
i
I
J
d ,

FORMAL MODELING OF LINUX-P AM CONFIGURATIONS

FORMALLY SPECIFYING AND VERIFYING

LINUX-PAM CONFIGURATIONS

USING

HIERARCHICAL COLOURED PETRI NETS AND NUSMV

By

CHRISTOPHER KULBAKAS, B.MATH

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

© Copyright by Christopher Kulbakas, September 20 I 0

1

J
:1
:1

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

MASTER OF SCIENCE (2010)

(Computing & Software)

McMaster University

Hamilton, Ontario

TITLE: Formally Specifying and Verifying Linux-PAM Configurations Using

Hierarchical Coloured Petri Nets and NuSMV

AUTHOR: Christopher Kulbakas, B.Math (University of Waterloo)

SUPERVISOR: Professor S. Qiao

NUMBER OF PAGES: xi, 186

ii

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

Abstract

Authentication frameworks and their implementations are essential to securing

computer systems and networks. One such framework is the Pluggable Authentication

Modules (PAM) published in 1995 as standard OSF-RFC 86.0. PAM solves the

"authentication problem", mainly, how to "integrate multiple authentication mechanisms

in a modular and dynamic fashion", making PAM the de facto choice for authentication

on most Unix and GNUlLinux-based systems. Linux-PAM is an implementation of PAM

for GNUlLinux.

To this day, Linux-P AM configurations are poorly understood by administrators. Ad

hoc, informal PAM-configuration testing techniques exist, but suffer from many

shortcomings.

We introduce an automated, formal approach to Linux-PAM configuration testing.

First, given a Linux-PAM configuration, we dynamically create an "intemal-to-the-tool"

representation of a Hierarchical Coloured Petri Net (HCPN), which encodes all of the

possible authentication process instances associated with this configuration. During this

creation, "base case" HCPN templates are used, each template created only once, i.e.

during tool development, not during testing. Second, we translate the resulting HCPN into

a NuSMV modeL Third, we use NuSMV to verify the model for "security" properties.

A tool prototype, implemented in C, automates these three steps. State space size was

reduced via manual HCPN and Transition System specification tuning. The State Space

Explosion problem was overcome with the use of NuSMV -implemented model checking

algorithms. Industrial Linux-P AM configurations were tested, yielding model building

times in ones of seconds, and verification times in tens of seconds. Also, the tool

produces HCPN representations via Graphviz.

iii

,

J

J
:1

!

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

Acknowledgements

I would like to extend my sincere appreciation and gratitude to my supervisor, Dr.

Sanzheng Qiao, whose guidance and unending patience has made the completion of this

thesis possible.

I would also like to express my gratitude to my committee members, Dr. Ryszard

Janicki and Dr. William Farmer, who provided excellent contributions to my study

throughout. You also expressed a great amount of patience through these trying times -

for this you cannot be thanked enough.

To Dr. Ridha Khedri and Gord - thank you for the discussions and your enthusiasm -

it strengthened my sense of purpose and kept me believing. Last, but not least, to Dr.

Asghar Bokhari and Issam - thank you for sharing your insights and encouragement.

Finally, I would like to express a heartfelt thank you to my family, who provided me

with unending support and encouragement. To Mom, Dad, and Adam, thank you for

every form of support you have given me throughout - I only hope that I have made you

proud. To Mandy and Luis, you too are to be thanked for your continuous support and for

reminding me of my priorities. Lastly, to Monica, you were my bright, shiny light in some

very dark places. I only hope that I can be the type of partner to you, like you have been

tome.

iv

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

Table of Contents
Abstract .. iii

List of Figures .. viii

List of Tables .. xi

INTRODUCTION ... 1

What is Linux -PAM ... 1

Pluggable Authentication Modules ... 2

Standardized Authentication Interfaces .. 9

Integration of Authentication Mechanisms via PAM Stacks .. 11

PAM Stack Composition and Functionality , ... 17

Introduction .. 17

Generating a PAM Stack Instance from a Linux -PAM Configuration .. 20

Generating of Authentication-Related Functionality from a PAM Stack Instance 27

METHODOLOGY - PART I: HCPN Modeling .. 33

Introduction to HCPN Modeling .. 33

From Source Code to HCPN .. 33

Approach to HCPN Modeling ofP AM Stack Executions .. 38

Finding the Balance in HCPN Encoding .. 42

HCPN Model Specification .. 43

HCPN module DISPATCH ... 45

Combining HCPN Modules ... 47

HCPN module Instances and the Instance Hierarchy .. 49

HCPN module INITIALIZE .. 52

HCPN module TERMINATE .. 53

Example: "Combining" DISPATCH with INTIALIZE and TERMINATE .. 54

HCPN module HANDLERS .. 56

HCPN lllodule SUBST ACK .. 59

HCPN module NOT SUBSTACK .. 60

HCPN lllodule MODULE _ <name(x» .. 65

HCPNmoduleMODULE MUST FAIL .. 65 - -

HCPN module MODULE]UNC _ NULL. .. 66

HCPN module MODULE _ <s> .. 66

v

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

HCPN module CONTROL .. 70

Pausing of PAM Stack Execution .. 72

Choosing to Execute an Action .. 75

HCPN module telllplates for Actions ... 78

HCPN module ACTION IGNORE ... 78

HCPM module ACTION OK ... 80

HCPN module ACTION DONE ... 81

HCPN module ACTION BAD ... 82

HCPN module ACTION DIE ... 83

HCPN lllodule ACTION RESET .. 83

HCPN Templates for Action 'jump' .. 85

HCPN lllodule JUMP NEGATIVE ... 85

HCPN module JUMP TOO LONG ... 87
- -

HCPN module ACTION JUMP .. 90

Example of "Partial" Unfolding of HCPN Model: HCPN model for ACME Corp 91

METHODOLOGY -PART II: Transition System Modeling ... 100

Introduction to Transition System Modeling .. 100

Transition Systems ... 101

Formal Definition ofa Transition System ... 102

The State Space Explosion Problem .. 102

Connection between HCPNs and Transitions Systems ... 103

Approach for NuSMV Encoding of HCPN Behaviour ... 108

Introduction .. 108

State Space Minimization .. 109

The Depth Counter ... 118

Human Readability and Transition System-HCPN Similarity ... 121

NuSMV Encoding Implementation .. 122

NuSMV Modules ... 122

Encoding HCPN places as NuSMV variables ... 122

Encoding HCPN Fusion Sets as NuSMV variables ... 124

Encoding Multi-Coloured HCPN Places as NuSMV Variables .. 125

Encoding HCPN Transitions, Firing Rule as NuSMV Transition Relation 127

Specifying and Verifying "Security Properties" of Linux -PAM Configurations 13 3

Introduction .. 133

vi

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

Determining All Possible PAM Stack Execution Retum Values ... 134

Formal Specification of "Security Properties" via CTL .. 138

Formal Verification of "Security Propeliies" via Model Checking ... 139

Interpreting NuSMV Model Checking Results ... 144

RESULTS .. 148

Evidence of the State Space Explosion Problem .. 151

Overcoming the State Space Explosion Problem ... 153

Results of Verification of Production Linux-PAM Configurations .. 155

DISCUSSION ... 157

Lilnitations .. 160

PAM Inodeling is not detailed ... 160

PAM options are not modeled ... 160

Some Management Functions are not modeled ... 161

Flags are not Inodeled .. 161

Future Work .. 163

ImproVillg modeling approximation to Linux-PAM .. 163

Identification of Common Linux -PAM Configuration Scenarios .. 163

Developing Algebraic Techniques for Linux-P AM Configuration Analysis 164

Attacks and Defences from an Information Security Perspective .. 165

Interoperability with Other Formal Methods Software .. 168

End-User Pamester-fm Tool Interaction .. 170

Next-Generation Interactive Linux-PAM Systems .. 170

CONCLUSION ... 172

APPENDIX A: Source Code of PAM Stack Instance Execution .. 175

Pam _ dispatchO from libpam/pam _ dispatch.c .. 175

Pam_dispatch _ auxO from libpam/pam_ dispatch.c ... 177

APPENDIX B: Authentication using 'login' at ACME Corp ... 182

Authentication Policy ... 182

Linux-PAM Configuration ... 183

PAM Stack Specification .. 184

PAM Stack Instance ... 185

Bibliography .. 186

vii

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

List of Figures

FIGURE 1: AUTHENTICATION-RELATED FUNCTIONALITY OF PAM CRACKLIB.SO PAM 3
FIGURE 2: ARCHITECTURE - LlNUX-P AM APIs ... 9
FIGURE 3: ARCHITECTURE - LINUX-P AM CLIENT EXECUTION 11
FIGURE 4: USING EFFECTIVE PAM STACKS TO OBTAIN AUTHENTICATION-RELATED FUNCTIONALITy 12

FIGURE 5: HIGH LEVEL OVERVIEW OF EFFECTIVE PAM STACK CREATION FOR, AND USAGE BY, AN

AUTHENTICATION PROCESS .. 16
FIGURE 6: USING APIs TO UPDATE A PASSWORD ... 17
FIGURE 7: USING APIs TO UPDATE A PASSWORD - EVENT SEQUENCE ... 18
FIGURE 8: FSM OF PAM STACK DISPATCH STATE AND DEPTH UNDER TERMINATION 31

FIGURE 9: PAM AUTHENTICATE- SOURCE CODE ... 35
FIGURE 10: PAM _ AUTHENTICATEO - RESULTING ABSTRACTED SOURCE CODE TO BE MODELED BY HCPN 35
FIGURE 11: PAM _ AUTHENTICATEO - DEBUG CALL - NOT MODELED .. 36
FIGURE 12: PAM _ AUTHENTICATEO - SOURCE CODE - NULL CHECK NOT MODELED 36
FIGURE 13: PAM _ AUTHENTICATEO - SOURCE CODE - CALL SOURCE CHECK - NOT MODELED 36
FIGURE 14: PAM _ AUTHENTICATEO - SOURCE CODE - TIMER - NOT MODELED ... 37
FIGURE 15: PAM _ AUTHENTICA TEO - SOURCE CODE - POST PAM STACK EXECUTION - NOT MODELED 37
FIGURE 16: PAM STACK EXECUTION - PAM _DISPATCHO - CHOOSING THE EFFECTIVE PAM STACK INSTANCE

... 39
FIGURE 17 : PAM STACK EXECUTION - PAM _ DISPATCHO -INITIATING PAM STACK EXECUTION 39
FIGURE 18: P AMTESTER-FM HCPN MODULE DISPATCH TEMPLATE .. 45
FIGURE 19: HCPN MODULE DISPATCH SPECIFICATION FOR AUTHENTICATION VIA "LOGIN" AT ACME

CORP .. 46
FIGURE 20: HCPN MODULE DISPATCH SPECIFICATION FOR AUTHENTICATION VIA "LOGIN" AT ACME

CORP .. 51
FIGURE 21 : PARTIAL INSTANCE HIERARCHY ROOTED AT DISPATCH .. 52
FIGURE 22: P AMTESTER-FM HCPN MODULE INITIALIZE TEMPLATE ... 53
FIGURE 23: HCPN MODULE INITIALIZE INSTANCE; FOR ACME CORP , 53
FIGURE 24: P AMTESTER-FM HCPN MODULE TERMINATE TEMPLATE ... 54
FIGURE 25: HCPNMODULE TERMINATE INSTANCE; FOR ACME CORP ... 54
FIGURE 26: PARTIAL UNFOLDING OF THE HCPN MODULE INSTANCE DISPATCH "COMBINING" DISPATCH

WITH INITIALIZE AND TERMINATE HCPN MODULE INSTANCES; FOR ACME CORP 55

FIGURE 27: PAMTESTER-FM HCPN MODULE HANDLERS TEMPLATE .. 56
FIGURE 28: HCPN MODULE HANDLERS INSTANCE; FOR ACME CORP ... 58
FIGURE 29: PARTIAL UNFOLDING OF THE HCPN MODULE INSTANCES DISPATCH, INITIALIZE,

HANDLERS, TERMINATE; FOR ACME CORP ... 59
FIGURE 30: PAMTESTER-FM HCPNMODULE SUBSTACK TEMPLATE ... 59
FIGURE 31: P AMTESTER-FM HCPN MODULE NOT _ SUBSTACK TEMPLATE ... 60
FIGURE 32: PARTIAL UNFOLDING OF THE HCPN MODULE INSTANCES DISPATCH, INITIALIZE,

HANDLERS, NOT_SUB STACK, TERMINATE; FOR ACME CORP ... 64

FIGURE 33: PAMTESTER-FMHCPN MODULE MODULE_MUST]AIL TEMPLATE 65
FIGURE 34: P AMTESTER-FM HCPN MODULE MODULE _FUNC _NULL TEMPLATE 66
FIGURE 35: PAMTESTER-FM HCPNMODULE MODULE_ <S>TEMPLATE .. 66
FIGURE 36: P AMTESTER-FM HCPN MODULE MODULE_ SECURETTY TEMPLATE 68

viii

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

FIGURE 37: HCPN MODULE MODULE SECURETTY INSTANCE - ACME CORP .. 68

FIGURE 38: PARTIAL UNFOLDING OF THE HCPN MODULE INSTANCES DISPATCH, INITIALIZE,

HANDLERS, NOT _ SUBSTACK, MODULE _ SECURETTY, TERMINATE; FOR ACME CORP 69

FIGURE 39: P AMTESTER-FM HCPN MODULE CONTROL TEMPLATE ... 70

FIGURE 40: HCPN MODULE CONTROL 0 INSTANCE - ACME CORP ... 72
FIGURE 41: "PAUSING" OF PAM STACK-HANDLER 0 IS CHOSEN TO BE EXECUTED 74

FIGURE 42: "PAUSING" OF PAM STACK - PAM SECURETTY.SO PAM RETURNS PAM INCOMPLETE = 31 74 - -

FIGURE 43: "PAUSING" OF P AM STACK - HCPN MODULE TERMINATE IS CHOSEN TO BE EXECUTED 75

FIGURE 44: "PAUSING" OF PAM STACK-PAM STACK EXECUTION TERMINATES ... 75

FIGURE 45: CHOOSING AN ACTION TO EXECUTE BASED ON PAM RETURN VALUE DEFINED BY CONTROL-

PAM SECURETTY.soPAMRETURNSPAM SUCCESS=O .. 76 - -
FIGURE 46: CHOOSING AN ACTION TO EXECUTE BASED ON PAM RETURN VALUE DEFINED BY CONTROL-

ACTION ASSOCIATED WITH ACTION 0 0 IS CHOSEN FOR EXECUTION ... 77
FIGURE 47: P AMTESTER-FM HCPN MODULE ACTION IGNORE TEMPLATE ... 78

FIGURE 48: HCPN MODULE ACTION IGNORE 0 1 - ACME CORP ... 80

FIGURE 49: P AMTESTER-FM HCPN MODULE ACTION OK TEMPLATE ... 80

FIGURE 50: P AMTESTER-FM HCPN MODULE ACTION DONE TEMPLATE ... 81

FIGURE 51: P AMTESTER-FM HCPN MODULE ACTION BAD TEMPLATE .. 82

FIGURE 52: P AMTESTER-FM HCPN MODULE ACTION DIE TEMPLATE .. 83

FIGURE 53: PAMTESTER-FM HCPN MODULE ACTION RESET TEMPLATE .. 84

FIGURE 54: P AMTESTER-FM HCPN MODULE ACTION JUMP NEGATIVE TEMPLATE 85 - -

FIGURE 55: EXAMPLE OF A "BAD JUMP" OF TYPE "NEGATIVE JUMP" ... 86

FIGURE 56: P AMTESTER-FM HCPN MODULE ACTION JUMP TOO LONG TEMPLATE 88 - - -

FIGURE 57: EXAMPLE OF HCPN MODULE ACTION JUMP TOO LONG INSTANCE 89 - - -
FIGURE 58: P AMTESTER-FM HCPN MODULE ACTION JUMP TEMPLATE .. 90

FIGURE 59: GENERATION OF A PAM STACK INSTANCE FOR THE PAM _ SM _ AUTHENTICATEO MODULE API

FUNCTION FOR THESERVICE "LOGIN" .. 93

FIGURE 60: HCPN MODEL - ACME CORP .. 95

FIGURE 61: CLOSE-UP OF HCPN MODULES INITIALIZATION AND HANDLER 0 96

FIGURE 62: CLOSE-UP OF HCPN MODULE HANDLER 1 .. 96

FIGURE 63: CLOSE-UP OF HCPN MODULE HANDLER 2 .. 97

FIGURE 64: CLOSE-UP OF HCPN MODULE HANDLER 3 .. 98

FIGURE 65: INSTANCE HIERARCHY OF HCPN MODEL .. 99

FIGURE 66: EXAMPLE OF TRANSITION SYSTEM .. 101

FIGURE 67: HCPNs AS TRANSITION SYSTEMS - EXAMPLE .. 104

FIGURE 68: HCPNs AS TRANSITION SYSTEMS - EXAMPLE - MARKING MI .. 105

FIGURE 69: HCPNs AS TRANSITION SYSTEMS - EXAMPLE - MARKING M 2 .. 105

FIGURE 70: HCPNsAS TRANSITIONSYSTEMS-EXAMPLE-MARKING M 3 .. 105

FIGURE 71: HCPNBEHAVIOURASA TRANSITION SySTEM .. 106

FIGURE 72: 1",J"uS1"vIV - THE DEPTH COUNTER ... 120

FIGURE 73: Toy EXAMPLE - HCPN ... 127

FIGURE 74: Toy EXAMPLE - HCPN "BEHAVIOUR" ... 128

FIGURE 75: Toy EXAMPLE - HCPN AND CORRESPONDING NuSMV ENCODING INCLUDING TRANSITION

SYSTEM ENCODING ... 130

FIGURE 76: THE SYSTEM VARIABLES UNDERLYING THE TRANSITION SYSTEM ... 133

FIGURE 77: LABELING FUNCTION - EXAMPLE - ACME CORP .. 135

ix

I

I
I

I

~

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

FIGURE 78: COMPUTATION TREE LOGIC FORMULA LIST FOR OBTAINING THE SET OF ALL POSSIBLE

PAM RETURN VALUES OF A PAM STACK INSTANCE EXECUTION .. 139
FIGURE 79: P AMTESTER-RM NuSMV COMMAND LINE SYNTAX FOR CHECKING OF LINUX-P AM

CONFIGURATIONS ... 140

FIGURE 80: P AMTESTER -FM NuSMV TEST PROFILE SCRIPT .. 141
FIGURE 81: PAMTESTER-FM FILE LIST CONTAINING NuSMV ENCODINGS OF PAM STACK INSTANCE

EXECUTION POSSIBILITIES FOR LINUX-P AM CONFIGURATIONS OF PRODUCTION-GRADE LINUX-P AM

SERVICES .. 142

FIGURE 82: P AMTESTER-FM AUTOMATED, FORMAL VERIFICATION OF "SECURITY PROPERTIES" OF LINUX-

PAM CONFIGURATIONS ... 144
FIGURE 83: P AMTESTER-FM FORMAL VERIFICATION OF 'SECURITY PROPERTIES' FOR USER AUTHENTICATION

FOR THE LOGIN PROGRAM ... 145
FIGURE 84: P AMTESTER-FM VERIFICATION RESULT FOR THE CHECKING OF "SECURITY PROPERTIES" FOR THE

LOGIN PROGRAM ... 146
FIGURE 85 : STATE SPACE EXPLOSION - TEST "BASE CASE" - LINUX -PAM CONFIGURATlON 149
FIGURE 86: STATE SPACE EXPLOSION - TEST "BASE CASE" - HCPN MODEL ; 149
FIGURE 87: STATE SPACE EXPLOSION - TEST "BASE CASE" - LINUX-P AM CONFIGURATION WITH 9

"STACKED" PAMs .. 150
FIGURE 88: LINUX-P AM CONFIGURATION ENABLING UNAUTHORIZED USER ACCESS 166

FIGURE 89: SOURCE CODE OFPAM_DISPATCHO FROMLIBPAM/PAM_DISPATCH.C 176
FIGURE 90: SOURCE CODE OFPAM_DISPATCH_AUXO FROM LIBPAM/PAM_DISPATCH.C 181
FIGURE 91: A LINUX-P AM AUTHENTICATION POLICY P ... 182
FIGURE 92: A CLIENT-SPECIFIC LINUX-P AM CONFIGURATION C, /ETC/PAM.D/LOGIN, FOR THE SERVICE

'LOGIN', IMPLEMENTING THE AUTHENTICATION POLICY P ... 183
FIGURE 93: THE PARSED CLIENT-SPECIFIC LINUX -PAM CONFIGURATION C FOR THE SERVICE 'LOGIN',

IMPLEMENTING THE AUTHENTICATION POLICY P ... 183
FIGURE 94: GENERATION OF A PAM STACK INSTANCE FOR THE PAM _ SM _ AUTHENTICATEO MODULE API

FUNCTION FOR THE SERVICE "LOGIN" ... 185

x

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

List of Tables

TABLE 1: AUTHENTICATION-RELATED FUNCTIONALITY OF P AMs BY MODULE API FUNCTION 5
TABLE 2: EXECUTION TREE FOR PAM NOLOGIN.SO PAM WITH SEMANTIC ANNOTATION 7

TABLE 3: FACTORS AFFECTING RETURN VALUES OF PAM NOLOGIN.SO PAM - ORGANIZED BY RETURN

VALUE OF PAM .. 8
TABLE 4: ALGORITHM FOR IDENTIFICATION OF THE ROOT OF A SERVICE CONFIGURATION SPECIFICATION

AND THE PARSING RULE OF THE ROOT ... 14
TABLE 5: DEFINITION OF 'STRUCT HANDLER' DATA STRUCTURE .. 19
TABLE 6: START OF CLIENT-SPECIFIC PORTION OF LINUX-PAM CONFIGURATION FOR SERVICE 'LOGIN' 21

TABLE 7: LINUX-P AM CONFIGURATION IN THE /ETC/PAM.D/SYSTEM-AUTH FILE .. 22

TABLE 8: GENERATION OF PAM STACK SPECIFICATION FOR THE AUTHENTICATION MANAGEMENT GROUP

FOR SERVICE "LOGIN" WITH COMPLEX CONTROL EQUlV ALENTS .. 23
TABLE 9: PAM STACK SPECIFICATION cliTllloginauth WITH CONTROL FUNCTION DEFINITIONS 24

TABLE 10: PAM STACK SPECIFICATION cliTllloginauth WITH CONTROL FUNCTION DEFINITIONS IN "RAW"

FORMAT .. 25
TABLE 11 : GENERATION OF A PAM STACK lNST ANCE FOR THE PAM _ SM _ AUTHENTICATEO MODULE API

FUNCTION FOR THESERVICE "LOGIN" .. 26
TABLE 12: PARTITIONING OF THE RANGE OF THE CONTROL FUNCTION .. 27
TABLE 13: HIGH-LEVEL OVERVIEW OF PAM STACK EXECUTION .. 29
TABLE 14: POSSIBLE PAM RETURN VALUES OFPAMs "STACKED" ON ACME CORP'S

PAM_AUTHENTICATEO PAM STACKlNSTANCE .. , ... 94
TABLE 15: STATE SPACE MINIMIZATION -lNITIALIZA TION AND TERMINATION ... 110
TABLE 16: STATE SPACE MINIMIZATION -HANDLER_ <X>, MODULE_ <X>, MODULE_SUBSTACK,

CONTROL <X> .. 112
TABLE 17: STATE SPACE MINIMIZATION - CONTROL <X> ... 115
TABLE 18: STATE SPACE MINIMIZATION -ACTION_IGNORE, ACTION_OK, ACTION_BAD,

ACTION-PIE, ACTION_DONE, ACTION_RESET, ACTION_JUMP,

ACTION_JUMP _NEGATIVE, ACTION_JUMP _TOO_LONG .. 117
TABLE 19: STATE SPACE MINIMIZATION - FUSION SETS .. 117
TABLE 20: STATE SPACE MINIMIZATION - NON-HCPN STATE SPACE CONTRIBUTORS 118
TABLE 21: NuSMV ENCODING OF CPN PLACE 'p START' .. 123
TABLE 22: NuSMV ENCODING OF CPN PLACE 'P END' ... 124

TABLE 23: ENCODING MULTI-COLOURED HCPN PLACES ... 126
TABLE 24: TRANSITION RELATION - FIRED TRANSITION NuSVM V ARlABLE .. 130
TABLE 25: TRANSITION RELATION - HCPN PLACES .. 131
TABLE 26: STATE SPACE EXPLOSION -RESULTS SUMMARY .. 153
TABLE 27: OVERCOMING STATE SPACE EXPLOSION -RESULTS SUMMARY ... 154

TABLE 28: RESULTS OF P AMTESTER -FM VERFICA TION OF 'SECURITY PROPERTIES' OF PRODUCTION LINUX-

PAM CONFIGURATIONS .. 155
TABLE 29: GENERATION OF PAM STACK SPECIFICATION FOR THE AUTHENTICATION MANAGEMENT GROUP

FOR SERVICE "LOGIN" WITH COMPLEX CONTROL EQUIVALENTS .. 184

xi

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

INTRODUCTION

What is Linux-PAM

Linux-PAM (1), created in 1996 by A. Morgan, is an open source authentication

mechanism primarily meant for GNU/Linux systems. Linux-P AM implements the

Pluggable AuthenticationModules (PAM) framework.

The PAM framework describes a standardized way to do authentication. The PAM

framework was created in 1995 at SunSoft by V. Samar and R. Schemers, and was

published in 1995 as an Open Source Foundation (OSF) Request For Comments (RFC)

standard OSF-RFC 86.0 (2). The PAM framework's improvements over prior

authentication frameworks made it the de facto choice for authentication on most Unix

and GNU/Linux-based systems for the past 14 years. To this day, implementations of the

PAM framework are the primary authentication technology on a wide variety of platforms

including FreeBSD, NetBSD, MAC OS X, Sun Solaris and major GNU/Linux

distributions.

The main goals of the PAM framework addressed limitations of existing authentication

frameworks (2), (3). These goals included the following. The system administrator should

be able to specify the default, system-wide authentication policy, as well as per

application authentication policies. Authentication policies should not only address

authentication, but also other authentication-related tasks related to account, session and

password management. The administrator should be able to integrate the functionality of

multiple authentication mechanisms to carry out individual authentication-related tasks.

1

I

1

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

Last, but not least, changes to authentication policies should not require changes to the

applications that use these authentication policies. In other words, the applications were to

be made independent of the underlying authentication mechanisms.

The PAM framework solved the unified login problem or "how to integrate multiple

authentication mechanisms" (3) which allowed for authentication mechanisms to be field-

replacable, and made applications independent of the authentication mechanisms being

used. This was made possible by: identifying, abstracting and grouping of tasks

associated with authentication; encapsulating the usage of authentication mechanisms into

modules; allowing these modules to be dynamically combined to form complex

authentication-related functionalities; and providing standardized application

programmer's interfaces (APls) through which applications would make use of these

authentication mechanisms.

Pluggable Authentication Modules

The PAM framework introduces the notion of a pluggable authentication module

(PAM). P AMs encapsulate authentication mechanism functionality. Each PAM provides

some authentication-related functionality, whether on its own, or with the help of

external-to-the-PAM authentication mechanisms. For example, in Figure 1 the

pam _ cracklib.so PAM uses multiple authentication mechanisms including the CrackLib2

package (CrackLib2), an external dictionary, and the underlying operating system to

access the external dictionary. A PAM's authentication-related functionality is accessed

2

I
I

j

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

via a Module API. For example, pam_cracklib.so PAM's functionality is accessed via

I
,

Linux-PAM Authentication Mechanisms

(Linux-PAM Library PAMs

!
pam-'r<lcklib.so

Im~mentationof,,~m_lm_ch.uthtotn CrackUb2 Operating System An External

Impllmfnlationcf
Dictionary

FasdstChec\O Implernentalionof

I
openO

f-i hsclrtChectO
openU

I
I pom sm thauthtokll ~

I

l-.Pam_unlx_"pPfoveJ)a5SIl~

I p;mwon:tchHlo I
I

I
i
i
II \. / ,

Figure 1: Authentication-related functionality of pam_cracklib.so PAM

Authentication-related functionality varies between P AMs.

Table 1, on page 5, shows this variability for a number of P AMs, partitioned by

Module API functions, and by Management Groups (each Module API function is

associated with a Management Group).

3

'\

i
j

'IIILSG. rrresrs-'- 'L. KoroEn<SS- WTGlllfa-Srer ==·L·Orrrpunrrg-cc:~:mnWaTE:' _._' -'~-'--------.. ".

Authentication Account Session Password
Management Management Management Management

PAM

pam _ s~ authenticateO pam _ sm _ setcredO pam_ sm _ acct_ mgmtO pam _ sm _open _ sessionO pam _ sm _close _ sessionO pam _ sm _ chauthtokO

pam_securetty.so
check if on secure tty, if return check if on secure tty, if N/A N/A N/A user is 'root' PAM_SUCCESS user is 'root'

return
set environment

return set environment variables return return pam env.so
PAM_IGNORE

variables read in
P AM_SERVICE_ERR read in from a file PAM_SUCCESS P AM_SERVICE_ERR from a file

pam_unix. so authenticate user
return check user account send log on notification to send log off notification

update password of user PAM_SUCCESS properties syslog to syslog

determine if the
return

determine ifthe
determine if the supplied determine if the supplied determine if the supplied pam_succeed_ifso supplied condition is supplied condition is

true or false
PAM_IGNORE

tme or false
condition is true or false condition is tme or false condition is tme or false

pam_deny. so
return return return return return return
PAM_AUTH_ERR P AM_ CRED _ERR PAM_AUTH_ERR PAM_SESSION_ERR P AM_SESSION_ERR PAM AUTHTOK ERR - -

,

pam _nologin.so
return error, return return error, N/A N/A N/A
if letc/nologin exists PAM_IGNORE if letc/nologin exists

set username to !

pam-permit.so "nobody", ifusername
return return return retum return

is not supplied
PAM_SUCCESS PAM SUCCESS PAM_SUCCESS PAM_SUCCESS PAM_SUCCESS

check strength of the
pam _ cracklib.so N/A N/A N/A N/A N/A new, user-supplied

password
, -- "-- ------ ----- ---

4

19'r.;::fG. 'ITfeSfS ="\...1. 'r~ardC:fr\.c.ts 'f\I"lt:f\(lcl"~::Her =-uorrrp'O'(frfg--ex ua(f~1i'Qn:::---

initialize a session context terminate a session

pam _ selinux.so
retum retum N/A using the Security context using the Security N/A
PAM_AUTH_ERR PAM_SUCCESS Enhanced Linux Enhanced Linux

subsystem subsystem
instantiate a Kemel

revoke a Kemel session
pam_keyinit.so N/A N/A N/A session keyring using the

keyring using the Kemel N/A
Kemel Key Retention
Service

Key Retention Service

pam_limits. so N/A N/A N/A impose resource limits
retum N/A
PAM_SUCCESS

sets "Login ID" of sets "Login ID" of Client
retum

pam_loginuid.so N/A N/A Client process in the process in the Linux
PAM SUCCESS

N/A
Linux Audit Subsystem Audit Subsystem

- ---- --- -----------

Table 1: Authentication-Related Functionality of PAMs by Module API function

5

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

Table I shows PAM authentication-related functionality in a simplified marnler. In

general, PAM authentication-related functionality is complex in terms of: execution logic,

how PAM options affect PAM functionality, user input, state of the underlying operating

system and the possible PAM retum values. For example, the pam _ nolo gin. so

functionality shown in Table 1 only shows default behaviour. To illustrate the complexity

of pam _ nologin.so PAM's authentication-related functionality, Table 2 shows the

execution paths of the pam _ nologin.so PAM along with a semantic annotation of the

meaning of these execution paths.

6

I
Error: User Unknown

Attempt to display NOlOGIN contents

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

~Ive up on --~ 1
displaying NOlOGIN
contents

T

Attempt to Prevent System Log On

Administrative Policy Allows
System Log On

Give up on displaying NOLOGIN contents

Attempt to display NOlOGIN contents

F

r-----~F-----,~~'~al
®

Do Not Attempt To Prevent System Log On

Administrative Policy Does Not Allow System Log On

Table 2: Execution tree for pam_nologin.so PAM with semantic annotation

The execution traces, and the factors affecting which execution traces are followed, are

summarized in Table 3 .

7

lV'r.";:::f~. "-ff~"'~ -"V. '~O"rdaKc:f~ "(vrc;r\i'fo;::n:'C:f -·vOI-fqJCI·(rn9-CK~vOrl.\lV""c:rn::;;

obtained
obtained

opened
user

put all "successok" user user
account properties obtained user

NOLOGIN account NOLOGIN PAM execution
PAM name PAM return value

name
ID is 0, of name

not file for properties
memory

contents option trace
obtained i.e. NOLOGIN buffer

empty reading from
'root' file

into buffer specified
system

F X X X X X X X X 1

P AM_ USER_UNKNOWN
T F X X X X X X X 2
T T T F X F X X X 5
T T T F X T T T X 8
T T F X X X X X F 3

PAM_IGNORE T T T T T F X X F 13
T T T T T T T T F 17
T T F X X X X X T 4

pam _ nologin.so
PAM SUCCESS T T T T T F X X T 14

T T T T T T T T T 18

T T T F X T F X X 6
PAM.J3UF_ERR T T T T T T F X X 15

T T T T F T F X X 10

T T T F X T T F X 7
P AM_SYSTEM_ERR T T T T T T T F X 16

T T T T F T T F X 11

PAM AUTH ERR
T T T T F F X X X 9

- - T T T T F T T T X 12

Table 3: Factors Affecting Return Values of pam_nologin.so PAM - Organized by return value of PAM

8

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

Standardized Authentication Interfaces

Unux·PAM

Ciieiii UbIIII}' 'Modui9 PAM.
API API

I PAM I L I Authentication

1 ·1 Mechanism

I I .1 AlllhenHcaHon

J- PAM PAM
~ r---+ Ie --+ ~ 1 "I Mechanism

Client logic

... ...

j PAM 1 J AlllhenHcaHon

I '1 Mecl1enlsm

'-- -

Unux·PAM
conflguraUon

Figure 2: Architecture - Linux-PAM APls

Along with the use of P AMs, the PAM framework achieves the separation of

applications from the underlying authentication mechanisms by using standardized

application programmer's interfaces (APIs). This is accomplished by Linux-PAM

providing two APIs: an API for applications, called the Client API; and an API for

P AMs, called the Module API. The Client API allows applications to use authentication

mechanisms without the applications having to contain any mechanism specific

programming. The Module API provides a consistent way for authentication mechanism

developers to provide access to the mechanism's authentication-related functionality. This

is shown in Figure 2.

The Client API and the Module API achieve not only the separation, but also

independence of applications, authentication policy, and authentication mechanisms. Any

changes in how Linux-P AM or authentication mechanisms operate are transparent to the

9

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

Client applications. Any changes in how authentication mechanisms operate are

I transparent to the Library component of Linux -PAM. If an authentication mechanism
1

I changes, it is only the corresponding PAM that may have to be modified. This is because

j when a PAM is modified, the PAM still has to adhere to the Module API. The Module

API is standardized and does not change under any circumstance. All PAM

implementations, i.e. Linux-P AM, OpenP AM, Solaris PAM, must implement the Client

and the Module APIs.

The Client API is called by Client applications to request authentication-related

functionality from Linux-PAM. The Client API consists of the following functions:

pam _ authenticateO, used for authentication; pam _setcredO, used for setting credentials;

pam _ acct_ mgmtO, used for checking of account status; pam_open _sessionO, used for

opening a log on session; pam_close_sessionO , used for closing a log on session; and

pam _ chauthtokO, used for updating of authentication tokens. For example, as shown in

Figure 3, an authentication process of the login program makes use of all of the Client

API calls.

10

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

execution of process exec(/bin/login) of the binary /bin/login
execution of an authentication process T of exec(/bin/login)

t
execution of authentication-related tasks of T: user authentication, set user credentials, check user

terminate the account, update user password, set up user log on session, tear down user log on session
authentication

/~ process unset log on tear down log on

c,",uuonOI\ session credentials session of user
final section ~ of user am close session cflogin !----------
-.~~ am setcred{ exit!)

(ex,wuon)
authenticate user

update password \~
,

initialize an ~_aut~entica~ eflogin
authenticatio of user e,,-,_ / fo,k() ,)'
n process by I ERROR

set log on session

~
command~line .

requesting a ~_aut~enticci§D:> , ~d,nU'I' shell of user [[' ,,' up log on

I~:~'
Service from check account of 'se~~ion of user

~
interpreter

execution of\ Unux-PAM ERROR
,

user
ERROR

process for USf:l

initial section ~m authenticat~ ~~ ~macctmg"!!ll, :.-pam open session(~.

1\2;· '~~ ~ program ,/ ~ 'm_""'1 'I ERROR

~m aut~entica~
V·

Figure 3: Architecture - Linux-PAM Client Execution

Integration of Authentication Mechanisms via PAM Stacks

Linux -PAM allows for integration of multiple authentication mechanisms. We want to

integrate authentication mechanisms in order to provide an aggregate authentication

functionality that is a combination of the authentication functionalities of the individual

authentication mechanisms (i.e. using pam _ cracklib.so PAM to check password strength,

and then using pam _ unix. so PAM to update the user's password on the system).

Integration of authentication mechanisms is achieved using the notion of a PAM Stack.

Each PAM cOlTesponds to some authentication mechanisms. A PAM Stack is a data

structure which specifies how some sequence of P AMs can be utilized to provide their

authentication-related functionalities.

11

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software

execution of process exec(/bin/login) of the binary /bin/login
execution of an authentication process T of exec(/bin/login)
~_~ execution of authentication-related tasks of T: user authentication, set user credentials, check user
~:;~~~:i~:::~ account, update user password, set up user log on session, tear down user log on session

tear down log on
session of user

I

\
1,

(e){ECUtiOn)
of login

updatepas!iword
of user

, am_close_sessionl

,~t() I
~,

/ fo,k(),)1 \ program_

'----/-".
~~~-~ 

(

executIon of 
initial section 

of login 
program 
.~. 

1r;;;::.-;:;;;;;;;;;:;--iIIL+_-JIII·\:~!i~~ :fgu~:r 
"-

command-line 
shell 

interpreter 
1 .. ,""" fo,"" I 
I'~ 

Figure 4: Using Effective PAM Stacks to obtain authentication-related functionality 

During an authentication process, Linux -PAM determines a unique PAM Stack 

instance for each Client API Management Function. The PAM Stack instance is called the 

Effective PAM Stack instance of the Management Function, for a total of six Effective 

PAM Stack instances, one Effective PAM Stack instance per Management Function. The 

Effective PAM Stack instance (of a Management Function) provides some authentication-

related functionality for the Management Function, every time the Management Function 

is called by the Client, for the lifetime of the authentication process. For example, as 

shown in Figure 4, each time login calls a Management Function, Linux-PAM uses the 

corresponding Effective PAM Stack instance to provide authentication-related 

functionality. To illustrate, when login calls pam_chauthtokO to change the user's 

12 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

password, pam _ chauthtokO calls the Linux-PAM Library function pam _ dispatchO. 

Pam _ dispatchO identifies the Effective PAM Stack instance corresponding to 

pam _ chauthtokO, denoted [Jpam_chauthtokO. Then, pam _ dispatchO calls 

pam _ dispatch_ auxO and provides [Jpam_chauthtokO as an argument to 

pam_dispatch _ auxO, denoted pam _ dispatch_ aux([JPam_ChauthtOkO). Lastly, 

pam_dispatch _ auxO obtains the authentication-related functionality from 

[Jpam_chauthtokO. In this case, the authentication-related functionality provided by 

[Jpam_chauthtokO changes the user's password. 

For each authentication process, Linux-PAM assigns two types ofLinux-PAM 

configurations to a client: client-specific and default. At the start of an authentication 

process, a Linux-PAM Client requests from PAM to use a Service S, i.e. Service named 

"login", i.e. Service named "sshd". In tum Linux-P AM identifies a unique file, called a 

root file, as the starting point of the Linux-PAM configuration, for each of the client­

specific and the default configuration types. The identification of these root files is not 

trivial, as shown in Table 4. 

13 



.,"v"".';;-...:;;o-; •• -.-, ....... O'.~ --..;:;;r.; ••• .... ·..;.·.·0:.'"6..· .... .,;;...0·- ........... ~.v"".~ . .::. • ..:-..:;.I" ................... -.-•• f"" ..... .;,.,-.~-.~ ·..:;;·..:;r,".; ........ Coo·.....:r··- ~=---------

5 T T F 

6 T F T 

7 T F T T 

T F T F 

Table 4: Algorithm for Identification of the Root of a Service Configuration Specification and the Parsing Rule of the Root 

14 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Once identified, Linux-PAM parses the root files, and generates four PAM Stack 

specifications for each of client-specific and default configurations, where each of the 

I four specifications conespond to a distinct Management Group. Then, Linux-P AM 

1 
generates six PAM Stack instances (one for each Client API Management Function) 

based on the four specifications. Given a PAM Stack specification for a Management 

Group, this specification is used to generate the PAM Stack instances for all Management 

Functions belonging to this group, i.e. PAM Stack specification for Authentication 

Management generates two PAM Stack instances: one for pam _ authenticateO and one for 

pam _setcredO. Again, this is done for each of the client-specific and the default 

configurations. Thus, twelve PAM Stack instances are created in total. From these twelve, 

using each Client API Management Function, the client-specific and default PAM Stack 

instances are paired up, and an Effective PAM Stack instance is chosen. If the client-

specific PAM Stack instance has no "stacked" P AMs configured, then the default PAM 

Stack instance is used. This process is summarized in Figure 5, by using the login 

program as an example. 

15 



i 
-exerutio) 

of login 
. program 

'~'. 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

execution of process exec(/binjlogin} of the binary jbinjlogin 
execution of an authentication process T of exec(/bin/login) 
,-----c-~co execution of authentication-related tasks ofT: user authentication, set user credentials, check user 
terminate the account, update user password, set up user log on session, tear down user log on session 
authl"ntication 1'~~~~~lf==~o='llr~~~~lr~~~~lr~~~~Irr===:;:=~':'l11 

~ process unset log on Iteardowntogon 

(

/execution at I session credentials session of user 

final section ~~~~~~J~§~~~~~~~~1~~~;;~~~~~lF~~~'tl cflog!n ) 0 user am_dose_ 

~;:;~;:;~ I am_setcred{ exitll 
,,_~rogram / authenticate user \ _ 

-------' update password . >---: ... ~ 
am_authenticate set log on session of user . forleOa ) 

~'m._,.Chauthtok{ '",-~c-c-~-jl command-line credentials III" > ...... Ofuser 1111.";;,;;],k<;,;;;,,;;;,,;;;,'<;;o" 111~ER::R:::oR~~~JII '. ~:~:i~~~fgu~:r int:~pe:!tet 
"'\ processforus~ 

~ 

'- / 
paf5e{rootlfiles!spec(YII), ~arseJu'elfind_df{"'other"}J) 

\ Services / .~ 

\ 

\ pal'5e(root{flles(spec{XlIl. par~e_rule{filld_C5I"login~JI) 

,,..--...,-~'....--, ~ /~ ;\u~n' (Authentication /Bina!rie\H ',_ /CJlent\ (/ AU;~:~~~~e~on \) I~' (" ~~:ions '""~. / Policy, Polletes \ 

(\ \ 

'Processes\ r _______ (f Names \ /' /:----rires{specIX~ ,I Specifications \ I '\ 
'\ .am_start("IDg~--, find_t5110.n·~ L_~-+f---, I \ T , __ ._.-.... ~ files{<pe{{x)I--e-5Jle{I~. 
' ~"" / '. \ fiod_o"'o,"'.mo"",,,,,,,,01,,, \ J \ ) 
/b 0 J pam Inll handlErs!"IogUl"j ...., I I §peciXj X .' 

m"o,m .,''''m"OJ~ - - "0." ~ . 
\ \ \.. • \ (/ fileS{5pec{y) -......{, \ , files{spec(YIl-e---------rspet(Y}~ 
\ I \ ,find d,'-other1--------------4 I / sper(YI I " • 

\,---",1 \; \. - ~ypil.c(Ym ,.~' ' .. ~/ 

Figure 5: High Level Overview of Effective PAM Stack creation for, and usage by, an Authentication 
Process 

The next section describes PAM Stack composition and functionality. 

16 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

PAM Stack Composition and Functionality 

Introduction 

The PAM framework achieves the integration of the futlctionality of multiple 

authentication mechanisms using the notion of a PAM stack. 

lillJX-PAM 
LIIUX-PI\M 

AIlihenlicaoon 
COOnls Medlanisms 

COOnl ""'I}' MOIIu~ PI\MS 
API API 

• _Iion pam_"",ckIib ... 

logic 
!he 
login ~~ dictional}' 

@ pam_sm-""",,,"O l""lie program 
pam_sm-""",,,"O 
olpam_"",ckIib ... 

~- V e ~ -;;;v- pam_sm.Jl'1~1' panumix.so I updalepas5llOld 
of user pam_sm-""",,,"O ~~ 

,yslem~ 

ofpam_unix.so V" 1\ pam_""-""",,,"O 
use_"""'" 

d.labasesandroulines ;;;V' 1\ 
pam_sm-""",,,"O pam_deny ... 

of pam_deny ... - I§ pam_""-""",,,"O 

-

fo, !he login program, 10 updala user pa""""', 
1iB\ diect passwonlllrengllt us~ pam_"",cIdiJ ... PAM, 

andond, updale use, pas5lIOId on !he syslem usilg pam_unix ... PAM, 
~1nI~, l above b unsuccessfu\ !hen use pamjeny'" PAMID rebJm emil 

liIux-PAM 
"",",uraoon 

Figure 6: Using APls to update a password 

First, by example, we show how the Client and Module APls can be used to carry out 

an authentication-related task of updating ofa password. Figure 6 shows the architecture 

of the system used in updating of this password. The sequence of events describing this 

password update is listed in Figure 7. This sequence of events occurs when the login 

program updates the user's password via Linux-PAM. 

17 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

1. Supposing that the Administrator supplies the following Configuration for updating of user 

I 

authentication tokens for the login program: 
a. the strength of the newly proposed password must be checked via the pam _ cracklib.so 

PAM, then, if successful; 

;I 
b. update the user's password on the system via the pam_unix. so PAM, then, ifnot 

successful; 
c. use the pam_deny.so PAM to return an error. 

I 2. The login Client calls the (Client API) pam-passwdO to change the user's password. 

3. In tum, the Library calls the (Module API) pam _ sm -passwdO implementation of each of the 
P AMs, as dictated by the Configuration, in this case: 

a. calling pam _ cracklib.so PAM's implementation of pam _ sm -passwdO; 
b. followed by calling pam_unix. so PAM's implementation ofpam_sm-passwdO, ifthe 

above was successful; 
c. followed by calling pam _ deny.so PAM's implementation of pam _ sm -passwdO, ifthe 

above was unsuccessful. 

4. When pam _ sm -passwdO of pam _ cracklib.so PAM is called, its execution: 
a. provides pam _ cracklib.so PAM's authentication-related functionality for updating of 

authentication tokens, mainly, checking of the password strength, 
b. makes use of the actual authentication mechanism that corresponds to this PAM, in this 

case, pam _ cracklib.so uses internal password check routines, and can optionally use 
external dictionaries. 

5. When pam_sm-passwdO of pam_unix. so PAM is called, its execution: 
a. provides pam _ unix. so PAM's authentication-related functionality for updating of 

authentication tokens, mainly updating the system's password database with the new 
password information; 

b. makes use of the actual authentication mechanism that corresponds to this PAM, in this 
case, pam _ unix.so may use passwd and shadow system password databases and 
routines. 

6. When pam _ sm -passwdO of pam _ deny. so PAM is called, its execution: 
a. provides pam_deny.so PAM's authentication-related functionality for updating of 

authentication tokens, mainly, returning an error; 
b. does not make use of an actual authentication mechanism - this PAM does not have a 

corresponding authentication mechanism. 

Figure 7: Usmg APls to update a password· event sequence 

There is a 1-1 correspondence between Client API functions and Module API 

functions, i.e. pam _ authenticateO corresponds to pam _ sm _ authenticateO. The Client uses 

Client API calls to request service for authentication-related tasks from Linux-PAM. In 

turn, the Library component of Linux -PAM uses the corresponding Module API calls to 

request the functionality for the authentication-related task from each individual PAM 

18 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

being used. In a proper configuration, each PAM belonging to a PAM Stack of some 

Client API function must implement the corresponding Module API function. We say that 

a PAM is stacked on a PAM Stack, if the PAM Stack uses the PAM to provide 

authentication related functionality. 

struct handler { 

} ; 

int handler_type; 
int (*func) (pam_handle_t *pamh, int flags, int argc, char **argv); 
int actions[_PAM_RETURN_VALUES]; 
int cached_retval; 
int *cached_retval_p; 
int argc; 
char **argv; 
struct handler *next; 
char *mod_name; 
int stack_level; 

Table 5: Definition of 'struct handler' Data Structure 

Which, and how, the stacked P AMs can be used by a PAM Stack instance, is encoded 

in each PAM Stack Instance. On the implementation level, PAM Stack Instances are 

linked lists of struct handler data structures (Table 5) which contain memory addresses of 

the Module API function implementations (int (*func)), which we denote by the symbol 

I (f sm, P). Handlers also store an encoding of all of the possible ways that these function 

pointers can be invoked to execute some subsequence of the Module API function 

implementations comprising the PAM Stack Instance (int 

Which P AMs are stored on a PAM Stack Instance, and in what sequences these P AMs 

may be used, is defmed by the Linux-P AM Administrator in a Linux-P AM Configuration. 

Before we present the procedure used by Linux-PAM to generate an authentication-

19 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

related functionality using a PAM Stack Instance, we fIrst show how a PAM Stack 

Instance is generated based on a Linux-PAM ConfIguration. 

Generating a PAM Stack Instance from a Linux-PAM Configuration 

A Linux-P AM ConfIguration, for the Linux-PAM Service login (Table 6, Table 7), is 

used to generate a PAM Stack Specification for the Authentication Management group 

(Table 8)1. In Table 9 we show an intermediate step where we transform each Complex 

Controls of each confIguration line into the Control Action defInition using names of 

Actions, for each "stacked" PAM. In Table lOwe show an intermediate step where we 

transform each Complex Control of each confIguration line into the Control Action 

defInition using numbers (not names) of PAM_RETURN values and Actions, for each 

"stacked" PAM. This last form is then used to generate a condensed fmm of the 

corresponding PAM Stack SpecifIcation for pam _ authenticate() (Table 11). By 

condensed, we refer to simplifying the description of the Control Function by generating 

a sequence of partitions of PAM_RETURN = {O,I, ... ,31}, and using the keyword "ow", 

using the algorithm outlined in Table 12. We use this fInal form of the PAM Stack 

Instance for generation of HCPN models of PAM Stack Instance executions. 

1 Due to a brevity requirement, the procedure for this, and subsequent examples, was omitted. 

20 



i 

I 
J 
:1 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

login auth [user_unknown=ignore success=ok ignore=ignore default=bad] 
pam_securetty.so 
login auth include system-auth 

login account 
login account 

login password 

required 
include 

include 

pam_nologin.so 
system-auth 

system-auth 

login session required pam_selinux.so close 
login session include system-auth 
login session required pam_loginuid.so 
login session optional pam_console. so 
login session required pam_selinux.so open 
login session optional pam keyinit.so force revoke 

Table 6: Start of Client-Specific portion of Linux-PAM Configuration for Service 'login' 

21 



auth 
auth 
auth 
auth 

account 
account 
account 

password 
password 
password 

session 
session 
session 
session 

.:.~ 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

required 
sufficient 
requisite 
required 

required 
sufficient 
required 

requisite 
sufficient 
required 

optional 
required 
[success=l 

pam_env.so 
pam_unix.so nullok try_first_pass 
pam_succeed_if.so uid >= 500 quiet 
pam_deny. so 

pam unix.so 
pam_succeed_if.so uid < 500 quiet 
pam_permit. so 

pam_cracklib.so try_first_pass retry=3 
pam_unix.so md5 shadow nullok try_first_pass use authtok 
pam_deny. so 

pam_keyinit.so revoke 
pam_limits. so 

default=ignore] pam_succeed_if.so service in crond quiet use uid 
required pam unix.so 

Table 7: Linux-PAM Configllration in the letc/pam.dfsystem-auth File 

22 



depth 

a 

1 

2 

3 

4 

level SERVICE 
S 

a login 

a login 

a login 

a login 

a login 

SERVICE 
GROUP 

auth 

auth 

auth 

auth 

auth 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

CONTROL 
C:{O,l, ... ,3lj->ACTIONS 

user_unknown=ignore 

success=ok 

ignore=ignore 

default=bad 

success=ok 

PATH 
P 

pam_securetty.so 

ok new auth tok_reqd 
~--~---=~-=~~------~ pam_env.so 

ignore=ignore 

default=bad 

success=done 

new auth tok_reqd ok 

default=ignore 

success=ok 

new auth tok_reqd ok 
pam_succeed. so 

ignore=ignore 

default=die 

success=ok 

new auth tok_reqd ok 

ignore=ignore 

default=bad 

try_first_pass 

uid 

>= 

500 

quiet 

Table 8: Generation of PAM Stack Specification for the Authentication Management group 
for Service "login" with Complex Control equivalents 

23 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Depth i 0 1 2 3 4 

pam_ pam_ pam_ pam_ pam_ 
PATH P i sccurctty env unix succeed if deny - -

.so .so .so .so .so 

PAM SUCCESS ok ok done ok ok 

PAM OPEN ERR bad bad ignore die bad 

PAM SYMBOL ERR bad bad ignore die bad 

PAM SERVICE ERR bad bad ignore die bad 

PAM SYSTEM ERR bad bad ignore die bad 

PAM BUF ERR bad bad ignore die bad 

PAM PERM DENIED bad bad ignore die bad 

PAM AUTH ERR bad bad ignore die bad 

PAM CRED INSUFFICIENT bad bad ignore die bad 

PAM AUTHINFO UNAVAIL bad bad ignore die bad 

PAM USER UNKNOWN ignore bad ignore die bad 

PAM MAXTRIES bad bad ignore die bad 

PAM NEW AUTHTOK REQD bad ok ok ok ok 

PAM ACCT EXPIRED bad bad ignore die bad 

PAM SESSION ERR bad bad ignore die bad 

CONTROL PAM CRED UNAVAIL bad bad ignore die bad 
C i PAM CRED EXPIRED bad bad ignore die bad -

PAM CRED ERR bad bad ignore die bad 

PAM NO MODULE DATA bad bad ignore die bad 

PAM CONV ERR bad bad ignore die bad 

PAM AUTHTOK ERR bad bad ignore die bad 

PAM AUTHTOK RECOVERY ERR bad bad ignore die bad 

PAM AUTHTOK LOCK BUSY bad bad ignore die bad 

PAM AUTHTOK DISABLE AGING bad bad ignore die bad 

PAM TRY AGAIN bad bad ignore die bad 

PAM IGNORE ignore ignore ignore ignore ignore 

PAM ABORT bad bad ignore die bad 

PAM AUTHTOK EXPIRED bad bad ignore die bad 

PAM MODULE UNKNOWN bad bad ignore die bad 

PAM BAD ITEM bad bad ignore die bad 

PAM CONV AGAIN bad bad ignore die bad 

PAM INCOMPLETE bad bad ignore die bad 

nullok uid 
try_first 

>= 
OPTIONS o i pass 

-

500 
quiet 

LEVEL L i 0 0 0 0 0 

Table 9: PAM Stack Specification cfrrrrou:l~ with Control Function definitions 

24 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Depth i 0 1 2 3 4 
pam_ pam_ pam_ pam_ pam_ 

PATH P i securetty env unix succeed if deny 
- -

.so .so .so .so .so 
0 -1 -1 -2 -1 -1 
1 -3 -3 0 -4 -3 
2 -3 -3 0 -4 -3 
3 -3 -3 0 -4 -3 
4 -3 -3 0 -4 -3 
5 -3 -3 0 -4 -3 
6 -3 -3 0 -4 -3 
7 -3 -3 0 -4 -3 
8 -3 -3 0 -4 -3 
9 -3 -3 0 -4 -3 
10 0 -3 0 -4 -3 
11 -3 -3 0 -4 -3 
12 -3 -1 -1 -1 -1 
13 -3 -3 0 -4 -3 
14 -3 -3 0 -4 -3 

CONTROL 15 -3 -3 0 -4 -3 
C i 16 -3 -3 0 -4 -3 

-
17 -3 -3 0 -4 -3 
18 -3 -3 0 -4 -3 
19 -3 -3 0 -4 -3 
20 -3 -3 0 -4 -3 
21 -3 -3 0 -4 -3 
22 -3 -3 0 -4 -3 
23 -3 -3 0 -4 -3 
24 -3 -3 0 -4 -3 
25 0 0 0 0 0 
26 -3 -3 0 -4 -3 
27 -3 -3 0 -4 -3 
28 -3 -3 0 -4 -3 
29 -3 -3 0 -4 -3 
30 -3 -3 0 -4 -3 
31 -3 -3 0 -4 -3 

nullok uid 

i 
try first pass >= 

OPTIONS 0 
500 -

quiet 
LEVEL L i 0 0 0 0 0 

Table 10: PAM Stack Specification clIIio~~ with Control Function definitions in "raw" 
format 

25 



CONTROL; 

depth; level; SERVICE; 
SERVICE C. 

PATH; OPTIONS; 
GROUP; dE DeC,): 

i Li Si Gi 
X '<Ix EX: Pi °i 
>;; ReC,) 

C;(x) = d 
int 

int int int char char 
handler 

stack level actions[32] (*func) *mod name **argv 
type 

0 -1 

~ 0 0 0 login auth 10,25 0 
I(pam_sm_authenticate(), 

pam_securetty 

"ow" -3 
pam_securetty.so) 

0,12 -1 

~ 1 0 0 login auth 25 0 
I(pam_sm_authenticate(), 

pam_env 

"ow" -3 
pam_env. so) 

0 -2 nullok 

2 0 0 login auth 12 -1 
I(pam_sm_authenticate(), 

pam_unix try first pass 

0 
pam_unix. so) 

"ow" 

0,12 -1 uid 

25 0 I(pam_sm_authenticate(), >= 
3 0 0 login auth "ow" -4 pam_succeed. so) 

pam_succeed 500 

quiet 
I 

I 

0,12 -1 

~ 4 0 0 login auth 25 a I(pam_sm_authenticate(), 
pam_deny 

"ow" -3 
pam_deny. so) 

Table 11: Generation of a PAM Stack Instance for the pam_sm_authenticateO Module API function for theService "login" 

26 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Given Table 11, the mapping, from the table column labeled X ~ R (Ca, to the table 

column labeled d E D(Ca: \/X EX: Ci(X) = d, is determined by steps listed in Table 12. 

Input: Control Function C: {O,l, ... ,31}-> {-5, -4, ... ,0, ... 65535}, Control 

Function is total 

1. Group domain of C into partitions of {O,l, ... ,31} by the images being mapped 

to. 

2. Remove 31 from the partition containing it. 

3. Sort partitions by minimum element, in increasing order. 

4. Move partition with most elements and largest minimal member to the last 

row and denote by "ow". 

Output: sequence of partitions {X} S.t. \/ terms X ~ R(C): \/X EX: Cex) = d. 
Table 12: Partitioning of the range of the Control function 

Generating of Authentication-Related Functionality from a PAM Stack Instance 

Given a PAM Stack instance, Linux-P AM executes this PAM Stack instance in order 

to generate an instance of authentication-related functionality. This authentication-related 

functionality is a combination of the authentication-related functionalities of the P AMs 

comprising this PAM Stack instance. Specifically, Linux-PAM uses the algorithm shown 

in Table 13 to use the stacked P AMs of the PAM Stack instance to execute the Module 

API function implementations of these "stacked" P AMs to provide this authentication-

related functionality. 

Given the PAM Stack Instance in Table 11, this instance has 5 stacked PAMs. Each 

PAM stacking is implemented using the struct handler data structure shown in Table 5 on 

27 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

page 19. Hence, we view a PAM Stack instance as a sequence of handlers, i.e. handler_D, 

handler _1, ... , handler_ x-I, where the amount of stacked P AMs is x, and each handler 

contains a Module API function implementation (precisely, a pointer to this 

implementation) of some PAM, and a Control Function definition. 

28 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

INPUT: T II~ = {handlerj} = handlero, handlerl1 ... , handlerX _ l1 an Effective PAM Stack Instance with x 

handlers 

OUTPUT: pam]eturn, i.e. a PAM Stack Instance execution return value 

1. If x = 0, i.e. PAM Stack Instance is empty (i.e. no "stacked" P AMs) 
a. pam]eturn:= PAM_SYSTEM_ERROR = 4 

b. go to Step 6 

2. Initialize PAM Stack and Substack Execution states by executing initialization code 
a. (I, M): = (0,6), i.e. initialize PAM Stack Execution State 
b. (Io, Mo): = (0,6), i.e. initialize PAM oth Substack State 

c. (h,ML ): = (0,0), 1 ~ L ~ 15, i.e. initialize all other PAM Substack States 

3. Choose the fIrst handler, handlero, as the fIrst handler to be processed 

a. handleri: = handlero 
4. While the chosen handleri' 0 ~ i ~ x - 1, exists on the PAM Stack instance (is a term of { handlerj}), 

process handleri> denoted exec(handlera, where last(i) denotes the last handler depth to be processed 

a. if level(handlerlast(O) < level(handlera = K, i.e. entering higher substack level K, then 

1. (IK' MK): = (I, M), i.e. save current PAM Stack Execution State 
b. Iftype(handlera = PAM_HT _MUST JAIL, i.e. handler is erroneous, then 

1. returni:= PAM_MUSTJAILJODE = 6 
11. go to step 4(g), i.e. skip PAM execution, go directly to execution of Action 

c. Iftype(handlera = PAM_HT_SUBSTACK, i.e. start of Subs tack, then 
1. i:= i + 1, i.e. choose next handler in sequence to be executed 

11. go to step 4 
d. If:tl I(fsm, Pi), i.e. PAM does not implement the Management Function 

1. returni:= PAM_MODULE_UNKNOWN = 28 

11. go to step 4(g), i.e. skip PAM execution, go directly to execution of Action 
e. exec (I (rm, Pi), 0i), i.e. execute the implementation of Module API function rm of PAM Pi 

1. returni:= exec(I(rm, Pi), 0i), i.e. obtain result from execution of I (fsm, Pi) 
f. Ifreturni = PAMjNCOMPLETE = 31, i.e. PAM needs more information from user in order to 

provide anuthentication-related functionality 

1. pam]eturn:= returni = PAMjNCOMPLETE = 31 
11. go to step 6 

g. actioni:= Ci(returni), i.e. determine the mapped-to Action actioni 

h. exec( actioni' returni' (I, M)), i.e. execute actioni 

1. ( (I, M), i) := exec ( actioni' returni' (I, M) ), i.e. update PAM Stack Execution State and 

choose next handler to execute 
11. go the Step 4 

5. Terminate PAM Stack execution state 
a. return PAM Stack execution result pam]eturn by executing termination code terminate 0, 

denoted exec(terminateO) 
i. pam]eturn:= exec(terminate((I,M)) 

6. Return result of PAM Stack Instance Execution 
a. return pam]eturn 

Table 13: High-level Overview of PAM Stack Execution 

29 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

As shown in Table 13 the authentication-related functionality ofa PAM Stack Instance 

I Execution is comprised of a subsequence of handler executions. Each handler execution, 

j under non-subs tack and non-erroneous circumstances, consists of executing the Module 

API function implementation contained in the handler. The choice of the next handler to 

be executed depends on the current PAM Stack Execution state. The final 

PAM RETURN value determines whether or not the PAM Stack execution is deemed as 

successful. A return value of PAM SUCCESS = 0 means that the PAM Stack execution 

was successful. Otherwise, PAM Stack execution was not successful. Note that, whether 

or not the PAM Stack execution is deemed as successful still does not change the fact that 

the PAM Stack execution has already provided authentication-related functionality via its 

handler executions. The fmal PAM_RETURN value has utility for the Linux-PAM 

Client, but not for Linux-PAM. 

The main idea behind PAM Stack execution is as follows. PAM Stack execution starts 

with the first handler. Then, in the case of a non-erroneous stacked PAM, the PAM's 

implementation of the Module API function is executed to provide some authentication-

related functionality. Then, the P AM_RETURN value obtained from this Module API 

function execution is used by the Control function to choose an Action to execute. 

Execution of an Action does two things: first, the PAM Stack Execution State is updated; 

second, the next handler to be executed is chosen. The updating of the PAM Stack 

Execution state, as wen as the choosing of the next handler may be dependent on the 

30 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

current PAM Stack Execution state, as well as the latest P AM_RETURN value obtained 

from the Module API function execution2
. 

The particular way in which each Action executes is not described in this section. 

Rather, we utilize our HCPN encodings to show how these Actions operate. 

The execution of handlers during a PAM Stack execution is a subsequence of the 

handler sequence comprising the P AM Stack Instance. 

PAM Stack execution stops when Termination execution is reached. At this point, a 

decision regarding the final PAM Stack execution return value is made by the 

Termination procedure. This decision is based on the current PAM Stack Execution State, 

and is described by the state machine shown in Figure 8. 

( 
I 
I 

success status 
states 

error status 
states 

positive Impression 
states 

undefined impression 
states 

negative Impression 
states 

Figure 8: FSM of PAM Stack Dispatch State and Depth Under Termination 

2 It may also be dependent on previous return values obtained for the same Management Function call, just 
not for the same Management Function call instance, but we do not model this as this is the Frozen Chain 
functionality. Frozen Chain is part of future work. 

31 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

It is the goal of this thesis, and of the pamtester-fm tool, to model all possible ways in 

which a PAM Stack Instance can be executed, where this PAM Stack Instance is 

generated based on an arbitrary Linux -PAM Configuration. 

The next section delves into our HCPN modeling. 

32 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

METHODOLOGY - PART I: HCPN Modeling 

Introduction to HCPN Modeling 

Current Petri Net software tools are limited. For example, these tools do not allow 

programmatic, dynamic generation of arbitrary Petri Nets, and programmatic control, 

such as automated simulation. Due to this, as part of this thesis work, we developed a 

software tool called pamtester-fm. The purpose ofpamtester-fm is to create HCPN 

structures of arbitrary PAM Stack Instance executions, via automated, programmatic 

means. 

HCPN models encode, not only structure of a system, but also a system's behaviour. In 

particular, our HCPN models of PAM Stack Instance executions not only encode the 

structure of a PAM Stack Instance execution, but also its "executable behaviour". 

The problem in our case is that, although an HCPN encodes behaviour of a system, 

one still needs to somehow simulate or execute this HCPN behaviour. Otherwise, the 

HCPN specification is just a textual specification, not something dynamic or executable. 

In analogy, one can specify some "execution" using the C programming language, but the 

resulting program still has to be compiled and executed to analyze the program's run-time 

behaviour. Thus, additionally, pamtester-fm makes use of an external program called 

NuSMV(4) to simulate the HCPN's behaviour . 

. From Source Code to HCPN 

33 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Our creation of HCPN models is based on the knowledge of how Linux-PAM would 

process an Effective PAM Stack's linked list of stmct handlers to obtain its 

I authentication-related functionality. 

j This knowledge is based on a source code audit of the files implementing the functions 

that obtain authentication-related functionality of PAM Stacks, mainly, each of the Client 

API functions: pam _startO, pam _ authenticate ° , pam _setcredO, pam_open _sessionO, 

pam_close _sessionO, pam _ chauthtokO, the pam _ dispatchO function, and fmally, the 

pam _ dispatch_ auxO function. 

For example, a typical call chain for a PAM Stack Instance execution is as follows. 

First, a Linux-PAM Client establishes an authentication process with Linux-P AM. This is 

done by the Client calling pam _ startO and supplying the name of the Linux -PAM Service 

as an argument. In tum, Linux -PAM uses the procedure described in Figure 5 on page 16, 

to generate the set of client-specific and default PAM Stack Instances. Once generated, 

Linux -PAM provides these PAM Stack Instances to the Linux -PAM Client. Then, the 

Linux-PAM Client makes a sequence of Linux-PAM API Management Function calls. 

Each time one of these function calls is made, the Client supplies the PAM Stack 

Instances as arguments. Thus, Linux-PAM obtains the PAM Stack Instances from the 

Client, every time the Client calls a Management Function. Now, suppose that the Client 

called pam _ authenticateO. The source code for pam _ authenticateO is shown below. 

34 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

int pam_authenticate (pam_handle_t *pamh, int flags) 

int retval; 

D (("pam_authenticate called")); 

if ( PAM_FROM_MODULE(pamh)) 
D(("called from module!?")); 
return PAM_SYSTEM_ERR; 

if (pamh->former.choice 
pam sanitize(pamh); 

_pam_start_timer(pamh); 
independent 
fail */ 

/* we try to make the time for a failure 
of the time it takes to 

retval _pam_dispatch (pamh, flags, PAM_AUTHENTICATE); 

if (retval != PAM_INCOMPLETE) 
_pam_sanitize(pamh); 
_pam_await_timer(pamh, retval); 
D( ("pam_authenticate exit")); 

} else { 
D(("will resume when ready")); 

} 

/* if unsuccessful then wait now */ 

#ifdef PRELUDE 
prelude_send_alert(pamh, retval); 

#endif 

#ifdef HAVE LIBAUDIT 
retval 

#endif 
_pam_auditlog(pamh, PAM_AUTHENTICATE, retval, flags); 

return retval; 

Figure 9: pam_authenticate - source code 

Here, we abstract everything but the call to execute the Effective PAM Stack mstance 

(Figure 10). 

retval = _pam_dispatch (pamh, PAM_AUTHENTICATE);. 

Figure 10: Pam_authenticateO - resulting abstracted source code to be modeled by HCPN 

The first line, for example, is a debug call (Figure 11). We do not need to model it. 

35 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

I D( ("pam_authenticate called")}; 

Figure 11: Pam_authenticateO - debug call - not modeled 

The next line (Figure 12) implements a call that checks if the data stmcture containing 

the PAM Stack Instances (provided to Linux-PAM by the Client) is NULL (empty). This 

is simply a check that "protects" Linux-PAM fi'om rouge, or improperly implemented 

Linux-P AM Client applications, or faulty P AMs, or even Linux-PAM bugs. Essentially, 

here, Linux-P AM is protecting itself fi'om any piece of code that would set the memory 

address, reserved for pointing to the PAM Stack Instance data stmctures, to zero (NULL). 

Again, we abstract this away from our model- we assume this does not happen in our 

model. 

IF NO PAMH("pam_authenticate", pamh, PAM_SYSTEM_ERR}; 

Figure 12: pam_authenticateO - source code - NULL check not modeled 

The next line (Figure 13) is the same idea: here Linux-PAM is making sure that it was 

not a P AM that made a call to pam _ authenticateO. We abstract this away by assuming 

this will not happen. 

if ( PAM FROM_MODULE(pamh)} 
D( ("called from module! ?")}; 

return PAM_SYSTEM_ERR; 
} 

Figure 13: pam_authenticateO - source code - call source check - not modeled 

The next piece of code (Figure 14) starts a Linux -PAM "timer". This piece of code is 

inelevant to our problem. We abstract it away by assuming that, in our model, it will 

always work as expected, without affecting the PAM Stack Instance execution. 

36 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

if (pamh->former.choice 
pam sanitize(pamh); 

-pam-start timer(pamh); 
- - independent 

/* we try to make the time for a failure 
of the time it takes to 

fail */ 

Figure 14: pam_authenticateO - source code - timer - not modeled 

The lines of code after the PAM Stack dispatch (Figure 10) are not relevant to our 

modeling of the PAM Stack Instance Execution. Thus, we ignore or abstract away the rest 

of the code in this file (Figure 15). 

if (retval != PAM_INCOMPLETE) 
pam sanitize(pamh); 

=pam=await_timer(pamh, retval); 
D (("pam_authenticate exit")); 

} else { 
D(("will resume when ready")); 

} 

/* if unsuccessful then wait now */ 

#ifdef PRELUDE 
prelude_send_alert(pamh, retval); 

#endif 

#ifdef HAVE LIBAUDIT 
ret val 

#endif 
_pam_auditlog(pamh, PAM_AUTHENTICATE, retval, flags); 

return retval; 

Figure 15: pam_authenticateO - source code - post PAM Stack execution - not modeled 

Essentially, we are left with the single call to the function that does the PAM Stack 

Execution (Figure 10). 

Following this approach, we determined that we can exercise a significant amount of 

abstraction when modeling, yet still obtain meaningful results that approximate the 

fhnctionality of Linux-PAM for a subset of the Client API Management Functions. 

Specifically, currently, our model approximates the execution of the functions: 

37 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Because of the amount of abstraction used, the current model is not capable of 

modeling the rest of the Management Functions, mainly: pam_setcredO, 

pam_close _sessionO and pam _ chauthtokO. This is because our model does not model 

Frozen Chain - a functionality of Linux -PAM that is a factor in the operation of 

pam _setcredO, pam_close _sessionO and pam _ chauthtokO. Modeling of Frozen Chain is 

included as pa11 of future work. 

Approach to HCPN Modeling of PAM Stack Executions 

In our modeling approach, we model the PAM Stack Execution, as implemented by 

pam _ dispatchO and pam_dispatch _ auxO functions. These functions are implemented in 

the libpam/pam_dispatch.c file in the Linux-PAM source code (1). By using an 

abstraction approach, as above, and by abstracting certain functionality such as Frozen 

Chain, passing of flags, and passing of PAM options (see Limitations) we were able to 

create an abstracted model of PAM Stack Instance Execution, as implemented by these 

two files. 

Specifically, given the level of abstraction used, the relevant portions of 

pam_dispatchO execution (see Figure 89 on page 176 for complete source code) consist 

of choosing the effective P AM Stack Instance, given the called Management Function 

(Figure 16), and then calling pam_dispatch _ auxO to initiate the execution of the chosen 

Effective PAM Stack Instance (Figure 17). All other code portions of pam _ dispatch.c 

were abstracted away using the same approach as for pam _ authenticateO. 

38 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

switch (choice) 
case PAM AUTHENTICATE: 

h = pamh->handlers.conf.authenticate; 
break; 

case PAM SETCRED: 
h = pamh->handlers.conf.setcred; 
use cached_chain = _PAM_MAY_BE_FROZEN; 
break; 

case PAM ACCOUNT: 
h = pamh->handlers.conf.acct_mgmt; 
break; 

case PAM OPEN SESSION: - -
h = pamh->handlers.conf.open_session; 
break; 

case PAM CLOSE SESSION: - -
h = pamh->handlers.conf.close_session; 
use cached_chain = PAM_MAY_BE_FROZEN; 
break; 

case PAM CHAUTHTOK: 
h = pamh->handlers.conf.chauthtok; 
if (flags & PAM_UPDATE_AUTHTOK) { 

use_cached_chain PAM MUST BE FROZEN; 

if (h == NULL) /* there was no handlers.conf ... entry; will 
use 

* handlers.other ... */ 
switch (choice) { 
case PAM AUTHENTICATE: 

h = pamh->handlers.other.authenticate; 
break; 

case PAM SETCRED: 
h = pamh->handlers.other.setcred; 
break; 

case PAM ACCOUNT: 
h = pamh->handlers.other.acct_mgmt; 
break; 

case PAM OPEN SESSION: - -
h = pamh->handlers.other.open_session; 
break; 

case PAM CLOSE SESSION: 
h = pamh->handlers.other.close_session; 
break; 

case PAM CHAUTHTOK: 
h = pamh->handlers.other.chauthtok; 
break; 

Figure 16: PAM Stack Execution - pam_dispatchO - Choosing the Effective PAM Stack Instance 

retval = _pam_dispatch_aux(pamh, flags, h, resumed, use_cached_chain); 

Figure 17: PAM Stack Execution - pam_dispatchO -Initiating PAM Stack Execution 

39 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

In our approach, we decided to let pamtester-fm carry out the functionality of choosing 

the Effective PAM Stack Instance (Figure 16), simply because this process is fixed. In 

other words, the choosing of the Effective PAM Stack does not vary. Thus, we do not 

need to include it as part of the model, if we have the opportunity to compute this 

beforehand. Hence, the choosing of the Effective PAM Stack Instance is implemented 

directly in pamtester-fm source code. 

In contrast, execution of PAM Stack Instances, as implemented by 

pam_dispatch_auxO (see Figure 90 on 181 for complete source code) is modeled using 

HCPNs. This modeling is done by describing each of the intermediate steps of the process 

described in the PAM Stack Execution algorithm (Table 13, page 29). This algorithm 

describes an abstraction of the PAM Stack Instance execution, as implemented by 

pam_dispatch_auxO.This abstraction is done using the same approach as for 

pam _ authenticateO and pam _ dispatchO. 

Since we are using HCPNs as the modeling language, we can choose the level of 

abstraction at which to model, using a component-wise, hierarchical approach. Our 

current model does sufficient modeling of each of the intermediate components so that 

meaningful modeling simulation of PAM Stack executions can be obtained. The goal is to 

build a "modeling foundation" on which more detailed, multi-hierarchical models can be 

built. This is outlined as part of future work. 

The HCPN models of the individual elements are then combined together using HCPN 

constructs such as Substitute Transitions and Fusion Places. This combining of individual 

HCPNs results in a [mal HCPN. This final HCPN describes a PAM Stack execution 

40 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

process of a particular PAM Stack Instance, as a whole. The goal is for this resulting, 

final HCPN to model all possible PAM Stack Instance executions, and hence all possible 

authentication-related functionalities of the corresponding PAM Stack Instance. 

An HCPN encodes both the structure and the behaviour of a system. In our case, our 

HCPNs encode the structure, and the behaviour ofP AM Stack executions of arbitrary 

(but fixed, once the model is generated) PAM Stack Instances. The HCPN structural 

aspect describes both, the components of a PAM Stack Instance execution and the factors 

that may have impact on the execution of the PAM Stack Instance, as well as the way that 

Linux-P AM executes PAM Stack Instances. Some examples of structural aspects include: 

handler sequence, Control function of each handler, which Actions can be executed by 

processing of each handler, substack level structure, user input variations (i.e. user 
I . 

password is empty), configuration variations (i.e. pam _ nologin.so PAM configured to 

return P AM_SUCCESS, not PAM_ERROR), system memory errors (i.e. memory buffer 

allocation routine fails), underlying operating system properties (i.e. user account does 

not exist on the system), etc. The HCPN behavioural aspect describes the possible 

authentication-related functionalities that can be generated by the PAM Stack Instance. 

Some examples of behavioural aspects include: possible handler processing sequences, or 

what happens when the user supplies an empty password vs. a non-empty password. The 

behavioural aspect is described using the HCPN Firing Rule. The Firing Rule is a 

mechanism by which we specify how an HCPN may change state. In other words, it 

encodes the possible behaviours of the HCPN. The Firing Rule, based on the structural 

41 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

I 

j 

description, encodes all of the possible ways that the corresponding PAM Stack Instance 

can provide authentication-related functionality. 

Finding the Balance in HCPN Encoding 

:1 

In developing the method for HCPN encoding, we had to address three goals: human 

readability, HCPN simplicity, and HCPN representation power. On one hand, we strove 

to make the HCPN as simple as possible. In order to do this, we strove to minimize the 

amount of Petri Net constructs such as Places and Transitions, as well as their 

relationships via the Firing Rule. On the other hand we had to ensure that our HCPNs 

contain the appropriate representation power, in terms of being able to represent the 

behaviour of PAM Stack Instance executions in a valid manner. Last, but not least, our 

goal was also to make the HCPN as "human-friendly" and intuitive as possible. In 

particular, we wanted the HCPN structure to reflect PAM Stack Instance execution's 

component structure and execution behaviour in a way that was intuitive. Specifically, we 

wanted HCPN specifications to visually reflect inter-component relationships (i.e. 

Actions depend on Controls, i.e. Controls depend on Handlers, etc.), and flow of data (i.e. 

PAM_RETURN values are obtained from Module executions). 

The above goals may compete with each other. This is because, at some point, the 

simpler, or more complex, the HCPN structure, the less intuitive and human-friendly the 

Hep}1 representation becomes.HCP"£'.l representation po\ver may also be affected. Hence 

a balance had to be reached between these competing goals. 

42 



I 
I 
i 
i 
i 

I 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

HCPN Model Specification 

Given a PAM Stack Instance 

Tn~ = {handlerj} = handlero, handlerl' ... , handlern _l containing n handlers, we 

generate an HCPN model to simulate all of the possible PAM Stack Execution traces of 

this PAM Stack Instance. 

The generation of HCPN models is done automatically by our custom-developed tool 

called pamtester-fin. Pamtester-fin obtains a PAM Stack Instance from Linux-P AM, 

parses this PAM Stack Instance, and based on this parsing, generates an HCPN model 

representing the structure and behaviour of the possible authentication-related 

functionalities (or PAM Stack Executions) of this PAM Stack Instance. 

Our HCPN model of a PAM Stack Instance Execution is composed of multiple HCPN 

modules. These HCPN modules are combined in a hierarchical fashion, using substitution 

transitions, to form the HCPN model. We also make use of Fusion Sets to ensure that the 

visual representation of our HCPN modules is "human-friendly" in terms of two-

dimensional graphical representation. 

Our HCPN model is generated based on templates. Each HCPN module has a 

corresponding template. Each template is implemented as a computer program source 

code making up our pamtester-fin tool. In other words, HCPN module templates are 

embedded as part of the pamtester-fin tool. 

Pamtester-fm tool generates BCPN module specifications based on these templates. 

These BCPN module specifications are stored in pamtester-fin process memory during 

the runtime of pam tester-fin. 

43 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

These HCPN module specifications, in tum, are used by pamtester-fin to generate 

I 

I 

1 

HPCN module instances. These HCPN module instances comprise the overall HPCN 

model instance. This HCPN model instance is stored in pamtester-fin process memory 

during the runtime of pam tester-fin. 

Based on this HCPN model instance, pamtester-fin generates the Transition System 

encoding in NuSMV syntax. This Transition System describes the behaviour of the 

HCPN model instance in tenns of the firing rule. In other words, this Transition System 

describes how the HCPN model instance can change state. This NuSMV syntax is stored 

in a text file by pamtester-fin. 

Additionally, based on this HCPN model instance, pamtester-fin outputs a two-

dimensional graphical representation of the HCPN model instance. To do so, pamtester-

fm encodes the visual structure of the HCPN model instance (two-dimensional layout of 

places, transitions, edges, etc.) using GraphViz syntax. Then, pamtester-fin uses 

Graph Viz to render this structure producing a two-dimensional graphical representation 

of the HCPN model instance. This graphical representation of the HCPN model instance 

is a "partial" unfolding of the HCPN model instance. By "partial" we mean that we do not 

completely follow the steps comprising an HCPN model instance unfolding as specified 

in (5). Specifically, we do not merge all Fusion Sets, because this would make the 

graphical representation "too messy". 

For the rest of this section, uniess noted otherwise, we use the PAM Stack Instance 

Tn pam authenticateO h . F' 94 185 '11 I Thi !ogi; sown m 19ure on page to 1 ustrate our examp es. s 

44 



I 

i 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

PAM Stack instance enforces user authentication at ACME Corp for the Linux·P AM 

Service "login". 

HCPN module DISPATCH 

We start the modeling ofTn~ with the HCPN module DISPATCH. DISPATCH is a 

prime module, and is the only prime module in our Petri Net model. 

The pamtester·fm HCPN module DISPATCH template is shown in Figure 18. 

1~ 
( p.Start )------­
~. 

CONTROL 

I GF:pH <n> I 

H,"dle<, -~~Lu~ 
HANDLERS ~ TERMINATE ~ 

CONTROL PAM.RETURN 

Figure 18: Pamtester-fm HCPN module DISPATCH template 

Due to the generic nature of HCPN templates, in order for us to illustrate the structure 

of HCPN templates, we make use of functions and variables within the renderings of 

these templates. Specifically, the text contained within the angled brackets '<' and '>' 

denotes functions and variables. During operation ofpamtester·lln, depending on the 

PAM Stack instance being parsed, the functions and variables contained in these 

templates are computed accordingly by pamtester-fm. For example, given the place 

pH _ <n> _Sin Figure 18, the HCPN module DISPATCH specification for the PAM Stack 

instance, shown in Figure 94 on page 185, is replaced with 4, i.e. pH_ <n> _S := pH_ 4_S. 

Number 4 denotes the number of handlers comprising this particular PAM Stack instance. 

45 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Based on the template in Figure 18, pamtester-fm generates the HCPN module 

specification show in Figure 19. Figure 19 shows a rendering of the HCPN module 

Dispatch specification for user authentication via "login" at ACME Corp. 

I GF:pH 0 I 
~ 

~~)- 1Lr-=~", 
CONTROL 

I GF:pH 4 I 

~)-
... _______ --/ ILrc=~" 

CONTROL 

Figure 19: HCPN module DISPATCH specification for authentication via "login" at ACME 
Corp. 

The Dispatch module specification in Figure 19 contains four places: p _Start, pH _0 _S, 

belongs to the GF:pH _ 4 fusion set. This specification also contains three substitution 

transitions: Initialize, Handlers and Terminate. p_Start, pH_O_S, pH_ 4_S can only 

contain tokens of color CONTROL. Place p _End can only contain tokens of color 

PAM RETURN. 

The color CONTROL is only used for defining how the HCPN model should 

"execute". For example, a CONTROL token in place p_Start indicates that the 

INITIALIZE submodule can start executing. An arrival of a token in place p _Start 

represents the start of the PAM Stack execution. Precisely, it implicitly denotes that step 1 

of the PAM Stack Execution algorithm specified in Table 13 on page 29 was evaluated to 

false, meaning that the PAM Stack instance contains at least one handler3
. Secondly, it 

denotes that the initialization of the PAM Stack and Substack Execution can now be 

3 In fact, pamtester-fin does not generate an HCPN model for a PAM Stack Instance, if this Instance does 
not contain any handlers. In this case, pamtester-fin simply returns the P AM_RETURN value of 
_P AM _ SYSTEM_ERR = 4, as implemented in the pam_dispatch _ auxO function in libpam/pam _ dispatch.c 

46 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

carried out (step 2 of this algorithm). As another example, a CONTROL token in place 

I 
pH _0 _S indicates that the HANDLERS submodule can start executing. Specifically, an 

I arrival of a token in place pH _0_ S represents the choosing of the first handler, handler _0, 

I 
for execution and that this handler can now be executed (step 3 of this algorithm). As 

another example, a CONTROL token in place pH_ 4_S indicates that the TERMINATE 

submodule can start executing. An arrival of a token in pH _ 4 _S represents the end of the 

P AM Stack execution's handler processing, and that PAM Stack execution's termination 

code can now be executed (step 5 of this algorithm). 

In contrast, the color P AM_RETURN is not only used for defining HCPN execution 

control, but also for specifying a possible PAM Stack execution result. For example, 

when a place p _End receives a token color PAM_RETURN, execution-wise, this 

indicates the finishing of PAM Stack execution. At the same time, this token also 

represents the returning of the PAM Stack execution result. The value of this token is 

used as the return value of the PAM Stack execution (step 6a in the algorithm). 

Combining HCPN Modules 

Thus, the HCPN module DISPATCH specification is the starting point for the overall 

specification of our HCPN model of a PAM Stack execution. Our HCPN model is 

comprised of not only the HCPN module DISPATCH. In fact, there are other HCPN 

modules that are used in the specification of our model. As mentioned above, to construct 

the overall HCPN model of PAM Stack execution, we combine the HCPN module 

47 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

DISPATCH with other HCPN modules. We do this combining via substitution 

transitions. 

In the HCPN model specification (and pamtester-fm template), a substitution transition 

is specified by a rectangular box with a double-lined border. The text contained in the 

center of the substitution transition is the name of the substitution transition. HCPN 

module DISPATCH has three substitution transitions: Initialize, Handlers, and Terminate. 

Each substitution transition corresponds to an HCPN module, indicated by the name of 

the module being specified in the small textbox found at the bottom of the substitution 

transition. For example, substitution transition Initialize corresponds to the HCPN module 

INITIALIZE, Handlers corresponds to HANDLERS, and Terminate corresponds to 

TERMINATE. 

Substitution transitions specify combining of HCPN modules. In the case ofthe HCPN 

module DISPATCH specification, this specification dictates that DISPATCH is combined 

with INITIALIZE, HANDLERS and TERMINATE. The resulting HCPN is composed of 

the individual HCPNs: DISPATCH, INITIALIZE, HANDLERS and TERMINATE. The 

structure and behaviour of the resulting HCPN is a combination of the structure and 

behaviour of the individual HCPNs being used in the creation of the resulting HCPN. In 

our model, the resulting HCPN's structure and behaviour is a combination of the structure 

and behaviour of the HCPN modules DISPATCH, INITIALIZE, HANDLERS and 

TERMINATE. 

HCPN modules INITIALIZE, HANDLERS and TERMINATE are called submodules 

of the HCPN module DISPATCH. We call DISPATCH a parent module of INITIALIZE, 

48 



I 
I 

I 
~ 
~l 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

HANDLERS and TERMINATE. A submodule may have other submodules. Thus, HCPN 

models specify sequences of submodule specifications. For example, since INITIALIZE 

is a submodule of DISPATCH, denoted DISPATCH ~ INITIALIZE, thus DISPATCH ~ 

INITIALIZE is an example of a sequence of submodule specifications. Given an HCPN 

model, any submodule sequences of this model must not contain a cycle. For example, if 

the HCPN module INITIALIZE contained a substitution transition whose cOlTesponding 

HCPN module was DISPATCH, then we would obtain a sequence of submodule 

specifications which contains cycles. Such a sequence would have the form DISPATCH 

~ INITIALIZE ~ DISPATCH ~ INITIALIZE ~ ... , where a cycle is DISPATCH ~ 

INITIALIZE ~ DISPATCH, for example. We cannot have any such cycles in HCPN 

specifications as this would result in an infinite HCPN model instance. 

HCPN model instances are generated from HCPN model specifications. Using an 

analogy, an HCPN model specification is a "blueprint", and an HCPN model instance is a 

"stmcture" generated based on this "blueprint". 

Pamtester-fm generates an HCPN model instance based on the HCPN model 

specifications. 

HePN module Instances and the Instance Hierarchy 

Once an HCPN model specification is obtained, i.e. all HCPN modules comprising this 

model are specified, the next step is to generate an HCPN instance of this model, based 

on the HCPN model specification. 

49 



I 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

We use HCPN instances to study the HCPN model's behaviour. For example, we may 

be interested in how the HCPN model changes its marking - a distribution of tokens 

amongst the HCPN's places. A sequence ofHCPN token marking changes is an HCPN 

execution. Specifically, in the case of modeling PAM Stack instances, we may want to 

know what possible P AM_RETURN values the particular PAM Stack instance may 

return. In this case, we use an HCPN model template to generate the appropriate HCPN 

model specification, based on the PAM Stack instance obtained from Linux-P AM. Then, 

based on the HCPN model specification, we generate the HCPN model instance. Then, 

we use the HCPN model instance to simulate the possible executions of the HCPN model. 

HCPN model instantiation causes the HCPN module specifications, comprising the 

HCPN model specification, to be instantiated. This results in an HCPN model instance 

(comprised of the individual HCPN module instances). 

Once we obtain an HCPN model instance, we can simulate HCPN executions. Given 

an HCPN model instance corresponding to a PAM Stack Instance, we can attempt to 

enumerate HCPN model instance executions of interest. An execution of our HCPN 

model instance represents a portion of the PAM Stack instance's execution. An HCPN 

model instance execution represents a portion of an authentication-related functionality, 

this functionality as defined by the PAM Stack Execution algorithm (Table 13, page 29). 

HCPN model instantiation instantiates all modules, following the submodule sequence. 

In our model, the HCPN module DISPATCH is instantiated first. Figure 20 shows this 

instantiation and its initial marking - the starting marking. Our initial marking has a 

single (1 ') CONTROL token of value 1 in place p_Start (grey rectangle containing 1'1). 

50 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

I GF:pH 4 I 

~)-J~t-I-~~~ 
~ ~ATEI ~ 

CONTROL PAM_RETURN 

Figure 20: HCPN module DISPATCH specification for authentication via "login" at ACME 
Corp. 

When an HCPN module is instantiated, for each substitution transition of this module, 

the cOlTesponding HCPN module (submodule) is also instantiated. The instantiated 

submodules are "combined" with their cOlTesponding parent module. In our model, 

HCPN module DISPATCH has three substitution transitions called Initialize, Handlers 

and Telminate. Initialize, Handlers and Terminate cOlTespond to the submodules 

INITIALIZE, HANDLERS and TERMINATE, respectively. When DISPATCH is 

instantiated, INITIALIZE, HANDLERS and TERMINATE are also instantiated. In tum, 

the submodules of INITIALIZE, HANDLERS and TERMINATE cause instantiations of 

their submodules, and so on, and so forth. For a detailed description of how HCPN 

instantiation takes place, refer to (5). 

Thus, the set of modules of an HCPN model has a binmy relation, which we call an 

instantiation relation. This instantiation relation, represented as a directed graph, forms a 

set of connected, acyclic subgraphs. A node of the graph is an HCPN module comprising 

the HCPN model. A directed edge of the graph exists between two nodes A and B, where 

the edge is outgoing from node A and incoming to another4 node B, if, and only if, B is a 

submodule of A. This graph is called an instance hierarchy (5). Since our model contains 

4 A is distinct from B 

51 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

a single prime module, an instance hierarchy of an HCPN model of a PAM Stack Instance 

is a connected, acyclic graph (a tree). 

Instance hierarchies help us visualize how modules and their submodules are 

combined to create the overall HCPN model instance. 

( DISPATCH) 

InitialiZe~ I ~Terminate "7- Handlers 

~ t 
INITIAUZE ( HANDLERS ) TERMINATE 

••• 

Figure 21: Partial instance hierarchy rooted at DISPATCH 

In Figure 21 we show a "partial" instance hierarchy corresponding to the HCPN 

Dispatch instance shown in Figure 20. As discussed, DISPATCH has three submodules: 

INITIALIZE, HANDLERS and TERMINATE. Figure 21 shows this fact by the existence 

of the directed edges, each edge outgoing from DISPATCH, and incoming into each of 

the corresponding submodules of DISPATCH. The edge labels indicate names of the 

corresponding substitution transitions. This instance hierarchy is "partial" because we did 

not show the whole instance hierarchy yet. Specifically, the HCPN module HANDLERS 

has HCPN submodules which we have not shown yet. 

HCPN module INITIALIZE 

INITIALIZE models the initialization of the PAM Stack Execution. The pamtester-fm 

template for the HCPN module INITIALIZE is shown in Figure 22. The corresponding 

instance is shown in Figure 23. 

52 



I 

~ 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

GF:State GF:5tate 

1 

-(~ t1nit_' 

~ 
TOKEN 

/
~. 

IMPRxSTAT 

I GF:State 0 I 
10,6 .~ 

~' plnlt_state_O ) 

10,6)/' ~~ 
GF:pH 0 

~ 
~ pH_Start_to_O ) 

~ 
TOKEN 

Figure 22: Pamtester-fm HCPN module 
INITIALIZE template 

Figure 23: HCPN module INITIALIZE 
instance; for ACME Corp. 

The HCPN module INITIALIZE models the PAM Stack execution initialization. This is the 

second step in the execution of the PAM Stack instance, as exhibited by the algorithm in Table 

13 on page 29. The transition tInit_l, and only transition tInit_l, becomes enabled at 

initialization, and hence is the only transition that can be chosen to be fired by the HCPN Firing 

Rule. Once tInit_1 is fired, it consumes a CONTROL token from HCPN place p _Start, sets the 

PAM Stack Execution state to (0,6), the PAM Substack Level ° state to (0,6), and places a 

CONTROL token in the HCPN place pH_Start_to_O. The placing of the CONTROL token in 

pH_Start_to_O models the act of choosing the first handler, handler_O, to be executed next. 

HePN module TERMINATE 

TERMINATE models the termination of the PAM Stack Execution. The HCPN module 

TERMINATE template is shown in Figure 24. The HCPN Termination instance is shown in 

Figure 25. 

53 



i 
I 

I 
:1 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

~ 
.~ t 

( pT,m_;", )--'-- I "'m_' 
........ ----' 

TOKEN 

Figure 24: Pamtester-fm HCPN module 
TERMINATE template 

Figure 25: HCPN module TERMINATE 
instance; for ACME Corp. 

The HCPN module TERMINATE waits for one of two events: either a TOKEN 

anives in place pH _ <n> _ S or in place pTerm _inc. When the former occurs, this indicates 

that the execution of the last executed handler, handler _ <x>, where a ~ x ~ n - 1, did 

not result in the pausing of the PAM Stack execution. The latter indicates that the PAM 

Stack execution was paused. The functionality obtained from transitions tTerml and 

tTerm2, along with the place pTerm_state, executes the termination of the PAM Stack 

execution, as the last step before the PAM Stack execution ends, as specified in step 5 in 

the algorithm in Table 13 on page 29. The HCPN module TERMINATE implements the 

functionality specified via the state machine shown in Figure 8 on page 31. 

Example: "Combining" DISPATCH with INTIALIZE and TERMINATE 

As an example of how HCPN instances are combined to create a single, "partially" 

unfolded HCP}~ instance, we show a partial unfolding of the HCP}~ module DISPATCH. 

For the purpose of illustration, this patticular partial unfolding only replaces the Initialize 

and Terminate substitution transitions with the INITIALIZE and TERMINATE HCPN 

modules, but does not replace the Handlers substitution transition with the HCPN module 

54 



I 

I 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

HANDLERS. Also, in this partial unfolding example, we do not merge all fusion sets. For 

some fusion sets we do partial merging. For example, for the GF:ph _0 fusion set, we 

merge the place pH_Start_to_O from the HCPN module INITIALIZE instance, with the 

place pH _0_ S from the HCPN module HANDLERS instance. This, in effect, joins the 

HCPN module INITIALIZE and HANDLERS instances. Similarly, for the fusion set 

GF:ph_ 4, place pH_ 4_S from the HCPN module HANDLERS instance, and the place 

pH_ 4_S (same name, different HCPN Module) from the HCPN module TERMINATE 

are also merged, thus, joining the HCPN module HANDLERS and TERMINATE 

instances. The resulting partially unfolded HCPN is shown in Figure 26. 

Figure 26: Partial unfolding of the HCPN module instance DISPATCH "combining" 
DISPATCH with INITIALIZE and TERMINATE HCPN module instances; for ACME Corp. 

55 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

I 

~ 

HCPN module HANDLERS 

Given a PAM Stack Instance 

Tn~ = {handlerJ = handlero, handlerv ... , handler n-l containing n handlers, the 

HANDLERS HCPN module models the execution of all possible handler subsequence 

executions allowable by the PAM Stack Instance. The pamtester-fm template for the 

HCPN module HANDLERS, shown in Figure 27, is used to generate the HCPN module 

HANDLERS specification for Tn~. 

I GF:pH_ <n-1> I I GF:pH_ <n> I 

8 
CONTROl CONTROl 

Figure 27: Pamtester-fm HCPN module HANDLERS template 

The number n denotes the number of handlers comprising the PAM Stack Instance. 

The number x denotes an arbitrary number from ° to n - 1, i.e. ° :::; x :::; n - 1. HT is a 

function, HT: {a, 1, ... ,n -1} ~ {NOT_SUBSTACK} U 

{SUBSTACK_O, SUBSTACK_1, ... , SUBSTACK_15}. The elements of the range of HT, 

i.e. Ran(HT), are HCPN modules. 

Pamtester-fm uses this HCPN module HANDLERS template to generate the 

corresponding HCPN module HANDLERS specification. The numbers n and the 

function HT are computed at runtime, during this generation. 

The number n is obtained by pamtester-fm by parsing the data structure containing the 

PAM Stack Instance. Precisely, the number n equals the number of struct handler data 

structures comprising the PAM Stack Instance. 

56 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

I 
Also, as previously mentioned, each handler data structure contains information, 

i 

I 
including: handler type, subs tack level, name of "stacked" PAM corresponding to this 

j 
handler, and last, but not least, a pointer to the "stacked" PAM's implementation of the 

Management Function corresponding to the PAM Stack Instance. Given a handler x, 

o :::; x :::; n - 1, Pamtester-fm extracts this information from the xth handler data structure, 

thereby calculating the value of HT(x). 

The function HT identifies which HCPN module to associate with the Handler _ <x> 

substitution transition, 0 :::; x :::; n - 1. HT classifies handlers into two categories: the 

handler is a start of a substack, i.e. type of handler is PAM _ HT _ SUB STACK; the handler 

identifies which substack level, the substack level being between 0 and 15, this handler is 

associated with. Given a handler _x whose substack level is L, then 

HT(x)=SUBSTACK _ L. 

The reason why we chose to make this distinction in our HCPN modeling is because 

handlers that are not of type PAM _ HT _SUBSTACK have the same execution structure. 

Specifically, handlers whose type is PAM _ HT flODULE or PAM _ HT _MUST _FAIL 

share the same execution behaviour. This behaviour consists of, first, returning a 

P AM_RETURN value, and then executing an Action as dictated by the corresponding 

Control function. This can be seen in the PAM Stack Execution algorithm shown in 

Table 13 on page 29. 

57 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Figure 28 shows the HCPN module HANDLERS instance for Acme Corp. In this 

instance, all handler instances are not of type PAM_HT_SUBSTACK, i.e. the 

cOlTesponding PAM Stack Instance does not contain any substacks. 

I GF'pH 1 I 
~-­

( pH_l_S 

-._--------------
CONTROL 

I GF,pH_' I 

CONTROL 

CONTROL 

Figure 28: HCPN module HANDLERS instance; for ACME Corp. 

Given a place pH_ <x> _S, 0 :::; x:::; 3, when a CONTROL token is placed in pH_x_S, 

this represents the act of choosing the xth handler as the next handler to be executed. 

Precisely, this cOlTesponds to steps 3.a and 4.h.i in the PAM Stack Execution algorithm 

(Table 13 on page 29), depending if x = 0, or 1 :::; x :::; 3, respectively. 

As discussed above, when a CONTROL token is placed in pH _ 4_ S, this signifies the 

end of processing of handlers, and that the next step is to execute the termination portion 

of the PAM Stack execution (step 5 of algorithm in Table 13 on page 29). 

}\ .. S done previously, given the HCP}~ module HMIDLERS instance example in Figure 

28, we can continue our "partial" unfolding from Figure 26 on page 55. Figure 29 shows 

this continuation with the Handlers substitution transition being replaced by the HCPN 

module HANDLERS instance from Figure 28. 

58 



I 

j 

~ 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Figure 29: Partial unfolding of the HCPN module instances DISPATCH, INITIALIZE, 
HANDLERS, TERMINATE; for ACME Corp 

HCPN module SUBSTACK 

The pamtester-fm HCPN module SUBSTACK template is shown Figure 30. 

1 GF'pH <x> I 
~'t 

( pH_ <x> _5 )---'-.: 

~' 
CONTROL 

I GF:State t 

IMPRxSTAT 

Ii.s) I GF:State <l+1> I 
~, 
\_~ 

IMPR x STAT I"GCC-F:p-c-H -<x-o-+1>---'1 

.,~. 

r--------;---~{ pH_<x>_<x+1> ) 
\._~,,~ 

CONTROL 

Figure 30: Pamtester-fm HCPN module SUBSTACK template 

A placement of a CONTROL token in place pH _ <x> _ S enables the transition 

tH _ <x> _0_1. Firing of this transition causes the storing of the current PAM Stack 

59 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Execution State (i,s) in the fusion set GF: State <L + 1>, where the cunent substack level 

of handler _ <x> is L. The cunent PAM Stack Execution State (i,s) is obtained from the 

I 

1 
place pH_ <x> _O_state, a member of the GF:State fusion set. When (i,s) is obtained, it is 

also replaced, so that subsequent transitions needing to obtain the cunent PAM Stack 

Execution state will be able to do so. The last Substack Level L+ 1 Execution State (i', s') 

is effectively deleted as the transition consumes it and does not generate any copies of it. 

Additionally, a CONTROL token is placed in place pH _<x> _to _ <x+ 1>, which belongs to 

the GF:pH _ <x+ 1> fusion set. This represents the choosing of the (x+ 1 )st handler (the next 

handler in the sequence) as the handler to be executed next. 

This HCPN module SUBSTACK template specification implements the "entering of a 

new substack level", as outlined in steps 4.a.i (saving of cunent PAM Stack Execution 

State) and 4.c.i (choosing next handler to be executed as the next handler in the sequence) 

of the PAM Stack Execution algorithm shown in Table 13 on page 29. 

HCPN module NOT_SUBSTACK 

HCPN module NOT_SUBSTACK template, as shown in Figure 31. 

GF:pH_<x> 

ControL<x> 

CONTROL_ <x> 

CONTROL 

Figure 31: Pamtester-fm HCPN module NOT_SUBSTACK template 

60 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Execution of handler types PAM _ HT _MODULE, and PAM _ HT _MUST _FAIL have 

the same execution structure. First, a P AM_RETURN value is obtained. This is 

represented by the substitution transition Module_ <x>. Second, the obtained 

P AM_RETURN value is used to execute the appropriate Action, this Action being 

determined via the cOlTesponding Control function. This is represented by the substitution 

transition Control_ <X>. Here, the obtained PAM_RETURN value not only controls PAM 

Stack Execution, i.e. a P AM_RETURN token is placed in the place pC _ <x> _ S, but the 

P AM_RETURN token also calTies information to the next HCPN module as input, i.e. 

value of the P AM_RETURN token is used to compute the image of the cOlTesponding 

Control function (this computation represented by Control_ <x», or in other words, this 

value is used to determine the Action to execute. 

Precisely, as shown in the PAM Stack Execution algorithm (Table 13 on page 29), 

PAM Stack Execution first checks (step 4.b) if the handler is elToneous (handler is of type 

returned. In this case, even though no PAM execution takes place, we can interpret the 

action of returning this elTor code as a "PAM or module execution". In this case, 

name(x):=MUST_FAIL, and the value of the substitution tag becomes 

If handler is not of type PAM _ HT _MUST _FAIL, then we have two sub-cases: 

• the cOlTesponding PAM Px contains an implementation [([sm, Px ) of the Module 

API function f sm cOlTesponding to the Management Function f associated with 

the PAM Stack Instance T II~ in question, or 

61 



I 

I 

I 
J 
:\ 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

• otherwise, Px does not contain I([sm, Px). 

Thus, the next relevant check carried out by the PAM Stack Execution algorithm (step 

4.d) is to check whether Px does not implement Ism, i.e Px does not contain I([sm, Px)' If 

true, then the error PAM_MODULE _UNKNOWN = 28 is returned. Again, although no 

PAM execution takes place, we interpret the action of returning of the error code as a 

"PAM or module execution". In this case, name(x):=FUNC NULL, and the value of the 

substitution tag becomes MODULE _ <name(x»:=MODULE _FUNC _NULL. 

Lastly, if Px does implement Ism, i.e Px contains I (Ism, Px), then PAM Stack executes 

I (Ism, Px), supplying the PAM options Ox as arguments, and obtains a PAM_RETURN 

code returnx , i.e. returnx := exec (I (pm, Px), Ox). In this case, name(x):=s E PAMS = { 

SECURETTY, ENV, UNIX, SUCCEED_IF, ... }, where s corresponds to the module Px , 

and the substitution tag becomes MODULE _ <name(x»:=MODULE _ <s>. For example, 

if handler x corresponds to pam unix.so PAM, and handler x is not erroneous, and - - -

pam _ unix.so PAM implements management function Ism, then name(x) = s = UNIX is a 

member of P AMS and MODULE_ <name(x» := MODULE _ <s> = MODULE_UNIX. 

To summarize, in all three of the above cases (i.e. check for an erroneous handler via 

step 4.b, check for existence of appropriate function implementation via step 4.d, 

execution of function implementation via step 4.e) a PAM_RETURN code is obtained 

(i.e. returnx := 6, returnx := 28, returnx := exec (I (pm, Px), Ox), respectively). The 

modeling of the returning of this P AM_RETURN code is done by the HCPN module 

associated with the Module _ <x> substitution transition. Once the return value is obtained, 

the appropriate Action is determined (action 4.g) via the corresponding Control function, 

62 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

i.e. actiollx := CxCreturnJ. The modeling of determining the appropriate Action is done 

by the HCPN module associated with the Control_ <x> substitution transition. 

Continuing with our partial unfolding example for ACME Corp (Figure 29 on page 

59), assuming that all 4 handlers are not erroneous, and that all 4 handlers implement the 

pam_sm _ authenticateO Management Function, we obtain the unfolding in Figure 32. This 

unfolding is obtained by replacing all Handler _ <x> substitution transitions with HCPN 

module NOT SUBSTACK instances. 

63 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

I GF:Slale I 

/

/ plnil_slale 

~. 

IMPRxSTAT 

I GF:Slale 0 I 
(0,6 .~ 

/ 

pi nil slale 0 ') 
,,~ ____ ~_~/J 

(0,6) IMPRx STAT 

I GF:pH 0 I 
/~ 

f----~( pH_O_S 
'~. 

CONTROL 

I GF:pH 1 I 
~, 

( pH_U : 

'~ 

CONTROL 

CONTROl 

CONTROL 

[-,(i=l)l\s=O] 

CONTROl 

Figure 32: Partial unfolding of the HCPN module instances DISPATCH, INITIALIZE, 
HANDLERS, NOT_SUBSTACK, TERM!NATE; for ACME Corp 

64 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

HCPN module MODULE_ <name(x)> 

As previously discussed, the HCPN module MODULE _ <name(x» has three cases: 
I 

-! 
• the handler is enoneous, i.e. HCPN module MODULE_MUST _FAIL; 

• the management function is not implemented, i.e. HCPN module 

• the handler is not enoneous and the handler implements the appropriate 

management function, i.e. HCPN module MODULE _ <s>, where string s 

identifies a PAM, string s is a member of PAMS={SECURETTY, ENV, 

UNIX, SUCCEED_IF, ... }. 

HCPN module MODULE_MUST_FAIL 

The pamtester-fm HCPN module MODULE_MUST _FAIL template is shown in 

Figure 33. 

GF:pH <x> 

CONTROL 

Figure 33: Pamtester-fm HCPN module MODULE_MUST _FAIL template 

All HCPN module MODULE_MUST _FAIL instances simply retum a 

PAM RETURN enor code PAM MUST FAIL CODE = 6. - - -

65 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

HCPN module MODULE_FUNC_NULL 

The pamtester-fm HCPN module MODULE_FUNC_NULL template is shown in 

Figure 34. 

I GF:pH <x> I 

c:-~V ~-. 28 ~:0 tH_ <x>_l 

CONTROL PAM_RETURN 

Figure 34: Pamtester-fm HCPN module MODULE_FUNC_NULL template 

All HCPN module MODULE_FUNC_NULL instances simply return a 

PAM RETURN elTor code PAM MODULE UNKNOWN = 28. 

HCPN module MODULE_ <s> 

Given a PAM Px "stacked" on a PAM Stack instance Tn~, if Px implements the 

cOlTesponding Module API function fsm, i.e. I (fsm, Px), then pamtester-fm uses the 

HCPN module MODULE _ <s> template to generate the appropriate HCPN module 

instance which models the execution of I(fsm, Px). The pamtester-fm HCPN module 

MODULE_ <s> template is as shown in Figure 35. 

GF:pH_<x> 

CONTROL 

Figure 35: Pamtester-fm HCPN module MODULE_ <5> template 

66 



1 

1 
1 
i 
J 
,1 
:1 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

In our current model, the model of an "execution" of a PAM Px,HCPN module 

MODULE _ <s>, consists of a single transition tH _ <x> _1. This transition is defIned to 

consume a single CONTROL token. Also, this transition generates a single 

P AM_RETURN token. The value of this P AM_RETURN token is taken from R, the set 

of possible values that can be returned by the execution of I (fsm, Px). This is modeled by 

the transition tH <x> 1 being defmed as capable of returning, and only returning, exactly - -

one of the values <r_x_O>, <r_x_l>, ... , <r_x_CIRI-1», where IRI is the cardinality of the 

set R, and V' k E O .. IRI- 1, r_x_k E R. We denote the fact that only one of the values 

can be returned by the fIring of the transition tH _ <x> _1 by using the' I' character to 

The HCPN module MODULE _ <s> template is then used to generate the templates for 

each of the PAMs, i.e. MODULE_SECURETTY, MODULE_ENV, MODULE_UNIX, 

etc. 

For example, Figure 36 shows a pamtester-fm template for the pam_securetty.so PAM, 

i.e. HCPN module MODULE _ SECURETTY. In our modeling, we assume that the 

pam _ securetty.so PAM is capable of returning only the following P AM_RETURN 

PAM_IGNORE = 25 and PAM_INCOMPLETE = 31. In this case, IRI = 5, and the 

possible return values are obtained using the following derivation process: <r _ x _0> = 

67 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

I 

-1 I GF:pH <x> I , 

C:~y-t-. tH_ <x>_l 
01317125131 pc-~>-0 

~ 

CONTROL PAM RETURN 

Figure 36: Pamtester-fm HCPN module MODULE_SECURETTY template 

For example, consider the HCPN module MODULE ~ SECURETTY template in 

Figure 36. FUlihermore, recall that the PAM Stack instance for ACME Corp. (Figure 94 

on page 185), contains the pam ~securetty.so PAM as the fIrst "stacked" PAM, i.e. 

handler ~ 0 is associated with pam ~securetty.so PAM. Then, the HCPN module 

MODULE~SECURETTY instance is as shown in Figure 37. In this case, <r~x~O> = 

<r x 4> = r 0 4:= 31. 

I GF:pH 0 I 

~ HOS 
t 01317125131 r J II ~p -- tH_0_1 ~ pC_O_S ....-. ControLO , 

CONTROL ° 
CONTROL PAM RETURN 

Figure 37: HCPN module MODULE_SECURETTY instance ~ ACME Corp 

In this case, continuing with the partial unfolding example for ACME Corp (Figure 32 

on page 64), we obtain the unfolding in Figure 38. This is done by replacing the 

substitution transition Module 0 with an HCPN module MODULE SECURETTY 

instance shown in Figure 37. 

68 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

I GF:5tate I 
~" 

/

' plniutate ) 

,-------/ 
IMPRx5TAT 

I GF:5tate 0 I 

0(3(7(25(31 

(0,6) ~ 

d .I~:~) 
(0,6)/ IMPR x STAT 

1 ---'1i1l. I GF:pH 0 I -/' 8 ~ 
• t t (.:'"") ,.~ """ / r'/ [ow 

CONTROL ~ CONTROL 

I GF:pH 1 

~ 
( pH_1_5 

~ 
CONTROL 

I GF:pH 2 I 
~, 

~' 
CONTROL 

CONTROL 

CONTROL 

[--,(i=l)/\s=O] 

K-----------111oj tTerm_1 I----~ 

(i,s) 

CONTROL 

Figure 38: Partial unfolding of the HCPN module instances DISPATCH, INITIALIZE, 
HANDLERS, NOT_SUBSTACK, MODULE_SECURETTY, TERMINATE; for ACME Corp 

69 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

HCPN module CONTROL 

! The pamtester-fm HCPN module CONTROL template is shown in Figure 39. 

-I 

~l 
J 

! 

Figure 39: Pamtester-fm HCPN module CONTROL template 

This template generates the HCPN module CONTROL instances for each handler 

whose type is not PAM_HT_SUBSTACK. This template implements the PAM Stack 

execution functionality of obtaining a P AM_RETURN value, and determining which 

Action to execute based on this P AM_RETURN value. This functionality corresponds to 

step 4.g in the PAM Stack Execution algorithm (Table 13 on page 29). HCPN module 

CONTROL also handles the "pausing" of PAM Stack Execution (step 4.fin Table 13 on 

page 29). 

Given handler x, such that type of handler x is not PAM HT SUBSTACK, the 
- - - -

determination of which Action to execute is defined by the corresponding Control 

function ex. 

70 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

The value of the P AM_RETURN token in place pC _ <x> _S corresponds to the value 

i 
I 

of returnx in step 4.g in the PAM Stack Execution algorithm (Table l3 on page 29). This 

J 

~ 
value is an integer in the range [0,31]. 

The place pC _ <x> _S belongs to the preset of exactly the following set of transitions: 

o ~ k ~ y_x, the transition guard evaluates to TRUE if, and only if, the PAM_RETURN 

value rbelongs to the guard's range of PAM_RETURN values X_(x,k), i.e. r E X_(x,k). 

For the transition tC _ <x> _Inc, we defme this range by the the singleton set {31}, and 

we denote it by the number 31. In this case, we set the guard to be [r = 31]. For transition 

tC_ <x> _ <k>, <X_(x,k» is the range template, and [r E <X_(x,k»] is the guard template. 

The membership of the set denoted by X_(x,k) is obtained from the defmition of the 

Control function, ex (contained in the corresponding handler x) using the algorithm 

described in Table 12 on page 27, i.e. X _(x,k) := kth partition X in partition sequence {X}, 

denoting a range of P AM_RETURN values, each of these retum values having the same 

image under corresponding Control function, i.e. 'Vr EX_ex, k): CxCr) = a, a constant. 

Thus, given the set of partitions {X}:= {X_ex, 0), X_ex, 1), ... , x_ex, k), ... , x_ex, y_x)} (see 

algorithm in Table 12 on page 27 to see how such a set of partitions is obtained), we use 

each partition X-Cx, k), k E 0,1, ... , Y _x, as the range for the corresponding transition 

guard of the transition tC_ <x> _ <k>, i.e. [r E <X_(x,k»]. The symbol used to represent 

the last guard [r E <X_(x,y_x»] is "ow" (shorthand, since this range contains the most 

retum values). As Linux-PAM configurations tend to have one large partition and a few 

small ones, and given that the set of P AM_RETURN values contains 31 elements, hence, 

71 



M.Sc. Thesis -- C. Kulbakas McMaster -- Computing & Software 

for display purposes, we chose to use the symbol "ow" for the renderings of the guard 

I function for the most populous partition (with largest minimal value). 

I 
As explained above, the set of P AM_RETURN values is partitioned among the guards 

of the transitions containing pC _ <x> _Sin their preset. Hence, putting a P AM_RETURN 

token in place pC _ <x> _S causes exactly one of these transitions to become enabled. We 

have two cases for this enabled transition: a single transition tC _ <x> _ k is enabled, for 

some k in {O,l, .. , <y_ x>}; or the transition tC_ <x> _Inc is enabled. Continuing with the 

example from Figure 37 on page 68, Figure 40 shows the substitution transition 

Control_ ° replaced with its conesponding HCPN module CONTROL _0 instance. Here, 

{1,2,3,4,5,6, 7,8, 9,10,11,13,14,15,16, 17, 18,19,20,21,22,23,24,26,27,28,29,30}. 

IrE {O,12}] 

~G----i II 
I
J te_o_o Action_O_O 

ACTION OK 0 0 
I PAM_RETURN 

/ 

rll IrE {25}] 

H3>-i II /~ tC_O_1 Action_O_l /:// AcnON IGNORE 0 1 
PAM_RETURN 

~ - ;/ 
/ // ["ow"] 

C~~)--~- 01311125131 ~ -f:/ r , H2,~ !I (, pH_O_S tH_O_l ~~ t(_0_2 Action_D_2 

ACTION DIE 0 2 I 
CONTROl L-- PAM_RETURN . PAM_RETURN 

r 
[r; 31] n ~ I t ~" l !e_o_'", ~~) 

CONTROL 

Figure 40: HCPN module CONTROL_O instance - ACME Corp 

Pausing of PAM Stack Execution 

If tC _ <x> _Inc is enabled, this implies that the value of the P AM_RETURN token in 

pC _ <x> _Inc is 31. This situation conesponds to step 4. f in the P AM Stack Execution 

algorithm (Table 13 on page 29). 

72 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

If PAM Stack execution is paused, then no Action is executed. Instead, PAM Stack 

execution is stopped, and execution control is returned to the Linux-PAM Client. 

This "pausing" is implemented as follows. When tC _ <x> _Inc is fired, it consumes the 

P AM_RETURN token from pC _ <x> _Sand deposits a CONTROL token in in the place 

pC _ <x> _Inc. This corresponds to step 4.f in the PAM Stack Execution algorithm (Table 

13 on page 29). At this point, the next enabled transition is tTenn _3. The transition 

tTenn_3 belongs to the HCPN module TERMINATE. Thus, effectively, enabling of this 

transition chooses the termination portion of PAM Stack execution. This corresponds to 

step 6 in the PAM Stack Execution algorithm (Table 13 on page 29). 

For instance, the pam_sm_authenticateO Module API function implementation of 

pam_securetty.so PAM is capable of returning PAM_RETURN value of 

PAM_INCOMPLETE = 31. A return value of31 indicates that the pam_securetty.so 

PAM deems that it has not received sufficient infonnation to carry out user 

authentication-related functionality. 

For example, the ACME Corp's PAM Stack instance for the pam_authenticateO 

Management Function, the 1 st handler, handler _0, is associated with the pam _ securetty.so 

PAM. The following figures illustrate the "pausing" of PAM Stack execution. First, 

handler_O is chosen to be executed by placing a single CONTROL token of value 1 in 

pH _0 _S (signified by the grey rectangle containing the text l' 1). At this point, transition 

tH _0_1 is enabled (signified by grey background of tH _0_1). This is shown in Figure 41. 

Note that place pC _0_ Inc was merged with place pTenn _inc, since both places belong to 

the same fusion set, namely GF:Inc. Here, WLOG, we show place pTenn_inc. 

73 



I 
I 

I 
I 

~ 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Figure 41: "Pausing" of PAM Stack - handler_O is chosen to be executed 

Suppose that pam _securetty.so PAM returns PAM_INCOMPLETE return code 

(Figure 42), i.e. transition tH _0_1 consumes the CONTROL token from place pH _ 0_ S, 

and deposits a PAM_RETURN token of value 31 into place pC _0 _So Then, transition 

tC _ 0 _ Inc becomes enabled, since its guard, [r = 31] evaluates to TRUE (since the value 

of the token in place pC _0_ S is 31). 

I GF;pH_O I 
/~ 
( pH_O_S 

~ 

·r 

Figure 42: "Pausing" of PAM Stack - pam_securetty.so PAM returns PAM_INCOMPLETE = 
31 

VYhen transition tC _0_ Inc fires, it consumes the token l' 31 from place pC _ 0 _Sand 

deposits a CONTROL token l' 1 in place pTerm _Inc. Hence, transition tTerm3 is enabled 

(Figure 43). 

74 



L __ ~I 
( ,*,-u ')---!-­
~-

cmmtot 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Figure 43: "Pausing" of PAM Stack - HCPN module TERMINATE is chosen to be executed 

Lastly, once transition tTerm _3 fires, then tTenn3 consumes the CONTROL token l' 1 

from pTerm _Inc, and places a single P AM_RETURN token of value 31 in the place 

pEnd, 1 '31, effectively terminating the PAM Stack execution (Figure 44). 

Figure 44: "Pausing" of PAM Stack - PAM Stack execution terminates 

Choosing to Execute an Action 

If transition tC_ <x> _ <k>, <k> E O .. <y_x>, is enabled, then the firing of this transition 

effectively chooses an Action to be executed. This is implemented by tC _ <x> _ <k> 

removing the P AM_RETURN token from the place pC _ <x> _ S, and placing this same 

P AM_RETURN token in the starting place of the Action to be executed, i.e. in place 

pA_ <x> _ <k> _S, <k> E O .. <y_x>. This removal/placement of the PAM_RETURN token 

75 



I 
i 
I 

I 

M.Sc. Thesis - C. Kulbakas McMaster- Computing & Software 

not only dictates PAM Stack Execution control, but also passes data (the P AM_RETURN 

value) to the Action to be executed. Note that there are as many distinct Actions as there 

are partitions {X}:= {X_Cx, O),X_Cx, I), ... , x_ex, k), ... ,X_Cx, y_x)}. Each partition 

corresponds to a distinct Action. 

For example, continuing with the partial HCPN model instance shown in Figure 41 on 

page 74, suppose that the pam_securetty.so PAM returns the PAM_RETURN = 

PAM_SUCCESS = O. Then, a PAM_RETURN token of value 0, 0'0, is placed in 

pC_a_so This causes transition tC_O_o to become enabled. This is because value of token 

in pC_O_S is 0, and ° belongs to the tC_O_O transition guard's range of values. 

Specifically, if 0 E X_CO,O) = {O,12}, then [r E {0,12}] evaluates to TRUE (Figure 45). 

--'-' II 
I 

Figure 45: Choosing an Action to execute based on PAM_RETURN value defined by 
Control - pam_securetty.so PAM returns PAM_SUCCESS = 0 

Then, once transition tC_O_O fires, the PAM_RETURN token 1 '0 in place pC_O_S is 

consumed by transition tC _0_0, and a PAM_RETURN token 1 '0 is placed in pA _ 0_0 _So 

Hence, the Action associated with the substitution transition Action _0_0 (HCPN module 

ACTION_OK_O_O instance) is chosen for execution (Figure 46). 

76 



I 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Figure 46: Choosing an Action to execute based on PAM_RETURN value defined by 
Control - Action associated with Action_O_O is chosen for execution 

During the generation of HCPN module CONTROL instances, pamtester-fm 

determines the names of the corresponding actions. Given the kth Action substitution 

transition for the xth handler, Action _<x> _ <k>, the corresponding substitution tag has the 

form ACTION _ <name(x,k» _ <x> _ <k>. The symbol namc(x,k) denotes the result of a 

computation that determines the name of the Action to be used as the kth action of the xth 

Control. 

For example, in Figure 46, given the first handler, i.e. x=O, and the first action, i.e. 

k=O, then name(x,k)=name(O,O)=OK, meaning that the first action of the first handler is 

Action OK. In general, since each HCPN module ACTION has a different HCPN 

specification, thus, pamtester-fm generates a different HCPN module for each Action. 

Hence, we suffix <x> _ <k> to Action _ <name(x,k» to create the resulting substitution 

transition tag. Continuing our example, the first action of the first handler has a 

substitution tag 

77 



j 
I 

I 
1 

j 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

this case, pamtester-fm will instantiate an HCPN module ACTION_OK _0_0 in order to 

substitute this module for the substitution transition Action 0 O. 

HCPN module templates for Actions 

There are 6 types of actions: Action 'ignore', Action 'ok', Action 'done', Action 'bad', 

Action 'die', and Action 'jump'. 

All Actions have a similar HCPN structure. The first portion of each Action is devoted 

to updating of the PAM Stack Execution State. The second portion of each Action is 

devoted to choosing the next handler to be executed. 

This structural and behavioural design decision was made to implement the 

functionality of the PAM Stack execution. Mainly, in the PAM Stack Execution 

algorithm, once an Action is executed, the execution of this Action does two things: 

update the PAM Stack Execution State, and choose the next handler to execute. 

The PAM Stack Execution State is implemented by the fusion set GF:State. The colour 

of the places in this fusion set (the type of tokens accepted by these places) is a two-tuple 

(i,s), where i denotes Impression, and s denotes Status. 

For pamtester-fm Action templates, <x> _ <k_x> denotes kth Action ofxth handler. 

HCPN module ACTION_IGN'ORE 

The HCPN module ACTION_IGNORE_ <x> _ <k_x> template is shown in Figure 47. 

Figure 47: Pamtester-fm HCPN module ACTION_IGNORE template 

78 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Essentially, this Action "ignores" the received P AM_RETURN in a sense that this 

Action does not affect the state of the PAM Stack Execution. Specifically, the execution 

of this Action is as follows: tA <x> <k x> 1 consumes the PAM RETURN value fi'om - - - - -

"ignore" portion. Then, this Action chooses the next handler in the sequence as the next 

handler to be executed. Specifically, the place pD _ <x> _ <k_ x> _ E _0 belongs to the fusion 

set defined by the substitution tag template GF:pH _ <x+ 1>. Once a CONTROL token is 

placed in pD _ <x> _ <k_ x> _ E _0, this indicates that the handler whose starting place 

belongs to the fusion set identified by GF:pH_ <x+ 1> is the handler to be executed next. 

The substitution tag is generated by pamtester-fm during the generation of the 

BCPN. In this case, the "formula" for computing the next handler to be executed is x+ 1, 

where x is the CUlTent handler depth. 

For example, given the 1st handler in ACME Corp's PAM Stack Instance, 

handler _0, if the pam _ securetty.so PAM returns a P AM_RETURN value P AM_IGNORE 

= 25, then the ACTION_IGNORE_O_1 is chosen to be executed (see Figure 48). In this 

case, the next handler to be executed is the 2nd handler, handler _1, i.e. pD _0_1_ E _0 

belongs to the fusion set GF:pH _1. 

79 



I 

-1 

1 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

I GF.pH_O I 
~ .. 
~ 

CONTROl. 

Figure 48: HCPN module ACTION_IGNORE_O_1 - ACME Corp 

HCPM module ACTION_OK 

The HCPN Template for Action 'ok' is shown in Figure 49. 

(i,s) 

Figure 49: Pamtester-fm HCPN module ACTION_OK template 

GF:pH <x+l> I 

t~~ 
CONTROL 

Depending on the current PAM Stack Execution State (i,s), the State may be updated 

or not. Ifit is, then it is updated to (l,r), where r is the PAM_RETURN just obtained. 

The next handler to be chosen for execution is the next handler in the sequence. 

80 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

HCPN module ACTION_DONE 

The HCPN Template for Action 'done' is shown in Figure 50. 

Ii,s} 

Figure 50: Pamtester-fm HCPN module ACTION_DONE template 

PAM Stack Execution State update is the same as for Action' ok' . 

The choosing of the next handler depends on the current hnpression of the PAM Stack 

Execution State. If the Impression is positive, i.e. PAM_POSITIVE = 1, then the next 

handler to be chosen for execution is the first subsequent handler, after the current depth 

x, whose substack level is less than the current substack level. This is computed by 

pamtester-fm using the skip_substack(x) function, for the current handler depth x. If the 

PAM Stack Instance only consists of a single substack level (this is the case in all 

production Linux-PAM Configurations tested so far), then skip_substack(x) "skips" all 

subsequent handlers, and PAM Stack Execution ends with the Terminate module. 

On the other hand, if the hnpression is not positive, then the next handler to be 

executed is the next handler in the sequence, i.e. the handler at depth x+ 1. 

81 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

HCPN module ACTION_BAD 

i 

I 
The HCPN Template for Action 'bad' is shown in Figure 51. 

~ 
(i.s) 

I GF,State I 
.~ 

\ pA_<x>_<k_x>_state ) 
.~ 

IMPRxSTAT comROl CONTROL 

Figure 51: Pamtester-fm HCPN module ACTION_BAD template 

Here, depending on the PAM Stack Execution State, and whether or not the current 

return value is 25, we may choose to update the PAM Stack Execution State. If the 

Impression is already negative, then we ignore current return value. Otherwise, we 

change the Impression to PAM_NEGATIVE = -1. We also update the Status. If the return 

value is PAM_IGNORE = 25, meaning that the PAM is essentially telling us (via this 

return value) to ignore its (the PAM's) execution result, then we update the Status with 

the default "bad" Status PAM MUST FAIL CODE := PAM PERM DENIED = 6. 

Otherwise, if the return value is not P AM_IGNORE, i.e. r =f=. 25, then we update the 

Status with this return value. 

In all cases, the next handler to be executed is the next handler in the handler 

sequence. 

82 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

HCPN module ACTION_DIE 

The HCPN Template for Action 'die' is shown in Figure 52. 

[i~-11 

Figure 52: Pamtester-fm HCPN module ACTION_DIE template 

PAM Stack Execution State update is the same as Action 'bad'. 

The next handler to be executed uses the skip_substack(x) function, where x is the 

current handler depth. This is computed the same way as by Action 'done'. 

One point worth noting here is that, interestingly, in contrast to the operation of Action 

'done', the choosing of the next handler does the skip_substack(x) computation in all 

cases, whereas Action 'done' only "skipped substacks" if the hnpression was 

P AM_POSITIVE = 1. In other words, Action 'die' skips the subs tack no matter what, 

whereas Action 'done' skips the substack conditionally. 

HCPN moduie ACTiON_RESET 

The HCPN Template for Action 'reset' is shown in Figure 53. 

83 



I 

I 
I 

I 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Figure 53: Pamtester-fm HCPN module ACTION_RESET template 

The HCPN module RESET <x> <k x> instance "resets" the Execution PAM Stack 

State to a previous PAM Stack Execution State. This is implemented as an HCPN by 

"copying" (obtaining and putting back) the Impression and Status values (i' ,s ') from the 

Fusion State GF:State_ <L>, where L is the current substack level, i.e. the substack level 

of the current handler, handler_x. The copied value (i',s') represents the PAM Stack 

Execution State as it was at the time when the current substack level L was first entered 

(see below for elaboration). The copied value (i' ,s') is set as the "new" current PAM 

Stack Execution State, effectively "overwriting" the current PAM Stack Execution State 

(i,s). 

Specifically, recall that given some depth y, if a new substack level is entered by a 

handler at this depth y, then Substack Execution State at this depth y, denoted (iy, s _y), 

is saved in in a place belonging to the fusion set GF:State_ <L_y>, where L_y denotes the 

substack level at the handler depth y. In effect, entering a new substack level at depth y, 

saves the current PAM Stack Execution state in GF:State_ <L_y>. Then, supposing that 

after entering the substack level L _y at depth y, we execute some handler sequence 

arriving at the current handler, handler_x, without "leaving" the substack level L _y (i.e. 

84 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

the sequence of handlers executed after handler_y, but before handler_x have all had their 

substack levels equal to or higher than L_y), and the Action being executed is "reset", 

then this Action "resets" the current PAM Stack Execution State back to the state (i_y, 

The next handler to be executed is the next handler in the handler sequence, i.e. 

handler _ x+ 1, where x is the current handler depth. 

HCPN Templates for Action 'jump' 

There are three sub-cases for the pamtester-fin HCPN module templates for Action 

'jump'. These are: 

• ACTION_JUMP_NEGATIVE, 

• ACTION JUMP. 

HCPN module JUMP_NEGATIVE 

A jump that is "negative" occurs when the jump value found in the Linux -PAM 

Configuration is negative and is outside the range [-1,-5] (see below for example). The 

HCPN Template for ACTION_JUMP _NEGATIVE (implements Action 'jump' for a 

"negative jump"), is shown in Figure 54. 

CONTROL '+·»~"~'=E~" CONTROL 

Figure 54: Pamtester-fm HCPN module ACTION_JUMP _NEGATIVE template 

85 



I 
1 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

The PAM Stack Execution State is changed as follows: Impression is set to 

PAM PERM DENIED = 6. 

The next handler to be executed is the next handler in the sequence, i.e. x+ 1, where x 

is the current handler depth. For example, consider the first Configuration Line 

auth requisite pam_securetty.so 

contained in the Linux -PAM Configuration in Figure 92 on Page 183 . Suppose that the 

Linux -PAM Administrator specifies this (erroneous) Configuration Line instead: 

auth [success=ok default=-7] pam_securetty.so 

In this case, the Co(x) = -7, 'Vx E {1,2, .. ,30}, i.e. ifpam_securetty.so PAM returns 

any error other than 31, then the Action carried out is -7, which is interpreted by Linux-

PAM as a "bad jump" of type "negative jump". In this case, the corresponding HCPN 

Instance is shown in Figure 55. 

. .. 

. . . I 
! GF:pH_l I 

~"t 

tD_O_l_O II-++--~ pH_U )----.. 

"-----------... 

Figure 55: Example of a "bad jump" of type "negative jump" 

86 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Note that in this case, the next handler to be executed is the second handler, 

I 
Handler 1. 

j 
A jump that is "too long" occurs as follows. Suppose the PAM Stack Instance contains n 

handlers (handler_O, handler_I, ... , handler_n-I). Also, suppose that the cunent handler 

is at depth x, i.e. handler_x, ° :::; x:::; n-I. Also, suppose that the substack level of the 

cunent handler is L. Further, suppose that the jump specification is the integer J > 0. 

Then, Linux-P AM determines if this Action "jump" is "too long" as follows. 

First, obtain the the longest contiguous sequence of handlers handler_ x+ 1, 

handler_x+2, ... ,handler_x+y, such that for each handler_z, z E x+l ... x+y, the substack 

level ofhandler_z is greater or equal to L, where x+y < n (i.e. we do not consider the 

termination handler, handler _ n). 

Second, let K be the number of handlers within this sequence handler _ x+ 1, ... , 

handler _ x+y, whose Substack Level equals L. 

Third, if J > K, then the Action "jump" is "too long". Otherwise, the Action "jump" is 

a "good jump". 

If Linux-PAM determines that the Action "jump" is "too long", then, similarly to the 

"jump negative", the PAM Stack Execution State is set to (-1,6), i.e. Impression is set to 

PAM PERM DENIED = 6. 

87 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

In contrast to "jump negative", the next handler to be chosen for execution is the first 

handler whose depth is greater than x+y, and whose substack level is less than or equal to 

L (we still skip a contiguous sequence of non-terminal handlers (handlers which are not 

the terminate handler) whose substack levels are higher than the current substack before 

picking our next handler to execute). If no such non-terminal handler exists, then the next 

handler to be executed is the Terminate handler, handler _ n. 

PAM Stack Instances with a single substack level result in the next handler to be 

executed being the Terminate handler, handler _ n. 

The HCPN Template for Action 'jump too long' is shown in Figure 56. The pamtester-

fm tool uses this HCPN module ACTION_JUMP _TOO_LONG template, to generate 

HCPN module ACTION JUMP TOO LONG instances. 

The calculation for whether or not an Action "jump" is "too long" is done by the 

pamtester-fm tool during the parsing of the PAM Stack Instance. We denote this 

calculation by the functionjump_too_long(x). Once an Action is determined to be "too 

long", the HCPN module ACTION_JUMP _LONG instance is generated, and the next 

handler to be executed is defmed in this instance using the Fusion Set tag template 

"GF:pH_ <jump_too_long(x»"="GF:pH_ <x+y+l>" (as discussed above). 

~PH_"'> I 

I~ <x> _ <k_x>_5 

I PAM_RETURN 

Figure 56: Pamtester-fm HCPN module ACTION_JUMP _TOO_LONG template 

88 



I 

~ 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

For example, consider the first Configuration Line: 

auth requisite pam_securetty.so 

contained in the Linux -P AM Configuration in Figure 92 on Page 183 . Suppose that, 

instead, the Linux -P AM Administrator makes a mistake and specifies this Configuration 

Line as: 

auth [success=ok default=13] pam_securetty.so 

In this case, the Co(x) = 13, "i/x E {1, 2,"", 3D}, i.e. ifpam_securetty.so PAM returns 

any error other than 31, then the Action carried out is 13, which is interpreted by Linux-

PAM as a "bad jump" of type "jump too long" (since there is less than 13 handlers on the 

current substack level). In this case, the relevant portion of the corresponding "flattened" 

HCPN Instance is shown in Figure 57. 

Figure 57: Example of HCPN module ACTION_JUMP _TOO_LONG instance 

'_ ... I 

LJ 

Note that in this example, the "jump too long" error causes the control of PAM Stack 

execution to execute the Termination handler as the next handler to be executed. In other 

words, the PAM Stack Execution is being terminated. 

89 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

HCPN module ACTION_JUMP 

An Action 'jump' that is neither "negative" nor "too long" is considered a "good" 

jump. Such jumps are represented by the HCPN module ACTION_JUMP template, as 

shown in Figure 58. 

I GF:pH_ <skip current 5ubstack(x» I 
~r_ tA_ <x> _ <kJ>_1 r---t_~t_ tD_ <x> _ <k_x>_O 

t 
1--- pD_ <x> _ <k_x>_E_O 

PAM RETURN CONTROL CONTROL 

Figure 58: Pamtester-fm HCPN module ACTION_JUMP template 

Action 'jump' does not update PAM Stack Execution State. 

The handler to be executed next is calculated as follows. Suppose the PAM Stack 

Instance contains n handlers (handler_O, handler_I, ... , handler_n-l). Also, suppose that 

the current handler is at depth x, i.e. handler_x, O<=x<=n-I. Also, suppose that the 

substack level of the current handler is L. Further, suppose that the jump specification is 

the integer J > 0. 

First, obtain the the longest contiguous sequence of handlers handler _ x+ 1, 

handler_x+2, ... ,handler_x+y, such that for each handler_z, z member of x+I ... x+y, the 

substack level ofhandler_z is greater or equal to L, and x+y < n (i.e. we do not consider 

the termination handler, handler_n). 

Second, let K be the number of handlers within this sequence handler _ x+ 1, ... , 

handler _ x+y, whose Substack Level equals L. 

90 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Third, we assume that J <= K (since otherwise, this Action 'jump' would be "too 

long"). 

Fourth, obtain the depth of the Kth handler, which we denote by depth(K). Now, 

depth(K) <= x + y. In other words, going to the handler at depth(K) "jumps" the first K-l 

handlers whose substack levels are equal to the current substack level L (and all of the 

substack handlers in-between whose substack levels are higher than the current substack 

level L). 

Fifth, consider the sequence of handlers, handler _ depth(K)+ 1, ... , handler _x+y-l, 

handler _ x+y+ 1 (here we consider the termination handler, if x+y=n). Choose the first 

handler, denoted handler _ z, depth(K)+ 1 <= Z <= x+y, such that substack level of 

handler _ z <= L. In other words, we still skip all handlers that have higher substack levels, 

before we finally choose our next handler to be executed. 

We denote the above algorithm by the function skip_current_substackO. 

Skip_current_substackO obtains the current depth x as input, and outputs the depth of the 

next handler to be executed, as explained in the above algorithm. 

Example of "Partial" Unfolding of HCPN Model: HCPN model for ACME 
Corp 

In this section, we illustrate how we use the above-presented HCPN models to create a 

"partial" unfolding. Our example shows the HCPN model generated by pamtester-fm for 

the PAM Stack Instance of ACME Corp corresponding to the pam _authenticateO 

91 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Management Function for the Service "login". Hence, this Instance is used for the 

authentication-related functionality of authentication, while using the login program, for 

example. This PAM Stack instance is shown in Figure 59. It contains four "stacked" 

PAMs: pam_secure_tty.so, pam_env.so, pam_unix.so and pam_deny.so. Since this PAM 

Stack Instance corresponds to the pam _ authenticateO Management Function, the handler 

corresponding to each PAM "stacking" contains a pointer to the implementation of the 

pam_sm_authenticateO Module API function (column entitled int (*func) in Figure 59, 

i.e. I(pam_sm_authenticateO, pam_securetty), I(pam_sm_authenticateO, pam_env.so), 

I(pam _sm _ authenticateO, pam _ unix.so), I(pam _ sm _ authenticateO, pam _ deny. so ). 

92 



depth; 

i 

0 

1 

2 

3 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

CONTROL; 

Ci 

level; SERVICE 
SERVICE dE D(C;): PATH; OPTIONS; 

Li Si 
GROUP; 

Xf; 't;fx EX: Pi °i Gi R(C;) Ci(x) = d 

int int 
int 

char 
char int *mod handler stack 

actions[32] (*ftmc) **argv 
_type level name 

0,12 -1 0-.~~~ 
25 ° 

J(pam _ sm _ authenticateO, 
pam_ 

~""'~ 0 0 login auth pam _securetty.so) 
"ow" -4 

securetty.so 

~ 
0,12 -1 

J(pam_ sm _ authenticateO, ~,""~ 
° 0 login auth pam _ env.so) 

pam_ 

~ "ow" 0 env.so 

0,12 -2 
J(pam _ sm _authenticateO, ~"'"X" 

0 0 login auth pam _ unix. so ) 
pam_ 

~ "ow" 0 U11lX.so 

0,12 -1 0-.,""" 25 0 J(pam _ sm _ authenticateO, 
pam_ ~X""'-..., 0 0 login auth pam_ deny. so) 
deny. so 

~ "ow" -3 

Figure 59: Generation of a PAM Stack instance for the pam_sm_authenticateO Module API 
function for theService "login" 

Recall that the execution of a PAM Stack instance, as per algorithm shown in Table 13 

on page 29, executes some handler subsequence. The executed handler subsequence 

generates an authentication-related functionality instance. Given a handler execution 

subsequence, each handler execution causes the execution of its corresponding 

Management Function implementation. Each Management Function implementation 

execution contributes to the provision of the authentication-related functionality of the 

PAM Stack Instance as a whole. Depending on the P AM_RETURN value obtained from 

93 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

each handler execution, the appropriate Action is executed. The execution of each Action 

may update the PAM Stack Execution State, as well as chooses the next handler to be 

executed. 

Recall that pamtester-fin generates an HCPN model that describes the above process. 

Specifically, the generated HCPN model "captures" all of the possible handler execution 

sub-sequences. In other words, the HCPN model captures all of the possible 

authentication-related functionalities that can be provided by the corresponding PAM 

Stack Instance. 

Returning to our example, in this particular "partial" unfolding, for each PAM, we 

define the set of PAM_RETURN values that the PAM is capable of returning in Table 14. 

This list of return values is not complete. This table is created for illustration purposes 

only. In fact, some of these PAMs are capable of returning additional PAM_RETURN 

values. 

PAM Possible PAM RETURN values of the PAM's 
implementation of pam sm authenticateO 

pam _ securetty .so PAM SUCCESS = 0 
PAM SERVICE ERR = 3 - -
PAM_AUTH_ERR=7 
PAM IGNORE = 25 
PAM INCOMPLETE = 31 

pam_env.so PAM SUCCESS = 0 
PAM BUFF ERR = 7 - -
PAM IGNORE = 25 
PAM ABORT = 26 

pam _ unix. so PAM SUCCESS = 0 
PAM IGNORE = 25 
PAM INCOMPLETE = 31 

pam deny. so PAM AUTH ERR = 7 
Table 14: Possible PAM_RETURN values of PAMs "stacked" on ACME Corp's 

pam3uthenticateO PAM Stack Instance 

94 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Finally, in Figure 60 we show the HCPN model of all of the possible executions of the 

PAM Stack Instance of ACME Corp. This HCPN model is a "partial" unfolding 

comprised of an HCPN module INITALIZE instance, four HCPN module HANDLER 

instances, and a TERMINATE instance. We also add labelled "containers" for the 

purpose of visual presentation. These containers denote portions of the HCPN model that 

correspond to HCPN modules HANDLER_ <x>, MODULE_ <x>, CONTROL_ <x>, 

ACTION <x> <k x>. 

~ . 4 

~'-C:~.::--~~~~ !:----------------~··'~~::::::=====0~'~~~ 
~:::; 

Figure 60: HCPN model - ACME Corp 

The HCPN modules INITIALIZE and HANDLER_O are shown in Figure 61. 

95 



I 
-l 
j 

1 

M.Sc. Thesis --- C. Kulbakas McMaster --- Computing & Software 

Figure 61: Close-up of HCPN modules INITIALIZATION and HANDLER_O 

The HCPN module HANDLER _1 is shown in Figure 62. 

Handler_I: HANDtER_l 

~ COlllroll:CONTROL 1 
MODULE_l 

[rE[O,12}] 

~ 

r/ ./ 

j 
i I ,"""_,_",,,nON_'O'ORE_'_'1 

I~.I I, .~/ ["ow"] 1 !~ 
, OP125126' r r' ~ (,"_'_' rJ1'H_'_' : I 0171"126 ~. ,,_,_, J:-.!.--{~~J---,+~)---,jl ",_,_,_, ~'-~PD_'_'_'_o }-'~I 
~ rr-- ~ \ I '------./ I ~ 

COlfTROL I PAM_RETURN \, I PAM_RETURN ~ CONTROl I 

".r I 

I ", [r=31] , 

.. ~~ I '. t~· 
: ~ IC_Unt -.(' pC_Urn:: ) 

I i I .~. 
~ ~ CON'Tflot 

Figure 62: Close-up of HCPN module HANDLER_1 

96 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

The HCPN module HANDLE~ 2 is shown in Figure 63. 

[rt{O.12)J 

~)-"Pl .-1 f;:~\ ~, 're ~R~ -:lqf--~-+'I----'---rr 

I Ft0 l 
Figure 63: Close-up of HCPN module HANDLER_2 

The HCPN modules HANDLER_3 and TERMINATE are shown in Figure 64. 

97 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

I 

I 

1 
I 

~I 

Figure 64: Close-up of HCPN module HANDLER_3 

The Instance Hierarchy describing this HCPN model is shown in Figure 65. 

98 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Figure 65: Instance Hierarchy of HCPN model 

99 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

METHODOLOGY - PART II: Transition System Modeling 

Introduction to Transition System Modeling 

A Transition System is a mathematical formalism that specifies how a system behaves. 

We use Transition Systems to specify how our HCPN models behave. Pamtester-fm 

generates Transition System specifications based on the corresponding HCPN 

specifications. Pamtester-fm uses NuSMV syntax to specify these Transition Systems. 

Once the Transition System specification is generated, Pamtester-fm executes 

NuSMV. During this execution, pamtester-fm supplies NuSMV with: Transition System 

syntax, and "security properties" to check on this Transition System. Then, Pamtester-fm 

directs NuSMV to build the Transition System models based on this syntax, and instructs 

NuSMV to model check the resulting Transition System models. 

The results of this model checking are then obtained and interpreted by pamtester-fm. 

These results describe the possible behaviours of the corresponding HCPN models, which 

in tum, describe the possible authentication-related functionalities of the PAM Stack 

Instances. In other words, these results inform us about the authentication-related 

functionalities that can be produced by the PAM Stack Executions of the corresponding 

PAM Stack Instances. 

We used NuSMV for two reasons. First, NuSMV can be programmatically supplied 

with arbitrary Transition System model specifications, as well as be programmatically 

controlled to then build and model check these models. Second, one goal of this thesis 

was to provide groundwork for an open source tool which can be used by Linux -PAM 

Administrators. Such a tool must be easy to use. Ideally, such a tool should operate with 

100 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

minimal interaction from its operator. Additionally, such a tool must not require the 

operator to have knowledge offormal specification or verification, including HCPNs, 

Transition Systems and the method of model checking. Pamtester-fm achieves both of 

these goals by being automated, while hiding the details of formal model specification 

and verification. 

Transition Systems 

Transition Systems allow us to describe a system in terms of its states, and how the 

system changes between states. For example, the system in Figure 66 has three states s_l, 

s_2 and s_3. Furthermore, this system can change states as follows: from s_l, the system 

can change to state s_2 or state s_3. From state s_3,the system can change to state s_l. 

From state s _2, the system can change to state s _2. 

Figure 66: Example of Transition System 

A Transition System also has a number of properties. Depending on the state that the 

system is in, a system's property can be either true or false in this state. For example, 

101 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

suppose that the Transition System in Figure 66 has the following properties: ~ _1, ~ _ 2, 

~ _ 3, ~ _ 4, ~ _ 5. Then, a property is true in a given state, if, and only if this property is 

shown inside the circle representing the state. For example, in state s_l, ~_l and ~_3 are 

hue, and ~_2, ~_ 4, ~_5 are false. 

Formal Definition of a Transition System 

Formally, as defined in (6), a Transition System is a three-tuple (S, -> L) along with a 

set of atomic expressions called Atoms. Atomic expressions evaluate to either hue or 

false, depending on the state that the system is currently in. For example, in Figure 66, 

Atoms = {~_1, ~_2, ~_3, ~_ 4, ~_5}. S is a set of elements called states. For example, in 

Figure 66, S = {s _1, s _2, s _3}. The symbol -> denotes a total binary relation on S, i.e. -> 

!,; S X S such that V s E S:3 t E S: s -> t. Essentially, -> specifies how the system can 

change states. Given two states x, yin S, x->y iff S can change from state x to the state y. 

For example, in Figure 66, s_1->s_2, s_1->s_3, s_3->s_1, and s_2->s_2. L is a labelling 

function L:S->P(Atoms) where P denotes a power set. Given a state s, and an atomic 

expression e belonging to Atoms, e E L(s) iff e is true in the state s. For example, in 

The State Space Explosion Problem 

In general, the size of the set of states S of a Transition System (S,->,L) depends on the 

number of variables of the system and the domains of each of these variables. For 

example, consider a system whose variables can be expressed by two variables, x and y, 

102 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

where each variable can have a value of ° or 1. Further, suppose that we decide to 

represent this system in terms of the possible values of these variables as two tuples 

(value(x), value(y)), where value(x), value(y) is the value of variable x, y, respectively. 

Then, all possible states of this system can be described as S = { (0,0), (0,1), (1,0), (1,1) }. 

Now, if a third variable z is added to create a new system, and supposing that the 

domain of variable z is {0,1,3}, then, following the same approach, the set of states of this 

system S = { (0,0,0), (0,1, 0), (1,0,0), (1,1,0), (0,0,1), (0,1,1), (1,0,1), (1,1,1), (0,0,3), 

(0,1,3), (1,0,3), (1,1,3) }. Thus, the state space of the system was multiplied by three, with 

the addition of the new variable z. 

In general, a variable, when added to a system description, multiplies the number of 

states of the system. Thus, the number of states of the system grows exponentially in the 

number of variables of the system. This is called the state space explosion problem. 

Essentially, the number of variables and the domains of these variables cause the number 

of states of the system to become too large, even for automated, computer-based tools to 

handle. Systems suffering from the state space explosion problem require too much CPU 

time or too much RAM for analysis purposes. 

When designing transition systems, one must take care to ensure that the state space 

explosion problem does not occur. In real-world applications, the state space explosion 

problem is common. 

Connection between HCPNs and Transitions Systems 

103 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Given an HCPN model generated by pamtester-fm, we encode the behaviour of this 

I 

HCPN as a Transition System. Specifically, we define S to be the set of markings of the 

HCPN that are reachable from the initial marking. We define the Transition Relation -> to 

:1 
be the Firing Rule, where given two markings s_i, sj, s_i -> sj iffthere exists a firing of 

a single HCPN transition that causes the marking s_i to become the marking sj. We 

define the set of Atoms as a set ofNuSMV expressions. The terms of these expressions 

are dependent on the markings of the HCPN. For example, we define the expression 

"p _End = 0", where p _End is an HCPN place and 0 is a member of the colour set 

associated with p _End. Then, we defme "p _End = 0" to evaluate to TRUE iff the token of 

value 0 is in the place p _End. 

For example, consider the HCPN shown in Figure 67. 

Figure 67: HCPNs as Transition Systems - Example 

Now, consider the following markings, say, marking M_l, marking M_2, and marking 

M _3, shown in Figure 68, Figure 69, Figure 70, respectively. 

104 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Figure 68: HCPNs as 
Transition Systems -

Example - Marking M_1 

Figure 69: HCPNs as 
Transition Systems -

Example - Marking M_2 

Figure 70: HCPNs as 
Transition Systems -

Example - Marking M_3 

Now, given the marking M_I, according to the Firing Rule, both transitions t2 and t3 

are enabled. Thus, either one of the transitions can fire (but not both, since there is only a 

single token available for consumption in place pI). If transition t3 fires, then the HCPN 

changes its marking from M_I, to the marking M_2. In a sense, we can interpret this as 

the HCPN changing its state from M _1 to M _ 2. 

If the HCPN is in the marking M _ 2, then the HCPN is in a "deadlock" state. This 

means that the HCPN cannot change its state anymore, since no transition can be enabled 

by the Firing Rule. Thus, no transition can fire. Thus, no new marking can be obtained. A 

deadlock state can be interpreted as the HCPN staying in the same marking, in this case, 

marking M _ 2, indefmitely. Another way to look at this is that the HCPN changes its 

marking from marking M _ 2 to marking M _ 2 indefinitely. 

On the other hand, if the HCPN is in state M_I, and transition t2 is fired, then the 

HCPN changes from M_I to M_3. Once the HCPN is in M_3, the only state change that 

can occur is to go from M _ 3 back to M _1. 

We can illustrate the above "behaviour" of the HCPN as shown in Figure 71, via a 

graph-like structure. 

105 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

t1 

Figure 71: HCPN Behaviour as a Transition System 

Each node of this graph (a large circle containing a Petri Net) represents a state of the 

Transition System, and corresponds to a single HCPN marking. This is why we defme the 

states of the Transition Systems as HCPN markings. For our HCPN models, the changing 

from a marking to another marking corresponds to a unique transition being fired. Hence, 

we associate such edges with the name of the fired transitions. For example, in Figure 71, 

the edge outgoing from the node associated with the marking M _1, and the node 

associated with the marking M_2 is labelled t3. This is because it was the firing oft3 that 

caused the HCPN to change its state from marking M _1 to marking M _ 2. 

Precisely, a node M _ i is connected with an outgoing arrow from M _i to a node M j, 

=1= j, where the arrow is incoming to node M j iff the marking M _i can change to the 

marking Mj via a firing ofa single transition belonging to the HCPN. 

106 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

One exception is the state M _ 2. M_2 has a "loop" edge from M _ 2 to M _2. In this case, 

i the "loop" edge does not correspond to any transition firing. In this case, the underlying 

~ 
HCPN is in a deadlock state (there are no enabled transitions, hence no transition can fire, 

hence the HCPN cannot change its marking anymore, i.e. is in a deadlock). In fact, due to 

the structure of the HCPNs generated by pamtester-fm, the only deadlock state that can be 

achieved by an HCPN of an arbitrary PAM Stack Instance is when there is a token in the 

"termination" place of the HCPN, place p_End. In this case, we ensure, via our definition 

of the transition relation ->, that a "deadlock" transition, represented in the graph as a 

"loop" edge, is defined. 

Note that the "Transition System" presented in Figure 71 is not exactly (formally) 

correct. It was presented here in this way to not complicate the issue, and to show the link 

between HCPN markings, and how the changes in the HCPN markings define a 

"Transition System-like" structure. There exists another Transition System state to which 

the state M_2 changes to. Furthermore, in the (formally correct) Transition System, the 

"loop" edge ofM _ 2 does not exist. This is elaborated on when we discuss the definition 

of a Transition Relation (page 126). 

In general, given an HCPN model generated by pamtester-fm, for an arbitrary PAM 

Stack Instance, when we generate the corresponding Transition System, we restrict the 

Firing Rule to only be able to fire a single transition at a time. This is done by the 

particular way in which we define the Transition Relation in NuSMV syntax. This is also 

due to the way that NuSMV transitions between states. 

107 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

This does not limit the "expressive" power of our model. This is because an arbitrary 

I 
firing instance, consisting of an arbitrary multiset of fired transitions can be equivalently 

I 

I represented by a sequence of single transition firings (5). 

1 
Approach for NuSMV Encoding of HCPN Behaviour 

Introduction 

Similar to HCPN generation, pamtester-fm does automatic generation of Transition 

Systems. Just like HCPN generation, Transition System generation is based on templates. 

The generated Transition System is represented by a NuSMV encoding. This NuSMV 

encoding is a text file containing NuSMV syntax. This NuSMV syntax encoding 

describes a Transition System: a set of states S, a transition relation ->, and a labelling 

function L. 

HCPN places are encoded as NuSMV variables, and hence, contribute to the State 

Space size. In contrast, HCPN transitions are not encoded as NuSMV variables. Thus, 

HCPN transitions have negligible State Space size contribution. Some additional NuSMV 

variables are created, where these variables do not cOlTespond to any HCPN places, i.e. 

NuSMV variable' gC depth', i.e. NuSMV variable 'firedTransition'. 

Considerable effort was made to minimize the state space of the generated Transition 

System, as well as to maximize its "human readability" and "similarity" with its 

corresponding HCPN. Structural similarity between an HCPN and its corresponding 

Transition System was kept as close as possible, while still allowing for significant State 

Space minimization. 

108 



I 
I 
! 

1 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

State Space Minimization 

In telIDS of minimizing the size of the state space, the following was done: 

• re-use of commonly used sets of related variables, and 

• minimization of domains of variables conesponding to HCPN places. 

Specifically, a critical state space size minimization was achieved by re-using 

commonly used sets of related variables. For instance, the variables used to represent all 

HCPN module Action instances, based on ACTION _ <name(x» _ <x> _ <k _x> templates, 

were re-used. For example, in the HCPN model for ACME Corp (Figure 65, 99), there 

are three Action 'ok' HCPN module instances used: ACTION_OK_O_O, 

variables is used to represent all three of these HCPN module instances. 

Also, since we generate the transition system based on an (already existing) HCPN 

model instance, we know all possible tokens that can be placed in each HCPN place. Due 

to this, for some HCPN places, the conesponding NuSMV variables are generated based 

on a template, where this template includes procedures for minimizing NuSMV variable 

domains. Specifically, these templates define the variable domain as containing only the 

values that conespond to the possible HCPN token values. This is done for all HCPN 

pH _ <x> places, since we know ahead of time what possible P AM_RETURN values a 

particular PAM: can generate. 

Furthermore, we made use of HCPN fusion sets were it made sense. This way, all 

HCPN places belonging to the same Fusion Set were defined as the same NuSMV 

variable. 

109 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Combining the above approaches resulted in considerable state space minimization. 

Table 15 - Table 20 summarize the results of these optimizations on the individual 

HCPN modules. 

HCPNModule Place Corresponding State Space Contribution (in bits) 
NuSMV variable 
domain size without with 

optimizations optimization 

Initialization p Start 1 1 1 
pInit state 4 X 33 2+6 0 
pInit state 0 4 x 33 2+6 0 

TOTAL 17 1 

Termination pH 8 S 1 1 1 
pTetlli state 4 X 33 2+6 0 
pTerm Inc 1 1 0 
pEnd 32 5 5 
TOTAL 15 6 

Table 15: State Space Minimization - Initialization and Termination 

These results provide contributions to the state space of the corresponding Transition 

System by each HCPN module. For each HCPN module type, the places of the module 

are listed, since it is the places that are represented as NuSMV variables (and hence 

contribute to the state space size of the Transition System). Also, for each place, the size 

of the variable domain is shown. For example, given the HCPN module Initialization and 

the place pInit_state, its variable domain size is 4x33. This denotes the fact that 

pInit_state has a cross-product set as its domain (its colour set is IMPR x STAT = 

{EMPTY,-l,O,l} x {EMPTY, 0, 1, ... , 31}), hence, cardinality of domain is 4x33. We do 

not multiply 4x33 to obtain 132 because we compute the state space contribution on a per 

set basis, if the set is a cross product. This is because we encoded the colour set IMPR x 

110 



I 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

STAT by two different NuSMV variables, where one variable encodes IMPR and one 

variable encodes STAT. Hence, the combined two-NuSMV-variable contribution of the 

HCPN place pInit_ state is: 2 bits for IMPR (base 2 logarithm of size of variable domain, 

rounded up), and 6 bits for STAT. Then, total contribution is 2+6 bits, or 8 bits for 

pInit_ state. Hence, total contribution of a single instance of the Initialization HCPN 

module is 17 bits of state space (without any optimizations). 

With all of our optimizations, the state space contribution for the HCPN module 

Initialization is just a single bit (1 bit) - a difference of 16 bits! In terms of the number of 

states, before optimization, the Initialization HCPN module would require 2/\ 17 = 131072 

states. After the optimization, this module only requires 2 states - a difference of 131070 

states! 

Note that Initialization and Termination HCPN modules are constant in the number of 

handlers of the PAM Stack Instance. For example, it does not matter how many handlers 

comprise the PAM Stack instance, i.e. 2, 10, 100, 1000, etc., since the HCPN model will 

use the Initialization and Telmination modules exactly once. Hence, the state space 

contribution of the Initialization and Termination HCPN module instances is constant in 

the number of handlers: 17 and 15 bits without optimization, and 1 and 6 bits (with 

optimization), respectively. 

The state space contribution of our other HCPN modules may not be constant in the 

number of handlers, and in the number of HCPN module instantiations (i.e. the number of 

distinct times that an HCPN module is used in the HCPN model) . In other words, if the 

number of handlers increases, and the number of times an HCPN module is used 

111 



I 

~I 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

increases, then so may the state space contribution. We denote the number of handlers 

comprising the PAM Stack instance by n, n > o. We denote the number of times a 

particular HCPN module has been instantiated by the HCPN model by k, k ~ o. We can 

see the use of the nand k parameters in the following tables. 

HCPNModule Place Conesponding State Space Contribution (in bits), 
NuSMV n := number of handlers of 
variable substack 
domain size k := number of times the 

conesponding HCPN module 
instance is used in the HCPN 
model 
without with 
optimizations optimization 

HANDLER <x> pH_<x>_S 2 lxn lxn 

MODULE <x> N/A N/A 0 0 

MODULE SUBST pH_<x>_S 2 lxk 
1 X r,,: 11 ACK 

pH <x> 0 state 4 X 33 (2 + 6) X k 0 
pH <x> 0 state <L+1> 4 X 33 (2 + 6) X k 0 
pH <x> <x+l> 2 lxk 0 

TOTAL 18 X k 
1 X r,,: 11 

.. 
Table 16: State Space MinimIzation - HANDLER_ <x>, MODULE_ <x>, MODULE_SUBSTACK, 

CONTROL_ <x> 

For example, a HANDLER _ <x> HCPN module instance, before any optimizations, 

has a state space contribution that is linear in the number of handlers that comprise the 

stack (although there is only one HANDLER_ <x> _HCPN module instance per HCPN 

model). In this case, the HCPN place pH _ <x> _ S has a domain CONTROL = {I}. In 

NuSMV the domain of the corresponding NuSMV variable is encoded as {EMYTY, I}. 

Hence, the size of the domain of the NuSMV variable is 2. Now, since, as is shown in the 

template for the HCPN module HANDLER_ <x>, for each handler comprising the PAM 

Stack Instance, the template generates a place pH_ <x> _So Thus, given n handlers, the 

112 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

template generates pH_O_S, pH_l_S, ... , pH_(n-ILS - a total ofn HCPN places. Since 

I each of these places contributes a single bit (1 bit) to the state space size, hence the total 

I 
number of bits contributed by the HANDLER_ <x> HCPN module is 1 X n = n bits (1 

bit for each of the n places). In this case, this contribution stays the same, even if 

optimizations are used. 

The MODULE_ <x> HCPN module does not contain any HCPN places (hence N/A, 

for Not Applicable). Thus, MODULE_ <x> contributes zero bits (0 bits) to the state space 

(with and without optimizations). 

For the rest of the HCPN modules, the state space is highly sensitive to the parameters 

nand k. For example, the PAM Stack Instance for ACME Corp (see 

Figure 59 on page 93) uses the HCPN module ACTION_OK three times (see the 

corresponding Instance Hierarchy in Figure 65 on page 99). Then, without optimizations, 

each of the three ACTION OK HCPN module instances (ACTION OK ° 0, - - --

ACTION_OK _1_0, ACTION_OK _3_0) would make their own individual contributions 

to the state space size. In this case, together, as shown in Table 18, all three ACTION_OK 

instances make a total contribution of 14 x k bits, which in this example evaluates to 

14 x k = 14 x 3 = 42 bits of state space contribution. With optimization, these 

ACTION OK HCPN module instances, together, contribute 6 X r~l = 6 X r-3-1 
- k+1 3+1 

6 X 1 = 6 bits to the state space. Thus, without optimization, each }· ... CTIOJ'C OK module 

instance adds 14 bits of state space or 2/\ 14= 163 84 states, and with optimization, all 

ACTION_OK module instances only contribute 6 bits or 2/\6=64 states - a difference of 

113 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

16320 states or 8 state space contribution doublings! Moreover, without optimization, the 

number of contribution bits is linear (i.e. 14 X k is a linear function), whereas 

r~l = 1, Vk > 0, and r~l = 0, k = 0. In other words, r~l is just a way for us to 
k+l k+l k+l 

say "if the HCPN module is used at least once (i.e. k > 0), then add a constant number of 

bits, i.e. for 6 x r~l ' add 6 bits of state space to the state space (irrespective of the 
k+l 

number of times the HCPN module is used), otherwise, this HCPN module does not 

contribute to the state space (since it is not used, i.e. k = 0). 

As shown in Table 17, given an HCPN module CONTROL_ <x> instance, its state 

space contribution, before optimization, is linear in the number of instances, i.e. 7 X k. 

With optimization, contribution of each CONTROL _<x> is Hogz (IRxDl E [1,6], where 

Rx is the set of possible PAM_RETURN values of HCPN module MODULE_ <x> (see 

page 67). This is the optimization where we set the NuSMV variable corresponding to the 

HCPN place pC _ <x> _ S to contain, and only contain, the values corresponding to the 

possible P AM_RETURN values of the preceding MODULE _ <x> HCPN module. 

Specifically, Rx is the set of P AM_RETURN values that can be returned by the execution 

of the PAM's implementation of the Management Function I(f sm, Px ) associated with the 

Effective PAM Stack instance II t. The number of possible PAM_RETURN values is 

between 1 and 32 (at least one member of {O,l, ... ,31} must be returned by a PAM's 

Management Function implementation I (f sm, Px ))' Lastly, we must account for the 

EMPTY value, representing no tokens in place pC _ <x>, thus pC _ <x> can contain at most 

33 values. For k CONTROL_ <x> instances, we obtain k x rlogzClRxDl E [1 x k,6 x k]. 

114 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

HCPNModule Place Corresponding State Space Contribution (in bits), 
NuSMV k := number of times the 
variable domain corresponding HCPN module 
size instance is used in the HCPN 

model 

without with 
optimizations optimization 

CONTROL <x> pC <x> S 33 6xk r1 X k, 6 X k 1 
pC <x> Inc 2 1xk 0 

TOTAL 7xk [1 X k,6 X k 1 
Table 17: State Space Minimization - CONTROL_ <x> 

The next table, Table 18 shows the state space contributions of HCPN module 

ACTION _ <name(x» instances. Again, without any optimizations, contributions of 

HCPN module ACTION _ <name(x» instances are linear in the number of times they are 

used in the PAM Stack Instance. In contrast, with optimization, the state space 

contribution of these instances is constant! 

115 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

HCPNModule Place Corresponding State Space Contribution (in bits), 
NuSMV n := number of handlers of substack 
variable k := number of times the 
domain size cOlTesponding HCPN module 

instance is used in the HCPN model 
without with 
optimizations optimization 

ACTION IGNORE pA_<x>_ <k_x>_S 32 5xk 5 X f-k: 11 
pD_<x>_<k_x>_S_O 2 1xk 1xfk:11 
pD <x> <k x> E 0 2 1xk 0 

TOTAL 7xk 
6 X fk: 11 

ACTION OK pA _<x> _ <~ x> _ S 32 5xk 5xfk:11 ACTION BAD 
ACTION DIE pA <x> <k x> state 4 X 33 (2 + 6) X k 0 

pD_<x>_<k_x>_S_O 2 1xk 1 X he: 11 
pD_<x>_<k_x>_E_O 2 1xk 0 

TOTAL 15 x k 
6 X fk: 11 

ACTION DONE pA _ <x> _ <k _x> _ S 32 5xk 5 x fk: 11 
pA <x> <k x> state 4 X 33 (2 + 6) X k 0 
pA _ <x> _ <k _x> _1 3 2xk 

2 X fk: d 
pD_<x>_<k_x>_S_O 2 1xk 1 x fic: 11 
pD_<x>_<k_x>_S_l 2 1xk 1 X ric: 11 
pD_<x>_<k_x>_E_O 2 1xk 0 
pD_<x>_<k_x>_E_1 2 1xk 0 

TOTAL 19 x k 9 x ric: d 
ACTION RESET pA _ <x> _ <k _x> _ S 32 5xk 5 x ric: 11 

pA <x> <k x> state 4 x 33 (2 + 6) X k 0 
pA_ <x>_ <k_x> _state_ A. v ~~ {'J ...L t:\ v 1, n 

---r " ...... ,J \.£..-'-V)AI\. V 

s 
pD_<x>_<k_x>_S_O 2 1xk 1 X ric: II 
pD_<x>_<~x>_E_O 2 1xk 0 

TOTAL 23 X k 
6 X ric: 11 

116 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

ACTION JUMP pA _ <x> _ <k _ x> _ S 32 5xk 
5 x fk ~ 11 

pD_<x>_<k_x>_S_O 2 lxk 
1 x flc ~ 11 

pD <x> <k x> E ° 2 lxk ° TOTAL 7xk 6xrk~11 
ACTION JUMP pA _<x> _ <k _ x> _ S 32 5xk 

5 X fk_:il NEGATIVE 
pA <x> <k x> state 4 X 33 (2 + 6) X k ° pD_<x>_<k_x>_S_O 2 lxk lxrk~11 
pD_<x>_<k_x>_E_O 2 lxk ° TOTAL 15 X k 6xfk~11 

ACTION JUMP pA _<x> _ <k _ x> _ S 32 5xk 
5 X flc ~ 11 TOO LONG - -

pA <x> <k x> state 4 X 33 (2 + 6) X k ° pD_<x>_<k_x>_S_O 2 lxk lxrk~11 
pD_<x>_<k_x>_E_O 2 lxk ° TOTAL 15 X k 

6 X fk ~ 11 
.. 

Table 18: State Space MInimization - ACTION_IGNORE, ACTION_OK, ACTION_BAD, 
ACTION_DIE, ACTION_DONE, ACTION_RESET, ACTION_JUMP, 

ACTION_JUMP _NEGATIVE, ACTION_JUMP _TOO_LONG 

The next table shows the state space contribution made by the Fusion Sets of the HCPN 
Model. 

HCPNModule HCPNPlaces COlTesponding State Space Contribution (in 
NuSMV variable bits), 
domain size L := maximum substack level of 

PAM Stack Instance, ° ::; L ::; 
15 
without with 
optimizations optimization 

DISPATCH GF:State 4 X 33 N/A 2+6 
DISPATCH GF:Inc 2 N/A 1 
DISPATCH GF:State_O, ... , GF:State_ <L> (4x33)x(L+l) N/A (2 + 6) X (L 

+ 1) 
.. Table 19: State Space MInimization - Fusion Sets 

117 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Here, the column "without optimizations" shows Not Applicable (N/A) because we 

interpret Fusion Sets as optimizations. The HCPN places GF:State_O, GF:State_l, ... , 

GF:State_ <L>, ° :5 L :5 15, denote the PAM Stack Execution Substack Level states. 

Pamtester-fin, during parsing of the PAM Stack Instance, determines the maximum 

substack level of the handlers comprising the PAM Stack Instance. Hence, the generated 

HCPN, and the corresponding Transition System only refer to Substack Levels between ° 
and the maximum Substack Level detected. This maximum stubs tack level is denoted by 

L. 

Lastly, Table 20 shows the remaining elements of the NuSMV encoding of an HCPN 

model that contribute to the state space of the Transition System. 

Component of NuSMV variable Corresponding State Space Contribution (in 
NuSVM NuSMV bits), 
Encoding variable domain n := number of handlers of 

size substack 
k := number oftimes the 
corresponding HCPN module 
instance is used in the HCPN 
model 
without with 
optimizations optimization 

Depth Counter ts depth n rZog2nl rZoB2nl 
Transition firedTransition ITI rZog2 CITI)l rZog2 CITI)l 
Relation helper 

Table 20: State Space Minimization - non-HCPN state space contnbutors 

The Depth Counter 

The Depth Counter is a component that we introduce into the NuSMV encoding of the 

corresponding HCPN model. The Depth Counter functionality is implicit in the HCPN 

model. The function of the Depth Counter is to keep track of the current execution depth 

118 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

of the PAM Stack Execution. The HCPN model does not have an explicit notion of 

"depth", but structurally, the HCPN model implicitly specifies the "depth" of each HCPN 

module HANDLER _<x> structure via the placement of HANDLER _ <x> module 

instance in relation to other HANDLER _ <x> module instances. Specifically, given a 

HANDLER _ <x> module instance, where x E 0 .. n - 1, where n is the number of 

handlers comprising the PAM Stack, then the depth of HANDLER_ <x> is x, i.e. 

HANDLER_O, is the first handler, and the depth of this handler is 0. 

The Depth Counter is a critical factor in state space minimization. It is the Depth 

Counter that allows us to re-use the NuSMV variables associated with HCPN module 

ACTION instances. This way, as shown above, the number of HCPN module ACTION 

instances is "constant" (0 or 1) in the number of k times (0, if k = 0,1, if k > 0) that 

the HCPN module ACTION instance is used in the HCPN model, as opposed to linear in 

k. 

Specifically, each time we transition into a new depth, i.e. via the firing of transition 

tInit_l, or via the firing ofHCPN module Action transitions tD _<x> _ <k _ x> _0, or 

tD _ <x> _ <k _ x> _1 (if exists, i.e. ACTION_DONE), then we update the Depth Counter to 

hold the value of the depth of the handler which is going to be executed next. 

Additionally, only for the transitions tD _ <x> _ <k _ x> _ 0 and tD _ <x> _ <k _ x> _1, in a 

sense, we add a "transition guard" to these transitions. This "transition guard" only exists 

in the NuSMV encoding. This "transition guard" does not exist in the HCPN model 

encoding. The template for the generation of this "transition guard" is: [ d = <x> ], where 

x is the handler depth of the transition, i.e. given tD _1_0_0, the transition of 

119 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

ACTION_OK _1_ 0 HCPN module instance in the HCPN model of ACME Corp (Figure 

62 on page 96), the "transition guard" generated is: [ d = 1 ]. This means that in the 

Transition System, the NuSMV encoding representing the firing of the transition 

tD 1 0 0 will not fire the transition if the value of the "token" d is not 1. 

The "token" d is taken as being the current depth. The value of d is taken to be the 

current value of the Depth Counter, i.e. the value of the NuSMV variable ts _depth. 

The above concepts are illustrated in Figure 72. This NuSMV Depth Counter can be 

interpreted as an HCPN Fusion Set ts _depth, where two edges are added, one outgoing 

from ts _depth, to the transition in question, and one incoming to ts _depth, from the 

transition in question. The guard is also assigned to the transition in question. Then, the 

transition becomes enabled, only if the current value of ts _depth equals the depth of the 

handler to which the transition belongs to. 

d 
o 

~ 
tlniu 

2 
l' 

'-. [d=O] 
'~tl)_O_o_o: 

CONTROL ' 

Figure 72: NuSMV - the Depth Counter 

[d=l] 
I~ , 

CONTROl 

Semantically, the Depth Counter ensures that even if we have a single set ofNuSMV 

variables representing multiple HCPN module ACTION_ <name(x» _ <x> _ <k _ x> 

instances at multiple depths (each Action instance must belong to a distinct depth, by 

120 



I 

I 
1 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

enabled. This ensures that, semantically, the next handler chosen to be executed is chosen 

by the appropriate transition. For example, in Figure 72, only one of tD _0_0_0 and 

tD _1_ 0 _ 0 can become enabled and fire, consequently, choosing the next handler to be 

executed. Summarizing, the Depth Counter allows us to use one set ofNuSMV variables 

to encode multiple HCPN module ACTION instances. This allows us to achieve constant 

state space contribution in the number of handlers n and Action module instances k (in 

contrast to linear contribution). 

We discuss the formulation of the Transition Relation, including the firedTransition 

helper below. 

Human Readability and Transition System-HCPN Similarity 

The naming conventions beween elements of the HCPN, places and transitions, and 

their NuSMV counterparts, variables and transition relation terms, respectively, were kept 

same, where possible, and similar otherwise. Also, the NuSMV encoding reflects the 

HCPN net structure, i.e. relation between places and transitions, with a similar 

relationship between NuSMV variables, and the Transition Relation that acts on these 

variables. 

For example, given an HCPN place called p _End, we defme the corresponding 

NuSMV variable called p _End. 

For example, when defming a transition relation, we make use of naming conventions 

such as 'firedTransition', 'guardEnabled', etc. 

121 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

As a result, when one is working with the Transition System, i.e. model creation, 

formula specification, model checking, and model checking, it is straight forward to 

interpret and to relate NuSMV concepts back to the corresponding HCPN and its PAM 

Stack Instance. 

NuSMV Encoding Implementation 

As mentioned above, generation of a NuSMV encoding of a Transition System is done 

automatically by pamtester-fm using hard-coded templates. Below, we omit the details of 

the format of these templates. Instead, we proceed by example. For all examples in this 

section, unless noted otherwise, we use the HCPN model instance for ACME Corp 

(Section Example of "Partial" Unfolding of HCPN Model: HCPN model for ACME 

Corp on page 91). 

NuSMV Modules 

An HCPN model is encoded as a single NuSMV module. 

Encoding HCPN places as NuSMV variables 

An HCPN place not belonging to a Fusion Set corresponds to a distinct NuSMV 

variable. Hence two distinct HCPN places, both not belonging to a Fusion Set, will each 

have a distinct NuSMV variable created for them. For example, the HCPN place pC_O_S 

corresponds to a distinct NuSMV variable also called pC _0_ S. Similarly, HCPN place 

pC _1_ S has its own NuSMV variable pC _1_ S. 

122 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

In contrast, given an HCPN Fusion Set, all HCPN places belonging to this Fusion Set 

are represented by a single NuSMV variable. For example, the Fusion Set GF:Inc 

pTerm _Inc. All four of these HCPN places are represented by the NuSMV variable 

gCinc. 

To specify a NuSMV variable, one must specify three properties of this variable: 

domain, using the V AR keyword; initial state, using the INIT keyword; and how the 

value of this variable changes under the Transition Relation of the Transition System, 

using the TRANS keyword. For example, Table 21 shows the NuSMV encoding of the 

HCPN place p _Start. 

VAR p_Start : {EMPTY, l}; 
INIT p_Start in { 1 }; 
TRANS next(p_Start) in 
case 

next (firedTransition)=tlinit_l EMPTY; 
1 : p_Start; 

esac; 
Table 21: NuSMV encoding of CPN Place 'p_Start' 

We define a NuSMV variable p _Start, via the V AR keyword, to represent the HCPN 

The HCPN place p _Start can either contain a single CONTROL token, or contains no 

tokens. We encode this by representing the CONTROL token as the value 1, and the 

place containing no tokens as the value EMPTY. The domain of p _Start is defined to only 

contain these two possibilities, either p _Start contains no tokens, or it contains the single 

control token, i.e. {EMPTY, 1}. We encode this in NuSMV syntax by the statement V AR 

p_Start: {EMPTY, 1}. 

123 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

The initial marking of the HCPN has the place p_Start contain a single CONTROL 

token, i.e. I 'CONTROL. We define this in NuSMV by encoding the value of the NuSMV 

variable p_Start, in the initial state to have value 1. This is done using the INIT keyword, 

with the statement: INIT p _Start in { 1 }. 

Lastly, in the HCPN, if the transition tInit_l fires, then a CONTROL token is 

removed from the place p _Start. Otherwise, if the transition tlnit_l is not fired, then the 

value of the place p _Start stays the same. In our NuSMV encoding, this is encoded as part 

of the Transition System's Transition Relation, using the TRANS keyword, using the 

statement TRANS next(p_Start) in case next(frredTransition)=tInit_l : EMPTY; 1 : 

p_Start; esac;. The definition of the Transition Relation, and its connection with the 

CPN's Firing Rule is elaborated on below. 

As another example, Table 22 shows the NuSMV encoding of the CPN ending place 

VAR p_End : {EMPTY, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 }; 
INIT p_End in { EMPTY}; 
TRANS next(p_End) in 
case 

next (firedTransition) 
next (firedTransition) 
next (firedTransition) 
1 : p_End; 

esac; 

tTerm1 
tTerm2 
tTerm3 

6; 
gf_state stat; 
31; 

Table 22: NuSMV encoding of CPN Place 'p_End' 

Encoding HCPN Fusion Sets as NuSMV variables 

124 



MoSco Thesis - Co Kulbakas McMaster - Computing & Software 

Each Global HCPN Place (a set of HCPN places all acting as a single place, but 

requiring multiple HCPN place instances) was implemented as a single NuSMV variable. 

j This was a critical factor as an arbitrary PAM Stack Instance is near constant in the 

I J amount Fusion Set HCPN places, and hence has a constant contribution to the state space 
I 

of the resulting NuSMV Transition System (see Table 19 on page 59). 

Encoding Multi-Coloured HCPN Places as NuSMV Variables 

Given an HCPN place whose colour set is a cross product of multiple sets, our 

NuSMV encoding represents this place via multiple NuSMV variables - one NuSMV 

variable per colour set. For example, the fusion set GF: state has the following colour set: 

IMPR x STAT = {EMPTY,-l,O,l} x {EMPTY,O,l, ... , 31}. Thus, we define two NuSMV 

variables, one for the set IMPR and the other for the set STAT. 

As an aside, in the case where there is an incoming and outgoing arrow consuming and 

producing the same multiset of tokens, then this trivial consumption and replacement is 

not represented by the NuSMV encoding, i.e. transition tA _ 0_0_1 consumes and places 

(i,s) from/into pA_O_O_state. 

As an aside, in the case that a transition consumes and produces a tokens from/to a 

place, we do not encode the consumption in NuSMV. We only encode the production. 

This is because by encoding the production, we implicitly encode the consumption by 

overwriting the value of the NuSMV variable implementing the HCPN place. For 

pA_O_O_state, but we only encode the producing of (1,r). 

125 



:1 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

An example of a partial encoding is shown in Table 23. 

VAR gf_state_impr : { EMPTY, -1, 0, 1}; 
INIT gf_state_impr in {EMPTY}; 
TRANS next(gf_state_impr) in 
case 

--- produce 
next (firedTransition) 
next (firedTransition) 
next (firedTransition) 
next (firedTransition) 

consume 
next (firedTransition) 
next (firedTransition) 

--- otherwise 
1 : gf_state_impr; 

esac; 

= tlnit 1 : 0; 
tA0021; 
tA 0 2 2 -1; 
tA 0 2 3 -1; 

tTerm 1 
tTerm 2 

EMPTY; 
EMPTY; 

VAR gf state_stat : { EMPTY, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 
29, 30, 31}; 
INIT gf_state_stat in {EMPTY}; 
TRANS next(gf_state_stat) in 
case 

--- produce 
next (firedTransition) 
next (firedTransition) 
next (firedTransition) 
next (firedTransition) 

consume 
next (firedTransition) 
next (firedTransition) 

--- otherwise 

1 : gf_state_stat; 
esac; 

= tlnit 6 : 
tA 0 0 2 
tA 0 2 2 
tA 0 2 3 

tTerm 1 
tTerm 2 

6; 

EMPTY; 
EMPTY; 

Table 23: Encoding multi-coloured HCPN places 

126 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Encoding HCPN Transitions, Firing Rule as NuSMV Transition Relation 

HCPN places are represented as a set ofNuSMV variables (1 variable per colour set 
I 
I 
J component). The domains of the HCPN Places are encoded as domains of the NuSMV 
,1 
~l variables. A marking of the HCPN corresponds to an assignment of values to each of the 

NuSMV variables. When the HCPN's marking changes to a new marking, this 

corresponds to a new assignment of values to each of the NuSMV variables. 

In HCPNs, firing of transitions changes the marking. In a Transition System, it is the 

transition relation that changes the values ofNuSMV variables. 

Hence, we represent the firing of HCPN transitions via the Transition Relation of the 

Transition System. 

We illustrate the NuSMV encoding of a transition relation with a "toy" example. The 

HCPN is shown in Figure 73. 

1\2 ti 
pi p2 

[JP3 
x 

Figure 73: Toy Example - HCPN 

127 



MoSco Thesis - Co Kulbakas McMaster - Computing & Software 

The corresponding HCPN "behaviour" is shown in Figure 740 

I 

I 
t2 

t3 

Figure 74: Toy Example - HCPN "behaviour" 

128 



J 
, 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

In this case, the initial marking of this HCPN is M_l, then the corresponding NuSMV 

encoding is as follows: 

HCPN place encoding 
declare variables, and 

VAR pl { EMPTY, 1, 2 } ; 

VAR p2 { EMPTY, 1, 2 } ; 
VAR p3 { EMPTY, 1, 2 } ; 

initialize variables 
INIT pi in I}; 
INIT p2 in EMPTY}; 
INIT p3 in EMPTY}; 

define domain of variables 

--- specify how the HCPN marking changes under a firing of a 
transition 
-- HCPN place pi 
TRANS next(pl) in 
case 

next (firedTransition) 
next (firedTransition) 
next (firedTransition) 

t1 {1,2}; 
t2 EMPTY; 
t3 EMPTY; 

1 : pi; -- default, keep value same 
esac; 

-- HCPN place p2 
TRANS next(p2) in 
case 

esac; 

next (firedTransition) 
next (firedTransition) 
1 : p2; 

-- HCPN place p3 
TRANS next(p3) in 
case 

esac; 

next (firedTransition) 
1 : p3; 

HCPN Firing Rule encoding 

t2 
tl 

t3 

1; 
EMPTY; 

pi; 

choice, either 1 
consume token 
consume token 

or 

declare the firedTransition variable Transition Relation helper 
VAR firedTransition : { ONE, tl, t2, t3 }; 

initialize firedTransition 
INIT firedTransition in { ONE }; 

--- define the HCPN firing rule 
-- first, define what it means in NuSMV for a transition to be 
enabled 
- we need the preset of our transitions to be populated with the 
required tokens for consumption 

129 



MoSco Thesis - Co Kulbakas McMaster - Computing & Software 

DEFINE pre_tl 
DEFINE pre_t2 
DEFINE pre_t3 

.-

.= 

.= 

p2 
pi 
pi 

!= EMPTY; 
!= EMPTY; 
!= EMPTY; 

-- second, define guards 
- we need the guard of our transitions to evaluate to TRUE 
DEFINE guard_tl .- TRUE; 
DEFINE guard_t2 .= TRUE; 
DEFINE guard_t3 .= pi != 1; 

-- third, combine preset and guard conditions into enabled condition 
- we need the enabled condition to require that both the preset and 
guard conditions are TRUE 
DEFINE tl enabled .- ( pre_tl & guard_tl ); 
DEFINE t2 enabled := ( pre_t2 & guard_t2 ); 
DEFINE t3 enabled .= ( pre_t3 & guard_t3 ); 

-- fourth, complete the transition relation definition 
TRANS ( tl enabled & next(firedTransition) tl) 

I ( t2_enabled & next(firedTransition) = t2 ) 
I ( t3_enabled & next(firedTransition) = t3 ) 
I ( !tl enabled & !t2 enabled & !t3 enabled) & 

next (firedTransition) = DNE) 
Figure rS: Toy example - HCPN and corresponding NuSMV Encoding including Transition 
System encoding 

The transition relation defInition for the variable fIredTransition ensures that the 

fIredTransition is set to one of t1, t2, t3 or DNE. This is because it always evaluates to 

TRUE since, after simplifIcation, it is of the form (1¢ V ¢): 

(p2 != EMPTY) I (pi != EMPTY) I (pi != EMPTY & pi != 1) 
I 
(! ( p2 != EMPTY) & ! (pi != EMPTY) & ! (pi != EMPTY & pi != 1)) 

Table 24: Transition Relation - firedTransition NuSVM variable 

Thus, the transition relation function ->, in our case the function nextO, under all 

circumstances is defined (total) for the variable trredTransition, i.e. for all states, the 

variable fIredTransition has a defmition for its next value. 

130 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

In tum, this fact causes the rest of the system variables to be set, due to their portion of 

the Transition Relation defmition. The number 1, in the case definitions "1 : pI", "1 : p2", 

"1 : p3", is the default case. The default case always evaluates to true, and is always 

chosen if there are no other cases that evaluate to true. Since all TRANS constraints, for 

all of the variables, contain a default "1: ... ;" entry, hence all variable case statements 

also evaluate to true under all conditions. 

TRANS next (pI) in 
case 

esac; 

next (firedTransition) tl {1,2}; 
next (firedTransition) t2 EMPTY; 
next (firedTransition) t3 EMPTY; 
1 : pI; -- default, keep value same 

TRANS next(p2) in 
case 

esac; 

next (firedTransition) 
next (firedTransition) 
1 : p2; 

TRANS next(p3) in 
case 

esac; 

next (firedTransition) 
1 : p3; 

t2 
t1 

t3 

1; 
EMPTY; 

pI; 

choice, either 1 or 2 
consume token 
consume token 

Table 25: Transition Relation - HCPN Places 

Thus, since all system variables have a defined value in the next state, i.e. via the 

nextO transition function in their respective TRANS constraint section, thus, the 

Transition System as a whole has a defined next state, under all conditions. Thus, the 

transition relation is defmed for all conditions. Thus, TRANS is total - a requirement for 

Transition System transition relations (recall that for all states s of the system, there must 

exist a state s' of the system such as that s -> s', where -> is the transition relation. In this 

case, this requirement holds. 

131 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Lastly, note that although the HCPN marking M_2 is a deadlock marking, i.e. the 

HCPN cannot reach a new marking from M _ 2, the corresponding Transition System still 

moves to another state! Precisely, when M _ 2 is reached (i.e. the HCPN enters a deadlock 

marking), the nextO function sets firedTransition = t3, and thus causes all system 

variables pI, p2, and p3 to retain old values, i.e. next(pl)=pl, next(p2)=p2, next(p3)=p3. 

This Transition System variable valuation is what defmes the Transition System state. In 

other words, the Transition System state is viewed as a 4-tuple containing the values of 

the Transition System variables. Mainly, M_2 is described as (frredTransition, pI, p2, 

p3)=(t3, EMPTY, EMPTY, 2). 

Now, as mentioned above, note that although the underlying HCPN does not change 

its marking anymore, the Transition System still moves into another state! Once in 

Transition System state M _2, the TRANS constraint causes the following updates to the 

system variables: next(frredTransition) = DNE, next(p l)=p I , next(p2)=p2, next(p3)=p3, 

thus the new state is described by (frredTransition, pI, p2, p3)=(DNE, EMPTY, EMPTY, 

2), and thus, is not the state M _ 2. We defme a new state, called M _ d, i.e. M _ d := (DNE, 

EMPTY, EMPTY, 2). Hence, TRANS causes the Transition System to change state from 

M 2toM d. 

This is illustrated in Figure 76. 

132 



firedTransitlon = t3 
pi = EMPTY 
p2 = EMPTY 

p3=2 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

t3 

firedTransitlon = ONE 
pi=EMPTY 
p2 = EMPTY 

p3=2 

'2 

Figure 76: The System variables underlying the Transition System 

Specifying and Verifying "Security Properties" of Linux-PAM 

Configurations 

Introduction 

Given the generated Transition System, which describes the "behaviour" of an HCPN 

model of a PAM Stack Instance execution, we can analyze the behaviour of this HCPN. 

This analysis simulates the effect of the HCPN Firing Rule on the markings of the HCPN. 

133 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

We do this by simulating the possible state changes of the corresponding Transition 

System. 

So, first, we use NuSMV to build a Transition System model instance, and then we ask 

NuSMV to simulate the possible state changes of this Transition System instance. 

Furthermore, we request that NuSMV, while iterating through these state changes, checks 

whether or not certain system properties (atomic expressions in Atoms) hold on the 

iterated-over system states (use the labelling function L to check whether or not a system 

property critical to the security of the corresponding Linux -PAM Configuration, aka a 

"security property" ¢ is tre in the iterated-over state s, i.e. is it the case that ¢ E L(s)? 

Determining All Possible PAM Stack Execution Return Values 

For example, suppose we are considering the following Transition System state, shown 

in Figure 77. 

134 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

• • • 
firedTransition = ONE M d 

pEnd = 0 

• • • 

(~1/ 31 

~ 
pTerm slall! ~- ITerm 2' 
~ (i,s)'-

IMPRllSTAT . 

~ 

~.t 
premUne -~.tTerm_31 
~ 

COnTROL 

; 

/ 

• • • 

Figure 77: Labeling Function - Example· ACME Corp 

Here, as discussed in prior sections, the underlying HCPN is in a deadlock state. The 

corresponding Transition System state is also in a "deadlock" state in a sense that the 

Transition System is not able to change from the state M _ d to another (distinct from 

M _d) state. This is because the underlying HCPN Marking cannot reach any other 

marking. This situation corresponds to the end of the PAM Stack Execution of the 

corresponding PAM Stack Instance of the HCPN model. 

We are interested in this particular situation because we want to know thc valuc of thc 

NuSMV variable pEnd. The value ofNuSMV variable pEnd corresponds to the value of 

135 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

the P AM_RETURN token value residing in the HCPN place p _End (if exists, otherwise 

corresponds to EMPTY) in the underlying HCPN. The P AM_RETURN value contained 

in p _End corresponds to the PAM Stack Execution P AM_RETURN value returned by 

Linux-PAM at the end of the PAM Stack Execution. Semantically, the resulting 

PAM RETURN value of the PAM Stack Execution determines whether or not the 

authentication-related functionality was successful, i.e. the user was able to authenticate, 

the user account check was successful, the user password update was successful, the log 

on session set up or tear down was successful, the setting of user credentials was 

successful. 

For example, if p _End = 0, then the PAM_RETURN value is P AM_SUCCESS = O. 

This means that the authentication-related functionality (i.e. the client-called Management 

Function f) was a success. On the other hand, if p _End belongs to {I, 2, ... , 30}, then the 

authentication-related functionality was not successful, i.e. the user failed authentication, 

the user account check failed, the user password update failed, the log on session set up 

failed, the log on session tear down failed, the setting of user credentials failed. Lastly, if 

p _End = 31, then a "stacked" PAM requested that the PAM Stack Execution is paused so 

that the user can provide additional information for the proper carrying out of the 

authentication-related functionality. 

When a Linux-PAM Adminsitrator creates a Linux-PAM Configuration, one of the 

first questions that arise is: what are the possible PAM_RETURN values of this Linux­

PAM Configuration. 

136 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

At this time, the methods for determining the set of possible PAM fiTURN values, 

for a Linux-P AM configuration, are limited. 

For example, there exists a software tool called pamtester. The administrator tells the 

pamtester tool which Linux -PAM service, for which Management Function to test. In 

tum, pamtester establishes an authentication process with Linux -PAM (via pam _ startO 

Client API function), and calls the Management Function in question. The obtained 

P AM_RETURN is then reported back to the user. The limitation here is that the 

P AM_RETURN result used a single PAM Stack Execution trace to obtain this result. 

There was no enumeration of possible PAM Stack Execution traces. 

Furthermore, the Linux-P AM administrator may attempt to "manually" enumerate the 

possible PAM Stack Execution traces. This method is based on manual enumeration, 

including changing environment settings, i.e. provide a password during authentication, 

don't provide a password during authentication. This method is based on Linux-PAM 

Administrator experience and knowledge of Linux-PAM. Hence, this method is also 

limited. 

The next section describes how pamtester-fm enumerates all possible PAM Stack 

Execution traces, and hence provides all possible PAM_RETURN values for an arbitrary 

Linux-PAM Configuration, for an arbitrary Linux-PAM Service, for an arbitrary 

Management Function. 

137 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Formal Specification of "Security Properties" via CTL 

Pamtester-fm, in its current state tackles the problem of enumerating all possible PAM 

Stack Execution return values. To do this, pamtester-fm model checks Transition System 

describing all of the possible PAM Stack Executions of the corresponding Linux-PAM 

Instance, generated from the Linux-P AM Configuration of interest. 

This model checking consists of checking, for all PAM_RETURN values, if it is true 

that for all computation paths starting at the intial state, for all states comprising each 

computation path, the value of the variable p _End does not equal the P AM_RETURN 

value. Precisely, the formal specification is show in Figure 78. 

138 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

set verbose level 0 
unset counter_examples 
check_ctlspec -p "AG pend != 0" 
check_ctlspec -p "AG pend != 1" 
check_ctlspec -p "AG pend != 2" 
check_ctlspec -p "AG pend != 3" 
check_ctlspec -p "AG pend != 4" 
check_ctlspec -p "AG pend != 5" 
check_ctlspec -p "AG pend != 6" 
check_ctlspec -p "AG pend != 7" 
check_ctlspec -p "AG pend != 8" 
check_ctlspec -p "AG pend != 9" 
check_ctlspec -p "AG pend != 10" 
check_ctlspec -p "AG pend 11" 
check_ctlspec -p "AG pend 12" 
check_ctlspec -p "AG pend 13" 
check_ctlspec -p "AG pend 14" 
check_ctlspec -p "AG pend 15" 
check_ctlspec -p "AG pend 16" 
check_ctlspec -p "AG pend 17" 
check_ctlspec -p "AG pend != 18" 
check_ctlspec -p "AG pend != 19" 
check_ctlspec -p "AG pend != 20" 
check_ctlspec -p "AG pend != 21" 
check_ctlspec -p "AG pend != 22" 
check_ctlspec -p "AG pend != 23" 
check_ctlspec -p "AG pend != 24" 
check_ctlspec -p "AG pend != 25" 
check_ctlspec -p "AG pend != 26" 
check_ctlspec -p "AG pend != 27" 
check_ctlspec -p "AG pend != 28" 
check_ctlspec -p "AG pend != 29" 
check_ctlspec -p "AG pend != 30" 
check ctlspec -p "AG pend != 31" 

Figure 78: Computation Tree Logic formula list for obtaining the set of all possible 
PAM_RETURN values of a PAM Stack Instance Execution 

Formal Verification of "Security Properties" via Model Checldng 

Pamtester-fm instructs NuSMV to build the transition system model, and then to 

model check this model. 

Pamtester-fm uses the command line syntax in Figure 79 to instruct NuSMV to do this. 

139 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

nusmv -v 0 -dynamic -load ${nusmv_test_profile} $ {nusmv_model_file} 

Figure 79: Pamtester-rm NuSMV Command Line Syntax for Checking of Linux-PAM 
Configurations 

The algorithm used for the model checking of the system is critical. The -dynamic 

NuSMV option specifies that NuSMV uses "dynamic ordering ofBDD variables". When 

we did not use the '-dynamic' option, we observed that even simple Linux-PAM 

configurations (ones reaching five or six "stacked" P AMs) exhausted the memory on our 

test system6
• Also, time-wise, model-checking times were reaching close to 8 hours 

before computer memory was exhausted. In contrast, when using the '-dynamic option' , 

we did not reach such limitations at five or six "stacked" P AMs. In fact, our HCPN 

models of PAM Stack Instances reaching lOs and 100s of "stacked" PAMs were handled 

relatively "easily", i.e. Is toWs of seconds while using under 100 MB of RAM. 

The '-load $ {nusmv _test -'profile}' arguments instruct NuSMV to carry out extra 

commands, as specified in the file ${nusmv_test-'profile}. The contents of this file are 

shown in Figure 80. 

6 PC with 3 GB RAM and a Dual Core Intel 2 Ghz CPU. 

140 



i 

J 
:1 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

set on_failure_script_quits 
set verbose level 0 
echo 

" 

echo "»»» NuSMV: building a NuSMV-internal model for the NuSMV­
encoded hierarchical Coloured Petri Net representing the Linux-PAM 
configuration:" 
go; 
time; 
echo 
" 

" 

" 
echo "»»» NuSMV: running the verification of security properties on 
the NuSMV-internal model:" 
echo 

" 

source test.check all return values; 
echo 

time; 
echo 

" 

quit; 

- - -

Figure 80: Pamtester-fm NuSMV Test Profile script 

" 

" 

The test profile script opens another file called test.check _all_return _values, via the 

'source test.check_allJetum_values;' command. The contents of this file are the 

"security properties" to be checked on theTransition System models. The contents of this 

file were already shown above, in Figure 78 on page 139. 

The last argument, '$ {nusmv _model jile} " identifies a file containing a list of files, 

each of these files containing a NuSMV Syntax encoding of the Transition Systems 

describing the P Mv1: Stack Instance Executions to be checked (for \vhether or not the 

"security properties" hold during simulation). The contents of this file are shown in 

Figure 81. 

141 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

.. /smv/crond smv.txt 
· ./smv/cups smv.txt 
· ./smv/gdm-autologin_smv.txt 
.. /smv/gdm_smv.txt 
.. /smv/login_smv.txt 
.. /smv/passwd_smv.txt 
.. /smv/smtp_smv.txt 
· ./smv/sshd smv.txt 
· ./smv/sudo smv.txt 
· ./smv/su smv.txt 
.. /smv/wireshark smv.txt 

Figure 81: Pamtester-fm file list containing NuSMV encodings of PAM Stack Instance 
Execution possibilities for Linux-PAM Configurations of Production-grade Linux-PAM 

Services 

Once NuSMV loads the security properties from Figure 78 on page 139, then NuSMV 

uses the Test Profile in Figure 80 on page 141 to carry out automated transition system 

model building and model checking, where the transition system encodings are obtained 

from the files listed in Figure 81. 

The Transition System encodings in Figure 81 represent production-grade Linux-PAM 

configurations take from Red Hat Fedora Core 6. 

To illustrate, an example of the output from an automated pamtester-fm session was 

captured and a portion of it is presented in Figure 82. This output shows the automated 

verification of "security properties" of Linux-P AM Configurations for the crond and 

cupsd Linux-P AM Clients. 

142 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

[kkulbakas@localhost verificationl$ source test driver.sh update2.nusmv_test_profile 
update2.nusmv_model list 

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
****** This is pamtester-fm. 
****** Test Harness Driver, v.O.O.l --EXECUTION START on Mon Jul 20 20:37:22 EDT 2009. 

<nusrov_test_profile> : update2.nusmv_testyrofile 
<nusmv _ model_list_file>: update2.nusrov_madel_list 

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
\ \\ \ \ \\\\\ \ \ \\\ \ \ \\\ 

This is pamtester-fm. 
****** Invoking test number 'I' out of '11' on Mon Jul 20 20:37:22 EDT 2009 

<nusrov_madel_file> : . ,/smv/crond_smv.txt 
<nusmv test profile> : update2. nusrov test profile 
NuSMV command line: nusmv -v 0 -dynamic =load update2.nusmv_test_profile -i .. /smv/crond_smv.txt 

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
\ \ \ \ \ \ \\ \ \ \ \ \\ \ \ \\ \\ 
FILE -»> update2.nusmv_testyrofile 
*** This is NuSMV 2.4.3 (compiled on Sat Apr 4 20:10:25 UTe 2009) 

For more information on NuSMV see <http://nusmv.irst.itc.it> 
or email to<nusmv-users@irst.itc.it>. 
Please report bugs to <nusmv@irst.itc.it>. 

»»» NuSMV: building a NuSMV-internal model for the NuSMV-encoded hierarchical Coloured Petri Net representing the 
Linux-PAM configuration: 
elapse: 2.3 seconds, total: 2.3 seconds 

»»» NuSMV: running the verification of security properties on the NuSMV-internal model: 

--specification AG pend != is false 
--specification AG pend != is true 
--specification AG pend != is true 
--specification AG pend != is false 
--specification AG pend != 4 is true 
--specification AG pend != 5 is false 
--specification AG pend != 6 is true 
--specification AG pend != 7 is false 
--specification AG pend != 8 is true 
--specification AG pend != 9 is true 
--specification AG pend != 10 is true 
--specification AG pend != 11 is true 
--specification AG pend != 12 is true 
--specification AG pend != 13 is true 
--specification AG pend != 14 is true 
--specification AG pend != 15 is true 
--specification AG pend != 16 is true 
--specification AG pend != 17 is true 
--specification AG pend != 18 is true 
--specification AG pend != 19 is true 
--specification AG pend != 20 is true 
--specification AG pend != 21 is true 
--specification AG pend != 22 is true 
--specification AG pend != 23 is true 
--specification AG pend != 24 is true 
--specification AG pend != 25 is true 
--specification AG pend != 26 is false 
--specification AG pend != 27 is true 
--specification AG pend != 28 is true 
--specification AG pend != 29 is true 
--specification AG pend != 30 is true 
--specification AG pend != 31 is true 

elapse: 11.3 seconds, total: 13.5 seconds 

Quitting the BMC package ... 
Done 
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
\\ \ \ \ \ \\ \\ \\ \\\ \ \\ \\ 

This is pamtester-fm. 
****** Invoking test number '21 out of I II' on Mon Jul 20 20: 37: 40 EDT 2009 

143 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

<nusmv_ffiodel_file> : .• /smv/cups smv.txt 
<nusmv test profile> : update2. nusmv test profile 
NuSMV ~ommand line: nusmv -v 0 -dynamic -:load update2.nusrnv_test_profile -i . ,/smv/cups_smv.txt 

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
\\ \ \ \ \ \\ \\ \ \ \\\\ \\ \\ 
FILE -»> update2. nusmv test profile 
*** This is NuSMV 2.4.3-(compiled on Sat Apr -4 20:10:25 UTe 2009) 

For more information on NuSMV see <http://nusmv.irst.itc.it> 
or email to<nusmv-users@irst.itc.it> . 
Please report bugs to <nusmv@irst.itc.it>. 

»»» NuSMV: building a NuSMV-internal model for the NuSMV-encoded hierarchical Coloured Petri Net representing the 
Linux-PAM configuration: 
elapse: 1. 9 seconds I total: 1.9 seconds 

»»» NuSMV: running the verification of security properties on the NuSMV-internal model: 

--specification AG pend != is false 
--specification AG pend != is true 
--specification AG pend != is true 
--specification AG pend != is false 
--specification AG pend != is true 
--specification AG pend != 5 is false 
--specification AG pend != 6 is true 
--specification AG pend != 7 is false 
--specification AG pend != 8 is true 
--specification AG pend != 9 is true 
--specification AG pend != 10 is true 
--specification AG pend != 11 is true 
--specification AG pend != 12 is true 
--specification AG pend != 13 is true 
--specification AG pend != 14 is true 
--specification AG pend != 15 is true 
--specification AG pend != 16 is true 
--specification AG pend != 17 is true 
--specification AG pend != 18 is true 
--specification AG pend != 19 is true 
--specification AG pend != 20 is true 
--specification AG pend != 21 is true 
--specification AG pend != 22 is true 
--specification AG pend != 23 is true 
--specification AG pend != 24 is true 
--specification AG pend != 25 is true 
--specification AG pend != 26 is false 
--specification AG pend != 27 is true 
--specification AG pend != 28 is true 
--specification AG pend != 29 is true 
--specification AG pend != 30 is true 
--specification AG pend != 31 is true 

elapse: 5,1 seconds, total: 7,0 seconds 

Quitting the BMC package ... 
Done 

Figure 82: Pamtester-fm automated, formal verification of "security properties" of Linux-PAM 
Config urations 

Interpreting NuSMV Model Checking Results 

Pamtester-fm utilizes the NuSMV program to build and model check transition system 

models. Pamtester-fm does this in an automated manner, as shown above. Pamtester-fm 

obtains the output from NuSMV,and parses, processes and presents the results of this 

144 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

model checking, as necessary. Continuing the example from above, the output provided 

by pamtester-fm for the verification of security properties of the Linux -PAM 

Configuration for user authentication for the login program is shown in Figure 83. 

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 
****** This is pamtester-fm. 
****** Invoking test number 15 1 out of lIlian Mon Jul 20 20: 38: 00 EDT 2009 
<nusrnv model file> : .. /smv/login smv. txt 
<nusmv~test profile> : update2.nusmv test profile 
NuSMV command line: nusmv -v 0 -dynamic =load update2.nusmv test profile -i .. /smv/login smv.txt 
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \ \ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 
FILE -»> update2.nusmv test profile 

This is NuSMV 2.4.3-(compiled on Sat Apr 4 20:10:25 UTe 2009) 
For more information on NuSMV see <http://nusmv.irst.itc.it> 
or email to<nusmv-users@irst.itc.it>. 
Please report bugs to <nusmv@irst.itc.it>. 

»»» NuSMV: building a NuSMV-internal model for the NuSMV-encoded hierarchical Coloured Petri Net representing the 
Linux-PAM configuration: 
elapse: 2.3 seconds, total: 2.3 seconds 

»»» NuSMV: running the verification of security properties on the NuSMV-internal model: 

specification AG pend != is false 
specification AG pend != is true 
specification AG pend != 2 is true 
specification AG pend != 3 is false 
specification AG pend != is true 
specification AG pend != 5 is false 
specification AG pend != 6 is true 
specification AG pend != is false 
specification AG pend != is true 
specification AG pend != 9 is true 
specification AG pend != 10 is true 
specification AG pend != 11 is true 
specification AG pend != 12 is true 
specification AG pend != 13 is true 
specification AG pend != 14 is true 
specification AG pend != 15 is true 
specification AG pend != 16 is true 
specification AG pend != 17 is true 
specification AG pend != 18 is true 
specification AG pend != 19 is true 
specification AG pend != 20 is true 
specification AG pend != 21 is true 
specification AG pend != 22 is true 
specification AG pend != 23 is true 
specification AG pend != 24 is true 
specification AG pend != 25 is true 
specification AG pend != 26 is false 
specification AG pend != 27 is true 
specification AG pend != 28 is true 
specification AG pend != 29 is true 
specification AG pend != 30 is true 
specification AG pend != 31 is false 

elapse: 2.0 seconds, total: 4.3 seconds 

Quitting the BMC package ... 
Done 

Figure 83: Pamtester-fm formal verification of 'security properties' for user authentication for the 
login program 

145 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

As shown in Figure 83, it took 2.3 seconds for NuSMV to build the transition system 

model instance. It took another 2 seconds for NuSMV to model check this model instance 

to determine the truth or falsity of the provided "security properties". The total time for 

model instance build and model check was 4.3 seconds. 

The results of the verification are shown in Figure 84. 

-- specification AG pend! 0 is false 
-- specification AG pend != 1 is true 
-- specification AG pend != 2 is true 
-- specification AG pend ! = 3 is false 
-- specification AG pend != 4 is true 
-- specification AG pend ! = 5 is false 
-- specification AG pend != 6 is true 
-- specification AG pend != 7 is false 
-- specification AG pend != 8 is true 
-- specification AG pend ! = 9 is true 
-- specification AG pend ! = 10 is true 
-- specification AG pend != 11 is true 
-- specification AG pend ! = 12 is true 
-- specification AG pend != 13 is true 
-- specification AG pend != 14 is true 
-- specification AG pend != 15 is true 
-- specification AG pend ! = 16 is true 
-- specification AG pend ! = 17 is true 
-- specification AG pend != 18 is true 
-- specification AG pend != 19 is true 
-- specification AG pend != 20 is true 
-- specification AG pend ! = 21 is true 
-- specification AG pend ! = 22 is true 
-- specification AG pend ! = 23 is true 
-- specification AG pend != 24 is true 
-- specification AG pend != 25 is true 
-- specification AG pend != 26 is false 
-- specification AG pend ! = 27 is true 
-- specification AG pend ! = 28 is true 
-- specification AG pend != 29 is true 
-- specification AG pend != 30 is true 
-- specification AG pend != 31 is false 

Figure 84: Pamtester-fm verification result for the checking of "security properties" for the login 
program 

Each of the output lines shown in Figure 84 corresponds to a distinct "security property" 

listed in Figure 78 on page 139. 

For example, the output line '-specification AG pend != 0 is false' corresponds to the 

"security property" 'check_ctlspec -p !lAG pend != 0'. In this case, this means that the 

eTL formula HAG pendi=O" is not true in the transition system model instance. This 

means that in the corresponding HCPN model, it is false that there is never a token whose 

value is 0, in the HCPN place p _End. In other words, it is true that at some point, there is 

146 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

a token of value 0 in the HCPN place p _End. This means that in the corresponding PAM 

Stack mstance's PAM Stack Execution, there exists some PAM Stack Execution which 

returns a P AM_RETURN value of O. Since, in this example, the PAM Stack mstance is 

the Effective PAM Stack mstance for the Management Function pam _authenticateO, 

thus, ultimately, this result means that it is possible for a user to authenticate successfully 

using the login program. 

To summarize the verification results in Figure 84, the set of P AM_RETURN values 

that can be possibly returned during user authentication for the Linux -PAM Configuration 

for the login program is comprised of the following: 

• PAM_SUCCESS = 0, 

• PAM_SERVICE_ERR=3, 

• PAM_BUF_ERR= 5, 

• PAM_AUTH_ERR= 7, 

• PAM_ABORT = 26, 

• PAM INCOMPLETE = 31. 

147 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

RESULTS 

At fIrst, it turned out that even with the structural optimizations done during HCPN 

specifIcation (i.e. minimizing domains of HCPN places, minimizing amount of HCPN 

places used, not using any HCPN places for Transitions, etc., see Table 15 on page 110 to 

Table 20 on page 118), and then, minimizations done during NuSMV encoding ofHCPN 

specifIcations (i.e. Depth Counter, see Figure 72 on page 120), we still succumbed to the 

State Space Explosion problem. 

To overcome the State Space Explosion problem, we used another model verifIcation 

algorithm, called dynamic reordering. NuSMV utilizes the CUDD library to use this 

algorithm. The CUDD library implements many model verifIcation algorithms. 

NuSMV does not use the dynamic reordering algorithm by default. One has to 

explicitly instruct NuSMV to use it. Pamtester-fm does this by using the' -dynamic' 

command line argument when executing NuSMV (see Figure 79 on page 140). 

To illustrate the drastic difference between the usage of the default model verifIcation 

algorithm used by NuSMV, and the dynamic reordering model verifIcation algorithm, 

Table 26 on page 153 shows a summary of our test results when using the default 

NuSMV algorithm, and the Table 27 on page 154 shows a summary of our testing when 

using the dynamic reordering algorithm. 

For these tests, we used a Linux-P AM ConfIguration that was simple, yet provided 

some complexity. SpecifIcally, we started with a "base case" Linux-PAM confIguration, 

shown in Figure 85. 

148 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

I testservice auth [default=okJ pam nologin.so 

Figure 85: State Space Explosion - Test "Base Case" - Linux-PAM Configuration 

This base case uses the Linux-PAM Service testservice. The Linux-PAM Service 

Group is auth. The Complex Control specifies that all PAM_RETURN values, i.e. {0,1, 

... , 31}, are to be mapped to the Action 'ok' by the Control function, i.e. 

('r/ returnlreturn E {O,l, ... ,31}: C(return) = -1) holds. The last token is the PAM: 

pam _ nologin.so PAM. Recall, in our model, we define all PAM as a single HCPN 

transition which produces exactly one P AM_RETURN value when fired. This return 

value belongs to the set of the modeled, possible returned values of the pam_nologin.so 

PAM. In this case, we modeled this set to be the values PAM_SUCCESS = 0, 

PAM IGNORE =25. 

The HCPN model of this base case is shown in Figure 86. 

Figure 86: State Space Expiosion - Test "Base Case" - HCPN modei 

Then, we ensued our testing by creating Linux -PAM configurations, increasing by the 

number of "stacked" P AMs. Each such configuration was created using the base case 

149 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

configuration from Figure 85. For example, a test Linux-PAM configuration where the 

number of "stacked" P AMs is nine is shows in Figure 87. 

testservice auth [default=ok] pam_ nologin.so 
testservice auth [default=ok] pam_ nologin.so 
testservice auth [default=ok] pam_ nologin.so 
testservice auth [default=ok] pam_nologin.so 
testservice auth [default=ok] pam_ nologin.so 
testservice auth [default=ok] pam_ nologin.so 
testservice auth [default=ok] pam_nologin.so 
testservice auth [default=ok] pam_nologin.so 
testservice auth [default=ok] pam nologin.so 

Figure 87: State Space Explosion - Test "Base Case" - Linux-PAM Configuration with 9 "stacked" 
PAMs 

We started at a configuration with one module, and proceeded to increase the number 

of modules by one, for each subsequent test case. Our test platform was a machine with 

the following specification: 2.0 Ghz Dual Core CPU, 3 GB RAM, GNU/Linux. We 

experienced State Space Explosion, both, in terms of storage requirement of working 

memory (RAM), as well as time. In terms of both RAM and time, we observed 

exponential increase in both, as we increased the number of "stacked" P AMs. 

During Transition System verification, first, NuSMV builds a model instance of this 

Transition System. Then, secondly, NuSMV proceeds to model check this model 

instance. During the model checking stage of model verification, the "security properties" 

that were used in this model checking where the CTL fonnulas checking for which 

p AM_RETURN values the corresponding PAM Stack Execution could possibly return, 

as shown in Figure 78 on page l39. 

150 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Although we saw evidence of State Space Explosion in terms of both RAM and time 

i 
i 

requirements, it was RAM that was the ultimate "show stopper", occUlTing at the first 

I 

~ 
stage of verification - the model building stage. 

Evidence of the State Space Explosion Problem 

When we tested a configuration with five, six and seven "stacked" P AMs, the RAM 

requirement for the model building were 260, 1162 and 1877 MB of RAM, respectively. 

The model building stage of the verification, for the configuration with eight "stacked" 

P AMs, did not finish. Instead, the NuSMV process crashed with an error message 

"add to bdd: result = NULL". Upon investigation, this error was generated by a function 

supplied by the CUDD6 library, the function defined in the file C source code file of 

CUDD, the file named dd.c. Upon further investigation, the CUDD user manual mentions 

that this error indicates that the process has ran out of memory. This was supported by the 

fact that our system memory was exhausted by the NuSMV process. The time that it took 

for the RAM to be exhausted was 233 seconds. 

In terms of time and the State Space Explosion, it was observed that for test 

configurations of three, four, five and six "stacked" P AMs, the model checking stage of 

the model verification process took 1, 6, 214 and 1539 seconds, also an exponential 

curve. 

Due to these results, it was clear that using the default NuSMV model verification 

algorithm, it was not realistic for pamtester-fm to verify production Linux -PAM 

6 NuSMV uses the CUDD package for its library which implements model building algorithms. 

151 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

configurations. This is because, even though, the average observed Linux-PAM 

Configuration (default Linux-PAM installatioin on Fedora Core 6) is only 5 "stacked" 

P AMs, none-the-less, our test configuration used only a single action - Action 'ok'. This 

was a problem because production Linux-PAM Configurations use, on average, between 

3 and 4 Actions8
• 

The above results are summarized in Table 26 (N/A - not available, NIR - not 

recorded, comments between < > ). 

8 In the production Linux-P AM configurations that were tested, most configuration lines use the Basic 
Control syntax, which uses between 3 and 4 Actions per Basic Control token. 

152 



i 
I 
I 

I 
"I 

~' ! 

'I 

j 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Build Model Model Check model 
#of # of state Read Time RAM (#BDD BDDs/Clus Transition Time RAM 
"stacked variables8 model, used uscd nodes, in ter Relation used used 

flatten (seconds) (MB) millions) (Cluster!) Totality (seconds) (MB) 
PAMS hierarchy, (# (Cluster2) Check 

Build flat clusters) (seconds) 
model 
(seconds) 

(Cluster6) 
96 0 0.1 NIR N/R N/R 0.3 0.0 N/R 

2 106 0 0.2 N/R NIR NIR 0.9 0.1 NIR 

3 116 0 0.5 N/R N/R N/R 5.6 0.7 N/R 

4 224 0 2.8 N/R N/R NIR 28.3 5.7 100 

5 132 0 19.6 260 N/R N/R 187.9 214 315 

6 142 0 118.5 1162 14321 2782970 N/R 1539 865 
2224 
1242 

6 20023 
1070 
411 

7 152 0 664.8 1877 75364 12651772 N/R N/R N/R 
4411 
4049 

6 4041 
21775 

8 160 o 

Table 26: State Space Explosion - Results Summary 

Overcoming the State Space Explosion Problem 

It took the use of the dyamic reordering algorithm (via the '-dynamic' NuSMV option, 

see above) to overcome the State Space Explosion problem, and hence make pamtester-

fm viable for use for production Linux-PAM configurations. 

Table 27 shows the test results for testing of Linux -PAM configurations when using 

this algorithm. The improvement in NuSMV performance was dramatic. 

8 Note, the BCPN and NuSMV encoding has changed slightly since the test. The test shows results for the 
older BCPN and NuSMV encodings, where as the HCPN encoding shown in Figure 86 uses the improved 
encoding. In any case, the older and the newer encodings are similar in terms of net structure, and use the 
same net structure and NuSMV optimizations. 

153 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Build Model Model Check 
model 

#of # of state Read Time RAM (#BDD BDDs/Cluster Transition Time RAM 
"stacked" variables10 model, used used nodes, in (Clusterl) Relation used used 
PAMS flatten (seconds) (MB) millions) (Cluster2) Totality (seco (MB) 

hierarchy, (# Check nds) 
Build flat clusters) (seconds) 
model 
(seconds) (Cluster~ 

10 NIR NIR 1.3 NIR NIR NIR 0.2 N/R N/R 

20 NIR NIR 2.8 NIR NIR NIR 2.6 NIR NIR 

40 NIR NIR 9.2 12.2 NIR NIR 27.5 1.2 NIR 

80 NIR 0.1 34.1 N/R NIR NIR 88.3 8.3 NIR 

160 1392 NIR 165.2 50.5 211182 NIR N/R NIR NIR 
19 

320 2676 NIR 562.8 91.7 809828 N/R NIR NIR NIR 
35 

Table 27: Overcomrng State Space ExplOSion - Results Summary 

Note that the amount of stacked P AMs is much larger than what is normally used for 

production Linux -PAM configurations. Here, our test Linux -PAM configuration reaches 

320 "stacked" P AMs. In contrast, an average production Linux-P AM configuration (as 

found on Fedora Core 6 default Linux-PAM installation), was around 4 "stacked" PAMs! 

Here, even at 320 "stacked" P AMs, we only use 91.7 MB of RAM and 562 seconds 

when building our transition system model (in contrast to already using 260 MB of RAM 

at 5 "stacked" P AMs, and using 664.8 seconds at 7 "stacked" P AMs, using the default 

NuSMV algorithm)! 

Similarly, drastic improvements are seen, both in the transition relation totality check 

time, and in the model checking time. 

10 Note, the HCPN and NuSMV encoding has changed slightly since the test. The test shows results for the 
older HCPN and NuSMV encodings, where as the HCPN encoding shown in Figure 86 uses the improved 
encoding. In any case, the older and the newer encodings are similar in terms of net structure, and use the 
same net structure and NuSMV optimizations. 

154 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Further research, and a complete test suite needs to be carried out, and fully 

documented to make further comments. 

None the less, these results are encouraging, especially when the test platform is a 

household PC - an off-the shelf Lenovo laptop with a Dual Core 2.6 Ghz CPU and 3 GB 

of RAM. 

Results of Verification of Production Linux-PAM Configurations 

Linux- Management PAM Stack Transition System Model Verification 
PAM Function Instance size 

Generation of Model Checking of 
Client (in "stacked" 

Pams) 
Transition System Model Transition System 
(in seconds) Modeltime 

(in seconds) 

sudo pam_ authenticateO 4 1.9 5.0 

cups pam _ authenticateO 4 1.9 5.1 

sshd pam _ authenticateO 4 2.0 5.1 

smtp pam _ authenticateO 4 1.8 5.3 

passwd pam _ authenticateO 4 2.0 5.3 

login pam _ authenticateO 5 2.3 2.0 

gdm pam _ authenticateO 5 2.4 2.3 

su pam_ authentic.ateO 5 2.0 11.9 

crand pam _ authenticateO 6 2.3 11.3 

wireshark pam_ authenticateO 6 2.3 24.2 

average 4.7 2.1 7.8 

Table 28: Results of pamtester-fm verflcatlon of 'secunty properties' of production Lmux-PAM 
configurations 

Based on the optimizations made in the HCPN and Transition System specifications, 

and after choosing a better-performing model checking algorithm, we used pamtester-fm 

to do specification and verification of several, production Linux -PAM configurations. 

155 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Specifically, pamtester-fm was used to specify and verify production Linux-PAM 

I Configurations for the following Linux-PAM Clients: sudo, cups, sshd, smtp, passwd, 
I 

-I 

~ 
:] 

login, gdm, su, crond and wireshark. 

Only the results for Linux-PAM Configuration corresponding to the 
., 

pam _ authenticateO Management Function are refered to in this section. 

Pamtester-fm was used to parse the corresponding Linux-PAM Configurations, 

generate the corresponding PAM Stack Instance HCPN models, and generate a NuSMV-

syntax encoding of the corresponding Transition System. 

Then, pamstester-fm executed the NuSMV program, instmcting NuSMV to use 

dynamic reordeting (via the '-dynamic' argument), with the encoded Transition Systems, 

and the "security propeliies" as input. The specifics of how pamtester-fm does this is 

outlined in section on page 139. 

Table 28 outlines the results of the production Linux-PAM configuration testing. 

156 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

DISCUSSION 

I It is useful to be able to obtain the set of possible PAM_RETURN values of a PAM 

I 
~ Stack Execution, of an Effective PAM Stack Instance corresponding to an arbitrary 

:1 Linux -PAM Configuration, for any Linux -PAM client program, for any Management 

Function. 

Given the complexity of the operation and configuration of Linux-PAM, a 

modification of a single element of a Linux -PAM configuration can affect the structure 

and execution of the Effective PAM Stack instances of the Linux -PAM configuration. 

This in tum may affect the authentication-related functionality that is provided by the 

affected PAM Stacks. Sometimes, such a modification may also alter the set of possible 

PAM RETURN values of an Effective PAM Stack instance. 

For instance, suppose that before a modification, an Effective PAM Stack instance 

associated with pam _ authenticateO for the login program is capable of returning 

PAM_SUCCESS = O. This means that it is possible to successfully carry out user 

authentication (successfully authenticate to the system). Now, suppose that the 

administrator make a single modification to the Linux-PAM Configuration of the login 

program. Furthermore, suppose that this modification results in the Effective PAM Stack 

instance of pam_authentic at eO to no longer be able to retum PAM_SUCCESS = O. 

Effectively, this modification resulted in a Denial of Service (DOS) condition, as now, 

users are not able to successfully authenticate to the system. 

157 



j 
! 

~ 
~l 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

An automated tool like pamtester-fm, a tool that can automatically generate the set of 

all possible P AM_RETURN values of a PAM Stack instance, just by this functionality 

alone, already has a tremendous utility. 

For example, in the above case, a Linux-PAM administrator can run pamtester-fm on 

the Linux-P AM Configuration before the configuration modification, and after the 

configuration modification. Comparing both results, the Linux-PAM administrator can 

see how a modification affects the set of possible PAM_RETURN values, including 

creation of a DOS condition. A DOS condition is a major fmm of an "attack" against an 

element of an information technology infrastructure. In this case, pamtester-fin can be 

used as a tool to detect DOS conditions, and hence help avoid this major type of "attack". 

Supposing that the HCPN model, and the resulting transition system model are valid 

(i.e.accurately represent the PAM Stack execution process and the corresponding Linux-

PAM Configuration), then such envisioned functionality can be achieved, as 

foreshadowed by the CUlTent state of the pamtester-fm tool. The usage of dynamic 

ordering of variables during the model checking phase created "breakthrough" results, 

where Linux-PAM Configurations containing lOs and 100s ofPAMs were used, yet the 

model checking time was only seconds, ones, and tens of minutes. Also, the RAM 

requirements were negligible, as even the larger test Linux-PAM Configurations only 

used around 30 MB of RAM. Given the above, and the fact that average production 

Linux-PAM Configuration consisted of6 modules, gives the modeler "room to breathe". 

Specifically, the model sophistication can be increased. For example, the HCPN models 

describing both the PAM Stack execution (i.e. see Flags, Frozen Chain, PAM Options, in 

158 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Limitations), and the execution of individual PAMs (i.e. Flags, PAM Options) can be 

made more complex, and hence better approximate their operation . 

. 1 

:1 

Another consequence of these results is that Linux -PAM Administrators may perhaps 

feel more "adventurous" in their modification and creation of Linux -PAM 

Configurations. Cunently, major GNU/Linux distributions supply Linux-PAM 

Configurations for all of the major applications. Furthermore, it is not a common practice 

to make extensive modifications to these configurations, or create new configurations. 

Perhaps a tool like pamtester-fm will encourage Linux-PAM Administrators to start 

experimenting with modification and creation of Linux-PAM Configurations. For 

instance, none of the production Linux -PAM Configurations used in testing contained 

substacks, yet substack functionality is a feature of Linux-PAM PAM Stack execution. 

Perhaps this feature is not useful, or perhaps Linux -PAM is seen as too complex already, 

and introducing substacks into configurations is seen as an unnecessary hazard. Similarly, 

most Configuration Lines, within the production Linux-PAM configurations that were 

tested, were using Simple Controls. Yet, Linux-PAM offers the flexibility of Complex 

Controls. Simple Controls have equivalent Complex Controls. Thus, Simple Controls are 

just labels. These labels (i.e. optional, required, sufficient, requisite) are just somebody's 

semantic interpretation of their functionality. Why do Linux -PAM administrators not 

create their own semantic interpretations? Again, perhaps the cunent set of Basic 

Controls is sufficient. Or, perhaps, Linux-P AM is just too complex as it is, and modifying 

existing configurations or creating new configurations that use Complex Controls is seen 

as too dangerous. 

159 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Limitations 

Pamtester-fm tool is a starting point, or a foundation for further modeling. As such, 

there are many limitations that still make pamtester-fm-generated models not close 

enough to being valid models of PAM Stack Executions. 

PAM modeling is not detailed 

Currently, the execution of PAM Module API function implementations, i.e. 

implementation ofpam_sm_authenticateO of pam_unix. so, is modeled via a single HCPN 

transition. hI the model, we define this transition to produce exactly one P AM_RETURN 

token, where the value of this token belongs to the set of possible return values of the 

Module API function implementation. 

Thus, we only model a returning of a possible P AM_RETURN value, but we do not 

model the execution behaviour of a PAM. In other words, our modeling of an execution 

of a PAM solely consists of randomly returning a possible PAM return value. This 

modeling does not capture how the PAM functions, given external factors. For example, 

the pam _ unix.so PAM may behave differently, and hence return only a subset of the 

possible PAM return values, if the user supplied password is blank. Currently, our model 

is not capable of differentiating this possibility. 

PAM options are not modeled 

In the Linux-PAM Configuration, the administrator can provide a list of PAM options. 

These options parameterize how the PAM functions. 

160 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Currently, our model does not implement the usage of options by P AMs. 

Some Management Functions are not modeled 

For instance, at this point, pamtester-fm does not create valid models for the PAM 

Stack Executions ofP AM Stack llistances corresponding to the Management Functions: 

• pam _ setcredO, 

• pam _ chauthtokO, and 

• pam_c1ose_sessionO· 

This is because these functions use a feature ofP AM Stack execution, called Freeze 

Chain. Freeze Chain functionality implements the "freezing" of a PAM Stack llistance 

during its execution. A "freezing" of a PAM Stack llistance occurs during the execution 

of the PAM Stack llitance. This "freezing" consists of storing the results of the 

corresponding "stacked" PAM's execution return values in the PAM Stack llistance. 

Once a PAM Stack is frozen, then, subsequent Management Function executions, called 

during the same Authentication Process, may use the "frozen" values (the PAM execution 

return values saved on the PAM Stack llistance), instead of the newly obtained PAM 

execution return values. 

Implementing Frozen Chain in the model requires significant additions to the HCPN 

model. Due to this, modeling of Frozen Chain was omitted. 

Flags are not modeled 

All Management Functions accept a flags argument, i.e. int flags. A flags argument 

affects the way that these management functions are carried out, and the way that the 

161 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

corresponding "stacked" P AMs provide authentication-related functionality. For example, 

for pam _ authetnicateO, one flag that can be specified is called 

PAM DISALLOW NULL AUTHTOK. When this flag is passed, this instructs Linux-
- --

P AM to return the PAM _ AUTH _ ERR = 7 error PAM Stack execution return value, if the 

user does not have an authentication token configured on the system, i.e. a blank 

password. 

Flags affect how the executed P AMs behave. Specifically, these flags are passed onto 

the "stacked" P AMs during PAM Stack execution. The list of options is specified as an 

argument to the call made to the implementation of the Module API function of the 

corresponding Management Function of the "stacked" PAM. For example, supposing that 

PAM_DISALLOW_NULL _ AUTHTOK is specified during the call to 

pam_authenticateO by the Linux-PAM client, then, when Linux-PAM executes the 

Effective PAM Stack instance for pam _ authenticateO, Linux -PAM calls 

pam _ sm ~am _ authenticateO implementation of each "stacked" PAM and passes 

PAM_DISALLOW_NULL _AUTHTOK as one of the arguments. 

Implementation of flag passing would require significant modeling. Also, since 

currently, the execution of PAM Module API function implementation is only modeled 

via a single HCPN transition, hence it would not be beneficial to model the passing of 

flags. This is because, mainly, flags parameterize the execution of Module API function 

implementations ofPAMs. Thus, we chose to omit modeling of passing of flags, for now. 

162 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

! 

I 
Future Work 

-I 

1 
The results of this thesis provide a foundation for a variety of future work. We discuss 

future work based on the following categories: improving modeling approximation to 

Linux -PAM; identification of prevalent Linux -PAM configuration scenarios; formalizing 

a logic, algorithms, and techniques for Linux-P AM configuration analysis; attacks and 

defences from an Information Security perspective; interoperability with other formal 

methods software; end-user pamester-fin tool interaction; and next-generation interactive 

Linux-P AM systems. 

Improving modeling approximation to Linux-PAM 

Pamtester-fm lays the foundation for further modeling. PAM modeling needs to 

become more sophisticated. PAM Stack Execution also needs to be modeled further. 

Passing of flags, PAM Options and Frozen Chain are just some elements that need to be 

addressed with further modeling. 

Identification of Common Linux-PAM Configuration Scenarios 

A set of commonly used PAM Configurations should be identified. This set should be 

obtained from the usage patterns of the Linux-PAM community. For example, there 

should be a common, prevalent configuration for Linux-PAM authentication with 

bindings to a Windows LDAP/Active Directory server, for example. Once identified, 

these configurations should be modeled thoroughly, further increasing the utility of 

pamtester-fin as a tool in the Linux-PAM administrator's tool box. 

163 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Developing Algebraic Techniques for Linux-PAM Configuration Analysis 

A Linux-PAM installation, the Linux-PAM Configurations, the operation of Linux­

PAM clients, the operation of Linux-PAM PAMs, and the surrounding subsystems (i.e. 

GNU C Library configuration of user accounts), form an intricate dependency system. 

This dependency system can be viewed from different perspectives: as a combination of 

algebraic structures, or a composition of subsystems and the protocols that bind them 

together. 

For example, an Effective PAM Stack Instance is a sequence of P AMs. Hence an 

Effective PAM Stack Instance is a sequence. Given two sequences x and y, and a 

function, say *, that operates on sequences, what do we get by combining x with y using 

this operation? Precisely, what is x * y? What are the properties ofx * y? Does x = y? 

What is =? Does x * y = y * x? Given x, y, z, does (x * y) * z = x * ( y * z )? Is there a 

Linux-PAM configuration that can be viewed as a unity, i.e. x * 1 = x? Questions abound. 

In another example, an Effective PAM Stack Instance is a sequence ofPAMs. Each PAM 

in this sequence is, in a way, dependent on the P AMs preceding it. Suppose + is a 

function that stack P AMs together to form PAM Stack Instances. Then, in what ways can 

we characterize PAM "stacking"? For example, for which P AMs is it the case that a + a = 

a? Would such a system be useful? Could we leverage this notation and the mechanics 

behind to study Linux-PAM systems? I.e. x * y = (a + b + c) * (d + e) = ... etc. 

From the view of subsystems and protocols, individual P AMs may embody 

functionality that is protocol-like in a way that the PAM operates, or interacts with other 

164 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

P AMs or surrounding components. Certainly, some P AMs use protocols to interact with 

servers, i.e. LDAP, Kerberos or UNIX authentication P AMs. 

Also, Linux-PAM and Linux-P AM Clients have a standardized protocol defmed for 

Linux-P AM to Linux-P AM Client communication! This protocol ensures that no matter 

how the Linux -PAM Client is written, the Linux -PAM Client can provide the necessary 

information back to Linux-PAM. For example, whether one is using the login program (a 

text-based program) or an X-Window system based GUI program requiring 

authentication, the authentication portion for both of these programs has to provide a 

usemame and a password back to Linux-P AM. In order to do this, Linux -PAM uses the 

notion of a Linux-P AM Conversation. This Conversation has a protocol-like standardized 

defmition. 

Attad{S and Defences from an Information Security Perspective 

Just because Linux-P AM is not inherently about cryptography or a communication 

protocol, does not mean that it does not fall under the umbrella of Information Security. 

On the contrary, the problem of specifying and verifying Linux-PAM configurations is at 

the heart of information security. This is because Linux-PAM configurations protect 

system access. 

Due to this, Linux-P AM configurations, and its surrounding environment (i.e. as 

parameters such as existence of a user account), can be studied as an attack surface. In 

this case, an unwitting Linux-PAM administrator is also considered to be an "attacker". 

One such attack is outlined below. 

165 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Unauthorized User Access 

We introduce a class of attacks on a Linux-PAM installation, called the Linux-PAM 

Configuration Modification (LCM) attack. An attack of type LCM occurs when a Linux-

P AM administrator makes a modification to the existing Linux-P AM configuration, 

causing a change to the set of possible PAM Stack executions, where one of these PAM 

Stack executions does not satisfy some set of "security properties". 

One instance of an LCM attack causes unauthorized user access to the system. 

For example, given a Linux-PAM Configuration for the login program, suppose that it 

is possible for users to successfully authenticate to the system (a necessary step before a 

user can log on to a system, as implemented by login). Now, suppose that the Linux-PAM 

administrator makes a modification to the Linux-PAM Configuration of the login 

program. Further, suppose that this modification still allows successful authentication, 

but, the user in question can now be an unauthorized user - a user without a username or 

password configured on the system in question. This is certainly possible. To give a 

trivial example, a Linux-PAM Configuration providing successful authentication for an 

unauthorized user is shown in Figure 88 . 

I login auth required pam_allow. so 

Figure 88: Linux-PAM Configuration enabling unauthorized user access 

Here, the Effective PAM Stack Instance for pam _ authenticateO contains exactly one 

"stacked" PAM - pam _ allows. so PAM. The functionality of pam _ allow.so PAM consists 

of simply returning P AM_SUCCESS, for all Management Functions. Furthermore, for 

166 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

the pam_authenticateO function, if the principal does not supply a usemame when 

attempting to authenticate (i.e. an empty username string is provided to the login 

program), the pam _ allow.so PAM assigns a DEFAULT_USER = "nobody" username, 

and then returns PAM SUCCESS = O. 

Although this example is trivial, the point is to demonstrate that a principal (an 

external-to-the-system entitity) that does not have a valid user account (and password) on 

the system can still successfully authenticate. Actually, such a situation is not far fetched, 

as due to the complexity of Linux -P AM Configuration parsing, it is not difficult to make 

a mistake (file name creation errors, file location errors, include or substack specification 

errors, syntax errors, reaching maximum substack level- root causes which may result in 

this condition) where the Linux-P AM configuration parsing results in such a "trivial" 

Linux -PAM Configuration II. 

Thus, future work can involve creating models where we can detect the conditions that 

result in unauthorized user access. In this case, we have to model the notion of an 

"unauthorized user" as Linux-P AM interprets it. This can be done by in-depth modeling 

ofPAMs that do user authentication. For example, pam_unix.so PAM does user 

authentication. Pam _ unix. so PAM makes certain GNU C Library function calls which 

determine whether or not the principal has a user account on the system. We can abstract 

such calls and model them with HCPN constructs. For example, say we create an HCPN 

place called 'pPAM_UNIX-authorized_user' and define its colour set to be a CONTROL 

11 Recall, Linux-PAM continues to operate even if an error is encountered. Erronous Linux-PAM 
configurations continue to be used in provision of authentication-related functionality to Linux-P AM 
clients. 

167 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

token. Then, semantically, we can define the model such that a CONTROL token is 

I 
'I 

present in the HCPN place pP AM _UNIX-authorized _user, if, and only if, the principal 

has a user account on the system (and hence is an authorized user by our definition). This 

way, we can introduce the notion of an "authorized user" into our model. 

Consequently, when we do model checking, we can employ "security property" 

specifications which use the value of pP AM_UNIX -authorized_user to determine 

whether or not the principal is an authorized user. Based on this, we can create formal 

specifications of "security properties" which involve the notion of an "authorized user". 

Using this approach, we can create automated specifications and verifications of 

Linux-PAM configurations, where we can check if, given a Linux-PAM configuration, 

there exists a possible PAM Stack Execution where an "unauthorized user" can 

successfully authenticate, i.e. "AG (p_End != 0 I pPAM_UNIX-authorized_user == 1 )". 

Ultimately, given this capability, the pamtester-fm tool can be used as an Information 

Security auditing tool. For example, during penetration testing, the pamtester-fm tool can 

be utilized to check if there is a possibility that a Linux-PAM installation allows 

unauthorized user access for some application. 

Interoperability with Other Formal Methods Software 

Ability for pamtester-fm to utilize different model checking software packages should 

be incorporated. For example, plug-ins could be wlitten, where each plug-in is dedicated 

to a single model checking software package. 

168 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Ideally, pamtester-fm should not have anything to do with doing the actual model 

instantiation and model checking. The focus of pamtester-fm should be on Linux -PAM 

configurations, i.e. parsing of Linux -PAM configurations, and based on this parsing, 

generating the appropriate model specification. Once that is done, the model generation 

and checking should be left to software tools that are made specifically for that task. 

These software tools must have functionality that allows pamtester-fm to control them 

programmatically, and for pamtester-fm to be able to obtain output of their analysis. 

Ideally, an HCPN export function should be developed. Based on a Linux -PAM 

Configuration, Pamtester-fm would generate the HCPN module specification, and then 

this export function would encode it into an HCPN fOlmat that can be understood by 

another, external HCPN software package, which can then run analysis on this HCPN, 

including reachability analysis. 

Currently pamtester-fm specifies and generates the HCPN model, based on its parsing 

of a Linux-P AM Configuration. 

Currently pamtester-fm encodes the HCPN model instance into a transition system 

specification. 

Currently pamtester-fm specifies the transition system modeL 

Currently, pamtester-fm uses NuSMV to generate and model check the transition 

system model. In this case, pamtester-fm provides NuSMV with the transition system 

model specification. 

169 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

End-User Pamester-fm Tool Interaction 

The success ofpamtester-fm tool depends on the end-user experience. The difficulty 

here is how to create a "push-button" technology that does not require the end-user to 

understand the underlying formal methods concepts, yet provides meaningful results. In 

particular, how do we present the complexity and operation of PAM Stack Instance 

execution and its troubleshooting (model-checking) in an intuitive way that provides 

meaningful results back to the end-user? This may be achieved with a GUI. 

Besides presentation of operation and results of PAM Stack Executions, there are other 

aspects that are dependent on the interface between the end-user and pamtester-fm. For 

example, the end-user should be able to parameterize the models ofP AM Stack 

Execution, if needed. For instance, the end -user should be able to specify that the PAM 

Stack Execution should assume that the modeled authentication-related task (i.e. user 

authentication), had the user provide a blank password. 

Lastly, the pamtester-frn interface should leverage the power oftoday's visualization 

and cheap display technologies. Specifically, PAM Stack Execution visualizations 

showing the "stacked" P AMs, and possible PAM Stack executions, real-time, or post­

mortem could be done. The applications for this could be live system monitoring as well 

as information security visualization. 

Next-Generation Interactive Linux-PAM Systems 

Lastly, using all of above future work items as a foundation, next-generation 

interactive Linux-P AM systems could be developed. For example, such systems could do 

170 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

real-time, reactive re-configuration of production Linux-PAM configurations, combined 

I 

~ 
with visualization and monitoring capabilities. 

171 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

CONCLUSION 

One can use formal specification and verification techniques to solve a variety of 

problems. For example, in (6), the (sophisticated) ferryman uses the method of model 

checking a Transition System to ensure that his goods (a wolf, a goat, and a cabbage) are 

all safely transported to the other side of the river. In our case, pamtester-fm formally 

specifies and verifies that all possible PAM Stack execution sequences satisfy a set of 

"security properties" of the form: "it is not possible for a PAM Stack Instance to return 

PAM_RETURN = x", where x is an integer between 0 and 31. 

Formal specification and verification approaches do not have to be, and neither should 

one expect them to be, "silver bullets" (tools that solve a problem completely, and with 

no error). For example, before an Information Technology industry presentation about the 

pamtester-fm.org project, the presentation organizer playfully asked: "so, is pamtester-fm 

going to make my Linux 100% secure?" This comment sheds light on the existence of an 

IT industry view that formal methods are expected to completely, and with no error, solve 

a problem they undertake. If this was not bad enough, additionally, the general feeling 

amongst IT industry practitioners is that formal methods are: difficult to understand, and 

too impractical (in terms of money and time investment) to apply to real-world problems. 

These views were the driving factors behind this thesis as a whole, and the development 

of the pamtester-fm tool and the pamtester-fm.org project - proof-of-concept work done 

as part of this thesis work. 

The solutions generated by such tools do not have to fully, and with no error, solve a 

problem. As long as a portion of a problem is addressed, and this is useful, then progress 

172 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

has been made. In this case, pamtester-fm "uncovers" the complexity of PAM Stack 

executions - a complexity which many Linux-P AM administrators are either unaware of, 

or are unable to, or do not bother to, cope with. 

The creation of such tools does not have to be constrained by the limitations of 

existing formal specification and verification software. As long as the theory is correctly 

implemented, editor software, a compiler, and a suite of helper applications can suffice. 

In our work, pamtester-fm was written using the C programming language, and utilized 

other open source projects, such as NuSMV, GraphViz and GNU/Linux. The existing 

formal methods software tools were found to contain limitations which disqualified them 

from being used for this thesis. For example, a suite of existing tools could not be found 

that would automatically do the job of: accepting an arbitrary set ofBCPN module 

specifications, combine this set to form a single BCPN, model check the behaviour of this 

resulting BCPN, and produce textual output. This forced the development of a custom 

tool that would do this job. Albeit, fortunately and critically, the NuSMV software 

package was located, which accepts arbitrary transition system specifications as input, 

automatically builds and model checks this transition system, and outputs the results of 

this check in textual format. 

Pamtester-fm provides a foundation on which further modeling can be pursued. Based 

on the initial results, it is the opinion of the author of this thesis that software projects, 

including ones in the area of Information Security, can benefit from formal specification 

and verification methods. Again, they do not have to "promise" a system that is 100% 

"secure", yet their functionality can still be of benefit. In particular, pamtester-fm 

173 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

demonstrates how a complex software system can be abstracted to the point where 

modeling of this system is manageable, yet useful. One interesting observation of this 

work was that when we model behaviour of a software system, we don't need to model 

every variable, or the whole function call chain. In many cases, it is sufficient to model 

the first one or two function call levels, and then, only to model a subset of variables. 

Often, it is enough to use a single HCPN transition or a single HCPN place to model a 

whole function call chain. Also, ignoring or abstracting away portions of the software 

system does not take away from the validity of the model. Based on this work, perhaps it 

would be useful for software projects to make use of personnel for the purpose of formal 

specification and verification. 

Lastly, it is the opinion of the author of this thesis that opportunities exist to employ 

formal methods. Specifically, automated tools, that are based on formal methods, yet hide 

the complexity of formal methods to the tool's end-users, can assist IT industry 

professionals in carrying out regular job duties. In particular, tasks requiring solving 

repetitive, well-defined problems, too tedious for humans, yet "easy" enough to create 

formal models for, lend well to being approached with such tools. For example, 

enumerating all possible PAM Stack Executions, for all Effective PAM Stacks, of an 

arbitrary Linux -PAM Configuration, for a list of lOs of Linux -PAM Clients, and doing 

this every 5 minutes in a 24/7/365 environment, is an ideal candidate for such a formal 

methods approach. Tn fact, such approaches may act as a catalyst for next-generation 

Information Security tools - tools for which demand is likely to increase as our society 

becomes increasingly dependent on information technology infrastructures. 

174 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

APPENDIX A: Source Code of PAM Stack Instance Execution 

Pam_dispatchO from libpamjpam_dispatch.c 

Pam _ dispatchO chooses the Effective PAM Stack Instance, and then calls 

pam_dispatch _ auxO to initiate the execution of this Effective PAM Stack Instance. 

/* 
* This function translates the module dispatch request into a pointer 
* to the stack of modules that will actually be run. the 
* _pam_dispatch_aux() function (above) is responsible for walking the 
* module stack. 
*/ 

int _pam_dispatch(pam_handle_t *pamh, int flags, int choice) 

struct handler *h = NULL; 
int retval, use_cached_chain; 
_pam_boolean resumed; 

if ( __ PAM_FROM_MODULE(pamh» { 
D «"called from a module! ?"» ; 
return PAM_SYSTEM_ERR; 

/* Load all modules, resolve all symbols */ 

if «retval _pam init handlers (pamh» != PAM_SUCCESS) ( 
pam_syslog(pamh, LOG_ERR, "unable to dispatch function"); 
return retval; 

use cached chain = _PAM_PLEASE_FREEZE; 

switch (choice) { 
case PAM AUTHENTICATE: 

h = pamh->handlers.conf.authenticate; 
break; 

case PAM SETCRED: 
h = pamh->handlers.conf.setcred; 
use cached chain = _PAM_MAY_BE_FROZEN; 
break; 

case PAM ACCOUNT: 
h = pamh->handlers.conf.acct mgmt; 
break; -

case PAM OPEN SESSION: 
h = pamh->handlers.conf.open_session; 
break; 

case PAM CLOSE SESSION: 
h = pamh->handlers.conf.close_session; 
use_cached chain = _PAM_MAY_BE_FROZEN; 
break; 

case PAM CHAUTHTOK: 
h = pamh->handlers.conf.chauthtok; 
if (flags & PAM_UPDATE_AUTHTOK) { 

use_cached_chain PAM MUST_BE_FROZEN; 

break; 

175 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

default: 
pam_syslog(pamh, LOG_ERR, "undefined fn choice; %d", choice); 
return PAM_ABORT; 

if (h == NULL) ( /* there was no handlers.conf ... entry; will use 
* handlers.other ... */ 

switch (choice) ( 
case PAM AUTHENTICATE: 

h = pamh->handlers.other.authenticate; 
break; 

case PAM SETCRED: 
h = pamh->handlers.other.setcred; 
break; 

case PAM ACCOUNT: 
h = pamh->handlers.other.acct_mgmt; 
break; 

case PAM OPEN SESSION: 
h = pamh->handlers.other.open_session; 
break; 

case PAM CLOSE SESSION: - -
h = pamh->handlers.other.close_session; 
break; 

case PAM CHAUTHTOK: 

) 

h = pamh->handlers.other.chauthtok; 
break; 

} 

/* Did a module return an "incomplete state" last time? */ 
if (pamh->former.choice != PAM_NOT_STACKED) { 

if (pamh->former.choice != choice) ( 
pam_syslog(pamh, LOG_ERR, 

"application failed to re-exec stack [%d: %d]", 
pamh->former.choice, choice); 

return PAM_ABORT; 

resumed 
} else 

resumed 

PAM_TRUE; 

/* call the list of module functions */ 
pamh->choice = choice; 
retval = _pam_dispatch_aux(pamh, flags, h, resumed, use_cached_chain); 
resumed = PAM_FALSE; 

/* Should we recall where to resume next time? */ 
if (retval == PAM_INCOMPLETE) { 

D( ("module [%d] returned PAM_INCOMPLETE")); 
pamh->former.choice choice; 

} else { 
pamh->former.choice 

} 

return retval; 

Figure 89: Source Code of pam_dispatchO from libpam/pam_dispatch.c 

176 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Pam_dispatch_auxO from libpamjpam_dispatch.c 

Pam_dispatch _ auxO does the execution of the Effective PAM Stack Instance, as 

described by the PAM Stack Execution algorithm in Table 13 on page 29. 

/* 
* walk a stack of modules. Interpret the administrator's instructions 
* when combining the return code of each module. 
*/ 

static int pam dispatch aux(pam handle t *pamh, int flags, struct handler *h, 
- _pam_boolean resumed, int-use_cached_chain) 

int depth, impression, status, skip_depth, prev level, stack_level; 
struct _pam_substack_state *substates = NULL; 

if (h == NULL) 
const void *service=NULL; 

(void) pam_get_item(pamh, PAM_SERVICE, &service); 
pam_syslog(pamh, LOG_ERR, "no modules loaded for '%s' service", 

service? (const char *)service:"<unknown>" ); 
service = NULL; 
return PAM MUST_FAlL_CODE; 

/* if we are recalling this module stack because a former call did 
not complete, we restore the state of play from pamh. */ 

if (resumed) { 
skip_depth = pamh->former.depth; 
status = pamh->former.status; 
impression = pamh->former.impression; 
substates = pamh->former.substates; 
/* forget all that */ 
pamh->former.impression = PAM_UNDEF; 
pamh->former.status = PAM_MUST_FAIL_CODE; 
pamh->former.depth = 0; 
pamh->former.substates = NULL; 

} else ( 
skip_depth = 0; 
substates = malloc(PAM_SUBSTACK MAX LEVEL * sizeof(*substates»; 
if (substates == NULL) ( 

pam_syslog(pamh, LOG_CRIT, 
"_pam_dispatch_aux: no memory for substack states"); 

return PAM_BUF_ERR; 

substates[O] . impression impression _PAM_UNDEF; 
substates[O] . status = status = PAM_MUST_FAIL_CODE; 

} 

prev_level = 0; 

/* Loop through module logic stack */ 
for (depth=O ; h != NULL; prev_level 

int retval, cached_retval, action; 

stack_level = h->stack_level; 

stack_level, h 

/* skip leading modules if they have already returned */ 
if (depth < skip depth) { 

continue; -

177 

h->next, ++depth) { 



M.Sc. Thesis - C. Kulbakas 

/* remember state if we are entering a subs tack */ 
if (prev level < stack level) ( 

sUbstates[stack_Ievel) . impression = impression; 
substates[stack_Ievel) . status = status; 

/* attempt to call the module */ 
if (h->handler type == PAM HT MUST FAIL) 

McMaster - Computing & Software 

D«"module-poorly listed in PAM config; forcing failure"»; 
retval = PAM_MUST_FAIL_CODE; 

/* 

else if (h->handler_type == PAM_HT_SUBSTACK) 
D «"skipping substack handler"»; 
continue; 

else if (h->func == NULL) { 
D ( ("module function is not defined, indicating failure"»; 
retval = PAM_MODULE_UNKNOWN; 

else ( 
D ( ("passing control to module ... "»; 
pamh->mod_name=h->mod_name; 
retval = h->func(pamh, flags, h->argc, h->argv); 
pamh->mod_name=NULL; 
D «"module returned: %s", pam_strerror (pamh, retval»); 

* PAM INCOMPLETE return is special. It indicates that the 
* module wants to wait for the application before continuing. 
* In order to return this, the module will have saved its 
* state so it can resume from an equivalent position when it 
* is called next time. (This was added as of 0.65) 
*/ 

if (retval == PAM_INCOMPLETE) { 
pamh->former.impression = impression; 
pamh->former.status = status; 
pamh->former.depth = depth; 
pamh->former.substates = substates; 

/* 

D «"module %d returned PAM_INCOMPLETE", depth»; 
return retval; 

* use_cached_chain is how we ensure that the setcred/close_session 
* and chauthtok(2) modules are called in the same order as they did 
* when they were invoked as auth/open_session/chauthtok(l). This 
* feature was added in 0.75 to make the behavior of pam_setcred 
* sane. It was debugged by release 0.76. 
*/ 

if (use_cached_chain != PAM PLEASE_FREEZE) 

/* a former stack execution should have frozen the chain */ 

cached retval = * (h->cached_retval_p); 
if (cached_retval == _PAM_INVALID_RETVAL) 

/* This may be a problem condition. It implies that 
the application is running setcred, close_session, 
chauthtok(2nd) without having first run 
authenticate, open session, chauthtok(lst) 
[respectively). */-

D( ("use_cached_chain is set to [%d)," 
" but cached retval PAM INVALID_RETVAL", 
use_cached_chain»; 

178 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

/* In the case of close session and setcred there is a 
backward compatibility reason for allowing this, in 
the chauthtok case we have encountered a bug in 
libpam! */ 

if (use cached chain == PAM MAY BE FROZEN) ( 

} 

} 

/* (not ideal) force-non~frozen-stack control. */ 
cached_retval = retval; 

else ( 
D( ("BUG in libpam -" 

" chain is required to be frozen but isn't"»; 

/* cached retval is already PAM INVALID RETVAL */ 

else 
/* this stack execution is defining the frozen chain */ 
cached retval h->cached retval = retval; 

/* verify that the return value is a valid one */ 
if «cached_retval < PAM_SUCCESS) 

I I (cached_retval >= _PAM_RETURN_VALUES» 

retval 
action 

else 

PAM_MUST_FAIL_CODE; 
_PAM_ACTION_BAD; 

/* We treat the current retval with some respect. It may 
(for example, in the case of setcred) have a value that 
needs to be propagated to the user. We want to use the 
cac~ed_retval to determine the modules to be executed 
in the stacked chain, but we want to treat each 
non-ignored module in the cached chain as now being 
'required'. We only need to treat the, 

PAM_ACT ION_IGNORE , _PAM_ACTION_IS_JUMP and 
PAM_ACTION_RESET actions specially. */ 

action = h->actions[cached_retval]; 

D«"use cached chain=%d action=%d cached retval=%d retval=%d", 
use_cached_chain, action, cached_retval, retval»; 

/* decide what to do */ 
switch (action) ( 
case PAM ACTION RESET: 

impression = substates[stack_Ievel] . impression; 
status substates[stack_Ievel] .status; 
break; 

case PAM ACTION OK: 
case PAM ACTION DONE: - - -

if ( impression == PAM UNDEF 
I I (impression PAM POSITIVE && status == PAM_SUCCESS) ) ( 

/* in case of using cached chain 
we could get here with PAM_IGNORE - don't return it */ 

if ( retval != PAM_IGNORE I I cached retval == retval ) ( 
impression = _PAM_POSITIVE; 

status = retval; 

if ( impression PAM POSITIVE && action PAM ACTION DONE ) ( 
goto decision_made; 

} 

break; 

179 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

case PAM ACTION BAD: 
case PAM ACTION DIE: 

#ifdef PAM_FAIL_NOW_ON 
if ( cached_retval == PAM_ABORT) { 

impression = _PAM_NEGATIVE; 
status = PAM_PERM_DENIED; 
goto decision_made; 

) 
#endif /* PAM_FAIL_NOW_ON */ 

if ( impression != PAM_NEGATIVE) { 
impression = _PAM_NEGATIVE; 

else 

/* Don't return with PAM_IGNORE as status */ 
if ( retval == PAM_IGNORE ) 

status PAM_MUST_FAIL_CODE; 

status retval; 

if ( action PAM ACTION DIE ) { 
goto decision_made; 

} 

break; 

case PAM ACTION IGNORE: 
break; 

/* if we get here, we expect action is a positive number -­
this is what the ... JUMP macro checks. */ 

default: 
if ( _PAM_ACTION_IS_JUMP(action) ) { 

/* If we are evaluating a cached chain, we treat this 
module as required (aka PAM ACTION OK) as well as 
executing the jump. */ - - -

if (use cached chain) 
if (impression == PAM UNDEF 

I I (impression == PAM_POSITIVE 
&& status == PAM_SUCCESS) ) 

if ( retval != PAM_IGNORE I I cached retval 
impression _PAM_POSITIVE; 

status = retval; 

retval ) { 

/* this means that we need to skip #action stacked modules */ 
while (h->next != NULL && h->next->stack_level >= stack_level && action> 0) { 

do { 
h = h->next; 
++depth; 

) while (h->next != NULL && h->next->stack level> stack_level); 
--action; 

/* note if we try to skip too many modules action is 
still non-zero and we snag the next if. */ 

/* this case is a syntax error: we can't succeed */ 
if (action) { 

pam_syslog(pamh, LOG_ERR, "bad jump in stack"); 
impression = _PAM_NEGATIVE; 
status PAM_MUST_FAIL_CODE; 

180 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

continue; 

decision made: /* by getting here we have made a decision */ 
while (h->next != NULL && h->next->stack level >= stack_level) 

h = h->next; 
++depth; 

} 

} 

/* Sanity check */ 
if ( status == PAM SUCCESS && impression != PAM POSITIVE) ( 

D«"caught on sanity check -- this is probably a config error!")); 
status PAM_MUST_FAIL_CODE; 

free(substates); 
/* We have made a decision about the modules executed */ 
return status; 

Figure 90: Source Code of pam_dispatch_auxO from libpam/pam_dispatch.c 

181 



I 
I 

1 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

APPENDIX B: Authentication using 'login' at ACME Corp 

Authentication Policy 

ACME Corporation: User Authentication Security Policy 

This is a policy for user authentication for the 'login' application. 

The 'login' application allows a user to log on to a system using a computer terminal. 

Step 1: If the user is root, and the user is not using a "secure" terminal, then deny system log on, 
and exit the authentication process. 

Step 2: Optionally set environment variables. 

Step 3: Authenticate the user. If the user does not authenticate successfully, then deny system log 
on. 

Figure 91: A Linux-PAM Authentication Policy P 

182 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Linux-PAM Configuration 

The Authentication Policy P shown in Figure 91 is interpreted and translated into a Linux-PAM 

Configuration. This Linux-P AM Configuration is specified in Linux-P AM Configuration syntax, and it is 

stored in the file /etc/pam.d/login (Figure 92). For the Service 'login', Linux-P AM interprets the file 

/etc/pam.d/login as the Root of the Client-Specific Linux-P AM Configuration for the Service 'login'. 

Hence, when Linux-PAM creates the corresponding PAM Stack Instances, /etc/pam.d/login is parsed as the 

first (and in this case, the only) file. 

auth requisite pam_securetty.so 
auth optional pam_env.so 
auth sufficient pam_unix.so 
auth required pam deny.so 

Figure 92: A Client-Specific Linux-PAM Configuration C, letc/pam.dllogin, for the Service 
'login', implementing the Authentication Policy P 

Figure 93 shows the implicit and explicit configuration line tokens after Linux-P AM parses the Client-

Specific Linux-PAM Configuration contained in Figure 92. Implicitly, the Service token is interpreted by 

Linux-PAM to be 'login'. Also, all Simple Controls are shown as their equivalent Complex Controls. 

login auth [success=ok, new auth tok reqd=ok ignore=ignore default=die] pam securetty.so 
login auth [success=ok, new=auth=tok=reqd=ok default=ignore] pam_env.so -
login auth [success=done, new auth tok reqd=done, default=ignore] pam unix.so 
login auth [success=ok, new auth tok reqd=ok, ignore=ignore, default=bad] pam deny. so 

Figure 93: The parsed Client-Specific Linux-PAM Configuration C for the Service 'login', 
implementing the Authentication Policy P 

183 



j 
:1 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

PAM Stack Specification 

CONTROL; 

depth; level; SERVICE; 
SERVICE Ci PATH; OPTIONS; 

i Li Si 
GROUP; 

X 
de DeCi ): Pi 01 Gi 

~ ReCD 
'r/x eX: 

Clex) = d 

0,12 -1 ," ........................................ ,,~ 
0 0 login auth 25 0 pam_securetty.so -::-... ................ ,,""",,-....:. 

"ow" -4 ~""""'",",",'0 
0 login auth 

0,12 -1 

~"'"' '"'"'"' '" 1 pam_env.so 

~ "' "' "' '"' "'''--''' "ow" 0 

0,12 -2 
pam_unix. so 

t\..", '"'"' '"'"''' 
2 0 login auth 

~"'"'"'"' "", ..... "ow II 0 

0,12 -1 
l'...", , "' "' "' "" '" 3 0 login auth 25 0 pam_deny. so 

~""""" "ow ll -3 r-..."""'''' .. 
I able 29: Generation of PAM Stack Specification for the Authentication Management group 

for Service "login" with Complex Control equivalents 

184 



I 
I 

J 

depth; 
i 

~ 

:1 

0 

1 

2 

3 

M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

PAM Stack Instance 

CONTROL; 

SERVICE; 
SERVICE Ci PATH; OPTIONS; level; 
GROUP; dE D(C;): 

Li Si X Pi °i Gi 
£; R(Ci) 

'<Ix EX: 
Ci(x) = d 

int int 
int char char 

handler stack int 
actions (32) (*func) *mod name **argv 

type level -

0,12 -1 I (pam_sm_authenticate(), ~""~ 0 0 login auth 25 0 pam_securetty.so) 
pam_ 

~'-~'\: securetty.so 
"owll' -4 

~""'" 0,12 -1 I (pam_sm_authenticate(), 

~"" pam_ 
0 0 login auth pam_env.so) 

~ "owll' 0 env.so 

0,12 -2 I (pam_sm_authenticate(), ~~ pam_ 
0 0 login auth pam_unix. so) 

unix.so ~~ "owlr 0 

0,12 -1 I (pam_sm_authenticate(), 

~"""" 0 0 login auth 25 0 pam_deny. so) 
pam_ 

."'~ deny. so 
"ow" -3 .. "'"''-.~ 

Figure 94: Generation of a PAM Stack Instance for the pam_sm_authentlcateO Module API 
function for the Service "login" 

185 



M.Sc. Thesis - C. Kulbakas McMaster - Computing & Software 

Bibliography 

1. Morgan, A. Linux-PAM Homepage. [Online] 
http://www.kemel.oig/pub/linuxllibs/pam/. 

2. Unified Login With Pluggable Authentication Modules (PAM), Request For 
Comments 86.0. Samar, V and Schemers, R. s.1. : Open Software Foundation, 
1995. 

3. Samar, V and Lai, C. Making Login Services Independent of Authentication 
Technologies. 1996. 

4. Cavada, R. NuSMV 2.4 User Manual. NuSMV Model Checker. [Online] 2005. 
http://nusmv.irst.itc.it. 

5. Jensen, K and Kristensen, L M. Coloured Petri Nets. Berlin: Springer­
Verlag, 2009. 

6. Huth, M and M, Ryan. Logic in Computer Science. Cambridge: Cambridge 
University Press, 20066. 

7. The Linux-PAM Module Writer's Guide. [Online] 2008. 
http://www.kernel.org/pub/linuxllibs/pam/. 

186 


