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Abstract 
The stability of the proton provides a strong constraint on models with baryon number-violating 

physics arising at a scale lVI < 1015 GeV. In such cases, an additional gauge symmetry is often 

introduced in order to make such models phenomenologically viable. Here, we consider the particular 

case where the Standard Model is extended to include an addit ional U (1) gauge boson that couples 

to baryon number minus lepton number (B - L). Constraints are obtained on such a field 's gauge 

coupling, mass , and kinetic mixing coefficient (which controls the strength of mixing between it and 

the hypercharge U (1) present in the Standard Model). We derive updated bounds, relevant to the 

mass range from 1 keY to 10 TeV, by considering changes in primordial nucleosynthesis, in neutrino 

scattering, and in several precision electroweak observables. These constraints are overlaid in order 

to determine the best constraints on the gauge coupling, as a function of mass, at various values of 

the kinetic mixing parameter. 
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Chapter 1 

Introduction and Motivation 

The goal of this report is to work out constraints on the parameters of aU (1) gauge boson , similar 

to the Z boson in the Standard Model (SM) , t hat couples to baryon number minus lepton number 

(B - L ). (Here, we refer to t his field as the X boson.) Since we require this theory to be renor­

malizable, the parameters of interest are: the gauge coupling, 9 x; the mass of the X boson, lVIx 

(particularly in t he range 1 keV< lVIx < 10 TeV) ; and the kinetic mixing constant X, which con­

t rols the strength with which the X boson mixes with t he hypercharge field B JJ- from the SM. More 

specifically, we consider an effective Lagrangian (density) of the form 

£ = £ SM + £ B- L + £ rnix + £ extra (1.1 ) 

where: 

• £ SM is the usual Standard Model Lagrangian ; 

• £ B-L describes the X boson, as well as its couplings to t he SM fermions (this is written out 

explicit ly in the following chapter); 

• £ Tn'ix is of t he form 

(1.2) 

• £ ex tra contains contribut ions from a right-handed neutrino, which is required for anomaly 

cancellation (this is discussed in detail later on) , and a singlet scalar , which is used to generate 

mass terms for the X boson and t he right-handed neutrino. 

Here, we focus on t he physics pertaining to the first t hree terms of £ , and so we ignore the 

presence of £ extra wherever possible. In t he end, we obtain plots of the gx vs. lVIx parameter space 

(over the range 1 keV< jl;fx < 10 TeV) for various values of X, ranging from 0 to 0.3. In t he case 
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of the X = 0 plot , we are able to compare with [1], who considers similar observables over the same 

parameter space. 

1.1 Z' Physics 

The Standard Model (SN1) of particle physics is one the most accurate and best-tested models 

in Science. Although it has many unsatisfying characteristics (e.g. the hierarchy problem), it is 

in very good agreement with all experimental results, with the exception of neutrino oscillations. 

Nevertheless, theorists search for a framework in which the different forces and particles in Nature 

appear as a single, unified entity [2]. Iv1any such extensions to the Standard Model predict the 

existence of extra gauge bosons. For example, the SO (10) [3] and E6 [4] Grand Unified Theories 

(GUTs) both predict additional U (1) gauge fields. Also, GUTs which are based on the gauge group 

SUL (2) x SUR (2) X Ua_L (1) [5] (usually called Left-Right Symmetric Models) propose an additional 

gauge boson that couples to baryon number minus lepton number. 

The E6 model is of particular interest since it has been shown [6] that certain supersymmetric 

string theories in 10 dimensions have an E6 gauge theory as a low-energy effective field theory (see 

[7] for a more detailed discussion of this). Also, it has been shown that the low-energy effective field 

theories of such string models cannot contain global symmetries [8]. 

The SM contains four global symmetries: baryon number (B) , electron lepton number (Le), muon 

lepton number (L/.L) ' and tau lepton number (Lr). One is then left with two possible outcomes in 

the context of the high-energy GUT: 

1. the global symmetries are accidental, and there are some large energy scales NIi at which they 

are each broken; 

2. the global symmetries are in fact present and, so, we would expect them to be gauged if the 

high-energy theory excludes global symmetries (as in string theory). 

In case 1, given that the proton decay has not yet been observed, the energy at which baryon 

number is broken, NIa, should be at least 1015 GeV. Therefore, any theory that introduces baryon 

number-violating modes at energies less than this should necessarily fall into case 2. 

If the SM global symmetries are to be gauged, we must ensure that anomalies cancel. (In 

the following section, we shall work out the details of this explictly.) It turns out that only the 

combinations B - L (L = L e + L/.L + Lr ), Le - L/.L , L/.L - Lr , and Lr - Le are anomaly-free in the 

case where right-handed neutrinos are included in the particle spectrum. (Neutrino oscillations give 

evidence consistent with the existence of right-handed neutrinos, although none have been directly 

observed.) Only B - L has the added benefit of limiting the possible proton decay products such 

that the predicted decay rate is phenomenologically viable. 

2 
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Nluch work has been done to understand the phenomenological implications of a Z ' field. However, 

most do not include a kinetic mixing term. The notion of a possible kinetic mixing term between 

U (1) gauge fields is first introduced in [9]. Constraints on kinetic mixing that arise from precision 

electroweak experiments are considered in [10]; the most recent bounds are found in [11]. There 

are also several papers [12] that consider constraints on a mass mixing term between the Z and Z' 

(specifically, this is a term of the form Cmix = 6m~ZJ.LXJ.L). This type of mixing is not considered 

here, since we assume that the B - L symmetry is broken by a SM singlet, which means that there 

should not be any mass mixing with the X boson (at tree-level). 

Z' studies often include gauge fields coupled to other (anomaly-free) charges, depending on the 

model. Experimental searches, such as [13], quote bounds on the mass of the Z' while assuming 

charges ident ical to that of the Z. Ot hers [14] derive bounds with the Z' coupling only to baryon 

number. A good resource for the various possible Z ' models is [11]. 

Although most work is focused on constraining the Z' coupling(s) for masses at the GeV-TeV 

scale, there are several (stringent!) constraints at lower masses as well , as shown in [1]. At low 

masses, constraints on kinetic mixing arise from considering measurements of the cosmic microwave 

background, as shown in [15]. 

In the next section, we explain the role that anomaly cancellation plays in providing support for 

the existence of a B - L gauge symmetry. 

1.2 Anomaly Cancellation of Global Symmetries in the Stan­

dard Model 

A gauged B - L symmetry is partly motivated by the cancellation of the anomalies that arise for 

the global symmetries of the SM. In this section, we highlight the relevant anomalies present with 

the SM, and then show how these cancel in the B - L model. 

It is generally true that any anomaly is proportional to the following trace: 

(1.3) 

where the Ta 's are the generators for some symmetry a (an example in which this is true is given in 

Appendix A; for more details, see [16]). We are now in a posit ion to consider the anomaly coefficients 

A (a, b, c) for the global symmetries of the S:1v1. It is possible to show t hat all gauge anomalies cancel 

in the SM [17]. This is required since gauge symmetries must couple to conserved currents, and since 

currents are conserved only when gauge anomalies cancel. 

Here, we are interested in the anomalies involving the four global symmetries of the SM: B (baryon 

number), Le (lepton number, electron generation), LJ.L (lepton number , muon generation), and Lr 

(lepton number, tau generation). Therefore, we consider A (a , b, c) for a, b, c E {3, 2, 1, B , Le, LJ.L ' Lr } 

3 
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(where numbers denote gauge symmetry generators and letters denote global symmetry generators) 

and where at least one of a, b, c corresponds to a global symmetry generator. W hen summing, we shall 

for now only include contribut ions for the 8M fermions. Their representations under the relevant 

gauge groups are given in Table 1.1. 

Table 1.1: Representations for the 8M fermions (including right-handed neutrinos) under the 8M 
and B - L gauge groups. In the case of SU (2) , the bracketed values are the fermions ' charge under 
T3· 

v t - 1L d V t+ 1L d 
L.H. 

SUe (3) 1 1 3 3 1 1 3 3 
SUd2) 2 (+1) 2 (-1) 2 (+1) 2 (- 1) 1 1 1 1 
Uy (1) - 1/ 2 - 1/2 + 1/ 6 +1/6 0 + 1 -2/3 + 1/ 3 

UB - L (1) -1 -1 + 1/3 + 1/3 + 1 +1 -1/3 -1 / 3 
R.H. 

SUe (3) 1 1 3 3 1 1 3 3 
SUL (2) 1 1 1 1 2 (- 1) 2 (+1) 2 (-1) 2 (+1) 
Uy (1) 0 - 1 +2/3 - 1/ 3 + 1/ 2 + 1/ 2 -1 / 6 -1/ 6 

UB - L (1) - 1 - 1 + 1/3 +1 /3 + 1 + 1 - 1/3 -1/3 

The non-zero anomaly coefficients are (recall that {Ta,Td = 26ab where Ta /2 are the SUL (2) 

generators) : 

A(B,2,2) L B = (3 gen.'s) x (3 colours) x ( +~) = +3 (1.4) 
doublets 

LBy2 = 3 x 3 x [(2 per doublet) (+~) (+~) 2 

a ll 

A(B, l , l ) 

3 
2 

A (Le, 2, 2) 

A (Le, 1, 1) 

+ (-~) (- ~r + (- ~) ( +~rl 

doublet s 

LLey 2 = (2 per doublet) (+ 1) (_ ~) 2 + (-1) (+1)2 
all 

1 

2 

LL; = (2 per doublet) (+ 1)3 + (_ 1)3 = +1 
all 

(1.5) 

(1.6) 

(1 .7) 

(1.8) 

(The results for L/.L ' Lr are identical to those obtained for Le. ) Note that , with the exception of the 
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last anomaly, cancellation occurs for the linear combination B - L (where L = Le + L/lo + LT ), i. e. 

A (B - L , 2, 2) 

A(B - L , l , l ) 

However, we still find t hat 

(3) - 3 x (1) = 0 

( - ~ ) - 3 x (-~) = O. 

A (B - L , B - L , B - L ) = 0 - 3 x (1) = -3. 

(1.9) 

(1.10) 

(1.11) 

This last anomaly demonstrates t he need for additional fermions in the gauged B - L model. Since 

this anomaly must vanish in order for B - L to be a gauge symmetry, we introduce an addit ional 

fermion in each generation that is: 

a) a SM singlet (so that it doesn 't disturb the usual anomaly cancellation amongst the SM gauge 

groups); 

b) has charge (B - L)VR such that A (B - L , B - L , B - L) = O. 

Satisfying requirement b) gives 

A (B - L , B - L , B - L ) 0 -3x (1)+3x (B - L )VR= O 

=} (B - L )VR = +1 (1.12) 

(Strictly speaking, the requirement is only that we have n generat ions of singlet fermions with 

B - L charge 3/ n . However , since all other fermions come in three generations, consistency suggests 

that n = 3.) This means that left-handed anti neutrinos have lepton number - 1 (i.e. right-handed 

neutrinos have lepton number +1). 

'With this choice, it is now possible to ensure t hat A (1, B - L , B - L ) also vanishes: 

A(l , B - L , B - L ) 
all 

3 { 3 [2 (+~) (+~r + (-~) (- ~r + (+~) (- ~rl 
+2 (-~) (_1)2 + (+1) (+1)2 + (0) (+1)2 } 

3 [3 (~ - ~ + ~) - 1 + 1] 27 27 27 
o (1.13) 

as required. 
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1.A Appendix: Abelian Chiral Anomaly Example 

As an example [16] of an abelian chiral anomaly, consider n massless fermions coupled to a massless 

spin-l field : 

L EM = -~FJLyFJLY - t 1j;a I/J'if;a (l.14) 
a=l 

where 1j;a == 'if;! (irD
) , FJLY = aJLAy - ayAJL , I/J = , JLD JL = , JL (aJL - ieqaAJL) ' e is the gauge coupling 

strength, and qa is the charge of the ath fermion flavour . It is useful to split L EM into free and 

interacting parts: 

(l.15) 

where 

a 

L int ieAJL L qa1j;a, JL 'if;a 
a 

The total Lagrangian is invariant under a local U (1) symmetry: 

(l.16) 

(provided we transform AJL according to AJL ---> A~ = AJL + aJLe.) In terms of the notions introduced 

for general Lie groups in the previous section, this U (1) symmetry group has only one generator, 

Q == Lb qa6ab and so r bc = a Va , b, c. Because of this, the U (1) group is referred to as an Abelian 

group. The Lagrangian L EM is also invariant under a global chiral symmetry: 

(l.17) 

Here , 'if; is taken to mean a vector with the n Dirac spinors as entries and R, like Q, is diagonal and 

real. 

Anomaliet> occur when a classical symmetry (i .e. a symmetry of the classical action) is broken 

when considering the corresponding quantum field theory (i.e. the effective action including higher­

order loop corrections). Ult imately, th is occurs because it is no longer just the classical action 

that must obey the symmetry; in a quantum field theory, observables are constructed from vacuum 

expectation values of time-ordered products, which can be calculated using path integrals as follows: 

(l.18) 

6 
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Here, S = J d4x.LEM is the classical action and 

Due to the form of .Lint, it turns out [16] that Ol ... On must be composed entirely of combinations 

of AJI. and ij;aiJl. 'l/Ja . A tool of great use is t he generating functional, defined as follows: 

(1.19) 

From here, time-ordered products can be generated by taking successive functional derivatives with 

respect to the J 's. For example, 

Since we are mainly interested in considering how the fermion fields transform under the symmetry 

groups, let 's define 

(1.20) 

so that now we have 

(1.21 ) 

From here, it is clear that, if we want our observables to be invariant under some symmetry amongst 

the fermions, we should require that W [A] be invariant under the symmetry t ransformation. How­

ever, W [A] includes not only the classical action, but also the functional measures V 'I/J and v ij;. It 

can be shown [18] that, under a transformation 'l/Ja (x) ---> 'I/J~ (x) = Ua (x ) 'l/Ja (x), the measures V 'l/Ja 

and v ij;a transform as 

V'l/Ja ---> V'I/J~ = (DetUa)-l V 'l/Ja 

v ij;a ---> Vij;~= (DetUa)-lVij;a 

where the calligraphic U is used to denote a matrix over coordinates, as well as Dirac indices: 

(xl Ua Iy) =Ua (x) <5 (4) (x - y) 

and where a capital determinant (and , later , t he capital trace) includes coordinate space. 

In the case of the gauge transformation 1.16, 

7 
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and so 

(J (x) = e-ic(x )Q = U- 1 (x). (1.25) 

This means that 

(1.26) 

and, as a result , 

(1.27) 

Therefore, the gauge symmetry is free of anomalies, since VV [Aj is invariant under the symmetry 

transformation. The situation is not nearly as trivial for the chiral transformation: here, we find 

that 

(since blL,'5} = 0) which gives 

DetU a = DetUa · (1.28) 

and so 

(1.29) 

Now that we know that VV [Aj is not invariant , we would like to use this form of the measure in 

order to calculate how much by which W [Aj has deviated. That is , we would like to re-write the 

factor (DetUa )-2 in an exponentiated form. This is done by recalling that Det ( ) = exp (Tr (log( ))); 

since Ua is diagonal in coordinate space, (xl (logUa ) Iy) = log ((xl Ua Iy)) which gives 

Tr (log (Ua ) ) J d4x Tr (xl (logUa ) Ix) = J d4xJ(4) (x - x) T:r (log Ua) 

iE J d4x J(4) (0) tr (ral5) 

which is clearly divergent. Regularizing this [16j gives 

( ) -2 _ ( Era Jd4 ILvpuF F ) DetUa - exp 327r2 XE ILv pu (1.30) 

where EILVPU is the completely antisymmetric rank-4 tensor , with E0123 = + 1. The EILVPU tensor is 

obtained by tracing the 15 with four gamma matrices (one for each power of the cutoff A) which 

arose in the form of I/J / A due to the requirements of Lorentz invariance and gauge covariance. The 

included gauge fields give rise to the factors of F lLv with which the EILVPU tensor contracts. All in all , 

we find that W [A j --4 W' [Aj = W [Aj + JW, where JW is given by 

(1.31 ) 

8 
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From here, it is clear that (for n -I- 1) if the ra were chosen carefully, their sum could be constructed 

to equal zero , thus preserving the chiral symmetry at the quantum level. This is what is meant by 

anomaly cancellation. 

In quantum field t heories with more sophisticated gauge groups, the FJ.Lv terms exist in part icular 

representations of their respective gauge groups: FJ.Lv = F:vT a, and so the final trace would not be 

over just R, but over the generators corresponding to each of the gauge fields as well. In fact , 

it is generally true that every chiral anomaly, regardless of whether the corresponding symmetry 

transformation is global or local, is proportional to a symmetric coefficient, A (a, b, c) , given by 

A (a, b, c) == tr (Ta {n , Tc}) . (1.32) 

The last two generators are symmetrized, as these are the generators belonging to FJ.Lv and Fpa , and 

since 6W is unchanged under exchange FJ.Lv <--+ Fpa (since r:;J.Lvpa = +r:;paJ.Lv). 

9 
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Chapter 2 

The Kinetically Mixed B - L Model 

The goal of this chapter is to derive a formalism in which the effects of the extra gauge boson can be 

easily included when calculating observables . Here, in order to avoid confusion with the ordinary Z, 

we avoid the use of zt to denote the UB _ L (1) field and instead use X. We find that , as in the case of 

the photon, the X boson mediates a force between any part icles charged under B - L . However , since 

additional long-range forces between macroscopic objects with B - L charge are t ightly constrained, 

we allow for a mass term for the X boson which suppresses the corresponding potential exponent ially 

(i .e. V (r) ()( ~ ---t e - ~xr ) , similar to the case of the weak force carriers, W±, Z. However, since 

this mass term is forbidden by gauge invariance, we introduce a SM singlet scalar field <I> , similar 

to the Higgs field, which is charged under B - L and couples to right-handed neutrinos through 

Yukawa interactions. Therefore, as <I> acquires some vacuum expectation value (VEV) , both the X 

boson and right-handed neutrinos acquire mass terms. Since the purpose here is to focus only on the 

parameters describing the X, we shall ignore the contribut ions to the total Lagrangian representing 

both right-handed neut rinos and t he two Higgs fields. 

2.1 The Mixed Lagrangian 

We begin by considering the Lagrangian obtained after spontaneous symmetry breaking, ignoring 

the strong and charged current (i .e. interactions mediated by VV ±) sectors of t he S i Lagrangian. 

The relevant fields are: the third component of the SU (2) gauge field t riplet, W; ; the U (1) field 

coupled to hypercharge, BJ1. ; the fermion fields ii, where i labels colour, fl avour , and generat ion, as 

appropriate; and, of course, the B - L field , XJ1.' tltIore specifically, t he Lagrangian of interest is 

.c = .ckin + .cm ix + .cmass + .c f (2.1) 

11 
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where 

-~ W 3 W MV _ ~E El"v - ~X XI"V (2.2) 4 MV 3 4 MV 4 I"V 

+~El"vXI"V (2 .3) 

.cmass 
1 ( -3 - ) ( - -) m

2 - --"2 m3WI" - mOBM m3Wr - moBI" - TXM XM (2.4) 

- I;fi (f) +mi)li+i (92 I; TaMT/Pdi) W~ (2.5) 

+i (91 I; Tat (yiLPL + YiRPR) Ii) EM + i (9X I;Y(YM (B - L)di) xM 

and where VMV == 81" Vv - 8v VI" for each VM E { w~, 131"' XI"} . The masses m 3 and mo are defined (as 

in [17]) in terms of the standard model gauge couplings 91 , 92 and t he Higgs VEV v as follows: 

(2.6) 

and the charges of some fermion Ji under ltV~, BI" ' and XI" are represented by Tl , YiL (R) and (B - L)i , 
respectively. The projectors PL and PR are defined as 

These are used to give the left-handed and right-handed fermions different charges under BM and 

W~. 

Defining the gauge field-valued vector V to be 

- rT~31 V= B , 

X 

(2.7) 

we cun rewritc the above Lagrangian as 

(2.8) 

where 

(2.9) 

o 

12 
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and 

(2. 10) 

gx "L-f(yJ.t (B - L)di 
i 

2.2 Diagonalization 

The goal is to redefine the gauge fields in such a way that K = I (the 3 x 3 unit matrix) and that M 

is diagonal. We begin by performing the usual weak-mixing rotation to diagonalize the weak sector 

of M (note that this sector, by design, has a zero eigenvalue corresponding to the photon): 

if = 0 1 V ' == - sin ew cosew 0 A' 

r 
cos ew sin ew 0] rZ/] 

o 0 1 X' 

(where cosew == J;2 2 == Cw and sinew == J;1 2 == sw) which gives 
91 +92 9, +92 

K' = Or K01 = r ~ 
xsw 

o 
1 

(2.11) 

(2.12) 

where m z == i (gi + g~) v2
, as in t he Standard Model. We also find that, under this transformation, 

13 
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Jj.L becomes 

J' 
J.l. (2.13) 

We design the now massless field to be the photon by letting 92Sw = 91Cw == e (= V47ra) and 

Qi == Tl + YiL = YiR' With these definitions , we now have 

Note that, in terms of a generic form 

we can identify 
e __ e_ 

z - Sl.-VCW 

The new Lagrangian then becomes 

ex = 9x 

9~ i =Q'i 

From here , we diagonalize the kinetic term by letting 

v' ~ LV" ~ [: 

0 

-R]lZ"1 1 ~ A" 
V1-X 2 

0 _1_ X" 
V1-X 2 

14 
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(2.16) 

(2.17) 

(2.18) 

(2.19) 
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which gives 

K" = LTK 'L = [~1 o~ O~l 

lVI" = LTM'L = 

o 

o 
o 

-m2~ 1 z V1-x2 

o 
2 2 2 2 mx+7nzx s"" 

1-x2 

[ ~ 1 J" = LT J' = J~A 

J1. J1. _~J'z + ~J'A + __ l_J'B- L 
V1-X2 J1. V1-X2 J1. V1-X2 J1. 

(2.20) 

(2.21 ) 

(2.22) 

(Note that, given the above expressions for Land 0 1 , it can be explicitly checked that L01 = OIL. 

This means t hat weak mixing does not influence the way in which we should diagonalize the kinetic 

terms.) 

For later convenience, we introduce the variables TJ and cx , defined to be 

TJ 
X 

yIl=X2 
(2 .23) 

mx 
Cx m z 

(2.24) 

which simplifies the above expressions for lVI" and J~: 

(2.25) 

(2.26) 

(Note: Cx should not be associated with a cosine , as in the case of the weak angle, when mx > m z .) 

Finally, we diagonalize the mass matrix by letting 

[

co.osa 01 
V" = 0 2V == 

sma 0 

- s~nal [~l 
cosa X 

(2.27) 

15 
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where a is implicitly given by 

-27]sw 
tan2a = . 

1 - c~ - 7]2 (c~ + s?v) 
(2.28) 

The final Lagrangian is 

(2.29) 

where 

(2 .30) 

(± signs are assigned so that IV!'; -+ m~ and l\(~ -+ m~ as 7] -+ 0) and where 

(2.31) 

2.3 The Small r; Expansion 

Given the result obtained in Equation 2.30, it is clear that, for arbitrary rJ, it is possible to t une 

t he init ial mass term m z so that the physical Z mass has the correct value (regardless of the value 

ofmx). However, since the SM is in good agreement with experiment [19], we expect the so-called 

"oblique" corrections [20J (which are discussed in more detail in the following section) to be small. 

In particular, the fractional correction to the Z mass, defined to be (as in [21]) 

(2.32) 

should be small. From Equation 2.30, we find that (using K = 7]2 s~ + c~ (1 + rJ2)) 

(2.33) 

It is clear that , for arbitrary values of cx, it is possible to choose rJ to be small enough so that z 

is also small. Since we expect z to be small (because the SM gives reliable results) , it makes sense 

to perform an expansion in 7] , which will be valid for most values of Cx. It turns out that such an 

expansion is most unreliable near Cx = 1; we consider this in more detail shortly. 

16 
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Expanding about 1) = 0 in Equation 2.30 gives 

(2.34a) 

(2.34b) 

and so 

(2.35) 

Since the first correction terms are of 0 (1)2 ) , we shall expand all of our expressions up to the 

same order. In particular , this gives 

S2 ') ( 4) cos a ~ 1 - ( w2 )21) ~ + 0 1) , 
2 i-cx 

(2.36) 

Before continuing, it is informative to first consider the values of m x for which a perturbative 

expansion in 1) is appropriate. For example, consider the percent relative difference between cos a 

and its expansion up to 0 (1)2): 

sk 2 cos a-I + ( 2 ) 2 1) 

( 
2 ) 2 i-cx 

C 1) ,cx = 
cosa 

x 100% (2.37) 

A plot of this function is shown in Figure 2.l. 

This graph shows that, for small values of 1) (specifically, for values of 1) E [0,0.7]) , the expansion 

up to 0 (1)2) is valid to within 0.5% for most values of m x , with the exception being those values of 

mx within about 20 GeV of the Z mass. Therefore, we can trust the validity of this approximation 

for any combination of 1) and m x , except for those with both larger 1) values and an mx value 

between", 70 - llO GeV. 

It is useful now to introduce the variable 

(2.38) 

which simplifies Equations 2.34 and 2.36. (Note that the use of s~ is meant only as a memory 
2 

tool because of the similarity in definition between it and s~v = 1 - ~, and that it should not be m z 
assumed that s~ E [0, 1].) 

Before continuing, note that when considering expressions of the form 1)js~, the expressions 

s~ = 1 - m~jm~ and s~ = 1 - M;jNJ'; can be used interchangeably. This is because 

17 
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£ 

Plot of £ as a function of mx 
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Figure 2.1: Plot of C (TJ , c~ ) as a function of m x . 

and so corrections to TJ/ s~ arise at 0 (TJ3) , which we are neglecting here. 

With this new definition, we now have 

Therefore, if we define 

(2.39) 

(2.40) 

(2.41 ) 

(2.42) 

(2.43) 

(2.44) 

(where we absorb an overall factor of gx into the ok terms so that they have a well-defined limit as 

18 
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9x -> 0), then we find that (recall that 1 = P L + PR) 

or 

(2.45) 

(-) (1) ( Slvr ) 1( s~v ) 2 ( ) okL(R) ·i ~ -T) 1 - s~ swez 9L(R) i + T)CweQi + 2 1 - st T) 9x B - L i · (2.46) 

Here, we use the notation ~ to denote equality up to terms of 0 (T)3) or higher . 

From here, the next step is to consider t he effect of kinetic mixing on the electroweak parameters 

in the SM. 

2.4 The Unmixed Lagrangian and Oblique Corrections 

Up unt il now, we have only considered a particular sector of the Standard Model Lagrangian (.c. SM ). 

However , since the rest of .c.S M remains unchanged by the redefinitions that we have made above, 

we can now write an effective Lagrangian of the form 

(2.47) 

where 

-~m;' ZILZIL + iez (;;-hylL (b9 Li PL + b9RiPn) Ii) ZIL (2.48a) 

-~X X/l.V _ IIII'; X X/l. 
4 ILV 2 /l. (2.48b) 

+i (;;y(ylL (9x (B - L )i + bkL,PL + bkRiPn ) f i) XIL 

Note that, in this formalism, X/l. is decoupled from the weak force gauge fields at tree-level, and t hat 

t he pert urbative effect of kinetic mixing on the Z mass and the neutral current couplings (up to 

o (T) 2) ) is encoded within b.c. S1V/. Also, in the limit of no mixing, the expressions for z, b9L(R)i ' and 

bkL(R) i reduce to O. 

From here, we can shift some parameters in the SM in order to accommodate for t he presence 

of b.c. S M . These small changes in the constants can then be propagated to produce corresponding 
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changes in observables. 

It is practical to choose the input parameters of the theory to be the most accurately measured 

electroweak constants. These are: e (or a == e2 / 47r), G F , and !VIz (as well as the fermion masses and 

the CKM matrix elements). 

vVe have already seen that the prediction for the Z mass is shifted as a result of kinetic mixing. 

In order to cancel this effect, we choose the mz parameter in .LSlV[ such that the prediction obtained 

from .LeI I is the measured value (up to terms 0 (z2)): 

(2.49) 

As for e, it does not change under the previous field redefinit ions since J/1 = J;:: 

e = e (2.50) 

Here, - denotes dimensionless constants found in .LSM, in order to distinguish them from the corre­

sponding constants in .LeII. (For dimensionful constants, as in mz and M z , we use lower/ uppercase 

to differentiate. ) Note that the original definition of e, e == 92Sw , still holds. However , it is important 

to note that e = e does not imply that g2 = 92 and Sw = Sw as well. 

Finally, when considering muon decay, .LSM and .LeI I both predict the following expression (at 

tree-level) for G F: 

(2.51 ) 

To determine the z-dependence of S;\" we first use the above equation to define the value of s~ in 

terms of our input parameters: 

2 ( 2 ) _ V2e2 

Sw 1 - Sw = 8G
F

NI
z 

(2.52) 

From here, we choose the z-dependence of S;v so that Equation 2.51 reproduces the experimental 

value of G F (i.e. it cancels the z-dependence already present in Equation 2.51, to linear order in z): 

which, in turn, implies that 

~ 2 [ c~~, ] 
Sw = Sw 1 + 2 2 Z . 

Cw - Sw 
(2.53) 

From here, we can calculate the total change in the coefficients gLi and gRi , once these shifts of 

20 
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parameters are made, by considering the por t ion of L eJ J coupled to Zf.L ' L eJ J,NC : 

L eJJ ,NC (2.54) 

+ ~f{Yf.L (r59L i P L + r59ni P n) fi) Zf.L 

i_e_ (1 -~) Lfo f.L [T?PL - Q iS~\, (1 + 2 c~ 2 z )] Ii 
Swcw i c~\, Sw 

(2.55) 

L eJJ,NC 
r . e 
J..-SMNC+Z--

, SwCw 

1 f,Z, (2 .56) 

By referring to [21], we can find definit ions for t he convent ional "oblique" parameters, first 

introduced in [20]. These give 

as aU = 0 

aT 

In terms of these parameters, we have 

(2.57a) 

(2.57b) 

(2.58) 

in agreement with [21]. Alternatively, we can write these expressions explicitly in terms of TI , 9x and 

l\(~: 

1 2 s~\, SM 2 S~ S~I'C~.y 
--TI - 9 - TI Qi 2 s1 L(R )i s1 c?v - s~, 

_ Sw 9x (B _ L) . + 2 S~I' ( SM _ Q. 2 ) _ ~ 2 S~I' SM 
TI S2 e , TI S2 9L (R)i ,cw 2T1 4 9L(R)i 

x Z X Sx 

or 

(2.59) 

Note that a similar procedure could be pursued to calculate addit ional shifts in r5k L (R)i for the 

X boson. However , since the 8M parameters all appear in terms proportional to TI , corrections are 
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o (Tl3) and can, therefore, be neglected. Therefore, we simply have that 

In summary, we have used field redefinitions to show that the X boson contributes to observables 

through: a) shifts in the 8M couplings; b) additional couplings to X/lo of the form J/loX/lo . With 

this new formalism, we obtain constraints on the B - L parameters by calculating predictions for 

experimentally observable quantities using L e j j . The purpose of future chapters is to describe several 

such quantities and to use them to obtain bounds on TI , gx, and NIx . 

22 



Chapter 3 

Constraints on Electroweak 

Observables 

In t his chapter , we consider the influence of the kinetically-mixed X boson on various electroweak 

observables. We begin with two observables that are unchanged by interactions with the X boson at 

tree-level: the W boson mass and the decay rate for the process Z ---> l +l - . These constraints arise 

solely due to the presence of the kinetic mixing term. vVe also consider a process that receives tree­

level contributions from X boson interactions: the cross section for electron-positron annihilation 

into hadrons evaluated at the Z pole. 

3.1 The W Mass 

Our aim is to constrain TI , lVIx , and gx by calculating their contribution to the change of the W 

mass from its value in the Standard Model. Since current measurements of the W mass agree with 

the Standard Model value, the experimental uncertainty places a bound on how big these variables 

can be without causing the model to produce unphysical predictions. 

We know t hat t he above field redefinit ions do not change the constant in front of the term 

l1VjWJ.L in t he SM Lagrangian, so the W mass only receives corrections due to its definition in terms 

of m~ (= M; [1 + aT]) and S;v ( = s~v [1 - ctvc!Ys~v aT]) : 

m 2 = m 2 (!2 = m 2 (1 - ;S2 ) w z w z w 

M; (1 + aT) [1 - s~ (1 - 2 C~ 2 aT)] 
Cw Sw 

M; (l -S~) ( l +aT)(l + 2 S~ 2 aT) 
Cw - Sw 

M;c~ [1 + aT (1 + 2 S~ 2 )] 
Cw Sw 
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In general, the W mass will also receive loop corrections that alter the tree-level expression 

Mw = M zcw. However, since these corrections are known to be small, we can neglect their product 

with aT (another quantity expected to be small) in the above expression for .Ma,. Therefore, if we use 

the notation (X)SM to mean the value of x that is obtained using L SM (including loop corrections), 

we find that 

(3.1) 

From here, we can calculate 6.Nlw == N1w - (MW) SM : 

6.M w 

(3.2) 

This is in agreement with the result given in [22J in the limit where Mx » Mz; [22J quotes this 

result as 

6.M w = (17 MeV) (~) 2 (250 GeV)2 
0.1 Mx 

Given that, from experiment, 6.Mw S; 0.025 GeV [23J (1(T uncertainty) , we can plot the implicit 

constraint on TJ as a function of Mx. This is shown in Figure 3.1. 

Plot of the Constraint Associated with the W Mass 

102 

Mx (GeV) 

Figure 3.1: Constraint obtained from limiting the influence of kinetic mixing on the SM value of the 
W mass. The excluded region is shaded. 

Note: 
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• the strongest constraints on "., exist near the Z pole (i.e. when 1vIx ~ 1VIz ) (note: the bound 

should not be trusted for NIx arbitrarily close to the Z pole - see Section 2.3 for details); 

• when NIx « NIz , the bound becomes simply"., ::; 4.4 X 10-2 as the 1vIx-dependence vanishes. 

This is expected from the form of Equation 3.2; 

• when!VIx » !VIz, it's the ratio "., /!VIx that is constrained: "., /Mx ::; 4.8x 10- 4 or (~) (\;:v) :s 
1. 

3.2 Z Decay 

The Z decay rate has been measured with great accuracy at LEP and SLC (for details regarding 

their analysis, see [19]). The PDG [23] value for the decay Z --- l +l- , where l can be any of the 

charged leptons, is f 1+1- = 83.984 ± 0.086 MeV. Since the SM agrees with this result (which is [23] 

83.988 ± 0.016 MeV), we can use the experimental error to constrain the correction to the SlVI value 

due to the X boson. To obtain the correction, we calculate the decay rate of the Z boson into some 

charged fermions using L eft given in Equations 2.47 and 2.48. This is shown explicit ly in Appendix 

C (some of the techniques used there are first discussed in Appendix A). We find that 

where 

gi 

(6iL is a Kronecker delta function: 6LL = 1, 6LR = 0. ) Substituting this expression (and keeping only 

terms up to 0 (".,2)) gives an expression of the form 

Requiring that f 1+1- - (f1+1- )8 ,"1 ::; 0.086 MeV (la uncertainty) then gives an implicit bound on 

the parameters gx , rl, and NIx. Using Maple, plots of these bounds have been generated for various 

values of"., . These are shown in Figure 3.2. (Note that ax , not gx, is used as the y-coordinate.) 

A few features should be highlighted: 

• In all four plots , there is a small region containing allowed 9 x /!VI x combinations that is found , 

for NIx < 1VI z, between the upper and lower limits of this bound. It is for this reason that the 

upper and lower limits have been distinguished in the plots; 
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Bound from 11+1' for TJ = 0.001 

10-3 L...-_L-...L..-L...J.....J...J...1&L_--1--.!L-I.-LLLl..lJ 

101 102 103 

Mx (GeV) 

Bound from 11+1' for TJ = 0.05 

101 

10° 

10-1 ,...~~~~ 

10-2 

10-3 

ax 
1O-4 F_~~ 

10-5 

10-6 

10-7 

10-8 L...-_L-...L..-~i-L-Ll..U.4---1--.!L....l....J.....;LLl.lJ 
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Mx (GeV) 

Bound from 11+1' for TJ = 0.01 
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10° 
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ax 10-2 
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1 0 -6 L-._L...-..L-L...Li-L-L.E!I!I.._L....l.---lL....l.....J.....ILLJ..lJ 
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Bound from 11+1' for TJ = 0.1 
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Mx (GeV) 

Figure 3.2: Plot of the constraint arising from considering Z decay into leptons. Here, we plot t he 
bound on ax as a function of Mx for various values of "I. The upper bound (~r = +~rexp .) is 
marked with blue crosses; the lower bound (~r = -~rexp.) is marked with red squares. Excluded 
regions have been shaded out. 
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• At large M x, the slope is found to correspond to the ratio 9 x / lvI~ being constrained. This is , 

in fact , expected from the form of the gi, whose linear term in 'fI is proportional to gx/M~ for 

large Mx; 

• As 'fI grows larger there is a point , similar to the one found when considering electron-positron 

annihilation, at which even very small gauge couplings are ruled out for small lvI x. 

The bound in the limit where Mx « Mz is shown in Figure 3.3. 

Bound from rl+r for Mx « Mz 
10° 

10-1 

10-2 

10-3 

ax 
10-4 

10-5 

10-6 

10-7 

10-3 10-2 10-1 

11 

Figure 3.3: Plot of the constraint arising from considering Z decay into leptons in the limit where 
Mx «Mz · The upper bound (6f = +6f exp . ) is marked with blue crosses; the lower bound 
(6f = -6fexp .) is marked with red squares. Excluded regions have been shaded out. 

This plot still exhibits a thin region of allowed 9 x / M x combinations, even past the cut-off for 

small gx at 'fI ~ 0.08, although this region shrinks for larger 'fl. 

3.3 Electron-Positron Annihilation 

We are now interested in calculating the cross section for the process e+e- -+ 17 in the case where 

the incoming electron and positron have a combined energy (in the centre of mass frame) equal to 

the rest mass of the Z boson. The reason for this is that very accurate measurements [19] have been 

performed of this cross section at this energy and so deviations from the 8M are expected to be well 

constrained. 
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The relevant tree-level diagrams all contain a mediating gauge boson (either the" Z, or X) and 

are shown in Figure 3.4 . 

y,Z,X 

Figure 3.4: Relevant tree-level Feynman diagrams corresponding to electron-posit ron annihilation. 

The relevant part of the Lagrangian is of the form 

where 

- ~F F J.LV - ~ Z Z J.LV - ~X XJ.LV - ~ j\!I2Z Z J.L - ~M2 X X J.L 
4 J.LV 4 J.LV 4 J.LV 2 Z J.L 2 x J.L 

L l($+mj)f 

and 

ie v V J.L (1, J.L f 'f f) . 

Here, we use an abbreviated notation to represent different gauge fields as follows: 

(3. 3) 

(3.4) 

(3.5) 

(3.6) 

(The factor of ~ in the definit ion of f 'jX is included to ensure that the kji's have a well-defined limit 
gX 

as gx~ O .) 

A rough sketch of the calculation is as follows (the explicit calculation can be found in Appendix 

A): we begin by working out the matrix elements (1 (k' , 0 f (pi, ()I S le+ (k ,T) e- (p,eJ )) (assuming 

single-part icle eigenstates of the free Hamiltonian in the initial and final states) up to leading order 
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in perturbation theory. S is known as the scattering matrix (in the interaction picture): 

Here, T denotes the time-ordering of operators. For convenience, we define M such that 

Here, leading order in perturbation theory consists of contributions from those graphs shown in 

Figure 3.4. The Feynman rules for tree-level graphs are also given in Appendix A. 

Using the matrix elements, we can calculate the corresponding cross section using the following 

relation: 

(3.8) 

where s , t, and u are the Ivlandelstam variables , as defined in Appendix A (Equation 3.34). Here, 

where the :t L denotes that we have averaged over all spins in the initial state and summed over all 

spins in the final state, and where 

A .. ( ) = 2Q eQJ + 2 geigfj + keikfj 
t) S - e ez 2' 2 . s s-Mz+tfzl\!Iz s-Nlx+ifxNlx 

(3 .10) 

(Recall that factors of 9x are absorbed into the k Ji'S so that they have a smooth limit as 9 x ----> 0). 

In this expression, f z and f x are the full decay widths for the Z and X boson , respectively: 

(3.11) 

(3.12) 

(A derivation of the first of t hese expressions is given in Appendix C.) 

It is also important to note that, in deriving the above differential cross section, the assumpt ion 

was made that the fermions in the initial and final states were much lighter than either the Z or the 

X boson (i.e. m}/M~« 1 for all V E {Z,X}, f E {e,u,d,c,s , b}) . 

To find the total cross section, we simply integrate Equation 3.8 over u and t: 

(Note: u, t E [-s, O] in the limit of massless fermions). 
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3.3.1 The Hadronic Cross Section at the Z Pole 

A quantity that is measured accurately at LEP and SLC [19] is the cross section into hadrons, 

f=u,d,c,s,b 

evaluated at the Z pole (i .e. when the centre of mass energy, E cm (= JS) = lvI z ). Note that the sum 

over fermions does not include the top quark; this is because its high mass excludes it as a possible 

final state fermion-antifermion pair due to energy conservation. Its experimental value is measured 

to be 41.541 ± 0.037 nb [23]. In order to obtain a bound on the X boson parameters from this 

quantity, we must not only include the effect of an extra mediating field , but we must also use the 

adjusted fermion couplings, as demonstrated in the previous chapter (see Equations 2.59 and 2.60). 

Specifically, we let 9fi = 9fi + 6.9fi and kfi = 9x (B - L) f + 6.kfi, where 

All in all , this results in a very non-linear form for 6.0"Iwd(9x,j1Ifx ,T/) = 0"Iwd(9x ,NIx ,T/)­

O"had (0, lvIx, 0). (This notation assumes that the cross section is being evaluated at s = Nt;.) Nev­

ertheless, we can program this convoluted expression into a computer algebra system (Maple was 

used here) and expand it, for the sake of consistency, up to quadratic order in "I . From here, we can 

produce a plot of those values of 9x and lvIx , for a particular value of "I , that satisfy the constraint 

where 6.O"had (s = NI; ) lexp. = 0.037 nb (10" uncertainty) is an estimate of the maximum amount 

by which the existence of the X boson is allowed to change the value of O"had (s = NIn without 

producing a disagreement with experiment . A plot of such values is shown in Figure 3.5. 

Here, we have fixed the range of lvIx values to be from 10 GeV to 1 TeV. The lower limit is 

a result of the quantity being considered ; since the hadronic cross section includes contributions 

from the bottom quark (with mass mb ~ 4 GeV [23]) , and since we have made the assumpt ion that 

mVlvt; « 1, we should only trust the results of this analysis down to about lvIx ~ 10 GeV. The 

upper limit is fixed as a result of the constraint losing its practical value; for all values of "I being 

considered here, the bound in the region NIx > 1 TeV eliminates only values of ax for which the 

per turbative calculation considered here would not be trusted anyways. 

There are certain features of these graphs that can be confirmed from the general form of the 

above expressions: 
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Bound from crhad(s=MZ 2) for 11 = 0 

104 ~~~~~~U-__ ~~~~~ 

101 102 103 
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Bound from crhad(s=MZ 2) for 11 = 0.01 Bound from crhad(s=MZ 2) for 11 = 0.05 
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10.4 L---IL...-L-I.....Ll..J....L.I..L;-,-.l..-...l.-.L..L.J....LJUJ 

101 102 103 

Mx(GeV) 

Figure 3.5: Plot of the constraint from O'had (s = M~) . Here, we plot the bound on ax as a function 
of Mx for various values of'T/. Excluded regions have been shaded out. 
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• in the region where Mx « M z , we would expect the mass dependence to drop out, since NIx 

always appears in the above expression for 6.(Jhad (gx , NIx, 77) in the form of s~ = 1- MUM; , 

which approaches 1 in this limit; 

• in the region where NIx» NIz , we can see (easily, in the case where 77 = 0) that leading order 

corrections to (Jhad should be proportional to g~/M~, due to the form of the X term in Aij . 

This agrees with what is found in this region. Note that this is different from the case of Z 

decay, where it was the ratio gx /1'v[~ that was being constrained; 

• since some terms in 6.g fi and 6.k fi do not have any dependence on gx we expect that, for 

sufficiently large values of 77 , the region of parameter space for which gx -> 0 (i.e. log ax -> 

-00) is excluded. Furthermore, it is expected that this will occur more readily in the mass 

region Mx « M z , since the l/s~ terms in 6.g fi and 6.kfi are 0 (1), rather than some small 

value '" -M;/M~ in the region where Mx » M z . 

This last point can be examined more directly by looking at the bound on 77 and ax in the 

region where NIx «Mz . In other words, we can implicitly plot the bound on ax obtained from 

16.(Jhad (gx, Mx = 0,77)1 ::; 0.037 nb as a function of Tj. This is shown in Figure 3.6. 

2 Bound from ()had(s=MZ ) for Mx « Mz 

Figure 3.6: Plot of the constraint from (Jhad (s = NIn in the region where Mx « M z . The excluded 
region is shaded. 

From this plot, we can see that for Tj greater than about 0.04, it is no longer possible to avoid a 

bound with an arbitrarily small gauge coupling. Furthermore, we see that all of the Tj, gx parameter 
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space is excluded for 'f) greater than approximately 0. 4. 

It is also useful to note that, since (6.gL ( R ) )i rv Agx 'f) + B'f)2 (A , B can take on either positive or 

negative values), we would expect possible cancellation between the effects of these two terms when 

gx'f) rv 'f)2 or , alternatively, when ax rv 'f) 2. This relation is , in fact, satisfied within the narrow region 

of allowed values found above 'f) = 0.04. 

So far , the constraints from ahad and f l+ l - have been considered at E cm = lVI z . In the next 

chapter, we consider some constraints that arise at lower centre of mass energies. 

3.A Appendix: Calculating the Cross Section (J' (e+ e- ~ f f) 

3.A.l Explicit Calculation of Scattering Matrix Elements 

vVe are interested in calculating the scattering matrix elements in the limit where, for very early 

and very late times, the particles are non-interacting and so are well represented by momentum 

eigenstates (i.e. the states that diagonalize the Hamiltonian associated with .co in Equation 3.4). In 

this case, these are given by 

(] (k/ , ~) , f (p', 01 s le+ (k,T) , e- (p ,a) ) (3.13) 

where 

is the t ime evolution operator in the interaction picture, also known as the scattering matrix . Since 

an overall momentum-conserving delta function is expected to factorize from any result (a particular 

example of which will be shown below) , it is conventional to define matrix elements M such that 

(3.14) 

It is, in fact, these matrix elements that will be of most use to calculations of decay rates and cross 

sections. 
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Keeping in mind that the fields can be written in the form 

2:1 J d
3
p [. . 1 c;/J. (p A) a e'P'x + c;*/J. (p A) a* e- 'P'x 

A=-1 2Ep (211l , p ,A ' p ,A 
(3.15) 

f (x) ""' J d
3

p [( ) b ip·x ( ) -b* -iP'X] ~ --'---";-3 U p , a p,ae + V p , a p,ae 
a=±~ 2Ep (27r) 

(3.16) 

we can see that the tree-level contribution to the matrix elements arises from the quadratic term in 

s: 

;- I I + - ) 1 J OO 4 4 / - I I + - ) \ f ,f S e ,e = -2 - 00 d xd y \ f , f T[Lindx) Lindy)] e ,e (3.17) 

2: e~ I: d4x d4 y (1, fl T [V/J. Cfy/J.fj f) (x) 
V=A ,Z ,X 

To simplify the time-ordered product, we use Wick's theorem: 

(1 f l T [V/J. (f, /J.fj f) Vv (e,Vf~ e)lle+e- ) (3.18) 

= G~v (x, y) (jJI : Ch/J.rj f) (e,Vf~ e): le+, e- ) 

where: : denotes a normal-ordered product and where G~v (x, y) is the propagator for the gauge 

field V/J.: 

G V ( ) = (01 T [V: ( ) v: ( )] 10) = -' J d4
p rr~v (p) ip·(x-y) 

/J.v x, Y /J. X v y ~ (27r)4 p2 + M3 _ ic; e (3.19a) 

(3.19b) 

Note: the rr~v (p) function is to be evaluated on-shell, e.g. rrgo (p) = -1 + :fr. (In the photon 
z 

propagator, we are using the Feynman gauge so that a term proportional to P;~v is not present.) A 

derivation of this propagator is presented in Appendix B. 

Note that the remaining matrix element in Equation 3.18 can also be simplified by noting that 

only particular operators in the field operator sums will give a non-vanishing matrix element. For 
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example, applying a particular bp1, (Jl gives 

bp, ,(J, b;,(J le+ (k,T) ,0) 

{bp1 ,(Jl' b; ,(J } le+ (k,T) ,0) 

2Ep (27T)3 6(3) (p - PI) 6(J ,(JI le+ (k,T) ,0) 

where {x, y} denotes anticommutation and, where our normalization of one-particle states is chosen 

such that (p , cr l q, ~ ) = (01 {bp ,(J' b~ , ~ } 10) = 2Ep (27T)3 6(3) (p - q ) 6(J,~ ' Hence, 

Repeating this procedure as needed gives the following expression for 

(jJ I{hJ1.fjf) (e'Yvf~e):le+,e-) : 

(1 (k' , 0 , f (pi, 0 1: ChJ1.fj f) (x) (e'Yvf~ e) (y): le+ (k,T) , e- (p,cr) ) 

= e- i(k'+p') Xu; (pi, 0 'YJ1.fjv (k', 0 ei(P+kl-Yv (k,T) 'Yv f~ U (p,cr). 

vVe now have an expression for the time-ordered matrix element found in Equation 3.17: 

(1, f l T [VJ1. ChJ1. f j f) Vv (e'Yvf~ e)lle+, e- ) 

= e-i(k' +P' )·Xei(p+kl-YU; (pi, ( hJ1. f jv ( k' , ~) G~v (x, y) v (k,ThVf~ u (p,cr) . 

From here, we can complete the calculation of the S-matrix element: 

V=A,Z,X 
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where 

or 

. II~1/ (p + k) 
-~ (3.20) 

(p + k)2 + M~ - ic 

X (21f)4 (\' (4) (p + k - k' - p') 

This factor of (21f)4 (\' (4) (p + k - k' - p') is precisely the delta function which is factored out in the 

definition of M as shown in Equation 3.14. Finally, we find the following expression for M: 

M = '\"" 2 - (k ) v f v ( ) II~1/ (p + k) - ( I r) "'fv (k' t) 
~ evv ,T, eU P,O" 2? .U p ,." jV ,., 

V=A ,Z ,X (p + k) + Mv - ~c 
(3.21 ) 

3.A.2 Feynman Rules for Tree-level Graphs 

In retrospect (and after doing several other examples), a connection can be made between the 

diagrams shown in Figure 3.4 and the expression for (711 M le+e-). This correlation is usually 

referred to as "Feynman Rules" . In this case, the applicable rules are that: 

• the incoming fermion line is represented by U (p ,O"); 

• the incoming antifermion line is represented by 11 (k ,T); 

• the outgoing fermion line is represented by u (p' , (); 

• outgoing ant ifermion line is represented by v (k/ , ~); 

• vertices are represented by -ev,"'ff; 

• intermediate bosons are represented by p2~:S~2 iE ' where p is the 4-momentum in the corre­

sponding line as calculated using 4-momentum conservation at the vertices. 

Applying these rules, along with the understanding that matrix multiplication occurs in reverse 

order along fermion lines, will give the three expressions found in (711 M le+e-), one for each 
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mediating boson. In general , there are also rules for symmetry factors and for relative signs amongst 

different graphs, but these are not needed here. In other contexts herein, these rules will be applied 

rather than pursuing a full calculation. 

3.A.3 The Cross Section: A Meaningful Quantity in the Infinite-Volume 

Limit 

Now that the scattering matrix elements have been calculated , it is possible to work out expressions 

involving the probability for such a transition to occur. For example, t he differential rate for an 

init ial state i to t ransit ion into some small set of final states 6.f is 

df (i -t 6.J) = dP (i -t 6.J) 
T 

(3.22) 

where dP (i -t 6.J) is the differential probability for t hat transit ion to occur and T is the time 

required for this transit ion to occur. (T is assumed to be large compared to other time scales in t he 

problem.) Since we know the amplitude (II S Ii), dP (i -t 6.J) will be simply 

dP (i -t 6.J) = lUI S li ) 12 6.f (3.23) 

The main problem now is that (II S Ii) is proportional to an overall , momentum-conserving, delta 

function and so, I (I I S Ii ) 12 is ill-defined. However, if this problem is recast wit hin a box of finite 

volume V = L3 , then we find that t hese expressions make much more sense. In t his case, momenta 

would be discretized: 

(3.24) 

where n i are integers. States within a fini te volume would have the normalization (np ,a l nq , ~ ) = 

bnp , n qbQ" , ~, whereas before we were using the normalization (p ,a lq ,O = 2Ep (2·11/15 (3) (p - q ) bQ" , ~. 

Since, using Equation 3.24, we can write bS3
) (p - q ) = (2~)3 bnp ,nq, it is clear that there is a difference 

in normalization when going from Inp ,a) to Ip,a): 

(3.25) 

This introduces the same difference in the normalization of creation and annihilation operators. 

Therefore, in order to translate our previous results into the finite volume case, whenever particles 

were created or annihilated we should add an extra factor of (2Ep V) - 1/ 2 onto M. 

At finite volume, we find that delta functions can be written in terms of the corresponding Fourier 

transform: 

(3.26) 
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Using this expression, we can work out the meaning of "the square of a delta function" 

1 
(4) ( )1

2 
- (4) ( ) (4) ( ) _ VT -(4) ( ) 

6VT Pi - Pi - 6VT 0 6VT Pi - Pf - (271/ 0VT Pi - Pf 

All in all , this means that the square of the scattering matrL",{ element would be, in the finite volume 

limit, 

and so 

df (i -t 6.1) 

df (i -t 6.1) 

lUI S;r li)I' (If "'nf) 

V (2.)' J~'~ (p, - Pi) IMI' (.!t 2E~, V ) (If (2~)' d3
p f) 

V (2.)' J\f~ (p, - Pi) 1M I' (If 2E~Y ) (If 2E::~;' )' ) 

(3.27) 

(3.28) 

In the end, it is those quant ities that are independent of T and V that are physically relevant . In 

the case of two particles in the init ial state, we see that dr (i -t 6.1) ex V-I so this does not qualify 

as a good quantity. However , if we instead calculate the differential cross section, defined to be 

1 
da (i -t 6.1) = Fdf (i -t 6.f) (3.29) 

where F is the incident flux , then we find that this quant ity does have a well-behaved limit, since 

F ex V - I as well. More specifically, in the rest fr ame of one the initial-state particles, the flux is the 

number density of incoming part icles times their speed: 

F Ires t fram e of I = n21v21 (= ::r) . (3.30) 

(Alternatively, the flux can be defined as the number of incident particles arriving per unit cross­

sectional area, per uni t time.) Note that A is a Lorentz-invariant quantity since it is always measured 

perpendicular to the particles ' motion, and that Nand dP = df x T are also Lorentz-invariant . 

Therefore, we conclude that da = AdP/N is a Lorentz-invariant quantity. Consequently, df and F 

must have the same transformation propert ies. This is ensured if F is proportional to a Lorentz­

covariant factor of (EIE2V)-I, as in df. After some work, we find that the expression that repro-
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duces Equation 3.30 in the rest fr ame is 

(3.31 ) 

where V r el == 
2 2 

1 - (m l m2)2 ' To check this , note that if part icle 1 is at rest then -PI' P2 = El E2 = 
Pl ' P2 

lRf2 F = V 1 - E~ 
2 

(3.32) 

( )

-1 / 2 
which is, indeed, equal to n2 iv2i since E2 = "1m2 = 1 - iV2i 2 m2 and since, for a single 

particle in a box of volume V, n = -&. Finally, we find that 

(3.33) 

From here, it is useful to simplify this expression by integrating over the four delta functions 

present. Since we are mostly interested in situations in which mj « M v , it is convenient to eval­

uate the above expression in the ultra-relativistic limit. vVe also introduce the Lorentz-invariant 

i\lIandelstam variables which are defined, in terms of our original momentum variables , as 

s - (p + k) 2 ~ - 2p . k 

- (pi + k')2 ~ _2p' . k' 

t _ (p _ pl)2 ~ 2p . pi 

- (k - k')2 ~ 2k . k' 

u - (p - k')2 ~ 2p . k' 

- (pi _ k) 2 ~ 2p' . k 

These will be of use in what follows. Note that , in the ultra-relat ivistic limit , 

s + t + u = 2p· (k' + pi - k) = 2p· p ~ 0 

becomes t he requirement for momentum conservation. 

In terms of these new variables, dO" becomes (more details in [17]) 
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or , in terms of the Mandelstam variables , 

_ IMI2 
da (e+e- -+ II) = ---6 (s + t + u)dudt 

167Ts 
(3.35) 

Hence, once the matrix elements M are known, it is only a matter of integrating in order to find the 

cross section. In the next section, we evaluate IMI2 explicitly. 

3.A.4 Evaluating IMI2: Matrix Traces 

Since we will be comparing with an experiment that (ideally) has no spin polarization preference, 

we are interested in contributions from all possible combinations of spins. Therefore, we should sum 

IMI2 over all final spins and average over all initial spins. Specifically, the shorthand i L IMI2 
means 

where 

( ~ .fJ (~,fJ (~~i'<~~/' ~ MM' 

:c L L e~e~, [v(k,T)-y/.Lr~u(p, a)l [v (k ,T)-yvrtu (p,a)r 
spins V,V' 

rr~1I (p + k) 

{
I , I = lepton 

3, I = quark 
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Note t hat 

u t (pp) r~' ("t ) t ,Bv (k,T) 

- u (p,a) ,Br~' ,B'(v (k,T) 

-u (p,a) ,IT~' v (k ,T) 

as well. Therefore, we can write 

where we have defined 

a,T 

L [u (p',()rlLrjv ( k' ,~)] [v (k',~)rlTf' u (p',()] . 
< , ~ 

In order to simplify these expressions further , we use the spin-sum identities 

to rewrite plLV as 

and, similarly, 

L u (p,a) u (p,a) = -ip + me, LV (k ,T) V (k ,T) = -i~ - m e 
a T 

a ,T 

tr [,lLr~ (~ u(p,a)u(p,a)) "tr~' (~ V(k'T)V(k'T)) 1 
tr [rlLr~ (-ip + m e) ,vr~ ' (-i~ - m e)] 

From here, the trace identities 

tr ({IL) = 0, tr ((IL,V) = 4rtV , tr (-l,lL"t ) = 0, tr (lIL , V,A) = 0, tr Cl,IL,V, A) = 0, 

tr (-l,lL"t , A, a) = 4iclLvAa , tr (lIL , v, A, a) = 4 (1)ILV 1)Aa _ 1)ILA1)va + 1)lLa 1)VA) 
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( 10°123 == + 1) as well as the projector identities 

give 

pJ1.V tr bJ1.r~ (-it + m e) Ivr~' (-i~ - m e)] 

-p)..ka tr (lJ1.r~ 1 ).. lvr~' l a) - m;tr (lJ1.r~ IVr~') 

k [( II IF ' P II II' p) ).. v a J1.] 2 2 ( II II' V V') J1.V -p).. atr geLgeL L + geRgeR R 1 1 1 1 - me geLgeR + geRgeL .,., 

2 (g~Lg~~ + g:Rg:~) (.,.,J1.Vp . k - pJ1.kV - pVkJ1.) (3.44) 

and, similarly, 

(3 .45) 

For the situations in which we are interested, it is both useful and appropriate to assume that 

me, mf« lvIz , lvIx. In this case, we can neglect the last terms in the expressions for pJ1.V and KJ1.V, 

and after some work, the expression for i I: IMI2 reduces to 

From here, the pJ1.V KJ1.v term can be computed by noting that: 1) the imaginary (i.e. cross) 

terms vanish because EJ1.v)..a p)..ka is anti-symmetric, whereas (.,.,J1.V p . k - pJ1.kV - pVkJ1.) is symmet­

ric; 2) EJ1.v)..a EJ1.vcxf3 = 2 (JaJ~ - J~J$ ) . Hence, if we temporarily define gi = g'fLg'f~ ± g'f Rg'f~ , we 

find that 

pJ1.V KJ1.v = 4 [g~g~ (.,.,J1.V p . k - pJ1.kV - pVkJ1.) ("" J1.Vp'· k' - p~k~ - p~k~) 

+2g:g~ (JaJ~ - J~J$) p)..kapICX k'f3 ] 

= 4 [29~9~ ((p. pi) (k· k' ) + (p. k') (p'. k)) 

+2g:g~ ((p . k') (p'. k) - (p. pi) (k· k'))] 

pJ1.V KJ1.v = 8 [(g~g~ + g: g~) (p. k') (p' . k) + (g~g~ - g:g~) (p. pi) (k . k')] (3.46) 
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where 

(g~g~ + g~g~) 

(g~g~ - g~ g~) 

Finally, in terms of t he Mandelstam variables, we find that 

where we define 

A .. ( ) = 2 Q eQJ + 2 geigfj + keikfj 
tJ s - e e z • '12 M2 . 

S S - lV, Z S - x 

3.A.5 Avoiding Poles 

(3.47) 

(3.48) 

A glaring issue with Equations 3.47 and 3.48 are the divergences as s ~ M;, Nt;. These occur 

as a result of the mediating gauge boson being "on-shell", which means that , if we represent the 

4-momentum of the V boson as PJ-L, the relation p 2 = -NI~ is satisfied (which is not always 

necessarily the case for virtual particles). However , if a calculation were performed to a higher order 

in perturbation theory (e.g. to the I-loop level, rather than only to tree level), it is possible to show 

that the expression in the denominator is corrected: 

1 1 

s - M3 ~ s - [Mv (1 + 8)]2' 
(3.49) 

It is possible to work through the I-loop calculation in order to determine 8, but there is a simpler 

way: consider the time-dependent wave function for the free gauge boson in its rest frame, 

Iwv (t) ) = e- iMv t IWv (0) ) . (3.50) 

This wavefunction yields a t ime-independent probability distribution: 

Pv (t) == I(Wv (t) IWv (t) )12 = I(Wv (0) IWv (0))1 2 
. 

However, we know this not to be the case; experimentally, we know that massive gauge bosons 

(specifically the Z) decay. The Z decay rate is measured to be [23] r z = 2.4952 ± 0.0023 GeV, in 
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agreement with the 8M prediction, which is (at tree-level) 

where c\:z = e~/47T. (A derivation of this expression is given in Appendix C.) Therefore, t he 

corresponding t ime-dependent probability distribution should be 

(3.51) 

Allowing M z -t M z (1 + 6) in Equation 3.50 yields Equation 3.51 in the case of the Z, so long as 

_ i r z 
0 =-- - . 

2 Mz 

This agrees with the detailed result obtained from the I-loop calculation except for one difference: 

since every addit ional loop involves addit ional powers of c\:z and since 6 ex: c\:z, the I-loop calculation 

gives the 6-linearized version of the denominator in 3.49, 

1 1 

s - M; - 2M;6 s - M; + ir zMz · 

Therefore, the expression that takes into account the non-zero decay widths of the Z and X 

bosons is 

thus avoiding the issue of divergences when s = N!';, N!'; . 

3.B Appendix: Determining the Gauge Boson Propagator 

The propagator G~y (x, y) is defined formally as 

(01 T [VI-' (x) Vy (y)lIO) 

(01 VI-' (x) Vy (y) 10) e (xO - yO) + (01 VI-' (y) Vy (x) 10) e (yO - xO) 

where e (x) == {I , x> O} is the Hcaviside step fu nction. 
0, x < a 

(3.52a) 

(3 .52b) 

In order to simplify this expression, we can insert the following mode expansion for the spin-one 

field VI-' : 

(3.53) 
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This gives 

(01 VJ.t (x) Vv (y) 10) 

where II~v (p ) == Ll=-l cJ.t (p , .-\ ) c~ (p , .-\ ) , and so 

(3.54) 

To further simplify this expression, it is useful to now insert the following integral representation 

of the Heaviside step funct ion: 

e (x) = - . dw_
e
_. (c> 0) 

1 J oo -ixw 
271"t -00 W - tc 

which gives 

-i J d
3

p J dw _1_. II v (p) [eiP.(X-Y)e-i(XO-yO)(Ep-W) (3.55a) 
2Ep (271")3 271" W - tc J.tV 

+e- iP .(X- Y)e+i( XO-yO ) (Ep -W) ] . 

Substituting po = E p - W gives 

(3 .56) 

where, in the last line, c is implicitly rescaled: c ---7 c/2Ep. Note that the 4-vector p in the exponent ial 

is no longer assumed to be on-shell , i.e. po =J Ep necessarily. 

Finally, we obtain a simplified expression for II~v (p ) . Since II~v (p) == L A Cll (p , .-\ ) c~ (p , .-\ ) is a 

rank-2 tensor , we can assume that t he sum will have the final form 

(3.57) 

for some constants A and B. vVe can evaluate this sum explicitly in the rest fr ame with the following 
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choice of basis polarization 4-vectors: 

This gives 
1 

cJ.« O, - I ) 

cJ.< (0, 0) 

c J.< (0 , + 1) 

(0, 1,0, 0) 

(0, 0, 1, 0) 

(0,0, 0, 1) 

L CJ.< (p, A) c~ (p , /\ ) = b~b~ + b;b~ + b~b~. 
>.=-1 

(3.58a) 

(3 .58b) 

(3 .58c) 

(3.59) 

To solve for A and B , recall that 'fJJ.<v == -b~b~ + b~b~ +b~6~ +b~b~ and that PJ.<Pv = iVI~6~b~ in the 

rest frame. After some rearranging, this gives A = 1, B = l /iVI~. Therefore, in a general reference 

frame, we have that 

(3.60) 

3.C Appendix: Z Decay Calculation 

The rate at which the Z boson decays can be calculated by considering Equation 3.33 from Appendix 

A, in the case where there is only one particle in the init ial state. (Note that , in this case, the decay 

rate is a well-defined quant ity as V, T -7 00.) In part icular , the different ial decay rate in t he rest 

frame of the Z boson (where we take p = (iVlz , 0) , p' = (Ep/ , p') , k' = (Ep /, _p') is 

(3.61 ) 

where we have eliminated the second angular variable by taking advantage of the azimuthal symme­

try. 

Now to calculate IM I2: using the Feynman rules described in Appendix A, we find that for the 

decay Z -7 {J , 

where rJ = gjLPL + gjnPn with the gL(n)i defined by J: = ie z 'Lf( yJ.< (gL i PL + gRiPn ) li­
i 
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Averaging 1M 12 over init ial polarizations and summing over final spins gives 

-e} (rJ~v + p;J; ) tr [( -ir/' + m) ,~rj (-iii' - m) , Vrj] 
2 e; rJ~vp~k~tr [r<>,~rj ,/3,Vrj] 

where the approximation assumes, as before, that the fermions are very light compared to other 

energy scales in the problem. Evaluating the trace and cont racting gives 

where, in the rest frame of the init ial Z, p' . k' = -2E~, = -JvI';/2. Note that this expression does 

not depend on the polar angle, e. Finally, we find t hat the decay rate in t he lab fr ame is 

r(z~lJ) 
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1 Chapter 4 

Neutrino Scattering 

The purpose of this section is to consider the influence of the X boson on well-measured results from 

neutrino scattering. In particular, two quantities will be of interest: 

R a(v" e- ->v"e - ). h . I . • == ( ) III t e case neutnno-e ectron scattenng; 
a vJJ. e -+ l.IJJ. e 

• R - = a(v"N->v"X)-a(iJ"N--+iJ"X) (known as the Paschos-vVolfenstein Ratio [24]) in the case of 
- a (v"N ->1' X)-a(v"N --+1'+ X) 

neutrino-nucleon scattering. 

These ratios are useful because they allow for the cancellation of systematic errors that arise in 

the measurement of the individual cross sections. (This will be discussed in more detail later on.) 

We shall first derive the vJLe- ~ vJLe- cross section using the e+e- ~ 17 result from Chapter 3. 

From here, we consider the specific case of zero mixing (i.e. 'T/ = 0) in order to demonstrate how 

measurements of R relate to the weak mixing angle. The 'T/ i= 0 case is also considered. In considering 

neutrino-nucleon scattering, we begin by showing the significance of the Paschos-Wolfenstein ratio. 

However , rather than using it directly to produce a bound on the X parameters, we use the fit done 

in [25], which gives experimental values for the combinations C~(R) = g~L(R) + g~L (R) · 

4.1 Neutrino-Electron Scattering 

4.1.1 Crossing Symmetry 

Crossing symmetry can be used to exploit the result obtained previously for CJ (e+ e- ~ 17) in order 

to find an expression for CJ (vJLe - ~ vJLe-) . In Chapter 3, we found that, in the ultrarelativistic limit, 

-16:82 (~L IMI2) (4.1a) 

2 ( IALL (8)1
2 

(8 + t)2 + IARL (8) 1
2 t2) (4. 1b) 
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(Note: the IALnl 2 and IAnn l2 terms are dropped since, in this case, only left-handed neutrinos and 

right-handed anti-neutrinos contribute.) where 

A (s) = e2 gei9vj + 2 keikvj 
'J Zs-j\lI~ 9xS_l\(~ (4.2) 

and where 

s = -2p· k, t = 2p· pi, U = 2p· k' . (4.3) 

By comparing the diagrams in Figure 4.1 , we find that the scattering matrix element for v e- -t 

ve- would be the exact same as what would be obtained if the original e+e- -t {l calculation were 

repeated with the following 4-momentum changes: k -t _pi , k' -t -k , pi -t k'. 

e 

) 

v 

Figure 4. 1: Illustration of the crossing symmetry between the process e+e- -t vv and e- v -t e-v 
in terms of Feynman diagrams. 

Using the definitions in Equation 4.3, we deduce the following changes for the s, t, and u variables: 

S -t t , t -t U, U -t s. ( 4.4) 

However , it is important to note that this trick using crossing symmetry only works for Vj with 

f -=I- e. T his is because, in the case of e- V e scattering, the incoming particles can scatter through an 

addit ional s-channel W boson, which was not considered originally. 

"With these replacements, the cross section for the process vJ1.e- -t vJ1.e- is 

1 [ 2 2 2 2] 
- 87TS 2 IALL (t)1 S + IAnL (t)1 (s + t) 

-8~ [IALL (t)12 + IAnL (t) 1
2 (1 + ~) 2] (4.5) 
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Finally, it is customary to consider this cross section in the rest fr ame of the incoming electron , 

as a function of the energy of the incoming neutrino, E v , and the fr actional neutrino energy loss, 

y == T / E v , where T is the kinetic energy of the outgoing electron (i.e. T = plO - m e). In terms of 

t hese new variables, s = 2meEv and t = -2me (yEv + m e) and so 

(4.6) 

2 

where we have dropped terms of order mE" (which are equivalent to terms of order m e that have been 
v s 

dropped previously) . 

4.1.2 Effective Interactions 

A case of interest when dealing with interactions mediated by heavy gauge bosons is when the boson 

masses , NI z and NIx, are much greater than any other energy scale in the process of interest (i.e . 

0). If this condition holds, then the AiL ' S can be simplified: 

(4.7) 

Hence, when t «M~, l\(~, the presence of the second X boson term in the A iL'S can be interpreted 

as an additional shift in the neutral current couplings g ei. 

4.1.3 Special Case: T) = 0 

In the case of no kinetic mixing, we can substitute the usual values gei 

kei = kVj = - 1 and obtain 

1 
2 ' 

(4.8) 

where 2V2C F == e'iv/Ma, == e;/2M~. (biL is a Kronecker delta function: bLL = 1, bR L = 0.) 

In this sense, the existence of the X boson manifests itself as an addit ional contribut ion to s'iv. 

Hence, measurements of s'iv obtained using neutrino-electron scattering constrain the ratio g~ / M'J(, 

Specifically, this is done as follows : using the 8M only, we obtain 

(4.9) 
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which, when integrated from y = 0 to Y = 1, gives 

(4.10) 

Conversely, if we had instead considered the process vJ.Le- --t v J.Le- , we would have kept the 

IARR I2 and IALRI2, which would have given the same expression as in Equation 4.9, except that 

g~L f-t g;R: 

(4.11) 

From here, the dependence of R == a (vJ.Le- --t vJ.Le-) / a (v J.Le- --t vJ.Le-) on s~v can be seen ex­

plicitly: 

This is often (e.g. in [26]) rewritten as 

1 + I), + 1),2 
R=----;::-

1 - I), + /'1,2 

(4.12) 

(4. 13) 

where I), == 1 - 4s~\I ' Experimentalists can measure R and then deduce a corresponding measurement 

of s~v ' Thus, the additional contribution to S~, is limited in size to the experimental error in s~, 

i.e. ~s~ = 2AcF -lk. In [27], we find that such experiments yield ~~~v = 0.82% which gives 

(GF = 1.1664 X 10- 5 GeV- 2 [23]) 

Mx > 4 TeV 
gx -

(4.14) 

However , this bound should not be trusted down to arbitrarily low lVIx; [27] obtains this value from 

an experiment in which 3 < T < 5 MeV. Therefore, requiring that our assumption regarding effective 

interactions , I Nir l.:s 1 %, remain valid gives (t = - 2me (T + m e)) 

Mx 2:: 10 MeV (4.15) 

In the general case with "1 =f=. 0, the situation is significantly more complicated. This is considered 

below. 

4.1.4 General Case: r; i= 0 

In the general mixed case, we calculate the relevant cross sections using Equation 4.7, along with the 

mixed expressions for gjL(R), kjL ( R ) as found in Chapter 2. We then determine R (up to quadratic 

order in "1 ) and compare this result with the experimental value found in [27]. Since, in [27], the 

bound is quoted in terms of s~, we translate this bound into one on R using 

I 
dR I 2 ~R = d (s?v) ~sW' (4.16) 
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As in previous chapters, this bound is not linear and must be plotted numerically. This is shown 

in Figure 4.2. 

Plot of the Constraints Associated with Neutrino-Electron Scattering 

10° 

10-2 

10-4 Excluded 

10-6 

10-8 Tl = 0.000 + , 
Tl = 0.001 ax " \ x 

10-10 Tl= 0.01 0 a 

Tl = 0.100 " 
10-12 Tl = 0.300 .. 
10-14 I: 
10-16 ! 
10-18 ! 

10-2 10-1 10° 101 102 103 104 

MX (GeV) 

Figure 4.2: Bound obtained on gx, by limiting the influence of the X boson on the cross section ratio 
R , as a function of lVIx. The dotted vertical lines indicate the region in which the small-7J expansion 
is questionable (see Section 2.3 for details). 

Here, we plot the bound on gx as a function of lVIx for the mixing values 71 = 0, 0.001 , 0.01 , 0.1, 

and 0.3. A few comments: 

• For the larger values of 71 (i.e. for 71 = 0.1 , 0.3) , the result obtained in the region Mx E [80, 100J 

(marked by vertical dashed lines in Figure 4.2) should not be trusted, since the perturbative 

expansion in 71 is not valid here (as shown in Figure 2.1) . 

• For all non-zero values of 71 , there is a mass cutoff past which all values of the gauge coupling 

are excluded. This is similar to what was found in Figure 3.5 for small Mx, although here the 

effect is present even for small 71 . 

• For large lVI x , we see that the bound is essentially the same for all 71. This is expected since 

6.g , 6.k IX l/s~, which is rv 1 for Mx « M z , but only rv M~/M; when Mx » M z , which 

means that the term g~ / M; found in the second term of the Aj's dictate the bound, as in the 

unmixed case. 

In the next section, we consider a similar process, vN ---+ vN, where N is any nucleon. 
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4.2 Neutrino-Nucleon Scattering 

4.2.1 The Paschos-Wolfenstein (PW) Ratio 

To begin, we give some mot ivation for the PVV Ratio: consider the cross sections for charged and 

neut ral current scattering of muon neutrinos with nucleons. Borrowing from the previous section, 

we find that the quark-level expressions are 

for neut ral currents, and 

(J (vJ.Ld --t p,-u) 

(J (VJ.LU --t p,+ d) 

(4. 17a) 

(4. 17b) 

(4. 17c) 

(4. 17d) 

(4.18a) 

(4. 18b) 

for charged currents, where K == 2G~meEI//7r and Nc = 3. (Note that the charged current expressions 

are obtained from the neutral current ones by simply setting 9 L = 1, 9 R = 0.) From these expressions, 

it is clear that the neutral current expressions can be written as linear combinations of the charged 

current ones. However , we are interested in the cross section for neutrino-nucleon scattering in 

the limit of deep inelastic scattering; from the form of Equations 4.17 and 4. 18, we can derive a 

relationship relating charged and neutral current cross sections (valid in the deep inelastic limit) : 

where 
2 _ 2 + 2 

C L ( R ) = 9UL ( R ) 9dL ( R ) 

Similarly, for antineutrino scattering, 

As before, we would like to consider ratios of cross sections in order to cancel systematic errors 

that are present in individual cross sections measurements. The following ratios make convenient 
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choices: 

where r == (J (v,..N ~ p,+ X) / (J (v,..N ~ p,- X). Now, everything is expressed in terms of cross section 

ratios, but there is an additional problem: it turns out that the ratio r is difficult to measure 

experimentally, due mainly to processes contributing only to (J (v,..N ~ p, - X) in which a (much 

heavier) charm quark is produced fTOm a down or strange quark in the initial state [25] . Since the 

charm quark is heavy, the deep inelastic limit is no longer valid, and this ratio cannot be measured 

very accurately. 

In order to avoid this issue, we take the linear combination of R V and R j) such that the r­

dependence vanishes. That is , we use what is known as the Paschos-Wolfenstein Ratio [24]: 

RV -rRj) 

1-r 
c2 _ c2 

L R 

(J (v,..N ~ v,..X) - (J (v,..N ~ v,..X) 
(J (v,..N ~ p, - X) - (J (v,..N ~ p,+ X) 

Considering this particular combination of cross sections gives a result that is insensitive to systematic 

errors related to the ratio r. 

Following the procedure from the previous section, the next step would be to calculate an ex­

pression for R- that includes the effects of the X boson. However , since [25] has used their data to 

perform a fit to determine c~ and c~ , we shall instead use effective expressions for these to constrain 

our parameters. Specifically, [25] finds that 

c~ 0.30005 ± 0.00137 

c~ 0.03076 ± 0.001l0 

with t :::::: - 20 Ge V2 . Since similar results are obtained for each of these, we shall focus only on the 

bound arising from c~ . Assuming, as in the case of neut rino-electron scattering, that t « j\(~, we 

find that 
2 ( n'12 

2 k ) u(d) ez lV, z gx vL 
ALL ~ - lVI 2gvL gU(d)L + - 2 M2 -ku(d)L 

z e z x gVL 
(4. 19) 

and so, when calculating c~ = (g~;: + 6:..guL )2 + (gJ:! + 6:..gdd 2 (up to quadratic order in 77) we 
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include an additional term in 6.gU (d)L to account for the X boson term in the Aij's: 

( 4.20) 

Requiring that 6.c~ ~ 0.00137 gives the plots shown in Figure 4.3. Here, we cut off at low mass 

Bound from v-Nucleon Scattering for T] = 0 
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Figure 4.3: Plot of the constraint from R- (neutrino-nucleon scattering). Here, we plot the bound 
on ax as a function of Mx for various values of TJ. Excluded regions have been shaded out. 

according to the condition It/M~I ~ 1%, in order to ensure that assumption of effective interactions 
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is valid. 

Note that , for." = 0, the bound is very similar to what was found in the case of neutrino-electron 

scattering. However, as." increases, there is a point past which no values of 9x are allowed for small 

Mx · 
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1 Chapter 5 

Constraint from Primordial 

N ucleosynthesis 

5.1 Motivation 

vVe turn to nucleosynthesis to constrain the X boson parameters since, as we shall see, very strong 

constraints exist in the mass range 1\1.(" < 1 MeV. In essence, the argument goes as follows: as the 

early universe cooled , high energy protons and neutrons combined to form the light nuclei that we 

observe today through a process known as nucleosynthesis. Present-day measurements of the abun­

dances of these nuclei in the universe can be obtained from the observation of stellar spectra. One 

of the great successes of cosmology is that these abundances can be worked out from our knowledge 

of the SM and General Relativity. In fact, the detailed agreement between the predictions of theory 

and the observed abundances allow for constraints to be put on the conditions in the universe at 

the time of nucleosynthesis. In particular, the number of additional relativistic degrees of freedom 

present during nucleosynthesis can be limited using measurements of t he relative abundance of 4He 

[28]. Since the X boson allows for extra relativistic degrees of freedom, it can be constrained by 

considering its effect on nucleosynthesis. In this chapter , we shall first consider X boson decay, and 

then give an overview of the relevant cosmological concepts requisite for understanding nucleosyn­

thesis, as well as the X boson's effect on this process. F inally, we derive a bound on the X boson 

parameters using the result of this analysis. 
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5.2 X Decay 

The rate at which the X boson decays can be calculated in a way similar to that presented in 

Appendix C from Chapter 3. Such a calculation gives the following result in the lab fJ.·ame: 

r (X -> f7) = Mx (k2 + k2 ) 247r Lf Rf 
(5. 1) 

As found previously, kL (R)i are given (up to quadratic order in 7) ) by 

( 
1 ) 1 ( s~ ) 2 

kL ( R )i = 9x (B - L )i - 7) 1 - s~ SW eZ9L(R )i + 7)cw eQi + 2 1 - s1: 7) 9x (B - L )i . (5.2) 

This expression simplifies greatly for the sit uation of interest: since we are interested in the regime 

where Mx '" TF ~ 0.7 MeV (the freeze-out temperature; to be discussed later), then s~ == 1 -~ ~ m z 
1; also, since at these energies the X boson can only decay into neutrinos, Qi = O. (Note that the 

assumption that m f « !vI x is indeed valid for neutrinos.) 

This gives 

r = 9x x 1 + _ c2 2 2 M ( 1 )2 
v 127r 2 1'0'7) 

(5 .3) 

(Here, we have substit uted the value (B - L )v = -1.) This means that the total decay rate into 

all three generations is 

r 

(5.4) 

where ax == 9~/47r, as before. 

5.3 A Quick Review of Cosmology 

In order to have a general understanding of primordial nucleosynthesis, it is important to understand 

the cosmological foundation upon which it is built . 

'Within the approximation of an isotropic and homogeneous universe, the most general metric 

9J.Lv that can be written is represented by the following line element [29]: 

(5.5) 

where K, E {O, + 1, - 1} , corresponding to flat, closed, or open geometries. Since the universe as we 

observe it appears to have a flat geometry, we shall only consider the case where K, = O. 

Similarly, if we model the large-scale structure of the universe as a perfect fluid , we find t hat the 
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stress-energy tensor for the universe in its rest fr ame is [29] 

p 0 0 0 

0 p 0 0 
(5.6) T J•w = 

0 0 p 0 

0 0 0 p 

where p is the energy density and P is the pressure. To determine the t ime-dependence of the function 

a (t) , we use Einstein 's Equations, given by 

(5.7) 

where ]vIp = 2.43 x 1018 GeV and where RJ.l.v , R are the Ricci tensor and Ricci scalar, respectively. 

By substituting Equations 5.5 and 5.6 into Einstein's Equations, we find the following two coupled 

differential equations: 

H 2 = _P_ 
3M;' 

dp 
dt + 3H (p + p) = 0 

(5.8) 

(5.9) 

where H == ~ ~~. Note that Equation 5.9 can be understood as a cont inuity equation for the energy 

within a co-expanding box of volume V = a (t)3 , i.e. an equation of the form 

where E = pv. 

dE dV 
dt = -Pdt (5.10) 

These equations, on their own, cannot be solved completely unless a relation is known between 

the energy density and the pressure of the system. Such an equation is referred to as an "Equation 

of State" , and is often of the form [29] 

p=wp (5.11) 

for some constant w . For example, for a gas of photons, w = 1/3 whereas, for a gas of non-relativistic 

particles , w c::= O. Solving these three equations gives 

p 

a (t) 

(
ao)3( l+W) 

Po -
a 

( t)~ ao -
to 

(5 .1 2a) 

(5.12b) 

From these we can see that, for early t imes, the expansion of the universe was dominated by 

radiation, whereas , at later times, energy sources with lower w values , such as non-relativistic matter 

61 



MSc Thesis - M.R. Williams - McMaster University - Department of Physics and Astronomy 

would dominate. 

vVe are also interested in the temperature dependence of p, which , in turn, determines the tem­

perature dependence of H . This can be derived by recalling the generalized Boltzmann distribut ion 

functions for bosons (-) and fermions (+): 

(T) - J d3
p E N (E T) - J d3

p Ep 
p - (27T)3 P p , - (27T)3 eE p/ T ± 1 

(5. 13) 

(Here, the Boltzmann constant , kB , is set to unity, implying that temperatures are identified by 

their corresponding Boltzmann energy: E = kBT.) For relativistic matter, p (= Ip l) » m and so 

Ep (= Vp2 + m2) ':::::!. p, which gives 

p (T) 1
00 

47Tp
2
dp p 

a (27T )3 eP/ T ± 1 

- dx--T 4 1 °O x3 

27T2 a eX ± 1 

P (T) ga B T 4 (5.14) 

where aB = 7T 2 / 30 and where 

g={ 
1, bosons 

(5 .15) 
7/8, fermions 

Each spin or polarization degree of freedom contributes to p independently by an amount as given 

above. 

Another quantity of interest is the number density of non-relativistic particles: in this case, we 

find that p « m and so Ep ':::::!. m + p2 / 2m, which gives 

n(T) 

Now, for T « m , we find that 

n (T) 

(5.16) 

This is of use when considering free protons and neutrons before nucleosynthesis . 
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5.4 Equilibrium and Nucleosynthesis 

While the universe is still sufficiently warm, the weak interaction keeps neutrons and protons in 

equilibrium with the bath of relativistic neutrinos, electrons, and photons. However, as the universe 

expands and cools , we find that the weak interaction is no longer capable of sustaining equilibrium. 

The temperature at which this occurs can be estimated by examining the generalized Boltzmann 

equation for the relevant processes [29] : 

or 

(5 .17) 

where K. (i -t j) is the total macroscopic scattering rate from i particles into j particles. 

Equation 5.17 introduces some confusion to the notion of being in equilibrium. Normally, (stable) 

equilibrium is a condition that does not change over time, as well as a balance between forwards and 

backwards reactions. Clearly, both of these notions cannot simultaneously arise from Equation 5.17. 

However, in the limit where each K. is much greater than H , the second term on the left-hand side of 

Equation 5.17 can be neglected , yielding the usual Boltzmann Equation. Therefore, the condition 

for equilibrium is: 

(5.18) 

where Ni = nia3 is the total number of i particles in some volume V = a3, and r is now the 

usual scattering rate per particle. From here, we can estimate the freeze-out temperature, TF , 

by determining the temperature at which Relation 5.18 no longer holds. For weak interactions, 

r rv G~T5 [29] and H rv Jv}p T 2
. Solving using these estimations gives TF ~ 0.7 MeV. 

At this temperature, the number density of neutrons and protons "freeze out" , meaning that the 

ratio nn/np remains fixed at its present value (almost - see below): 

This is not exactly right since the neutron can still undergo {3 decay into a proton and other 

particles. Including the effects of this process instead gives [29] 

where Tn = 890 s is the mean lifetime of the neutron and t is the amount of t ime before the universe 

has cooled enough to allow deuterium to form without being photo-dissociated immediately. This 

occurs when T = 2.23 MeV (-t t = 89 s). 
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This is a useful quantity because it turns out that the relative abundance of 4He, Yp , depends 

simply on f [29]: 
11: = p 4H e ~ ~ 

P-PB- 1 + i' 
(5.19) 

(PB is the energy density of all baryons.) Therefore, any change to f results in a variation of Yp , 

which has been measured experimentally [28]: Yp = 0.249 ± 0.009. Since Yp is a ratio of energy 

densities , it should not vary as the universe expands. This means that the present-day measured 

value should match what is produced during nucleosynthesis. 

This measurement of Yp can be used to place a limit on the number of extra relativistic degrees 

of freedom that can be in equilibrium, since extra degrees of freedom increase H , which increases TF 

and t, which increases f. Cyburt et. al. [28] find the limit to be 

JNv :::; 1.44 (95% C.L.) (5.20) 

where JN v = N v - 3 is often interpreted as the change in the number of neutrino generations present 

at freeze-out. 

In order to apply this to the case in which we are interested (i.e. extra bosonic degrees of freedom) , 

consider the corresponding maximum allowable change to the variable g = Nb + (7/8) NI : 

~JNv x 2 (spins per v) 

2.52 (5.21 ) 

From here, we can re-interpret this as a maximum allowable number of massive spin-1 bosons, N x : 

Jgmax N x x 3 (pol. 's per X) = 2.52 

=} N x =0.84 

Therefore, adding just one addit ional massive spin-1 boson into relativistic equilibrium is excluded 

at the 95% confidence level! From here, t here are only two viable options (other than simply not 

including the spin-1 boson ... ): 

1. ensure that the X boson decays into neutrinos before the freeze-out temperature, T F , by 

choosing appropriate values for its mass, and gauge coupling; 

2. choose the X boson to have a mass, lvIx , such that lvIx > TF . If this were so, then the density 

of X bosons would be Boltzmann-suppressed, and so would not interfere with the value of ~)' 

Hence, for lvIx > TF , there is no constraint. However , if lvIx < TF , the constraint comes from 

requiring that H > r when T = TF [1]. This ensures that the reaction X -t vIi is not in equilibrium 

with the reverse reaction vIi -t X , and so those X bosons that decay are not reproduced from 
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neutrino collisions. vVe can calculate H explicit ly using the Friedmann equation: 

H = _l_JP(T) = _1_Jga B T 4 

NIp 3 Mp 3 
(5.22) 

where Mp = l /VS-rrG = 2.43 x 1021 MeV, a B = -rr2 / 30, and where 9 = Nb + (7 / S)Nf counts the 

effective number of degrees offreedom. In this case, we have Nb = 2 (r) +3 (X) = 5 and N f = 3 x 2 (1/) 

+2 x 2 (e±) = 10, which gives 9 = 55/ 4 (= 13.75). From here, we find t hat, at T = TF '::::' 0.7 MeV, 

H = ~ {U T; '::::' 2.48 X 10- 22 MeV. 
6V2Mp 

(5.23) 

Now, in order to use the result we obtained previously for the X decay rate, we must re-write 

it in the co-expanding frame. To do so, we simply multiply by a factor of ,-I = NIx / Ex (since 

r = 7-1 , i. e. the decay rate is the inverse of the e-folding time, which transforms under Lorentz 

transformations as 7 --> ,7), where Ex '::::' (3 + 3) ~TF when freeze-out occurs. This gives 

(5.24) 

Finally, requiring that H > r CE at freeze-out gives 

(5.25) 

or 

a M2 < ~ __ F 1 + _c2 T)2 = 5.20 X 10-22 MeV2 1 + _c2 T) 2 HI T 3 ( 1 ) -2 ( 1 )-2 
x x 2 2 Mp 2 w 2 w 

(5.26) 

Clearly, for the values of T) in which we are interested , this addit ional factor does little to change 

the overall graph; this is illustrated in Figure 5.l. 

In the case where T) = 0, this is off by a little less than an order of magnitude from the result 

quoted in [1]: 

(5.27) 

However, there are some differences between what is presented here and what is found in [1]: 1) for 

the total decay rate, they use r = iaxNIx (for reasons unknown); 2) to go to the co-expanding 

frame, they multiply by Mx/2TF' instead of M x /3TF (a minor difference); 3) t hey consider only one 

generation of neut rinos: 4) they use the condition r CE = l / t, where t is the age of the universe, to 

obtain their bound (recall that H = 1/2t). Making these changes in the above calculation reproduces 

the value obtained in [1]. 
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Constraint from Nucleosynthesis 

10-4 

Mx (GeV) 

Figure 5.1: Constraint obtained from nucleosynthesis considerations - the solid (red) line corresponds 
to T/ = OJ the dashed (blue) line corresponds to T/ = 0.4. 
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Chapter 6 

Summary and Conclusion 

In this chapter, we compile the results obtained throughout the previous chapters, in order to obtain 

a global perspective on the relevant bounds at various values of the kinetic mixing parameter , 'TJ 

(specifically, 'TJ = 0, 0.001 , 0.01 , 0.1 , 0.3) . First, we focus on the bounds near the Z pole in order 

to prioritize the bounds in this mass region. From here, we consider the relevant bounds over the 

mass range from NIx = 1 keY to NIx = 10 TeV. Some concluding remarks are then presented. 

6.1 Near the Z pole 

In order to better understand which bounds dominate when the X boson mass is near the Z pole, we 

superpose those bounds obtained throughout the previous chapters which are relevant in the mass 

range JVlx E [10, 104] GeV. These plots are presented in Figure 6.l. 

For 'TJ = 0, note that there is no bound from Z decay and that the bound from O"had is not very 

useful since the bounds from v-scattering are stronger at every M x . The v - N bound dominates 

above the Z pole but, since it is only reliable down to NIx ':0:' 25 GeV, the v - e- bound dominates 

for smaller NIx. 

A s 'TJ increases, the Z decay bound is consistently superseded by stronger constraints . Alt hough 

difficult to denote graphically, the thin allowed regions in the Z decay bound for NIx < NI z are also 

ruled out by the stronger constraints. At (and near) 'TJ = 0.01 , the O"had bound develops a feature 

that excludes NI x values near the Z pole (recall that bounds near the Z pole for this value of 'TJ are 

indeed reliable; see Section 2.3 for details) . For'TJ > 0.1 , the v - N, f l + l - and O"had bounds develop 

an exclusion of all lvI x :s 110 GeV when Cl:x is small. 

In the next section, we present all of the bounds obtained here over the range from 1 keY up to 

10 TeV. For the purpose of clarity, we shall only plot the dominant bounds near the Z pole. These 

are 

• for'TJ = 0, 0.001: v - e-, v - N; 
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Summary of Bounds Near the Z Pole for 11 = 0 
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Figure 6.1: Summary of the constraints relevant near the Z pole. Here, we plot the bound on ax as 
a function of NIx for various values of'T/. Excluded regions have been shaded out. 
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• for TJ = 0.01: 1/ - e- , 1/ - N, O"had; 

• for TJ = 0.1 , 0.3: 1/ - N , O"had· 

6.2 Summary of Constraints 

Given the above dominant constraints near the Z pole, we are now in a posit ion to present the 

dominant constraints over the ent ire mass range of interest here. This is shown in Figure 6.2. 

For TJ = 0, the dominant bounds are simply the bounds from neutrino scattering, along with the 

nucleosynthesis constraint . As TJ increases, t he l/ - e- bound develops an exclusion of all IvIx below 

some TJ-dependent value, in the limit of small ax . However , these exclusions only apply in the mass 

range for which we trust our bound, and so in the plots for TJ = 0.001 and TJ = 0.01 , the region 1 

MeV < IvIx < 10 MeV, as well as t he region below the nucleosynthesis bound, are not excluded . 

In the graph for TJ = 0.01 , the O"had bound excludes a region about the Z pole for small ax . In 

situations such as these, the bounds are extended below the region in which they were originally 

considered using dotted lines. It has been checked that these bounds do, in fact , follow this behaviour . 

For TJ > 0.04, the bound derived in Section 3.1 related to the W mass (roughly given by requiring 

(TJ / 0.5) x (1 TeV / M x ) :::; 1, as in [22]) excludes below the corresponding mass for all values of ax · 

Thus, for TJ = 0.1 and TJ = 0.3, this bound is the dominant one for M x < 250 GeV and M x < 635 

GeV, respectively. For IvIx outside of these regions, the bound appears to be dominated by 1/ - N 

bound, which roughly constrains the ratio a x / IvI'; . For completeness, we have included the sub­

dominant bounds in the region IvIx « M z (i .e. the 1/ - e- and nUcleosynthesis bounds) in the plots 

for TJ = 0.1 , 0.3. 

6.3 Concluding Remarks 

In this report , we have presented updated bounds on the gauge coupling of aU (1) field X J1. coupled 

to B - L , as a function of its mass over the range 1 keV< IvIx < 10 TeV. vVe have also considered 

the changes that occur in these bounds as the strength of a kinetic mixing term (between the X J1. 

field and the hypercharge BJ1.) is varied. 

We find that, for small values of the kinetic mixing parameter TJ , the strong bound from nucle­

osynthesis at Mx < T F ~ 0.7 MeV is replicated at IvIx ~ 10 MeV by a bound from neut rino-electron 

scattering that excludes arbit rarily small gauge couplings. For TJ > 0.04, the bound obtained by 

considering the effect of t he X boson on the W mass is dominant and masses IVIx < 100 GeV are ex­

cluded (independent of ax ). As TJ increases, this bound improves and the only other relevant bound 

(in the mass region IvIx = 0 (1 TeV)) is found to be the constraint obtained from neutrino-nucleon 

scattering. 
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Summary of Bounds for 11 = 0 
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Figure 6. 2: Summary of the constraints considered in this report. Here, we plot the bound on ax 
as a function of NIx for various values of TJ . Excluded regions have been shaded out. Note t hat, near 
the Z pole, only the dominant constraints are plotted (see F igure 6.1 for details) . 
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