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To My Mom, For Everything 



Abstract 

In this thesis, we propose a new encoder-friendly image compression strategy for 

high-throughput cameras and other scenarios of resource-constrained encoders. The 

encoder performs Lao-constrained predictive coding (DPCM coupled with uniform 

scalar quantizer), while the decoder solves an inverse problem of L2 restoration of 

Lao-coded images. Although designed for minimum encoder complexity (lower than 

distributed source coding and compressive sensing), the new codec outperforms state­

of-the-art encoder-centric image codecs such as JPEG 2000 in PSNR for bit rates 

higher than 1.2 bpp, while maintaining much tighter Lao error bounds as well. This 

is achieved by exploiting the tight error bound on each pixel provided by the Lao­

constrained encoder and by locally adaptive image modeling. 
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Chapter 1 

Introduction 

1.1 Image Compression 

Digital images are common and convenient means of storing and transmitting infor­

mation. As the saying goes, "One picture is worth more than ten thousand words", 

the spatial information about objects, such as positions, sizes, and shapes, is conveyed 

in the digital images. Since we have innate visual and mental abilities, human beings 

are good at deriving information from such digital images. 

In an ideal situation, we should have enough space to store, process, and trans­

mit digital images. However, given the fact that we are facing the massive size of 

image data and limited channel capacity, it would not be possible to store, process, 

and transmit digital images without image compression. Image compression, as the 

terminology implies, is to reduce the number of bits required to represent a digital 

image without degrading the quality to an unacceptable level. As shown in Fig. 1.1, 

the encoder compresses the original image into bitstream before any operation on the 

image, such as storage and transmission. After that, the decoder decompresses the 
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Original Image Decoded Image 
Bitstream 

Decoder 

Figure 1.1: Image Compression Process 

bitstream to reconstruct the original image or an approximation of it. 

Based on the requirements of reconstruction, image compression schemes can be 

divided into two broad categories: lossless and lossy compression. Lossless image 

compression process does not incur any loss of information, which means the decom-

pressed image is bit for bit identical of the original image. In contrast, certain loss 

of information is allowed in lossy compression. By allowing the introduction of small 

errors, one can expect that lossy compression would achieve higher compression ratio 

compared with that of lossless compression. Lossless compression is often demanded 

in some applications such as medical imaging and remote sensing, so as to avoid legal 

dispute over the significance of errors introduced into the imagery. Lossy compression 

works in the applications which need higher compression ratio with an allowable level 

of distortion. 

Interest in image compression dates back more than 60 years. In 1948, Shannon 

and his students Oliver, Pierce published the paper about pulse code modulation 

(PCM) [1] for television signal, marking the beginning of the digital image compres-

sion technology. In the following, we will examine several lossless and lossy image 

compression techniques. 

One simple and straightforward approach to lossless image compression is to di­

rectly use variable-length coding (VLC) , which maps a source symbol to a variable 

number of bits. In general, the more probable symbol is represented with fewer bits 

2 
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Figure 1.2: Schematic description of DPCM 

(using a shorter codeword). There are many popular VLC algorithms such as Huff­

man coding, proposed by David Huffman in 1951 [2], arithmetic coding, developed 

by J.J. Rissanen and G.G. Langdon. [3], and Lempel-Ziv coding, proposed by Jacob 

Ziv and Abraham Lempel in 1977 [4]. 

The Differential pulse code modulation (DPCM) [5] is another approach for im-

age compression by considering the correlation information instead of coding each 

pixel one by one. As shown in Fig. 1.2, DPCM is to do the prediction based on its 

previous pixels, and only encode and transmit the difference between the prediction 

value and the currently encoding pixel value. A DPCM coder that was originally 

developed for continuous-tone images is the Context Adaptive Lossless Image Com-

pression (CALlC) proposed by Wu and Memon [6]. The CALlC algorithm selects 

the predictor from a number of pre-determined configurations according to the gra­

dient of spatially adjacent pixels. More details concerning CALlC will be presented 

in Chapter 2. 

Typically, lossless coding can achieve a compression ratio from 1.5:1 to 3:1 for 

3 
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most natural images. To achieve further reduction of the data size , lossy coding 

methods apply quantization to the original samples or coefficients based on some 

transformation of the original signal. One popular lossy coding scheme for digital 

images is transform coding [7, 8] based on transforming methods such as Discrete 

Cosine Transform (DCT), Discrete wavelet transform (DWT). vVe divide an image 

into non-overlapping blocks in a block-based transform coding. For every block, we 

transform the original pixel values into a set of transform coefficients using a unitary 

transform. Then we quantize and encode the transformed coefficients. The transform 

should be designed not only to compact the structure of image signal into only a 

few coefficients, but to reduce the correlation among the pixels to be coded. In this 

way we could increase the compression ratio. Joint Photographic Experts Group 

(JPEG) compression standard, proposed in 1992 [9], is a representative transform 

coding approach using Discrete Cosine Transform (DCT). 

Another popular approach to decompose an image signal into transformed coeffi­

cients is based on the wavelet transform [10], which could decompose the image into 

the sub-image signals with different spatial resolutions, frequencies, and directions. It 

works on the overall image, which makes it possible to remove the global relevance of 

the image signals, and distribute the quantization error into the whole image, avoid­

ing the "mosaic" block effect. Some well-known implementations of the wavelet-based 

compression algorithms are Set Partitioning In Hierarchical Trees (SPIHT) proposed 

by Said and Pearlman [11], Embedded Zerotree Wavelet (EZW) proposed by Shapiro 

[12], Embedded Block Coding with Optimized Truncation (EBCOT) proposed by 

Taubman and Zakhor [13]. The wavelet transform has been adopted in the image 

compression standard JPEG 2000 (J2K) [14], which can be shown in Fig. 1.3. 

4 
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Figure 1.3: Schematic description of J2K 

1.2 Problem and Motivation 

This work is motivated by a new, important application of image compression: ul-

tra high throughput imaging. As high-end semiconductor sensors become more and 

more sophisticated, the obtainable solutions of digital cameras in space, time, spec-

trum and amplitude are much less constrained by the speed, density, sensitivity, and 

signal-to-noise ratio of image sensors than by the write speed of on-camera mass 

storage device (e.g., SSD) that records the data, which is much slower than what is 

required by many high throughput imaging applications. In fact, modern CCD and 

CMOS technologies are able to capture color (three spectral bands) videos at more 

than 2M pixels/frame, more than 7000 frame/second, and 12 bits/sample, creating 

a raw data throughput of 21,000 MB/second or at least 7,000MB/second (if color 

is sampled in mosaic). To circumvent the severe shortfall in memory throughput, 

high-end camera manufacturers offer users trade-offs between spatial and temporal 

resolutions. For instance, the high-speed camera Phantom v710 of Vision Research 

can offer a spatial resolution of 1280 x 800 at 7530 frame/second, but it has to reduce 

the spatial resolution to 128 x 128 when operating at 215600 frames/second. 
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Indeed for modern cameras, compression is less critical for storage as the cost 

per megabyte steadily decreases, but it is the only means to relieve the throughput 

bottleneck created by grossly inadequate memory write speed. The problem becomes 

particularly challenging if the compression solution has to ensure high fidelity (e.g., 

applications in medicine, space, sciences and precision engineering), and the camera 

has to operate with limited power budget (e.g., cameras in outer space). In addition, 

the encoder has to run in real time, otherwise computation time simply nullifies the 

benefit of compression by blocking the output flow. Given all the constraints, an 

obvious way out is to use an asymmetric image codec that delegates the pursue of 

high compression performance and thus shifts the associated computation burdens to 

the decoder. 

To meet the design goal of light-duty encoder, the approach is, in conventional wis­

dom, distributed source coding (DSC) [15, 16, 17, 18], or compressive sensing (CS) as 

many researchers recently advocated [19, 20]. In this thesis we demonstrate, however, 

that Lao-constrained predictive coding [6], i.e., DPCM coupled with uniform scalar 

quantizer (DPCM+SQ), can offer a more compelling and advantageous solution than 

DSC and CS for low-complexity, high-throughput, and energy-efficient encoding of 

images. Arguably, the simplest image encoder is DPCM with uniform scalar quantiza­

tion of prediction residuals without entropy coding. If the quantizer step size is 2T+ 1, 

then this simple scheme can achieve, by setting reproduction values to the mid points 

of quantizer cells, an error bound of T on each single pixel, i.e., 111- lliao :s; T, where I 

and 1 are respectively the original and decompressed image. Therefore, DPCM+SQ 

was studied as an Lao-constrained near-lossless (for sufficiently small T) compression 

technique [21, 22, 23], mostly motivated by high-fidelity compression applications 

6 
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(e.g., medical imaging and remote sensing). But a useful property of the DPCM+SQ 

architecture was overlooked. That is, the knowledge III - 111ao :s; T, which is freely 

available to the decoder, can be exploited by a soft decoding process to optimally 

recover the original image I in L2 sense from the Lao-decoded image 1. By adopting a 

pixel-by-pixel hard-decision decoder, all published Lao-constrained image compression 

methods forfeit the benefits of III - 111ao :s; T and other prior information on the input 

image I, and hence fall significantly short in the L2 rate-distortion performance. If 

one can unlock the power of prior knowledge inherent to Lao-constrained compression 

and eliminate the coding loss of hard-decision decoder, then the DPCM+SQ scheme 

becomes a viable compression solution for overcoming the write-out bottleneck of 

high-resolution and high-speed cameras, and for many other compression scenarios of 

resource-deprived encoders. 

All existing Lao-constrained near-lossless image coding techniques incur larger 

L2 distortion, or lower PSNR, than lossy image compression techniques without Lao 

error constraint. Wu and Bao tried to improve the L2 performance of predictive near­

lossless image coding. They studied the adverse effect of residue quantization on the 

robustness of the predictor, and proposed adaptive context modeling techniques to 

detect and correct prediction biases caused by quantization errors. By incorporating 

bias cancelation into the prediction loop, Wu and Bao improved the PSNR results of 

Lao-constrained predictive coding [24J. However, this work made the coding gain at 

the expense of greatly increased encoder complexity, and hence not suited for solving 

the bottleneck problem of high throughput cameras. 

Instead of fine tuning the encoder to gain coding efficiency, we shift the task of 

removing redundancy to the decoder and keep the encoder complexity at minimum. 

7 
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An obvious cause for the inferior L2 performance of the existing Loo-constrained 

coding methods is that the strong knowledge IIi,j - ii,jl :s; T, V(i,j) ( where Ii,j and 

ii,j denote the original, respectively reconstructed value at pixel position (i, j)) is 

totally ignored and wasted. Another prior information about the image, which is 

also wasted by hard decision decoding, is that natural images can be satisfactorily 

modeled as Markov random fields (MRF). To capitalize on the above sources of prior 

domain knowledge, the decoder needs to go beyond the current practice of hard-

decision pixel-by-pixel decompression of an Loo coded image. Therefore, we adopt a 

soft-decision decoding approach, starting from the decompressed image 1 as an initial 

estimate of I, and proceed to compute an improved estimate X of the original image 

I by solving the following inverse problem 

(1.1) 
subject to IIX - 11100 = T 

where XM stands for an estimate of X that is generated by an image model M and 

II-IIF denotes some norm. In the objective function IIX - XMIIF is the regularization 

term and IIX - IIIF is the fidelity term. The constraint IIX - 11100 = T helps to confine 

the solution space of the underlying optimization problem. 

With the above observations and motivation we propose a soft decoding technique 

of reestimating the Loo-decoded image i:. This is cast as an inverse problem of L2 

restoration of Loo-coded images, in which the regularization term is based on a prior 

image model of piecewise autoregressive process, and convex constraints V( i, j) II Ii,j -
ii,j II :s; T are imposed to confine the solution space. The piecewise autoregressive 

image model, via its parameters, offers an adaptive representation of natural images; 

8 
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the model parameters are estimated locally from denoised samples of i by solving an 

L2-minimization problem. Once the PAR model is constructed, soft decoding can be 

performed efficiently by constrained linear least-square estimation. 

The proposed soft decoding strategy can improve the PSNR of Lao-coded image i 

by up to 2dB. For bit rates above 1.2 bpp it can even outperform competitive encoder­

centralized image codecs, such as JPEG 2000, in PSNR while achieving much tighter 

Lao error bounds as well. In contrast, DSC and CS, despite years of intensive research, 

still have large gaps in rate-distortion performance against traditional centralized 

compression methods. The performance advantage of the proposed asymmetric image 

codec of DPCM+SQ is commendable, considering the fact that it has a substantially 

lower encoder complexity than DSC and CS. It can compress an image of N pixels in 

O(K N) operations, where K is the order of the predictor. Both DSC and CS have 

an encoder complexity of O(N2), because they generate code streams by computing 

O(N) linear combinations of the N pixels. In addition, the new strategy of L2 soft 

decoding of Lao-constrained code stream offers a side benefit of tight Lao bound. 

1.3 Organization 

The rest of this thesis is structured into four chapters. In Chapter 2, we explain the 

necessity for the Lao-Constrained Near-Lossless compression and describe the features 

of Near-Lossless CALlC algorithm. In Chapter 3, for the regularization term in (1.1), 

we assume an image model M of 2D piecewise autoregressive model and discuss 

the reason why we choose it. Then we present the mathematical solutions for the 

piecewise autoregrest:iive model. In Chapter 4, by using the piecewise autoregressive 

image model as the prior information for the inverse problem (1.1), we built the 

9 
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least-square optimization problem to further improve the decompressed image in L2 

sense. Since the Loo-constrained near-lossless image coding techniques inherently 

have a strong form of side information that can be exploited by the decoder, we can 

then develop a constrained least-square problem with the assistance of the known 

tight error bound on each pixel. This approach can reduce the L2 distortion and at 

the same time still maintain a known bound on the maximum possible error. The 

simulation results and discussion are presented in the end. In Chapter 5, we conclude 

this thesis. 

10 



Chapter 2 

Loo-Constrained Near-Lossless 

CompressiOIl 

In this chapter, we explain the necessity for the Loa-Constrained Near-Lossless com­

pression. Then Near-Lossless CALIC, which is a popular Loa-Constrained Near­

Lossless Compression algorithm, is introduced. After observing the drawbacks of 

the Near-Lossless CALIC, we use the median filter to remove the salt and pepper 

noise. 

2.1 Review of Near-Lossless Image Compression 

Many important applications in medicine, sciences, space exploration, precision en­

gineering, etc., have very stringent quality requirements on image compression al­

gorithms. For users of these areas, images after being fetched and decompressed, 

are subject to rigorous computer analysis and hence the reconstruction quality is far 

more than just pleasing the eyes as in entertainment and consumer applications. The 

11 
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ideal solution in such cases should be mathematically lossless image coding. However, 

after decades of extensive research, achievable lossless compression ratios remain stub­

bornly low, ranging from 1.5:1 to 3:1 depending on the image contents and imaging 

modalities. Even prohibitively expensive code optimization in minimum description 

principle cannot reduce lossless image bit rates of CALlC, a benchmark of practical 

good loss less image codecs, by more than five percent [25]. 

It may appear that we might as well do away with compression if no loss is allowed, 

given the fact that the storage cost per megabyte has been continuously decreasing. 

But high fidelity image compression is still important for high-end applications for a 

different reason: saving the I/O bandwidth between the camera sensor and memory. 

For modern professional digital cameras, such as those of ultra high spatial resolu­

tion or/and very high frame rate, and those in functional medical imaging, the I/O 

throughput becomes the system bottleneck: how quickly the image data can be off 

loaded from the sensor array and stored into memory? Compression, if done in real 

time, can increase the effective data throughput and thus enhance camera capability. 

When an image I has to be compressed to a lower bit rate than lossless cod­

ing allows, an alternative is near-lossless or Lao-constrained image coding. The Lao 

constraint is imposed on the compressor such that the compression error is tightly 

bounded for each single pixel, i.e., 111- lliao :S; T, where 1 is the decompressed image 

and T is a small positive integer. The Lao-constrained coding strategy achieves the 

best of the both worlds: significantly higher compression ratio of lossy compression 

and a predetermined minmax fidelity that is close to lossless compression. In con­

trast, lossy image codecs designed under the L2 criterion can incur large errors on 

some pixels that are statistical outliers. Such large individual errors, although with 

12 
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negligible contribution to PSNR, can be disastrous in some applications. For instance, 

in a satellite image a boat can be only few pixels in size; it can be easily removed by 

a codec that is optimal in L2 sense but preserved by an Lao-constrained codec. 

A number of Lao-constrained image compression techniques were proposed. Among 

them the simplest one is uniform scalar prequantization of pixel values in I; the pre­

quantized image 1 is then losslessly coded, typically by predictive coding schemes 

like CALlC [6], or by reversible integer wavelet transforms [26, 27J if progressive 

transmission is desired. This prequantization and lossless coding strategy bounds the 

maximum error by III - 111ao ~ 7, if the quantization step size is 27+ 1. An alternative 

strategy, which delivertl higher coding efficiency, is to perform uniform scalar quanti­

zation of residuals in a close loop of predictive coding. The majority of near-Iossless 

image compression techniques belong to the category of Lao-constrained predictive 

coding, e.g. the schemes by Chen and Ramabadran [21 J and by Ke and Marcellin 

[28J, and near-Iossless CALlC. 

2.2 Near-Lossless CALIC 

A schematic description of Lao-constrained CALlC is given in Fig. 2.1. the system 

has five integrated components: gradient-adjusted prediction (GAP), context forma­

tion and quantization, prediction residue quantization, context modeling of quantized 

residues, and entropy coding of quantized residues. For any image I E ZMxN, if the 

Lao bound we are given for near-Iossless CALlC is 7, the encoding process is the 

following [6J: 

First we estimate a predictor J of the next pixel. In Fig. 2.2, we list the pixel X 

which is currently being encoded, and its previous pixels: NN, NNE, NW, WW, 

13 
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Figure 2.1: Schematic description of Lao-constrained CALIC 

NE, W, N. To this end the following quantities are computed 

dh = liw - iNWI + liN - iNWI + liNE - INI 

dv = liw - iNWI + liN - iNN I + liNE - iNNEI 
(2.1) 

where iW,IN,IWW,INVV,INN,INE,INNE are the reconstructed pixel values at posi-

tion W, N, T¥W, NW, NN, NE, NNE respectively. 

After the calculation in Eq. 2.1, the prediction scheme is explained as follows: 

If dh > > dv , which means there are a large amount of horizontal variations, N is 

picked as the initial prediction of Ix: I = IN 

14 
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Figure 2.2: CALlC prediction table 

If dv > > dh , which means there are a large amount of vertical variations, W is picked 

as the initial prediction of Ix: 1= Iw 

If the differences are moderate or small, which means there is not any obvious variation 

in this context, the initial prediction value is a weighted average of neighboring pixels. 

The reason why the prediction process is designed in this way is because a given 

pixel generally has a value close to one of its neighbors in an image, while which 

neighbor has the closest value depends on the local structure of the image. Next, to 

reduce the possible prediction biases in different contexts, we adjust the prediction 

value 1: 

J = 1+ p,(elc) (2.2) 

where p,(elc) is the conditional sample mean of the quantized residues in the current 

modeling context c and e is the quantized prediction residue which will be clarified 

shortly. Now we have a context-based adaptive nonlinear prediction value J. 

Then the prediction residue e = Ix - J can be uniformly quantized with the 

quantization step size 2T+ 1 and the reproduction value is the midpoint. The mapping 

15 
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is given in Eq. 2.3. 

e={(27+1)l(e+7)/(27+1)J if e>O 

(27 + 1) l(e - 7)/(27 + l)J if e S 0 
(2.3) 

Finally, at the last step the quantized prediction residue e is sent to the decoder 

after the entropy coding. While the decoder is just the reverse process of the en­

coder, we could have the reconstructed image I = 1+ e, where 1, I, e E 'Z/vIxN are 

the decompressed image, prediction image and quantized prediction residue image 

respectively. 

From Eq. 2.3, it is obvious that lie - ell oo < 7, then the Loo bound for the 

near-Iossless CALlC is 

III - 11100 = III + e - 11100 

= lie - ell oo 

In this way we guarantee the Loo bound for the near-Iossless CALlC is 7. 

2.3 Compression Noise 

(2.4) 

Fig. 2.3 lists the 8-bit graylevel decompressed images from near-Iossless CALlC with 

the Loo bound 7 being 5,20,35. We can find random scattering of black and white 

pixels all over the image, just like the salt and pepper noise [29J. These artifacts 

become more and more obvious with the increment of 7. 

The compression artifacts, as shown in Fig. 2.3, appear as scattering of black 
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(a) Original Image 

(c) Decompressed Image with 
7 = 20 

McMaster - Electrical Engineering 

(b) Decompressed Image with 
7=5 

(d) Decompressed Image with 
7 = 35 

Figure 2.3: Compression artifacts in decompressed image with different Loo bounds 

and white pixels randomly distributed over the image. In order to improve the image 

quality, a median filter is next applied. This is because the median filter is an effec-

tive method that can remove isolated noises without blurring sharp edges [30, 31]' 

specifically, as shown in Fig. 2.4, the median filter replaces a pixel by the median of 

all pixels in the neighborhood: 

Yi,j = Median {Xm,n (m,n) E Pi,j} (2.5) 

where X E jRMXN, Y E jRMXN, X, Yare the input and output images. ~,j represents 
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Figure 2.4: Median Mask 

a neighborhood centered around location (i, j) in the image. 

In Fig. 2.5, it can be easily found that the median filter suppresses most of the 

artifacts while preserving the edges effectively. Also, the PSNR values between the 

decompressed images and the original images have been greatly increased after the 

effect of median filter. For instance, for Fig. 2.5 (a), the PSNR value is 27.09 dB 

between the original image and the near-Iossless CALlC decompressed image, the 

median filter improves the result up to 27.89 dB, which is 0.8 dB gain. Thus the 

median filter is very effective in removing the salt and pepper noise resulting from 

the Near-Lossless CALlC. 
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( a) Original Image 

(d) Original Image 

McMaster - Electrical Engineering 

(b) Decompressed image with 
artifacts PSNR = 27.09 dB 

(e) Decompressed image with 
artifacts PSNR = 28.34 dB 

(c) After median filter PSNR 
= 27.89 dB 

(f) After median filter PSNR 
= 28.89 dB 

Figure 2.5: Median filter effect 
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Chapter 3 

Piecewise Autoregressive Image 

l\!T ....... ,.l,...1 
.lv~uut::a 

We need an appropriate mathematical model to fit the image for our proposed soft­

decision decoding algorithm, which can be formulated as an inverse problem in (1.1). 

In this chapter, we introduce and discuss the piecewise autoregressive (PAR) image 

model, which can be learned as the prior domain knowledge from the image. Then 

we present a new adaptive weighted least square solution to learn the PAR image 

model. 

3.1 Piecewise Autoregressive Image Model 

From 1990s, image modeling has been a challenging research topic in image processing 

areas. For both natural and computer synthesized images, the structure of local image 

waveform varies spatially over the image, which results in the non-stationarity of the 

second-order statistics of image signal. Therefore, modeling of the non-stationary 
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image waveform needs to be highly adaptive to the varying local pixel structures. At 

the end of 1990s, Wu et al. had a measured success in the research on predictive 

lossless image coding [32J. In that work, on the assumption of piecewise stationarity 

of image signals in a local window, the image signal is modeled as a piecewise 2D 

autoregressive (PAR) process. The model parameters are adaptively estimated from 

pixel samples of a moving local window (the stationary area) on a pixel-by-pixel basis 

using the least square approach across the image. This assumption of PAR image 

model has been widely used in [33, 34, 35, 36, 37]. 

For any image X E 7l/vlxN , we use (i,j) to represent the pixel location. The PAR 

image model is 

X ';,)' = '""'" n,Ci,j)X· . + n· . • ~ '-"m,n ~+m,)+n ~,J (3.1) 
(m,n)ESi,j 

where Xi,j is predicted by its neighbor pixels. aCi,j) is the PAR parameter vector 

for pixel position i,j, aCi,j) E RISi,jIX\ a(i,j) = {Q~~, (m,n) E Si,j}' Si,j specifies 

the support window of the PAR model centered at pixel position (i, j). ni,j is a 

random perturbation independent of spatial location (i, j) and the image signal, and 

it accounts for both fractal like fine details of image and measurement noise. The 

validity of the PAR model depends on a mechanism that adjusts the model parameters 

aCi,j) . 

Here, the model parameter vector ai,j can change from pixel to pixel. The PAR 

model is chosen for the following reasons. Firstly, MRF is a common image model 

that has been proven effective in a wide range of applications. Secondly, the PAR 

model, while being a special form of MRF, has a generality afforded by the property 

that the Gauss-Markov process of the form Xi = - 2::=1 atXi-t + ni, where ni's 

are i.i.d. f"V N(O, (j2), is the maximum entropy rate stochastic process, if at's are 
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chosen such that E{XiXHt} = at, for 1 ~ t ~ k and all i. Thus, the PAR model 

class is versatile, expressive, and capable of fitting image waveforms ranging from 

smooth shades, periodic textures to transients like edges. Thirdly, the piecewise 

linearity of the PAR model makes the soft-decision decoding problem convex, and 

hence, computationally amenable. 

Figure 3.1: 8-order AR parameters 

To keep the stationarity of the PAR parameters, one can expect that the size of 

PAR support window should not be too large. Thus we only consider the 8-connected 

neighbors of a PAR model, in other words ISi,jl = 8. And as shown in Fig. 3.1, we 

define a pixel vector X~,j as the eight disjoint neighbors of Xi,j, 

Using the new-defined notations, we rewrite Eq. 3.1 as 

X - '" (i,j)X8 + i,j - L....t at (i,j)<>t ni,j (3.3) 
og~7 

where a~i,j) denotes the (t+ 1)-th component of PAR parameter vector aCid), X~,j)<>t 
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denotes the (t + l)-th component of vector X~i,j)' 

Mathematically, the structure of image signals can be learnt by fitting the PAR 

model to pixels in another local window Wi,j. In other words, we assume the statistical 

stationarity of the image signal in window Wi,j. To best fit the structure of the image 

in the L2 sense, the PAR model parameter vectors O'.i,j = (CY6i,j) , cyii,j) , ... , cy~i,j) should 

satisfy: 

O'.i,j = argm~n{ L (Xm,n - L CYtXCm,n)Ot)2} (3.4) 
(m,n) EWi,j O~t~7 

where the minimization is over all 8 dimensional vector 0'. = (CYO,CYI, ... ,CY7) E IR8. 

The minimization problem in Eq. (3.4) can be written as: 

O'.i j = arg min IIAO'. - YII~ 
, Cl 

(3.5) 

where Y E IRlwi,jlxl, whose elements are Xm,n with (m, n) E liVi,j. The matrix 

A E IRlwi,jlx8, and the i-th row of matrix A contains the 8-neighbors of pixel Yi. The 

least square problem (3.5) has a closed-form solution as: 

(3.6) 

Despite of its widely usage, the PAR model suffers two shortcomings when ap-

plied in the problem discussed in the thesis. First, if the size of the moving window is 

kept small to satisfy the local stationarity requirement, then the number of training 

samples is limited, and the PAR model estimated will face the dilemma of model over-

fitting. Mathematically, to solve an array of equations, the number of independent 

observations is required to meet the number of unknown variables. In other words, 

the number of observed pixels needs to be large enough for a robust estimate of the 
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PAR model. However, owing to the piecewise stationarity nature of image signals, 

a 2D PAR model holds only within a small local window and therefore insufficient 

observation data can be provided. In [36], the limitation of piecewise stationarity 

of image signals against the minimum required number of observations is well bal­

anced by choosing a low-order PAR model and a moderate-sized window. Second, 

the moving window based PAR parameters estimation is problematic if the window 

contains pixels of different stochastic properties. For example, the local stationarity 

assumption is obviously violated if the window is acrossed by an edge separating two 

different areas. We will propose our solutions to the shortcomings in the following 

two sections. 

3.2 Overfitting Problem 

o 

o 
(a) axial direction (b) diagonal direction 

Figure 3.2: PAR models in two different directions 

In order to avoid the potential pitfall of model overfitting, our solution is to 

increase the number of PAR model constraint equations, so we use two separate PAR 

models of order 4 rather than a unified model of order 8. The 4-connected neighbors 

of a pixel Xi,j in the axial direction are labeled xt,j)Ot, t=O,1,2,3; similarly, the 
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4-connected neighbors of a pixel Xi,j in the diagonal direction are labeled X(~,j)<>t' 

t=O,1,2,3, as shown in Fig. 3.2, the two models act on two disjoint sets of neighbors 

of Xi,j, 

xt,j) = (Xi ,j-1, X i - 1,j, X i ,j+1, Xi+1,jf 
(3.7) 

X~,j) = (Xi - 1,j-1, X i - 1,j+1, Xi+1,j+1, Xi+1,j_1)T 

If we assume that a(ij) = (a(i,j) a(i,j) a(i,j) a(i,j))T and b(ij) = (b(i,j) b(i,j) b(i,j) b(i,j))T 
0,1,2,3 0'1'2'3 

are the vectors of PAR coefficients in the axial and diagonal directions respectively, 

then this fitting process is formulated by solving the following two least-squares prob-

lems: 

a(i,j) = arg a~~~3 L (Xm,n - L atX~,n)<>t)2} 
(m,n)EWi,j 099 

(3.8) 
b(i,j) = argb~4~1 { L (Xm,n - L btX&n,n)<>t?} 

(m,n) EWi,j 09~3 

where the first minimization is over all a = (ao, aI, a2, a3)T and the second is over all 

Further, we can rewrite the above problem as 

a(i,j) = arg min JJA+a - YJJ~ 
aER4Xl 

(3.9) 

where Y is composed of the pixels in the moving window Wi,j, and Y E IRIWi,jlx1. 

The matrix A+ E lR1Wi,jlx4, and the i-th row of A+ contains the 4-axial-neighbors of 
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pixel )Ii; similarity, AX E IR.l wi,jlx4, and the i-th row of AX contains the 4-diagonal­

neighbors of pixel)li. Thus, the closed form solution for the two-directional PAR 

model parameters a and bare: 

a(i,j) = (A+T A+)-lA+Ty 

b(i,j) = (AXT AX)-lAxTy 

3.3 Weighted PAR model (WPAR) 

Figure 3.3: Example of non-stationary window 

(3.10) 

As shown in Fig. 3.3, it is obviously not reasonable to assume PAR model being 

stationary for the windows across the edge along the roof. For each pixel Xm,n in 

the window VVi,j, we consider a 3 x 3 patch centered at Xi,j as its feature vector. If 

we denote by Ek the feature vector of the (k + l)-th pixel in the window Wi,j, where 

o ::; k < IWi,jl, and by EP the feature vector for the current pixel we are processing, 

the distance between any two feature vectors in the local window is defined as 

(3.11) 
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where 0 :::; p < I~,jl, 0:::; q < IWi,jl. 

If 0 :::; k < I~,jl, we consider the weight for the (k + 1)-th element in the local 

window Wi,j as: 

(3.12) 

By defining the diagonal weighting matrix w E n~.lwi,jlxIWi,jl, 

and w = diag{wO,P, ... , wp-1,p, 1, wP+1,p, ... , wIW1-1,p}. 

we can rewrite the least-square problem (3.9) by adding the weighting matrix, 

a(i,j) = arg min IlwA+a - wYII~ 
aER4Xl 

(3.13) 

where A+,AX, and Y have been defined in (3.9). The closed form solution for the 

WPAR model parameters a(i,j) , b(i,j) is 

a(i,j) = (A+TWTwA+)-lA+TWTwY 

b(i,j) = (AXTWTWAX)-lAXTwTwY 
(3.14) 

In Eq. (3.14), we present the mathematical solutions to the two 4-order WPAR 

parameters a(i,j) and b(i,j) for near-Iossless CALlC decompressed image. 
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Chapter 4 

Soft-Decision Decoding Algorithm 

with PAR Ill.udelillg 

After learning the PAR image model, coupled with the side information exploited 

from the Loo-constrained near-Iossless compression algorithm, we adopt a soft-decision 

decoding approach, starting from the decompressed image i as an initial estimate of 

I, and proceed to compute an improved estimate X of the original image I by solving 

a constrained convex optimization problem. We also interpret the power of the Loo 

constraints in terms of reducing the L2 distortions in a mathematical way. Then we 

present and discuss our experiments results. 

4.1 Formulation of the Optimization Problem 

Assume I is the original image, i is the decompressed image after near-Iossless CALIC. 

H we assume the PAR model would keep consistent between I and i, then the image 

restoration can be accomplished by the approach that reestimates the decompressed 
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image reconstructed by the codec based on the PAR image model, in other words, it 

takes the decompressed image 1 as an intermediate result and computes an improved 

estimate X of the original image I. 

The re-estimation method proceeds in two steps: it first estimates the PAR model 

parameters adaptively for each spatial location (i, j), using samples of a moving win­

dow Hli ,j in image I; then it improves the decoded result from 1 to X by solving the 

following linear least-squares estimation problem: 

. {c+ '" [X '" (m,n) X+ J2 min S,i,j L..t m,n - L..t at (m,n)¢t 
(m,n) EWi,j 0:; t:;3 

'" [X - '" b(m,n) xX J2 L..t m,n L..t t (m,n)¢t (4.1) 
(m,n)EWi,j 0:; t:;3 

'" A 2} +.A L..t [Xm,n - Im,nJ 

(m,n) EWi,j 

where X E ~IWi,jlx\ the elements of X are from the pixels of local window Wi,j. 

X+( ° 0) and X(~ 0) represent the 4-order neighbor pixels of Xi JO

, which are defined in 
~ ~ , 

(3 7) (m,n) - ((m,n) (m,n) (m,n) (m,n)) d b(m,n) _ (b(m,n) b(m,n) b(m,n) b(m,n)) . . a - ao , a 1 , a2 , ag an - 0 , 1 , 2 , g 

are the vectors of AR coefficients defined in (3.10), for corresponding pixel (m, n). 

The corresponding PAR models are learnt from the decompressed image. ~tj and 

~i~j are the two corresponding least squares weights to be clarified shortly, and the 

parameter .A should be chosen according to the bit rate. The first two terms in the 

cost function (4.1) describe the fitting error for the PAR models, and the third term 

behaves as the fidelity item with respect to the decompressed image 1 in L2 sense. 
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The underlying weights ~tJ and ~iJ can be set as: 

x 
+ _ ei,j . 

~i,j - x + +, 
e·· e·· t,] t,] 

e7-. 
(?<. = t,] 

t,] e:<. + e7-. 
t,] t,] 

(4.2) 

where etj and <j are the squared errors associated with the solutions of the two 4-

order PAR model, with local window centered in position (i,j),which are the optimal 

weights if the two PAR models are independent. 

(m,n)EWi,j 
(4.3) 

e~j = L [im,n - L b~m,n) i0n,n)Otl
2 

(m,n)EWi,j 099 

Lao-constrained near-Iossless image coding techniques inherently have a strong 

form of side information that can be exploited by the decoder to greatly reduce the 

L2 distortion of a decompressed image. From (2.4), we know for near-Iossless CALlC 

that the Lao constraint is imposed on the compressor such that the compression error 

is tightly bounded for each single pixel, i.e., 111- illao :S T, where T is called the Lao 

bound for the compression. It is reasonable to expect that we can reduce the L2 

distortion of a decompressed image with assistance of the known tight error bound 

on each pixel, which we will discuss in the next section. In this way, we can rewrite 
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(4.1) as 

m4n { ~+ L [Xm,n - L a~m,n) xt,j)OtJ
2 

(m,n) EWi,j 0::; t9 

+c "[X '""' b(m,n) XX J2 L..t m,n - L..t t (m,n)Ot 
(m,n) EWi,j 0::; t9 (4.4) 

" A 2} +A L..t [Xm,n - Im,nJ 

(m,n)EWi,j 

subject to IXm,n - fm,nl ::; 'I, (m, n) E Wi,j 

where 'I is the Loo bound for the codec. X, X+(. ')' X(~ ')' a, b, ~+, C, A are defined in 
~,J ~,J 

the same way as that of (4.1). 

We can rewrite Eq. (4.4) as 

X = argmin II ex - dll 2 

x 

subject to IIX - 11100 ::; 'I 

where C and d are composed of a, b, A, and the decoded image i. 

(4.5) 

Due to the use of constraints in (4.1) and the Loo bound in near-loss less coding, 

we have both IXi,j - fi,jl ::; 'I and IIi,j - t,jl ::; 'I, and consequently 

IX· . - J. ·1 < 2'1. ~,J ~,J- (4.6) 

In other words, the proposed soft decoding technique can greatly reduce L2 distortion 

and at the same time still maintain a known bound on the maximum possible error. 
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Moreover, for every pixel Ii,j we obtain an even tighter error bound: 

IX·· - J. ·I-If. . - J. . +X· . - f.·1 t,] t,] - t,] t,] t,] t,] 

(4.7) 
< r+ IX·· -f.·1 - t,] t,] 

which can be very important information for critical applications in medicine, se-

curity, remote sensing, reconnaissance, etc., where decompressed images are subject 

to rigorous computer analysis, not just to please the eyes as in entertainment and 

consumer applications. 

It is also interesting to note that a proper shrinkage of the Loo constraint in the 

optimization problem of (4.5), namely 

IIX - 11100 = ,(h, 0 $. {3 $. 1 (4.8) 

can reduce both the L2 and Loo errors of X, i.e., achieve higher PSNR value and 

tighter maximum error bound (replacing 2r with a smaller value (1 + (3)r in (4.6)). 

The proposed soft decoding process can be carried out iteratively, if one replaces 

the intermediate image I by the newly estimated image X. In order to ensure maxi­

mum error bound, the constraints in (4.5) should not change in successive iterations. 

4.2 Mean Squared Error (MSE) Analysis 

In this section, we conduct the MSE analysis for our proposed soft-decision decoding 

algorithm presented in the previous section. This provides a way to better interpret 

the power of the Loo constraint in reducing the MSE, or equivalently, achieving higher 

PSNR value than the case where this strong side information is wasted. 
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Figure 4.1: CALlC Error Prediction Distribution 

To prevent notations clutter, single index is used to label2D pixel locations. More 

specifically, let I P = [I r ,If, .. , ,I~V, and e = [el' e2 , ... ,eN V be the predicted 

image and the residue image, respectively, where N is the number of pixels in the 

image. Obviously, e = 1- I P
. Let e denote the error random variable taking the 

values el, e2, ... , eN. Based on practical observation, it is assumed that e, follows the 

Laplacian distribution (shown in Fig. 4.1) 

1 =£i 
fe(x) = 2b e b (4.9) 

where b > O. On the other hand, for the Loo-decoded image j = [iI, i 2 , '" ,iNV, we 

have ii = Ii + Q(ei), where the quantization function Q(.) is defined as 

M 

Q(x) ~ I>~jlSj(x) (4.10) 
j=l 
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with M ~ 0, eI, ... , eM E Z, and 

(4.11) 

being the jth quantization region and lA(X) being the indicator function returning 1 

if x E A, and 0 otherwise. 

Let e = [ih, e2," . ,eN]T = X - IP be the residue image associated with the 

improved estimate X. Let e denote the random variable taking values eI, e2, ... , eN 

Denote by fe(xle E 5j ) the probability density function (p.d.f) of e conditioned 

on e E 5 j , and by fe,e(x,yle E 5 j ) the joint p.d.f of e and e conditioned on e E 5 j ; 

respectively. 

The MSE of X with respect to I can then be calculated as 

MSE(X) (I-Xf(I-X) 

(e-ef(e-e) 
N N N 
I:e; - 22)eiei) + Le; 
i=l i=l i=l 

(4.12) 

As assumed above, all the random variables ei's follow the same Laplacian distri-

bution given in (4.9), and hence, 

N 

L e; ~NlE[e2] 
i=l (4.13) 

For the second term of (4.12), we have 
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N 

:~~)eiei) ~ NE[ee] 
i=l 

M 

N ~ P(e E Sj)E[eele E Sj] 
j=l 

(4.14) 

Similarly, we get 

Therefore, 

MSE(X) 

N 

~(e;) ~ NE[e] 
i=l 

(4.15) 

2Nb2 
- N {t,p; i: [21; xy/",(x, yie E S;)dy - x

2 
j,(xlc E S;)]dx} 

(4.16) 

For the constrained optimization problem in (4.5), the conditional p.d.f fe(xle E 

Sj) would take non-zero values only within Sj, due to the Loo constraint imposed. In 

contrast, in the case that this constraint is ignored, fe(xle E Sj) can possibly take 

non-zero values over the entire range [-255,255]. This implies that the conditional 
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variance of e becomes smaller with the Loo constraint. In addition, the Loo constraint 

confining the solution space would potentially make the covariance between e and e 

larger than that of the case without this constraint. Based on these observations, we 

can find, from (4.16), that the MSE of X with respect to I can be reduced by utilizing 

the Loo constraint as strong side information in solving the inverse problem. 

On the other hand, the above MSE analysis is also useful to guide us on selecting 

an appropriate shrinkage factor {3 in (4.8). When (3 is sufficiently close to 1, it is 

reasonable to assume that the conditional p.d.f fe(xle E Sj) and the conditional joint 

p.d.f fe,e(x, yle E Sj) are truncated versions of their counterparts without shrinkage. 

The problem of finding an optimal f3 can then be converted to minimizing MSE(X) 

with respect to {3. Empirically, we found that (3 = 0.7 improves the PSNR of X, and 

at the same time, reduces the Loo error bound. One approach is that we can assume 

that fe(xle E Sj) and fe,e(x, yle E Sj) are respectively truncated Gaussian distribution 

and truncated joint Gaussian distribution, whose parameters can be estimated from 

training data. However, the further discussion of optimal {3 is beyond the scope of 

this thesis, and hence, we omit the details here. 

4.3 Experimental Results and Remarks 

In this section, we present the experiment results to demonstrate the effectiveness of 

the asymmetric high-fidelity image compression algorithm. In our experiments, we 

compare the compression distortions in both L2 and Loo sense for three algorithms: 

near-lossless CALlC, J2K, and the proposed soft-decision decoding technique initial­

ized by near-lossless CALIC. Without loss of generality to the results, we selected 
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a large set of typical test images with different context and structure. Since near­

lossless CALlC is mainly used in the applications which set stringent quality require­

ments on the distortion such as remote sensing, medicine, we choose the test images 

mainly from these areas. Our five sample images 'Satellite', 'Remote-Sea', 'Remote­

Farm','MRI-Brian', and 'Lena'. are presented in Fig. 4.2. 

( a) Satellite (b) Remote-Sea (c) Remote-Farm 

(d) MRl-Brain (e) Face 

Figure 4.2: Five Test Images in the test set 

Tables 4.1 - 4.3 list the experimental results for these five images with T = 1, 

T = 3, and T = 5, respectively. The PSNR value and the maximum possible error 

are compared with the same bit rate for these three algorithms. G1 is defined as the 

PSNR difference between our proposed method and near-lossless CALlC, while G2 is 

defined as that between our proposed method and J2K. It can be seen that the PSNR 
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.. -Table 4 l' Performance of Different Methods For T - 1 
Image rate CALlC J2K proposed 

PSNR Ileqll oo PSNR Ileqll oo PSNR Ileqll oo G1 G2 

Satellite 2.25 49.91 1 48.68 5 50.47 2 0.56 1.79 
Remote-Sea 2.41 49.91 1 48.58 4 50.28 2 0.37 1.7 

Remote-Farm 2.33 49.88 1 49.14 4 50.40 2 0.52 1.26 
MRI-Brian 2.23 51.84 1 49.76 5 52.05 2 0.21 0.29 

Lena 3.01 49.92 1 48.00 5 50.00 2 0.08 2.00 

.. -Table 4 2' Performance of Different Methods For T - 3 
Image rate CALlC J2K proposed I 

PSNR Ileqll oo PSNR Ileqll oo PSNR Ileqll oo G1 G2 

Satellite 1.42 42.32 3 43.44 9 43.97 6 1.65 0.53 
Remote-Sea 1.55 42.40 3 43.67 9 43.75 6 1.35 0.08 

Remote-Farm 1.43 42.39 3 44.24 9 44.24 6 1.85 0 
MRI-Brian 1.58 44.15 3 44.20 12 44.35 6 0.2 0.15 

Lena 1.96 42.17 3 42.55 9 44.79 6 0.62 0.24 

.. -Table 4 3' Performance of Different Methods For T - 5 
Image rate CALlC J2K proposed 

PSNR Ileqll oo PSNR lIeq ll oo PSNR Ileqll oo G1 G2 

Satellite 1.10 38.44 5 40.95 13 40.64 10 2.20 -0.31 
Remote-Sea 1.18 36.76 5 40.04 13 40.20 10 3.44 0.16 

Remote-Farm 1.08 38.83 5 41.82 13 41.10 10 2.27 -0.72 
MRI-Brian 1.26 40.42 5 40.79 14 40.90 10 0.48 0.11 

Lena 1.46 38.37 5 39.60 14 39.54 10 1.17 -0.06 
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gain against the near-lossless CALlC (G1) can be up to 3.44 db, and the value of G1 

tends to increase for larger 7. Meanwhile, we still maintain a Loo bound of 27. On the 

other hand, compared with J2K, our proposed method achieves higher PSNR values 

when the bit rate is above 1.2 bpp, and the value of G2 can be very significant in high 

rate region. For instance, for image 'Satellite', our approach achieves 0.53 db gain in 

PSNR with respect to J2K at bit rate 1.42 bpp, while this value is further improved 

to be 1.79 db at bit rate 2.25. In other words, in the relative high rate region, our 

proposed soft-decision decoding strategy equipped with an image prior and Loo side 

information can achieve the best of the both worlds: significantly higher compression 

ratio of lossy compression and a predetermined minmax fidelity that is close to lossless 

compression. When the bit rate becomes lower than 1.2 bpp, the PSNR performance 

of our proposed scheme begins to be inferior to J2K. However, it should be noted 

that in low bit rate, lossy image codecs designed under the L2 criterion can incur 

large errors on some pixels that are statistical outliers, and hence, increases the Loo 

bound. Such large individual errors, although with negligible contribution to PSNR, 

can be disastrous in some critical scenarios, e.g., medical and security applications. 

In contrast, our proposed method can still guarantee a known tight bound of 27. 

This maximum error bound can be further reduced through using the shrinkage as 

mentioned in Section 4. Taking the example of the image 'Satellite', we can achieve 

0.27 db gain when 7 = 8 and also reduce the maximum error bound to be 13, compared 

with the case without shrinkage. 

Furthermore, our proposed algorithm possess an additional advantage: it better 

preserves the original pixel patterns, even in the rate region below 1.2 bpp. To 

demonstrate this phenomenon, we in Fig. 4.3 show the decoded images using our 
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'" '" 

(a) Original Image (Center = 118), J2K( Center = 180), Proposed(Center = 134) 

Figure 4.3: (a) Original image; (b) J2K decoded image; (c) Soft-decoded image; (d) 
Enlarged version of the red box of (a); (e) Enlarged version of the red box of (b);(f) 
Enlarged version of the red box of (c). 

proposed method and J2K. The bit rate is 1.04 bpp, and J2K achieves 0.1 db gain in 

PSNR than our method. However, from FigA.3 (a)-(c), we can see that our method 

can better preserve the fine structures compared with J2K, even though our method 

is outperformed by J2K in PSNR at this bit rate. This property can be better 

verified by observing the blocks highlighted, which are enlarged in Fig.4.3 (d)-(f). 

The black dots within this block is completely removed in the J2K decoded image, 

while well preserved in our soft-decoded image. In addition, our proposed method 

tends to keep the relative pixel ranking among the neighboring pixels unchanged. For 

instance, in the center part of Fig.4.3 (d)-(f), the horizontal trend of the pixels is 

bright-dark-bright, which is broken in the J2K decoded image, while still appears 

in our soft-decoding image. This kind of information can be very important in object 
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(.) (b) (0) 

(d) (.) (f) 

(a) Original Image (Center = 128), J2K( Center = 148), Proposed(Center = 69) 

Figure 4.4: ( a) Original image; (b) J2K decoded image; (c) Soft-decoded image; (d) 
Enlarged version of the red box of (a); (e) Enlarged version of the red box of (b);(f) 
Enlarged version of the red box of (c). 

identification and localization, especially considering those applications in which the 

objects interested are composed a few pixels only. 
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,,' ib) 

(a) Original Image (Center = 149), J2K( Center = 93), Proposed(Center = 150) 

Figure 4.5: (a) Original image; (b) J2K decoded image; (c) Soft-decoded image; (d) 
Enlarged version of the red box of (a); (e) Enlarged version of the red box of (b);(f) 
Enlarged version of the red box of (c). 
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(a) Original Image (Center = 29), J2K( Center = 101), Proposed(Center = 17s) 

Figure 4.6: (a) Original image; (b) J2K decoded image; (c) Soft-decoded image; (d) 
Enlarged version of the red box of (a); (e) Enlarged version of the red box of (b);(f) 
Enlarged version of the red box of (c). 
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Chapter 5 

Conclusions 

In this thesis we investigated high-fidelity image compression for high-throughput 

and energy-efficient cameras. We demonstrate that Lao-constrained predictive cod­

ing, i.e., DPCM coupled with uniform scalar quantizer, can offer a more compelling 

and viable compression solution than DSC and CS for high-fidelity, high-throughput 

and energy-efficient cameras, if soft decoding is carried out via image modeling and 

constrained optimization. In Lao-constrained compression, the compression error is 

tightly bounded for each single pixel, i.e., III - lliao ~ 7, where 1 is the decompressed 

image and 7 is a small positive integer. This can be implemented at very low encoder 

complexity by embedding a fixed-rate uniform scalar quantizer of cell size 27 + 1 

into the prediction loop of the DPCM scheme, with the quantizer reproduction value 

being the mid point of the quantizer cell. 

The main innovation of this work is to exploit the Lao bound III - lliao ~ 7 as 

strong side information about the original image I and reestimate I from the hard 

decoded image i. Somewhat surprisingly, although the knowledge that for every pixel 

in 1 the decoded value deviates from the original by no more than 7 is available to 
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the decoder free of any extra bits, it was not used until now. To unlock the power of 

the side information inherent to Lao-constrained compression, we perform an iterative 

soft decoding of 1 using a prior image model of piecewise autoregressive process with 

the convex constraint III - 111ao ~ 7. In each iteration it is an inverse problem that 

can be efficiently solved by constrained linear least-square estimation technique. 

As an Lao-constrained coding scheme, the proposed compression system has an 

added benefit of maintaining a tight error bound on each pixel. By the original design 

of minmax distortion, the hard decision decoder of an Lao-coded image achieves 111-
'[IIao ~ 7. While the least-square soft decoder aims to reduce the average distortion 

ill L2 metric, it can still ensure a good Lao bound 111- Xliao ~ (1 + (3)7, 0 ~ f3 ~ 1, 

where X is the soft decoded (reestimated) image. This property is important for many 

applications of stringent quality requirements on image compression algorithms, when 

decompressed images are subject to rigorous computer analysis, not just to please 

the eyes as in entertainment and consumer applications. The Lao-constrained L2 

soft decoding strategy achieves the best of the both worlds: high compression ratio 

of lossy compression and a predetermined minmax fidelity that is close to lossless 

compression. A pure L2 distortion criterion can incur large errors on some pixels 

that are statistical outliers. Such large individual errors, although with negligible 

contribution to PSNR, can be disastrous in some scenarios. 

The proposed soft decoding strategy can improve the PSNR of Lao-coded image 

i by up to 2dB, and for bit rates above 1.2 bpp it can even outperform competitive 

encoder-centralized image codecs, such as J2K. By shifting the computation bur­

dens and the pursue of high compression performance to the decoder, we provide an 

asymmetric compression solution for high-fidelity applications, in which the encoder 
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has low complexity and low energy consumption with all the heavy computations 

performed by the decoder for high-coding efficiency. 
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