
Real-time CPU Implementations of Image/Video

Spatial Resolution Upconversion and Video

Deinter lacing

REAL-TIME GPU IMPLEMENTATIONS OF IMAGE/VIDEO

SPATIAL RESOLUTION UPCONVERSION AND VIDEO

DEINTERLACING

BY

JIE CAO, B .Sc.

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

AND THE SCHOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF ApPLIED SCIENCE

© Copyright by Jie Cao, May 2010

All Rights Reserved

Master of Applied Science (2010)

(Electrical & Computer Engineering)

McMaster University

Hamilton, Ontario, Canada

TITLE:

AUTHOR:

SUPERVISOR:

Real-time GPU Implementations of Image/Video Spatial

Resolution Up conversion and Video Deinterlacing

Jie Cao

B.Sc., (Electronic Engineering)

Fudan University, Shanghai, China

Dr. Xiaolin Wu

NUMBER OF PAGES: xii, 56

ii

To my beloved family

Fukang Cao and lianhua Du

Abstract

In this thesis, we reexamine the classical problems of image/video spatial resolution

up conversion and video deinterlacing with an aim to develop real-time, adaptive so­

lutions. The research of this thesis is important because most video applications

require real time throughput. We study the use of GPU (Graphics Processing Unit)

technology for high throughput video interpolation and deinterlacing. The main

technical challenge is how to fully utilize the processing power and parallel architec­

ture of GPU to maximize the throughput of up conversion and deinterlacing without

compromising the visual quality of the resulting videos. To achieve the goal we

develop a GPU-friendly two-pass directional image/video resolution up conversion al­

gorithm and present a GPU implementation of the method, using the NVIDIA CUDA

(Compute Unified Device Architecture) technology. We also devise a GPU-motivated

motion-adaptive deinterlacing algorithm and develop a CUDA-based implementation

of the algorithm. To strike a balance between performance and complexity, we dis­

cuss the techniques of adapting the computations in motion detection and adaptive

directional interpolation to the GPU architecture for maximum video throughput

possible. Experimental results demonstrate that using a mid-range GPU card, our

CUDA-based implementations offer real-time solutions for image/video spatial reso­

lution up conversion and video deinterlacing.

iv

Acknow ledgements

I would like to take this opportunity to thank all those who have made the completion

of this thesis possible.

First and foremost, I would like to express my sincerest appreciation to my su­

pervisor, Dr. Xiaolin Wu. It is an honor and a pleasure to work with him. His

guidance, encouragement and keen insights are highly appreciated and will always

be remembered. The knowledge acquired from Dr. Wu is indispensible and will be

tremendously beneficial in my future career.

I would like to thank to my examiners, Dr. Jian-Kang Zhang and Dr. Shahram

Shirani for their time reviewing my thesis and providing valuable feedbacks. My spe­

cial thanks to Cheryl, Cosmin, Terry for their friendly assistance and expert technical

support.

Furthermore, I wish to thank my colleagues and friends Xiaohan, Xiangjun,

Mingkai, Ying, Heng, Yong, Xiao, Jiayi, Yinhan, Reza. Their help and friendship

have made this an experience to remember and cherish.

Last but not least, I would like to express my grateful thanks to my father and

my mother. Thank you for your unconditional love and support.

v

Notation and abbreviations

GPU

2D

AR

CCD

CMOS

CPU

CUDA

DPI

DVD

FPS

HDTV

HR

IPTV

LCD

LR

MDC

MMSE

PAR

Graphics Processing Unit

Two-dimension

Autoregressive

Charge-Coupled Device

Complementary Metal Oxide Semiconductor

Central Processing Unit

Compute Unified Device Architecture

Dots Per Inch

Digital Video Disc

Frames Per Second

High-definition Television

High Resolution

Internet Protocol Television

Liquid Crystal Display

Low Resolution

Multiple Description Coding

Minimum Mean Square Error

Piecewise Autoregressive

VI

PC Personal Computer

PPI Pixels Per Inch

SAD Sum of Absolute Differences

SAl Soft-decision Adaptive Interpolation

SDTV Standard-definition television

SM Streaming Multiprocessors

SNR Signal-to-Noise Ratio

SP Scalar Processor

Vll

Contents

Abstract

Acknowledgements

Notation and abbreviations

1 Introduction

1.1 Overview.

1.2 Image/Video Spatial Resolution Up conversion

1.3 Video Deinterlacing .

1.4 Contributions

1.5 Organization

2 Review of Existing Works

2.1 Image/Video Spatial Resolution Up conversion

2.1.1 Non-adaptive Image/Video Interpolation

2.1.2 Adaptive Image/Video Interpolation

2.2 Video Deinterlacing

2.2.1 Intrafield Video Deinterlacing

Vlll

iv

v

vi

1

1

3

6

9

10

11

11

12

13

14

14

2.2.2 Interfield Video Deinterlacing 15

2.2.3 Hybrid Deinterlacing Methods . 15

3 Fundamentals of CUDA 17

3.1 Background 17

3.2 Hardware Architecture 18

3.3 Programming Model 19

3.4 GPU Acceleration of Image/Video Processing 21

4 GPU-aided Directional Image/Video Interpolation for Real Time

Resolution Up conversion

4.1 Adaptive Directional Image/Video Interpolation

4.2 CUDA Implemcntation of Adaptive Directional Image/Video Interpo-

lation

4.2.1 General Program Flow and Thread Configuration

4.2.2 Four-subimage-based Memory Allocation

4.2.3 Caching Mechanism.

4.2.4 Branch and Loop Replacement

4.3 Experimental Results and Discussion

4.4 Conclusion...............

5 GPU-aided Motion Adaptive Video Deinterlacing

5.1 Motion Adaptive Video Deinterlacing With Adaptive Directional In-

22

23

27

27

28

30

31

32

36

38

terpolation. 38

5.2 CUDA Implementation of Motion Adaptive Video Deinterlacing 42

5.2.1 General Program Flow 42

ix

5.2.2 GPU Memory Allocation. 44

5.2.3 Thread Configuration and Overlapped Caching Mechanism 45

5.3 Experimental Results and Discussion

5.4 Conclusion...........

6 Conclusions and Future Work

x

47

48

52

List of Figures

1.1 Images with different resolutions (a) Low resolution; (b) High resolution. 3

1.2 An example of the interlaced video sequence . . . 7

1.3 Interlacing artifacts (a) Line Crawl; (b) Serration. 8

3.1 The GPU devotes more transistors to data processing [1]. 18

3.2 Memory architecture for CUDA GPU [1]. . 19

3.3 Heterogeneous programming model [1]. . . 20

3.4 Thread, block, and grid arrangement inside kernel functions [1]. 20

4.1 Two pass interpolation. (a) The first pass; (b) The second pass. 24

4.2 Diagonal cubic interpolation. (a) 45 0 cubic interpolation; (b) 135 0

cubic interpolation. .. 24

4.3 Diagonal cubic verification. (a) 45 0 verification; (b) 135 0 verification. 25

4.4 The verification of the 1350 cubic interpolator in a local window of four

known pixels surrounding the missing pixel Y (i, j) 26

4.5 General program flow of GPU implementation of the algorithm. 28

4.6 (a) Uncoalesced Memory Access; (b) Coalesced Memory Access. 29

4.7 Subimage-based memory allocation. The high resolution image is gen-

erated at the last stage. 29

4.8 The size of cached data compared to block size. 31

Xl

4.9 Comparison of different methods. (a) (c) Bicubic interpolation; (b) (d)

The GPU-aided directional interpolation. 33

4.10 Comparison of different methods. (a) (c) Bicubic interpolation; (b) (d)

The GPU-aided directional interpolation. 34

4.11 Comparison of different methods. (a)(c) Bicubic interpolation; (b)(d)

The GPU-aided directional interpolation. 35

5.1 Five directional interpolators.

5.2 Verification process

5.3 General program flow of GPU-aid implementation

40

41

43

5.4 Continuous and coalesced memory allocation. . . 45

5.5 (a) Uncoalesced Memory Access; (b) Coalesced Memory Access. 45

5.6 Overlapped data caching mechanism compared to block size . . 46

5.7 Comparison of different methods. (a) (c) (e) (g) Bicubic interpolation

(b) (d) (f) (h) Proposed intrafield interpolation 49

5.8 Comparison of different methods. (a)Bilinear field averaging (b) Proposed

intrafield interpolation (c) Proposed motion adaptive deinterlacing .. 50

5.9 Comparison of different methods. (a)Bilinear field averaging (b) Proposed

intrafield interpolation (c) Proposed motion adaptive deinterlacing .. 51

XlI

Chapter 1

Introduction

1.1 Overview

Digital video is becoming arguably the most popular and important form of visual

communication and presentation in our information technology era. Different from

digital still images, a digital video consists of moving pictures in time and it is gen­

erated either by a digital video camera or by digitizing a motion picture film. Due

to the inclusion of time dimension in the pictorial data, digital videos offer much

richer information contents than digital images, and hence have a much wider range

of applications, including entertainment, consumer electronics, engineering, sciences,

medicine, security, defense and etc.

Video processing is a field of visual signal processing that encompasses a number

of technical topics: acquisition, communication, motion estimation, scene analysis,

restoration and enhancement. In this thesis we are primarily concerned with video

1

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

restoration and enhancement. Specifically, we investigate the problem of video reso­

lution up conversion in both spatial and temporal domains. The focus of our inves­

tigation is on real-time solutions of the up conversion problem. The research of this

thesis is important because video applications, such as video phones, teleconference,

digital television, IPTV, and etc., commonly demand real time throughput. Real­

time video processing is challenging because video data are inherently voluminous,

incurring heavy computational burdens.

To meet the demands for special purpose of real time applications in computer

graphics and video processing, the GPU (Graphics Processing Unit) technology was

developed in early nineties. GPU uses a massive parallel processing architecture

to expedite large scale visual information processing. In the past decade GPU has

evolved into a manycore and multithreaded computation engine of great prowess. It

is now used not only for speeding up graphics rendering computations but also for

accelerating more general-purpose applications.

In order to provide a convenient, high-level software development environment

for general-purpose GPU programming, NVIDIA developed the CUDA (Compute

Unified Device Architecture) platform. As GPU becomes a standard hardware com­

ponent in most PCs and severs and the GPU software development platform improves,

developing and implementing the GPU-aided video techniques has become more cost­

effective.

In this thesis, we reexamine the well-known problems of spatial resolution upcon­

version and video deinterlacing with the objective of developing GPU-based real-time

solutions. The main technical challenge is how to fully utilize the processing power

and massive parallelism of GPU to maximize the throughput of up conversion and

2

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

(a) (b)

Figure 1.1: Images with different resolutions (a) Low resolution; (b) High resolution.

deinterlacing without compromising the visual quality of the resulting videos.

1.2 Image/Video Spatial Resolution Upconversion

One of the most important quality metrics of digital video is and will continue to

be the spatial resolution. Spatial resolution is defined as the number of pixels per

unit length. It refers to the pixel density of a digital image or a video frame. Spatial

resolution is commonly measured in Dots Per Inch(DPI), or Pixels Per Inch(PPI). In

general, given a scene, the higher the spatial resolution, the more and finer details

an image/video contains. High spatial resolution of video has paramount importance

in computerized video analysis applications in medical, scientific, space, military and

security fields. For consumer applications higher spatial resolution directly translates

to superior visual quality.

3

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

In an ideal world, one can always increase the sensor resolution of image acquisition

devices to obtain a desired spatial resolution. There exist hard physical limits on how

high a spatial resolution that a video acquisition device can achieve. Firstly, most

digital images are acquired by an array of semiconductor sensors such as Charge­

Coupled Device (CCD) and Complementary Metal Oxide Semiconductor (CMOS).

As the image resolution gets higher and higher, smaller and smaller becomes the pixel.

Consequently, the amount of light intercepted by each pixel diminishes and the signal

strength reduces. This reduces the signal-to-noise ratio (SNR) of the acquired image.

To make the matter worse, densely packed pixels are prone to electronic inference

between neighboring sensors. Smaller pixels mean more severe a problem of inference.

Therefore, given an SNR requirement, either the size of the sensor or the distance

between neighboring sensors cannot be below a hard threshold. Secondly, in some

applications the imaging process itself incurs a penalty to the imaged object, which

limits the number of pixels to be acquired. For example, for certain medical imaging

technologies, high spatial resolution is associated with high dosage of radiation that

is harmful to the patient.

Due to the aforementioned limits of the digital video technologies and systems, it

is unlikely that newer imaging devices in the future, by themselves, can completely

meet the spatial resolution requirements of many scientific, medical and military ap­

plications at present and in the future. As such, image/video resolution up conversion

is and will remain an important technology to overcome the resolution limit of imaging

hardware devices.

Image/video spatial resolution up conversion , or image/video interpolation, is a

4

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

process of obtaining a high resolution (HR) image or video frame from a lower reso­

lution (LR) version. Image/video resolution up conversion can be beneficial in many

applications ranging from consumer electronics to visual arts and to cutting edge med­

ical and scientific research and development. Image/video spatial resolution upcon­

version technology is required whenever a user needs an image/video representation

of higher resolution than the original source. For instance, image/video resolution

up conversion is indispensable for digital multimedia and television industries, as user

frequently display videos and image of low resolution (due to compression or old source

format) on high-definition television panels and computer monitors.

Furthermore, in many telecommunication applications such as wireless multime­

dia streaming, the communication bandwidth is at a premium. Video signals have

to be compressed for transmission and storage. One of the effective video compres­

sion techniques, particularly at very low bit rates, is to down sample video at the

encoder. The decoder can then employ a spatial resolution up conversion algorithm

to reconstruct the decompressed video back to the original resolution. This approach

can have less artifacts than direct compression of original video in many cases [2].

Spatial resolution up conversion can also be used as a technique for multiple de­

scription coding (MDC). The MDC is an effective way for multimedia communica­

tions over unreliable diversity channels. One way to achieve multiple description

image/video coding is to spatially partition an image or a frame into multiple down­

sampled subimages by a spatial multiplexer [3]. In this case, each subimage can be

regarded as a LR version of the original image. vVhen some descriptions (subim­

ages) are lost, the reconstruction of the original image from the received descriptions

(subimages) is essentially a spatial resolution up conversion problem.

5

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

1.3 Video Deinterlacing

Video consists of a series of images played in rapid succession. Each image refers to

a video frame. All mainstream analog and many digital television systems arrange

the scan lines of each frame into two consecutive fields, one consisting of all even

lines, another of the odd lines. The fields are then displayed in succession at a rate

twice that of the nominal frame rate. For instance, PAL and SECAM systems have

a rate of 25 frames/s or 50 fields/s, while the NTSC system delivers 29.97 frames/s

or 59.94 fields/so This process of dividing frames into half-resolution fields at double

the refresh rate is known as interlacing. Fig. 1.2 shows the sampling scheme for the

interlaced video sequences.

Interlaced scan (or interlacing) was invented in order to improve the visual quality

of a video signal without consuming extra bandwidth. The popularity and wide

use of interlaced videos were largely motivated by the desire of reducing the cost

and complexity of video systems. Indeed, high bandwidth increases the costs of

all components of a video system: cameras, storage devices (e.g., tape recorders or

hard disks), transmission (video compressor and decompressor), and display devices

(e.g., television sets, PC monitors). Interlaced video reduces the signal bandwidth

by a factor of two, for a given line count and refresh rate. For instance, 1920xl080

pixel resolution interlaced HDTV with a 60 Hz field rate (known as 1080i60) has a

similar bandwidth to 1280x720 pixel progressive scan HDTV with a 60 Hz frame rate

(720p60), but approximately twice the spatial resolution. In other words, a given

bandwidth can be used to provide an interlaced video signal with twice the display

refresh rate for a given line count (versus progressive scan video). This helps to reduce

flickering artifacts by taking advantage of the persistence (memory) of human vision,

6

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

Figure 1.2: An example of the interlaced video sequence

and achieves a visual quality as though the frame rate was doubled.

Interlacing is cost effective and has until recently been considered adequate in

offering most users satisfactory viewing experience. But this is no longer the case for

several reasons. Firstly, modern video output devices (e.g., LCD television sets, mon­

itors, projectors, etc.) are almost exclusively progressive, because progressive scan

offers superior visual quality than the interlaced counterpart. Secondly, interlacing

artifacts that were hardly visible in the past can become visually objectionable as

screens have grown larger, brighter, and are of higher contrasts. Interlacing artifacts

can be quite annoying to human viewers.

Interline twittering effect shows up when the subject being captured contains fine

striped patterns that approaches the vertical resolution of the video format. For

instance, a person on television wearing a shirt with fine dark and light stripes may

appear on a monitor as if the stripes on the shirt are "twittering". Moreover, since

each frame of interlaced video is composed of two fields that are captured at different

moments in time, interlaced video sequences will exhibit motion artifacts known as

"line crawl", or "serration", as shown in Fig. 1.3.

However, most modern broadcast television systems still adopt interlaced video

formats. Even with the emergence of high-definition television (HDTV) and the

7

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

(a) (b)

Figure 1.3: Interlacing artifacts (a) Line Crawl; (b) Serration.

known superiority in visual quality of progressive video over interlaced video, inter­

lacing persists as one of the formats used for HDTV in the US and Japan (1080i,

1080x1920 resolution with only 540 lines scanned in each field). As most progressive

display devices, such as LCD monitors/projectors and LCD/plasma television sets are

dominating the market, and as devices used for television and video are integrating

with computers, there is and will be an increasing need for conversion from interlaced

to progressive formats. This process is known as video deinterlacing.

Converting interlaced video to progressive video doubles the spatio-temporal sam­

pling density. It requires interpolating a set of missing lines in each field. In other

words, progressive to interlaced conversion is a form of spatio-temporal subsampling

whereas interlaced to progressive conversion - deinterlacing - is a spatio-temporal

resolution up conversion process.

8

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

1.4 Contributions

This thesis is concerned with hardware expedition of the spatial resolution upcon­

version and video deinterlacing algorithms. In particular, we study the use of GPU

(Graphics Processing Unit) technology for real-time video spatial resolution upcon­

version and video deinterlacing. Design decisions were made to take full advantage of

the GPU architecture and the properties of the CUDA framework. The contributions

of this thesis are summarized as follows:

• We first develop a two-pass directional image/video interpolation algorithm for

real time resolution up conversion [4]. The first pass of the algorithm generates a

quincunx image by interpolating the missing pixels with four available diagonal

neighbors. The missing pixels in the quincunx image are then interpolated in

the second pass. Each pass of the algorithm employs an estimation-verification

procedure to determine the value of a missing pixel. We then propose a GPU

implementation ofthe method, in the NVIDIA CUDA (Compute Unified Device

Architecture) platform. Design considerations to speed up the algorithm are

discussed. Experimental results show that the GPU-based implementation can

be five times as fast as the C implementation using a mid-range GPU card .

• We devise a GPU-motivated motion-adaptive deinterlacing algorithm and de­

velop a CUDA-based implementation of the algorithm [5]. To strike a balance

between performance and complexity, we discuss the techniques of adapting the

computations in motion detection and adaptive directional interpolation to the

GPU architecture for maximum video throughput possible. The proposed video

9

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

deinterlacing algorithm operates in two modes: interfield and intrafield, depend­

ing on whether significant motions are detected or not. If the current pixel is

in a static region of the video scene, then temporal(interfield) deinterlacing is

performed that merges the associated even and odd fields to benefit from the

correlations between consecutive fields. In the presence of motions, we develop

a highly parallelized directional interpolation algorithm for real time intrafield

deinterlacing. The interpolation is carried out in three steps:(l) generate five

interpolation candidates for the missing pixel using five different directional in­

terpolators; (2) verify the accuracy of each interpolator; (3) select and fuse two

winning interpolators to get the final estimate. The design takes full advantage

of the CUDA technology and the parallel nature of the proposed algorithm.

Experimental results show that the GPU-aided implementation offers real-time

solutions even for large video formats, using a mid-range GPU card.

1.5 Organization

The remainder of the thesis is organized as follows. Chapter 2 reviews existing works

on image/video interpolation and video deinterlacing. In Chapter 3, we introduce the

CUDA and GPU concepts and constructs that are important to the implementation of

our image/video interpolation and video deinterlacing algorithms. Chapter 4 presents

the proposed directional interpolation algorithm and discusses the detailed design

considerations for CUDA adaptation of the up conversion algorithm. In Chapter 5,

we discuss the proposed GPU-friendly motion adaptive deinterlacing algorithm in

detail. The thesis closes with conclusions and suggested future works in Chapter 6.

10

Chapter 2

Review of Existing Works

2.1 Image/Video Spatial Resolution Upconversion

In signal processing, resolution up conversion is to reconstruct a continuous signal

at higher resolution from a set of observed (measured) low-resolution samples. In

this view, the interpolation of an acquired digital image can be interpreted as re­

sampling of the original continuous two-dimensional image signal at a higher spatial

sampling frequency. According to the Nyquist-Shannon sampling theorem, those sig­

nal components that have frequency lower than the Nyquist frequency can be exactly

reconstructed. This indicates that, low-frequency components of image signals, such

as smooth shades and large-scale edges/textures, can be reconstructed with ease.

The real challenge of image/video resolution up conversion is the reconstruction of

the high-frequency components of an image or video frame, such as sharp, fine-scale

edges and textures, which exceed the Nyquist limit in the frequency domain.

Over the past three decades significant amount of research has been devoted to

11

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

image/video resolution up conversion technologies. The existing image/video reso­

lution up conversion methods fall into two categories: 1) simple signal-independent

interpolation filtering and 2) adaptive directional filtering. The former methods are

simple, inexpensive to implement, but they produce objectionable artifacts in the

areas of edges and textures. The latter methods in general produce better visual

quality than the former methods, but they incur significantly higher computational

complexity. This is why consumer video products, both in software and hardware,

adopt the former methods, because they need real-time low-cost solutions.

2.1.1 Non-adaptive Image/Video Interpolation

The simplest non-adaptive image interpolation method is the nearest neighbor tech­

nique. To interpolate a missing pixel x, the nearest neighbor algorithm copies the

value of the existing pixel that is closest to x. The performance of nearest neighbor

interpolation is poor because it ignores the values of other neighboring existing pixels

that contain information of the 2D image waveform. Nearest neighbor interpolation

produces objectionable checkboard artifacts, particularly for large scaling factors;

The popular bilinear image interpolation method uses up to four neighboring

pixel values to interpolate a missing pixel. Bilinear interpolation is simple and can

be executed in real time even by software, but its performance leaves much to be

desired. It tends to severely blur edges and textures.

The bicubic algorithm is also widely used for scaling images and video sequences.

It determines the value of a missing pixel from the weighted average of up to sixteen

closest existing pixels. Bicubic interpolation preserves fine detail better than the

bilinear and nearest neighbor algorithms and is often chosen over the previous two

12

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

methods in image/video resampling.

2.1.2 Adaptive Image/Video Interpolation

As mentioned before, edges details play an important role in human visual system.

Therefore, the reproduction of these high-frequency components namely, edge details

and fine textures, is crucial to the visual quality of acquired images or video frames.

The aforementioned non-adaptive interpolation methods tend to blur edges and/or

introduce artifacts in edge areas due to their isotropic interpolation kernels. To main­

tain the edge sharpness and improve visual quality, a number of edge-guided image

interpolation techniques have been proposed in recent years [6; 7; 8; 9]. Carrato

and Tenze used some predetermined edge patterns to improve the parameters in the

interpolation operator [6]. In [7], Li and Orchard proposed an new edge-directed in­

terpolation algorithm for image spatial resolution up conversion. The algorithm first

estimates local covariance coefficients from the input low-resolution image and then

uses these covariance estimates to conduct directional interpolation. Zhang and Wu

proposed a soft-decision adaptive interpolation (SAl) technique that estimates missing

pixels in groups [8]. The SAl technique learns and adapts to varying scene structures

using a 2D piecewise autoregressive (PAR) modeL The model parameters are esti­

mated in a moving window in the input low-resolution image. The pixel structure

dictated by the learnt model is enforced by the soft-decision estimation process onto

a block of pixels. Another edge-based interpolation method [9] first interpolates a

missing pixel from two mutually orthogonal directions. The two interpolation results

are then adaptively fused by the minimum mean square error (MMSE) estimation.

13

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

2.2 Video Deinterlacing

In order to bridge the mismatch between interlaced video contents and progressive

displays, many video deinterlacing algorithms were proposed [10; 11; 12; 13; 14; 15].

They fall into three categories: intrafield algorithms, interfield algorithms and hybrid

algorithms, with different trade-offs between computational complexity and visual

quality. The success of video deinterlacing relies on thorough exploitation of both

intra- and inter-field correlations.

2.2.1 Intrafield Video Deinterlacing

Intrafield deinterlacing methods interpolate the missing lines by using the pixels of the

sampled lines within the current field. Among them line doubling and line averaging

are well known and widely used. The line doubling deinterlacing method duplicates

lines of the field to fill in the missing lines; the line averaging algorithm interpolates

every missing line by averaging two adjacent lines in the same field. The strength of

these linear intrafield methods is their low implementation cost. But they often create

an annoying artifact known as jagged edges. To alleviate the problem of jagged edges

various directional interpolation methods were proposed. Such methods estimate the

local edge direction and conduct interpolation along this direction [16; 17]. These

algorithms work well if the edge directions are estimated correctly but, if not, they

introduce errors and degrade the visual quality. Intrafield methods ignore the tem­

poral correlation between successive video fields, and consequently their performance

is suboptimal. These methods are prone to severe video artifacts in regions of high

vertical frequencies [10].

14

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

2.2.2 Interfield Video Deinterlacing

In interfield approach of deinterlacing, the missing lines are interpolated by utilizing

the correlations between current field and previous and/or future fields. Field inser­

tion and bilinear field averaging are two popular interfield deinterlacing techniques

[10].

The field insertion method, also called "weaving" in the computer community,

fills in the missing lines with neighboring lines in time. The bilinear field averaging

algorithm averages the before and after temporal neighboring lines of each missing

line. Pure interfield methods work well in absence of motions, but they introduce

serration, blurring or flickering artifacts if there are motions between the fields.

2.2.3 Hybrid Deinterlacing Methods

The hybrid deinterlacing methods aim to improve the visual quality by taking advan­

tage of both temporal and spatial corrections of an interlaced video sequence. The

widely-used vertical temporal deinterlacing is a linear combination of line averaging

and field averaging algorithms. Many variations of vertical temporal filters have been

described by Thomas in [18].

The motion adaptive deinterlacing algorithms are among the most popular hy­

brid methods. They switch between different interpolation strategies (inter-filed or

intra-filed), depending on the presence or absence of motions in the current field.

In [19], Skarabot et al. proposed to first perform per pixel motion detection and

then choose different deinterlacing schemes according to different conditions of the

motion: a) field averaging when no motion is detected; b) spatio-temporal median

filtering when the estimated motion is slow; c) line averaging when fast motion is

15

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

detected. A thresholding technique is used to classify the motion into the above three

categories. Another approach is to make a smooth weighted transition between field

averaging and line averaging interpolation schemes instead of a hard switching be­

tween the two schemes Kovacevic et al [11]. The weights are determined by sum of

absolute differences (SAD). Generally, the hybrid deinterlacing approach obtains bet­

ter visual quality, but they have higher computational complexity than the previous

two approaches.

16

Chapter 3

Fundamentals of CUDA

3.1 Background

In this chapter, we present the basic terminologies of GPU and CUDA technolo­

gies that are needed to describe the GPU-aided image/video interpolation and video

deinterlacing algorithms.

A graphics processing unit or GPU is a specialized processor that offioads graph­

ics rendering computations from the CPU. It is used in embedded systems, mobile

phones, personal computers, workstations, and game consoles. Modern GPUs use

most of their transistors to perform calculations related to 3D computer graphics [1],

as schematically illustrated by Fig. 3.1. Their highly parallel structure makes them

more effective than general-purpose CPUs for a range of complex algorithms. More

specifically, the architecture of GPUs is well suited to data-parallel computations,

in which many data elements are processed concurrently in the same program. The

CUDA programming model is very well suited to expose the parallel capabilities of

GPUs [1]. At its core are three key abstractions-a hierarchy of thread groups, shared

17

M.A.Sc. Thesis - Jie Cao

\~gijf ~:~(y

:~~!' ~~IJ.!J

CPU Architecture

McMaster - Electrical Engineering

GPU Architecture

Figure 3.1: The GPU devotes more transistors to data processing [1].

memories and barrier synchronization. These abstractions provide fine-grained data

parallelism and thread parallelism, nested within coarse-grained data parallelism and

task parallelism. They allow the programmers to partition the problem into coarse

sub-problems that can be solved independently in parallel, and refine each of these

subproblems into yet smaller pieces that can be solved in parallel with shared data.

3.2 Hardware Architecture

The GPU can be viewed as an array of Streaming Multiprocessors (SMs), each con­

taining eight Scalar Processors (SPs). Each SM contains four types of on-chip mem-

ory: registers, constant cache, texture cache and shared memory. Each GPU contains

three types of off-chip memories: the constant memory and texture memory are read-

only memory for SPs, whereas the global memory is both readable and writable by

SPs. Each SM also contains four types of on-chip memories that enable faster access:

registers, constant cache, texture cache and shared memory. The data in the constant

and texture memory are cached from the off-chip memory upon memory access, and

is read-only within the SM. The 16-banked shared memory is readable and writable

by all SPs within a single SM, which allows SPs to communicate with each other [1].

18

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

Streaining "Multiproces-sor

Figure 3.2: Memory architecture for CUDA GPU [1J.

Fig. 3.2 shows the memory architecture for a streaming multiprocessor.

3.3 Programming Model

The CUDA programming platform is the first to provide the programmers with C-like

programming environment. The CUDA uses heterogeneous programming method,

where only the parallel code segments are executed on the device (GPU) while the

rest of the program are executed on the host (CPU) in serial. The code segments

to be executed on the device, known as kernel functions, are called and spawn from

the host function. Fig. 3.3 shows an example of heterogeneous programming model,

where the program alternates between single-threaded host function on the CPU and

multi-threaded kernel functions on the GPU [1J.

The kernel function is executed as a grid of thread blocks, and the total number

of threads in the function is determined by the dimension of blocks and grid, as

shown in Fig. 3.4. A thread block is a batch of threads that can cooperate with each

19

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

Host (CPU code)

~
Device (Kernel Function)

~~~~~~ 
Host (CPU code) 

~ 
Device (Kemel Function) 

~~~~~~ 

Figure 3.3: Heterogeneous programming model [1].

!lIoo.k(l, l'

Figure 3.4: Thread, block, and grid arrangement inside kernel functions [1].

other through the on-chip shared memory and synchronize their execution [1]. Each

SM may execute one or more thread blocks concurrently depending on the shared

memory and register usage; however, threads in different blocks cannot share on-chip

memory as they may be executed on a different SM. The SM maps each thread to one

scalar processor core, and each thread executes independently with its own instruction

address and register state. Each thread block is split into groups of 32 threads called

"warps". Full efficiency will be achieved when all 32 threads of a warp agree on their

execution paths [1].

20

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

3.4 GPU Acceleration of Image/Video Processing

Real-time video processing is challenging because video data are inherently volumi­

nous, incurring heavy computational burdens. In many cases when running video

applications on PCs or servers, CPU can be so overwhelmed by heavy computation

loads that itself alone cannot meet the real time requirements. For example, currently

CPUs in most household PCs alone are not powerful enough to decode and playback

1080p high definition (HD) video in real-time. On the other hand, most modern

PCs are equipped with GPU. A question comes along naturally: can we leverage the

power of GPU and off-load some or most of video processing operations from the

CPU to GPU? The answer is positive. Many video applications that process large

data sets can indeed benefit from data-parallel programming models and be sped up

drastically by GPU. In 3D rendering large sets of pixels and vertices are mapped to

parallel threads. Similarly, in video processing applications such as post-processing,

video encoding and decoding, resolution up conversion and deinterlacing, one can eas­

ily map blocks of pixels to parallel processing threads. GPU-aided real-time video

processing has recently evolved into an active research area [20; 21; 22; 23; 24].

21

Chapter 4

GPU-aided Directional

Image /Video Interpolation for Real

Time Resolution Upconversion

The technical challenge of image/video spatial resolution up conversion is how to pre­

serve and reconstruct fine and sharp spatial details in the enlarged image/video while

keeping the computational complexity low enough for real time applications. The

widely used linear interpolation, cubic spline interpolation and cubic convolution in­

terpolation cannot preserve the edges very well, although they have relatively low

computational complexity [25; 26]. Some edge-guided interpolation techniques have

been proposed in recent years [7; 8; 9], but they involve complicated computations

to maintain the edge sharpness and visual quality, and are therefore not suitable for

real time applications. In particular, the method in [9] first interpolates a missing

pixel from two mutually orthogonal directions. The two interpolation results are then

adaptively fused using the statistics of a local window. The method achieves very

22

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

good performance, but it needs relatively complex computation to obtain the local

statistics.

In this chapter, by modifying the scheme in [9], we develop a highly parallelized

two-pass directional image/video interpolation algorithm for real time resolution up­

conversion. A novel scheme of estimation and verification is introduced to reduce the

computational complexity without significant degradation of the performance.

The rest of the chapter is structured as follows. Section 4.1 presents the proposed

directional interpolation algorithm. Section 4.2 discusses the detailed design consid­

erations for CUDA adaptation of the up conversion algorithm. Experimental results

are reported and discussed in Section 4.3. Section 4.4 concludes.

4.1 Adaptive Directional Image/Video Interpola­

tion

For clarity and without loss of generality, we limit our description of the algorithm

to resolution up conversion by a factor of two.

The image interpolation is carried out in two passes, as shown in Fig. 4.1. The

first pass generates a quincunx image by interpolating the missing pixels with four

available diagonal neighbors, as marked by gray circles in Fig. 4.1 (a). The missing

pixels in the quincunx image are then interpolated in the second pass, as shown in

Fig. 4.1 (b).

Each pass of the algorithm employs a three-step procedure to determine the value

of a missing pixel: (1) generate two interpolation candidates for the missing pixel using

two different interpolators; (2) verify the accuracy of each interpolator; (3) select the

23

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

• • • • • • - , • • • • •
i~'" ,"" p' c") r'l r, (' C) () 0 \..:..J Ioj ~J \~J '-.oj j

• • • • • ® • • • • •
0 0 0 C) ® C) €9 ,....--. €.i) r'. · } '--' "-./

• • • • • • • • •
(:"Cl () () C) c () "" 0 0 () ,,/ -) u

• • • • • • • • • •
(a) (b)

Figure 4.1: Two pass interpolation. (a) The first pass; (b) The second pass .

• • • • x,

(j j
I • • /.X2/.

~) (/~1'r----/~)
• x,. /. •

o /10
X, --..-//.

(a)
• •

x,..--__ ., •
'" 9 "'(0

•
\

• x;. \ • '""f o -t~ ... ---... g

•
•

• "-.. "-•• x,"".
~} 0 \

• • • .x;

(b)

Figure 4.2: Diagonal cubic interpolation. (a) 45 0 cubic interpolation; (b) 135 0 cubic
interpolation.

winning interpolator or fuse the two interpolators to get the final estimation.

In the first step, we use the cubic convolution interpolation to estimate an un­

known pixel from two diagonal directions, denoted by Y+ and Y-, as shown in Fig.

4.2. The estimation is given by [26]

y+ = -~Xl + ~X2 + ~X3 - ~X4
16 16 16 16

(4.1)

1 I 9 I 9 I 1 I

y- = -16 X1 + 16 X2 + 16 X3 - 16 X4 ' (4.2)

In the second step, we evaluate the accuracy of the two directional cubic convolution

interpolations. This is achieved by applying the same formula to estimate the known

24

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

(a) (b)

Figure 4.3: Diagonal cubic verification. (a) 45 0 verification; (b) 135 0 verification.

pixels using the interpolated pixels, as shown in Fig. 4.3, i. e.,

(4.3)

(4.4)

The errors of the two directional interpolators in a neighborhood around Y(i,j) can

thus be obtained as

(4.5)
(m,n)EW(i,j)

where el(i,j) (e2(i,j)) represents the error in the 450 (1350
) direction, X(m,n)'s are

the known pixel values of the diagonal neighbors around Y (i, j) in a window W (i, j),

X (m, n) 's are the diagonal estimations of X (i, j). For the 1350 cubic verification,

the verification window W(i, j) is shown in Fig. 4.4, where the errors of four known

neighbors of Y(i,j) are evaluated in Eq. 4.5. The 450 cubic verification process is

obtained similarly.

In the third step, the final value of the missing pixel Y(i,j) is determined based

25

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

Figure 4.4: The verification of the 135° cubic interpolator in a local window of four
known pixels surrounding the missing pixel Y (i, j).

on el(i,j) and e2(i,j) [9]:

Y+(i,j),

Y(i,j) =
Y-(i,j),

(4.6)

Yj'Use(i,j), otherwise,

where T is a prespecified threshold, and

y (..) _ e2(i,j) y+(..) el(i,j) y_(..)
fuse '/"J - (..) + (..) '/"J + (..) + (..) '/"J •

el '/"J e2 '/"J el '/,,J e2 '/"J
(4.7)

Given the results of the first pass, the second pass of the interpolation algorithm

is carried out with two interpolators applied horizontally and vertically. Accordingly,

the estimation errors of the horizontal and vertical neighbors are collected in the

verification step. These operations can be understood by rotating Fig. 4.2 to Fig.

4.4 by 45°. The final upsampled image is produced after the second pass.

Despite its simplicity, the performance of this algorithm is significantly better

than the cubic methods, as shown in Sec. 4.3. In addition, the algorithm only uses

local image information and is therefore suitable for GPU-based parallel computing.

26

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

4.2 CUDA Implementation of Adaptive Directional

Image/Video Interpolation

4.2.1 General Program Flow and Thread Configuration

In this section, we describe how to efficiently implement the spatial up conversion al­

gorithm in Sec. 4.1 using GPU. For a GPU program to effectively use all available

resources and achieve maximum performance, we must maximize parallel execution,

optimize instruction usage to achieve the maximum instruction throughput, and op­

timize the memory usage for maximum memory bandwidth.

Since the GPU is a massively threaded parallel processor, we choose to perform

all calculations and interpolations on the GPU, and each thread only processes a

single pixel. In this way, many pixels can be processed simultaneously. Due to the

dependencies of the pixel values generated by each pass of the interpolation algorithm,

each kernel function should only perform a single pass of calculation as the value

generated would be required for the next kernel function. The general flow diagram

of the GPU implementation of the proposed two-pass method is shown in Fig. 4.5.

The wide yellow arrow shows the memory transfers: from host memory, to device

shared memory, and back to host memory.

It is recommended to have 192 or 256 threads per block in order to get optimal

utilization of the available computing resources [1]. In addition, the thread dimensions

should be aligned to the size of the warp to avoid diverging warp. So for a branch

with condition determined by the x and y coordinates of the pixel, all threads within

the warp will most likely branch in the same way. Therefore, we choose 32 as the x

dimension of the thread block, and 32 x 8 as the dimension of the thread block.

27

M.A.Sc. Thesis - Jie Cao

"usl (CPU)

t'-~
'--~T'-/

I Read im.>ge fro", di,k ~

I Kcr",,1 cali

I K<rnel lal'

I KffllI'ICaI,

1 K,IG>1i

I Kernel CAl'

..

McMaster - Electrical Engineering

Deyiu! {GPU}

I
Second pass Vetf.ici1tiot\ I

-I

Figure 4.5: General program flow of GPU implementation of the algorithm.

4.2.2 Four-subimage-based Memory Allocation

In the CUDA platform, the global memory spaces are the readable and writable

regions of device memory for all SPs. Due to the lack of caching, the access to global

memory is relatively slow. Therefore it is desired to improve the efficiency of the

global memory access. This can be achieved if the simultaneous memory accesses by

threads in a half-warp can be coalesced into a single memory transaction [1].

The straightforward implementation of the directional interpolation algorithm

would allocate a memory space that equals to the size of the up converted image,

and then perform all the two-pass computations in the allocated memory space. Al-

though this method requires less memory space, it precludes coalesced memory access

when implemented in CUDA. This can be seen from Fig. 4.6 (a), where each thread

must skip over a slot in memory to access the next desired pixel. Therefore, the

28

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

(a) (b)

Figure 4.6: (a) Uncoalesced Memory Access; (b) Coalesced Memory Access.

Oliginc-I imdge .Aftllr fu(,t pass

Figure 4.7: Subimage-based memory allocation. The high resolution image is gener­
ated at the last stage.

memory access is not contiguous.

In order to achieve coalesced memory access, we group the pixels in each subset

in Fig. 4.1 (b) into a subimage and assign a contiguous memory space. As a result,

four memory spaces are allocated. After the first pass, the second subimage as shown

by gray pixels in Fig. 4.1 (a) is generated. The two subimages together represent the

quincunx image from the original algorithm. After the second pass, the other two

subimages are generated. Finally, the four subimages are merged together to form the

final high resolution output. Fig. 4.7 shows the process of this approach. With this

method, the memory access is contiguous and can be coalesced for the computations

performed on each subimage, as shown in Fig. 4.6 (b).

29

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

4.2.3 Caching Mechanism

Since access to global memory is slow, it is necessary to cache the data into a faster

memory before each computation. The shared memory is chosen in our current im­

plementation, because it has more spaces than the texture memory. Furthermore, for

all threads of a warp, accessing the shared memory is as fast as accessing a register,

as long as there is no bank conflict between the threads. Bank conflict occurs when

more than one address of a memory request fall in the same memory bank. In this

case, the access has to be serialized, which leads to significant performance degrada­

tion. Therefore, in order to avoid bank conflict, each of the 16 threads in a half-warp

should access a different bank.

In addition, since the algorithm needs to read the values of up to 2 pixels out of

each image block in both the x and y directions when processing the boundary pixels,

one to one mapping between the global and shared memory does not work well. A

simple tradeoff is to cache two extra rows or columns of pixels around the target

block, as shown in Fig. 4.8. This caching mechanism does not completely eliminate

blank conflict, as bank conflict is still possible when threads in a half-warp access

the memory addresses that fall in the same shared memory bank. However, such a

probability is quite low and does not have significant impact to the performance.

On the other hand, it is possible to completely avoid bank conflict by using texture

memory. However, this requires smaller thread blocks and might affect the through­

put. In the future, we plan to implement this approach and compare the overall

performance with the current scheme.

30

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

Figure 4.8: The size of cached data compared to block size.

4.2.4 Branch and Loop Replacement

Branches and loops should be avoided in GPU computing to prevent divergence

among the threads within the same warp. For example, to clamp a pixel value x

within 0 and 255, the branches can be replaced by the min and max functions:

min(max(x, 0), 255). (4.8)

Similarly, the flipping of image pixels at boundary can be implemented as

min(max(x, -x), 2w - x - 2), (4.9)

where w is the width of the image, and x is the target position.

Branches also occur during the selection of the interpolators in Eq. 4.6. However,

as the branch condition is generated from the interpolation errors calculated using

Eq. 4.5, it is independent of thread configuration, thus divergent warp cannot be

avoided in this case.

In our implementation, the main loop for processing each pixel is replaced indi­

rectly by threads and blocks. There is no other loop inside the kernel function.

31

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

Table 4.1: Processing time for a 256 x 256 Lena image
Running Time Relative Speed

Original 41.6 ms 1.00x
CUDA Optimized 11.2 ms 3.71x
Optimized without malIoe/free 8.5 ms 4.89x

4.3 Experimental Results and Discussion

To evaluate the performance of the proposed interpolation algorithm on CUDA, the

following experimental environment is used: (1) NVIDIA Quadro FX 1700 GPU card

with 512MB SDRAM memory and 4 streaming multiprocessors, (2) 3GHz Intel Core

2 Duo E8400 CPU, (3) Microsoft Windows XP sp3, (4) Microsoft Visual Studio 2005,

(5) CUDA Toolkit and SDK 2.0, and (6) NVIDIA Driver for Microsoft Windows XP

with CUDA Support (178.24).

We first compare in Fig. 4.9, 4.10 and 4.11 the interpolation performance of the

popular bicubic interpolation in [26] and the GPU-aided directional up conversion

algorithm. It can be seen that the result of the proposed method is visually more

pleasing than the bicubic interpolation, with edges faithfully reconstructed without

any jaggy.

vVe next compare the executing time of the image processing part for the 256 x 256

lena image, by ignoring the program initialization and reading/saving of image file.

As shown in Table 4.1, the CUDA optimized multi-threaded computation is close to

4 times as fast as the original implementation. For video processing, memory on the

device can be reused for each frame. Therefore, memory allocation is only needed

for the first frame. If we ignore the overhead of memory allocation, the speed of the

GPU-aided algorithm is almost 5 times of the original method.

Table 4.2 shows the results for some video-sized images. When the cost of memory

32

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

(c) (d)

Figure 4.9: Comparison of different methods. (a) (c) Bicubic interpolation; (b) (d)
The GPU-aided directional interpolation.

33

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

(c) (d)

Figure 4.10: Comparison of different methods. (a) (c) Bicubic interpolation; (b) (d)
The GPU-aided directional interpolation.

34

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

(c) (d)

Figure 4.11: Comparison of different methods. (a)(c) Bicubic interpolation; (b)(d)
The GPU-aided directional interpolation.

35

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

Table 4.2: Processing time for video-sized image
Video size 640x480 720x480 1280x960

Time Speed Time Speed Time Speed
Original 187 ms 1.00x 213 ms 1.00x 763 ms 1.00x
CPU-based
CUDA- 40 ms 4.68x 44ms 4.84x 152 ms 5.02x
Optimized
Optimized 37 ms 5.05x 41 ms 5.20x 148 ms 5.16x
without
maUoe / free

allocation is ignored, the CUDA optimized code is also about 5 times as fast as the

original implementation. The first case of Table 4.2 has a regular 4:3 DVD-sized video

frame input. The processing time of 37 milliseconds per frame corresponds to around

27 frames per seconds(FPS), assuming the video decoding is handled by a co-processor

such as the CPU or another graphics card. Therefore real time up conversion of DVD

video input using GPU is possible. This represents a significant improvement over

the original CPU implementation, which can barely handle 6 frames per seconds.

Note that the graphics card used for the testing only contains 4 streaming multi-

processors, and each of them supports 768 threads, whereas the latest NVIDIA GPU

card can have up to 30 multiprocessors, and each can handle 1024 threads. Therefore,

significant speedup can be further obtained using these latest graphic cards.

4.4 Conclusion

In this chapter, we present an efficient interpolation algorithm for image/video res-

olution up conversion and its GPU implementation, by taking full advantage of the

CUDA technology and the properties of the interpolation algorithm. Experimental

results show that the GPU-aided algorithm can be 5 times as fast as the original

36

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

version, using a mid-range GPU card.

37

Chapter 5

GPU-aided Motion Adaptive

Video Deinter lacing

In this chapter we develop a motion adaptive video deinterlacing algorithm that has a

high degree of data parallelism so that it can be implemented on CPU. The remainder

ofthe paper is organized as follows. Section 5.1 presents the proposed motion adaptive

video deinterlacing algorithm. Section 5.2 discusses in detail how to adapt CUDA to

video deinterlacing. Experimental results are reported and discussed in Section 5.3.

Section 5.4 concludes.

5.1 Motion Adaptive Video Deinterlacing With Adap­

tive Directional Interpolation

Our motion adaptive video deinterlacing algorithm operates in two modes: interfield

and intrafield, depending on whether significant motions are detected or not. If

38

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

the current pixel is in a static region of the video scene, then temporal (interfield)

deinterlacing is performed that merges the associated even and odd fields to benefit

from the correlations between consecutive fields. In the presence of motions, merging

even and odd fields becomes error prone, the algorithm resorts to adaptive directional

interpolation within the current field.

The key issue in intrafield deinterlacing is how to preserve and reconstruct fine

and sharp spatial details in the deinterlaced video while keeping the computational

complexity sufficiently low for real time applications. The methods of line repetition

and vertical line averaging tend to blur edges too much, although they have low

computational complexity. Some edge dependent algorithms have been developed to

preserve details and maintain edge sharpness [10; 11; 12; 13; 14; 15], but they are

complicated and hence not suitable for real time applications.

To strike a balance between performance and complexity, we develop a highly

parallelized directional interpolation algorithm for real time intrafield deinterlacing.

The algorithm is a three-step procedure to estimate the value of a missing pixel in

current field: (1) generate five interpolation candidates for the missing pixel using

five different directional interpolators; (2) verify the accuracy of each interpolator;

(3) select and fuse two winning interpolators to get the final estimate.

In the first step, five directional interpolators are used to compute five tentative

values of a missing pixel, denoted by Yi(i = 1,2, ... ,5). In the first three directions

as shown in Fig. 5.1, cubic interpolator is used. Simple averaging method is used for

the remaining two cases.

199 1
Y;l - --XII + -Xl 2 + -Xl 3 - -Xl 4

16 ' 16 ' 16 ' 16 '
(5.1)

39

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

_1;.,
Xu• ·1· ~ ~ ...

X1.2/ '\\... I /./.. . .;."
.... , C' (~\ i y.. --;.J) ret> c.·.".·. t:.c .. , ~.~,~~.... . ;::>.. r:,-.. '. /'. "

•• • \.i •••
\ i

\.07 '(.) Xc>..! /1 IS", ,,-j {j '0::') \U \\-~f V ",,' (.1 (o;~l V~t (1 (-') C").
~~ .. ,;..... f'.-, \ "_./ x../ "L

• • • '1. • •• • •• e\ •••
~/ ,~

. ,.'"
• •• le\ •••

A].} i
Xu // '''-... Xu e·'''' • • • •• • ••••• -.,.

(1) (2)

••••••••••••••

•••••••
(4)

•••••••
(5)

Figure 5.1: Five directional interpolators.

199 1
Y;2 - --X21 + -X22 + -X23 - -X24

16 ' 16 ' 16 ' 16 '

199 1
Y3 - --X31 + -X32 + -X33 - -X34

16 ' 16 ' 16 ' 16 '

1 1 1 1
Y4 = - X 41 + -4X42 + -4X4 3 + -4X44 4) , , ,

i
." .. !

(5.2)

(5.3)

(5.4)

(5.5)

In the second step, we evaluate the accuracy of these five directional interpolators.

This is achieved by applying the same formula to estimate the known pixels using the

interpolated pixels, as shown in Fig. 5.2, i.e.,

40

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

(1)

() 0 ©
Yu

@@@/OOO
I
i I y:;~

() () ole)' 0 () @
\ 1 ... \~\ ...

@ ~) () \::)\0 ® 0
1'3 j

i
rv: !

@)@OcJ(DO®

(3)
OO®

O®OOQO® GOO
(4) (5)

Figure 5.2: Verification process

A 1 991
Xl = --Yi 1 + -Yi2 + -Yi3 - -Yi4

16' 16' 16' 16'

A 1 991
X 2 - --Y;21 + -Y;2 2 + -Y;2 3 - -Y;24

16' 16' 16' 16'

A 1 991
X3 - --Y31 + -Y32 + -Y33 - -Y34 16' 16' 16' 16'

All 1 1
X 4 = "41'4,1 + "41'4,2 + "41'4,3 + "41'4,4

All 1 1
X5 = "4Y5,1 + "4Y5,2 + "4Y5,3 + "4Y5,4

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

The errors of these directional interpolators in a neighborhood around Y(i, j) can

41

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

thus be obtained as

L (X(m,n) -Xk (m,n))2,k = 1,2, ... ,5 (5.11)
(m,n)EW(i,j)

where ek (i, j) represents the error in the corresponding direction, X (m, n)s are the

known pixel values of the neighbors around Y(i,j) in a window W(i,j), Xk(m,n)'s

are the different directional estimates of X (m, n), which are interpolated through

Eq. 5.6 to Eq. 5.10.

We select the best two directional estimates, denoted by Yist(i, j), Y2nd(i, j). Let

the estimation errors for Yist(i,j) and Y2nd(i,j) be elst(i,j) and e2nd(i,j).

In the third step, the final estimate of the missing pixel Y(i,j) is computed by

fusing Yist(i, j) and Y2nd(i, j) based on elst(i, j) and e2nd(i, j):

Yintra(i,j) = (5.12)

Yfuse (i, j), otherwise,

where T is a prespecified threshold, and

Y (..) e2nd(i,j) Y; (..) e1st(i,j) 1" (..)
fuse ~,J = (. ')+ (..) 1st ~,J + (' ')+ (' ') 2nd ~,J,

e1st ~, J e2nd ~, J e1st ~, J e2nd ~, J
(5,13)

5.2 eUDA Implementation of Motion Adaptive Video

Deinter lacing

5.2.1 General Program Flow

Having introduced the basics of GPU we are now ready to describe efficient imple-

mentation of the motion adaptive deinterlacing algorithm proposed in section 5.1 on

42

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

Read Held data rhuu video

CPU and GPU W<!IDQIY (lltocatiQn

1
GPO

MuIti-din!Cti.:mat inrerpolafion
Cali CPU kemel fimcfion

(.-\.dapliye intrafield interpolation) I-Vl-__ ...;;"';;;;;rifi;;;;;,,";;.;;·oll __ -i
Intra·field 'Sel~tiou;fu5ing

Call GPU kemel filllctiou r-----:~ Motion deteetion and interfuJd fusing I
(Mati(lu adapth-e ~ieillterlacing)

1
CPU and GPU transfer K

SlY\! demttrluc;d videQ

Figure 5.3: General program flow of GPU-aid implementation

GPU. For a GPU program to effectively use all available resources and achieve maxi-

mum performance, we need to maximize the degree of parallelism, optimize the code

to achieve the highest possible instruction throughput. In addition, we optimize the

memory usage for maximum memory bandwidth.

Since the GPU is a massively threaded parallel processor, we can assign the pro-

cessing of each pixel to a thread. High throughput is gained by deinterlacing a large

number of pixels simultaneously. This is also the reason that we developed our dein-

terlacing algorithm to have identical operations on each pixel. Each kernel function

should only perform a single step of the deinterlacing algorithm as the current re­

sults are required by the next kernel function. Fig. 5.3 demonstrates the general flow

diagram of the GPU implementation of the proposed deinterlacing algorithm.

43

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

5.2.2 GPU Memory Allocation

In the CUDA platform, the global memory spaces are the readable and writable

regions of device memory for all SPs. Due to the lack of caching, the access to global

memory is relatively slow. To make the use of memory bandwidth as efficient as

possible, the simultaneous memory accesses by threads in a half-warp should coalesced

into a single memory transaction [1].

The straightforward implementation of the motion adaptive deinterlacing algo­

rithm would allocate a memory space that equals to the size of the deinterlaced

frame, and then perform all the computations in the allocated memory space. Al­

though requiring less memory space, this method prevents coalesced memory access

when implemented in CUDA. This point is made by Fig. 5.5 (a), where each thread

must skip over a slot in memory to access the next desired line of pixels. Therefore,

the memory access is not contiguous.

In order to achieve coalesced memory access, we allocate a contiguous memory

space to store the pixel values in each field as shown in Fig. 5.4. To support the

execution of the proposed deinterlacing algorithm, four contiguous memory spaces

are created.

The first memory space contains the pixel values of the current field. The second

memory space stores the results of the intrafield deinterlacing process, namely the

estimates of the missing pixels. The pixel values in these two memory spaces together

represent the deinterlaced frame by the adaptive intrafield directional interpolation.

The remaining two memory spaces contain pixel values of the previous and next fields.

They are needed when merging the even and odd fields in the absence of motion.

Fig. 5.4 shows the described memory organization. In this design the memory access

44

M.A.Sc. Thesis - Jie Cao

Intrafield
Intelpolmioll

McMaster - Electrical Engineering

Motion
Detection

and
Fusing

Figure 5.4: Continuous and coalesced memory allocation

,
2

,
,

~
: , .

,
,

(a) (b)

Figure 5.5: (a) Uncoalesced Memory Access; (b) Coalesced Memory Access.

is made contiguous and coalesced as shown in Fig. 5.5 (b).

5.2.3 Thread Configuration and Overlapped Caching Mech-

anlsm

It is recommended to have 192 or 256 threads per block in order to get optimal

utilization of the available computing resources [1]. In addition, the thread dimensions

should be aligned to the size of the warp to avoid diverging warp. Therefore, the size

of 32 x 8 is chosen for the dimension of the thread block.

Since access to global memory is slow, it is necessary to cache the data into a

faster memory before each computation. The shared memory is chosen in our current

45

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

- - Block size(row) 32

Figure 5.6: Overlapped data caching mechanism compared to block size

implementation, because it has more spaces than the texture memory. Furthermore,

for all threads of a warp, accessing the shared memory is as fast as accessing a

register, as long as there is no bank conflict between the threads. Bank conflict occurs

when more than one address of a memory request fall in the same memory bank.

In this case, the access has to be serialized, which leads to significant performance

degradation. Therefore, in order to avoid bank conflict, each of the 16 threads in a

half-warp should access a different bank.

Another issue in memory management is the handling of boundary pixels for

interpolation filters. The proposed algorithm needs to read the data up to three

pixels outside of each thread block in the x direction, and two pixels outside of the

block in the y direction. When processing the boundary pixels, one to one mapping

between the global and shared memory does not work well. In order to cache all the

pixels needed for processing, a boundary-overlapped memory allocation is required.

It caches two extra rows and three extra columns of pixels around the block, as shown

in Fig. 5.6.

46

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

5.3 Experimental Results and Discussion

The performance of the proposed GPU-aided video deinterlacing algorithm is eval­

uated in the following hardware and software setting: (1) NVIDIA GeForce 9800

GTX+ GPU with 512MB memory (2) 2.83GHz Intel Xeon CPU E5440, (3) Mi­

crosoft Windows XP sp3, (4) Microsoft Visual Studio 2005, (5) CUDA Toolkit and

SDK 2.0, and (6) NVIDIA Driver with CUDA Support (178.24).

We first compare in Fig. 5.7 the performances of our intrafield adaptive directional

interpolation and the widely used bicubic interpolation. It can be seen that the

result of the former is visually more pleasing than the latter, with edges faithfully

reconstructed without any jaggy.

We present the results of the proposed motion adaptive deinterlacing method in

Fig. 5.8 and Fig. 5.9. Visual performance are compared between the bilinear field

averaging method and the proposed motion adaptive algorithm. It can be found that

the proposed motion adaptive method can adapt itself to motion level and achieves

good performance both in presence and absence of the motion in the current field.

Finally, we demonstrate that the proposed GPU implementation of the motion

adaptive deinterlacing algorithm has sufficiently high throughput for real-time video

applications. The execution times of the CPU and GPU implementations are com­

pared in Table 5.1. In the comparison we ignore the time for program initialization

and reading/saving of video files to evaluate the speed up factor for deinterlacing

operations only. For video processing, memory on the device can be reused for each

frame or field. Therefore, we ignore the overhead of memory allocation.

As shown in Table 5.1 the GPU-aided implementation is almost eight times as fast

as the CPU version. The throughput of the GPU-aided implementation is around

47

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

Table 5.1: Processing time for interlaced video sequence
Field size 640x240 720x240 1280x480

fields / second speed fields / second speed fields / second speed
Serial 15.2 1.00x 11.8 1.00x 3.1 1.00x
C program
CUDA- 110.3 7.26x 96.2 8.15x 30.7 9.90x
Implementation

100 fields per second for DVD-sized video sequences, excluding the time for video

decoding. Even for high definition interlaced video sequences, the processing speed

can still satisfy real-time requirement. In contrast, the CPU implementation can

barely process around 10 frames per seconds at DVD size.

5.4 Conclusion

In this chapter, we designed an efficient motion adaptive video deinterlacing algorithm

that is particularly suitable for GPU implementation. The design takes full advantage

of the CUDA technology and the parallel nature of the problem. Experimental results

show that the GPU-aided implementation offers real-time solutions even for large

video formats, using a mid-range GPU card.

48

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

(e)

(g) (h)

Figure 5.7: Comparison of different methods. (a) (c) (e) (g) Bicubic interpolation (b)
(d) (f) (h) Proposed intrafield interpolation

49

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

(b)

(c)

Figure 5.8: Comparison of different methods. (a)Bilinear field averaging (b) Proposed
intrafield interpolation (c)Proposed motion adaptive deinterlacing

50

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

(c)

Figure 5.9: Comparison of different methods. (a)Bilinear field averaging (b) Proposed
intrafield interpolation (c) Proposed motion adaptive deinterlacing

51

Chapter 6

Conclusions and Future Work

In this thesis, we reexamined the problems of image/video spatial resolution upconver­

sion and video deinterlacing, aiming at real-time, adaptive solutions of these problems.

In particular, we investigate the use of GPU technology to massively parallelize the

computations involved in adaptive video scaling and deinterlacing. This is realized by

novel directional interpolation algorithms for both scaling and deinterlacing and their

GPU implementations. The future work includes further improvement of the visual

quality of the proposed video deinterlacing and resolution up conversion algorithms,

and a CUDA-based implementation for real-time SDTV to HDTV up conversion.

52

Bibliography

[1] NVIDIA, The NVIDIA CUDA Compute Unified Device Architecture Program­

ming Guide 2.0, 2008.

[2] X. Wu, X. Zhang, and X. Wang, "Low bit-rate image compression via adaptive

down-sampling and constrained least squares up conversion," IEEE Trans. Image

Processing, vol. 18, no. 3, pp. 552-561, Mar. 2009.

[3] X. Zhang and X. Wu, "Standard-compliant multiple description image coding by

spatial multiplexing and constrained least-squares restoration," in Proc. IEEE

10th Workshop on Multimedia Signal Processing, Oct. 2008, pp. 349-354.

[4] J. Cao, M. C. Che, X. Wu, and J. Liang, "GPU-aided directional image/video

interpolation for real time resolution upconversion," in Multimedia Signal Pro­

cessing, 2009. MMSP '09. IEEE International Workshop on, Rio De Janeiro,

2009, pp. 1-6.

[5] X. Wu and J. Cao, "GPU-aided motion adaptive video deinterlacing," in SPIE

Visual Information Processing and Communication Conference, San Jose, Cali­

fornia, USA, 2010, vol. 7543.

53

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

[6] S. Carrato and L. Tenze, "A high quality 2x image interpolator," IEEE Signal

Processing Letters, vol. 7, no. 6, pp. 132-134,2000.

[7] X. Li and M. T. Orchard, "New edge-directed interpolation," IEEE Trans.

Image Processing, vol. 10, no. 10, pp. 1521-1527, Oct. 200l.

[8] X. Zhang and X. Wu, "Image interpolation by adaptive 2-D autoregressive

modeling and soft-decision estimation," IEEE Trans. Image Processing, vol. 17,

no. 6, pp. 887-896, Jun. 2008.

[9] L. Zhang and X. Wu, "An edge-guided image interpolation algorithm via direc­

tional filtering and data fusion," IEEE Trans. Image Processing, vol. 15, no. 8,

pp. 2226-2238, Aug. 2006.

[10] G. De Haan and E. B. Bellers, "Deinterlacing-an overview," Proceedings of the

IEEE, vol. 86, no. 9, pp. 1839-1857, Sept. 1998.

[11] J. Kovacevic, R. J. Safranek, and E. M. Yeh, "Deinterlacing by successive approx­

imation," IEEE Transactions on Image Processing, vol. 6, no. 2, pp. 339-344,

Feb. 1997.

[12] G. De Haan and E. B. Bellers, "De-interlacing of video data," IEEE Transactions

on Consumer Electronics, vol. 43, no. 3, pp. 819-825, Aug. 1997.

[13] S. H. Keller, F. Lauze, and M. Nielsen, "Deinterlacing using variational meth­

ods," IEEE Transactions on Image Processing, vol. 17, no. 11, pp. 2015-2028,

Nov. 2008.

[14] S. Yang, D. Kim, and J. Jeong, "Fine edge-preserving deinterlacing algorithm

54

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

for progressive display," IEEE Transactions on Consumer Electronics, vol. 55,

no. 3, pp. 1654-1662, 2009.

[15] S. J. Park, G. Jeon, and J. Jeong, "Deinterlacing algorithm usil!-g edge direc­

tion from analysis of the DCT coefficient distribution," IEEE Transactions on

Consumer Electronics, vol. 55, no. 3, pp. 1674-1681, 2009.

[16] M. H. Lee, J. H. Kim, J. S. Lee, K. K. Ryu, and D. I. Song, "A new algorithm for

interlaced to progressive scan conversion based on directional correlations and

its IC design," IEEE Transactions on Consumer Electronics, vol. 40, no. 2, pp.

119-129, May 1994.

[17] C. J. Kuo, C. Liao, and C. C. Lin, "Adaptive interpolation technique for scan­

ning rate conversion," IEEE Transactions on Circuits and Systems for Video

Technology, vol. 6, no. 3, pp. 317-321, 1996.

[18] G. Thomas, "A comparison of motion-compensated interlace-to-progressive con­

version methods," Signal Processing) Image Communication, vol. 12, no. 3, pp.

209-229, 1998.

[19] A. Skarabot, G. Ramponi, and D. Toffoli, "Image sequence processing for vide­

owall visualization," in Proc. SPIE, 2000, vol. 3961, pp. 138-147.

[20] A. Brunton and J. Zhao, "Real-time video watermarking on programmable

graphics hardware," in Electrical and Computer Engineering) 2005. Canadian

Conference on, Saskatoon, Sask., pp. 1312-1315.

[21] G. Shen, G. P. Gao, S. Li, H. Y. Shum, and Y. Q. Zhang, "Accelerate video

55

M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering

decoding with generic GPU," IEEE Transactions on Circuits and Systems for

Video Technology, vol. 15, no. 5, pp. 685-693.

[22] W. N. Chen and H. M. Hang, "H.264/avc motion estimation implmentation

on compute unified device architecture (cuda)," in Proc. IEEE International

Conference on Multimedia and Expo, June 23 2008-April 26 2008, pp. 697-700.

[23] S. T. Yang, T. K. Lin, and S. Y. Chien, "Real-time motion estimation for

1080p videos on graphics processing units with shared memory optimization,"

in Signal Processing Systems, 2009. SiPS 2009. IEEE Workshop on, Tampere,

pp. 297-302.

[24] S. Shimizu, H. Kimata, and Y. Ohtani, "Real-time free-viewpoint viewer from

multiview video plus depth representation coded by h.264/ AVC MVC extension,"

in 3DTV Conference: The True Vision - Capture, Transmission and Display of

3D Video, 2009, Potsdam, pp. 1-4.

[25] H. Hou and H. Andrews, "Cubic splines for image interpolation and digital

filtering," IEEE Transactions on Acoustics, Speech and Signal Processing, vol.

26, no. 6, pp. 508-517, Dec. 1978.

[26] R. Keys, "Cubic convolution interpolation for digital image processing," IEEE

Transactions on Acoustics, Speech and Signal Processing, vol. 29, no. 6, pp.

1153-1160, Dec. 1981.

56

