PS5 DO U

FORMAL MODELING OF LINUX-PAM CONFIGURATIONS

T .

FORMALLY SPECIFYING AND VERIFYING

LINUX-PAM CONFIGURATIONS
USING

HIERARCHICAL COLOURED PETRINETS AND NUSMV

By

CHRISTOPHER KULBAKAS, B.MATH

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree

Master of Science

McMaster University

© Copyright by Christopher Kulbakas, September 2010

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

MASTER OF SCIENCE (2010) McMaster University
(Computing & Software) Hamilton, Ontario
TITLE: Formally Specifying and Verifying Linux-PAM Configurations Using

Hierarchical Coloured Petri Nets and NuSMV
AUTHOR: Christopher Kulbakas, B.Math (University of Waterloo)
SUPERVISOR: Professor S. Qiao

NUMBER OF PAGES: xi, 186

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Abstract

Authentication frameworks and their implementations are essential to securing
computer systems and networks. One such framework is the Pluggable Authentication
Modules (PAM) published in 1995 as standard OSF-RFC 86.0. PAM solves the
“authentication problem”, mainly, how to “integrate multiple authentication mechanisms
in a modular and dynamic fashion”, making PAM the de facto choice for authentication
on most Unix and GNU/Linux-based systems. Linux-PAM is an implementation of PAM
for GNU/Linux.

To this day, Linux-PAM configurations are poorly understood by administrators. Ad
hoc, informal PAM-configuration testing techniques exist, but suffer from many
shortcomings.

We introduce an automated, formal approach to Linux-PAM configuration testing.
First, given a Linux-PAM configuration, we dynamically create an “internal-to-the-tool”
representation of a Hierarchical Coloured Petri Net (HCPN), which encodes all of the
possible authentication process instances associated with this configuration. During this
creation, “base case” HCPN templates are used, each template created only once, i.e.
during tool development, not during testing. Second, we translate the resulting HCPN into
a NuSMV model. Third, we use NuSMYV to verify the model for “security” properties.

A tool prototype, implemented in C, automates these three steps. State space size was
reduced via manual HCPN and Transition System specification tuning. The State Space
Explosion problem was overcome with the use of NuSMV-implemented model checking
algorithms. Industrial Linux-PAM configurations were tested, yielding model building
times in ones of seconds, and verification times in tens of seconds. Also, the tool

produces HCPN representations via Graphviz.

DA S S

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Acknowledgements

I would like to extend my sincere appreciation and gratitude to my supervisor, Dr.
Sanzheng Qiao, whose guidance and unending patience has made the completion of this
thesis possible.

I would also like to express my gratitude to my committee members, Dr. Ryszard
Janicki and Dr. William Farmer, who provided excellent contributions to my study
throughout. You also expressed a great amount of patience through these trying times —
for this you cannot be thanked enough.

To Dr. Ridha Khedri and Gord — thank you for the discussions and your enthusiasm —
it strengthened my sense of purpose and kept me believing. Last, but not least, to Dr.
Asghar Bokhari and Issam — thank you for sharing your insights and encouragement.

Finally, I would like to express a heartfelt thank you to my family, who provided me
with unending support and encouragement. To Mom, Dad, and Adam, thank you for
every form of support you have given me throughout — I only hope that I have made you
proud. To Mandy and Luis, you too are to be thanked for your continuous support and for
reminding me of my priorities. Lastly, to Monica, you were my bright, shiny light in some
very dark places. I only hope that I can be the type of partner to you, like you have been

to me.

b bt et i o as e

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Table of Contents
ADSITACE 1.vere ettt sttt st sttt sttt etk et e b e e be st e e ke e e s e R AR e R e eeE e Rt nenE ke eReneemtnhenbenee st neenne il
LLAST OF FLUIES 1evevereerierireeietertse e e ste e ete st et te st e bt st see st e s e st abe e e be st e st ebe st e st et e e ebesbe st et e st ebe st st e s st eneenn e s e e ennene viii
LISE OF TADLES ..cereeeererertceecete ettt sa et eb e st sa s e e s r e et e R e se e er e et beshe e r e e enee xi
INTRODUCTION....ooititiiiteetest et ittt et r et b st et s e e s e st s shesas ke ot sbs b s e e st s s e st sae e s senabeneens 1
What iS LINUX-PAM c.oiiiiireretrieereniiiii ettt et b et s s en e b sen e rsnenis 1
Pluggable Authentication MOQUIES.........coiereriiiieierie ettt e et 2
Standardized Authentication INTEITACEScciveveeriiirirerireie et sb bt nene e 9
Integration of Authentication Mechanisms via PAM Stacks.........ccoiiceeiiveinenieveenrrnnneeesrnesvesesrees 11
PAM Stack Composition and Functonalityc.cccccvciireeriisiirieieriesseseseesmresisseceenresesssessaesaessassssressnasaes 17
TIETOTUCTION. ... eeeeteeeeeete ettt e s bbb e b e s be et s es e s e et et et e et e b e e e e s se b enans 17
Generating a PAM Stack Instance from a Linux-PAM Configurationccceeveereveevirerierersiesnreennnees 20
Generating of Authentication-Related Functionality from a PAM Stack Instanceocovverevrennnn 27
METHODOLOGY — PART I: HCPN MOEIINE ...coveereriiereerirreirrestiieseeseeeseeeteste s sraessesarssnansesseseensen 33
Introduction 10 HCPIN MOAEINGc..oveveeiieniinierinirtie ettt eciesiesteeree e sre e essserasnessaserseessessestesssesassesnsases 33
From Source Code t0 HEPN ..ottt et st ettt st s b e rne 33
Approach to HCPN Modeling of PAM Stack EXECULIONScovvvriererriirieneeieieieeeeieneseee et aeae s 38
Finding the Balance in HCPN ENCOTINGvveerveririieniiniieiee ettt ettt et se e sn e e 42
HCPN MOdel SPECITICAIONveevvierrecreereeiesrierirseeetes e aeseesveessseraesreressrssesssesssassseseesssesssasssesrnsenesnseens 43
HCPN module DISPATCH ...occoiiiieeircir ettt st stess e tessste st e s e sessassestessssessensesesssssensssesannnes 45
Combining HCPIN MOGUIESccoieiereeieiirniereirnes et setesve vt sranesassee b rbessestasbeeeesrssenereoneenes 417
HCPN module Instances and the Tnstance HIerarchyccocceeieicieeninnenesienienee e seetieie e 49
HCPN module INITTALIZEoooiiiieeerieee sttt stee st ses s ereses e s esae et steseamssaenan e 52
HCPN module TERMINATE ..ottt s sesssssnsesesrsssbessste e se st sessasessasssssssnsavessesass 53
Example: “Combining” DISPATCH with INTIALIZE and TERMINATEccccovvvvvivvinieeriieeiiens 54
HCPN module HANDLERScooiiiiierrere sttt s ess et s bes e anes 56
HCPN module SUBSTACK ...ttt sttt e ens et s s san e ssaes 59
HCPN module NOT SUBSTACK ...c.coiirireeieertecrieseeerteseiseesasesee s sesessasessessessessesessensessessenes 60
HCPN module MODULE <NGIME(X)™ ...evevirrrrerineiesiisiesieestetrereosesssessessesssssesseansrssssssesssssssssssssssesns 65
HCPN module MODULE MUST FAILovovoeireenseeessssesseeesssseessesessesesssseessessesessssessssessssssesennon 65
HCPN module MODULE FUNC NULL ..ottt 66
HCPN module MODULE <83cciciiiiinirienenieseniertresressiete e et s sssesassessssesesesssssssssasesssssssessssns 66

M.Sc. Thesis - C. Kulbakas = McMaster — Computing & Software

HCPN module CONTROLocvvivieeeriieee sttt s st ses e s s et s benenns 70
Pausing of PAM Stack EXECULIOMveeeeiieiieiereirieeire et sttestecatesteesresnsesaneeassesesnessesneesnnesnsesnsersessnenes 72
Choosing t0 EXECULE AN ACHOMN......cccevereriiieerieiiteiees et esseeseese s savre st eseeberessestesesesseseeseassssesenssssessene 75
HCPN module templates fOr ACHONS.....c..ccvriereiieeriicinerirreereee e et n s s e e saesesesenssessens 78
HCPN module ACTION IGNOREcccceitrrcentnenieentniniererrerseseseesesesosesesessensarenseessaessssesseseneenenesens 78
HCPM module ACTION OK ...c.oiiiirreereririiieenieenirieniressseesss e sessssnesessessesessenssessseesensensssesesseens 80
HCPN module ACTION DONE......ccoiiiiintiniririrecrirreieesseeaessssseseessessessesstansasesnensessaasssssassssssanses 81
HCPN module ACTION BADcccoriiieiiriiireeirtetesestetese st ssve st stesvtsste st eseassasaaneessssarssesseansessrnss 82
HCPN module ACTION_DIEcocooiiiiiiirinieeresinee sttt ss et eeseressssesesessessseenes 83
HCPN module ACTION RESETccciiiriiirreiirrere s i eteee st steesseteseseesseseassssssssastessnsssessassrsssssseses 83
HCPN Templates for ACHION JUINP’ ..c.ceeeiirtirireriiesinrereieeeaeseeae st eseesee st et e st eatesesessasstessasseasasssenses 85
HCPN module JUMP NEGATIVE......coceiiietcieieeriestesie st es e see e st seesie et asesssesbesmnanes 85
HCPN module JUMP_TOO LONGocootvieeirieriereininieesierissnssnsseresreresesessessasesssesesessesesessensasesesss 87
HCPN module ACTION_JUMP ..ottt cstnieiecsteaenss st sessstsnssnsesesesesessssaassasssnssienesneseans 90
Example of “Partial” Unfolding of HCPN Model: HCPN model for ACME Corp.....cccocoveereivernecenneenenes 91
METHODOLOGY —PART II: Transition System Modeling...........ccocerveererrerrenernnennenieneesneereeseesnnrons 100
Introduction to Transition System MOAENGcvveeiveeiieiiiiriier et e ereens 100
TTanSItION SYSTEIMIS 11ivvircreiiireiiriistieniieese e sttt esree st e s be e s sas e s beesrnessaneresans s s teasssessabresssastesaasaessnsanarnes 101
Formal Definition of @ Transition SYSIEIMccccovreriirerirnieriistscesteeeetesseseeee s s sssresresssrssatesvessneneas 102
The State Space EXplosion ProbIEmccvveeiiiiriirire et ce e e snsse s saes e eres b aen 102
Connection between HCPNS and Transitions SYSTEINS........ccvvevieeiireesieesiensieeseesieenseeeennserseesresessssseesses 103
Approach for NuSMV Encoding of HCPN Behaviour.........cccceeceeeriecirveneneeeeinieecse e eeee e sens 108
TEEOAUCHION. ... er ettt bttt ettt sre s et e e re e st e e esesbesesanebesbeneans 108
State SPace MINMIZATIONcvecveicerieeeeiieeererereresseeste e see e esreeanesrereseessbessbessaesreearennreesseeresesseentens 109
The DePth COUNTET......uiiiirieciieetiecie ettt e e et e sre e ebe et e s bessseesraestsasesanteraesbe st bennsentes sasessns 118
Human Readability and Transition System-HCPN Similarity..........cccereeeverceenenernnerirsesereeesee v 121
NuSMV Encoding IMplementationccccceceeerrrrrinieiinisesriereereeteesesssessesresssessassssssssnssesrsessorsssseossens 122
NUSMY MOGUIES ...ceveverrercereie et eies ittt e ss et s e et se s sr s r s sesbaessaebesananan 122
Encoding HCPN places as NUSMYV Variablescocooiiviiiiiiiieiie et sne e oo 122
Encoding HCPN Fusion Sets as NUSMYV variablescccoovieieivieiiecrieeceeie s seeeeeeres e ons 124
Encoding Multi-Coloured HCPN Places as NuSMV Variablescccccovvmreeeereceecre e, 125
Encoding HCPN Transitions, Firing Rule as NuSMV Transition Relationccceeeeveveieeccennnnee. 127
Specifying and Verifying “Security Properties” of Linux-PAM Configurationsccceeerevveeererennene. 133
INEPOAUCHIONL ..ttt ettt e ettt ettt 133

vi

M.Sc. Thesis — C. Kulbakas = McMaster — Computing & Software

Determining All Possible PAM Stack Execution Returnt VAlues.........ccccevevevieeeeieeeeveeeeceeeietesennenens 134
Formal Specification of “Security Properties” via CTLccoceeiiiivniveeceeveeeee e 138
Formal Verification of “Security Properties” via Model ChecKingccoevvevevvevevecrecreeereeneiseecnenens 139
Interpreting NuSMV Model Checking ReSultS.....cccoovvvieiriniinieiinniecene i es e esesse s 144
RESULTS ..ottt ettt ettt et s a bbb e bbb e s s se s bt esassaesenessessssenaene 148
Evidence of the State Space EXplosion Problemcccouveeiirnreceniiinesiciiescscsie e cn e seeeseens 151
Overcoming the State Space EXplosion ProDIEmccoveiiciiieiiieiecreecreceeee e erv e 153
Results of Verification of Production Linux-PAM Configurationsc.ccovueeriereveeceeeeresiesreceriesesieneens 155
DISCUSSION ..ottt ettt st se stk e e b s s e e s e s e e e e es e s e e s esesressesesasasessanssnnsaes 157
LATMEATIONIS ...ttt e s e b ekt st st eb et e s s e s e s et s s st e R e st et e R s e R e e en e senreeatebaneen 160
PAM modeling is N0t detailedccoecviiviririeire st e b e ee 160
PAM options are 1ot MOAELedccoeiiiiiiiect st 160
Some Management Functions are 10t Modeledcovevvrvvririiceiineciccieete et s 161

Flags are 10t MOAELEAc.veerieeiriereerrrr ettt st st ss et e es e base b e aeanabanin 161
FULUIE WOTK...ocviiiiiic ettt ettt e s be bbb b es e s benaesaesesesasan 163
Improving modeling approximation to LINUX-PAMc.ccccuieimnrinieiiciccie e eresve e eveereeneas 163
Identification of Common Linux-PAM Configuration SCenarios.......c....ceeeeveeiererereeccenirrereescerereerenns 163
Developing Algebraic Techniques for Linux-PAM Configuration AnalysiS.........cocoeeceevireecenrierenenn. 164
Attacks and Defences from an Information Security Perspective........oovvveecvieeviesvceeesiecreerreveeinens 165
Interoperability with Other Formal Methods SORWArecccoecieceniecieiceceereee e 168
End-User Pamester-fin To0l INETACHOMNc.cevvririeiririseniecineste et sie s ene e e e e st an e seesae e sve e 170
Next-Generation Interactive LINuX-PAM SYSIEINScovvirvecreeriiieieeciesre v sressessesenas 170
CONCLUSION ...ttt sttt ettt et see st b s et st e st b e st s b st et e restaanese et esaetesessnenessasanssasansanes 172
APPENDIX A: Source Code of PAM Stack Instance EXeCutioncceeveeeeeievinienievineeeeeseecieesesneneeenens 175
Pam _dispatch() from libpam/pam_ diSPatCh.Cccccoivvirirnieciriese et 175
Pam dispatch aux() from libpam/pam dispatch.c........ccvvvvevivieiieiciicecec e 177
APPENDIX B: Authentication using ‘10gin’ at ACME COIP ..c.ccveerirerreitiieiiresietieecererseeeeeseeresesssneressens 182
AUthentication POLICYcooviviiieiircie ettt et r e e eere s s s esb st sesns b ne 182
Linux-PAM COnfIGUIATIONcvecevirieecrriireet ettt et sa s sscvsabessssaseasessenserenseneenes 183
PAM Stack SPeCIfICAtION. ..covevruiirieririeriiie ettt sttt ettt a e ettt e s aeererseresereareeneetesroneenes 184
PAM Stack INSTATICEveeieiieie ettt et n et es et et ersens e en e 185
BIbIIOZIAPIYvieeeccce ettt e eebe st e e te et enseaeebe st enseteatentsatateren 186

vii

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

List of Figures
FIGURE 1: AUTHENTICATION-RELATED FUNCTIONALITY OF PAM_CRACKLIB.SOPAMocoriiriiiririnrrnrreene 3
FIGURE 2: ARCHITECTURE - LINUX-PAM APISooiiiiiieciiie ittt sre et saesie s ssvaesan e s s evtesneesannasanee s 9
FIGURE 3: ARCHITECTURE - LINUX-PAM CLIENT EXECUTIONuviiiriiiereesireeeereeeerirneseeeessesneeecrseesssnseesann il
FIGURE 4: USING EFFECTIVE PAM STACKS TO OBTAIN AUTHENTICATION-RELATED FUNCTIONALITY 12
FIGURE 5: HIGH LEVEL OVERVIEW OF EFFECTIVE PAM STACK CREATION FOR, AND USAGE BY, AN
AUTHENTICATION PROCESS.....ccccuiiiieertteeiiesittesirteeieesireessseeseresssesesssessseesssresssessssesssssessasessaensesessssesses 16
FIGURE 6: USING APIS TO UPDATE A PASSWORD ...coccviiiiertireiiereuerecssesesseesastessessssesseessssesseesossssssesnsesssnsssnse 17
FIGURE 7: USING APIS TO UPDATE A PASSWORD - EVENT SEQUENCEcccvitieimeennneireranerssessssesaresiosessnsenss 18
FIGURE 8: FSM OF PAM STACK DISPATCH STATE AND DEPTH UNDER TERMINATIONccvveuverriinneesierenenns 31
FIGURE 9: PAM_AUTHENTICATE — SOURCE CODEecueiueriietieseienresneeseeeesseessrsssssssessesssssssesssesssessesssesseesansnns 35
FIGURE 10: PAM_AUTHENTICATE() — RESULTING ABSTRACTED SOURCE CODE TO BE MODELED BY HCPN.... 35
FIGURE 11: PAM_AUTHENTICATE() — DEBUG CALL — NOT MODELEDccvvcverrerureririreesinesieeenesneeseesneensenss 36
FIGURE 12: PAM_AUTHENTICATE() - SOURCE CODE - NULL CHECK NOT MODELEDccccvteereriererrearesnnnnas 36
FIGURE 13: PAM AUTHENTICATE() — SOURCE CODE - CALL SOURCE CHECK - NOT MODELEDccorveervrrenns 36
FIGURE 14: PAM_AUTHENTICATE() - SOURCE CODE - TIMER -~ NOT MODELEDccvcortiereerreeeeererereenieesseeseseseens 37
FIGURE 15: PAM_AUTHENTICATE() - SOURCE CODE - POST PAM STACK EXECUTION - NOT MODELED 37
FIGURE 16: PAM STACK EXECUTION — PAM_DISPATCH() - CHOOSING THE EFFECTIVE PAM STACK INSTANCE
... 39
FIGURE 17: PAM STACK EXECUTION - PAM_DISPATCH() - INITIATING PAM STACK EXECUTION.................. 39
FIGURE 18: PAMTESTER-FM HCPN MODULE DISPATCH TEMPLATE ...cooveeeereereieceerieesetreessesreseeeenseseesesanas 45
FIGURE 19: HCPN MODULE DISPATCH SPECIFICATION FOR AUTHENTICATION VIA “LOGIN” AT ACME
CORP. evveereierireiieteiseeseesstese e e s taaeases s e s e tae s aabe e saseeaatasasesassbasnsssssnsseassseerseesetaeassesiassasansessnssnnessasessssssinte 46
FIGURE 20: HCPN MODULE DISPATCH SPECIFICATION FOR AUTHENTICATION VIA “LOGIN” AT ACME
CORP. e ectertete e ettt te e e ettt e evees s s teb e e ts e eesa s tarasreesetetessbabasesssssasassntanesssosesabsnstesessissrasseessessosnaseness 51
FIGURE 21: PARTIAL INSTANCE HIERARCHY ROOTED AT DISPATCH. ..ottt 52
FIGURE 22: PAMTESTER-FM HCPN MODULE INITTALIZE TEMPLATE.........coocteneeeeieeniereenreereseseesseessnessens 53
FIGURE 23: HCPN MODULE INITIALIZE INSTANCE; FOR ACME CORP.eoiveieiiieiiees et eeenereeseceneesseeenenens 53
FIGURE 24: PAMTESTER-FM HCPN MODULE TERMINATE TEMPLATE........ccceviteienteeeieeereeereesniestessieesns 54
FIGURE 25: HCPN MODULE TERMINATE INSTANCE; FOR ACME CORP. ..cooovvvieiciieeeeeeeeeesreeeeaeseeiveesen 54
FIGURE 26: PARTIAL UNFOLDING OF THE HCPN MODULE INSTANCE DISPATCH “COMBINING” DISPATCH
WITH INITIALIZE AND TERMINATE HCPN MODULE INSTANCES; FOR ACME CORP.ovvvuuee. 55
FIGURE 27: PAMTESTER-FM HCPN MODULE HANDLERS TEMPLATEovtevivreiiineeeecreeceeiieeeseeneesesesneeeass 56
FIGURE 28: HCPN MODULE HANDLERS INSTANCE; FOR ACME CORP. ...cooevvvieiiinieeeiiieeeeeeee e sreeesens 58
FIGURE 29: PARTIAL UNFOLDING OF THE HCPN MODULE INSTANCES DISPATCH, INITIALIZE,
HANDLERS, TERMINATE; FOR ACME CORPcoveeiittiieeiieeieetis et e e sses st seeveseen s aaesanes 59
FIGURE 30: PAMTESTER-FM HCPN MODULE SUBSTACK TEMPLATE........ceerveniteiireirressieiisesereesesrenessennnees 59
FIGURE 31: PAMTESTER-FM HCPN MODULE NOT SUBSTACK TEMPLATE......cceecvevieeeriereeineereenrieneenreerees 60
FIGURE 32: PARTIAL UNFOLDING OF THE HCPN MODULE INSTANCES DISPATCH, INITIALIZE,
HANDLERS, NOT _SUBSTACK, TERMINATE; FOR ACME CORP...c.coovvevereri et eitee e 64
FIGURE 33: PAMTESTER-FM HCPN MODULE MODULE MUST FAIL TEMPLATE......ccoverevrerieeecreeieeneenrenss 65
FIGURE 34: PAMTESTER-FM HCPN MODULE MODULE FUNC NULL TEMPLATEcccvevveeveeeereveereennnrens 66
FIGURE 35: PAMTESTER-FM HCPN MODULE MODULE <S> TEMPLATEcevtrteeminnreireeressesseereereesesrrssesenes 66
FIGURE 36: PAMTESTER-FM HCPN MODULE MODULE_SECURETTY TEMPLATE.......ccocveevticuecreeneenrveernans 68

viii

J B e

M.Sc. Thesis — C. Kulbakas = McMaster — Computing & Software

FIGURE 37: HCPN MODULE MODULE SECURETTY INSTANCE - ACME CORP.......ccoeviiirerrneneceennine 68
FIGURE 38: PARTIAL UNFOLDING OF THE HCPN MODULE INSTANCES DISPATCH, INITIALIZE,
HANDLERS, NOT SUBSTACK, MODULE SECURETTY, TERMINATE; FOR ACME CORP..... 69

FIGURE 39: PAMTESTER-FM HCPN MODULE CONTROL TEMPLATE......cccvvevirreieneesreesseserarsrsnserssesssesesssens 70
FIGURE 40: HCPN MODULE CONTROL 0 INSTANCE - ACME CORPoovvviviieieie e sve e 72
FIGURE 41: "PAUSING" OF PAM STACK —HANDLER 0 IS CHOSEN TO BE EXECUTED.......ccceceentrnerienereeennne 74
FIGURE 42: "PAUSING" OF PAM STACK —PAM_SECURETTY.SO PAM RETURNS PAM INCOMPLETE =31 74
FIGURE 43: "PAUSING" OF PAM STACK — HCPN MODULE TERMINATE IS CHOSEN TO BE EXECUTED 75

FIGURE 44: "PAUSING" OF PAM STACK — PAM STACK EXECUTION TERMINATES
FIGURE 45: CHOOSING AN ACTION TO EXECUTE BASED ON PAM_RETURN VALUE DEFINED BY CONTROL —

PAM SECURETTY.SO PAM RETURNS PAM_SUCCESS =0cocticiriteiieiecieencrene e e 76
FIGURE 46: CHOOSING AN ACTION TO EXECUTE BASED ON PAM RETURN VALUE DEFINED BY CONTROL —
ACTION ASSOCIATED WITH ACTION_0_0 IS CHOSEN FOR EXECUTION ...ccovcevieveneeirrirrnrerrressisessseansneens 77
FIGURE 47: PAMTESTER-FM HCPN MODULE ACTION _IGNORE TEMPLATEcccvcveereeireeieeeneseeereneeesnnenns 78
FIGURE 48: HCPN MODULE ACTION IGNORE 0 1-ACME CORP......coceevvireeveereesereeseeseneereesreenreesenns 80
FIGURE 49:; PAMTESTER-FM HCPN MODULE ACTION OK TEMPLATEcevveereerrereereeeseesssersesssessnesnnssnnenes 80
FIGURE 50: PAMTESTER-FM HCPN MODULE ACTION DONE TEMPLATEccocvevverrereeiireiesenereesrsnesarsneenns 81
FIGURE 51: PAMTESTER-FM HCPN MODULE ACTION BAD TEMPLATEcocevvieveevesreeseeseeesenesresssesnsnessens 82
FIGURE 52: PAMTESTER-FM HCPN MODULE ACTION DIE TEMPLATEccovvviveereerrnerereeersessesnsssnesneesns 83
FIGURE 53: PAMTESTER-FM HCPN MODULE ACTION RESET TEMPLATE ...cccccviteieeienieicesieeneeeseeeneesneenne 84
FIGURE 54: PAMTESTER-FM HCPN MODULE ACTION _JUMP_ NEGATIVE TEMPLATEcccccveeivivenreeeenns 85
FIGURE 55: EXAMPLE OF A "BAD JUMP" OF TYPE "NEGATIVE JUMP".......c.ccocirvirienrrnrnrerreersersssesressnsssessnnenns 86
FIGURE 56: PAMTESTER-FM HCPN MODULE ACTION JUMP TOO LONG TEMPLATEcccocvrvrrrreneereenns 88
FIGURE 57: EXAMPLE OF HCPN MODULE ACTION JUMP_TOO LONG INSTANCE-......crsruerrvesersseesvenseenas 89
FIGURE 58: PAMTESTER-FM HCPN MODULE ACTION _JUMP TEMPLATEccvceveerereeeesneeseesseesenesessnnenes 90
FIGURE 59: GENERATION OF A PAM STACK INSTANCE FOR THE PAM_SM_AUTHENTICATE() MODULE API
FUNCTION FOR THESERVICE "LOGIN".......eiotiettaiiraienitesieeste st esseeste et eenarsseesresssasstessesssesssesssessssenseaserans 93
FIGURE 60: HCPN MODEL - ACME CORP......coceeitiriieiieeiieienieeieeieeeee et esveaseeesatsnsessesssasssssstesssssrsssressseaseens 95
FIGURE 61: CLOSE-UP OF HCPN MODULES INITIALIZATION AND HANDLER O.....occcvevvvvevenrerceereene 96
FIGURE 62; CLOSE-UP OF HCPN MODULE HANDLER 1oovvivoiiiireerrciccees ettt ere e e sreesne e nees 96
FIGURE 63: CLOSE-UP OF HCPN MODULE HANDLER 2.....occiiiiicievic ittt esieesteeie e veesveesnsevesaeesaeans 97
FIGURE 64: CLOSE-UP OF HCPN MODULE HANDLER 3cciiriiiiiiirieeee it eene e e e esve s ennesanees 98
FIGURE 65: INSTANCE HIERARCHY OF HCPN MODELccctviritirererererrereersrnesesstesssesaesseessesssessessssssssessnenns 99
FIGURE 66: EXAMPLE OF TRANSITION SYSTEMcortirtirrerecrseresrrrrerseerssesssessressssssesssessssssesssessasssssssesssssns 101
FIGURE 67: HCPNS AS TRANSITION SYSTEMS — EXAMPLEccoioitiiitiirrieiirienneecnreesenessenessnesesvesessnesssesessens 104
FIGURE 68: HCPNS AS TRANSITION SYSTEMS — EXAMPLE —MARKING M 1oovivriiiiveesceeeeeee e, 105
FIGURE 69: HCPNS AS TRANSITION SYSTEMS — EXAMPLE — MARKING M. 2oocvvvriiiriecreeeie e 105
FIGURE 70: HCPNS AS TRANSITION SYSTEMS — EXAMPLE — MARKING M3cocovvieiiiiecece e 105
FIGURE 71: HCPN BEHAVIOUR AS A TRANSITION SYSTEM....ccecotererrreerreiveeseeesseessssiseesenssesesessseesseesneesssens 106
FIGURE 72: NUSMYV - THE DEPTH COUNTERcccueertirutericiireisiesrerettsreseesessrarssesssesssssssassessssssseassesssasssesses 126
FIGURE 73: TOY EXAMPLE ~ HCPN ..ottt sttt ee s st e sraestaeste e stesaeetasssesne s saesraensessann sne 127
FIGURE 74: TOY EXAMPLE - HCPN "BEHAVIOUR".........ccveiirrrereeesersiesaesaesrensseesneesesaeessssensesnsesnnessnesnns 128
FIGURE 75: TOY EXAMPLE - HCPN AND CORRESPONDING NUSMV ENCODING INCLUDING TRANSITION
SYSTEM ENCODINGceevutiieirieernsreestesnrreseseseseseesesseesaeesessuesessaesessasessesssnssseessesssssssesseessasssassssssssssnsses 130
FIGURE 76: THE SYSTEM VARIABLES UNDERLYING THE TRANSITION SYSTEM.....c..ecoverurerneerneeereeereenreeireeinne 133
FIGURE 77: LABELING FUNCTION - EXAMPLE - ACME CORPccveiieiieieeee ettt snee v bt 135

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

FIGURE 78: COMPUTATION TREE LOGIC FORMULA LIST FOR OBTAINING THE SET OF ALL POSSIBLE
PAM_RETURN VALUES OF A PAM STACK INSTANCE EXECUTION ...ccccocernmieerecieicrmrnriieereneesrennens 139
FIGURE 79: PAMTESTER-RM NUSMYV COMMAND LINE SYNTAX FOR CHECKING OF LINUX-PAM
CONFIGURATIONSveeetteeieerereessreessesantesesnesasarsssererseissasssssssesssasssssssssntnsssssessnnssseessssssssssssesasseessneranes
FIGURE 80: PAMTESTER-FM NUSMYV TEST PROFILE SCRIPT
FIGURE 81: PAMTESTER~FM FILE LIST CONTAINING NUSMYV ENCODINGS OF PAM STACK INSTANCE
EXECUTION POSSIBILITIES FOR LINUX-PAM CONFIGURATIONS OF PRODUCTION-GRADE LINUX-PAM

SERVICESuvteeeuerisreeeieresiterassresssesssesstesssssssessssesasteesssesessesosasssssesssesssesssssessnsesasesssesssesssnneesasasarssesnns 142
FIGURE 82: PAMTESTER-FM AUTOMATED, FORMAL VERIFICATION OF "SECURITY PROPERTIES" OF LINUX-
PAM CONFIGURATIONS ...couveveverrereeeiessienensneennes et rteeerreeiereereearererbeeieeea e eatbe e e bentaeaataeneeesaneerraes 144
FIGURE 83: PAMTESTER-FM FORMAL VERIFICATION OF ‘SECURITY PROPERTIES’ FOR USER AUTHENTICATION
FOR THE LOGIN PROGRAMc.cuvvtiieisteieeiteeeeetiteeeenreeeesnessssesesssssesssesssssassssssmsassssasssnesassnessnmnneesensseres 145
FIGURE 84: PAMTESTER-FM VERIFICATION RESULT FOR THE CHECKING OF "SECURITY PROPERTIES" FOR THE
LOGIN PROGRAM ..cceecuvtieieeitieeeiiteeereetrrssessresesataesasssesesiasasasssssassassnesonntesssssssseasssssesasasesssssessesasssesssrnsees 146
FIGURE 85: STATE SPACE EXPLOSION - TEST "BASE CASE" — LINUX-PAM CONFIGURATIONccc0.ervvennne.. 149
FIGURE 86: STATE SPACE EXPLOSION - TEST “BASE CASE” — HCPN MODELcvcivevirerereenreessieenesreessseensnes 149

FIGURE 87: STATE SPACE EXPLOSION - TEST "BASE CASE" — LINUX-PAM CONFIGURATION WITH 9
PSTACKED" PAMS .ttt ettt ettt e e et e e st e e e s b teessneeeeeensnte e e seeesasstaaasareeeanssssaansnsnsesnnns

FIGURE 88: LINUX-P AM CONFIGURATION ENABLING UNAUTHORIZED USER ACCESS

FIGURE 89: SOURCE CODE OF PAM_DISPATCH() FROM LIBPAM/PAM DISPATCH.C

FIGURE 90: SOURCE CODE OF PAM_DISPATCH AUX() FROM LIBPAM/PAM_DISPATCH.C......oceevvermerrrrnrennnns 181
FIGURE 91: A LINUX-PAM AUTHENTICATION POLICY P ...c.ooiiiiiiciicieecceceeeceennrsres e see e s 182
FIGURE 92: A CLIENT-SPECIFIC LINUX-PAM CONFIGURATION C, /ETC/PAM.D/LOGIN, FOR THE SERVICE
‘LOGIN’, IMPLEMENTING THE AUTHENTICATION POLICY P....ovveiiiiiiiieieecriencee e setecvensrressneeseraeesnee 183
FIGURE 93: THE PARSED CLIENT-SPECIFIC LINUX-PAM CONFIGURATION C FOR THE SERVICE ‘LOGIN’,
IMPLEMENTING THE AUTHENTICATION POLICY P ..ottt st 183
FIGURE 94: GENERATION OF A PAM STACK INSTANCE FOR THE PAM_SM_AUTHENTICATE() MODULE API
FUNCTION FOR THE SERVICE "LOGIN" ...c.etiitirtrritrreerierrtesreesteasessesssessssesnesrnsssassssssnsssssssassssesssesanesaee 185

M.Sc. Thesis - C. Kulbakas McMaster — Computing & Software

List of Tables
TABLE 1: AUTHENTICATION-RELATED FUNCTIONALITY OF PAMS BY MODULE API FUNCTIONccocvvevuvenene 5
TABLE 2; EXECUTION TREE FOR PAM_NOLOGIN.SO PAM WITH SEMANTIC ANNOTATION.....c.cccovirieereenereernes 7
TABLE 3: FACTORS AFFECTING RETURN VALUES OF PAM_NOLOGIN.SO PAM - ORGANIZED BY RETURN
VALUE OF PAM ..ottt rrtee e e s e stte ettt e sbe s sabe s aeassenssessbtesasaeensesasesessasasassnsesssssessessnsasasnsers 8
TABLE 4: ALGORITHM FOR IDENTIFICATION OF THE ROOT OF A SERVICE CONFIGURATION SPECIFICATION
AND THE PARSING RULE OF THE ROOT ..vccveccteireiteitecrecreistreeeeenseeseesteessaesbessasssessssssssrseesssesessressesnsens 14
TABLE 5: DEFINITION OF 'STRUCT HANDLER' DATA STRUCTURE........cecoivrerirerierervrerseneisrernessareserseesssersnsessanes 19
TABLE 6: START OF CLIENT-SPECIFIC PORTION OF LINUX-PAM CONFIGURATION FOR SERVICE 'LOGIN'....... 21
TABLE 7: LINUX-PAM CONFIGURATION IN THE /ETC/PAM.D/SYSTEM-AUTH FILE......ccccviviriereierrecrnrcreveeenens 22
TABLE 8: GENERATION OF PAM STACK SPECIFICATION FOR THE AUTHENTICATION MANAGEMENT GROUP
FOR SERVICE "LOGIN" WITH COMPLEX CONTROL EQUIVALENTSccccercreriieiereresveessessreesesarsssesrnnenans 23
TABLE 9: PAM STACK SPECIFICATION cliTIIloginauth WiTH CONTROL FUNCTION DEFINITIONS 24
TABLE 10: PAM STACK SPECIFICATION cliTTlloginauth wiTH CONTROL FUNCTION DEFINITIONS IN “RAW”
FORMAT «uevveeeueeesteesseeessseseearsesassseestessussssssassnesansarasssssasesasssrarssssasessssseantessssesasesessssssssesssanasssessansssnens 25
TABLE 11: GENERATION OF A PAM STACK INSTANCE FOR THE PAM._SM_AUTHENTICATE() MODULE API
FUNCTION FOR THESERVICE "LOGIN" .. .vteiittiiiireieeeittesirereeraeesesraesssessssssiuessasesssnesssassssessssssassessosassssesase 26
TABLE 12: PARTITIONING OF THE RANGE OF THE CONTROL FUNCTIONccuuermitreererrereseesaesereeeesineeessesssns 27
TABLE 13: HIGH-LEVEL OVERVIEW OF PAM STACK EXECUTIONccveeeteriirerreeeceeesreessessseeessessnsesssesssneens 29
TABLE 14: POSSIBLE PAM_RETURN VALUES OF PAMS "STACKED" ON ACME CORP'S
PAM_AUTHENTICATE() PAM STACK INSTANCE......ccccteieeieriitrnirrirnraesreestesreestesiesstansasnreansessssssesssnesnee 94
TABLE 15: STATE SPACE MINIMIZATION ~ INITIALIZATION AND TERMINATIONcceeeeuvieeiireereereeeesenrerieenns 110
TABLE 16: STATE SPACE MINIMIZATION - HANDLER <x>, MODULE <x>, MODULE SUBSTACK,
CONTROL SO0ttt ettt ettt e e e st sr e et et a st e sh e se s e b e e s e s s sesrassseesessseasesaesns 112
TABLE 17: STATE SPACE MINIMIZATION - CONTROL <TX> ..ottt et 115
TABLE 18: STATE SPACE MINIMIZATION - ACTION _IGNORE, ACTION_OK, ACTION_BAD,
ACTION_DIE, ACTION_DONE, ACTION RESET, ACTION JUMP,
ACTION JUMP NEGATIVE, ACTION JUMP TOO LONG......ccocvrierrirreiniireceeenre et 117
TABLE 19: STATE SPACE MINIMIZATION - FUSION SETSvviiiiieierirecireeeeeesreserieesnrenesesesesesnssessessssesssnnesanes 117
TABLE 20: STATE SPACE MINIMIZATION - NON-HCPN STATE SPACE CONTRIBUTORSecovivveiriereeernreenens 118
TABLE 21: NUSMYV ENCODING OF CPN PLACE "P_START ...ccvvciercreeerieeeiesetrsieesersnrsrasssessseeeesreseresnnessnes 123
TABLE 22: NUSMYV ENCODING OF CPN PLACE ‘P_END’oiviieirreereestrese et ree e see et sre e seve e 124
TABLE 23: ENCODING MULTI-COLOURED HCPN PLACESccovtieiitiiiteecieeecirerercesseeesieeenreesseissbessssssssseesanes 126
TABLE 24: TRANSITION RELATION - FIREDTRANSITION NUSVIM VARIABLE......cccoiiimeeeierineneeeeseieecsaeeeean 130
TABLE 25: TRANSITION RELATION = HCPN PLACESeeoviiieiteie e et e etteee st s sttt es e arenesenns 131
TABLE 26: STATE SPACE EXPLOSION ~ RESULTS SUMMARY ...ccovveirieitieirreenienerrrenneensesnssessresessesssnsessenses 153
TABLE 27: OVERCOMING STATE SPACE EXPLOSION ~ RESULTS SUMMARY ..vvviiveueereireieiiieeesieesereessereraeenns 154
TABLE 28: RESULTS OF PAMTESTER-FM VERFICATION OF ‘SECURITY PROPERTIES® OF PRODUCTION LINUX-
PAM CONFIGURATIONS ..c.uveriteeinrerretessrereesessiseeinrerarsesiorssassesassessssesssasenssesssssassessssessssessnsessssesesnssnnes 155
TABLE 29: GENERATION OF PAM STACK SPECIFICATION FOR THE AUTHENTICATION MANAGEMENT GROUP
FOR SERVICE "LOGIN" WITH COMPLEX CONTROL EQUIVALENTSovevervvieeeesieisinrereressseeresssessesessssssanns 184

Xi

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

INTRODUCTION

What is Linux-PAM

Linux-PAM (1), created in 1996 by A. Morgan, is an open source authentication
mechanism primarily meant for GNU/Linux systems. Linux-PAM implements the
Pluggable AuthenticationModules (PAM) framework.

The PAM framework describes a standardized way to do authentication. The PAM
framework was created in 1995 at SunSoft by V. Samar and R. Schemers, and was
published in 1995 as an Open Source Foundation (OSF) Request For Comments (RFC)
standard OSF-RFC 86.0 (2). The PAM framework’s improvements over prior
authentication frameworks made it the de facto choice for authentication on most Unix
and GNU/Linux-based systems for the past 14 years. To this day, implementations of the
PAM framework are the primary authentication technology on a wide variety of platforms
including FreeBSD, NetBSD, MAC OS X, Sun Solaris and major GNU/Linux
distributions.

The main goals of the PAM framework addressed limitations of existing authentication
frameworks (2), (3). These goals included the following. The system administrator should
be able to specify the default, system-wide authentication policy, as well as per
application authentication policies. Authentication policies should not only address
authentication, but also other authentication-related tasks related to account, session and
password management. The administrator should be able to integrate the functionality of

multiple authentication mechanisms to carry out individual authentication-related tasks.

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Last, but not least, changes to authentication policies should not require changes to the
applications that use these authentication policies. In other words, the applications were to
be made independent of the underlying authentication mechanisms.

The PAM framework solved the unified login problem or “how to integrate multiple
authentication mechanisms” (3) which allowed for authentication mechanisms to be field-
replacable, and made applications independent of the authentication mechanisms being
used. This was made possible by: identifying, abstracting and grouping of tasks
associated with authentication; encapsulating the usage of authentication mechanisms into
modules; allowing these modules to be dynamically combined to form complex
authentication-related functionalities; and providing standardized application
programmer’s interfaces (APIs) through which applications would make use of these

authentication mechanisms.

Pluggable Authentication Modules

The PAM framework introduces the notion of a pluggable authentication module
(PAM). PAMs encapsulate authentication mechanism functionality. Each PAM provides
some authentication-related functionality, whether on its own, or with the help of
external-to-the-PAM authentication mechanisms. For example, in Figure 1 the
pam_cracklib.so PAM uses multiple authentication mechanisms including the CrackLib2
package (CrackLib2), an external dictionary, and the underlying operating system to

access the external dictionary. A PAM’s authentication-related functionality is accessed

M.Sc. Thesis — C. Kulbakas

McMaster — Computing & Software

via a Module APL For example, pam_cracklib.so PAM’s functionality is accessed via

pam_sm_chauthtok().

Authentication Mechanisms

f

Linux-PAM
Linux-PAM Library PAMs
(" pam_cracklib.so
Implementation of pam_sm_chauthtok{)
pam_sm_chauthtok{)
password_check{)

CrackLib2 Operating System An External
- - Dictionary
R it Imnlev:::':)ﬁmal
epeni) L

e

Figure 1: Authentication-related functionality of pam_cracklib.so PAM

Authentication-related functionality varies between PAMs.

Table 1, on page 5, shows this variability for a number of PAMs, partitioned by

Module API functions, and by Management Groups (each Module API function is

associated with a Management Group).

WILSC. TEesIs = "C. K’U’I’DLaK‘a'S" TCWASIET =" Conpunny o Somware

PAM

Authentication
Management

Account
Management

Session
Management

Password
Management

pam_sm_authenticate()

pam_sm_setcred()

pam_sm_acct_mgmt()

pam_sm_open_session()

pam_sm_close_session()

pam_sm_chauthtok()

check if on secure tty, if | return check if on secure tty, if
pam_securefty.so user is ‘root’ PAM_SUCCESS user is ‘root’ N/A | /A NA
Al env.SO return \S/Ztriznb‘ltrso;?g?; return set environment variables | return return
pam_env. PAM_IGNORE from a file PAM _SERVICE_ERR | read in from a file PAM_SUCCESS PAM_SERVICE_ERR
am UNix.so authenticate user retum check user account send log on notification to | send log off notification update password of user
pamm,_unix. PAM_SUCCESS properties syslog to syslog P P
am succeed if.so S\fterlin:crlliéfxg;fion is returm Sgteﬁ?iéigzon is determine if the supplied | determine if the supplied | determine if the supplied
pam._ - PP PAM_IGNORE PP condition is true or false condition is true or false condition is true or false
true or false true or false
return return retum return return return

pam_deny.so

PAM_AUTH_ERR

PAM_CRED ERR

PAM_AUTH_ERR

PAM_SESSION_ERR

PAM_SESSION_ERR

PAM_AUTHTOK_ERR

. return error, return return error, g
Pam_nologin.so | ie . iologin exists | PAM_IGNORE if fetc/nologin exists | VA N/A N/A
am permit.so ‘S;t I;Si{m’?r?f?i‘sjema return return return return return
pam_permit. _pobody’, I ™€ | PAM_SUCCESS | PAM_SUCCESS PAM_SUCCESS PAM_SUCCESS PAM_SUCCESS
is not supplied
’ check strength of the
pam_cracklib.so N/A N/A N/A - 1 N/A- N/A new, user-supplied

password

o

- - WLOC., TIMESIS = U, WUIUERES ™ WILTNESTST = CGorpoainiyg or Soroweanre
initialize a session context | terminate a session
. return return L using the Security context using the Security
pam_selinux.so | pany AUTH ERR PAM SUCCEss | VA Enhanced Limux Enhanced Linux N/A
subsystem subsystem
instantiate a Kernel -
session keyring using the revoke a Kernel session
pam_keyinit.so N/A N/A N/A Kernel Key Refention keyring using the K.ernel N/A
: Key Retention Service
Service
L. . . return
pam_limits.so N/A N/A N/A impose resource limits PAM_SUCCESS N/A
sets “Login ID” of sets “Login ID” of Client return
pam_loginuid.so | N/A N/A Client process in the process in the Linux PAM SUCCESS N/A
Linux Audit Subsystem | Audit Subsystem — '

Table 1: Authentication-Related Functionality of PAMs by Module API function

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Table 1 shows PAM authentication-related functionality in a simplified manner. In
general, PAM authentication-related functionality is complex in terms of: execution logic,
how PAM options affect PAM functionality, user input, state of the underlying operating
system and the possible PAM return values. For example, the pam_nologin.so
functionality shown in Table 1 only shows default behaviour. To illustrate the complexity
of pam nologin.so PAM’s authentication-related functionality, Table 2 shows the
execution paths of the pam_nologin.so PAM along with a semantic annotation of the

meaning of these execution paths.

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Administrative Policy Allows

Error: User Unknown
] System Log On

Attempt to display NOLOGIN contents Give up on
displaying NOLOGIN
contents

Give up on dispfaying NOLOGIN contents.

[]
w F (o ®
s = T

@

Attempt to display NOLOGIN contents

Attempt to Prevent System Log On Do Not Attempt To Prevent System Log On

Administrative Policy Does Not Allow System Log On

Table 2: Execution tree for pam_nologin.so PAM with semantic annotation

The execution traces, and the factors affecting which execution traces are followed, are

summarized in Table 3 .

TYLOC. TSI “= U, IRUTTaNaS

TWGITVIaDTCT ~— " UOMTR Uiy Sooriwars =

obtained user obtained « i
user user opened user account | properties | obtained put all successok .
PAM name PAM return value name name | NOLOGIN account IDis O, | of Memory NOLOGIN PAM execution
obtaied | POt file for properties | . ’ NOLOGIN | buffer contents option trace
empty | reading from ‘oot file into buffer | specified
system
F X X X X X X X X 1
T F X X X X X X X 2
PAM_USER_UNKNOWN T T T F X F < T X 5
T T T F X T T T X &
T T F X X X X X F 3
PAM_IGNORE T T T T T F X X F 13
T T T T T T T T F 17
T T F X X X X X T 4
pam_nologin.so PAM_SUCCESS T T T T T F X X T 14
- ’ T T T T T T T T T 18
T T T F X T F X X 6
PAM_BUF_ERR T T T T T T F X X 15
T T T T F T F X X 10
T T T F X T T | F X 7
PAM_SYSTEM_ERR T T T - T T T T F X 16
T T T T F T T F X 11
T T T T F F X X X 9
PAM_AUTH_ERR T T T T F T T T X 12

Table 3: Factors Affecting Return Values of pam_nologin.so PAM - Organized by return value of PAM

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Standardized Authentication Interfaces

Linux-PAM

Client Library Module PAMs
APl API

»
PAM 71 Mechanism

PAM ; PAM >
Client

Mechanism

Y
Y
&
&
Y
Y.

Authentication

PAM Mechanlsm

h 4

Linux-PAM
configuration

Figure 2: Architecture - Linux-PAM APls

Along with the use of PAMs, the PAM framework achieves the separation of
applications from the underlying authentication mechanisms by using standardized
application programmer’s interfaces (APIs). This is accomplished by Linux-PAM
providing two APIs: an API for applications, called the Client API; and an API for
PAMs, called the Module API. The Client API allows applications to use authentication
mechanisms without the applications having to contain any mechanism specific
programming. The Module API provides a consistent way for authentication mechanism
developers to provide access to the mechanism’s authentication-related functionality. This
is shown in Figure 2.

The Client API and the Module API achieve not only the separation, but also
independence of applications, authentication policy, and authentication mechanisms. Any

changes in how Linux-PAM or authentication mechanisms operate are transparent to the

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Sofiware

Client applications. Any changes in how authentication mechanisms operafe are
transparent to the Library component of Linux-PAM. If an authentication mechanism
changes, it is only the corresponding PAM that may have to be modified. This is because
when a PAM is modified, the PAM still has to adhere to the Module API. The Module
API is standardized and does not change under any circumstance. All PAM
implementations, i.e. Linux-PAM, OpenPAM, Solaris PAM, must implement the Client

and the Module APIs.

The Client API is called by Client applications to request authentication-related
functionality from Linux-PAM. The Client API consists of the following functions:
pam_authenticate(), used for authentication; pam_setcred(), used for setting credentials;
pam_acct mgmt(), used for checking of account status; pam_open_session(), used for
opening a log on session; pam_close_session() , used for closing a log on session; and
pam_chauthtok(), used for updating of authentication tokens. For example, as shown in
Figure 3, an authentication process of the login program makes use of all of the Client

API calls.

10

M.Sc. Thesis - C. Kulbakas McMaster — Computing & Software

execution of process exec(/bin/login) of the binary /bin/login
execution of an authentication process T of exec(/bin/login)

execution of authentication-related tasks of T: user-authentication, set user credentials, check user

terminate the | account, update user password, set up user log on session, tear down user log on session
’ /\ process unset log on tear down log on
;XECI““”"_‘ "f\ session credentials session of user
L -
n:fls:;i:m ‘w" X of user o am_close_session())|
/ execution Initialize an N update password \
i am_authenticate
of login authenticatio @ N of user
program . n process by ERROR set log on session
.

s fork)a
am_chauthtok(} command-line \]
| ~ setuplogon shell
check account of .'segsiun of user =\ interpreter
\,

ERRéR
user - I ‘process for use
S liam_open_session(N

gam_acct_mgmt) -\T

Figure 3: Architecture - Linux-PAM Client Execution

" credentials
., requesting a "
N=— Se‘:vi\:e frgm am_authenticate{) > of user
- 3
execution of\ Linux-PAM ERROR ™. .
initial section A
N N am_authenticate
orlogin N ey @
program = ERROR

am,

Integration of Authentication Mechanisms via PAM Stacks

Linux-PAM allows for integration of multiple authentication mechanisms. We want to
integrate authentication mechanisms in order to provide an aggregate authentication
functionality that is a combination of the authentication functionalities of the individual
authentication mechanisms (i.e. using pam_cracklib.so PAM to check password strength,
and then using pam_unix.so PAM to update the user’s password on the system).

Integration of authentication mechanisms is achieved using the notion of a PAM Stack.

Each PAM corresponds to some authentication mechanisms. A PAM Stack is a data
structure which specifies how some sequence of PAMs can be utilized to provide their

authentication-related functionalities.

11

M.Sc. Thesis —- C. Kulbakas McMaster — Computing & Software

execution of process exec(/bin/login) of the binary /bin/login

execution of an authentication process T of exec(/bin/login)
execution of authentication-related tasks of T: user authentication, set user credentials, check user
terminate the | | 3ccount, update user password, set up user log on session, tear down user log on session
authentication
TS process unsetlog on tear down log on
; :;xecluhurf ofy session eredentials session of user
T e P’y
msff:;:" _pam_end() >+ T /‘_"“_se'\\ l pam_close_session} oy
N rogram | e setered([>4 ext
program authenticate user |
/execu\mn N initiatize 3 — update password X/_\
of login =20 N i pem_authenticate[l> of user ~
\ program authenticatio o setlog on session | /' fork{}a
npracessby [[i R N am_C command-line
N 2 am, i g “E?e""als = ||[T~. setoplogon shell
o | service from = 5\ O check accaunt of ||l et “segsion of user "\ interpreter
execution of\| || Linux-PAM ERROR N user . W— / emreter
nitial section @ L W il — < am_open_sessioni] ~—
oflogin o seteredly> Jramctmemtl)
_ program [Ceam_stan}). I ERROR P i
~— ! oE " Y ‘—'

o N session
update athentication tokens " setup log on session i.2. destroy SELinux
/’_\(Le. check password strength i.e. create SELinux context context
check user accounts i +._ l.e. create sesston keyring

N pam_dispatch_aux(TT 5 -
_~authenticate users session d .~ \ pam__dlspalch_au)'((ﬂ" " dlose
i-e. do UNIX N > pam_t ﬂiSPaffh_aux(n'm‘im‘w"m) \ pam_dispatch_aux([[P *7+"-se50)

authentication)
ie. do Kerberos / pam_dispatch_aux([™"

NN
/\
~

. guthentication ¥~ lthe Effective- PAM stack Instances of T; T \ \ I
parm, dispatch_aud{[P"- e et rovT— S titean [rop— e~
o o ot @ o
pam_authenticatel) sem_setcredl] pam_chauthic] pam,_cpen_session) pam_close_sessionl)
fp— B Hpaermdo pmaeien] - |fposeeaes

/'

pam &m‘m Lhu\w;;u /pam dupatch()
At _mgm ri-chauthtokl). ./pam open_s " pam_close_sessionf)

.E 1

~, . i.e.change passoword - e A "
- /sel:redentials ~ ie. checkif system)~ e p ‘ \l_/ '~e~di':;§::5"°"/
i.e. set environment allows log on g _,/ . .
7 // (varfables for log on > y pam.shocttaity ~—
~
/ - P

o_sesslonly

fear down log oy,

)

Figure 4: Using Effective PAM Stacks fo obtain authentication-related functionality

During an authentication process, Linux-PAM determines a unique PAM Stack
instance for each Client API Management Function. The PAM Stack instance is called the
Effective PAM Stack instance of the Management Function, for a total of six Effective
PAM Stack instances, one Effective PAM Stack instance per Management Function. The
Effective PAM Stack instance (of a Management Function) provides some authentication-
related functionality for the Management Function, every time the Management Function
is called by the Client, for the lifetime of the authentication process. For example, as
shown in Figure 4, each time login calls a Management Function, Linux-PAM uses the
corresponding Effective PAM Stack instance to provide authentication-related

functionality. To illustrate, when login calls pam_chauthtok() to change the user’s

12

M.Sc. Thesis — C. Kulbakas McMaster ~ Computing & Software

password, pam_chauthtok() calls the Linux-PAM Library function pam_dispatch().
Pam_dispatch() identifies the Effective PAM Stack instance corresponding to
pam_chauthtok(), denoted [7P4™-chauthtokO Then pam dispatch() calls
pam_dispatch_aux() and provides [JP4m-chauthtok() a4 an argument to
pam_dispatch_aux(), denoted pam_dispatch_aux([JPem-chauthtok(Q) 1 astly,
pam_dispatch aux() obtains the authentication-related functionality from
[Ipem-chauthtokQ Tp this case, the authentication-related functionality provided by

[[pam-chauthtok() changes the user’s password.

For each authentication process, Linux-PAM assigns two types of Linux-PAM
configurations to a client: client-specific and default. At the start of an authentication
process, a Linux-PAM Client requests from PAM to use a Service S, i.e. Service named
“login”, i.e. Service named “sshd”. In turn Linux-PAM identifies a unique file, called a
root file, as the starting point of the Linux-PAM configuration, for each of the client-
specific and the default configuration types. The identification of these root files is not

trivial, as shown in Table 4.

13

TSRS ST

T NSRS

TSN

i

TGS S AT

Exists Exists Exists Exists find_cs(SERVICE_NAME) parse_rule(find_cs(SERVICE_NAME))
/etc/pam.d/ | /etc/pam.d/SERVICE_NAME | /etc/pam.d/other PAM_READ_BOTH_CONFS /etc/pam.conf find_df(‘other’) parse_rule(find_df(‘other’))
F F ERROR
. T /etc/pam.conf 1% token is SERVICE
fetc/pam.conf 1* token is SERVICE
F ERROR
T T T /etc/pam.d/SERVICE_NAME 1% token is GROUP
Jetc/pam.d/other 1% token is GROUP
T T E /etc/pam.d/SERVICE _NAME 1 token is GROUP
UNDEFINED /A
T F T - . /etc/pam.conf 1* token is SERVICE
[etc/pam.d/other 1% token is GROUP
UNDEFINED ! 1 UNTA
T F T T F Jetc/pam.d/other 1% token is GROUP
UNDEFINED
T F T F 1% token is GROUP

/etc/pam.d/other

Table 4: Algorithm for Identification of the Root of a Service Configuration Specification and the Parsing Rule of the Root

14

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Once identified, Linux-PAM parses the root files, and generates four PAM Stack
specifications for each of client-specific and default configurations, where each of the
four specifications correspond to a distinct Management Group. Then, Linux-PAM
generates six PAM Stack instances (one for each Client API Management Function)
based on the four specifications. Given a PAM Stack specification for a Management
Group, this specification is used to generate the PAM Stack instances for all Management
Functions belonging to this group, i.e. PAM Stack specification for Authentication
Management generates two PAM Stack instances: one for pam_authenticate() and one for
pam_setcred(). Again, this is done for each of the client-specific and the default
configurations. Thus, twelve PAM Stack instances are created in total. From these twelve,
using each Client API Management Function, the client-specific and default PAM Stack
instances are paired up, and an Effective PAM Stack instance is chosen. If the client-
specific PAM Stack instance has no “stacked” PAMs configured, then the default PAM
Stack instance is used. This process is summarized in Figure 5, by using the login

program as an example.

15

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

execution of process exec(/bin/login) of the binary /bin/login

execution of an authentication process T of exec(/bin/login)

execution of authentication-related tasks of T: user authentication, set user credentials, check user
terminate the | iaccount, update user password, set up user log on session, tear down user log on session

/\f pracess unset log on tear down log on
:xelilmur! of session credentials session of user L
[-
inal sec}lnn L w 4 of user t < pam_close_session|
offogin | —— L]
- ¥ 1 s lexit{)
; . \ program icate ser
ten | N | Tiean [i i s
program authenticatio N ieeey - " torkya
L n process by ERROR i am_ command-line
. T
. requesting a o authentic - . setuplogon shell
. w | of user / |
"/-\\ Service from | g check account of ERROR Session of user interpreter
‘execution of Linux-PAM ERROR user R . / pemereter
initial section o suthenticats i atct_mamill- 4 ——————~C pam_ogen_session S
of login T am_setcred] —
program = ERROR
am_ i I

" update athentication tokens Yy~ et uplog on sess
iie. check password strength

fon
f.e. create SELinux context
«_Le. create session keyring)

fear down log on~,
. session
i.e. destroy SELinux

context
.e. delete session

", keyring /."

~ theck user accounts (N
4 . i.e change passoword
set credentials i.e. checkif system J e \r_/
(ie. set environment allows log on
_ variables for log on 3 pam_dispatch_aux([[F-240)

pam_dispatch_aux([[F>"-e- sl
pam_dispatch_aux{[[Pm-epenseniond

/ e - authenticate users w
. 7 - i.e.do UNIX A \ pamﬁdispatchﬁaux(nmmmn)
authentication - .
((< ie. do Kerberos /) pam_dispatch_aux([JP™=0} <
“_suthentication_~ ¥~ Ithe Effective-PAM Stack Instances of T; [T \ \ /

pam_dispatch_aux([[P™-"" 02 va mectre the Effective the Effective the Effectie the Effectioe the Effective
of of o o o o
P Farm authenticatel) o sered) paen.sem_egrat) P chautor) Fam_open sessonl) Farm_lose_semicnl)
L [P [P] [Pt | | e o e
ad ad -~
i = ach()
- 3m_seteret]

i pa i”"mu\;wﬂ‘” ~pam_dispatch)
T ® mrﬁ;hauu\lakﬂ—D. Farmoper_sessionti—{> @@k pam_close._sessiani}
/ /

/ T BN
7 P < AN
the State of//{uthentication Frocesél' ; pamh \\
. 'the C!iep(—Specific PAM /Stﬁ(instances 0/me|] I the Dafa AM Stack Instances of 'Im,]:[
: 7 > T 7 — <
e |] e Dot vaetent I aDetan et e Defautt tre Defat
o of of o i o of o o) F ot of
— pam_sbenticatel) pany_setcradl pam_axt_mgrl} Fem_chauthted) pam_ogen_sestonl) | | pam_dose sexdond Ppam_zaberticated) Fam_seloredl} Farm_sect_mgel) pam_chautheol) #am_open sesvonl | | pam_cose_session)
e o) || e | e v | e i et e
i 5 L3 b LY i LY T A ¥ 7 T
S 5 . e f 7 7 7
AT DIy T L |) GadT™) Dlad T Dlaal T el)

\\ \ \

) 7
the C‘ignt-Speciﬁc PAIb\Stack Speciﬁcat\ions of T; diHSP\EC the Deault PAM Stack Specifications of/T; def! SPEC
e = DT TR s vaDfT—

f of of of of o of o of

| e Atrersication e Recours thePassword theseccon the Attentication e Mk e Fasswecd e sacson
al uth . il-[actoum dinpasswmd a insesslon de'naum de'nacmum dE'Hpnsswnrd d!’nsessinn

T~ 7
\ parsefraatfiles{spec{X)}} parse_rute(find_cs("togin"}}} parse{rootifitesispeciV}}}, parse_rvle(find_df{"othec)))
\ " /
., Services J

— o , L P

“Ruthentication . S - Service N ! i

processes N\ | service >, Contiauions N /o policy policies \
/o tames O\ 7 Testspectx)) -) I/ Specifcations

/
find_cs{"login"}-

‘ <

AN i (
9.) —@ 4 fles{spec(x) @—pectt——_
pam_init_handlers{login") \ Q"fi-“(- "mm(mﬁs‘”f.‘w”/ - / \ ’
; i) \ T @ —
\ TilesTspec(Y)} - | filestspecty)r specty.

- g
S Caber oo : c
S ~— " —

i Figure 5: High Level Overview of Effective PAM Stack creation for, and usage by, an Authentication
Process

The next section describes PAM Stack composition and functionality.

16

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

PAM Stack Composition and Functionality

Introduction

The PAM framework achieves the integration of the functionality of multiple

authentication mechanisms using the notion of a PAM stack.

Linc-PAM
Chents

logia
program

update password
of user

TrucP AN Aubenticaton
Mechanisms
Chent Thrary Wodue PANS
pam_crackib.so
ion of N dictionary
pam_sm_passwdf} 7 textfle
pam_unn.so
ondt system's
usemame-password
pam_sm passwd) datebases and routines

for the login program, to update user password,

firsl, check passwond strength using pam_crackii.so PAM,
sedond, updato user password on the system using pam_unix.s0 PAM,

thirdly, i above is unsuccessful, then use pam_deny.so PAM to retum emor

LinocPAM
configuration

Figure 6: Using APls to update a password

First, by example, we show how the Client and Module APIs can be used to carry out

an authentication-related task of updating of a password. Figure 6 shows the architecture

of the system used in updating of this password. The sequence of events describing this

password update is listed in Figure 7. This sequence of events occurs when the login

program updates the user’s password via Linux-PAM.

17

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

1. Supposing that the Administrator supplies the following Configuration for updating of user
authentication tokens for the login program:
a. the strength of the newly proposed password must be checked via the pam_cracklib.so
PAM, then, if successful,;
b. update the user’s password on the system via the pam_unix.so PAM, then, if not
successful;
c. use the pam_deny.so PAM fo return an error.

2. The login Client calls the (Client API) pam_passwd() to change the user’s password.

3. In turn, the Library calls the (Module API) pam sm_passwd() implementation of each of the
PAMs, as dictated by the Configuration, in this case:
a. calling pam_cracklib.so PAM’s implementation of pam_sm_passwd();
b. followed by calling pam_unix.so PAM’s implementation of pam_sm_passwd(), if the
above was successful;
¢. followed by calling pam_deny.so PAM’s implementation of pam sm_passwd(), if the
above was unsuccessful.

4, When pam_sm_passwd() of pam_cracklib.so PAM is called, its execution:
a. provides pam_cracklib.so PAM’s authentication-related functionality for updating of
authentication tokens, mainly, checking of the password strength,
b. makes use of the actual authentication mechanism that corresponds to this PAM, in this
case, pam_cracklib.so uses internal password check routines, and can optionally use
external dictionaries.

5. When pam_sm_passwd() of pam_unix.so PAM is called, its execution:

a. provides pam_unix.so PAM’s authentication-related functionality for updating of
authentication tokens, mainly updating the system’s password database with the new
password information;

b. makes use of the actual authentication mechanism that corresponds to this PAM, in this
case, pam_unix.so may use passwd and shadow system password databases and
routines.

6. When pam_sm_passwd() of pam_deny.so PAM is called, its execution:
a. provides pam_deny.so PAM’s authentication-related functionality for updating of
authentication tokens, mainly, returning an error;
b. does not make use of an actual authentication mechanism - this PAM does not have a
corresponding authentication mechanism,

Figure 7: Using APls to update a password - event sequence

There is a 1-1 correspondence between Client API functions and Module API
functions, i.e. pam_authenticate() corresponds to pam_sm_authenticate(). The Client uses
Client API calis to request service for authentication-related tasks from Linux-PAM. In
turn, the Library component of Linux-PAM uses the corresponding Module API calls to

request the functionality for the authentication-related task from each individual PAM

18

M.Sc. Thesis ~ C. Kulbakas McMaster — Computing & Software

being used. In a proper configuration, each PAM belonging to a PAM Stack of some
Client API function must implement the corresponding Module API function. We say that
a PAM is stacked on a PAM Stack, if the PAM Stack uses the PAM to provide

authentication related functionality.

struct handler {
int handler_type;
int (*func) (pam_handle t *pamh, int flags, int argc, char **argv);
int actions[_PAM RETURN VALUES];
int cached retval;
int *cached_retval p;
int argc;
char **argv;
struct handler *next;
char *mod_name;
int stack_level;

)7

Table 5: Definition of 'struct handler' Data Structure

Which, and how, the stacked PAMs can be used by a PAM Stack instance, is encoded
in each PAM Stack Instance. On the implementation level, PAM Stack Instances are
linked lists of struct handler data structures (Table 5) which contain memory addresses of
the Module API function implementations (int (*func)), which we denote by the symbol
I(fS™, P). Handlers also store an encoding of all of the possible ways that these function
pointers can be invoked to execute some subsequence of the Module API function
implementations comprising the PAM Stack Instance (int

actions] PAM_RETURN_VALUES)).

Which PAMs are stored on a PAM Stack Instance, and in what sequences these PAMs
may be used, is defined by the Linux-PAM Administrator in a Linux-PAM Configuration.

Before we present the procedure used by Linux-PAM to generate an authentication-

19

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

related functionality using a PAM Stack Instance, we first show how a PAM Stack

Instance is generated based on a Linux-PAM Configuration.

Generating a PAM Stack Instance from a Linux-PAM Configuration

A Linux-PAM Configuration, for the Linux-PAM Service login (Table 6, Table 7), is
used to generate a PAM Stack Specification for the Authentication Management group
(Table 8)". In Table 9 we show an intermediate step where we transform each Complex
Controls of each configuration line into the Control Action definition using names of
Actions, for each “stacked” PAM. In Table 10 we show an intermediate step where we
transform each Complex Control of each configuration line into the Control Action
definition using numbers (not nanﬁes) of PAM._ RETURN values and Actions, for each
“stacked” PAM. This last form is then used to generate a condensed form of the
corresponding PAM Stack Specification for pam_authenticate() (Table 11). By
condensed, we refer to simplifying the description of the Control Function by generating
a sequence of partitions of PAM_RETURN = {0,1,...,31}, and using the keyword “ow”,
using the algorithm outlined in Table 12. We use this final form of the PAM Stack

Instance for generation of HCPN models of PAM Stack Instance executions.

'Duetoa brevity requirement, the procedure for this, and subsequent examples, was omitted.

20

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

login auth [user unknown=ignore success=ok ignore=ignore default=bad]
pam_securetty.so

login auth include system-auth

login account required pam _nologin.so

login account include system-auth

login password include system-auth

login session required pam_selinux.so close

login session include system-auth

login session required pam_loginuid.so

login session optional pam_console.so

login session required pam_selinux.so open

login session optional pam keyinit.so force revoke

Table 6: Start of Client-Specific portion of Linux-PAM Configuration for Service 'login'

21

PR - e e e L

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

auth required pam_env.so

auth sufficient pam unix.so nullok try first pass

auth requisite pam succeed if.so uid >= 500 quiet

auth required pam_deny.so

account required pam_unix.so

account sufficient pam_succeed if.so uid < 500 quiet

account regquired pam permit.so

password requisite pam _cracklib.so try first pass retry=3

password sufficient pam_unix.so md5 shadow nullok try first pass use_authtok
password required pam_deny.so

session optional pam _keyinit.so revoke

session required pam limits.so

session [success=1 default=ignore] pam succeed if.so service in crond quiet use_uid
session required pam unix.so

Table 7: Linux-PAM Configuration in the fetc/pam.disystem-auth File

22

M.Sc. Thesis — C. Kulbakas

McMaster — Computing & Software

depth

level
S

SERVICE

SERVICE
GROUP

CONTROL

Cc:{0,1,...,31}->ACTIONS

PATH

OPTIONS
0

0 login

auth

[

user_ unknown=ignore

success=o0k

ignore=ignore

pam_securetty.so

default=bad

]

0 login

auth

[

success=ok

new_auth tok reqd = ok

ignore=ignore

pam_env.so

default=bad

]

0 login

auth

[

success=done

I

new_auth_tok regd = ok

pam_unix.so

default=ignore

1

nullok

try first_pass

0 login

auth

[

success=ok

new_auth tok reqgd = ok

ignore=ignore

pam_succeed.so

default=die

]

uid

500
quiet

0 login

auth

[

success=o0k

new_auth tok reqgd = ok

ignore=ignore

pam_deny.so

default=bad

]

Table 8: Generation of PAM Stack Specification for the Authentication Management grou
for Service "login” with Complex Control equivalents

23

M.Sc.

Thesis — C. Kulbakas

McMaster — Computing & Software

Depth i 0 1 2 3 4
pam_ pam_ pam_ pam_ pam_
PATH P i securctty env unix succeed if | deny
. S0 .S0 .50 . S50 . SO

PAM SUCCESS ok ok done ok ok
PAM OPEN ERR bad bad ignore die bad
PAM SYMBOL ERR bad bad ignore die bad
PAM SERVICE ERR bad bad ignore die bad
PAM SYSTEM ERR bad bad ignore die bad
PAM BUF_ ERR bad bad ignore die bad
PAM PERM DENIED bad bad ignore die bad
PAM AUTH ERR bad bad ignore die bad
PAM CRED INSUFFICIENT bad bad ignore die bad
PAM AUTHINFO UNAVAIL bad bad ignore die bad
PAM USER UNKNOWN ignore bad ignore die bad
PAM MAXTRIES bad bad ignore die bad
PAM NEW AUTHTOK REQD bad ok ok ok ok
PAM ACCT EXPIRED bad bad ignore die bad
PAM SESSION_ERR bad bad ignore die bad

CONTROL PAM CRED UNAVAIL bad bad ignore die bad

C i PAM CRED EXPIRED bad bad ignore die bad
PAM CRED ERR bad bad ignore die bad
PAM NO MODULE DATA bad bad ignore die bad
PAM CONV_ERR bad bad ignore die bad
PAM AUTHTOK_ERR) bad bad ignore die bad
PAM AUTHTOK_ RECOVERY ERR bad bad ignore die bad
PAM AUTHTOK LOCK BUSY bad bad ignore die bad
PAM AUTHTOK DISABLE AGING bad bad ignore die bad
PAM TRY AGAIN bad bad ignore die bad
PAM IGNORE ignore ignore ignore ignore ignore
PAM ABORT bad bad ignore die bad
PAM AUTHTOK EXPIRED bad bad ignore die bad
PAM MODULF, UNKNOWN bad bad ignore die bad
PAM BAD ITEM bad bad ignore die bad
PAM CONV_AGAIN bad bad ignore die bad
PAM INCOMPLETE bad bad ignore die bad

nullok uid
try first -
OPTIONS O i pass
500
quiet
LEVEL T, i 0 0 0 0 0

Table 9: PAM Stack Specification e

cli

24

login

with Control Function definitions

M.Sc.

Thesis — C. Kulbakas McMaster — Computing & Software

Depth i 0 1 2 3 4
pam pam pam pam pam
PATH P 1 securetty |env |unix sucgeed_if deny
- . S0 .80 .50 .80 . S0
0 -1 -1 -2 -1 -1
1 -3 -3 0 -4 -3
2 -3 -3 0 -4 -3
3 -3 -3 0 -4 -3
4 -3 -3 0 -4 -3
5 -3 -3 0 -4 -3
6 -3 -3 0 -4 -3
7 -3 -3 0 -4 -3
8 -3 -3 0 -4 -3
9 -3 -3 0 -4 -3
10 0 -3 0 -4 -3
11 -3 -3 0 -4 -3
12 -3 -1 -1 -1 -1
13 -3 -3 0 -4 -3
14 -3 -3 0 -4 -3
CONTROL 15 -3 -3 0 -4 -3
ci 16 -3 -3 0 -4 -3
17 -3 -3 0 -4 -3
18 -3 -3 0 -4 -3
19 -3 -3 0 -4 -3
20 -3 -3 0 -4 -3
21 -3 -3 0 -4 -3
22 -3 -3 0 -4 -3
23 -3 -3 0 -4 -3
24 -3 -3 0 -4 -3
25 0 0 0 0 0
26 -3 -3 0 -4 -3
27 -3 -3 0 -4 -3
28 -3 -3 0 -4 -3
29 -3 -3 0 -4 -3
30 -3 -3 0 -4 -3
31 -3 -3 0 -4 -3
nullok uid
. try first pass >=
OPTIONS O 1 500
quiet
LEVEL L i 0 0 0 0 0

Table 10: PAM Stack Specification .JIT2! with Control Function definitions in “raw”

login
format

25

SERVICE

CONTROL;

G

depth; level; SERVICE; GROUP; deD(C): PATH; OPTIONS;
L Li S,: X P,; Oi
Gi - R(C) vxeX:
- t C(x)=d
;fodler int int int char char
type stack_level actions[32] (*func) *mod_name **argv
0 -1)
0 0 0 login auth 10,25 0 L(pam_sm_suthenticate (), pam_securetty
pam_securetty.so) -
\\OWII _3
0,12 -1 .
1 0 0 login auth 25 0 I (pam_sm_authenticate (), pam_env
pam_env.so) -
“ow” _3
0 -2)
2 0 0 login auth 12 -1 L (pam_gm_authentlcate O pam unix
pam_unix.so) —
“ow” 0
0,12 -1 uid
25 0 . >=
. I(pam_sm_authenticate(),
3 0 0 login auth " 4 pam_succeed. s0) pam_succeed 500
0,12 -1)
4 0 0 login auth 25 0 I(pam_sm_authenticate(), pam deny
- 3 pam_deny.so) -
‘OW" -

Table 11: Generation of a PAM Stack Instance for the pam_sm_authenticate() Module API function for theService "login™

26

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Given Table 11, the mapping, from the table column labeled X S R(C;), to the table

column labeled d € D(C;):Vx € X: C;(x) = d, is determined by steps listed in Table 12.

Input: Control Function C: {0,1,...,31}—> {-5,—4,...,0,...65535}, Control

Function is total

1. Group domain of C into partitions of {0,1,...,31} by the images being mapped
to.

2. Remove 31 from the partition containing it.

3. Sort partitions by minimum element, in increasing order.

4. Move partition with most elements and largest minimal member to the last

row and denote by “ow”.

Output: sequence of partitions {X} s.t. Vterms X € R(C): Vx € X:C(x) =d.

Table 12: Partitioning of the range of the Control function

Generating of Authentication-Related Functionality from a PAM Stack Instance

Given a PAM Stack instance, Linux-PAM executes this PAM Stack instance in order
to generate an instance of authentication-related functionality. This authentication-related
functionality is a combination of the authentication-related functionalitics of the PAMs
comprising this PAM Stack instance. Specifically, Linux-PAM uses the algorithm shown
in Table 13 to use the stacked PAMs of the PAM Stack instance to execute the Module
API function implementations of these “stacked” PAMs to provide this authentication-
related functionality.

Given the PAM Stack Instance in Table 11, this instance has 5 stacked PAMs. Each

PAM stacking is implemented using the struct handler data structure shown in Table 5 on

27

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

page 19. Hence, we view a PAM Stack instance as a sequence of handlers, i.e. handler 0,
handler 1, ..., handler x-1, where the amount of stacked PAMs is x, and each handler
contains a Module API function implementation (precisely, a pointer to this

implementation) of some PAM, and a Control Function definition.

28

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

INPUT: THg = { handler;} = handlerg, handlery, ..., handler,_,, an Effective PAM Stack Instance with x
handlers

OUTPUT: pam_return, i.e. a PAM Stack Instance execution return value

1. Ifx = 0,i.e. PAM Stack Instance is empty (i.e. no “stacked” PAMs)
a. pam_return = PAM_SYSTEM_ERROR =4
b. goto Step 6

2. Initialize PAM Stack and Substack Execution states by executing initialization code
a. (I,M):= (0,6), i.e. initialize PAM Stack Execution State
b. (I, Mp): = (0,6), i.e. initialize PAM 0™ Substack State
c. (I, M):=(0,0), 1<L <15,i.e. initialize all other PAM Substack States

3. Choose the first handler, handler,, as the first handler to be processed
a. handler;: = handler,

4. While the chosen handler;,0 < i < x — 1, exists on the PAM Stack instance (is a term of { handler;}),
process handler;, denoted exec(handler;), where last(i) denotes the last handler depth to be processed
a. if level(handlerlast(i)) < level(handler;) = K, i.e. entering higher substack level K, then
i (Ix, Mg):= (I, M), i.e. save current PAM Stack Execution State
b. Iftype(handler;) = PAM_HT_MUST_FAIL, i.e. handler is erroneous, then
i. return; = PAM_MUST_FAIL CODE =6
ii. go to step 4(g), i.e. skip PAM execution, go directly to execution of Action
c. Iftype(handler;) = PAM_HT_SUBSTACK, i.e. start of Substack, then
i. i:=1i+1,1ie. choose next handler in sequence to be executed
ii. gotostep4
d. If AI(f*™, P;),1ie. PAM does not implement the Management Function
1. return; = PAM_MODULE _UNKNOWN = 28
il. go to step 4(g), i.e. skip PAM execution, go directly to execution of Action
e. exec(I(f°™, P,),0;), ie. execute the implementation of Module API function f*™ of PAM P,
i. return; = exec(I(f*™, P;), 0;), i.e. obtain result from execution of I1(f*™, P;)
f. Ifreturn; = PAM_INCOMPLETE = 31, i.e. PAM needs more information from user in order to
provide anuthentication-related functionality
i. pam_return := return; = PAM_INCOMPLETE = 31
ii. gotostep 6
g. action; = C;(returny), i.e. determine the mapped-to Action action;
h. exec(action; return;, (I, M)), i.e. execute action;
i ((I , M), i) = exec(actioni, return;, (I, M)), i.e. update PAM Stack Execution State and

choose next handler to execute
il. go the Step 4

5. Terminate PAM Stack execution state

a. return PAM Stack execution result pam_return by executing termination code terminate(),
denoted exec(terminate())

i. pam_return:= exec(terminate((Il,M))

6. Return result of PAM Stack Instance Execution
a. return pam_return

Table 13: High-level Overview of PAM Stack Execution

29

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

As shown in Table 13 the authentication-related functionality of a PAM Stack Instance
Execution is comprised of a subsequence of handler executions. Each handler execution,
under non-substack and non-erroneous circumstances, consists of executing the Module
API function implementation contained in the handler. The choice of the next handler to
be executed depends on the current PAM Stack Execution state. The final
PAM_RETURN value determines whether or not the PAM Stack execution is deemed as
successful. A return value of PAM_SUCCESS = 0 means that the PAM Stack execution
was successful. Otherwise, PAM Stack execution was not successful. Note that, whether
or not the PAM Stack execution is deemed as successful still does not change the fact that
the PAM Stack execution has already provided authentication-related functionality via its
handler executions. The final PAM_RETURN value has utility for the Linux-PAM
Client, but not for Linux-PAM.

The main idea behind PAM Stack execution is as follows. PAM Stack execution starts
with the first handler. Then, in the case of a non-erroneous stacked PAM, the PAM’s
implementation of the Module API function is executed to provide some authentication-
related functionality. Then, the PAM_RETURN value obtained from this Module API
function execution is used by the Control function to choose an Action to execute.
Execution of an Action does two things: first, the PAM Stack Execution State is updated;
second, the next handler to be executed is chosen. The updating of the PAM Stack

Execution state, as well as the choosing of the next handler may be dependent on the

30

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

current PAM Stack Execution state, as well as the latest PAM_RETURN value obtained
from the Module API function execution?,
The particular way in which each Action executes is not described in this section.

Rather, we utilize our HCPN encodings to show how these Actions operate.

The execution of handlers during a PAM Stack execution is a subsequence of the
handler sequence comprising the PAM Stack Instance.

PAM Stack execution stops when Termination execution is reached. At this point, a
decision regarding the final PAM Stack execution return value is made by the
Termination procedure. This decision is based on the current PAM Stack Execution State,

and is described by the state machine shown in Figure 8.

success status error status
states states

positive impression

ey
* yeee states

7

H /(1,0) %

undefined impression
states

negative impression
states

Figure 8: FSM of PAM Stack Dispatch State and Depth Under Termination

2 It may also be dependent on previous return values obtained for the same Management Function call, just
not for the same Management Function call instance, but we do not model this as this is the Frozen Chain
functionality. Frozen Chain is part of future work.

31

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

It is the goal of this thesis, and of the pamtester-fim tool, to model all possible ways in
which a PAM Stack Instance can be executed, where this PAM Stack Instance is
generated based on an arbitrary Linux-PAM Configuration.

The next section delves into our HCPN modeling.

32

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

METHODOLOGY ~ PART I: HCPN Modeling

Introduction to HCPN Modeling

Current Petri Net software tools are limited. For example, these tools do not allow
programmatic, dynamic generation of arbitrary Petri Nets, and programmatic control,
such as automated simulation. Due to this, as part of this thesis work, we developed a
software tool called pamtester-fm. The purpose of pamtester-fm is to create HCPN
structures of arbitrary PAM Stack Instance executions, via automated, programmatic
means.

HCPN models encode, not only structure of a system, but also a system’s behaviour. In
particular, our HCPN models of PAM Stack Instance executions not only encode the
structure of a PAM Stack Instance execution, but also its “executable behaviour”.

The problem in our case is that, although an HCPN encodes behaviour of a system,
one still needs to somehow simulate or execute this HCPN behaviour . Otherwise, the
HCPN specification is just a textual specification, not something dynamic or executable.
In analogy, one can specify some “execution” using the C programming language, but the
resulting program still has to be compiled and executed to analyze the program’s run-time
behaviour. Thus, additionally, pamtester-fm makes use of an external program called

NuSMV(4) to simulate the HCPN’s behaviour.

From Source Code to HCPN

33

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Our creation of HCPN models is based on the knowledge of how Linux-PAM would
process an Effective PAM Stack’s linked list of struct handlers to obtain its
authentication-related functionality.

This knowledge is based on a source code audit of the files implementing the functions
that obtain authentication-related functionality of PAM Stacks, mainly, each of the Client
API functions: pam_start(), pam_authenticate(), pam_setcred(), pam_open_session(),
pam_close session(), pam_chauthtok(), the pam_dispatch() function, and finally, the
pam_dispatch_aux() function.

For example, a typical call chain for a PAM Stack Instance execution is as follows.
First, a Linux-PAM Client establishes an authentication process with Linux-PAM. This is
done by the Client calling pam_start() and supplying the name of the Linux-PAM Service
as an argument. In turn, Linux-PAM uses the procedure described in Figure 5 on page 16,
to generate the set of client-specific and default PAM Stack Instances. Once generated,
Linux-PAM provides these PAM Stack Instances to the Linux-PAM Client. Then, the
Linux-PAM Client makes a sequence of Linux-PAM API Management Function calls.
Each time one of these function calls is made, the Client supplies the PAM Stack
Instances as arguments. Thus, Linux-PAM obtains the PAM Stack Instances from the
Client, every time the Client calls a Management Function. Now, suppose that the Client

called pam_authenticate(). The source code for pam_authenticate() is shown below.

34

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

int pam_authenticate(pam_handle_t *pamh, int flags)
{

int retwval;
D({"pam_authenticate called"));
IF NO_ PAMH ("pam_authenticate”, pamh, PAM SYSTEM_ ERR);
if (__PAM FROM MODULE (pamh)) {
D(("called from module!?")):;

return PAM_SYSTEM ERR;
}

if (pamh->former.choice == PAM NOT_STACKED) {
_pam_sanitize (pamh);
_pam_start_timer (pamh) ; /* we try to make the time for a failure
independent of the time it takes to
fail */
}
retval = pam_dispatch(pamh, flags, PAM AUTHENTICATE) ;
if (retval != PAM INCOMPLETE) {
_pam_sanitize (pamh) ;
pam_await timer (pamh, retval); /* if unsuccessful then wait now */
B(("Eam_authenticate exit"));
} else {

D(("will resume when ready")):

}

#ifdef PRELUDE

prelude_send alert (pamh, retval);
#endif

#ifdef HAVE_ LIBAUDIT
retval = pam auditlog(pamh, PAM AUTHENTICATE, retval, flags);
#endif

return retval;

Figure 9: pam_authenticate — source code

Here, we abstract everything but the call to execute the Effective PAM Stack Instance

(Figure 10).

retval = _pam_dispatch(pémh, PAM AUTHENTICATE) ;.

Figure 10: Pam_authenticate() — resulting abstracted source code to be modeled by HCPN

The first line, for example, is a debug call (Figure 11). We do not need to model it.

35

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

D{("pam authenticate called"));

Figure 11: Pam_authenticate() — debug call — not modeled

The next line (Figure 12) implements a call that checks if the data structure containing
the PAM Stack Instances (provided to Linux-PAM by the Client) is NULL (empty). This
is simply a check that “protects” Linux-PAM from rouge, or improperly implemented
Linux-PAM Client applications, or faulty PAMs, or even Linux-PAM bugs. Essentially,
here, Linux-PAM is protecting itself from any piece of code that would set the memory
address, reserved for pointing to the PAM Stack Instance data structures, to zero (NULL).
Again, we abstract this away from our model — we assume this does not happen in our

model.

IF_NO PAMH ("pam authenticate”, pamh, PAM SYSTEM ERR);

Figure 12: pam_authenticate() - source code - NULL check not modeled

The next line (Figure 13) is the same idea: here Linux-PAM is making sure that it was
not a PAM that made a call to pam_authenticate(). We abstract this away by assuming

this will not happen.

if (_ PAM FROM MODULE (pamh)) ({
D(("called from module!?"));
return PAM SYSTEM ERR;

}

Figure 13: pam_authenticate() — source code - call source check - not modeled

The next piece of code (Figure 14) starts a Linux-PAM “timer”. This piece of code is
irrelevant to our problem. We abstract it away by assuming that, in our model, it will

always work as expected, without affecting the PAM Stack Instance execution.

36

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

if (pamh->former.choice == PAM NOT STACKED) {
_pam_sanitize (pamh);
_pam_start timer (pamh); /* we try to make the time for a failure
independent of the time it takes to
fail */

Figure 14: pam_authenticate(} - source code - timer - not modeled

The lines of code after the PAM Stack dispatch (Figure 10) are not relevant to our
modeling of the PAM Stack Instance Execution. Thus, we ignore or abstract away the rest

of the code in this file (Figure 15).

if (retval != PAM INCOMPLETE) {
_pam_sanitize (pamh) ;
_pam_await_timer (pamh, retval); /* if unsuccessful then wait now */
D(("pam_authenticate exit™)};
} else {
D(("will resume when ready")):;

}

#ifdef PRELUDE
prelude send_alert (pamh, retval);
#endif

#ifdef HAVE LIBAUDIT
retval = _pam _auditlog(pamh, PAM AUTHENTICATE, retval, flags);
#endif

return retval;

Figure 15: pam_authenticate() - source code - post PAM Stack execution - not modeled

Essentially, we are left with the single call to the function that does the PAM Stack
Execution (Figure 10).
Following this approach, we determined that we can exercise a significant amount of

abstraction when modeling, yet still obtain meaningful results that approximate the

functionality of Linux-PAM for a subset of the Client APT Management Functions

Specifically, currently, our model approximates the execution of the functions:

pam_authenticate(), pam_acct_mgmt() and pam_open_session().

37

M.Sc. Thesis — C. Kulbakas McMaster - Computing & Software

Because of the amount of abstraction used, the current model is not capable of
modeling the rest of the Management Functions, mainly: pam_setcred(),
pam_close session() and pam_chauthtok(). This is because our model does not model
Frozen Chain — a functionality of Linux-PAM that is a factor in the operation of
pam_setcred(), pam_close session() and pam_chauthtok(). Modeling of Frozen Chain is

included as part of future work.

Approach to HCPN Modeling of PAM Stack Executions

In our modeling approach, we model the PAM Stack Execution, as implemented by
pam_dispatch() and pam_dispatch _aux() functions. These functions are implemented in
the libpam/pam_dispatch.c file in the Linux-PAM source code (1). By using an
abstraction approach, as above, and by abstracting certain functionality such as Frozen
Chain, passing of flags, and passing of PAM options (see Limitations) we were able to
create an abstracted model of PAM Stack Instance Execution, as implemented by these
two files.

Specifically, given the level of abstraction used, the relevant portions of
pam_dispatch() execution (see Figure 89 on page 176 for complete source code) consist
of choosing the effective PAM Stack Instance, given the called Management Function
(Figure 16), and then calling pam_dispatch_aux() to initiate the execution of the chosen
Effective PAM Stack Instance (Figure 17). All other code portions of pam_dispatch.c

were abstracted away using the same approach as for pam_authenticate().

38

M.Sc. Thesis — C. Kulbakas McMaster - Computing & Software

switch (choice) ({

case PAM AUTHENTICATE:
h = pamh->handlers.conf.authenticate;
break;

case PAM_SETCRED:
h = pamh->handlers.conf.setcred;
use_cached chain = _PAM MAY BE_FROZEN;
break;

case PAM ACCOUNT:
h = pamh->handlers.conf.acct_mgmt;
break;

case PAM OPEN_SESSTON:
h = pamh->handlers.conf.open session;
break;

case PAM CLOSE_SESSION:
h = pamh->handlers.conf.close_session;
use_cached chain = _PAM MAY BE_FROZEN;
break;

case PAM CHAUTHTOK:
h = pamh->handlers.conf.chauthtok;
if (flags & PAM UPDATE_AUTHTOK) {

use_cached chain = _PAM MUST BE FROZEN;
}
if (h == NULL) { /* there was no handlers.conf... entry; will
use
* handlers.other... */

switch {(choice) ({

case PAM AUTHENTICATE:
h = pamh->handlers.other.authenticate;
break;

case PAM SETCRED:
h = Eamh—>handlers.other.setcred;
break;

case PAM ACCOUNT:
h = pamh->handlers.other.acct_mgmt;
break;

case PAM OPEN_SESSION:
h = pamh->handlers.other.open_session;
break;

case PAM CLOSE SESSION:
h = pamh->handlers.other.close_ session;
break;

case PAM CHAUTHTOK:
h = pamh->handlers.other.chauthtok;
break;

}

1

Figure 16: PAM Stack Execution — pam_dispatch() - Choosing the Effective PAM Stack Instance

retval = _pam dispatch_aux(pamh, flags, h, resumed, use cached _chain);

Figure 17: PAM Stack Execution - pam_dispatch()} - Initiating PAM Stack Execution

39

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

In our approach, we decided to let pamtester-fm carry out the functionality of choosing
the Effective PAM Stack Instance (Figure 16), simply because this process is fixed. In
other words, the choosing of the Effective PAM Stack does not vary. Thus, we do not
need to include it as part of the model, if we have the opportunity to compute this
beforehand. Hence, the choosing of the Effective PAM Stack Instance is implemented
directly in pamtester-fim source code.

In contrast, execution of PAM Stack Instances, as implemented by
pam_dispatch _aux() (see Figure 90 on 181 for complete source code) is modeled using
HCPNSs. This modeling is done by describing each of the intermediate steps of the process
described in the PAM Stack Execution algorithm (Table 13, page 29). This algorithm
describes an abstraction of the PAM Stack Instance execution, as implemented by
pam_dispatch_aux().This abstraction is done using the same approach as for
pam_authenticate() and pam_dispatch().

Since we are using HCPNs as the modeling language, we can choose the level of
abstraction at which to model, using a component-wise, hierarchical approach. Our
current model does sufficient modeling of each of the intermediate components so that
meaningful modeling simulation of PAM Stack executions can be obtained. The goal is to
build a “modeling foundation” on which more detailed, multi-hierarchical models can be
built. This is outlined as part of future work.

The HCPN models of the individual elements are then combined together using HCPN
constructs such as Substitute Transitions and Fusion Places. This combining of individual

HCPNSs results in a final HCPN. This final HCPN describes a PAM Stack execution

40

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

process of a particular PAM Stack Instance, as a whole. The goal is for this resulting,
final HCPN to model all possible PAM Stack Instance executions, and hence all possible
authentication-related functionalities of the corresponding PAM Stack Instance.

An HCPN encodes both the structure and the behaviour of a system. In our case, our
HCPNs encode the structure, and the behaviour of PAM Stack executions of arbitrary
(but fixed, once the model is generated) PAM Stack Instances. The HCPN structural
aspect describes both, the components of a PAM Stack Instance execution and the factors
that may have impact on the execution of the PAM Stack Instance, as well as the way that
Linux-PAM executes PAM Stack Instances. Some examples of structural aspects include:
handler sequence, Control function of each handler, which Actions can be executed by
processing of each handler, substack level structure, user input variations (i.e. user
password is empty), configuration variations (i.e. pam_nologin.so PAM configured to
return PAM_SUCCESS, not PAM_ERROR), system memory errors (i.e. memory buffer
allocation routine fails), underlying operating system properties (i.e. user account does
not exist on the system), etc. The HCPN behavioural aspect describes the possible
authentication-related functionalities that can be generated by the PAM Stack Instance.
Some examples of behavioural aspects include: possible handler processing sequences, or
what happens when the user supplies an empty password vs. a non-empty password. The
behavioural aspect is described using the HCPN Firing Rule. The Firing Rule is a
mechanism by which we specify how an HCPN may change state. In other words, it

encodes the possible behaviours of the HCPN. The Firing Rule, based on the structural

41

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

description, encodes all of the possible ways that the corresponding PAM Stack Instance

can provide authentication-related functionality.

Finding the Balance in HCPN Encoding

In developing the method for HCPN encoding, we had to address three goals: human
readability, HCPN simplicity, and HCPN representation power. On one hand, we strove
to make the HCPN as simple as possible. In order to do this, we strove to minimize the
amount of Petri Net constructs such as Places and Transitions, as well as their
relationships via the Firing Rule. On the other hand we had to ensure that our HCPNs
contain the appropriate representation power, in terms of being able to represent the
behaviour of PAM Stack Instance executions in a valid manner. Last, but not least, our
goal was also to make the HCPN as “human-friendly” and intuitive as possible. In
particular, we wanted the HCPN structure to reflect PAM Stack Instance execution’s
component structure and execution behaviour in a way that was intuitive. Specifically, we
wanted HCPN specifications to visually reflect inter-component relationships (i.e.
Actions depend on Controls, i.e. Controls depend on Handlers, etc.), and flow of data (i.e.
PAM_RETURN values are obtained from Module executions).

The above goals may compete with each other. This is because, at some point, the

simpler, or more complex, the HCPN structure, the less intuitive and human-friendly the

a balance had to be reached between these competing goals.

42

M.Sc. Thesis — C. Kulbakas - McMaster — Computing & Software

HCPN Model Specification

Given a PAM Stack Instance

T = { handler;} = handlery, handlery, ..., handler,_, containing n handlers, we
generate an HCPN model to simulate all of the possible PAM Stack Execution traces of
this PAM Stack Instance.

The generation of HCPN models is done automatically by our custom-developed tool
called pamtester-fim. Pamtester-fim obtains a PAM Stack Instance from Linux-PAM,
parses this PAM Stack Instance, and based on this parsing, generates an HCPN model
representing the structure and behaviour of the possible authentication-related
functionalities (or PAM Stack Executions) of this PAM Stack Instance.

Our HCPN model of a PAM Stack Instance Execution is composed of multiple HCPN
modules. These HCPN modules are combined in a hierarchical fashion, using substitution
transitions, to form the HCPN model. We also make use of Fusion Sets to ensure that the
visual representation of our HCPN modules is “human-friendly” in terms of two-
dimensional graphical representation.

Our HCPN model is generated based on templates. Each HCPN module has a
corresponding template. Each template is implemented as a computer program source
code making up our pamtester-fim tool. In other words, HCPN module templates are
embedded as part of the pamtester-fm tool.

Pamtester-fm tool generates HCPN module specifications based on these templates.
These HCPN module specifications are stored in pamtester-fim process memory during

the runtime of pamtester-fm.

43

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

These HCPN module specifications, in turn, are used by pamtester-fim to generate
HPCN module instances. These HCPN module instances comprise the overall HPCN
model instance. This HCPN model instance is stored in pamtester-fm process memory
during the runtime of pamtester-fm.

Based on this HCPN model instance, pamtester-fm generates the Transition System
encoding in NuSMV syntax. This Transition System describes the behaviour of the
HCPN model instance in terms of the firing rule. In other words, this Transition System
describes how the HCPN model instance can change state. This NuSMV syntax is stored
in a text file by pamtester-fim.

Additionally, based on this HCPN model instance, pamtester-fm outputs a two-
dimensional graphical representation of the HCPN model instance. To do so, pamtester-
fim encodes the visual structure of the HCPN model instance (two-dimensional layout of
places, transitions, edges, etc.) using GraphViz syntax. Then, pamtester-fm uses
GraphViz to render this structure producing a two-dimensional graphical representation
of the HCPN model instance. This graphical representation of the HCPN model instance
is a “partial” unfolding of the HCPN model instance. By “partial” we mean that we do not
completely follow the steps comprising an HCPN model instance unfolding as specified
in (5). Specifically, we do not merge all Fusion Sets, because this would make the

graphical representation “too messy”.

Tﬂﬁjagﬁaumenticateo shown in Figure 94 on page 185 to illustrate our examples. This

44

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

PAM Stack instance enforces user authentication at ACME Corp for the Linux-PAM

Service “login”.
HCPN module DISPATCH

We start the modeling of TTI§ with the HCPN module DISPATCH. DISPATCH is a
prime module, and is the only prime module in our Petri Net model.

The pamtester-fm HCPN module DISPATCH template is shown in Figure 18.

1 GF:pH_O GF:pH_<n>
(p_Start)— Llnilialize 1-——){ pH_0_S > Handlers (] pH_<n>_5 Terminate |
S~ INITIALIZE ~— = HANDLERS ’ TERMINATE
CONTROL CONTROL CONTROL PAM_RETURN

Figure 18: Pamtester-fm HCPN module BISPATCH template

Due to the generic nature of HCPN templates, in order for us to illustrate the structure
of HCPN templates, we make use of functions and variables within the renderings of
these templates. Specifically, the text contained within the angled brackets ‘<’ and >’
denotes functions and variables. During operation of pamtester-fm, depending on the
PAM Stack instance being parsed, the functions and variables contained in these
templates are computed accordingly by pamtester-fm. For example, given the place
pH <n> S in Figure 18, the HCPN module DISPATCH specification for the PAM Stack
instance, shown in Figure 94 on page 185, is replaced with 4, 1.e. pH_<n> S:=pH 4 S.

Number 4 denotes the number of handlers comprising this particular PAM Stack instance.

45

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Based on the template in Figure 18, pamtester-fim generates the HCPN module
specification show in Figure 19. Figure 19 shows a rendering of the HCPN module

Dispatch specification for user authentication via “login” at ACME Corp.

1 . e
N\, N
(p_Start)——— >/ pH_0_S)7 W P\ pH_4_S)7’ Terminate |
T INTIAUZE K// S TERMINATE
CONTROL CONTROL CONTROL PAM_RETURN

Figure 19: HCPN module DISPATCH specification for authentication via “login” at ACME
Corp.

The Dispatch module specification in Figure 19 contains four places: p_Start,pH 0 S,
pH 4 Sandp End. Place pH 0 S belongs to the GF:pH_0 fusion set, Place pH 4 S
belongs to the GF:pH_4 fusion set. This specification also contains three substitution
transitions: Initialize, Handlers and Terminate. p_Start, pH 0 S, pH 4 S can only
contain tokens of color CONTROL. Place p_End can only contain tokens of color
PAM RETURN.

The color CONTROL is only used for defining how the HCPN model should
“execute”. For example, a CONTROL token in place p_Start indicates that the
INITTIALIZE submodule can start executing. An arrival of a token in place p_Start
represents the start of the PAM Stack execution. Precisely, it implicitly denotes that step 1
of the PAM Stack Execution algorithm specified in Table 13 on page 29 was evaluated to
false, meaning that the PAM Stack instance contains at least one handler’. Secondly, it

denotes that the initialization of the PAM Stack and Substack Execution can now be

® In fact, pamtester-fm does not generate an HCPN model for a PAM Stack Instance, if this Instance does
not contain any handlers. In this case, pamtester-fin simply returns the PAM RETURN value of
_PAM SYSTEM ERR =4, as implemented in the pam_dispatch aux() function in libpam/pam_dispatch.c

46

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

carried out (step 2 of this algorithm). As another example, a CONTROL token in place
pH 0 S indicates that the HANDLERS submodule can start executing. Specifically, an
arrival of a token in place pH_0_S represents the choosing of the first handler, handler 0,
for execution and that this handler can now be executed (step 3 of this algorithm). As
another example, a CONTROL token in place pH_4_S indicates that the TERMINATE
submodule can start executing. An arrival of a token in pH_4 S represents the end of the
PAM Stack execution’s handler processing, and that PAM Stack execution’s termination
code can now be executed (step 5 of this algorithm).

In contrast, the color PAM_RETURN is not only used for defining HCPN execution
control, but also for specifying a possible PAM Stack execution result. For example,
when a place I;AEnd receives a token color PAM RETURN, execution-wise, this
indicates the finishing of PAM Stack execution. At the same time, this token also
represents the returning of the PAM Stack execution result. The value of this token is

used as the return value of the PAM Stack execution (step 6a in the algorithm).

Combining HCPN Modules

Thus, the HCPN module DISPATCH specification is the starting point for the overall
specification of our HCPN model of a PAM Stack execution. Our HCPN model is
comprised of not only the HCPN module DISPATCH. In fact, there are other HCPN
modules that are used in the specification of our model. As mentioned above, to construct

the overall HCPN model of PAM Stack execution, we combine the HCPN module

47

M.Sc. Thesis - C. Kulbakas McMaster — Computing & Software

DISPATCH with other HCPN modules. We do this combining via substitution
transitions.

In the HCPN model specification (and pamtester-fm template), a substitution transition
is specified by a rectangular box with a double-lined border. The text contained in the
center of the substitution transition is the name of the substitution transition. HCPN
module DISPATCH has three substitution transitions: Initialize, Handlers, and Terminate.
Each substitution transition corresponds to an HCPN module, indicated by the name of
the module being specified in the small textbox found at the bottom of the substitution
transition. For example, substitution transition Initialize corresponds to the HCPN module
INITIALIZE, Handlers corresponds to HANDLERS, and Terminate corresponds to
TERMINATE.

Substitution transitions specify combining of HCPN modules. In the case of the HCPN
module DISPATCH specification, this specification dictates that DISPATCH is combined
with INITIALIZE, HANDLERS and TERMINATE. The resulting HCPN is composed of
the individual HCPNs: DISPATCH, INITIALIZE, HANDLERS and TERMINATE. The
structure and behaviour of the resulting HCPN is a combination of the structure and
behaviour of the individual HCPNs being used in the creation of the resulting HCPN. In
our model, the resulting HCPN’s structure and behaviour is a combination of the structure
and behaviour of the HCPN modules DISPATCH, INITIALIZE, HANDLERS and
TERMINATE.

HCPN modules INITIALIZE, HANDLERS and TERMINATE are called submodules

of the HCPN module DISPATCH. We call DISPATCH a parent module of INITIALIZE,

48

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

HANDLERS and TERMINATE. A submodule may have other submodules. Thus, HCPN
models specify sequences of submodule specifications. For example, since INITIALIZE
is a submodule of DISPATCH, denoted DISPATCH — INITIALIZE, thus DISPATCH —
INITIALIZE is an example of a sequence of submodule specifications. Given an HCPN
model, any submodule sequences of this model must not contain a cycle. For example, if
the HCPN module INITTALIZE contained a substitution transition whose corresponding
HCPN module was DISPATCH, then we would obtain a sequence of submodule
specifications which contains cycles. Such a sequence would have the form DISPATCH
— INITIALIZE — DISPATCH — INITIALIZE - ..., where a cycle is DISPATCH —
INITIALIZE — DISPATCH, for example. We cannot have any such cycles in HCPN
specifications as this would result in an infinite HCPN model instance.

HCPN model instances are generated from HCPN model specifications. Using an
analogy, an HCPN model specification is a “blueprint”, and an HCPN model instance is a
“structure” generated based on this “blueprint”.

Pamtester-fm generates an HCPN model instance based on the HCPN model

specifications.
HCPN module Instances and the Instance Hierarchy

Once an HCPN model specification is obtained, i.e. all HCPN modules comprising this
model are specified, the next step is to generate an HCPN instance of this model, based

on the HCPN model specification.

49

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

We use HCPN instances to study the HCPN model’s behaviour. For example, we may
be interested in how the HCPN model changes its marking — a distribution of tokens
amongst the HCPN’s places. A sequence of HCPN token marking changes is an HCPN
execution. Specifically, in the case of modeling PAM Stack instances, we may want to
know what possible PAM_ RETURN values the particular PAM Stack instance may
return. In this case, we use an HCPN model template to generate the appropriate HCPN
model specification, based on the PAM Stack instance obtained from Linux-PAM. Then,
based on the HCPN model specification, we generate the HCPN model instance. Then,
we use the HCPN model instance to simulate the possible executions of the HCPN model.

HCPN model instantiation causes the HCPN module specifications, comprising the
HCPN model specification, to be instantiated. This results in an HCPN model instance
(comprised of the individual HCPN module instances).

Once we obtain an HCPN model instance, we can simulate HCPN executions. Given
an HCPN model instance corresponding to a PAM Stack Instance, we can attempt to
enumerate HCPN model instance executions of interest. An execution of our HCPN
model instance represents a portion of the PAM Stack instance’s execution. An HCPN
model instance execution represents a portion of an authentication-related functionality,
this functionality as defined by the PAM Stack Execution algorithm (Table 13, page 29).

HCPN model instantiation instantiates all modules, following the submodule sequence.
In our model, the HCPN module DISPATCH is instantiated first. Figure 20 shows this
instantiation and its initial marking — the starting marking. Our initial marking has a

single (1) CONTROL token of value 1 in place p_Start (grey rectangle containing 1°1).

50

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

1 S GF:pH_O GF:pH_4
(p_Start F Initialize ? >< pH_O_S >‘ >(pH_4_S >7 Terminate
S~ TNITIAL N HANDLERS S~ TERMINATE
CONTROL CONTROL CONTROL PAM_RETURN

Figure 20: HCPN module DISPATCH specification for authentication via “login” at ACME
Corp.

When an HCPN module is instantiated, for each substitution transition of this module,
the corresponding HCPN module (submodule) is also instantiated. The instantiated
submodules are “combined” with their corresponding parent module. In our model,
HCPN module DISPATCH has three substitution transitions called Initialize, Handlers
and Terminate. Initialize, Handlers and Terminate correspond to the submodules
INITIALIZE, HANDLERS and TERMINATE, respectively. When DISPATCH is
instantiated, INITIALIZE, HANDLERS and TERMINATE are also instantiated. In turn,
the submodules of INITIALIZE, HANDLERS and TERMINATE cause instantiations of
their submodules, and so on, and so forth. For a detailed description of how HCPN
instantiation takes place, refer to (5).

Thus, the set of modules of an HCPN model has a binary relation, which we call an
instantiation relation. This instantiation relation, represented as a directed graph, forms a
set of connected, acyclic subgraphs. A node of the graph is an HCPN module comprising
the HCPN model. A directed edge of the graph exists between two nodes A and B, where
the edge is outgoing from node A and incoming to another” node B, if, and only if, B is a

submodule of A. This graph is called an instance hierarchy (5). Since our model contains

4 A is distinct from B

51

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

a single prime module, an instance hierarchy of an HCPN model of a PAM Stack Instance
is a connected, acyclic graph (a tree).
Instance hierarchies help us visualize how modules and their submodules are

combined to create the overall HCPN model instance.

DISPATCH

Initialize- Terminate

Handlers
INITIALZE HANDLERS

Figure 21: Partial instance hierarchy rooted at DISPATCH

In Figure 21 we show a “partial” instance hierarchy corresponding to the HCPN
Dispatch instance shown in Figure 20. As discussed, DISPATCH has three submodules:
INITIALIZE, HANDLERS and TERMINATE. Figure 21 shows this fact by the existence
of the directed edges, each edge outgoing from DISPATCH, and incoming into each of
the corresponding submodules of DISPATCH. The edge labels indicate names of the
corresponding substitution transitions. This instance hierarchy is “partial” because we did

not show the whole instance hierarchy yet. Specifically, the HCPN module HANDLERS

has HCPN submodules which we have not shown yet.

HCPN module INITIALIZE

INITIALIZE models the initialization of the PAM Stack Execution. The pamtester-fin
template for the HCPN module INITIALIZE is shown in Figure 22. The corresponding

instance is shown in Figure 23.

52

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

IMPR X STAT W

/ pln|tis(a!e70) //\ plnit_state_o‘}

09" i Y

1
=TT e TN l,ﬁ .

(\ isxvai)—» it 1 prsun‘mfo._‘) @/ it L —?(\pHﬂSiarﬂa,O)

TOKEN TOKEN TOKEN TOKEN
Figure 22: Pamtester-fm HCPN module Figure 23: HCPN module INITIALIZE
INITIALIZE template instance; for ACME Corp.

The HCPN module INITIALIZE models the PAM Stack execution initialization. This is the
second step in the execution of the PAM Stack instance, as exhibited by the algorithm in Table
13 on page 29. The transition tInit 1, and only transition tlnit 1, becomes enabled at
initialization, and hence is the only transition that can be chosen to be fired by the HCPN Firing
Rule. Once tInit 1 is fired, it consumes a CONTROL token from HCPN place p_Start, sets the
PAM Stack Execution state to (0,6), the PAM Substéck Level O state to (0,6), and places a
CONTROL token in the HCPN place pH_Start to 0. The placing of the CONTROL token in

pH_Start to 0 models the act of choosing the first handler, handler 0, to be executed next.

HCPN module TERMINATE

TERMINATE models the termination of the PAM Stack Execution. The HCPN module
TERMINATE template is shown in Figure 24. The HCPN Termination instance is shown in

Figure 25.

53

M.Sc. Thesis — C. Kulbakas McMaster —- Computing & Software

. [~{i=1)As=0} [~(i=1)As=0)
@ 2N, @ RN
(pHLm> S Y t 1Term_1 6 H'\ pEnd) (\ pH_a_s/\\ t tTerm 1 6 1"1 p_End)
\,?O_KE;/ \t\ (i,s)/" s / Pm m, }\\ (i,s)’/"l 5‘,”'// N
S b / S v /
A k! [e G e A
= \\ / — '(,7\) A 3
(‘Wb tem_2 (gem_sute) b aerma2 | //
IMPR x STAT IMPR x STAT
GFinc /
- T
(\iﬁ-";)ﬁt’ tlenn_3 (\ pTesm_inc)—t> term 3
TOKEN o~ ToREn
Figure 24: Pamtester-fm HCPN module Figure 25: HCPN module TERMINATE
TERMINATE template instance; for ACME Corp.

The HCPN module TERMINATE waits for one of two events: either a TOKEN
arrives in place pH_<n> S or in place pTerm_inc. When the former occurs, this indicates
that the execution of the last executed handler, handler <x>, where 0 < x < n—1, did
not result in the pausing of the PAM Stack execution. The latter indicates that the PAM
Stack execution was paused. The functionality obtained from transitions tTerm1 and
tTerm2, along with the place pTerm_state, executes the termination of the PAM Stack
execution, as the last step before the PAM Stack execution ends, as specified in step 5 in
the algorithm in Table 13 on page 29 . The HCPN module TERMINATE implements the

functionality specified via the state machine shown in Figure 8 on page 31.

Example: “Combining” DISPATCH with INTIALIZE and TERMINATE

As an example of how HCPN instances are combined to create a single, “partially”

For the purpose of illustration, this particular partial unfolding only replaces the Initialize
and Terminate substitution transitions with the INITIALIZE and TERMINATE HCPN

modules, but does not replace the Handlers substitution transition with the HCPN module

54

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

| HANDLERS. Also, in this partial unfolding example, we do not merge all fusion sets. For
some fusion sets we do partial merging. For example, for the GF:ph_0 fusion set, we
merge the place pH_Start_to 0 from the HCPN module INITIALIZE instance, with the

place pH_0 S from the HCPN module HANDLERS instance. This, in effect, joins the

HCPN module INITTALIZE and HANDLERS instances. Similarly, for the fusion set

GF:ph_4, place pH_4 S from the HCPN module HANDLERS instance, and the place

pH_4 S (same name, different HCPN Module) from the HCPN module TERMINATE
are also merged, thus, joining the HCPN module HANDLERS and TERMINATE

instances. The resulting partially unfolded HCPN is shown in Figure 26.

S~

/ IMPR x STAT
/
0.6)

/ plnit_state_0
/ B
067 \wrRRsTAT
/ " x [—(i=1)As=0]
1 P@ e GF:pH_0 GF:pH_4
(/ Start LI ¢ b/H? \>— Ras et tTerm_1 6 ///;d\A)
P = \ PHAs , PR)\——7 erm,_ L ey
~— HANDLERS ~ 3 (is), s/ S
TOKEN CONTROL TOKEN LS / val
/ ;
S -
/ [i=1v—(s=0)] /'

/\ 7

(’ plerm_state)”T‘ tTerm 2 |
h 4 '

IMPR x STAT

(pTerm_inc)—tb tTerm_3
v’

Figure 26: Partial unfolding of the HCPN module instance DISPATCH “combining”
DISPATCH with INITIALIZE and TERMINATE HCPN module instances; for ACME Corp.

55

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

HCPN module HANDLERS

Given a PAM Stack Instance
TTif = { handler;} = handlery, handlery, ..., handler,_; containing n handlers, the
HANDLERS HCPN module models the execution of all possible handler subsequence
executions allowable by the PAM Stack Instance. The pamtester-fin template for the
HCPN module HANDLERS, shown in Figure 27, is used to generate the HCPN module

HANDLERS specification for TTI,

GFpH_oo GFpH_<n-1> GF:pH_<n>

t t
pH 05 Handler_0 sen s t Handler_<n-1> l
<HT[0)> <HT{x}> { <HT(n-1)>

CONTROL CONTROL CONTROL CONTROL

Figure 27: Pamiester-fm HCPN module HANDLERS temiplate

The number n denotes the number of handlers comprising the PAM Stack Instance.
The number x denotes an arbitrary number fromOton —1,ie.0<x<n—1.HT isa
function, HT:{0,1, ...,n — 1} - {NOT_SUBSTACK} U
{SUBSTACK_0,SUBSTACK_1, ..., SUBSTACK _15}. The elements of the range of HT,
i.e. Ran(HT), are HCPN modules.

Pamtester-fm uses this HCPN module HANDLERS template to generate the
corresponding HCPN module HANDLERS specification. The numbers n and the
function HT are computed at runtime, during this generation.

The number n is obtained by pamtester-fm by parsing the data structure containing the
PAM Stack Instance. Precisely, the number n equals the number of struct handler data

structures comprising the PAM Stack Instance.

56

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Also, as previously mentioned, each handler data structure contains information,
including: handler type, substack level, name of “stacked” PAM corresponding to this
handler, and last, but not least, a pointer to the “stacked” PAM’s implementation of the
Management Function corresponding to the PAM Stack Instance. Given a handler x,

0 < x < n — 1, Pamtester-fin extracts this information from the x™ handler data structure,
thereby calculating the value of HT (x).

The function HT identifies which HCPN module to associate with the Handler <x>
substitution transition, 0 < x < n — 1. HT classifies handlers into two categories: the
handler is a start of a substack, i.e. type of handler is PAM_HT SUBSTACK; the handler
is of type PAM_HT MODULE or PAM_HT MUST FAIL. In the former case, HT
identifies which substack level, the substack level being between 0 and 15, this handler is
associated with. Given a handler _x whose substack level is L, then
HT(x)=SUBSTACK L.

The reason why we chose to make this distinction in our HCPN modeling is because
handlers that are not of type PAM._HT SUBSTACK have the same execution structure.
Specifically, handlers whose type is PAM_HT MODULE or PAM HT MUST FAIL
share the same execution behaviour. This behaviour consists of, first, returning a
PAM _RETURN value, and then executing an Action as dictated by the corresponding

Control function. This can be seen in the PAM Stack Execution algorithm shown in

Table 13 on page 29.

57

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Figure 28 shows the HCPN module HANDLERS instance for Acme Corp. In this
instance, all handler instances are not of type PAM_HT SUBSTACK, i.e. the

corresponding PAM Stack Instance does not contain any substacks.

GF:pH_0
o
RN NOT_SUBSTACK
CONTROL

t
(oo)l]

R NOT._ SUBSTACK
CONTROL

GF:pH_2

A»‘/\\
(s
I NOT_SUBSTACK

CONTROL

GF:pH_3 GF:pH_4

/_\ .
(s Yol
~ NOT_SUBSTACK

CONTROL CONTROL

Figure 28; HCPN module HANDLERS instance; for ACME Corp.

Given a place pH <x> S, 0 < x < 3, when a CONTROL token 1s placed in pH_x_S,
this represents the act of choosing the x™ handler as the next handler to be executed.
Precisely, this corresponds to steps 3.a and 4.h.1 in the PAM Stack Execution algorithm
(Table 13 on page 29), depending if x = 0, or 1 < x < 3, respectively.

As discussed above, when a CONTROL token is placed in pH_4 S, this signifies the
end of processing of handlers, and that the next step is to execute the termination portion

of the PAM Stack execution (step 5 of algorithm in Table 13 on page 29).

28, we can continue our “partial” unfolding from Figure 26 on page 55. Figure 29 shows
this continuation with the Handlers substitution transition being replaced by the HCPN

module HANDLERS instance from Figure 28.

58

M.Sc. Thesis — C. Kulbakas

McMaster — Computing & Software

{~(i=2)rs=0]

6 /N

. aat
s,/ ~—

)} !/
e

31

Figure 29: Partial unfolding of the HCPN module instances DISPATCH, INITIALIZE,
HANDLERS, TERMINATE; for ACME Corp

HCPN module SUBSTACK

The pamtester-fm HCPN module SUBSTACK template is shown Figure 30.

GF:pH_<x>
/_\

(pH_<x>_S);P
N

CONTROL

tH_<x>_0_1

GF:State

A\ pH_<x>_0_state
IMPR x STAT

GF:State_<i+1>

//—\\
{ pH_ox>_0_state_<L+1>
(i.s)

IMPR x STAT TS
T T

fi.s)

s

=(\ pH_<x>_<x+1>)

CONTROL

Figure 30: Pamtester-fm HCPN module SUBSTACK template

A placement of a CONTROL token in place pH <x> S enables the transition

tH <x> 0 1. Firing of this transition causes the storing of the current PAM Stack

59

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Execution State (i,s) in the fusion set GF:State <L+1>, where the current substack level
of handler <x> is L. The current PAM Stack Execution State (i,s) is obtained from the
place pH <x> 0 state, a member of the GF:State fusion set. When (i,s) is obtained, it is
also replaced, so that subsequent transitions needing to obtain the current PAM Stack
Execution state will be able to do so. The last Substack Level L+1 Execution State (i', s’)
is effectively deleted as the transition consumes it and does not generate any copies of it.
Additionally, a CONTROL token is placed in place pH _<x> to <x+1>, which belongs to
the GF:pH_<x+1> fusion set. This represents the choosing of the (x+1)* handler (the next
handler in the sequence) as the handler to be executed next.

This HCPN module SUBSTACK template specification implements the “entering of a
new substack level”, as outlined in steps 4.a.1 (saving of current PAM Stack Execution
State) and 4.c.1 (choosing next handler to be executed as the next handler in the sequence)

of the PAM Stack Execution algorithm shown in Table 13 on page 29.

HCPN module NOT_SUBSTACK

The handlers of type PAM_HT MODULE and PAM_HT MUST FAIL use the

HCPN module NOT SUBSTACK template, as shown in Figure 31.

GF:pH_<x>
t r r
Module_<x> pC_<x>_S Control_<x>
MODULE_<name(x)> | CONTROL_<x>
CONTROL PAM_RETURN

Figure 31: Pamtester-fm HCPN module NOT_SUBSTACK template

60

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Execution of handler types PAM_HT MODULE, and PAM HT MUST FAIL have
the same execution structure. First, a PAM_RETURN value is obtained. This is
represented by the substitution transition Module <x>. Second, the obtained
PAM_RETURN value is used to execute the appropriate Action, this Action being
determined via the corresponding Control function. This is represented by the substitution
transition Control <x>. Here, the obtained PAM_RETURN value not only controls PAM
Stack Execution, i.e. a PAM_RETURN token is placed in the place pC_<x> S, but the
PAM_RETURN token also carries information to the next HCPN module as input, i.e.
value of the PAM_RETURN token is used to compute the image of the corresponding
Control function (this computation represented by Control <x>), or in other words, this
value is used to determine the Action to execute.

Precisely, as shown in the PAM Stack Execution algorithm (Table 13 611 page 29),
PAM Stack Execution first checks (step 4.b) if the handler is erroneous (handler is of type
PAM_HT MUST FAIL). If so, then the error PAM_MUST_FAIL_CODE =6 is
returned. In this case, even though no PAM execution takes place, we can interpret the
action of returning this error code as a “PAM or module execution”. In this case,
name(x):=MUST_FAIL, and the value of the substitution tag becomes
MODULE_<name(x)>=MODULE MUST FAIL.

If handler is not of type PAM_HT MUST FAIL, then we have two sub-cases:

= the corresponding PAM P, contains an implementation I (£, P,) of the Module

API function f*™ corresponding to the Management Function f associated with

T
the PAM Stack Instance Hg in question, or

61

M.Sc. Thesis — C. Kulbakas McMaster —~ Computing & Software

= otherwise, P, does not contain I(f*™, B,).

Thus, the next relevant check carried out by the PAM Stack Execution algorithm (step
4.d) is to check whether P, does not implement f5™, i.e P, does not contain I(f*™, B,). If
true, then the error PAM_MODULE UNKNOWN = 28 is returned. Again, although no
PAM execution takes place, we interpret the action of returning of the error code as a
“PAM or module execution”. In this case, name(x):=FUNC NULL, and the value of the
substitution tag becomes MODULE <name(x)>:=MODULE FUNC NULL.

Lastly, if P, does implement ™, i.e P, contains I(f5™, B,), then PAM Stack executes
I(f>™, P,), supplying the PAM options O, as arguments, and obtains a PAM_RETURN
code return,, i.e. returny := exec(I(f*™, Py), 0y). In this case, name(x):=s € PAMS = {
SECURETTY, ENV, UNIX, SUCCEED IF, ...}, where s corresponds to the module P,,
and the substitution tag becomes MODULE <name(x)>:=MODULE _<s>. For example,
if handler x corresponds to pam_unix.so PAM, and handler x is not erroneous, and
pam_unix.so PAM implements management function f*™, then name(x) =s = UNIXis a
member of PAMS and MODULE_<name(x)> := MODULE_<s>= MODULE_ UNIX.

To summarize, in all three of the above cases (i.e. check for an erroneous handler via
step 4.b, check for existence of appropriate function implementation via step 4.d,
execution of function implementation via step 4.¢) a PAM_RETURN code is obtained
(i.e. returny = 6, returny = 28, return, = exec(I(fs™, P,), Oy), respectively). The
modeling of the returning of this PAM_RETURN code is done by the HCPN module
associated with the Module <x> substitution transition. Once the return value is obtained,

the appropriate Action is determined (action 4.g) via the corresponding Control function,

62

M.Sc. Thesis — C. Kulbakas = McMaster — Computing & Software

i.e. actiony = Cy(returny). The modeling of determining the appropriate Action is done
by the HCPN module associated with the Control <x> substitution transition.

Continuing with our partial unfolding example for ACME Corp (Figure 29 on page
59), assuming that all 4 handlers are not erroneous, and that all 4 handlers implement the
pam_sm_authenticate() Management Function, we obtain the unfolding in Figure 32. This
unfolding is obtained by replacing all Handler <x> substitution transitions with HCPN

module NOT SUBSTACK instances.

63

bt i e

M.Sc. Thesis — C. Kulbakas

McMaster — Computing & Software

1
< p_Start
~

CONTROL

GF:State

Init_state

_/
IMPR X STAT

GF:State 0

(0,6 TN
| plnit_state 0 \
N Vi
\—/
(0,6} IMPR x STAT
GF:pH_0

TN
t g t
tnit 1 ———— ! pHOS }—»
_/;
CONTROL

SN

N

Nt
(pH_1.S)——»
\v
CONTROL

GF:pH_2

/_\ t
=
g MODULE

r @ r
Control 2
_UNIX CONTROL_2

S~

CONTROL

RN

r
Madule_0

MODULE_SECURETTY

\

CONTROL

GF:pH_4

| s)
Module_3
& MODUILE._DENY
PAM_RETURN
[—(i=1)As=0]

CONTROL

IMPR x STAT

CONTROL

PAM_RETURN

PAM_RETURN

PAM_RETURN

tTerm_1

tTerm_2

tTerm_3

r r
MODULE_ENV

Control 0

CONTROL 0|

‘ Control_1

{ CONTROL

Contrel_3

CONTROL_3

PAM_RETURN

Figure 32: Partial unfolding of the HCPN module instances DISPATCH, INITIALIZE,
HANDLERS, NOT_SUBSTACK, TERMINATE; for ACME C

orp

M.Sc. Thesis — C. Kulbakas = McMaster — Computing & Software

HCPN module MODULE_<name(x)>

As previously discussed, the HCPN module MODULE <name(x)> has three cases:
» the handler is erroneous, i.e. HCPN module MODULE MUST FAIL;
* the management function is not implemented, i.e. HCPN module
MODULE FUNC NULL,;
* the handler is not erroneous and the handler implements the appropriate
management function, i.e. HCPN module MODULE_<s>, where string s
identifies a PAM, string s is a member of PAMS={SECURETTY, ENV,

UNIX, SUCCEED TF,...}.

HCPN module MODULE_MUST_FAIL

The pamtester-fm HCPN module MODULE MUST FAIL template is shown in

Figure 33.
7 GF:pH_<x>
t 6
CONTROL PAM_RETURN

Figure 33: Pamtester-fm HCPN module MODULE_MUST_FAIL template

All HCPN module MODULE MUST FAIL instances simply return a

PAM RETURN error code PAM_MUST FAIL CODE = 6.

65

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

HCPN module MODULE_FUNC_NULL

The pamtester-fm HCPN module MODULE FUNC NULL template is shown in

J Figure 34.
1
|
t 28
> tH_<x>_1 —
CONTROL) PAM_RETURN

Figure 34: Pamtester-fm HCPN module MODULE_FUNC_NULL template

All HCPN module MODULE FUNC NULL instances simply return a

PAM_RETURN error code PAM_MODULE UNKNOWN = 28.

HCPN module MODULE_<s>

Given a PAM P, “stacked” on a PAM Stack instance Tﬂg, if P, implements the
corresponding Module API function /5™, i.e. I(f*™, P,), then pamtester-fm uses the
HCPN module MODULE_<s> template to generate the appropriate HCPN module

instance which models the execution of I(f*™, P,). The pamtester-fm HCPN module

MODULE <s> template is as shown in Figure 35.

<r_x_0>|<r_x_1>| .. | <r_x (|R]-1)>
pC_<x>_S

PAM_RETURN

GF:pH_<x>

CONTROL

Figure 35: Pamtester-fm HCPN module MODULE_<s> template

66

bl - -

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

In oﬁr current model, the model of an “execution” of a PAM P,, HCPN module
MODULE _<s>, consists of a single transition tH <x> 1. This transition is defined to
consume a single CONTROL token. Also, this transition generates a single
PAM_RETURN token. The value of this PAM_RETURN token is taken from R, the set
of possible values that can be returned by the execution of I(f*™, P,). This is modeled by
the transition tH <x> 1 being defined as capable of returning, and only returning, exactly
one of the values <t x_0>,<r x_1>, ..., <r x_(|R|-1)>, where |R] is the cardinality of the
setR,andVk € 0..|R]—1,r x k € R. We denote the fact that only one of the values
can be returned by the firing of the transition tH_<x> 1 by using the | character to
separate the return values, i.e. <r x_0>]<r x 1>]|... |<r_x_(|R]-1)>.

The HCPN module MODULE _<s> template is then used to generate the templates for
each of the PAMs, i.e. MODULE SECURETTY, MODULE ENV, MODULE UNIX,
etc.

For example, Figure 36 shows a pamtester-fim template for the pam_securetty.so PAM,
i.e. HCPN module MODULE SECURETTY. In our modeling, we assume that the
pam_securetty.so PAM is capable of returning only the following PAM_RETURN
values: PAM_SUCCESS =0, PAM_SERVICE ERR =3, PAM AUTH ERR =7,
PAM_IGNORE =25 and PAM_INCOMPLETE = 31. In this case, |R| = 5, and the
possible return values are obtained using the following derivation process: <r x 0> =

r<x> 0=0,<r x I>=1 <x> 1:=3,<r x 2>=

67

T N R B

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

r <x> 2:=7,<r x 3>=1r <x> 3:=25and <r X 4>=1r <x> 4:=31.

GF:pH_<x>
t 0[3]7]25|31
P tH_<x>_1
CONTROL) PAM_RETURN

Figure 36: Pamtester-fm HCPN module MODULE_SECURETTY template

For example, consider the HCPN module MODULE SECURETTY template in
Figure 36. Furthermore, recall that the PAM Stack instance for ACME Corp. (Figure 94
on page 185), contains the pam_securetty.so PAM as the first “stacked” PAM, i.e.
handler 0 is associated with pam_securetty.so PAM. Then, the HCPN module
MODULE SECURETTY instance is as shown in Figure 37. In this case, <r x 0>=
r00:=0,<crx 1>=r01=3,<cx2>=r02=7,<r x 3>=r 03:=25and

<r x 4>=1 0 4:=31.

GF:pH_0
t 01317125131 r
tHOo1 ——F—— | o Control_0
CONTROL O
CONTROL PAM_RETURN

Figure 37: HCPN module MODULE_SECURETTY instance - ACME Corp

In this case, continuing with the partial unfolding example for ACME Corp (Figure 32
on page 64), we obtain the unfolding in Figure 38. This is done by replacing the
substitution transition Module 0 with an HCPN module MODULE SECURETTY

instance shown in Figure 37.

68

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

1 11
L]
p_Start / tinig_1

\

CONTROL

(0,6}

(0,6)

t
§>< pH_0_S

GF:State
N plnit_state)

IMPR x STAT
GF:State_0
/—\
s N

IMPR X STAT

GF:pH_0
/\

0[3]7]25]|31
Control 0

CONTROL 0

CONTROL

PAM_RETURN

oh t i r r

(pH_1_S >—> Module_1 i Control_1
~— L MODULE_ENV CONTROL
CONTROL PAM_RETURN

GF:pH_2

ST

™ t r r
pH_2_S)—b Module_2 @ Control 2
MODULE_UNIX

CONTROL 2
CONTROL PAM_RETURN

GF:pH_3

t r r
pH_3_S)—» Module 3 Control_3
N /

MODULE_DENY CONTROL
CONTROL PAM_RETURN

[—(i=1)As=0]

GF:pH_4

tTerm_1

CONTROL PAM_RETURN

IMPR x STAT

t
tTerm_3
CONTROL

Figure 38: Partial unfolding of the HCPN module instances DISPATCH, INITIALIZE,
HANDLERS, NOT_SUBSTACK, MODULE_SECURETTY, TERMINATE; for ACME Corp

M.Sc. Thesis — C. Kulbakas

HCPN miodule CONTROL

McMaster — Computing & Software

The pamtester-fm HCPN module CONTROL template is shown in Figure 39.

fre<X_(x,0}>1

10 <0 0
b

/ [re<X_{x,k)>]
A r

r

r [re<X_(xy_x)>]

1€ <x>_<y_x>

[r=31)

,/\ ; ;
\pt}x{s L 0o <k>
v;

PAM_RETURN

// ™~

.
PAM_RETURN

,/\\

{ A< <dos)

PAM_RETURN

t
1 0 _ne ——— W pC_co> Ine)

CONTROL

Figure 39: Pamtester-fm HCPN module CONTROL template

This template generates the HCPN module CONTROL instances for each handler

whose type is not PAM_HT SUBSTACK. This template implements the PAM Stack

execution functionality of obtaining a PAM_RETURN value, and determining which

Action to execute based on this PAM_RETURN value. This functionality corresponds to

step 4.g in the PAM Stack Execution algorithm (Table 13 on page 29). HCPN module

CONTROL also handles the “pausing” of PAM Stack Execution (step 4.f in Table 13 on

page 29).

Given handler x, such that type of handler x is not PAM_ HT SUBSTACK, the

determination of which Action to execute is defined by the corresponding Control

function Cy.

70

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

The value of the PAM_RETURN token in place pC_<x> S corresponds to the value
of returny in step 4.g in the PAM Stack Execution algorithm (Table 13 on page 29). This
value is an integer in the range [0,31].

The place pC_<x>_S belongs to the preset of exactly the following set of transitions:
tC <x> 0, ..., tC_<x> <k>, ..., tC_<x> <y x>, tC_<x> Inc. For the k™ transition,

0 < k < y_x, the transition guard evaluates to TRUE if, and only if, the PAM_RETURN
value r belongs to the guard’s range of PAM_RETURN values X (x.,k),i.e.r € X (x,k).

For the transition tC_<x> Inc, we define this range by the the singleton set {31}, and
we denote it by the number 31. In this case, we set the guard to be [r = 31]. For transition
tC_<x> <k>, <X (x,k)> is the range template, and [r € <X _(x,k)>] is the guard template.

The membership of the set denoted by X (x,k) is obtained from the definition of the
Control function, C4 (contained in the corresponding handlery) using the algorithm
described in Table 12 on page 27, i.e. X_(x,k) := k"™ partition X in partition sequence {X3,
denoting a range of PAM_RETURN values, each of these return values having the same
image under corresponding Control function, i.e. Vr € X_(x,k): C,(r) = a, a constant.
Thus, given the set of partitions {X} = {X_(x,0),X_(x,1), ..., X_(%,k), ..., X_(x,y_Xx)} (see
algorithm in Table 12 on page 27 to see how such a set of partitions is obtained), we use
each partition X_(x,k),k € 0,1,...,y_x, as the range for the corresponding transition
guard of the transition tC_<x> <k>, i.e. [r € <X_(x,k)>]. The symbol used to represent
the last guard [r € <X _(x,y_x)>] is “ow” (shorthand, since this range contains the most
return values). As Linux-PAM configurations tend to have one large partition and a few

small ones, and given that the set of PAM_RETURN values contains 31 elements, hence,

71

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

for display purposes, we chose to use the symbol “ow” for the renderings of the guard
function for the most populous partition (with largest minimal value).

As explained above, the set of PAM_RETURN values is partitioned among the guards
of the transitions containing pC_<x>_ S in their preset. Hence, putting a PAM_RETURN
token in place pC_<x> S causes exactly one of these transitions to become enabled. We
have two cases for this enabled transition: a single transition tC_<x> k is enabled, for
some k in {0,1, .., <y_x>}; or the transition tC_<x> Inc is enabled. Continuing with the
example from Figure 37 on page 68, Figure 40 shows the substitution transition
Control 0 replaced with its corresponding HCPN module CONTROL 0 instance. Here,
{X} :== {X_(0,0),X_(0,1),X_(0,2)}, X_(0,0) = {0,12}, X _(0,1) == {25} and X_(0,2) =

{1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30}.

[re {0,12}] N

100 r pA_ODS Action_0_0

/ { __ACTIONOK 0O
PAM_RETURN

/RM iy [“ow”]

. ' 0317|2503 ,/-\’ V/ r
(ouos o e s
N

L ‘\A

CONTROL PAM_RETURN

1€ 0.2

[r=31]

r

[re {25}]
rA/ J €01 }—~><

t

TN

PAO_1S)—

PAM_RETURN

~— ACTION_DIE_0_2

PAM_RETURN

P

4 icoinc ———»{ pc0inc)

CONTROL

Action_0_1
ACTION_IGNORE_0_1

Figure 40: HCPN module CONTROL_0 instance - ACME Corp

Pausing of PAM Stack Execution

If tC_<x> Inc is enabled, this implies that the value of the PAM_RETURN token in

pC_<x> Inc is 31. This situation corresponds to step 4.f in the PAM Stack Execution

algorithm (Table 13 on page 29).

72

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

If PAM Stack execution is paused, then no Action is executed. Instead, PAM Stack
execution is stopped, and execution control is returned to the Linux-PAM Client.

This “pausing” is implemented as follows. When tC_<x> Inc is fired, it consumes the
PAM_ RETURN token from pC_<x> S and deposits a CONTROL token in in the place
pC_<x> Inc. This corresponds to step 4.f in the PAM Stack Execution algorithm (Table
13 on page 29). At this point, the next enabled transition is tTerm_3. The transition
tTerm_3 belongs to the HCPN module TERMINATE. Thus, effectively, enabling of this
transition chooses the termination portion of PAM Stack execution. This corresponds to
step 6 in the PAM Stack Execution algorithm (Table 13 on page 29).

For instance, the pam_sm_authenticate() Module API function implementation of
pam_securetty.so PAM is capable of returning PAM_RETURN value of
PAM_INCOMPLETE = 31. A return value of 31 indicates that the pam_securetty.so
PAM deems that it has not received sufficient information to carry out user
authentication-related functionality.

For example, the ACME Corp’s PAM Stack instance for the pam_authenticate()
Management Function, the 1* handler, handler 0, is associated with the pam_securetty.so
PAM. The following figures illustrate the “pausing” of PAM Stack execution. First,
handler 0 is chosen to be executed by placing a single CONTROL token of value 1 in
pH_0_S (signified by the grey rectangle containing the text 1°1). At this point, transition
tH 0 1 is enabled (signified by grey background of tH 0 1). This is shown in Figure 41.
Note that place pC_0_ Inc was merged with place pTerm_inc, since both places belong to

the same fusion set, namely GF:Inc. Here, WLOG, we show place pTerm_inc.

73

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

fre {0,12})}

J o0 |v—>lr { m Actian_0_0 "‘
/ ~ ACTION K 6 &
/ Peypesiy H. 1)As=0]
re {25 [orera |

/ El (: n —— —

4 wa et) s e l :]

Vs S L ACTION TGHORE 0 1 o 7 NS

/ 5/ PR CONTROL f.s)/ 57/ eraa e

/ - [“ow”) S [|-1vﬂ 5=0)] ,

CONTROL PAVA_RETURN PAM_RETURN

WIPRRSTAT
~ T

31
o« ot " a5 %U [SN /
ACTON DE 0.2 @ ¥ 7] ¥ rem | /

r = 31]
(=21 m I—‘
‘(1€.0 Inc t \ pTE m_ine. / em 3
CONTROL

Figure 41: "Pausing” of PAM Stack — handler_0 is chosen to be executed

Suppose that pam_securetty.so PAM returns PAM_INCOMPLETE return code
(Figure 42), i.e. transition tH 0 1 consumes the CONTROL token from place pH_0_S,
and deposits a PAM_RETURN token of value 31 into place pC_0_S. Then, transition
tC_0 Inc becomes enabled, since its guard, [r = 31] evaluates to TRUE (since the value

of the token in place pC 0 Sis 31).

12)
Ire {0,12}] PN
oo {woos [mwnoo]
ACTON_OE 0.0
e [fi=1)as=0]
4 fre (25)1 P
I3 / '@ PAD LS)— 1 Action_0_1 ! (s t frema ‘ /p:"d\)
5 g ACTIOH_IGHORE 0 1 A
S PARL_RETURN m ‘\ m / / m
et e row Lo/ e /
(eos -t mo1 l Olai7izsiiy { peos /\V r woz I—.\r { waoa2s Action 0.2 /—\ \ 7
) ST N~ ACTION BIE 0.2 7
CONTROL PAMFEURN PAVRETURN { prem ste);Qﬁ o tHerm 2
WARTSIAT
I
) [r=31)
N ,—/ Gitne l—
N
~.
o t —\Gumj L e
comTROL

Figure 42: "Pausing” of PAM Stack — pam_securetty.so PAM returns PAM_INCOMPLETE =

When transition tC_0_Inc fires, it consumes the foken 1

deposits a CONTROL token 1’1 in place pTerm_Inc. Hence, transition tTerm3 is enabled

(Figure 43).

74

M.Sc. Thesis — C. Kulbakas

McMaster — Computing & Software

[re {0,12))
}‘ 100 F»f &2)— mm 0.0
ACTION GK 0 G
/ e [~(i=1)As=0}
,»’ fre {25)] LN
i r
/’ /_/l l(T‘DN IGKOREO0 1~ 1} \/
s PAARETURN conmmaL ~ “‘!A / PAM_RETURN
] P Cowt , S v /
' ™, t o)af7]25031 L r r 7/ A T GFSute A Y 3
(mos — LI » oz »{ pa02s }— Action 0 2 | e ‘;\\ P
o N o N AT OE T (Fremse B ez |1
ool eRLREDR N, PARRETURH S -
“ S /
WFRRSTAY /
[r=31 /
GEhe i
- -1'1 /
4 o t ¢ stem ot At] trem 3
—
COXTROL

Figure 43: "Pausing" of PAM Stack — HCPN module TERMINATE is chosen to be executed

Lastly, once transition tTerm_3 fires, then tTerm3 consumes the CONTROL token 1°1

from pTerm_Inc, and places a single PAM_RETURN token of value 31 in the place

pEnd, 1°31, effectively terminating the PAM Stack execution (Figure 44).

Ire {0,12))
[T PAO0S Action.0.0
/’ g ACNOH 0K 0.0
PAM_RETURN .
Ly [-i=1)ns=0)
I fre {2511 GEpH A
r / oy Lol aoas Action 0 1 /A\ t ; 12
/ . 0. PAOLS 10 1 & PHAS Yo tTerm_1 8y, oEd
;S EETION_IGHARE 0.1 — B \
s PARETURN [[CV4 s
S CONTROL - “'/ pans_mETURN
:] , / .
Sepho e ["ow”) - m\ /7 li=v=(=0)] /n
\is/\ woy [CRIBE (PCOS ,f r —{ wo2 }'~>’\ PAGZS Action_02 _ \ .
S { ACIONDEGD 4
- i GO e Ll
. WAFRZSTAT
G L //
{r=31]
R t T t
o { premine J—T i wem.3

——
CONTROL

Figure 44: "Pausing” of PAM Stack — PAM Stack execution terminates

Choosing to Execute an Action

If transition tC_<x> <k>, <k> € 0..<y_x>, is enabled, then the firing of this transition

effectively chooses an Action to be executed. This is implemented by tC_<x> <k>

removing the PAM_RETURN token from the place pC_<x>_§S, and placing this same

PAM_RETURN token in the starting place of the Action to be executed, i.e. in place

pA_<x> <k> S, <k> € 0..<y_x>. This removal/placement of the PAM_RETURN token

75

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

not only dictates PAM Stack Execution control, but also passes data (the PAM_RETURN
value) to the Action to be executed. Note that there are as many distinct Actions as there

are partitions {X} = {X_(x,0),X_(x,1), ..., X_(%,Kk), ..., X_(X,y_x) }. Each partition

corresponds to a distinct Action.

For example, continuing with the partial HCPN model instance shown in Figure 41 on
page 74, suppose that the pam_securetty.so PAM returns the PAM_RETURN =
PAM_SUCCESS =0. Then, a PAM_RETURN token of value 0, 0°0, is placed in
pC 0 S. This causes transition tC_0_0 to become enabled. This is because value of token
inpC 0 Sis 0, and 0 belongs to the tC_0_0 transition guard’s range of values.

Specifically, if 0 € X_(0,0) = {0,12}, then [r €{0,12}] evaluates to TRUE (Figure 45).

ire {0,12)]
oo

/ Ire {25)) (A=l
re
VAT e)
/

s
) o)
- mas “)_‘>m ol g wos Y r

) S
0L -

Figure 45: Choosing an Action to execute based on PAM_RETURN value defined by
Control — pam_securetty.so PAM returns PAM_SUCCESS =0

Then, once transition tC_0_0 fires, the PAM_RETURN token 1'0 in place pC 0 Sis
consumed by transition tC 0 0, and a PAM_RETURN token 170 is placed in pA 0 0_S.
Hence, the Action associated with the substitution transition Action 0 0 (HCPN module

ACTION_OK 0 0 instance) is chosen for execution (Figure 46).

76

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

[re {0,12})]
oo

s

lrE (25)]

1//
7 /\f'_
r/ | ow’]
@)/)_-‘b 131725131 (cos) r
CONTROL N A

PAM_RETURH

Figure 46: Choosing an Action to execute based on PAM_RETURN value defined by
Control — Action associated with Action_0_0 is chosen for execution

During the generation of HCPN module CONTROL instances, pamtester-fim
determines the names of the corresponding actions. Given the k™ Action substitution

transition for the x™

handler, Action_<x> <k>, the corresponding substitution tag has the
form ACTION_<name(x,k)> <x> <k>. The symbol namc(x,k) denotes the result of a
computation that determines the name of the Action to be used as the k™ action of the x™
Control.

For example, in Figure 46, given the first handler, i.e. x=0, and the first action, i.c.
k=0, then name(x,k)=name(0,0)=0OK, meaning that the first action of the first handler is
Action OK. In general, since each HCPN module ACTION has a different HCPN
specification, thus, pamtester-fm generates a different HCPN module for each Action.
Hence, we suffix <x> <k>to Action _<name(x,k)> to create the resulting substitution
transition tag. Continuing our example, the first action of the first handler has a

substitution tag

ACTION <name(x,k)> <x> <k>=ACTION_ <name(0,0)> 0 0=ACTION OK 0 0.In

77

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

this case, pamtester-fm will instantiate an HCPN module ACTION_OK 0 0 in order to

substitute this module for the substitution transition Action_0_0.

HCPN module templates for Actions

There are 6 types of actions: Action ‘ignore’, Action ‘ok’, Action ‘done’, Action ‘bad’,
Action ‘die’, and Action ‘jump’.

All Actions have a similar HCPN structure. The first portion of each Action is devoted
to updating of the PAM Stack Execution State. The second portion of each Action is
devoted to choosing the next handler to be executed.

This structural and behavioural design decision was made to implement the
functionality of the PAM Stack execution. Mainly, in the PAM Stack Execution
algorithm, once an Action is executed, the execution of this Action does two things:
update the PAM Stack Execution State, and choose the next handler to execute.

The PAM Stack Execution State is implemented by the fusion set GF:State. The colour
of the places in this fusion set (the type of tokens accepted by these places) is a two-tuple
(1,8), where i denotes Impression, and s denotes Status.

For pamtester-fim Action templates, <x> <k x> denotes k™ Action of x™ handler.

HCPN module ACTION_IGNORE

The HCPN module ACTION IGNORE_<x> <k x> template is shown in Figure 47.

GF:pH_<x> GF:pH_<x+1>
1/—\ /\\\.
(pA_<oo_<k 05 Hrﬁb tA_<o_<k x> 1 ‘—b pD_<x>_<k x> S 0)—t 1D_<x>_<k_x>_0 t pD_<x>_<k x> E_O
~— e

PAM_RETURN CONTROL CONTROL

Figure 47: Pamtester-fm HCPN module ACTION_IGNORE template

78

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Essentially, this Action “ignores” the received PAM_RETURN in a sense that this
Action does not affect the state of the PAM Stack Execution. Specifically, the execution
of this Action is as follows: tA <x> <k x> 1 consumes the PAM_RETURN value from
pA <x> <k x> §, and places a CONTROL token in pD_<x> <k x> S 0 - this is the
“ignore” portion. Then, this Action chooses the next handler in the sequence as the next
handler to be executed. Specifically, the place pD_<x> <k x> E 0 belongs to the fusion
set defined by the substitution tag template GF:pH_<x+1>. Once a CONTROL token is
placed in pD_<x> <k x> E 0, this indicates that the handler whose starting place
belongs to the fusion set identified by GF:pH <x+1> is the handler to be executed next.

The substitution tag is generated by pamtester-fm during the generation of the
HCPN. In this case, the “formula” for computing the next handler to be executed is x+1,
where x is the current handler depth.

For example, given the 1* handler in ACME Corp’s PAM Stack Instance,
handler O, if the pam_securetty.so PAM returns a PAM_RETURN value PAM_IGNORE
=25, then the ACTION_IGNORE 0 1 is chosen to be executed (see Figure 48). In this
case, the next handler to be executed is the 2" handler, handler 1,i.c.pD 0 1 E 0

belongs to the fusion set GF:pH_1.

79

M.Sc. Thesis — C. Kulbakas

McMaster — Computing & Software

[re {0,12)]
/
/ PAM_RETURN ACTION_IGRORE_O_1
/ _reisy e
" //JI €01 Frﬂg/%l ! $no11 t @—'~> walo —'ﬁw)
EFpHO ["0
n\\\r
N\ =31
R\ 1,01 t . p(.,.,:)
Figure 48: HCPN module ACTION_IGNORE_0_1 - ACME Corp
HCPM module ACTION_OK
The HCPN Template for Action ‘ok’ is shown in Figure 49.
[iz0A{i# 1vs= 0)]
tA_<x>_<k_x>_1 t
/\/‘ [GhoHost> |
t t
pA_<x>_<k_x>_state pD_<x>_<k_x>_S 0 — iD_<x>_<k x> 0 pD_<x>_<k x>_E_0
(A=) [120v(i=125=0) (v -
PAM_RETURN i IMPR x STAT CONTROL CONTROL

tA_<x> <k x> 2

Figure 49: Pamtester-fm HCPN module ACTION_OK template

Depending on the current PAM Stack Execution State (i,s), the State may be updated

or not. If it is, then it is updated to (1,r), where r is the PAM_ RETURN just obtained.

The next handler to be chosen for execution is the next handler in the sequence.

80

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

HCPN module ACTION_DONE

The HCPN Template for Action ‘done’ is shown in Figure 50.

li=-1]

tA_co_<k ot

Grp_ati>

!l th o ko0 [PO_<0_<k 0 0

CONTROL

Figure 50: Pamtester-fm HCPN module ACTION_DONE template

PAM Stack Execution State update is the same as for Action ‘ok’.

The choosing of the next handler depends on the current Impression of the PAM Stack
Execution State. If the Impression is positive, i.e. PAM_POSITIVE = 1, then the next
handler to be chosen for execution is the first subsequent handler, after the current depth
X, whose substack level is less than the current substack level. This is computed by
pamtester-fm using the skip substack(x) function, for the current handler depth x. If the
PAM Stack Instance only consists of a single substack level (this is the case in all
production Linux-PAM Configurations tested so far), then skip substack(x) “skips” all
subsequent handlers, and PAM Stack Execution ends with the Terminate module.

On the other hand, if the Impression is not positive, then the next handler to be

executed is the next handler in the sequence, i.e. the handler at depth x+1.

81

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

HCPN module ACTION_BAD

The HCPN Template for Action ‘bad’ is shown in Figure 51.

fi=-1]

tA <o <k x> 1

[izz=1 Ar=25]

GF:pH_<x#1>

t—b _<x>_<k_x>_0 t pD_<x>_<k x> E O

CONTROL

(PA_<x>_<k x>_S /\—rb tA_<x>_<k _x>_2

pD_s<x>_<k_x>_S_0

PAM_RETURN CONTROL

tA_<x>_<k x>_3

Figure 51: Pamtester-fm HCPN module ACTION_BAD template

Here, depending on the PAM Stack Execution State, and whether or not the current
return value is 25, we may choose to update the PAM Stack Execution State. If the
Impression is already negative, then we ignore current return value. Otherwise, we
change the Impression to PAM_NEGATIVE = -1. We also update the Status. If the return
value is PAM IGNORE = 25, meaning that the PAM is essentially telling us (via this
return value) to ignore its (the PAM’s) execution result, then we update the Status with
the default “bad” Status PAM MUST FAIL CODE :=PAM_PERM_DENIED = 6.
Otherwise, if the return value is not PAM_IGNORE, i.e. r # 25, then we update the
Status with this return value.

In all cases, the next handler to be executed is the next handler in the handler

sequence.

82

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

HCPN module ACTION_DIE

The HCPN Template for Action ‘die’ is shown in Figure 52.

li=-1]

TA_<x>_<k_x>_1

GF:pH_<skip_substack{x}>

l—b tD_<x>_<k x>_0 t pD x> <k x> £ 0

CONTROL

pD <x> <k x> S0

CONTROL

pA_<x>_<k_x>5

PAM_RETURN

tA_<oo_<k x> 3

Figure 52: Pamtester-fm HCPN module ACTION_DIE template

PAM Stack Execution State update is the same as Action ‘bad’.

The next handler to be executed uses the skip substack(x) function, where x is the
current handler depth. This is computed the same way as by Action ‘done’.

One point worth noting here is that, interestingly, in contrast to the operation of Action
‘done’, the choosing of the next handler does the skip substack(x) computation in all
cases, whereas Action ‘done’ only “skipped substacks” if the Impression was
PAM_POSITIVE = 1. In other words, Action ‘die’ skips the substack no matter what,

whereas Action ‘done’ skips the substack conditionally.

HCPN module ACTION_RESET

The HCPN Template for Action ‘reset’ is shown in Figure 53.

83

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

GF:State_<i>

PA_<x>_c<k x>_state_s

IMPR x STAT

r__’ tA_<x>_<k x>_1

PAM_RETURN

—GF:pH<x+1>

t0_<x>_<k x> 0 - pD_<x> <k x> E_ 0

CONTROL

pA_a>_ck_x>_state pD_ox> <k x> S 0

IMPR x STAT

Figure 53: Pamtester-fm HCPN module ACTION_RESET template

The HCPN module RESET <x> <k x> instance “resets” the Execution PAM Stack
State to a previous PAM Stack Execution State. This is implemented as an HCPN by
“copying” (obtaining and putting back) the Impression and Status values (i’,s”) from the
Fusion State GF:State <L>, where L is the current substack level, i.e. the substack level
of the current handler, handler x. The copied value (i’,s’) represents the PAM Stack
Execution State as it was at the time when the current substack level L was first entered
(see below for elaboration). The copied value (i’,s°) is set as the “new” current PAM
Stack Execution State, effectively “overwriting” the current PAM Stack Execution State
(1,8)-

Specifically, recall that given some depth y, if a new substack level is entered by a
handler at this depth y, then Substack Execution State at this depth y, denoted (i_y, s y),
is saved in in a place belonging to the fusion set GF:State <L, y>, where Ly denotes the
substack level at the handler depth y. In effect, entering a new substack level at depth y,
saves the current PAM Stack Execution state in GF:State <L._y>. Then, supposing that
after entering the substack level L._y at depth y, we execute some handler sequence

arriving at the current handler, handler x, without “leaving” the substack level L y (i.e.

84

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

the sequence of handlers executed after handler y, but before handler x have all had their
substack levels equal to or higher than L._y), and the Action being executed is “reset”,
then this Action “resets” the current PAM Stack Execution State back to the state (i_y,
s Yy).

The next handler to be executed is the next handler in the handler sequence, i.e.

handler x+1, where x is the current handler depth.

HCPN Templates for Action ‘jump’

There are three sub-cases for the pamtester-fm HCPN module templates for Action
‘jump’. These are:

= ACTION_JUMP_NEGATIVE,

= ACTION_JUMP_TOO_LONG, and

= ACTION JUMP.

HCPN module JUMP NEGATIVE

A jump that is “negative” occurs when the jump value found in the Linux-PAM
Configuration is negative and is outside the range [-1,-5] (see below for example). The
HCPN Template for ACTION JUMP NEGATIVE (implements Action ‘jump’ for a
“negative jump”), is shown in Figure 54.

@[i

PAM_RETURN

GF:State

pA_<x>_<k_x>_state

pD_ac>_<k x> S 0

t
— tD_<x> <k 300 —t po_c_<k x> E 0

IMPR x STAT CONTROL

Figure 54: Pamtester-fm HCPN module ACTION_JUMP_NEGATIVE template

85

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

The PAM Stack Execution State is changed as follows: Impression is set to
_PAM NEGATIVE = -1, Status is set to PAM_MUST FAIL CODE =
_PAM PERM DENIED = 6.

The next handler to be executed is the next handler in the sequence, i.e. x+1, where x
is the current handler depth. For example, consider the first Configuration Line

auth requisite pam securetty.so

contained in the Linux-PAM Configuration in Figure 92 on Page 183 . Suppose that the

Linux-PAM Administrator specifies this (erroneous) Configuration Line instead:
auth [success=ok default=-7] pam securetty.so

In this case, the Cy(x) = —7,Vx € {1,2,..,30}, i.e. if pam_securetty.so PAM returns
any error other than 31, then the Action carried out is -7, which is interpreted by Linux-
PAM as a “bad jump” of type “negative jump”. In this case, the corresponding HCPN

Instance is shown in Figure 55.

CONTROL O

ACTION_JUMP_NEGATIVE.G_1 ene
Gron o [Cersae] [z
S {is) T t N o ¢
~ Y)
[soo| (" paoas " wl wmois AT L) w{ paoisme o molse }—— s woio w is ——m o808
0.1, R e A g K
PAM_RETURN .. IMPRXSTAT CONTROL CONTROL
. [
L

Figure 55: Example of a "bad jump" of type "negative jump”

86

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Note that in this case, the next handler to be executed is the second handler,

Handler 1.

HCPN module JUMP_TOO_LONG

A jump that is “too long” occurs as follows. Suppose the PAM Stack Instance contains n
handlers (handler 0, handler 1, ..., handler n-1). Also, suppose that the current handler
is at depth x, i.e. handler x, 0 < x <n-1. Also, suppose that the substack level of the
current handler is L. Further, suppose that the jump specification is the integer J > 0.

Then, Linux-PAM determines if this Action “jump” is “too long” as follows.

First, obtain the the longest contiguous sequence of handlers handler x+1,
handler x+2, ..., handler x-+y, such that for each handler z, z € x+1...x+y, the substack
level of handler z is greater or equal to L, where x+y <n (i.e. we do not consider the

termination handler, handler n).

Second, let K be the number of handlers within this sequence handler x+1, ...,

handler x+y, whose Substack Level equals L.

Third, if J > K, then the Action “jump” is “too long”. Otherwise, the Action “jump” is

a “good jump”.

If Linux-PAM determines that the Action “jump” is “too long”, then, similarly to the
“jump negative”, the PAM Stack Execution State is set to (-1,6), i.e. Impression is set to
_PAM_NEGATIVE = -1, and Status is set to PAM_MUST FAIL CODE =

PAM_PERM_DENIED = 6.

87

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

In contrast to “jump negative”, the next handler to be chosen for execution is the first
handler whose depth is greater than x+y, and whose substack level is less than or equal to
L (we still skip a contiguous sequence of non-terminal handlers (handlers which are not
the terminate handler) whose substack levels are higher than the current substack before
picking our next handler to execute). If no such non-terminal handler exists, then the next

handler to be executed is the Terminate handler, handler n.

PAM Stack Instances with a single substack level result in the next handler to be

executed being the Terminate handler, handler n.

The HCPN Template for Action ‘jump too long’ is shown in Figure 56. The pamtester-
fm tool uses this HCPN module ACTION JUMP_TOO _LONG template, to generate
HCPN module ACTION_JUMP_TOO_ LONG instances.

The calculation for whether or not an Action “jump” is “too long” is done by the
pamtester-fm tool during the parsing of the PAM Stack Instance. We denote this
calculation by the function jump too long(x). Once an Action is determined to be “too
long”, the HCPN module ACTION_JUMP_LONG instance is generated, and the next
handler to be executed is defined in this instance using the Fusion Set tag template

“GF:pH_<jump too_long(x)>"="GF:pH_<x-+y+1>" (as discussed above).

GF:pH_<jump_too_long{x}>

l—b tD_co_<k_x>_0 -

CONTROL

{is)
3 pb_<x>_<k x> 5 0
pA_<x>_<k_x>_S tA_<x>_<k x>_1

pA_<x>_<k_x>_state

CONTROL

PAM_RETURN IMPR x STAT

Figure 56: Pamtester-fm HCPN module ACTION_JUMP_TOO_LONG template

88

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

For example, consider the first Configuration Line:
auth requisite pam securetty.so

contained in the Linux-PAM Configuration in Figure 92 on Page 183 . Suppose that,
instead, the Linux-PAM Administrator makes a mistake and specifies this Configuration

Line as:
auth [success=ok default=13] pam securetty.so

In this case, the Cy(x) = 13,vx € {1,2,..,30}, i.e. if pam securetty.so PAM returns
any error other than 31, then the Action carried out is 13, which is interpreted by Linux-
PAM as a “bad jump” of type “jump too long” (since there is less than 13 handlers on the
current substack level). In this case, the relevant portion of the corresponding “flattened”

HCPN Instance is shown in Figure 57.

CONTROL ©

ACTION_JIMP_T00_LONG 0L see TERMINATE
GEswle
e fi.s) T TN STt t ’/\,‘ t
LR see| (pors F—"w wmera AT HLE TP eaoisae) WA wmoiso D010 > was) [N
g . P //, I e
P . WPRXSTAT - ONTROL controL
\t
ses

Figure 57: Example of HCPN module ACTION_JUMP_TOO_LONG instance

Note that in this example, the “jump too long” error causes the control of PAM Stack
execution to execute the Termination handler as the next handler to be executed. In other

words, the PAM Stack Execution is being terminated.

89

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

HCPN moduie ACTION_JUMP

An Action ‘jump’ that is neither “negative” nor “too long” is considered a “good”

jump. Such jumps are represented by the HCPN module ACTION JUMP template, as

shown in Figure 58.
| GF:pH_<skip_current_substack{x)> |
PAM_RETURN CONTROL CONTROL

Figure 58: Pamiester-fm HCPN module ACTION_JUMP template

Action ‘jump’ does not update PAM Stack Execution State.

The handler to be executed next is calculated as follows. Suppose the PAM Stack
Instance contains n handlers (handler 0, handler 1, ..., handler n-1). Also, suppose that
the current handler is at depth x, i.e. handler x, 0<=x<=n-1. Also, suppose that the
substack level of the current handler is L. Further, suppose that the jump specification is

the integer J > 0.

First, obtain the the longest contiguous sequence of handlers handler x+1,
handler x+2, ..., handler x-+y, such that for each handler z, z member of x+1...x+y, the
substack level of handler_z is greater or equal to L, and x+y <n (i.e. we do not consider

the termination handler, handler n).

Second, let K be the number of handlers within this sequence handler x+1, ...,

handler x+y, whose Substack Level equals L.

90

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Third, we assume that J <= K (since otherwise, this Action ‘jump’ would be “too

long”).

Fourth, obtain the depth of the K™ handler, which we denote by depth(K). Now,
depth(K) <= x + y. In other words, going to the handler at depth(K) “jumps” the first K-1
handlers whose substack levels are equal to the current substack level L (and all of the
substack handlers in-between whose substack levels are higher than the current substack

level L).

Fifth, consider the sequence of handlers, handler depth(K)+1, ..., handler x+y-1,
handler x+y+1 (here we consider the termination handler, if x+y=n). Choose the first
handler, denoted handler z, depth(K)+1 <= z <= x+y, such that substack level of
handler z <= L. In other words, we still skip all handlers that have higher substack levels,

before we finally choose our next handler to be executed.

We denote the above algorithm by the function skip current substack().
Skip current substack() obtains the current depth x as input, and outputs the depth of the
next handler to be executed, as explained in the above algorithm.

Example of “Partial” Unfolding of HCPN Model: HCPN model for ACME
Corp

In this section, we illustrate how we use the above-presented HCPN models to create a
“partial” unfolding. Our example shows the HCPN model generated by pamtester-fi for

the PAM Stack Instance of ACME Corp corresponding to the pam_authenticate()

91

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Management Function for the Service “login”. Hence, this Instance is used for the
authentication-related functionality of authentication, while using the login program, for
example. This PAM Stack instance is shown in Figure 59. It contains four “stacked”
PAMs: pam_secure tty.so, pam_env.so, pam_unix.so and pam_deny.so. Since this PAM
Stack Instance corresponds to the pam_authenticate() Management Function, the handler
corresponding to each PAM “stacking” contains a pointer to the implementation of the
pam_sm_authenticate() Module API function (column entitled int (*func) in Figure 59,
i.e. I(pam_sm_authenticate(), pam_securetty), I(pam_sm_authenticate(), pam_env.so),

I(pam_sm_authenticate(), pam_unix.so), I(pam_sm_authenticate(), pam_deny.so).

92

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

CONTROL;
ERVICE 4
depth; level; | SERVICE| > deD(C): | ' PATH; | OPTIONS;
p GROUP; ; :
i L; S c "I Xe Vx € X: P; 0;
! R(C) | Ci(x)=d
int int ; , . int char char
int *
handler | stack_) actions[32] (*func) mod_ *rargy
_type level : name
0,12 -1 Y
> . oy B
I(pam_sm_authenticate() e
. 25 0 - = > | pam \:{\\‘\
0 0 i : — L
0 login auth — . pam_securetty.so) securetty.so \\\\\.
oW - .
N
0,12 -1 bt
2 I{pam_sm_authenticate(), pam \{:\\‘ =)
1 | 3 N
0 0 login auth “ow? 0 pam_env.so) V.50
0,12 -2 I(pam_sm_authenticate(),
2 0 0 login uth i pam_
g a “ow” 0 pam_unix.so) unix.so
0,12 -1
25 0 I(pam_sm_authenticate(), pam
3 0 0 login auth pam_deny.s0) -
“ow” 3 - deny.so

Figure 59: Generation of a PAM Stack instance for the pam_sm_authenticate() Module API
function for theService "login"

Recall that the execution of a PAM Stack instance, as per algorithm shown in Table 13
on page 29, executes some handler subsequence. The executed handler subsequence
generates an authentication-related functionality instance. Given a handler execution
subsequence, each handler execution causes the execution of its corresponding
Management Function implementation. Each Management Function implementation
execution contributes to the provision of the authentication-related functionality of the

PAM Stack Instance as a whole. Depending on the PAM_RETURN value obtained from

93

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

each handler execution, the appropriate Action is executed. The execution of each Action
may update the PAM Stack Execution State, as well as chooses the next handler to be

executed.

Recall that pamtester-fim generates an HCPN model that describes the above process.
Specifically, the generated HCPN model “captures” all of the possible handler execution
sub-sequences. In other words, the HCPN model captures all of the possible
authentication-related functionalities that can be provided by the corresponding PAM

Stack Instance.

Returning to our example, in this particular “partial” unfolding, for each PAM, we
define the set of PAM_RETURN values that the PAM is capable of returning in Table 14.
This list of return values is not complete. This table is created for illustration purposes

only. In fact, some of these PAMs are capable of returning additional PAM_RETURN

values.

PAM Possible PAM_RETURN values of the PAM’s
implementation of pam_sm_authenticate()

pam_securetty.so PAM_SUCCESS =0

PAM_SERVICE ERR =3
PAM_AUTH ERR =7
PAM_IGNORE = 25
PAM_INCOMPLETE = 31

pam_env.so PAM_SUCCESS =0
PAM BUFF ERR =7
PAM_IGNORE =25
PAM_ABORT =26

pam_unix.so PAM_SUCCESS=0
PAM _IGNORE =25
PAM INCOMPLETE = 31

pam_deny.so PAM_AUTH ERR=17

Table 14: Possible PAM_RETURN values of PAMs “"stacked" on ACME Corp's
pam_authenticate() PAM Stack Instance

94

M.Sc. Thesis ~ C. Kulbakas McMaster — Computing & Software

Finally, in Figure 60 we show the HCPN model of all of the possible executions of the
PAM Stack Instance of ACME Corp. This HCPN model is a “partial” unfolding
comprised of an HCPN module INITALIZE instance, four HCPN module HANDLER
instances, and a TERMINATE instance. We also add labelled “containers” for the
purpose of visual presentation. These containers denote portions of the HCPN model that
correspond to HCPN modules HANDLER <x>, MODULE_ <x>, CONTROL <x>,

ACTION_<x> <k x>.

Figure 60: HCPN model - ACME Corp

The HCPN modules INITIALIZE and HANDLER_0 are shown in Figure 61.

95

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

! Wiger U FANDURLD
5 Ty peepr—
;) {i=0afi=1vs= 0] 4eicn 05 2O GC58]
womt
P \
ey
Iretot21) Ly
Low{ hoes n oviiz1as=0] // g 3@ S S §
A —
Ry
T
re2sil o
] [] .L o .\mm tlwors .
numum
) li= Acton D2 ACTION_ DR 0.2
[st mne li=-11
S
o wen
- f\
// @ 57 RS ~
4 - . .
o B TER g 2-lare Comm ™
/o K fiz-lar=25] L .
: ‘ wat : _G; U s | L opinimm _C:;~ Py Yt wpaz @0 9 snten ‘)\w,n_-z_an/ ol wnze LU -,
! \, N, P S oSt
i o . -, %
i - - o == \/-/
\\[:-nr:zs] - - e
33 3
|
|
(ocave)

Figure 61: Close-up of HCPN modules INITIALIZATION and HANDLER_0

The HCPN module HANDLER 1 is shown in Figure 62.

Handler_1: HANDLER_L

Madule_1: Cantroy_1: CONTROL_1
MODULE_L

" - it): ACTION_OX_1_0
[i#0A(i= 1vs# 0)] Action_1_0:ACTION_GK 1.¢

t
PASTR

e S
Ire(0,12)) P ™~

/—\) \\}/—\\ . .
LSy § Y pD_10S0)" D100
e PU-“-S) li=Ov(i=1as=0)) %P0 P50 J—b 00
_/
/ mr tis) / / M // CONTROL

~ wn /
Awio2 7/
T~
r

/

Action_1_L: ACTION_IGRORE_t_1 |~
/ [ow]
_ 0]7]25126 TN r ° r :
(LS Jie L ““’(pCLS \F*@‘*b\ PALILS —> i 1 —>\ pD 1150 "» w110 ,///
S R
CONTROL PAM_RETURN PAM_F nnunn CONTROL I
, i
i

[r=31]

.\A .
\l €_1_ne t >(petne)

' CORTROL

Figure 62: Close-up of HCPN module HANDLER_1

loab

M.Sc. Thesis — C. Kulbakas

McMaster — Computing & Software

The HCPN module HANDLER 2 is shown in Figure 63.

Handter_2: FANDIER 2

Moddde_2:
MODULE 2

{re{0,12})

[[#0Aflizivs= 0}
vy A203

| {205

[5rd WER
~.) s

D

‘
- S e . %
e
m['=ov(‘=lAS=°)l ,/{;;) /’@\\,
: S e '

—

‘Action_2_0: ACTION_DONE_2.0

fi=1)

AN,
o maas [w—'—> w2320
CoRTRL

[
Py r—— '
[“ow”] t
N A N 12 IV t -
L (yu,x,s% Y D) @@)—L wzia |t warso - teloaio]
CONTROL PAM_RETURN PAR RETURN CONTRDL
: r
[r=31}
T]
SREINCD)
o
P
o~

i1
\ oz %'ﬂ@)_g. w22 k\\.

-

Figure 63: Close-up of HCPN module HANDLER 2

The HCPN modules HANDLER 3 and TERMINATE are shown in Figure 64.

97

M.Sc. Thesis — C. Kulbakas

McMaster — Computing & Software

Hadier 2 RARDUR 3

e B pewpye—
et
Ir={0,12))
Lo
.
leet2s)
e

[r=311

wame

Fe0aliz 1vse o)

waor

l_l\m\

@ =0v{i=1as5=0)) //m }Q)_

1 R 7
T 4

Actos_3_0.ATTION 0% 3.0

>mson1—‘ ~

Aetion 3 4 ACTIGHIGHOM 31

) , L
-’ =

li=-1

r= 1ar225) '~

./

//'

sy

Pyl

Pl!zsm

/ umsyr

'-‘., .* ~laf= zs] (TR
FL8), -

Actioa 3.2 ATTON 3D 3 2

[-{i=1)ns=0]

[
N

s vy Giem 1

e 2

] L_~

@)_. T
o

%m%/\ 7’ L
o \"lﬂﬁ”/

Figure 64: Close-up of HCPN module HANDLER_3

The Instance Hierarchy describing this HCPN model is shown in Figure 65.

98

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

DiSPATCH

Initiskze. Ferminate
Hendlers

j Y A
INMAUZE HANDLERS) TERMINATE)

Handler 0 Handler_1 iandler_2 and!‘.‘r_l\
(wwommo) HANDLER 1L { mwowz) (HANDLER 3

, . N\ N ~.
Modole_0 Control 0 Module_1 Control_1 Module_2 Conteol 2 Module_3 Controf_3
g S o < o q

> 4 » 4 2 A | 4 A

@ODULE_SECI)RHTY_D (CONTROL_O 3 (MODULE_ERV_1) (CONTROL_1 & MODULE_UNIX_2) (CONTROL_2) (MODULE_DENY_3) (CONTRCL_3)
;/ /,/
- / e
s
moﬂ 00 A:lmn D 1 Amon 0.2 nmn l 0 Adion_1 1 Ac(lon 2] l Anlbn 2 2 Action 2 0 Adion 31 Aclion_3_2

> \

/ s
ACTION_OK 0 0 (ACTIUN IGNORE_O g (ACTION_ DIE O 2) C ACTION_OX 1.0) (AC"O“ AGNORE 1.1 k ACTION_DONE 2.0 ACTION_IGNOAE_ 2, l) ACTION_OK 3.0 QACTIQN IGNORE_3, l) (ACTION_BAD_3_ r\

Figure 65: Instance Hierarchy of HCPN model

99

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

METHODOLOGY - PART II: Transition System Modeling

Introduction to Transition System Modeling

A Transition System is a mathematical formalism that specifies how a system behaves.
We use Transition Systems to specify how our HCPN models behave. Pamtester-fm
generates Transition System specifications based on the corresponding HCPN
specifications. Pamtester-fm uses NuSMV syntax to specify these Transition Systems.

Once the Transition System specification is generated, Pamtester-fm executes
NuSMV. During this execution, pamtester-fim supplies NuSMV with: Transition System
syntax, and “security properties” to check on this Transition System. Then, Pamtester-fin
directs NuSMV to build the Transition System models based on this syntax, and instructs
NuSMV to model check the resulting Transition System models.

The results of this model checking are then obtained and interpreted by pamtester-fm.
These results describe the possible behaviours of the corresponding HCPN models, which
in turn, describe the possible authentication-related functionalities of the PAM Stack
Instances. In other words, these results inform us about the authentication-related
functionalities that can be produced by the PAM Stack Executions of the corresponding
PAM Stack Instances.

We used NuSMV for two reasons. First, NuSMV can be programmatically supplied
with arbitrary Transition System model specifications, as well as be programmatically
controlled to then build and model check these models. Second, one goal of this thesis
was to provide groundwork for an open source tool which can be used by Linux-PAM

Administrators. Such a tool must be easy to use. Ideally, such a tool should operate with

100

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

minimal interaction from its operator. Additionally, such a tool must not require the
operator to have knowledge of formal specification or verification, including HCPNs,
Transition Systems and the method of model checking. Pamtester-fm achieves both of
these goals by being automated, while hiding the details of formal model specification

and verification.

Transition Systems

Transition Systems allow us to describe a system in terms of its states, and how the
system changes between states. For example, the system in Figure 66 has three states s 1,
s 2 and s_3. Furthermore, this system can change states as follows: from s_1, the system
can change to state s 2 or state s 3. From state s _3,the system can change to state s 1.

From state s_2, the system can change to state s_2.

Figure 66: Example of Transition System

A Transition System also has a number of properties. Depending on the state that the

system is in, a system’s property can be either true or false in this state. For example,

101

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

suppose that the Transition System in Figure 66 has the following properties: ¢ 1, ¢ 2,
¢ 3,9 4,¢ 5. Then, a property is true in a given state, if, and only if this property is
shown inside the circle representing the state. For example, in states 1, ¢ 1 and ¢ 3 are

true,and ¢ 2, ¢ 4, ¢ 5 are false.

Formal Definition of a Transition System

Formally, as defined in (6), a Transition System is a three-tuple (S, -> L) along with a
set of atomic expressions called Atoms. Atomic expressions evaluate to either true or
false, depending on the state that the system is currently in. For example, in Figure 66,
Atoms={¢ 1,0 2,0 3, 4,¢ 5}.Sis aset of elements called states. For example, in
Figure 66, S = {s 1,s 2, s 3}. The symbol -> denotes a total binary relation on S, i.e. ->
€S XSsuchthatVs € S3t € §:s->t Essentially, -> specifies how the system can
change states. Given two states x, y in S, x->y iff S can change from state x to the state y.
For example, in Figure 66,s 1->s 2,s 1->s 3,s 3->s 1,ands_2->s 2. L is a labelling
function L:S->P(Atoms) where P denotes a power set. Given a state s, and an atomic
expression e belonging to Atoms, e € L(s) iff e is true in the state s. For example, in

Figure 66, L(s_1)={¢_1, ¢_3}, L(s_2)={¢_4}, L(s_3)={ }.
The State Space Explosion Problem

In general, the size of the set of states S of a Transition System (S,->,L) depends on the
number of variables of the system and the domains of each of these variables. For

example, consider a system whose variables can be expressed by two variables, x and y,

102

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

where each variable can have a value of 0 or 1. Further, suppose that we decide to
represent this system in terms of the possible values of these variables as two tuples
(value(x), value(y)), where value(x), value(y) is the value of variable x, y, respectively.
Then, all possible states of this system can be described as S = { (0,0), (0,1), (1,0), (1,1) }.

Now, if a third variable z is added to create a new system, and supposing that the
domain of variable z is {0,1,3}, then, following the same approach, the set of states of this
system S = { (0,0,0), (0,1, 0), (1,0,0), (1,1,0), (0,0,1), (0,1,1), (1,0,1), (1,1,1), (0,0,3),
(0,1,3), (1,0,3), (1,1,3) }. Thus, the state space of the system was multiplied by three, with
the addition of the new variable z.

In general, a variable, when added to a system description, multiplies the number of
states of the system. Thus, the number of states of the system grows exponentially in the
number of variables of the system. This is called the state space explosion problem.
Essentially, the number of variables and the domains of these variables cause the number
of states of the system to become too large, even for automated, computer-based tools to
handle. Systems suffering from the state space explosion problem require too much CPU
time or too much RAM for analysis purposes.

When designing transition systems, one must take care to ensure that the state space
explosion problem does not occur. In real-world applications, the state space explosion

problem is common.

Connection between HCPNs and Transitions Systems

103

M.Sc. Thesis — C. Kutbakas McMaster — Computing & Software

Given an HCPN model generated by pamtester-fm, we encode the behaviour of this
HCPN as a Transition System. Specifically, we define S to be the set of markings of the
HCPN that are reachable from the initial marking. We define the Transition Relation -> to
be the Firing Rule, where given two markings s i, s j, s i->s_j iff there exists a firing of
a single HCPN transition that causes the marking s_i to become the marking s_j. We
define the set of Atoms as a set of NuSMV expressions. The terms of these expressions
are dependent on the markings of the HCPN. For example, we define the expression
“p_End =07, where p_End is an HCPN place and 0 is a member of the colour set
associated with p_End. Then, we define “p End = 0” to evaluate to TRUE iff the token of
value 0 is in the place p_End.

For example, consider the HCPN shown in Figure 67.

pl — . p2
(L A

—p3
()

e

Figure 67: HCPNs as Transition Systems — Example

Now, consider the following markings, say, marking M 1, marking M_2, and marking

M_3, shown in Figure 68, Figure 69, Figure 70, respectively.

104

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Figure 68: HCPNs as Figure 69: HCPNs as Figure 70: HCPNs as
Transition Systems — Transition Systems — Transition Systems -
Example — Marking M_1 Example - Marking M_2 Example — Marking M_3

Now, given the marking M 1, according to the Firing Rule, both transitions t2 and t3
are enabled. Thus, either one of the transitions can fire (but not both, since there is only a
single token available for consumption in place p1). If transition t3 fires, then the HCPN
changes its marking from M_1, to the marking M_2. In a sense, we can interpret this as
the HCPN changing its state from M_1 to M_2.

If the HCPN is in the marking M_2, then the HCPN is in a “deadlock™ state. This
means that the HCPN cannot change its state anymore, since no transition can be enabled
by the Firing Rule. Thus, no transition can fire. Thus, no new marking can be obtained. A
deadlock state can be interpreted as the HCPN staying in the same marking, in this case,
marking M_ 2, indefinitely. Another way to look at this is that the HCPN changes its
marking from marking M_2 to marking M_2 indefinitely.

On the other hand, if the HCPN is in state M_1, and transition t2 is fired, then the
HCPN changes from M_1 to M_3. Once the HCPN is in M_3, the only state change that
can occur is to go from M_3 back to M_1.

We can illustrate the above “behaviour” of the HCPN as shown in Figure 71, via a

graph-like structure.

105

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Figure 71: HCPN Behaviour as a Transition System

Each node of this graph (a large circle containing a Petri Net) represents a state of the
Transition System, and corresponds to a single HCPN marking. This is why we define the
states of the Transition Systems as HCPN markings. For our HCPN models, the changing
from a marking to another marking corresponds to a unique transition being fired. Hence,
we associate such edges with the name of the fired transitions. For example, in Figure 71,
the edge outgoing from the node associated with the marking M 1, and the node
associated with the marking M_2 is labelled t3. This is because it was the firing of t3 that
caused the HCPN to change its state from marking M_1 to marking M_ 2.

Precisely, a node M_1i is connected with an outgoing arrow from M_i to anode M_j,
I # j, where the arrow is incoming to node M_j iff the marking M_i can change to the

marking M _j via a firing of a single transition belonging to the HCPN.

106

M.Sc. Thesis — C. Kulbakas = McMaster — Computing & Software

One exception is the state M_2. M_2 has a “loop” edge from M_2 to M_2. In this case,
the “loop” edge does not correspond to any transition firing. In this case, the underlying
HCPN is in a deadlock state (there are no enabled transitions, hence no transition can fire,
hence the HCPN cannot change its marking anymore, i.e. is in a deadlock). In fact, due to
the structure of the HCPNs generated by pamtester-fm, the only deadlock state that can be
achieved by an HCPN of an arbitrary PAM Stack Instance is when there is a token in the
“termination” place of the HCPN, place p_End. In this case, we ensure, via our definition
of the transition relation ->, that a “deadlock™ transition, represented in the graph as a
“loop” edge, 1s defined.

Note that the “Transition System” presented in Figure 71 is not exactly (formally)
correct. It was presented here in this way to not complicate the issue, and to show the link
between HCPN markings, and how the changes in the HCPN markings define a
“Transition System-like” structure. There exists another Transition System state to which
the state M_2 changes to. Furthermore, in the (formally correct) Transition System, the
“loop” edge of M_2 does not exist. This is elaborated on when we discuss the definition
of a Transition Relation (page 126).

In general, given an HCPN model generated by pamtester-fm, for an arbitrary PAM
Stack Instance, when we generate the corresponding Transition System, we restrict the
Firing Rule to only be able to fire a single transition at a time. This is done by the
particular way in which we define the Transition Relation in NuSMV syntax. This is also

due to the way that NuSMYV transitions between states.

107

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

This does not limit the “expressive” power of our model. This is because an arbitrary
firing instance, consisting of an arbitrary multiset of fired transitions can be equivalently

represented by a sequence of single transition firings (5).

Approach for NuSMV Encoding of HCPN Behaviour

Introduction

Similar to HCPN generation, pamtester-fim does automatic generation of Transition
Systems. Just like HCPN generation, Transition System generation is based on templates.
The generated Transition System is represented by a NuSMYV encoding. This NuSMV
encoding is a text file containing NuSMYV syntax. This NuSMV syntax encoding
describes a Transition System: a set of states S, a transition relation ->, and a labelling
function L.

HCPN places are encoded as NuSMYV variables, and hence, contribute to the State
Space size. In contrast, HCPN transitions are not encoded as NuSMYV variables. Thus,
HCPN transitions have negligible State Space size contribution. Some additional NuSMV
variables are created, where these variables do not correspond to any HCPN places, i.e.
NuSMYV variable ‘gf depth’, i.e. NuSMYV variable ‘firedTransition’.

Considerable effort was made to minimize the state space of the generated Transition
System, as well as to maximize its “human readability” and “similarity” with its
corresponding HCPN. Structural similarity between an HCPN and its corrcsponding
Transition System was kept as close as possible, while still allowing for significant State

Space minimization.

108

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

State Space Minimization

In terms of minimizing the size of the state space, the following was done:
¢ re-use of commonly used sets of related variables, and
e minimization of domains of variables corresponding to HCPN places.

Specifically, a critical state space size minimization was achieved by re-using
commonly used sets of related variables. For instance, the variables used to represent all
HCPN module Action instances, based on ACTION <name(x)> <x> <k x> templates,
were re-used. For example, in the HCPN model for ACME Corp (Figure 65, 99), there
are three Action ‘ok” HCPN module instances used: ACTION _OK 0 0,
ACTION OK 1 0,and ACTION_OK 3 0. In this case, only one set of NuSMV
variables is used to represent all three of these HCPN module instances.

Also, since we generate the transition system based on an (already existing) HCPN
model instance, we know all possible tokens that can be placed in each HCPN place. Due
to this, for some HCPN places, the corresponding NuSMYV variables are generated based
on a template, where this template includes procedures for minimizing NuSMYV variable
domains. Specifically, these templates define the variable domain as containing only the
values that correspond to the possible HCPN token values. This is done for all HCPN
pH_<x> places, since we know ahead of time what possible PAM_RETURN values a
particular PAM can generate.

Furthermore, we made use of HCPN fusion sets were it made sense. This way, all
HCPN places belonging to the same Fusion Set were defined as the same NuSMV

variable.

109

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Combining the above approaches resulted in considerable state space minimization.

Table 15 - Table 20 summarize the results of these optimizations on the individual

HCPN modules.
HCPN Module Place Corresponding State Space Contribution (in bits)
NuSMYV variable
domain size without with
optimizations optimization
Initialization p_Start 1 1 1
plnit state 4 X33 2+6 0
plnit state 0 4 %33 2+6 0
.
TOTAL 17 1
Termination pH 8 S 1 1 1
pTerm state 4 X33 2+6 0
pTerm Inc 1 1 0
p _End 32 5 5
R
TOTAL 15 6

Table 15: State Space Minimization - Initialization and Termination

These results provide contributions to the state space of the corresponding Transition
System by each HCPN module. For each HCPN module type, the places of the module
are listed, since it is the places that are represented as NuSMYV variables (and hence
contribute to the state space size of the Transition System). Also, for each place, the size
of the variable domain is shown. For example, given the HCPN module Initialization and
the place plnit_state, its variable domain size is 4x33. This denotes the fact that
plnit_state has a cross-product set as its domain (its colour set is IMPR x STAT =
{EMPTY,-1,0,1} x {EMPTY, 0, 1, ..., 31}), hence, cardinality of domain is 4x33. We do
not multiply 4x33 to obtain 132 because we compute the state space contribution on a per

set basis, if the set is a cross product. This is because we encoded the colour set IMPR x

110

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

STAT by two different NuSMV variables, where one variable encodes IMPR and one
variable encodes STAT. Hence, the combined two-NuSMV-variable contribution of the
HCPN place plnit_state is: 2 bits for IMPR (base 2 logarithm of size of variable domain,
rounded up), and 6 bits for STAT. Then, total confribution is 2+6 bits, or 8 bits for
plnit_state. Hence, total contribution of a single instance of the Initialization HCPN
module is 17 bits of state space (without any optimizations).

With all of our optimizations, the state space contribution for the HCPN module
Initialization 1s just a single bit (1 bit) — a difference of 16 bits! In terms of the number of
states, before optimization, the Initialization HCPN module would require 2*17 = 131072
states. After the optimization, this module only requires 2 states — a difference of 131070
states!

Note that Initialization and Termination HCPN modules are constant in the number of
handlers of the PAM Stack Instance. For example, it does not matter how many handlers
comprise the PAM Stack instance, i.e. 2, 10, 100, 1000, etc., since the HCPN model will
use the Initialization and Termination modules exactly once. Hence, the state space
contribution of the Initialization and Termination HCPN module instances is constant in
the number of handlers: 17 and 15 bits without optimization, and 1 and 6 bits (with
optimization), respectively.

The state space contribution of our other HCPN modules may not be constant in the
number of handlers, and in the number of HCPN module instantiations (i.e. the number of
distinct times that an HCPN module is used in the HCPN model) . In other words, if the

number of handlers increases, and the number of times an HCPN module is used

111

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

increases, then so may the state space contribution. We denote the number of handlers
comprising the PAM Stack instance by n,n > 0. We denote the number of times a
particular HCPN module has been instantiated by the HCPN model by k, k > 0. We can

see the use of the n and k parameters in the following tables.

HCPN Module Place Corresponding { State Space Contribution (in bits),
NuSMV n = number of handlers of
variable substack
domain size k = number of times the

corresponding HCPN module
instance is used in the HCPN

model
without with
optimizations | optimization
HANDLER <x> pH <x> S 2 1xn 1xn
MODULE_ <x> N/A N/A 0 0
R
MODULE SUBST | pH <x> S 2 1xk 1 k
ACK ol 1]
pH <x> 0 state 4 % 33 2+6)xk 0
pH <x> 0 state <L+1> 4 X33 2+6)xk 0
pH <x> <x+1> 2 1xk 0
R
TOTAL 18xk [k l
1x
E+1

Table 16: State Space Minimization - HANDLER_<x>, MODULE_<x>, MODULE_SUBSTACK,
CONTROL_<x>

For example, a HANDLER <x>HCPN module instance, before any optimizations,
has a state space contribution that is linear in the number of handlers that comprise the
stack (although there is only one HANDLER <x> HCPN module instance per HCPN
model). In this case, the HCPN place pH_<x> S has a domain CONTROL = {1}. In
NuSMYV the domain of the corresponding NuSMYV variable is encoded as {EMPTY, 1}.
Hence, the size of the domain of the NuSMV variable is 2. Now, since, as is shown in the

template for the HCPN module HANDLER <x>, for each handler comprising the PAM

Stack Instance, the template generates a place pH_<x>_S. Thus, given n handlers, the

112

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

template generates pH 0_S,pH 1 S, ...,pH (n-1) S —atotal of n HCPN places. Since
each of these places contributes a single bit (1 bit) to the state space size, hence the total
number of bits contributed by the HANDLER <x> HCPN module is 1 Xn = nbits (1
bit for each of the n places). In this case, this contribution stays the same, even if
optimizations are used.

The MODULE_<x> HCPN module does not contain any HCPN places (hence N/A,
for Not Applicable). Thus, MODULE_<x> contributes zero bits (0 bits) to the state space
(with and without optimizations).

For the rest of the HCPN modules, the state space is highly sensitive to the parameters
n and k. For example, the PAM Stack Instance for ACME Corp (sece

Figure 59 on page 93) uses the HCPN module ACTION_OK three times (see the
corresponding Instance Hierarchy in Figure 65 on page 99). Then, without optimizations,
each of the three ACTION OK HCPN module instances (ACTION OK 0 0,
ACTION OK 1 0, ACTION_OK 3 0) would make their own individual contributions
to the state space size. In this case, together, as shown in Table 18, all three ACTION_OK
instances make a total contribution of 14 X k bits, which in this example evaluates to

14 X k = 14 X 3 = 42 bits of state space contribution. With optimization, these

ACTION_OK HCPN module instances, together, contribute 6 X [RLH] =6X %] =

6 X 1 = 6 bits to the state space. Thus, wit
instance adds 14 bits of state space or 2*14=16384 states, and with optimization, all

ACTION_OK module instances only contribute 6 bits or 2°6=64 states — a difference of

113

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

16320 states or 8 state space contribution doublings! Moreover, without optimization, the

number of contribution bits is linear (i.e. 14 X k is a linear function), whereas
[L =1,Vk > 0,and [L] = 0,k = 0. In other words [L] 1s just a way for us to
k+1 ! ’ k+1 ! ’ > lk+1 Y
say “if the HCPN module is used at least once (i.e. k > 0), then add a constant number of
bits, i.e. for 6 X [kk?] , add 6 bits of state space to the state space (irrespective of the

number of times the HCPN module is used), otherwise, this HCPN module does not
contribute to the state space (since it is not used, i.e. k = 0).

As shown in Table 17, given an HCPN module CONTROL_<x> instance, its state
space contribution, before optimization, is linear in the number of instances, i.e. 7 X k.
With optimization, contribution of each CONTROL_<x>is [log,(|Rx|)] € [1,6], where
R, is the set of possible PAM_RETURN values of HCPN module MODULE <x> (see
page 67). This is the optimization where we set the NuSMV variable corresponding to the
HCPN place pC_<x>_S to contain, and only contain, the values corresponding to the
possible PAM_RETURN values of the preceding MODULE_<x> HCPN module.
Specifically, R, is the set of PAM_RETURN values that can be returned by the execution
of the PAM’s implementation of the Management Function I(f*™, P,) associated with the
Effective PAM Stack instance I1/. The number of possible PAM_RETURN values is
between 1 and 32 (at least one member of {0,1,...,31} must be returned by a PAM’s
Management Function implemenfation I(f™, P,)). Lastly, we must account for the
EMPTY value, representing no tokens in place pC_<x>, thus pC_<x> can contain at most

33 values. For k CONTROL_<x> instances, we obtain k X [log,(|R,[)] € [1 X k,6 X k].

114

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software
HCPN Module Place Corresponding State Space Contribution (in bits),
NuSMV k := number of times the
variable domain | corresponding HCPN module
size instance is used in the HCPN
model
without with
optimizations optimization
CONTROL <x> pC <x> § 33 6%k [1Xk,6%Xk]
pC <x> Inc 2 1xk 0
TOTAL 7%k [1xk 6xk]

Table 17: State Space Minimization - CONTROL_<x>

The next table, Table 18 shows the state space contributions of HCPN module

ACTION_<name(x)> instances. Again, without any optimizations, contributions of

HCPN module ACTION_<name(x)> instances are linear in the number of times they are

used in the PAM Stack Instance. In contrast, with optimization, the state space

contribution of these instances is constant!

115

M.Sc. Thesis — C. Kulbakas

McMaster — Computing & Software

HCPN Module Place Corresponding | State Space Contribution (in bits),
NuSMV n = number of handlers of substack
variable k := number of times the
domain size corresponding HCPN module

instance is used in the HCPN model
without with
optimizations optimization

ACTION_IGNORE | pA_<x> <k x> S 32 5%k 6| k

k+1
pD <x> <k x> S 0 2 1xk [k]
- 1X|j—F
k+1
pD <x> <k x> E 0 2 1xk 0
R
TOTAL 7%k 6 x [k
Jo 4 1\

ACTION_OK pA <x> <k x> S 32 5Xk sy k]

ACTION BAD ol

ACTION DIE pA <x> <k x> state 4 %33 2+6)xk 0

pD_<x> <k x> S 0 2 1xk x| k l
k+1
pD <x> <k x> E 0 2 1xk 0
TOTAL 15xk 6 x | k
o 1|
ACTION _DONE pA <x> <k x> S 32 5%k s x| k7
k+1
pA <x> <k x> state 4 X33 (2+6)xk 0
pA_<x> <k x> 1 3 2Xk 2 x| k1
k+1
pD_<x> <k x> S 0 2 1xk 1x| k l
k+1
pD <x> <k x> S 1 2 1xk [k l
1X|——
k+1
pD_<x> <k x> E 0 2 I1xk 0
pD <x> <k x> E 1 2 1xk 0
TOTAL 19%xk 9 % [k
kil]—
ACTION_RESET pA <x> <k x> S 32 5xk . [k l
k+1
pA_<x> <k x> state 4 %33 2+6)xXk 0
pA <x> <k x> state 4 %33 R+6)yxk 0
$
pD_<x> <k x> S 0 2 1xk . [k l
k+1
pD <x> <k x> E 0 2 1xk 0
TOTAL 23Xk [k
6%
fr 4 1]

116

M.Sc. Thesis — C. Kulbakas = McMaster — Computing & Software

ACTION_JUMP pA <x> <k x> S 32 5xk . k1
k+1
pD <x> <k x> S 0 2 1xk - k1
1X|[——
k+1
pD <x> <k x> E 0 2 1%k 0
R
TOTAL 7%k [k]
6 X
k41
ACTION_JUMP pA <x> <k x> S 32 5xk sl k
NEGATIVE ol)
pA <x> <k x> state 4% 33 2+6)xk 0
pD <x> <k x> S 0 2 1%k -k l
- 1X|[——
k+1l
pD_<x> <k x> E 0 2 1xk
TOTAL 15 % k [k l
6 X
kil
ACTION JUMP pA <x> <k x> S 32 5%k 5 k
_TOO_LONG ettt
pA <x> <k x> state 4 x 33 2+6)xk 0
pD <x> <k x> S 0 2 1xk k7
1X|——
k+1
pD_<x> <k x> E 0 2 1xk 0
TOTAL 15xk [k]
6 X
ket 1

Table 18: State Space Minimization - ACTION_IGNORE, ACTION_OK, ACTION_BAD,
ACTION_DIE, ACTION_DONE, ACTION_RESET, ACTION_JUMP,
ACTION_JUMP_NEGATIVE, ACTION_JUMP_TOO_LONG

The next table shows the state space contribution made by the Fusion Sets of the HCPN
Model.

HCPN Module | HCPN Places Corresponding State Space Contribution (in
NuSMYV variable bits),
domain size L := maximum substack level of
PAM Stack Instance, 0 < L <
15 .
without with

optimizations | optimization

DISPATCH GF:State 4 % 33 N/A 2+6

DISPATCH GF:Inc 2 N/A 1

DISPATCH GF:State 0, ..., GF:State <L> | (4 x 33) x (L + 1) N/A 2+6)x (L
+1)

Table 19: State Space Minimization - Fusion Sets

117

M.Sc. Thesis — C. Kulbakas

McMaster — Computing & Software

Here, the column “without optimizations” shows Not Applicable (N/A) because we

interpret Fusion Sets as optimizations. The HCPN places GF:State 0, GF:State 1, ...,

GF:State <>, 0 < L < 15, denote the PAM Stack Execution Substack Level states.

Pamtester-fm, during parsing of the PAM Stack Instance, determines the maximum

substack level of the handlers comprising the PAM Stack Instance. Hence, the generated

HCPN, and the corresponding Transition System only refer to Substack Levels between 0

and the maximum Substack Level detected. This maximum stubstack level is denoted by

L.

Lastly, Table 20 shows the remaining elements of the NuSMV encoding of an HCPN

model that contribute to the state space of the Transition System.

Component of NuSMYV variable Corresponding State Space Contribution (in
NuSVM NuSMV bits),
Encoding variable domain | n := number of handlers of
size substack
k = number of times the
corresponding HCPN module
instance is used in the HCPN
model
without with
optimizations optimization
Depth Counter tsidepth n [logzn] [log,n]
Transition firedTransition bl [log,(ITD] [log,(ITD]
Relation helper

Table 20: State Space Minimization - non-HCPN state space contributors

The Depth Counter

The Depth Counter is a component that we introduce into the NuSMV encoding of the

corresponding HCPN model. The Depth Counter functionality is implicit in the HCPN

model. The function of the Depth Counter is to keep track of the current execution depth

118

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

of the PAM Stack Execution. The HCPN model does not have an explicit notion of
“depth”, but structurally, the HCPN model implicitly specifies the “depth” of each HCPN
module HANDLER <x> structure via the placement of HANDLER_<x> module
instance in relation to other HANDLER <x> module instances. Specifically, given a
HANDLER <x> module instance, where x € 0..n — 1, where n is the number of
handlers comprising the PAM Stack, then the depth of HANDLER <x> is X, i.e.
HANDLER 0, is the first handler, and the depth of this handler is 0.

The Depth Counter is a critical factor in state space minimization. It is the Depth
Counter that allows us to re-use the NuSMV variables associated with HCPN module
ACTION instances. This way, as shown above, the number of HCPN module ACTION
instances is “constant” (0 or 1) in the number of k times (0,if k = 0,1,if k > 0) that
the HCPN module ACTION instance is used in the HCPN model, as opposed to linear in
k.

Specifically, each time we transition into a new depth, i.e. via the firing of transition
tInit_1, or via the firing of HCPN module Action transitions tD_<x> <k x> 0, or
tD_<x> <k x> 1 (if exists, i.e. ACTION _DONE), then we update the Depth Counter to
hold the value of the depth of the handler which is going to be executed next.

Additionally, only for the transitions tD_<x> <k x> 0andtD <x> <k x> 1,ina
sense, we add a “transition guard” to these transitions. This “transition guard” only exists
in the NuSMYV encoding. This “transition guard” does not exist in the HCPN model
encoding. The template for the generation of this “transition guard” is: [d = <x>], where

x is the handler depth of the transition, i.e. given tD_1_0 0, the transition of

119

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

ACTION _OK 1 0 HCPN module instance in the HCPN model of ACME Corp (Figure
62 on page 96), the “transition guard” generated is: [d = 1]. This means that in the
Transition System, the NuSMYV encoding representing the firing of the transition
tD_1 0 0 will not fire the transition if the value of the “token” d is not 1.

The “token” d is taken as being the current depth. The value of d is taken to be the
current value of the Depth Counter, i.e. the value of the NuSMYV variable ts_depth.

The above concepts are illustrated in Figure 72. This NuSMV Depth Counter can be
interpreted as an HCPN Fusion Set ts_depth, where two edges are added, one outgoing
from ts_depth, to the transition in question, and one incoming to ts_depth, from the
transition in question. The guard is also assigned to the transition in question. Then, the

transition becomes enabled, only if the current value of ts_depth equals the depth of the

handler to which the transition belongs to.

'GF:Depth’

tait_1 o : =

b " GF:pH_2
A TS

N pHas
N
CONTROL

-.\ - J
< Ld=0] o5
/ et Handier_1: HANDLER
. N Tetgeien T
e » : iy

Figure 72: NuSMV - the Depth Counter

Semantically, the Depth Counter ensures that even if we have a single set of NuSMV
variables representing multiple HCPN module ACTION <name(x)> <x> <k x>

instances at multiple depths (each Action instance must belong to a distinct depth, by

120

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

definition), then only one transition tD_<x> <k x> 0O ortD <x> <k x> 1 will be
enabled. This ensures that, semantically, the next handler chosen to be executed is chosen
by the appropriate transition. For example, in Figure 72, only one of tD 0 0 0 and
tD 1 0 0 can become enabled and fire, consequently, choosing the next handler to be
executed. Summarizing, the Depth Counter allows us to use one set of NuSMYV variables
to encode multiple HCPN module ACTION instances. This allows us to achieve constant
state space contribution in the number of handlers n and Action module instances k (in
contrast to linear contribution).

We discuss the formulation of the Transition Relation, including the firedTransition

helper below.

Human Readability and Transition System-HCPN Similarity

The naming conventions beween elements of the HCPN, places and transitions, and
their NuSMV counterparts, variables and transition relation terms, respectively, were kept
same, where possible, and similar otherwise. Also, the NuSMV encoding reflects the
HCPN net structure, i.e. relation between places and transitions, with a similar
relationship between NuSMYV variables, and the Transition Relation that acts on these
variables.

For example, given an HCPN place called p_End, we define the corresponding
NuSMYV variable called p_End.

For example, when defining a transition relation, we make use of naming conventions

such as ‘firedTransition’, ‘guardEnabled’, etc.

121

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

As a result, when one is working with the Transition System, i.e. model creation,
formula specification, model checking, and model checking, it is straight forward to
interpret and to relate NuSMV concepts back to the corresponding HCPN and its PAM

Stack Instance.

NuSMV Enceding Implementation

As mentioned above, generation of a NuSMV encoding of a Transition System is done
automatically by pamtester-fin using hard-coded templates. Below, we omit the details of
the format of these templates. Instead, we proceed by example. For all examples in this
section, unless noted otherwise, we use the HCPN model instance for ACME Corp
(Section Example of “Partial” Unfolding of HCPN Model: HCPN model for ACME

Corp on page 91).
NuSMV Moduiles
An HCPN model is encoded as a single NuSMV module.

Encoding HCPN places as NuSMV variables

An HCPN place not belonging to a Fusion Set corresponds to a distinct NuSMV
variable. Hence two distinct HCPN places, both not belonging to a Fusion Set, will each
have a distinct NuSMV variable created for them. For example, the HCPN place pC_0_S
corresponds to a distinct NuSMV variable also called pC_0_S. Similarly, HCPN place

pC 1 S has its own NuSMYV variable pC 1 _S.

122

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

In contrast, given an HCPN Fusion Set, all HCPN places belonging to this Fusion Set
are represented by a single NuSMV variable. For example, the Fusion Set GF:Inc
contains the following HCPN places: pC 0 Inc, pC 1 Inc, pC 2 Inc, pC_3_Inc and
pTerm_Inc. All four of these HCPN places are represented by the NuSMYV variable
gf inc.

To specify a NuSMYV variable, one must specify three properties of this variable:
domain, using the VAR keyword,; initial state, using the INIT keyword; and how the
value of this variable changes under the Transition Relation of the Transition System,
using the TRANS keyword. For example, Table 21 shows the NuSMV encoding of the

HCPN place p_Start.

VAR p_Start : {EMPTY, 1};

INIT p_Start in { 1 };

TRANS next(p_Start) in

case
next (firedTransition)=tIinit 1 : EMPTY;
1 : p Start;

esac;

Table 21: NuSMV encoding of CPN Place "p_Start’

We define a NuSMV variable p_Start, via the VAR keyword, to represent the HCPN
place p_Start.

The HCPN place p_Start can either contain a single CONTROL token, or contains no
tokens. We encode this by representing the CONTROL token as the value 1, and the
place containing no tokens as the value EMPTY. The domain of p_Start is defined to only
contain these two possibilities, either p_Start contains no tokens, or it contains the single
control token, i.e. {EMPTY, 1}. We encode this in NuSMV syntax by the statement VAR

p_Start: {EMPTY, 1}.

123

JRABERDR U A

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

The initial marking of the HCPN has the place p_Start contain a single CONTROL
token, i.e. I’CONTROL. We define this in NuSMV by encoding the value of the NuSMV
variable p_Start, in the initial state to have value 1. This is done using the INIT keyword,
with the statement: INIT p_Startin { 1 }.

Lastly, in the HCPN, if the transition tInit 1 fires, then a CONTROL token is
removed from the place p_Start. Otherwise, if the transition tInit 1 is not fired, then the
value of the place p_Start stays the same. In our NuSMYV encoding, this is encoded as part
of the Transition System’s Transition Relation, using the TRANS keyword, using the
statement TRANS next(p_Start) in case next(firedTransition)=tInit_1 : EMPTY; 1 :
p_Start; esac;. The definition of the Transition Relation, and its connection with the
CPN’s Firing Rule is elaborated on below.

As another example, Table 22 shows the NuSMV encoding of the CPN ending place

‘p_End’.

VAR p End : {EMPTY, O, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 };
INIT p_End in { EMPTY };
TRANS next (p_End) in
case
next (firedTransition)
next (firedTransition)
next (firedTransition)
1 : p_End;
esac;

tTerml : 6;
tTerm?2 : gf_state_stat;
tTerm3 : 31;

Table 22: NuSMV encading of CPN Place ‘p_End’

Encoding HCPN Fusion Sets as NusMV variables

124

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Each Global HCPN Place (a set of HCPN places all acting as a single place, but
requiring multiple HCPN place instances) was implemented as a single NuSMV variable.
This was a critical factor as an arbitrary PAM Stack Instance is near constant in the
amount Fusion Set HCPN places, and hence has a constant contribution to the state space

of the resulting NuSMYV Transition System (see Table 19 on page 59).
Encoding Multi-Coloured HCPN Places as NuSMV Variables

Given an HCPN place whose colour set is a cross product of multiple sets, our
NuSMYV encoding represents this place via multiple NuSMV variables — one NuSMV
variable per colour set. For example, the fusion set GF: state has the following colour set:
IMPR x STAT = {EMPTY,-1,0,1} x {EMPTY,0,1,..., 31}. Thus, we define two NuSMV
variables, one for the set IMPR and the other for the set STAT.

As an aside, in the case where there is an incoming and outgoing arrow consuming and
producing the same multiset of tokens, then this trivial 'consumption and replacement is
not represented by the NuSMYV encoding, i.e. transition tA 0 0 1 consumes and places
(1,8) from/into pA_0_0O_state.

As an aside, in the case that a transition consumes and produces a tokens from/to a
place, we do not encode the consumption in NuSMV. We only encode the production.
This is because by encoding the production, we implicitly encode the consumption by
overwriting the value of the NuSMYV variable implementing the HCPN place. For
example, tA 0 0 2 consumes (i,s) from pA_ 0 0 state, and produces (1,r) into

pA 0 0 state, but we only encode the producing of (1,r).

125

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

An example of a partial encoding is shown in Table 23.

VAR gf state impr : { EMPTY, -1, 0, 1};
INIT gf state impr in {EMPTY};
TRANS next (gf state impr) in

case
~-— produce
next (firedTransition) = tInit_1 : 0;
next (firedTransition) = tA 0_0_2 : 1;
next (firedTransition) = tA 0 2 2 : -1;
next (firedTransition) = tA 0 2 3 : -1;
-—— consume

next (firedTransition)
next (firedTransition)

tTerm_ 1 : EMPTY;
tTerm 2 : EMPTY;

--- otherwise
1 : gf state impr;

VAR gf state stat : { EMPTY, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
12, 13, 14, 15, 1ie, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
29, 30, 311};:
INIT gf state stat in {EMPTY};
TRANS next (gf_state_stat) in
case

--— produce

next (firedTransition) = tInit 6 : 0;

next (firedTransition) = tA 0 0 2 : 1;

next (firedTransition) = tA 0 2 2 : pA 0 2 S;

next (firedTransition) tA 0.2 3 : 6;

—-~— consume
next (firedTransition) tTerm 1 : EMPTY;
next (firedTransition) = tTerm 2 : EMPTY;

—-—— otherwise

1 : gf_state_stat;
esac;

11,
28,

Table 23: Encoding multi-coloured HCPN places

126

D MNEVAIIN HFS S-SR LRSS P

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Encoding HCPN Transitions, Firing Rule as NuSMV Transition Relation

HCPN places are represented as a set of NuSMV variables (1 variable per colour set
component). The domains of the HCPN Places are encoded as domains of the NuSMV
variables. A marking of the HCPN corresponds to an assignment of values to each of the
NuSMYV variables. When the HCPN’s marking changes to a new marking, this
corresponds to a new assignment of values to each of the NuSMV variables.

In HCPNSs, firing of transitions changes the marking. In a Transition System, it is the
transition relation that changes the values of NuSMV variables.

Hence, we represent the firing of HCPN transitions via the Transition Relation of the
Transition System.

We illustrate the NuSMYV encoding of a transition relation with a “toy” example. The

HCPN is shown in Figure 73.

12 |
pl p2
X 1
11 -
12
p3
[t#1]
13 X

Figure 73: Toy Example - HCPN

127

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

The corresponding HCPN “behaviour” is shown in Figure 74.

Figure 74: Toy Example - HGPN "behaviour"

128

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

In this case, the initial marking of this HCPN is M_1, then the corresponding NuSMV

encoding is as follows:

—--— HCPN place encoding

--- declare variables, and define domain of variables
VAR pl : { EMPTY, 1, 2 };

VAR p2 : { EMPTY, 1, 2 };

VAR p3 : { EMPTY, 1, 2 };

—-—— initialize variables
INIT pl in { 1 };:

INIT p2 in { EMPTY };
INIT p3 in { EMPTY };

—-- specify how the HCPN marking changes under a firing of a
transition

-— HCPN place pl

TRANS next (pl) in

case
next (firedTransition) = t1 {1,2}; -- choice, either 1 or
next (firedTransition) = t2 EMPTY; -- consume token
next (firedTransition) = 3 EMPTY; -- consume token
1 : pl; -- default, keep value same

esac;

-— HCPN place p2

TRANS next (p2) in

case
next (firedTransition) = t2 : 1;
next (firedTransition) = tl1 : EMPTY;
1 : p2;

esac;

—-— HCPN place p3

TRANS next (p3) in

case
next (firedTransition) = t3 : pl;
1 : p3;

esac;

——- HCPN Firing Rule encoding
—-- declare the firedTransition variable Transition Relation helper
VAR firedTransition : { DNE, tl1l, t2, t3 };

--- initialize firedTransition
INIT firedTransition in { DNE };

——-- define the HCPN firing rule
—-— first, define what it means in NuSMV for a transition to be
enabled

- we need the preset of our transitions to be populated with the
required tokens for consumption

129

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

DEFINE pre tl := p2 != EMPTY;
DEFINE pre t2 := pl != EMPTY;
DEFINE pre t3 := pl != EMPTY;

-—~ second, define guards

~ we need the guard of our transitions to evaluate to TRUE
DEFINE guard_tl := TRUE;

DEFINE guard_t2 := TRUE;

DEFINE guard t3 := pl != 1;

-- third, combine preset and guard conditions into enabled condition
- we need the enabled condition to require that both the preset and
guard conditions are TRUE

DEFINE tl enabled := (pre_tl & guard tl);
DEFINE t2 enabled := (pre t2 & guard t2);
DEFINE t3 enabled := (pre t3 & guard t3);

—— fourth, complete the transition relation definition

TRANS (tl enabled & next(firedTransition) = tl1)

| (£2_enabled & next (firedTransition) = £2)

| (t3_enabled & next(firedTransition) = t3)

| ('tl enabled & !t2 enabled & !t3_enabled) &
next (firedTransition) = DNE)

Figure 75: Toy example - HCPN and corresponding NuSMV Encoding including Transition
System encoding

The transition relation definition for the variable firedTransition ensures that the
firedTransition is set to one of t1, t2, t3 or DNE. This is because it always evaluates to

TRUE since, after simplification, it is of the form (1¢p V ¢):

(p2 !'= EMPTY) | (pl != EMPTY) | (pl != EMPTY & pl != 1)
|
(1 (p2 != EMPTY) & !(pl != EMPTY) & !(pl != EMPTY & pl != 1))

Table 24: Transition Relation - firedTransition NuSVM variable

Thus, the transition relation function ->, in our case the function next(), under all
circumstances is defined (total) for the variable firedTransition, i.e. for all states, the

variable firedTransition has a definition for its next value.

130

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

In turn, this fact causes the rest of the system variables to be set, due to their portion of
the Transition Relation definition. The number 1, in the case definitions “1 : p1”, “1 : p27,
“1:p3”, is the default case. The default case always evaluates to true, and is always
chosen if there are no other cases that evaluate to true. Since all TRANS constraints, for
all of the variables, contain a default “1: ...;” entry, hence all variable case statements

also evaluate to true under all conditions.

TRANS next (pl) in

case
next (firedTransition) = tl : {1,2}; —-- choice, either 1 or 2
next (firedTransition) = t2 : EMPTY; —-- consume token
next (firedTransition) = t3 : EMPTY; -- consume token
1 : pl; —-- default, keep value same

esac;

TRANS next (p2) in

case
next (firedTransition) = t2 : 1;
next (firedTransition) = tl : EMPTY;
1 : p2;

esac;

TRANS next (p3) in

case
next (firedTransition) = t3 : pl;
1 : p3;

esac;

Table 25; Transition Relation - HCPN Places

Thus, since all system variables have a defined value in the next state, i.e. via the
next() transition function in their respective TRANS constraint section, thus, the
Transition System as a whole has a defined next state, under all conditions. Thus, the
transition relation is defined for all conditions. Thus, TRANS is total - a requirement for
Transition System transition relations (recall that for all states s of the system, there must
exist a state s’ of the system such as that s -> s’, where -> is the transition relation. In this

case, this requirement holds.

131

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Lastly, note that although the HCPN marking M2 is a deadlock marking, i.e. the
HCPN cannot reach a new marking from M_2, the corresponding Transition System still
moves to another state! Precisely, when M_2 is reached (i.e. the HCPN enters a deadlock
marking), the next() function sets firedTransition = t3, and thus causes all system
variables p1, p2, and p3 to retain old values, i.e. next(p1)=p1, next(p2)=p2, next(p3)=p3.
This Transition System variable valuation is what defines the Transition System state. In
other words, the Transition System state is viewed as a 4-tuple containing the values of
the Transition System variables. Mainly, M_2 is described as (firedTransition, pl, p2,
p3)=(t3, EMPTY, EMPTY, 2).

Now, as mentioned above, note that although the underlying HCPN does not change
its marking anymore, the Transition System still moves into another state! Once in
Transition System state M_2, the TRANS constraint causes the following updates to the
system variables: next(firedTransition) = DNE, next(p1)=p1, next(p2)=p2, next(p3)=p3,
thus the new state is described by (firedTransition, p1, p2, p3)=(DNE, EMPTY, EMPTY,
2), and thus, is not the state M_2. We define a new state, called M_d, i.e. M_d := (DNE,
EMPTY, EMPTY, 2). Hence, TRANS causes the Transition System to change state from
M 2toM_d.

This is illustrated in Figure 76.

132

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

firedTransition=13 [
pl=EMPTY £
p2=EMPTY
p3=2

firedTransition = DNE 1
pL=EMPTY |3
Pz = EMPTY
p3=2

Figure 76: The System variables underlying the Transition System

Specifying and Verifying “Security Properties” of Linux-PAM
Configurations

Iniroduction

Given the generated Transition System, which describes the “behaviour” of an HCPN
model of a PAM Stack Instance execution, we can analyze the behaviour of this HCPN.

This analysis simulates the effect of the HCPN Firing Rule on the markings of the HCPN.

133

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

We do this by simulating the possible state changes of the corresponding Transition
System.

So, first, we use NuSMV to build a Transition System model instance, and then we ask
NuSMYV to simulate the possible state changes of this Transition System instance.
Furthermore, we request that NuSMV, while iterating through these state changes, checks
whether or not certain system properties (atomic expressions in Atoms) hold on the
iterated-over system states (use the labelling function L to check whether or not a system
property critical to the security of the corresponding Linux-PAM Configuration, aka a

“security property” ¢ is tre in the iterated-over state s, i.c. is it the case that ¢ € L(s)?

Determining All Possible PAM Stack Execution Retwrn Values

For example, suppose we are considering the following Transition System state, shown

in Figure 77.

134

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

firedTransition = DNE

pEnd=0

IMPR X STAT

—Gdne
ot
plerm_inc ———— tTerm 3

CONTROL

Figure 77: Labeling Function - Example - ACME Corp

Here, as discussed in prior sections, the underlying HCPN is in a deadlock state. The
corresponding Transition System state is also in a “deadlock” state in a sense that the
Transition System is not able to change from the state M_d to another (distinct from
M_d) state. This is because the underlying HCPN Marking cannot reach any other
marking. This situation corresponds to the end of the PAM Stack Execution of the
corresponding PAM Stack Instance of the HCPN model.

We are interested in this particular situation because we want to know the valuc of the

NuSMYV variable pEnd. The value of NuSMV variable pEnd corresponds to the value of

135

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

the PAM_RETURN token value residing in the HCPN place p_End (if exists, otherwise
corresponds to EMPTY) in the underlying HCPN. The PAM_RETURN value contained
in p_End corresponds to the PAM Stack Execution PAM_RETURN value returned by
Linux-PAM at the end of the PAM Stack Execution. Semantically, the resulting
PAM_RETURN value of the PAM Stack Execution determines whether or not the
authentication-related functionality was successful, i.e. the user was able to authenticate,
the user account check was successful, the user password update was successful, the log
on session set up or tear down was successful, the setting of user credentials was
successful.

For example, if p_ End = 0, then the PAM_RETURN value is PAM_SUCCESS = 0.
This means that the authentication-related functionality (i.e. the client-called Management
Function f) was a success. On the other hand, if p_End belongs to {1, 2, ..., 30}, then the
authentication-related functionality was not successful, i.e. the user failed authentication,
the user account check failed, the user password update failed, the log on session set up
failed, the log on session tear down failed, the setting of user credentials failed. Lastly, if
p_End = 31, then a “stacked” PAM requested that the PAM Stack Execution is paused so
that the user can provide additional information for the proper carrying out of the
authentication-related functionality.

When a Linux-PAM Adminsitrator creates a Linux-PAM Configuration, one of the
first questions that arise is: what are the possible PAM RETURN values of this Linux-

PAM Configuration.

136

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

At this time, the methods for determining the set of possible PAM_RETURN values,
for a Linux-PAM configuration, are limited.

For example, there exists a software tool called pamtester. The administrator tells the
pamtester tool which Linux-PAM service, for which Management Function to test. In
turn, pamtester establishes an authentication process with Linux-PAM (via pam_start()
Client API function), and calls the Management Function in question. The obtained
PAM RETURN is then reported back to the user. The limitation here is that the
PAM_RETURN result used a single PAM Stack Execution trace to obtain this result.
There was no enumeration of possible PAM Stack Execution traces.

Furthermore, the Linux-PAM administrator may attempt to “manually” enumerate the
possible PAM Stack Execution traces. This method is based on manual enumeration,
including changing environment settings, i.e. provide a password during authentication,
don’t provide a password during authentication. This method is based on Linux-PAM
Administrator experience and knowledge of Linux-PAM. Hence, this method is also
limited.

The next section describes how pamtester-fm enumerates all possible PAM Stack
Execution traces, and hence provides all possible PAM_RETURN values for an arbitrary
Linux-PAM Configuration, for an arbitrary Linux-PAM Service, for an arbitrary

Management Function.

137

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Formal Specification of “Security Properties” via CTL

Pamtester-fm, in its current state tackles the problem of enumerating all possible PAM

5 Stack Execution return values. To do this, pamtester-fm model checks Transition System

describing all of the possible PAM Stack Executions of the corresponding Linux-PAM
Instance, generated from the Linux-PAM Configuration of interest.

This model checking consists of checking, for all PAM_RETURN values, if it is true
that for all computation paths starting at the intial state, for all states comprising each
computation path, the value of the variable p_End does not equal the PAM_RETURN

value. Precisely, the formal specification is show in Figure 78.

138

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

set verbose level 0

unset counter_ examples

m check ctlspec -p "AG pend != 0"
check ctlspec -p "AG pend != 1"

. check ctlspec -p "AG pend != 2"
: check ctlspec -p "AG pend != 3"
check:ctlspec -p "AG pend != 4"
check_ctlspec -p "AG pend != 5"
check _ctlspec -p "AG pend != 6"
check ctlspec -p "AG pend != 7"

check ctlspec -p "AG pend != 8"
check ctlspec -p "AG pend != 9"
check ctlspec -p "AG pend != 10"
check ctlspec -p "AG pend != 11"

check ctlspec -p "AG pend != 12"
% check _ctlspec -p "AG pend != 13"
: check ctlspec -p "AG pend != 14"
check ctlspec -p "AG pend != 15"

check ctlspec -p "AG pend != 16"
check ctlspec -p "AG pend != 17"
check ctlspec -p "AG pend != 18"

check ctlspec -p "AG pend != 19"
check ctlspec -p "AG pend != 20"
check ctlspec -p "AG pend != 21"

check _ctlspec -p "AG pend != 22"
check _ctlspec -p "AG pend != 23"
check ctlspec -p "AG pend != 24"
check _ctlspec -p "AG pend != 25"
check ctlspec -p "AG pend != 26"

check ctlspec -p "AG pend != 27"
check ctlspec -p "AG pend != 28"
check ctlspec -p "AG pend != 29"
check ctlspec -p "AG pend != 30"
check ctlspec -p "AG pend != 31"

Figure 78: Computation Tree Logic formula list for obtaining the set of all possible
PAM_RETURN values of a PAM Stack Instaince Execution

Formal Verification of “Security Properties” via Model Checking

Pamtester-fm instructs NuSMV to build the transition system model, and then to

model check this model.

Pamtester-fm uses the command line syntax in Figure 79 to instruct NuSMYV to do this.

139

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

nusmv —-v 0 -dynamic —load ${nusmv_test profile} ${nusmv_model file}

Figure 79: Pamtester-rm NuSMV Command Line Syntax for Checking of Linux-PAM
Configurations

The algorithm used for the model checking of the system is critical. The —dynamic
NuSMYV option specifies that NuSMV uses “dynamic ordering of BDD variables”. When
we did not use the ‘-dynamic’ option, we observed that even simple Linux-PAM
configurations (ones reaching five or six “stacked” PAMs) exhausted the memory on our
test system®. Also, time-wise, model-checking times were reaching close to 8 hours
before computer memory was exhausted. In contrast, when using the ‘-dynamic option’,
we did not reach such limitations at five or six “stacked” PAMs. In fact, our HCPN
models of PAM Stack Instances reaching 10s and 100s of “stacked” PAMs were handled
relatively “easily”, i.e. 1s to10s of seconds while using under 100 MB of RAM.

The ‘-load ${nusmv_test profile}’ arguments instruct NuSMYV to carry out extra
commands, as specified in the file ${nusmv_test profile}. The contents of this file are

shown in Figure 80.

® pC with 3 GB RAM and a Dual Core Intel 2 Ghz CPU.

140

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

set on_failure_script quits
set verbose level 0

echo
"

echo ">>>>>> NuSMV: building a NuSMV-internal model for the NuSMV-
encoded hierarchical Coloured Petri Net representing the Linux-PAM
configuration:"

go;

time;

echo

"

echo ">>>>>> NuSMV: running the verification of security properties on
the NuSMV-internal model:"

echo
"

source test.check all return_ values;
echo

time;
echo
n

quit;

Figure 80: Pamtester-fm NuSMV Test Profile script

The test profile script opens another file called test.check all return values, via the
‘source test.check all return_values;’ command. The contents of this file are the
“security properties” to be checked on theTransition System models. The contents of this
file were already shown above, in Figure 78 on page 139.

The last argument, ‘${nusmv_model _file}’, identifies a file containing a list of files,
cach of these files containing a NuSMV Syntax encoding of the Transition Systems

Ao ilas tha DA Ctanly Tnat B 1
describing the PAM Stack Instance Executions to be checked (for whether or not the

faiead

“security properties” hold during simulation). The contents of this file are shown in

Figure 81.

141

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

./smv/crond_smv.txt
./smv/cups_smv.txt
../smv/gdm-autologin_smv.txt
../smv/gdm smv.txt
./smv/login_smv.txt
./smv/passwd_smv.txt
./smv/smtp_smv.txt
./smv/sshd smv.txt
./smv/sudo_smv.txt
./smv/su_smv.txt
./smv/wireshark smv.txt

Figure 81: Pamtester-fm file list containing NuSMV encodings of PAM Stack Instance
Execution possibilities for Linux-PAM Configurations of Production-grade Linux-PAM
Services

Once NuSMYV loads the security properties from Figure 78 on page 139, then NuSMV
uses the Test Profile in Figure 80 on page 141 to carry out automated transition system
model building and model checking, where the transition system encodings are obtained
from the files listed in Figure 81.

The Transition System encodings in Figure 81 represent production-grade Linux-PAM
configurations take from Red Hat Fedora Core 6.

To illustrate, an example of the output from an automated pamtester-fm session was
captured and a portion of it is presented in Figure 82. This output shows the automated
verification of “security properties” of Linux-PAM Configurations for the crond and

cupsd Linux-PAM Clients.

142

i
|
i
!

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

[kkulbakas@localhost verification]$ source test driver.sh update2.nusmv_test profile
update2.nusmv_model list

ATTEREILETEELLELAL TR LR LAV LAY
ATTRTIRTETR LTV AN

***x%** This is pamtester-fm.

**%x%x%x%* Tegt Harness Driver, v.0.0.1 --EXECUTION START on Mon Jul 20 20:37:22 EDT 2009.

<nusmv_test profile> : update2.nusmv_test_profile
<nusmv_model list file>: update2.nusmv_model list

ATELEATATATIATLHELALARA LA EL R LARTRE A LRLLTTER LRI LA A
ALY

**%xx* This is pamtester—-fm.

*xx+*x+ Tnyoking test number '1l' out of '11' on Mon Jul 20 20:37:22 EDT 2009

<nusmv_model_file> : ../smv/crond smv.txt
<nusmv_test_profile> : update2.nusmv_test_ profile
NuSMV command line : nusmv -v 0 -dynamic -load update2.nusmv_test_profile -i ../smv/crond_smv.txt

ALERLALEALAT AT LA TR AR AR
AT

FILE ->>> update2.nusmv_test_profile

*** This is NuSMV 2.4.3 (compiled on Sat Apr 4 20:10:25 UTC 2009)

**%* Por more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

**%* Please report bugs to <nusmv@irst.itc.it>.

>>>>>> NuSMV: building a NuSMV-internal model for the NuSMV-encoded hierarchical Coloured Petri Net representing the
Linux-PAM configuration:
elapse: 2.3 seconds, total: 2.3 seconds

>>>>>> NuSMV: running the verification of security properties on the NuSMV-internal model:

is false
is true
is true
is false
is true
false
is true
is false
is true

--specification AG pend !=
~-specification AG pend !=
—-specification AG pend =
--specification AG pend !=
--specification AG pend !=
—-specification AG pend !=
--specification AG pend !=
—--specification AG pend !=
-~-specification AG pend !=

COLAUBWN O
-
17

—--specification AG pend != is true

—-specification AG pend != 10 is true
--specification AG pend != 11 is true
~-specification AG pend != 12 is true
--specification AG pend != 13 is true
—--specification AG pend != 14 is true
--specification AG pend != 15 is true
~-specification AG pend != 16 is true
--specification AG pend != 17 is true
--specification AG pend != 18 is true
—--specification AG pend != 19 is true
—--specification AG pend != 20 is true
—--specification AG pend != 21 is true
—--specification AG pend != 22 is true
—-specification AG pend != 23 is true
--specification AG pend != 24 is true
—--specification AG pend != 25 is true
~-specification AG pend != 26 is false
—-specification AG pend != 27 is true

--specification AG pend != 28 is true
--specification AG pend != 29 is true
—--specification AG pend != 30 is true
—-specification AG pend != 31 is true

elapse: 11.3 seconds, total: 13.5 seconds

Quitting the BMC package...

Done
ATTITERERRERRLATATIRETREAATE AR TATIERA LR TAEALELLRLLLLLLLLALLLLLLLALALY
ALY

**xk%% This is pamtester-fm.

%x* Tnvoking test number '2' out of '11' on Mon Jul 20 20:37:40 EDT 2009

143

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

<nusmv_model file> : ../smv/cups_smv.txt
<nusmv_test_profile> : update2.nusmv_test_profile
NuSMV command line : nusmv -v 0 -dynamic -load update2.nusmv_test_profile -i ../smv/cups_smv.txt

ALLREELR AR TR LR LA TAR AL AR AT LA AL AL LUR AR
ALELRRARARANAA Y

FILE ->>> update2.nusmv_test_profile

*** This is NuSMV 2.4.3 (compiled on Sat Apr 4 20:10:25 UTC 2009}

+** For more information on NuSMV see <http://nusmv.irst.itc.it>

*** or email to <nusmv-users@irst.itc.it>.

*** please report bugs to <nusmv@irst.itc.it>.

>>>>>> NuSMV: building a NuSMV-internal model for the NuSMV-encoded hierarchical Coloured Petri Net representing the
Linux-PAM configuration:
elapse: 1.9 seconds, total: 1.9 seconds

>>>>>> NuSMV: running the verification of security properties on the NuSMV-internal model:

is false
is true
is true
is false
is true

~-~-specification AG pend
--specification AG pend
--specification AG pend
—-specification AG pend
--specification AG pend

[S T

n
CaNAUaWwN RO

[

«

-~specification AG pend false
——specification AG pend != is true
--specification AG pend != is false
--specification AG pend != is true
—-specification AG pend is true

o

10 is true
11 is true
12 is true
13 is true
14 is true
15 is true
16 is true
17 is true
18 is true
19 is true
20 is true
21 is true
22 is true
23 is true
24 is true
25 is true
26 is false
27 is true
28 is true
29 is true
30 is true
31 is true

~-specification AG pend
~-specification AG pend
--specification AG pend
--specification AG pend
--specification AG pend
——specification AG pend
-—specification AG pend
—-specification AG pend
—--specification AG pend !
—--specification AG pend
--specification AG pend
--specification AG pend
--specification AG pend
~--specification AG pend
~-specification AG pend
--specification AG pend
--specification AG pend
—--specification AG pend
--specification AG pend
-~specification AG pend
~-specification AG pend
—-specification AG pend

monou

(I | |

IR]

/]

elapse: 5.1 seconds, total: 7.0 seconds

Quitting the BMC package...
Done

Figure 82: Pamtester-fm automated, formal verification of "security properties” of Linux-PAN|
Configurations

Interpreting NuSMV Model Checking Resuits

models. Pamtester-fm does this in an automated manner, as shown above. Pamtester-fim

obtains the output from NuSMV,and parses, processes and presents the results of this

144

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

model checking, as necessary. Continuing the example from above, the output provided
by pamtester-fm for the verification of security properties of the Linux-PAM

Configuration for user authentication for the login program is shown in Figure 83.

R T T N NN NN NNRNNNNNNNY
ALELREERIR VLRV ALY

k%xk This is pamtester-fm.

***xx%x% Inyoking test number '5' out of '11' on Mon Jul 20 20:38:00 EDT 2009

<nusmv_model_ file> : ../smv/login_smv.txt

<nusmv_test profile> : update2.nusmv_test profile

NuSMV command line : nusmv -v 0 -dynamic -load update2.nusmv_test_profile -i ../smv/login_smv.txt

ATTLELTTEEEA TR TR AR RV L
ALV LAY

FILE ->>> update2.nusmv_test_profile

*** This is NuSMV 2.4.3 (compiled on Sat Apr 4 20:10:25 UTC 2009)

#%% For more information on NuSMV see <http://nusmv.irst.itc.it>

or email to <nusmv-users@irst.itec.it>.

Please report bugs to <nusmv@irst.itc.it>.

>>>>>> NuSMV: building a NuSMV-internal model for the NuSMV-encoded hierarchical Coloured Petri Net representing the
Linux—-PAM configuration:
elapse: 2.3 seconds, total: 2.3 seconds

>>>>>> NuSMV: running the verification of security properties on the NuSMV-internal model:

is false
is true
is true
is false

-~ specification AG pend !=
—— specification AG pend !
~- specification AG pend

-~ specification AG pend !

I

CRLAN D WO
-
w

-- specification AG pend != is true
—-— specification AG pend ! false
-- specification AG pend != is true
-- specification AG pend != is false
-— specification AG pend != is true
-— specification AG pend != is true

-— specification AG pend
—-— specification AG pend
-- specification AG pend
-- specification AG pend
—— specification AG pend != 14 is true
-~ specification AG pend != 15 is true

1

1

!

!

1

1

1

1

1

1

!= 10 is true

1

1

1

1

13
-- specification AG pend != 16 is true

1

1

1

1

1

1

1

1

1

1

1

!

1

i

1

!'= 11 is true
=12 is true
1= 13 is true

-- specification AG pend != 17 is true
-~ specification AG pend !
-- specification AG pend !
—— specification AG pend !
~~ specification AG pend !
~~ specification AG pend !
-— specification AG pend !
~~ specification AG pend !
~- specification AG pend !
-— specification AG pend !
-- specification AG pend

-~ specification AG pend

-- specification AG pend

~- specification AG pend !
~- specification AG pend !

18 is true
19 is true
20 is true
21 is true
22 is true
23 is true
24 is true
25 is true
26 is false
27 is true
28 is true
29 is true
30 is true
31 is false

L T S T A T |

elapse: 2.0 seconds, total: 4.3 seconds

Quitting the BMC package...
Done

Figure 83: Pamtester-fm formal verification of ‘security properties’ for user authentication for the
login program

145

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

As shown in Figure 83, it took 2.3 seconds for NuSMYV to build the transition system
model instance. It took another 2 seconds for NuSMV to model check this model instance
to determine the truth or falsity of the provided “security properties”. The total time for
model instance build and model check was 4.3 seconds.

The results of the verification are shown in Figure 84.

is false
is true
is true
is false
is true

-~ specification AG pend
—-- specification AG pend !
-- specification AG pend
-- specification AG pend !
-- specification AG pend

Ll
CowaUsWNEO
e
w

-- specification AG pend false
—- specification AG pend != is true
~-- specification AG pend != is false
-~ specification AG pend != is true
-~ specification AG pend != is true
-- specification AG pend != 10 is true

I= 11 is true
= 12 is true

-- specification AG pend
-- specification AG pend

-- specification AG pend != 13 is true
-- specification AG pend != 14 is true
-- specification AG pend true
-- specification AG pend != 16 is true
-- specification AG pend != 17 is true
-- specification AG pend true

[/ ']
o
©
%
w

19 is true
20 is true
21 is true
22 is true
23 is true
24 is true
true
26 is false
27 is true
28 is true

-- specification AG pend
-- specification AG pend
-- specification AG pend
-- specification AG pend
-- specification AG pend
-- specification AG pend
-- specification AG pend
~- specification ARG pend
~- specification AG pend
-—- specification AG pend
-~ specification AG pend 29 is true
-- specification AG pend != 30 is true
-— specification AG pend != 31 is false

o
-
o
o
2]

R R
N
g
[
@

[

Figure 84: Pamtester-fm verification result for the checking of "security properties" for the login
program

Each of the output lines shown in Figure 84 corresponds to a distinct “security property”
listed in Figure 78 on page 139.

For example, the output line ‘—specification AG pend != 0 is false’ corresponds to the
“security property” ‘check ctlspec -p "AG pend != 0’. In this case, this means that the

e A

CTL formuia “AG pend{=0” is not true in the transition system model instance. This
means that in the corresponding HCPN model, it is false that there is never a token whose

value is 0, in the HCPN place p_End. In other words, it is true that at some point, there is

146

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

a token of value 0 in the HCPN place p_End. This means that in the corresponding PAM
Stack Instance’s PAM Stack Execution, there exists some PAM Stack Execution which
returns a PAM_RETURN value of 0. Since, in this example, the PAM Stack Instance is
the Effective PAM Stack Instance for the Management Function pam_authenticate(),
thus, ultimately, this result means that it is possible for a user to authenticate successfully
using the login program.

To summarize the verification results in Figure 84, the set of PAM_RETURN values
that can be possibly returned during user authentication for the Linux-PAM Configuration
for the login program is comprised of the following:

e PAM SUCCESS =0,

e PAM_SERVICE ERR =3,
e PAM BUF ERR =35,

e PAM AUTH ERR =7,

e PAM ABORT =26,

e PAM_INCOMPLETE = 31.

147

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

RESULTS

At first, it turned out that even with the structural optimizations done during HCPN
specification (i.e. minimizing domains of HCPN places, minimizing amount of HCPN
places used, not using any HCPN places for Transitions, etc., see Table 15 on page 110 to
Table 20 on page 118), and then, minimizations done during NuSMV encoding of HCPN
specifications (i.e. Depth Counter, see Figure 72 on page 120), we still succumbed to the
State Space Explosion problem.

To overcome the State Space Explosion problem, we used another model verification
algorithm, called dynamic reordering. NuSMV utilizes the CUDD library to use this
algorithm. The CUDD library implements many model verification algorithms.

NuSMYV does not use the dynamic reordering algorithm by default. One has to
explicitly instruct NuSMV to use it. Pamtester-fm does this by using the ‘-dynamic’
command line argument when executing NuSMV (see Figure 79 on page 140).

To illustrate the drastic difference between the usage of the default model verification
algorithm used by NuSMYV, and the dynamic reordering model verification algorithm,
Table 26 on page 153 shows a summary of our test results when using the default
NuSMYV algorithm, and the Table 27 on page 154 shows a summary of our testing when
using the dynamic reordering algorithm.

For these tests, we used a Linux-PAM Configuration that was simple, yet provided
some complexity. Specifically, we started with a “base case” Linux-PAM configuration,

shown in Figure 85.

148

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

testservice auth [default=ok] pam nologin.so

Figure 85: State Space Explosion - Test "Base Case” — Linux-PAM Configuration

This base case uses the Linux-PAM Service testservice. The Linux-PAM Service
Group is auth. The Complex Control specifies that all PAM_RETURN values, i.e. {0,1,
..., 31}, are to be mapped to the Action ‘ok’ by the Control function, i.e.

(VY return|return € {0,1, ...,31}: C(return) = —1) holds. The last token is the PAM:
pam_nologin.so PAM. Recall, in our model, we define all PAM as a single HCPN
transition which produces exactly one PAM_RETURN value when fired. This return
value belongs to the set of the modeled, possible returned values of the pam_nologin.so
PAM. In this case, we modeled this set to be the values PAM_SUCCESS =0,

PAM BUF ERR =5,PAM_AUTH ERR =7, PAM UNKNOWN USER = 10,

PAM IGNORE = 25.

The HCPN model of this base case is shown in Figure 86.

s XL 8

erTn T =y

- 5 2002 1vss 0} s ImALs

wesy
J— - J— P Y [{-gelpssol
N " p Z ow] —_— 2= : L
[. T SURSUININ S ampva i I - " t 5
X ey —moay IRy gy D op che e paes covfizlase0)] 7 PO dpeoss e oans T s gent
— ot - e w v ish
—_ -4 P = -

L4 oma
- . N \M_.J b

< . ey

Figure 86: State Space Expiosion - Test “Base Case” — HCPN model

Then, we ensued our testing by creating Linux-PAM configurations, increasing by the

number of “stacked” PAMs. Each such configuration was created using the base case

149

M.Sc. Thesis - C. Kulbakas McMaster — Computing & Software

configuration from Figure 85. For example, a test Linux-PAM configuration where the

number of “stacked” PAMs is nine is shows in Figure 87.

testservice auth [default=ok] pam nologin.so
testservice auth [default=ok] pam nologin.so
testservice auth [default=ok] pam nologin.so
testservice auth [default=ok] pam nologin.so
testservice auth [default=ok] pam nologin.so
testservice auth [default=ok] pam nologin.so
testservice auth [default=ok] pam nologin.so
testservice auth [default=ok] pam_nologin.so
testservice auth [default=ok] pam nologin.so

Figure 87: State Space Explosion - Test "Base Case” — Linux-PAM Configuration with 9 "stacked"
PAMs

We started at a configuration with one module, and proceeded to increase the number
of modules by one, for each subsequent test case. Our test platform was a machine with
the following specification: 2.0 Ghz Dual Core CPU, 3 GB RAM, GNU/Linux. We
experienced State Space Explosion, both, in terms of storage requirement of working
memory (RAM), as well as time. In terms of both RAM and time, we observed
exponential increase in both, as we increased the number of “stacked” PAMs.

During Transition System verification, first, NuSMV builds a model instance of this
Transition System. Then, secondly, NuSMYV proceeds to model check this model
instance. During the model checking stage of model verification, the “security properties”
that were used in this model checking where the CTL formulas checking for which

2

as shown in Figure 78 on page 139.

150

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

; Although we saw evidence of State Space Explosion in terms of both RAM and time
requirements, it was RAM that was the ultimate “show stopper”, occurring at the first

stage of verification — the model building stage.

Evidence of the State Space Explosion Problem

When we tested a configuration with five, six and seven “stacked” PAMs, the RAM
requirement for the model building were 260, 1162 and 1877 MB of RAM, respectively.
The model building stage of the verification, for the configuration with eight “stacked”
PAMs, did not finish. Instead, the NuSMV process crashed with an error message
“add to bdd: result = NULL”. Upon investigation, this error was generated by a function
supplied by the CUDD® library, the function defined in the file C source code file of
CUDD, the file named dd.c. Upon further investigation, the CUDD user manual mentions
that this error indicates that the process has ran out of memory. This was supported by the
fact that our system memory was exhausted by the NuSMV process. The time that it took
for the RAM to be exhausted was 233 seconds.

In terms of time and the State Space Explosion, it was observed that for test
configurations of three, four, five and six “stacked” PAMs, the model checking stage of
the model verification process took 1, 6, 214 and 1539 seconds, also an exponential
curve.

Due to these results, it was clear that using the default NuSMV model verification

algorithm, it was not realistic for pamtester-fm to verify production Linux-PAM

8 NuSMYV uses the CUDD package for its library which implements model building algorithms.

151

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

configurations. This is because, even though, the average observed Linux-PAM
Configuration (default Linux-PAM installatioin on Fedora Core 6) is only 5 “stacked”

PAMs, none-the-less, our test configuration used only a single action — Action ‘ok’. This

was a problem because production Linux-PAM Configurations use, on average, between

3 and 4 Actions®.

The above results are summarized in Table 26 (N/A — not available, N/R — not

recorded, comments between <>).

% In the production Linux-PAM configurations that were tested, most configuration lines use the Basic
Control syntax, which uses between 3 and 4 Actions per Basic Control token.

152

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

i Build Model Model Check model
! #of #ofstate | Read Time RAM #BDD BDDs/Clus | Transition Time RAM
“stacked | variables® | model, used uscd nodes, in ter Relation used used
” flatten (seconds) (MB) millions) | (Clusterl) Totality (seconds) (MB)
PAMS hierarchy, # (Cluster2) Check
Build flat clusters) . (seconds)
model
(seconds) .
(Cluster6)
1 96 0 0.1 N/R . N/R N/R . 0.3 0.0 N/R
2 106 0 0.2 N/R- N/R N/R -1 09 0.1 N/R
3 116 0 0.5 N/R N/R N/R 5.6 0.7 N/R
4 224 0 2.8 N/R N/R N/R 28.3 5.7 100
5 132 0 19.6 260 N/R N/R 187.9 214 315
6 142 0 118.5 1162 14321 2782970 NR 1539 865
2224
, 1242
i 6 20023
; 1070
i 411 , ,
7 152 0 664.8 1877 75364 12651772 N/R: - S }-NR N/R
4411 ; k
4049
6 4041
21775
672
8 160 0
|
E
|

I8 il Eil RS BTN | S IPRE TGRS | 9 At
-~ Table 26: State Space Explosion - Results Summary

Overcoming the State Space Explosion Problem

It took the use of the dyamic reordering algorithm (via the ‘-dynamic’ NuSMV option,
see above) to overcome the State Space Explosion problem, and hence make pamtester-
fm viable for use for production Linux-PAM configurations.

Table 27 shows the test results for testing of Linux-PAM configurations when using

this algorithm. The improvement in NuSMV performance was dramatic.

® Note, the HCPN and NuSMV encoding has changed slightly since the test. The test shows results for the
older HCPN and NuSMYV encodings, where as the HCPN encoding shown in Figure 86 uses the improved
encoding. In any case, the older and the newer encodings are similar in terms of net structure, and use the
same net structure and NuSMV optimizations.

153

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Build Model Model Check
model
#of # of state Read Time RAM (#BDD BDDs/Cluster { Transition Time | RAM
“stacked” | variables'® | model, used used nodes, in (Cluster1) Relation used used
PAMS flatten (seconds) | (MB) millions) (Cluster2) Totality (seco | (MB)
hierarchy, # . Check nds)
Build flat clusters) . (seconds)
model .
(seconds) (Cluster6)
10 N/R] N/R 1.3 N/R N/R N/R 0.2 N/R N/R
20 N/R NR] 28 N/R NR N/R 2.6 “N/R N/R
40 N/R NR 9.2 122 NR N/R 275 12 N/R
80 N/R 0.1 34.1 N/R N/R 1 N/R 88.3 8.3 N/R
160 1392 NR 165.2 505 | 211182 | NRR NR WR | NR
19
320 2676 N/R 562.8 91.7 809828 NR NR ‘NR | NR
35 |

Table 27: Overcoming State Space Explosion -~ Results Summary

Note that the amount of stacked PAMs is much larger than what is normally used for
production Linux-PAM configurations. Here, our test Linux-PAM conﬁ@ration reaches
320 “stacked” PAMs. In contrast, an average production Linux-PAM configuration (as
found on Fedora Core 6 default Linux-PAM installation), was around 4 “stacked” PAMs!

Here, even at 320 “stacked” PAMs, we only use 91.7 MB of RAM and 562 seconds
when building our transition system model (in contrast to already using 260 MB of RAM
at 5 “stacked” PAMs, and using 664.8 seconds at 7 “stacked” PAMs, using the default
NuSMYV algorithm)!

Similarly, drastic improvements are seen, both in the transition relation totality check

time, and in the model checking time.

1% Note, the HCPN and NuSMV encoding has changed slightly since the test. The test shows results for the
older HCPN and NuSMYV encodings, where as the HCPN encoding shown in Figure 86 uses the improved
encoding. In any case, the older and the newer encodings are similar in terms of net structure, and use the
same net structure and NuSMYV optimizations.

154

M.Sc. Thesis ~ C. Kulbakas McMaster — Computing & Software

Further research, and a complete test suite needs to be carried out, and fully
documented to make further comments.

None the less, these results are encouraging, especially when the test platform is a
household PC — an off-the shelf Lenovo laptop with a Dual Core 2.6 Ghz CPU and 3 GB

of RAM.

Results of Verification of Production Linux-PAM Configurations

Linux- Management PAM Stack Transition System Model Verification
gﬁi\flt Function gﬁt‘e‘l:;ili?’ Gener.a"cion of Mode'l _Checking of
Pams) Trans1t10n System Model Transm.on System
(in seconds) Modeltime
(in seconds)
sudo pam_authenticate() 4 1.9 5.0
cups pam_authénticateo 4 1.9 5.1
sshd pam_authenticate() 4 2.0 5.1
smtp pam_authenticate() 4 1.8 53
passwd pam_authenticate() 4 2.0 53
login pam_authenticate() 5 23 2.0
gdm pam authenticate() 5 24 23
su pam_authenticate() 5 2.0 11.9
crond pam_authenticate() 6 23 11.3
wireshark | pam_authenticate() 6 2.3 24.2
average ‘ 4.7 2.1 7.8

Table 28: Results of pamtester-fm verfication of ‘security properties’ of production Linux-PAM
configurations

Based on the optimizations made in the HCPN and Transition System specifications,
and after choosing a better-performing model checking algorithm, we used pamtester-fm

to do specification and verification of several, production Linux-PAM configurations.

155

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Specifically, pamtester-fim was used to specify and verify production Linux-PAM
Configurations for the following Linux-PAM Clients: sudo, cups, sshd, smtp, passwd,
login, gdm, su, crond and wireshark.

Only the results for Linux-PAM Configuration corresponding to the
pam_authenticate() Management Function are refered to in this section.

Pamtester-fim was used to parse the corresponding Linux-PAM Configurations,
generate the corresponding PAM Stack Instance HCPN models, and generate a NuSMV-
syntax encoding of the corresponding Transition System.

Then, pamstester-fm executed the NuSMV program, instructing NuSMV to use
dynamic reordering (via the ‘—dynamic’ argument), with the encoded Transition Systems,
and the “security properties” as input. The specifics of how pamtester-fin does this is

outlined in section on page 139.

Table 28 outlines the results of the production Linux-PAM configuration testing.

156

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

DISCUSSION

It is useful to be able to obtain the set of possible PAM_RETURN values of a PAM
Stack Execution, of an Effective PAM Stack Instance corresponding to an arbitrary
Linux-PAM Configuration, for any Linux-PAM client program, for any Management
Function.

Given the complexity of the operation and configuration of Linux-PAM, a
modification of a single element of a Linux-PAM configuration can affect the structure
and execution of the Effective PAM Stack instances of the Linux-PAM configuration.
This in turn may affect the authentication-related functionality that is provided by the
affected PAM Stacks. Sometimes, such a modification may also alter the set of possible
PAM_RETURN values of an Effective PAM Stack instance.

For instance, suppose that before a modification, an Effective PAM Stack instance
associated with pam_authenticate() for the login program is capable of returning
PAM_SUCCESS = 0. This means that it is possible to successfully carry out user
authentication (successfully authenticate to the system). Now, suppose that the
administrator make a single modification to the Linux-PAM Configuration of the login
program. Furthermore, suppose that this modification results in the Effective PAM Stack
instance of pam_authenticate() to no longer be able to return PAM_SUCCESS = 0.
Effectively, this modification resuited in a Denial of Service (DOS) condition, as now,

users are not able to successfully authenticate to the system.

157

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

An automated tool like pamtester-fm, a tool that can automatically generate the set of
all possible PAM_RETURN values of a PAM Stack instance, just by this functionality
alone, already has a tremendous utility.

For example, in the above case, a Linux-PAM administrator can run pamtester-fm on
the Linux-PAM Configuration before the configuration modification, and after the
configuration modification. Comparing both results, the Linux-PAM administrator can
see how a modification affects the set of possible PAM_RETURN values, including
creation of a DOS condition. A DOS condition is a major form of an “attack” against an
element of an information technology infrastructure. In this case, pamtester-fm can be
used as a tool to detect DOS conditions, and hence help avoid this major type of “attack”.

Supposing that the HCPN model, and the resulting transition system model are valid
(i.e.accurately represent the PAM Stack execution process and the corresponding Linux-
PAM Configuration), then such envisioned functionality can be achieved, as
foreshadowed by the current state of the pamtester-fm tool. The usage of dynamic
ordering of variables during the model checking phase created “breakthrough” results,
where Linux-PAM Configurations containing 10s and 100s of PAMs were used, yet the
model checking time was only seconds, ones, and tens of minutes. Also, the RAM
requirements were negligible, as even the larger test Linux-PAM Configurations only
used around 30 MB of RAM. Given the above, and the fact that average production
Linux-PAM Configuration consisted of 6 modules, gives the modeler “room to breathe”.
Specifically, the model sophistication can be increased. For example, the HCPN models

describing both the PAM Stack execution (i.e. see Flags, Frozen Chain, PAM Options, in

158

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Limitations), and the execution of individual PAMs (i.e. Flags, PAM Options) can be
made more complex, and hence better approximate their operation.

Another consequence of these results is that Linux-PAM Administrators may perhaps
feel more “adventurous” in their modification and creation of Linux-PAM
Configurations. Currently, major GNU/Linux distributions supply Linux-PAM
Configurations for all of the major applications. Furthermore, it is not a common practice
to make extensive modifications to these configurations, or create new configurations.
Perhaps a tool like pamtester-fm will encourage Linux-PAM Administrators to start
experimenting with modification and creation of Linux-PAM Configurations. For
instance, none of the production Linux-PAM Configurations used in testing contained
substacks, yet substack functionality is a feature of Linux-PAM PAM Stack execution.
Perhaps this feature is not useful, or perhaps Linux-PAM is seen as too complex already,
and introducing substacks into configurations is seen as an unnecessary hazard. Similarly,
most Configuration Lines, within the production Linux-PAM configurations that were
tested, were using Simple Controls. Yet, Linux-PAM offers the flexibility of Complex
Controls. Simple Controls have equivalent Complex Controls. Thus, Simple Controls are
just labels. These labels (i.e. optional, required, sufficient, requisite) are just somebody’s
semantic interpretation of their functionality. Why do Linux-PAM administrators not
create their own semantic interpretations? Again, perhaps the current set of Basic
Controls is sufficient. Or, perhaps, Linux-PAM is just too complex as it is, and modifying
existing configurations or creating new configurations that use Complex Controls is seen

as too dangerous.

159

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Limitations

Pamtester-fm tool is a starting point, or a foundation for further modeling. As such,
there are many limitations that still make pamtester-fin-generated models not close

enough to being valid models of PAM Stack Executions.

PAM modeling is not detailed

Currently, the execution of PAM Module API function implementations, i.e.
implementation of pam_sm_authenticate() of pam_unix.so, is modeled via a single HCPN
transition. In the model, we define this transition to produce exactly one PAM_RETURN
token, where the value of this token belongs to the set of possible return values of the
Module API function implementation.

Thus, we only model a returning of a possible PAM_RETURN value, but we do not
model the execution behaviour of a PAM. In other words, our modeling of an execution
of a PAM solely consists of randomly returning a possible PAM return value. This
modeling does not capture how the PAM functions, given external factors. For example,
the pam_unix.so PAM may behave differently, and hence return only a subset of the
possible PAM return values, if the user supplied password is blank. Currently, our model

is not capable of differentiating this possibility.
PAM options are not modeled

In the Linux-PAM Configuration, the administrator can provide a list of PAM options.

These options parameterize how the PAM functions.

160

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Currently, our model does not implement the usage of options by PAMs.

Some Management Functions are not modeled

For instance, at this point, pamtester-fm does not create valid models for the PAM
Stack Executions of PAM Stack Instances corresponding to the Management Functions:

e pam setcred(),

e pam_chauthtok(), and

e pam close session().

This is because these functions use a feature of PAM Stack execution, called Freeze
Chain. Freeze Chain functionality implements the “freezing” of a PAM Stack Instance
during its execution. A “freezing” of a PAM Stack Instance occurs during the execution
of the PAM Stack Intance. This “freezing” consists of storing the results of the
corresponding “stacked” PAM’s execution return values in the PAM Stack Instance.
Once a PAM Stack is frozen, then, subsequent Management Function executions, called
during the same Authentication Process, may use the “frozen” values (the PAM execution
return values saved on the PAM Stack Instance), instead of the newly obtained PAM
execution return values.

Implementing Frozen Chain in the model requires significant additions to the HCPN

model. Due to this, modeling of Frozen Chain was omitted.

Flags are not modeled

All Management Functions accept a flags argument, i.e. int flags. A flags argument

affects the way that these management functions are carried out, and the way that the

161

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

corresponding “stacked” PAMs provide authentication-related functionality. For example,
for pam_authetnicate(), one flag that can be specified is called
PAM_DISALLOW _NULL_ AUTHTOK. When this flag is passed, this instructs Linux-
PAM to return the PAM_AUTH_ERR = 7 error PAM Stack execution return value, if the
user does not have an authentication token configured on the system, i.e. a blank
password.

Flags affect how the executed PAMs behave. Specifically, these flags are passed onto
the “stacked” PAMs during PAM Stack execution. The list of options is specified as an
argument to the call made to the implementation of the Module API function of the
corresponding Management Function of the “stacked” PAM. For example, supposing that
PAM_DISALLOW_NULL AUTHTOK is specified during the call to .
pam_authenticate() by the Linux-PAM client, then, when Linux-PAM executes the
Effective PAM Stack instance for pam_authenticate(), Linux-PAM calls
pam_sm_pam_authenticate() implementation of each “stacked” PAM and passes
PAM DISALLOW_NULL AUTHTOK as one of the arguments.

Implementation of flag passing would require significant modeling. Also, since
currently, the execution of PAM Module API function implementation is only modeled
via a single HCPN transition, hence it would not be beneficial to model the passing of
flags. This is because, mainly, flags parameterize the execution of Module API function

implementations of PAMs. Thus, we chose to omit modeling of passing of flags, for now.

162

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Future Work

The results of this thesis provide a foundation for a variety of future work. We discuss
future work based on the following categories: improving modeling approximation to
Linux-PAM,; identification of prevalent Linux-PAM configuration scenarios; formalizing
a logic, algorithms, and techniques for Linux-PAM configuration analysis; attacks and
defences from an Information Security perspective; interoperability with other formal
methods software; end-user pamester-fim tool interaction; and next-generation interactive

Linux-PAM systems.

Improving modeling approximation to Linux-PAM

Pamtester-fm lays the foundation for further modeling. PAM modeling needs to
become more sophisticated. PAM Stack Execution also needs to be modeled further.
Passing of flags, PAM Options and Frozen Chain are just some elements that need to be

addressed with further modeling.

Identification of Common Linux-PAM Configuration Scenarios

A set of commonly used PAM Configurations should be identified. This set should be
obtained from the usage patterns of the Linux-PAM community. For example, there
should be a common, prevalent configuration for Linux-PAM authentication with
bindings to a Windows LDAP/Active Directory server, for example. Once identified,
these configurations should be modeled thoroughly, further increasing the utility of

pamtester-fim as a tool in the Linux-PAM administrator’s tool box.

163

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Developing Algebraic Techniques for Linux-PAM Configuration Analysis

A Linux-PAM installation, the Linux-PAM Configurations, the operation of Linux-
PAM clients, the operation of Linux-PAM PAMs, and the surrounding subsystems (i.e.
GNU C Library configuration of user accounts), form an intricate dependency system.
This dependency system can be viewed from different perspectives: as a combination of
algebraic structures, or a composition of subsystems and the protocols that bind them
together.

For example, an Effective PAM Stack Instance is a sequence of PAMs. Hence an
Effective PAM Stack Instance is a sequence. Given two sequences x and y, and a
function, say *, that operates on sequences, what do we get by combining x with y using
this operation? Precisely, what is x * y? What are the properties of x * y? Does x =y?
What is =? Does x * y=y * x? Givenx, y,z, does (x *y) *z=x * (y *z)? Is there a
Linux-PAM configuration that can be viewed as a unity, i.e. x * 1 = x? Questions abound.
In another example, an Effective PAM Stack Instance is a sequence of PAMs. Each PAM
in this sequence is, in a way, dependent on the PAMs preceding it. Suppose + is a
function that stack PAMs together to form PAM Stack Instances. Then, in what ways can
we characterize PAM “stacking”? For example, for which PAMs is it the case thata + a =
a? Would such a system be useful? Could we leverage this notation and the mechanics
behind to study Linux-PAM systems? Le.x *y=(a+b+c)*(d+e)=... etc.

From the view of subsystems and protocols, individual PAMs may embody

functionality that is protocol-like in a way that the PAM operates, or interacts with other

164

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

PAMs or surrounding components. Certainly, some PAMs use protocols to interact with
servers, i.e. LDAP, Kerberos or UNIX authentication PAMs.

Also, Linux-PAM and Linux-PAM Clients have a standardized protocol defined for
Linux-PAM to Linux-PAM Client communication! This protocol ensures that no matter
how the Linux-PAM Client is written, the Linux-PAM Client can provide the necessary
information back to Linux-PAM. For example, whether one is using the login program (a
text-based program) or an X-Window system based GUI program requiring
authentication, the authentication portion for both of these programs has to provide a
username and a password back to Linux-PAM. In order to do this, Linux-PAM uses the
notion of a Linux-PAM Conversation. This Conversation has a protocol-like standardized

definition.

Attacks and Defences from an Information Security Perspective

Just because Linux-PAM is not inherently about cryptography or a communication
protocol, does not mean that it does not fall under the umbrella of Information Security.
On the contrary, the problem of specifying and verifying Linux-PAM configurations is at
the heart of information security. This is because Linux-PAM configurations protect

system access.

Due to this, Linux-PAM configurations, and its surrounding environment (i.e. OS
parameters such as existence of a user account), can be studied as an attack surface. In

this case, an unwitting Linux-PAM administrator is also considered to be an “attacker”.

One such attack is outlined below.

165

M.Sc. Thesis —- C. Kulbakas McMaster — Computing & Software

Unauthorized User Access

We introduce a class of attacks on a Linux-PAM installation, called the Linux-PAM
Configuration Modification (LCM) attack. An attack of type LCM occurs when a Linux-
PAM administrator makes a modification to the existing Linux-PAM configuration,
causing a change to the set of possible PAM Stack executions, where one of these PAM
Stack executions does not satisfy some set of “security properties”.

One instance of an LCM attack causes unauthorized user access to the system.

For example, given a Linux-PAM Configuration for the login program, suppose that it
~ is possible for users to successfully authenticate to the system (a necessary step before a
user can log on to a system, as implemented by login). Now, suppose that the Linux-PAM
administrator makes a modification to the Linux-PAM Configuration of the login
program. Further, suppose that this modification still allows successful authentication,
but, the user in question can now be an unauthorized user — a user without a username or
password configured on the system in question. This is certainly possible. To give a
trivial example, a Linux-PAM Configuration providing successful authentication for an

unauthorized user is shown in Figure 88 .

login auth required pam allow.so

Figure 88: Linux-PAM Configuration enabling unauthorized user access

Here, the Effective PAM Stack Instance for pam_authenticate() contains exactly one
“stacked” PAM — pam_allows.so PAM. The functionality of pam_allow.so PAM consists

of simply returning PAM_SUCCESS, for all Management Functions. Furthermore, for

166

M.Sc. Thesis — C. Kulbakas = McMaster — Computing & Software

the pam_authenticate() function, if the principal does not supply a username when
attempting to authenticate (i.e. an empty username string is provided to the login
program), the pam_allow.so PAM assigns a DEFAULT USER = “nobody” username,
and then returns PAM_SUCCESS = 0.

Although this example is trivial, the point is to demonstrate that a principal (an
external-to-the-system entitity) that does not have a valid user account (and password) on
the system can still successfully authenticate. Actually, such a situation is not far fetched,
as due to the complexity of Linux-PAM Configuration parsing, it is not difficult to make
a mistake (file name creation errors, file location errors, include or substack specification
errors, syntax errors, reaching maximum substack level — root causes which may result in
this condition) where the Linux-PAM configuration parsing results in such a “trivial”
Linux-PAM Configuration''.

Thus, future work can involve creating models where we can detect the conditions that
result in unauthorized user access. In this case, we have to model the notion of an
“unauthorized user” as Linux-PAM interprets it. This can be done by in-depth modeling
of PAM:s that do user authentication. For example, pam_unix.so PAM does user
authentication. Pam_unix.so PAM makes certain GNU C Library function calls which
determine whether or not the principal has a user account on the system. We can abstract
such calls and model them with HCPN constructs. For example, say we create an HCPN

place called ‘pPAM_UNIX-authorized user’ and define its colour set to be a CONTROL

" Recall, Linux-PAM continues to operate even if an error is encountered. Erronous Linux-PAM
configurations continue to be used in provision of authentication-related functionality to Linux-PAM
clients.

167

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

token. Then, semantically, we can define the model such that a CONTROL token is
present in the HCPN place pPAM_UNIX-authorized user, if, and only if, the principal
has a user account on the system (and hence is an authorized user by our definition). This
way, we can introduce the notion of an “authorized user” into our model.

Consequently, when we do model checking, we can employ “security property”
specifications which use the value of pPPAM_UNIX-authorized user to determine
whether or not the principal is an authorized user. Based on this, we can create formal
specifications of “security properties” which involve the notion of an “authorized user”.

Using this approach, we can create automated specifications and verifications of
Linux-PAM configurations, where we can check if, given a Linux-PAM configuration,
there exists a possible PAM Stack Execution where an “unauthorized user” can
successfully authenticate, i.e. “AG (p_End !=0 | pPAM_UNIX-authorized user==1)".

Ultimately, given this capability, the pamtester-fim tool can be used as an Information
Security auditing tool. For example, during penetration testing, the pamtester-fim tool can
be utilized to check if there is a possibility that a Linux-PAM installation allows

unauthorized user access for some application.
Interoperability with Other Formal Methods Software

Ability for pamtester-fm to utilize different model checking software packages should
be incorporated. For example, plug-ins could be written, where each plug-in is dedicated

to a single model checking software package.

168

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Ideally, pamtester-fm should not have anything to do with doing the actual model
instantiation and model checking. The focus of pamtester-fm should be on Linux-PAM
configurations, i.e. parsing of Linux-PAM configurations, and based on this parsing,
generating the appropriate model specification. Once that is done, the model generation
and checking should be left to software tools that are made specifically for that task.
These software tools must have functionality that allows pamtester-fm to control them
programmatically, and for pamtester-fm to be able to obtain output of their analysis.

Ideally, an HCPN export function should be developed. Based on a Linux-PAM
Configuration, Pamtester-fm would generate the HCPN module specification, and then
this export function would encode it into an HCPN format that can be understood by
another, external HCPN software package, which can then run analysis on this HCPN,
including reachability analysis.

Currently pamtester-fim specifies and generates the HCPN model, based on its parsing
of a Linux-PAM Configuration.

Currently pamtester-fm encodes the HCPN model instance into a transition system
specification.

Currently pamtester-fm specifies the transition system model.

Currently, pamtester-fm uses NuSMYV to generate and model check the transition
system model. In this case, pamtester-fm provides NuSMV with the transition system

model specification.

169

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

End-User Pamester-im Tool Interaction

The success of pamtester-fm tool depends on the end-user experience. The difficulty
here is how to create a “push-button” technology that does not require the end-user to
understand the underlying formal methods concepts, yet provides meaningful results. In
particular, how do we present the complexity and operation of PAM Stack Instance
execution and its troubleshooting (model-checking) in an intuitive way that provides
meaningful results back to the end-user? This may be achieved with a GUL

Besides presentation of operation and results of PAM Stack Executions, there are other
aspects that are dependent on the interface between the end-user and pamtester-fm. For
example, the end-user should be able to parameterize the models of PAM Stack
Execution, if needed. For instance, the end-user should be able to specify that the PAM
Stack Execution should assume that the modeled authentication-related task (i.e. user
authentication), had the user provide a blank password.

Lastly, the pamtester-fm interface should leverage the power of today’s visualization
and cheap display technologies. Specifically, PAM Stack Execution visualizations
showing the “stacked” PAMs, and possible PAM Stack executions, real-time, or post-
mortem could be done. The applications for this could be live system monitoring as well

as information security visualization.

Tomerd £ mes mceen 25 e Vit mmvn ot iorn § 2oz, DART Cuorobrrznn o
T‘%t}&t-ucuca dlLierii llliCi d\.tl\lc hllluA'rAlJE J:,/Dt‘:lllb

Lastly, using all of above future work items as a foundation, next-generation

interactive Linux-PAM systems could be developed. For example, such systems could do

170

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

real-time, reactive re-configuration of production Linux-PAM configurations, combined

with visualization and monitoring capabilities.

171

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

CONCLUSION

One can use formal specification and verification techniques to solve a variety of
problems. For example, in (6), the (sophisticated) ferryman uses the method of model
checking a Transition System to ensure that his goods (a wolf, a goat, and a cabbage) are
all safely transported to the other side of the river. In our case, pamtester-fm formally
specifies and verifies that all possible PAM Stack execution sequences satisfy a set of
“security properties” of the form: “it is not possible for a PAM Stack Instance to return
PAM_RETURN =x”, where X is an integer between 0 and 31.

Formal specification and verification approaches do not have to be, and neither should
one expect them to be, “silver bullets” (tools that solve a problem completely, and with
no error). For example, before an Information Technology industry presentation about the
pamtester-fm.org project, the presentation organizer playfully asked: “so, is pamtester-fm
going to make my Linux 100% secure?” This comment sheds light on the existence of an
IT industry view that formal methods are expected to completely, and with no error, solve
a problem they undertake. If this was not bad enough, additionally, the general feeling
amongst IT industry practitioners is that formal methods are: difficult to understand, and
too impractical (in terms of money and time investment) to apply to real-world problems.
These views were the driving factors behind this thesis as a whole, and the development
of the pamtester-fm tool and the pamtester-fim.org project — proof-of-concept work done
as part of this thesis work.

The solutions generated by such tools do not have to fully, and with no error, solve a

problem. As long as a portion of a problem is addressed, and this is useful, then progress

172

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

has been made. In this case, pamtester-fim “uncovers” the complexity of PAM Stack
executions — a complexity which many Linux-PAM administrators are either unaware of,
or are unable to, or do not bother to, cope with.

The creation of such tools does not have to be constrained by the limitations of
existing formal specification and verification software. As long as the theory is correctly
implemented, editor software, a compiler, and a suite of helper applications can suffice.
In our work, pamtester-fm was written using the C programming language, and utilized
other open source projects, such as NuSMV, GraphViz and GNU/Linux. The existing
formal methods software tools were found to contain limitations which disqualified them
from being used for this thesis. For example, a suite of existing tools could not be found
that would automatically do the job of: accepting an arbitrary set of HCPN module
specifications, combine this set to form a single HCPN, model check the behaviour of this
resulting HCPN, and produce textual output. This forced the development of a custom
tool that would do this job. Albeit, fortunately and critically, the NuSMV software
package was located, which accepts arbitrary transition system specifications as input,
automatically builds and model checks this transition system, and outputs the results of
this check in textual format.

Pamtester-fm provides a foundation on which further modeling can be pursued. Based
on the initial results, it is the opinion of the author of this thesis that software projects,
including ones in the area of Information Security, can benefit from formal specification
and verification methods. Again, they do not have to “promise” a system that is 100%

“secure”, yet their functionality can still be of benefit. In particular, pamtester-fm

173

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

demonstrates how a complex software system can be abstracted to the point where
modeling of this system is manageable, yet useful. One interesting observation of this
work was that when we model behaviour of a software system, we don’t need to model
every variable, or the whole function call chain. In many cases, it is sufficient to model
the first one or two function call levels, and then, only to model a subset of variables.
Often, it is enough to use a single HCPN transition or a single HCPN place to model a
whole function call chain. Also, ignoring or abstracting away portions of the software
system does not take away from the validity of the model. Based on this work, perhaps it
would be useful for software projects to make use of personnel for the purpose of formal
specification and verification.

Lastly, it is the opinion of the author of this thesis that opportunities exist to employ
formal methods. Specifically, automated tools, that are based on formal methods, yet hide
the complexity of formal methods to the tool’s end-users, can assist IT industry
professionals in carrying out regular job duties. In particular, tasks requiring solving
repetitive, well-defined problems, too tedious for humans, yet “easy” enough to create
formal models for, lend well to being approached with such tools. For example,
enumerating all possible PAM Stack Executions, for all Effective PAM Stacks, of an
arbitrary Linux-PAM Configuration, for a list of 10s of Linux-PAM Clients, and doing
this every 5 minutes in a 24/7/365 environment, is an ideal candidate for such a formal

methods approach.

E—(
p
o
le]
“-F
[72]
o
[}
"
[

"3

B
@]
[~}
o
=
D
7]
8
=

@
n
[e]
—
V]
17
o
(e}
=4
=N

<
7]
A
2
=
=
1)
>
0

()]
0]
=
4]
=
=
o}

=

Information Security tools - tools for which demand is likely to increase as our society

becomes increasingly dependent on information technology infrastructures.

174

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

APPENDIX A: Source Code of PAM Stack Instance Execution
Pam_dispatch() from libpam/pam_dispatch.c
Pam_dispatch() chooses the Effective PAM Stack Instance, and then calls

pam_dispatch _aux() to initiate the execution of this Effective PAM Stack Instance.

* This function translates the module dispatch request into a pointer
to the stack of modules that will actually be run. the

_pam dispatch_aux() function (above) is responsible for walking the
* module stack.

*/

E

int _pam dispatch(pam_handle_t *pamh, int flags, int choice)
{

struct handler *h = NULL;

int retval, use_cached chain;

_pam_boolean resumed;

IF NO PAMH("_ pam dispatch”, pamh, PAM SYSTEM ERR);

if (__ PAM FROM MODULE (pamh)) {
D(("called from a module!?™));
return PAM SYSTEM ERR;

}

/* Load all modules, resolve all symbols */

if ((retval = _pam init handlers (pamh)) != PAM SUCCESS) ({
pam_syslog(pamh, LOG_ERR, "unable to dispatch function");
return retval;

}
use_cached chain = _PAM PLEASE FREEZE;

switch (choice) {

case PAM AUTHENTICATE:
h = pamh->handlers.conf.authenticate;
break;

case PAM SETCRED:
h = pamh->handlers.conf.setcred;
use_cached chain = PAM MAY BE FROZEN;
break;

case PAM ACCOUNT:
h = pamh->handlers.conf.acct mgmt;
break;

case PAM_OPEN_SESSION:
h = pamh->handlers.conf.open session;
break;

case PAM CLOSE_SESSION:
h = pamh->handlers.conf.close_session;
use_cached chain = _PAM MAY BE FROZEN;
break;

case PAM CHAUTHTOK:
h = pamh->handlers.conf.chauthtok;
if (flags & PAM UPDATE AUTHTOK) {

use_cached_chain = _PAM MUST_ BE_FROZEN;

}

break;

175

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

default:
pam_syslog(pamh, LOG_ERR, "undefined fn choice; %d", choice);
return PAM ABORT;

}

if (h == NULL) { /* there was no handlers.conf... entry; will use
* handlers.other... */

switch (choice) {

case PAM AUTHENTICATE:
h = pamh->handlers.other.authenticate;
break;

case PAM_SETCRED:
h = pamh->handlers.other.setcred;
break;

case PAM ACCOUNT:
h = pamh->handlers.other.acct_mgmt;
break;

case PAM_OPEN_SESSION:
h = pamh->handlers.other.open_session;
break;

case PAM CLOSE SESSION:
h = pamh->handlers.other.close_session;
break;

case PAM CHAUTHTOK:
h = pamh->handlers.other.chauthtok;
break;

}

}

/* Did a module return an "incomplete state" last time? */
if (pamh~>former.choice != PAM NOT_STACKED) {
if (pamh->former.choice != choice) {
pam_syslog(pamh, LOG_ERR,
"application failed to re-exec stack [%d:%d]",
pamh->former.choice, choice);
return PAM ABORT;
}

resumed = PAM TRUE;
} else {
resumed = PAM FALSE;

}
__PAM TO MODULE (pamh) ;

/* call the list of module functions */
pamh->choice = choice;
retval = pam dispatch aux(pamh, flags, h, resumed, use_cached chain);

resumed = PAM FALSE;
__PAM TO APP(pamh);

/* Should we recall where to resume next time? */
if (retval == PAM INCOMPLETE) {
D(("module (%d] returned PAM INCOMPLETE"));
pamh->former.choice = choice;
} else {
pamh->former.choice = PAM NOT STACKED;
}

return retval;

Figure 89: Source Code of pam_dispatch() from libpam/pam_dispatch.c

176

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Pam_dispatch_aux() from libpam/pam_dispatch.c
Pam_dispatch_aux() does the execution of the Effective PAM Stack Instance, as

described by the PAM Stack Execution algorithm in Table 13 on page 29.

/*
* walk a stack of modules. Interpret the administrator's instructions
* when combining the return code of each module.

*/

static int _pam dispatch_aux(pam handle_t *pamh, int flags, struct handler *h,
_pam _boolean resumed, int use_cached_chain)
{
int depth, impression, status, skip depth, prev_level, stack level;
struct _pam_substack state *substates = NULL;

IF_NO PAMH("_pam dispatch_aux", pamh, PAM SYSTEM ERR);

if (h == NULL) {
const void *service=NULL;

(void) pam_get item(pamh, PAM SERVICE, &service);
pam_syslog(pamh, LOG_ERR, "no modules loaded for '%s' service",
service ? (const char *)service:"<unknown>");
service = NULL;
return PAM MUST FAIL CODE;
}

/* if we are recalling this module stack because a former call did
not complete, we restore the state of play from pamh. */
if (resumed) {
skip depth = pamh->former.depth;
status = pamh->former.status;
impression = pamh->former.impression;
substates = pamh->former.substates;
/* forget all that */
pamh->former.impression = _PAM UNDEF;
pamh->former.status = PAM MUST_FAIL CODE;
pamh->former.depth = 0;
pamh->former. substates = NULL;
} else {
skip_depth = 0;
substates = malloc(PAM_SUBSTACK MAX LEVEL * sizeof (*substates));
if (substates == NULL) {
pam_syslog(pamh, LOG_CRIT,
" pam dispatch aux: no memory for substack states™);
return PAM BUF_ERR;
}
substates([0].impression = impression = _PAM UNDEF;
substates(0].status = status = PAM MUST FAIL CODE;
}

prev_level = 0;
/* Loop through module logic stack */
for (depth=0 ; h != NULL ; prev_level = stack level, h = h->next, ++depth) {
int retval, cached retval, action;
stack _level = h->stack_level;
/* skip leading modules if they have already returned */

if (depth < skip depth) {
continue;

177

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

}

/* remember state if we are entering a substack */

if (prev_level < stack level) {
substates[stack_level).impression = impression;
substates[stack level].status = status;

}

/* attempt to call the module */

if (h->handler type == PAM HT_MUST FAIL) ({
D{("module poorly listed in PAM config; forcing failure"));
retval = PAM MUST FAIL CODE;

} else if (h->handler type == PAM HT SUBSTACK) {
D(("skipping substack handler"));
continue;

} else if (h->func == NULL) {
D(("module function is not defined, indicating failure"));
retval = PAM MODULE_UNKNOWN;

} else {
D(("passing control to module..."));
pamh->mod_name=h->mod_name;
retval = h->func(pamh, flags, h->argc, h->argv};
pamh->mod_name=NULL;
D({"module returned: %s", pam_strerror (pamh, retval))});

—-—

*
* PAM INCOMPLETE return is special. It indicates that the

* module wants to wait for the application before continuing.
* In oxrder to return this, the module will have saved its

* state so it can resume from an equivalent position when it
* is called next time. {This was added as of 0.65)

if (retval == PAM INCOMPLETE) {
pamh->former.impression = impression;
pamh->former.status = status;
pamh->former.depth = depth;
pamh->former.substates = substates;

D(("module %d returned PAM INCOMPLETE", depth));
return retval;

use_cached chain is how we ensure that the setcred/close_session
and chauthtok(2) modules are called in the same order as they did
when they were invoked as auth/open_session/chauthtok(1). This
feature was added in 0.75 to make the behavior of pam setcred
sane. It was debugged by release 0.76.

* % A Ak %

*/
if (use cached chain != PAM PLEASE FREEZE) {

/* a former stack execution should have frozen the chain */

cached_retval = * (h->cached retval p);
if (cached retval == _PAM INVALID RETVAL) {

/* This may be a problem condition. It implies that
the application is running setcred, close_session,
chauthtok (2nd) without having first run
authenticate, open_session, chauthtok(lst)
[respectively]. */

D({("use_cached_chain is set to [%d],"
" but cached_retval == _PAM INVALID RETVAL",
use_cached chain));

178

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

/* In the case of close session and setcred there is a
backward compatibility reason for allowing this, in
the chauthtok case we have encountered a bug in
libpam! */

if (use_cached chain == _PAM MAY BE FROZEN) (
/* (not ideal) force non-frozen stack control. */
cached retval = retval;
} else {
D{("BUG in libpam -"
" chain is required to be frozen but isn't™));

/* cached retval is already _PAM INVALID RETVAL */
}
}
} else {
/* this stack execution is defining the frozen chain */
cached retval = h->cached retval = retval;

}

/* verify that the return value is a valid one */
if ((cached retval < PAM SUCCESS)
Il (cached retval >= _PAM RETURN VALUES)) {

retval = PAM MUST FAIL CODE;
action = _PAM ACTION_BAD;
} else {

/* We treat the current retval with some respect. It may
(for example, in the case of setcred) have a value that
needs to be propagated to the user. We want to use the
cached retval to determine the modules to be executed
in the stacked chain, but we want to treat each
non-ignored module in the cached chain as now being
'required'. We only need to treat the,

_PAM ACTION_IGNORE, _PAM ACTION_IS JUMP and
_PAM ACTION RESET actions specially. */

action = h->actions([cached retval];

}

D(("use_cached chain=%d action=%d cached_retval=%d retval=%d",
use cached chain, action, cached retval, retval));

/* decide what to do */
switch (action) {
case _PAM ACTION_RESET:

impression = substates{stack level].impression;
status = substates([stack level].status;
break;

case _PAM ACTION OK:
case _PAM ACTION DONE:

if (impression == _PAM UNDEF
|| (impression == PAM POSITIVE && status == PAM SUCCESS)) {
/* in case of using cached chain

we could get here with PAM IGNORE - don't return it
if (retval != PAM IGNORE || cached retval == retval)
impression = _PAM POSITIVE;

status = retval;
}
}
if (impression == _PAM POSITIVE && action == PAM ACTION DONE)
goto decision made;
}
break;

{

179

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

case PAM ACTION BAD:
case PAM ACTION_DIE:
#ifdef PAM FATL NOW ON
if (cached retval == PAM ABORT) {
impression = _PAM NEGATIVE;
status = PAM PERM DENIED;
goto decision made;
}
#endif /* PAM FAIL NOW _ON */
if (impression != _PAM NEGATIVE) {
impression = _PAM NEGATIVE;
/* Don't return with PAM IGNORE as status */
if (retval == PAM IGNORE)
status = PAM MUST_FAIL_CODE;
else
status = retval;
}
if (action == _PAM ACTION DIE) {
goto decision_made;
}

break;

case _PAM ACTION_IGNORE:
break;

/* if we get here, we expect action is a positive number --
this is what the ...JUMP macro checks. */

default:
if (_PAM ACTION IS_JUMP (action))} {

/* 1If we are evaluating a cached chain, we treat this
module as required (aka _PAM ACTION OK) as well as

executing the jump. */

if (use_cached chain) {

if (impression == _PAM UNDEF
|| (impression == _PAM POSITIVE
&& status == PAM_SUCCESS)) {
if (retval != PAM IGNORE || cached_retval == retval) {

impression = _PAM POSITIVE;
status = retval;

}
}

/* this means that we need to skip #action stacked modules */
while (h->next != NULL && h->next->stack level >= stack level && action > 0) {
do {
h = h->next;
++depth;
} while (h->next != NULL && h->next->stack level > stack level);
--action; -

}

/* note if we try to skip too many modules action is
still non-zero and we snag the next if. */

}

/* this case is a syntax error: we can't succeed */
if (action) {
pam_syslog(pamh, LOG ERR, "bad jump in stack");
impression = _PAM NEGATIVE;
status = PAM MUST FAIL_CODE;
}

180

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

continue;
decision_made: /* by getting here we have made a decision */
while (h->next != NULL && h->next->stack_level >= stack level) {
h = h->next;
++depth;

}
}

/* Sanity check */

if (status == PAM SUCCESS && impression != _PAM POSITIVE) ({
D(("caught on sanity check -- this is probably a config error!"));
status = PAM MUST FAIL_CODE;

}

free (substates);
/* We have made a decision about the modules executed */

return status;

Figure 90: Source Code of pam_dispatch_aux() from libpam/pam_dispatch.c

181

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

APPENDIX B: Authentication using ‘login’ at ACME Corp

Authentication Policy

ACME Corporation: User Authentication Security Policyi

This is a policy for user authentication for the ‘login’ application.
The ‘login’ application allows a user to log on to a system using a computer terminal.

Step 1: If the user is root, and the user is not using a “secure” terminal, then deny system log on,
and exit the authentication process.

Step 2: Optionally set environment variables.

Step 3: Authenticate the user. If the user does not authenticate successfully, then deny system log
on.

Figure 91: A Linux-PAM Authentication Policy P

182

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Linux-PAM Configuration

The Authentication Policy P shown in Figure 91 is interpreted and translated into a Linux-PAM
Configuration, This Linux-PAM Configuration is specified in Linux-PAM Configuration syntax, and it is
stored in the file /etc/pam.d/login (Figure 92). For the Service ‘login’, Linux-PAM interprets the file
/etc/pam.d/login as the Root of the Client-Specific Linux-PAM Configuration for the Service ‘login’.
Hence, when Linux-PAM creates the corresponding PAM Stack Instances, /etc/pam.d/login is parsed as the

first (and in this case, the only) file.

auth requisite pam securetty.so
auth optional pam env.so

auth sufficient pam unix.so
auth required pam deny.so

Figure 92: A Client-Specific Linux-PAM Configuration C, /etc/pam.d/login, for the Service
Togin’, implementing the Authentication Policy P

Figure 93 shows the implicit and explicit configuration line tokens afier Linux-PAM parses the Client-
Specific Linux-PAM Configuration contained in Figure 92. Implicitly, the Service token is interpreted by

Linux-PAM to be ‘login’. Also, all Simple Controls are shown as their equivalent Complex Controls.

login auth [success=ok, new_auth tok_reqd=ok ignore=ignore default=die] pam securetty.so
login auth [success=ok, new_auth tok reqd=ok default=ignore] pam env.so

login auth {success=done, new_auth_ tok reqd=done, default=ignore] pam unix.so

login auth [success=ok, new auth tok regd=ok, ignore=ignore, default=bad] pam deny.so

Figure 93: The parsed Client-Specific Linux-PAM Configuration C for the Service ‘login’,
implementing the Authentication Policy P

183

M.Sc. Thesis — C. Kulbakas

PAM Stack Specification

McMaster — Computing & Software

CONTROL;
SERVICE Ci . ;
de;zth, lezfal; .S‘ER.IS{.ICE, GROUP: . 2e D) PA;‘H, OPT(I)ONS,
; i G, < REC) v e X: ! '
) G(x)=d
0,12 -1 P
0 0 login auth 25 0 pam_securetty.so K‘\"«Q\K\{"\ N
N ow” -4 Q’\ § 7? \‘\
) 0,12 -1 e :
1 0 login auth pam_env.so
“ow” 0 E\R&R‘M&%
2 0 login auth 8’ 1,2, -2 pam_unix.so %\hﬁﬁ
ow 0 AR §
0,12 -1 @\\\\\\
3 0 login auth 25 0 pam_deny.so N,
Sou” -3 DRSO

Table 29: Generation of PAM Stack Specification for the Authentication Management group
for Service "login™ with Complex Control equivalents

184

s ot e e e bt i e

M.Sc. Thesis — C. Kulbakas

McMaster — Computing & Software

PAM Stack Instance
CONTROL;
SERVICE C;
depth; level; SERVICE; ! PATH; OPTIONS;
K GROUP; d € D(C):
i L 5 X Py 0;
Gy < RECY) vx € X:
T Ci(x)=d
int int
i int h h
handler stack int . n char chat
actions([32) (*func) *mod name *Fargv
_type _level -
0,12 -1 I (pam_sm authenticate(), m\\b
. — pam_ "
0 0 0 login auth 25 0 pam_securetty.so) securetty. so {\:ﬁ\\
“ow” 4 \% ‘\"\\
0,12 -1 I{pam_sm_authenticate(), R
1 0 0 login auth pam_env, so) pam_ &\\“
“ow” 0 — env.so N A Ny
- 1 thenticat ’ o o
. 0,12 2 (pamiém_au enticate () pam o \Q{\\\
2 0 0 login auth pam_unix.so) L b 1.,\
“ou” o) unix.so . ¥
by g M
0,12 -1 I(pam sm authenticate(), X\:\\;\
3 0 0 login auth 25 0 pam_deny.so) pam_ \"n.,‘:\
- deny.so By W
=3 NN

Figure 94: Generation of a PAM Stack Instance for the pam_sm_authenticate() Module API
function for the Service "login”

185

M.Sc. Thesis — C. Kulbakas McMaster — Computing & Software

Bibliography

1. Morgan, A. Linux-PAM Homepage. [Online]
http://lwww.kernel.org/publ/linux/libs/pam/.

2. Unified Login With Pluggable Authentication Modules (PAM), Request For
Comments 86.0. Samar, V and Schemers, R. s.|. : Open Software Foundation,
1995.

3. Samar, V and Lai, C. Making Login Services Independent of Authentication
Technologies. 1996.

4. Cavada, R. NuSMV 2.4 User Manual. NuSMV Model Checker. [Online] 2005.
http://nusmv.irst.itc.it.

5. Jensen, K and Kristensen, L M. Coloured Pelri Nets. Berlin : Springer-
Verlag, 2009.

6. Huth, M and M, Ryan. Logic in Computer Science. Cambridge : Cambridge
University Press, 20066.

7. The Linux-PAM Module Writer's Guide. [Online] 2008.
http://www.kernel.org/pub/linux/libs/pam/.

186

