3)) 
(A.9) 

since la2 
- 4ab + b2

1 > 1 for any nonzero integers a and band % < -(2-J3) < O. 

Now, combining Eq. (A.l) with Eq. (A.9) yields 

I~(a, b)1 > 
% - (2 - J3) 
% + (2 - J3) 

-% + (2 - J3) 
-~ - (2 - J3) 

> 1 

we can prove that I~(a, b)1 > 1 and thus, complete the proof of Lemma 2. 0 

A.2 Proof of Lemma 3 

Proof. The proof of Lemma 3 is similar to that of Lemma 2. First, we examine the 

case where Ibl = 1. If b = 1, then, £(a,l) = 2a + J3(a2 - 1). The two roots of 

quadratic equation £(a, 1) = J3a2 + 2a - J3 = 0 are al = -J3 and a2 = f. There 

are only three integers belonging to the interval [al a2], i.e., -1,0,1. 

It is not difficult to check that 1£(±1,1)1 = 2 > 1. In addition, we know that 

function £ (a, 1) is monotonically decreasing and greater than 0 for a < aI, and that 

£(a, 1) is monotonically increasing and greater than 0 for a > a2. If we let aR and aL 

denote the two integers closest to al and a2, respectively, then, aL = -2 and aR = 2. 
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Since 1£(aL' 1)1 > 1 and 1£(aR' 1)1 > 1, we obtain I£(a, 1)1 > 1 for either a ::; aL or 

a ~ aR. Therefore, we always have I£(a, 1)1 > 1 for any nonzero integer a.Similarly, 

we can also prove that 1 £ (a, -1) 1 > 1 for any nonzero integer a. 

Hence, in the following, we only need to examine the case where Ibl ~ 2. Note 

that £ (a, b) can be decomposed into a product of the following three factors: 

We consider the following two cases: 

Case 1: ~ > - ~. In this case, we let C1 = ~ and discuss three possibilities: 

1. - V; < ~ < V; + C1· In this situation, we have 

I£(a, b)1 V3b2 ~ - V3 i ~ + V3i 
b 3 b 

> 4V3 X C1 X V3 _ V3 
3 

2. ~ > ~ + C1. Similar to Situation 1, we can obtain 

I£(a, b)1 V3b2 ~ - V3 i ~ + V3i 
b 3 b 

V3 
> 4V3 X 0'1 X 3 + C1 + V3 

4V3 
4C1 (-3- + C1) > 1 

(A.10) 

(A. 11) 

(A.12) 

3. ~ - C1 < ~ < ~ + C1. In this situation, for discussion convenience, we let 
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91 (*) 91 (*) - 91(Vl) 

3 (* - VI) (* + VI) 

Hence, we can obtain 

a 91 (%) - -VI 
3 (% + VI) b 

3a2 - b2 

3b2 (% + VI) 

which leads to 

1* -vII 
1 

> 
3b2 1% + vII 

1 
(A.13) 

3b2 (% + VI) 

since 13a2 
- b2 1 > 1 for any nonzero integers a and band % > ~ -Cl > O. Now, 

combining Eq.(A.I0) with Eq.(A.13) yields 

I£(a, b)1 > J3 %+J3 
3 % +Vl 

J3 %+J3 -. 
3 % +Vl 

J3 1+J3 
> 

3 1 +Vl 
1 
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since E < '{;-£1 < 1 and function ~~:'!:, with respect to variable E' is monotonically 

decreasing for % > O. Therefore, we can conclude that 1.6.(a, b)1 > 1 in this case. 

Case 2: E < - ~. In this case, similar to Case 1, we let C2 = ~ and consider the 

following three situations: 

1. -J3 + C2 < E < - ~. In this situation, we have 

I£(a, b)1 \/'3 b2 ~ - J3 1 ~ + \/'31 
b 3 b 

J3 J3 > 4\/'3 x - + - X C2 
3 3 

8C2 = 1 (A.14) 

2. % < -J3 - £2. Similar to Situation 1, we can obtain 

I£(a, b)1 \/'3b2 ~ - J3 1 ~ + \/'31 
b 3 b 

> 4\/'3 x (-\/'3 - c2) - V; x C2 

4J3 
4\/'3c2(-3- + c2) > 1 (A.15) 

3. -J3 - C2 < % < -J3 + £2. In this situation, for notational convenience, we let 

V2 = -J3 and g2(V) = v2 - 3. Then, g2(V2) = 0 and 

g (~) - g2 ( V2) 

(~ - V2) (~ + V2 ) 

(~ - V2) (~ + V2 ) 
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Hence, we have that 

92 (~) 
~ +V2 

a2 - 3b2 

b2 (~ + V2) 

which leads to 

(A.17) 

since la2 
- 3b21 > 1 for any nonzero integers a and b and ~ < -V3 + 1::2 < O. 

Now, combining Eq. (A.l0) with (A.17) yields 

I£(a, b)1 > vis 

1 

This completes the proof of Lemma 3. D 
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Appendix B 

Proofs of Properties in Chapter 5 

In this appendix we let 15 = pI8 to simplify the calculations. 

B.l Proof of Property 3 

have 

A sin e ) 
case 

(B.18) 
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On the other hand, we have 

R 
(

0 1) ( cos e sin e ) 
-1 0 - sin e cos e 

(
-sin e cos e ) (0 -1) (0 1) 

- cos e - sin e 1 0 -1 0 

(

COS e sin e ) (0 1) (0 1) 
- sin e cos e -1 0 = R -1 0 

(B.19) 

Now, substituting Eq.(B.19) into Eq.(B.18) produces 

A (0 -1) A (0 1) 
1 0 -1 0 

By combining this with :Evv = 21pA and Zo = -A(l If, we can obtain 

p(z+A(-l -l)TfA-l(z+A(-l -If) 

p(z + A(l - Iff A -l(Z + A(l - If) 

where z is determined by 
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Therefore, we have 

This gives the proof of Eq.(5.7a) in Property 3. Similarly, we can obtain the proof of 

Eq.(5.7b) and thus, completes the proof of Property 3. o 

B.2 Proof of Property 4 

Proof. We know from Eqs.(4.34) that for al2 < 0, the probability of the correct 

decision on s = ~3 = (1 If is given by 

J J p(zIH3' (AI A2)T,O)dz2dzl 

Z3!a12<O 

By Property 3, Pc(§IH3, 0, A, Al < A2) can be represented as 

Pc(§IH3, 0, A, Al < A2) = J J p(zIH2' (A2 Alf,O)dz2dzl (B.20) 

Z3!a12<O 

where z = (Z2 - ZI)T. After transformation: Zl = -X2 and Z2 = Xl, the decision 

region, Z3I
a12

<O' changes to 
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Correspondingly, Eq.(B.20) is transformed into 

J J p(xIH2' (A2 Alf, e)dx1dx2 (B.21) 

r31 a12 <O 

EA1 <A2[PC(§IH3 ,e,A,Al < A2)] 

i
r r f(Al, A2) if p(xIH2' (A2 AI), e)dXldx2dAldA2 JAl<A2 

r3I a12 <o 

i
r 

r f(/-L2, /-Ll) if p(zIH2' (/-Ll /-L2f, e) dZ1dZ2d/-L1 d/-L2 J JL2<JLl 
Z21a1220 

i
r 

r f(/-Ll,/-L2) if p(zIH2' (/-Ll /-L2f, e)dz1 dZ2 d/-L 1 d/-L2 J JLl?JL2 
Z21a1220 

Pc (§IH2, e, Al ~ A2) (B.22) 

where we use the fact that f(/-L2, /-Ll) = f(/-LI, /-L2)' This gives the proof of Eq.(5.8a). 

Similarly, we can obtain the proof of Eq.(5.8b) and hence, this completes the proof 

of Property 4. D 

B.3 Proof of Property 5 

Proof. For notational simplicity, let 

(B.23) 
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where A is defined in Eq.( 4.13). Then, we have bll det (A) = a22, b22 det (A) = all, 

b12 det (A) = -a12, and thus, 

This completes the proof of Eq.(5.20a) 111 Property 5. Similarly, we can prove 

Eqs.(5.20b) and (5.20c). This completes the proof of Property 5. o 
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B.4 Proof of Property 6 

Proof. Using the first formula of Eq.(5.11) and the probability density function of Al 

and A2, AIA2e-(Al +A2), we can express EAl?A2 [Q ( V2j.kx(Al, A2))] as 

This, after linear transformation Al = UA2 and then using the homogenous linear 

property a(uA2' A2) = A2a(u, 1), can be changed into 

This completes the proof of Property 6. o 
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B.5 Proof of Property 7 

Proof. First, we have 

This completes the proof of Eq. (5.22a) in Property 7. In addition, notice that a22 

is the linearly homogenous function with respect to Al and A2. Hence, applying 

Property 6 to J1 (A, 0) yields 

105 (Xl U --5 

128p4 J1 a~2(u, 1) du + O(p ) 

105 (XJ u du + 0(p-5) 
8p4 J1 [(1 - cos 20)u + 1 + cos 20]4 

105 roo (~ _ 1 + cos 20) du + 0(p-5) 
8p4(1 - cos 20)2 J2 u3 u4 

105 (1_1+COS20) +0(--5) 
256p4 sin4 0 3 P 

35(3 - 2 cos
2 0) + O( --5) 

256p4 sin4 0 p 

560(3 - 2 cos
2 0) O( -5) 

p4 sin4 0 + P 
(B.26) 

This completes the proof of Eq.(5.22b) in Property 7. Similarly, we can prove 

Eqs.(5.22c) and (5.22d). This completes the proof of Property 7. o 
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B.6 Proof of Property 8 

Proof. Applying Lemma 4 and taking expectation to J4 yield 

where z( ¢) = (cos ¢ sin ¢ f and J4a and J4b are defined as 

Therefore, recalling ~vv = ~ and letting Al = uA2, we have 
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If we let A -l(U, 1) = B(u,l), then, bn (u,l) = a22(u, l)/u, b22 (U, 1) = an(u,l)/u 

and b12 (U, 1) = -a12(u, l)/u. Thus, we obtain 

bll(u, 1) cos2 ¢ + 2b12 (U, 1) cos ¢sin ¢ + b22 (U, 1) sin2 ¢ 

sin2 ¢ (bll(u, 1) cot2 ¢ + 2b12 (U, 1) cot ¢ + b22 (U, 1)) 

sin2 ¢ 2 
-- (a22 (u, 1) cot ¢ - 2a12 (u, 1) cot ¢ + all (u, 1)) 

u 

(B.30a) 

cos2 ¢ 2 
-- (an(u, 1) tan ¢ - 2a12(U, 1) tan¢ + a22(u, 1)) 

u 

(B.30b) 

Substituting Eq.(B.30b) into Eq.(B.29) yields 

/ 
-1 a22(u,l) 2 

1 1,00 un 2 jtan an(u,l) 1 + tan ¢ 
= --4 S du 5d¢ 

27rp 1 all (u, 1) - tan- 1 :~~~::g (an (u, 1) tan2 ¢ - 2a12( u, 1) tan ¢ + a22( u, 1)) 

+ O(p-5) 
00 1l/2 a22(u,1) 

= _1_ r SU du jal1 (U,l) dt 5 + O(p-5) 
27rp4Jl an(u, 1) _a22(u,1) (all(u,1)t2 - 2a12(u,1)t+a22(u,1)) an (u,l) 

1l/2 a22(u,1) 
= _1_ roo u dujan(U,l) dt + O(p-5) 

27rp4Jl a~l(u,l) _a22(u,1) ( (a (Ul))2 )5 o(u,l) a (u 1) t __ 1_2 _,_ + _u_ 
n, an(u,l) an(u,l) 

1 1,00 u ll/2 ja22 (U,1)-a12 (U,1) dt 
= --4 4 du 5 + O(p-5) 

27rp 1 all(u, 1) -a22(u,1)-a12(u,1) (t2+u) 
a22(u,1)-a12(u,1) 

= _1_ roo u du j..;u dt + O(p-5) (B.31) 
27rp4 Jl ail (u, 1) a22(U,1~12(U,1) (t2 + 1)5 
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Similarly, using Eq.(B.30a) we can obtain 

(B.32) 
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Therefore) substituting Eqs.(B.31) and (B.32) into (B.27) leads to 

This completes the proof of Property 8. D 

B.7 Proof of Property 9 

Proof. Applying Lemma 5 and taking expectation to J5 (A) e) yield 
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where c = an +a22 - 2a12, z(¢) = (cos¢ sin¢f and J5a ()..,e) and J5b ()..,e) are 

defined as 

(B.35b) 

Following the way similar to the proof of Property 8, we can obtain 

In the same token, we can also obtain 

(t + an(u,1~nCu,1))8dt 

(t2+1)5 

__ 1-4 J,CXl 4 (u )du ral1(U'1~12(U'1) (t
2 

+dt
1

)5 + O(p-5) (B.37) 
21rp 1 a22 u, 1 J !3:11 (U,1):;;12(U,1) 

Substituting pl8 = p and substituting Eqs.(B.36) and (B.37) into Eq.(B.34), we can 

complete the proof of Property 9. o 
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Appendix C 

Proofs of Lemmas in Chapter 5 

C.l Proof of Lemma 4 

Proof. Since V = VI U V 2, where VI = {(Xl, X2) : Xl 2': a, -b :::; X2 :::; O} and 

V 2 = {(Xl, X2) : Xl 2': a,O :::; X2 :::; b}, we obtain 

Using the polar system, Xl = r cos ¢, X2 = r sin ¢ and j(x(¢)) = exp (-r2x(¢fPx(¢)), 

where x(¢) = (cos¢ sin¢f. Hence, 

Ji 10 lb/sinq, 
j(X)dX2dxI = r j(r cos ¢, r sin¢)drd¢ 

-tan-Ib/a a/cosq, 
VI 

11° l

b

/

sin

q, = -- rexp (-r2x(¢fPx(¢)) d (-r2x(¢fPx(¢)) d¢ 
2 -tan-Ib/a a/cosq, 

° ( a2x T (q,)PX(q,)) ( b2XT (q,)PX(q,)) 

1 
exp- -exp-

cos2 q, sin 2 q, 
= T d¢ 

-tan-Ib/a 2x (¢)PX(¢) 
(C.39) 

88 



M.A.Sc. Thesis - Anzhong Wong McMaster University - Electrical Engineering 

Similarly, we can obtain 

(C.40) 

Therefore, combining Eqs.(C.39) and (C.40) yields 

(C.4l) 

This completes the proof of Lemma 4. D 

C.2 Proof of Lemma 5 

Proof. Since the intersection point between line X2 = -Xl tan Q and line X2 = Xl - c is a 
b 

Xl = I C b, X2 = lctan a:b , the integral domain V can be segmented into V = VI U V 2 , 
+tana: +tan a: 

where VI = {(Xl, X2) : l+t~n k ::; Xl ::; a, -Xl tan ~ ::; X2 ::; Xl - c} and V 2 = {(Xl, X2) : 
a 

c - b < Xl < C b, -b < X2 < Xl - C or C b ::; Xl ::; a, -Xl tan -ab 
::; X2 ::; Xl - C}. 

- - l+tana: - - l+tana: 

Hence, we have 

. (C.42) 

We consider the following two cases. 

1. C::; b. In this case, using the polar transformation; Xl = T cos cp and X2 = T sin cp, 

wehavef(x(cp)) = exp (-T2X(cpfPx(cp)) , wherex(cp) = (coscp sincp)T.Therefore, 
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we obtain 

-tan-I!!=.£ _a_ II J(X) dX 2dx I = ltan-
IQ 

a jeos:. rJ(rcoscp,rsincp)drdcp 
VI a cos q,-sm q, 

1 j
-tan-I!!=.£ j_.b 

a SIn 4> 
exp (-r2x(cpfPx(cp)) d (-r 2x(efpx(e)) de 

2 -tan-I Q c . 
a cos c/>-Slll <p 

(C.43) 

Similarly, we can obtain 

L":~': "-J*'. r f(r cos <p, rsin <p)drd¢ 
2 b cosq, smq, 

(C.44) 

Now, substituting Eqs.(C.43) and (C.44) into Eq.(C.42) yields 

(C.45) 

Therefore, Lemma 5 is true for c ::; b. 

2. c > b. In this case, the integral over the domain VI does not change, but the 
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integral over the domain 'D2 becomes 

l
-tan-1.!!.1~ a SlncP 

r f(r cos ¢, r sin ¢)drd¢ 
-tan-1 _b_ c 

c-b cos ¢-sin <p 

-1 b (c2
X

T
(</»PX(</») (b2

X
T

(O)PX(</») 

l
-tan - exp - - exp -

a (cos ¢-sin </»2 sin2 </> d¢ 
-tan-1_b 2XT(¢)PX(¢) 

c-b 

Hence, in this case, proving the lemma is equivalent t to proving 

To do that, we let 

( 
C2XT(</»PX(¢)) ( ex - - ex ( ) _ p (cos</>-sin¢)2 p 

P ¢ - 2xT(¢)PX(¢) (C.47) 

Then, on one hand, we obtain 

_ rtan
-

1 

~ P( -<p )d<p 
}tan-1 -c~-b 
r % _p--,-( _-_c_ot--::--_l t~) dt 

}E.-b 1 + t2 
b 

(C.48) 
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On the other hand, we obtain 

(C.49) 

Comparing Eq.(C.47) with Eq.(C.49) produces the proof of Eq.(C.46). 

This completes the proof of Lemma 5. o 
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