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Abstract 

In this thesis, we reexamine the classical problems of image/video spatial resolution 

up conversion and video deinterlacing with an aim to develop real-time, adaptive so­

lutions. The research of this thesis is important because most video applications 

require real time throughput. We study the use of GPU (Graphics Processing Unit) 

technology for high throughput video interpolation and deinterlacing. The main 

technical challenge is how to fully utilize the processing power and parallel architec­

ture of GPU to maximize the throughput of up conversion and deinterlacing without 

compromising the visual quality of the resulting videos. To achieve the goal we 

develop a GPU-friendly two-pass directional image/video resolution up conversion al­

gorithm and present a GPU implementation of the method, using the NVIDIA CUDA 

(Compute Unified Device Architecture) technology. We also devise a GPU-motivated 

motion-adaptive deinterlacing algorithm and develop a CUDA-based implementation 

of the algorithm. To strike a balance between performance and complexity, we dis­

cuss the techniques of adapting the computations in motion detection and adaptive 

directional interpolation to the GPU architecture for maximum video throughput 

possible. Experimental results demonstrate that using a mid-range GPU card, our 

CUDA-based implementations offer real-time solutions for image/video spatial reso­

lution up conversion and video deinterlacing. 
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Notation and abbreviations 

GPU 

2D 

AR 

CCD 

CMOS 

CPU 

CUDA 

DPI 

DVD 

FPS 

HDTV 

HR 

IPTV 

LCD 

LR 

MDC 

MMSE 

PAR 

Graphics Processing Unit 

Two-dimension 

Autoregressive 

Charge-Coupled Device 

Complementary Metal Oxide Semiconductor 

Central Processing Unit 

Compute Unified Device Architecture 

Dots Per Inch 

Digital Video Disc 

Frames Per Second 

High-definition Television 

High Resolution 

Internet Protocol Television 

Liquid Crystal Display 

Low Resolution 

Multiple Description Coding 

Minimum Mean Square Error 

Piecewise Autoregressive 
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PC Personal Computer 

PPI Pixels Per Inch 

SAD Sum of Absolute Differences 

SAl Soft-decision Adaptive Interpolation 

SDTV Standard-definition television 

SM Streaming Multiprocessors 

SNR Signal-to-Noise Ratio 

SP Scalar Processor 
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Chapter 1 

Introduction 

1.1 Overview 

Digital video is becoming arguably the most popular and important form of visual 

communication and presentation in our information technology era. Different from 

digital still images, a digital video consists of moving pictures in time and it is gen­

erated either by a digital video camera or by digitizing a motion picture film. Due 

to the inclusion of time dimension in the pictorial data, digital videos offer much 

richer information contents than digital images, and hence have a much wider range 

of applications, including entertainment, consumer electronics, engineering, sciences, 

medicine, security, defense and etc. 

Video processing is a field of visual signal processing that encompasses a number 

of technical topics: acquisition, communication, motion estimation, scene analysis, 

restoration and enhancement. In this thesis we are primarily concerned with video 
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restoration and enhancement. Specifically, we investigate the problem of video reso­

lution up conversion in both spatial and temporal domains. The focus of our inves­

tigation is on real-time solutions of the up conversion problem. The research of this 

thesis is important because video applications, such as video phones, teleconference, 

digital television, IPTV, and etc., commonly demand real time throughput. Real­

time video processing is challenging because video data are inherently voluminous, 

incurring heavy computational burdens. 

To meet the demands for special purpose of real time applications in computer 

graphics and video processing, the GPU (Graphics Processing Unit) technology was 

developed in early nineties. GPU uses a massive parallel processing architecture 

to expedite large scale visual information processing. In the past decade GPU has 

evolved into a manycore and multithreaded computation engine of great prowess. It 

is now used not only for speeding up graphics rendering computations but also for 

accelerating more general-purpose applications. 

In order to provide a convenient, high-level software development environment 

for general-purpose GPU programming, NVIDIA developed the CUDA (Compute 

Unified Device Architecture) platform. As GPU becomes a standard hardware com­

ponent in most PCs and severs and the GPU software development platform improves, 

developing and implementing the GPU-aided video techniques has become more cost­

effective. 

In this thesis, we reexamine the well-known problems of spatial resolution upcon­

version and video deinterlacing with the objective of developing GPU-based real-time 

solutions. The main technical challenge is how to fully utilize the processing power 

and massive parallelism of GPU to maximize the throughput of up conversion and 

2 
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(a) (b) 

Figure 1.1: Images with different resolutions (a) Low resolution; (b) High resolution. 

deinterlacing without compromising the visual quality of the resulting videos. 

1.2 Image/Video Spatial Resolution Upconversion 

One of the most important quality metrics of digital video is and will continue to 

be the spatial resolution. Spatial resolution is defined as the number of pixels per 

unit length. It refers to the pixel density of a digital image or a video frame. Spatial 

resolution is commonly measured in Dots Per Inch(DPI), or Pixels Per Inch(PPI). In 

general, given a scene, the higher the spatial resolution, the more and finer details 

an image/video contains. High spatial resolution of video has paramount importance 

in computerized video analysis applications in medical, scientific, space, military and 

security fields. For consumer applications higher spatial resolution directly translates 

to superior visual quality. 

3 
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In an ideal world, one can always increase the sensor resolution of image acquisition 

devices to obtain a desired spatial resolution. There exist hard physical limits on how 

high a spatial resolution that a video acquisition device can achieve. Firstly, most 

digital images are acquired by an array of semiconductor sensors such as Charge­

Coupled Device (CCD) and Complementary Metal Oxide Semiconductor (CMOS). 

As the image resolution gets higher and higher, smaller and smaller becomes the pixel. 

Consequently, the amount of light intercepted by each pixel diminishes and the signal 

strength reduces. This reduces the signal-to-noise ratio (SNR) of the acquired image. 

To make the matter worse, densely packed pixels are prone to electronic inference 

between neighboring sensors. Smaller pixels mean more severe a problem of inference. 

Therefore, given an SNR requirement, either the size of the sensor or the distance 

between neighboring sensors cannot be below a hard threshold. Secondly, in some 

applications the imaging process itself incurs a penalty to the imaged object, which 

limits the number of pixels to be acquired. For example, for certain medical imaging 

technologies, high spatial resolution is associated with high dosage of radiation that 

is harmful to the patient. 

Due to the aforementioned limits of the digital video technologies and systems, it 

is unlikely that newer imaging devices in the future, by themselves, can completely 

meet the spatial resolution requirements of many scientific, medical and military ap­

plications at present and in the future. As such, image/video resolution up conversion 

is and will remain an important technology to overcome the resolution limit of imaging 

hardware devices. 

Image/video spatial resolution up conversion , or image/video interpolation, is a 

4 
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process of obtaining a high resolution (HR) image or video frame from a lower reso­

lution (LR) version. Image/video resolution up conversion can be beneficial in many 

applications ranging from consumer electronics to visual arts and to cutting edge med­

ical and scientific research and development. Image/video spatial resolution upcon­

version technology is required whenever a user needs an image/video representation 

of higher resolution than the original source. For instance, image/video resolution 

up conversion is indispensable for digital multimedia and television industries, as user 

frequently display videos and image of low resolution ( due to compression or old source 

format) on high-definition television panels and computer monitors. 

Furthermore, in many telecommunication applications such as wireless multime­

dia streaming, the communication bandwidth is at a premium. Video signals have 

to be compressed for transmission and storage. One of the effective video compres­

sion techniques, particularly at very low bit rates, is to down sample video at the 

encoder. The decoder can then employ a spatial resolution up conversion algorithm 

to reconstruct the decompressed video back to the original resolution. This approach 

can have less artifacts than direct compression of original video in many cases [2]. 

Spatial resolution up conversion can also be used as a technique for multiple de­

scription coding (MDC). The MDC is an effective way for multimedia communica­

tions over unreliable diversity channels. One way to achieve multiple description 

image/video coding is to spatially partition an image or a frame into multiple down­

sampled subimages by a spatial multiplexer [3]. In this case, each subimage can be 

regarded as a LR version of the original image. vVhen some descriptions (subim­

ages) are lost, the reconstruction of the original image from the received descriptions 

(subimages) is essentially a spatial resolution up conversion problem. 
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1.3 Video Deinterlacing 

Video consists of a series of images played in rapid succession. Each image refers to 

a video frame. All mainstream analog and many digital television systems arrange 

the scan lines of each frame into two consecutive fields, one consisting of all even 

lines, another of the odd lines. The fields are then displayed in succession at a rate 

twice that of the nominal frame rate. For instance, PAL and SECAM systems have 

a rate of 25 frames/s or 50 fields/s, while the NTSC system delivers 29.97 frames/s 

or 59.94 fields/so This process of dividing frames into half-resolution fields at double 

the refresh rate is known as interlacing. Fig. 1.2 shows the sampling scheme for the 

interlaced video sequences. 

Interlaced scan (or interlacing) was invented in order to improve the visual quality 

of a video signal without consuming extra bandwidth. The popularity and wide 

use of interlaced videos were largely motivated by the desire of reducing the cost 

and complexity of video systems. Indeed, high bandwidth increases the costs of 

all components of a video system: cameras, storage devices (e.g., tape recorders or 

hard disks), transmission (video compressor and decompressor), and display devices 

(e.g., television sets, PC monitors). Interlaced video reduces the signal bandwidth 

by a factor of two, for a given line count and refresh rate. For instance, 1920xl080 

pixel resolution interlaced HDTV with a 60 Hz field rate (known as 1080i60) has a 

similar bandwidth to 1280x720 pixel progressive scan HDTV with a 60 Hz frame rate 

(720p60), but approximately twice the spatial resolution. In other words, a given 

bandwidth can be used to provide an interlaced video signal with twice the display 

refresh rate for a given line count (versus progressive scan video). This helps to reduce 

flickering artifacts by taking advantage of the persistence (memory) of human vision, 

6 
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Figure 1.2: An example of the interlaced video sequence 

and achieves a visual quality as though the frame rate was doubled. 

Interlacing is cost effective and has until recently been considered adequate in 

offering most users satisfactory viewing experience. But this is no longer the case for 

several reasons. Firstly, modern video output devices (e.g., LCD television sets, mon­

itors, projectors, etc.) are almost exclusively progressive, because progressive scan 

offers superior visual quality than the interlaced counterpart. Secondly, interlacing 

artifacts that were hardly visible in the past can become visually objectionable as 

screens have grown larger, brighter, and are of higher contrasts. Interlacing artifacts 

can be quite annoying to human viewers. 

Interline twittering effect shows up when the subject being captured contains fine 

striped patterns that approaches the vertical resolution of the video format. For 

instance, a person on television wearing a shirt with fine dark and light stripes may 

appear on a monitor as if the stripes on the shirt are "twittering". Moreover, since 

each frame of interlaced video is composed of two fields that are captured at different 

moments in time, interlaced video sequences will exhibit motion artifacts known as 

"line crawl", or "serration", as shown in Fig. 1.3. 

However, most modern broadcast television systems still adopt interlaced video 

formats. Even with the emergence of high-definition television (HDTV) and the 

7 
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(a) (b) 

Figure 1.3: Interlacing artifacts (a) Line Crawl; (b) Serration. 

known superiority in visual quality of progressive video over interlaced video, inter­

lacing persists as one of the formats used for HDTV in the US and Japan (1080i, 

1080x1920 resolution with only 540 lines scanned in each field). As most progressive 

display devices, such as LCD monitors/projectors and LCD/plasma television sets are 

dominating the market, and as devices used for television and video are integrating 

with computers, there is and will be an increasing need for conversion from interlaced 

to progressive formats. This process is known as video deinterlacing. 

Converting interlaced video to progressive video doubles the spatio-temporal sam­

pling density. It requires interpolating a set of missing lines in each field. In other 

words, progressive to interlaced conversion is a form of spatio-temporal subsampling 

whereas interlaced to progressive conversion - deinterlacing - is a spatio-temporal 

resolution up conversion process. 

8 
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1.4 Contributions 

This thesis is concerned with hardware expedition of the spatial resolution upcon­

version and video deinterlacing algorithms. In particular, we study the use of GPU 

(Graphics Processing Unit) technology for real-time video spatial resolution upcon­

version and video deinterlacing. Design decisions were made to take full advantage of 

the GPU architecture and the properties of the CUDA framework. The contributions 

of this thesis are summarized as follows: 

• We first develop a two-pass directional image/video interpolation algorithm for 

real time resolution up conversion [4]. The first pass of the algorithm generates a 

quincunx image by interpolating the missing pixels with four available diagonal 

neighbors. The missing pixels in the quincunx image are then interpolated in 

the second pass. Each pass of the algorithm employs an estimation-verification 

procedure to determine the value of a missing pixel. We then propose a GPU 

implementation ofthe method, in the NVIDIA CUDA (Compute Unified Device 

Architecture) platform. Design considerations to speed up the algorithm are 

discussed. Experimental results show that the GPU-based implementation can 

be five times as fast as the C implementation using a mid-range GPU card . 

• We devise a GPU-motivated motion-adaptive deinterlacing algorithm and de­

velop a CUDA-based implementation of the algorithm [5]. To strike a balance 

between performance and complexity, we discuss the techniques of adapting the 

computations in motion detection and adaptive directional interpolation to the 

GPU architecture for maximum video throughput possible. The proposed video 
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deinterlacing algorithm operates in two modes: interfield and intrafield, depend­

ing on whether significant motions are detected or not. If the current pixel is 

in a static region of the video scene, then temporal(interfield) deinterlacing is 

performed that merges the associated even and odd fields to benefit from the 

correlations between consecutive fields. In the presence of motions, we develop 

a highly parallelized directional interpolation algorithm for real time intrafield 

deinterlacing. The interpolation is carried out in three steps:(l) generate five 

interpolation candidates for the missing pixel using five different directional in­

terpolators; (2) verify the accuracy of each interpolator; (3) select and fuse two 

winning interpolators to get the final estimate. The design takes full advantage 

of the CUDA technology and the parallel nature of the proposed algorithm. 

Experimental results show that the GPU-aided implementation offers real-time 

solutions even for large video formats, using a mid-range GPU card. 

1.5 Organization 

The remainder of the thesis is organized as follows. Chapter 2 reviews existing works 

on image/video interpolation and video deinterlacing. In Chapter 3, we introduce the 

CUDA and GPU concepts and constructs that are important to the implementation of 

our image/video interpolation and video deinterlacing algorithms. Chapter 4 presents 

the proposed directional interpolation algorithm and discusses the detailed design 

considerations for CUDA adaptation of the up conversion algorithm. In Chapter 5, 

we discuss the proposed GPU-friendly motion adaptive deinterlacing algorithm in 

detail. The thesis closes with conclusions and suggested future works in Chapter 6. 

10 



Chapter 2 

Review of Existing Works 

2.1 Image/Video Spatial Resolution Upconversion 

In signal processing, resolution up conversion is to reconstruct a continuous signal 

at higher resolution from a set of observed (measured) low-resolution samples. In 

this view, the interpolation of an acquired digital image can be interpreted as re­

sampling of the original continuous two-dimensional image signal at a higher spatial 

sampling frequency. According to the Nyquist-Shannon sampling theorem, those sig­

nal components that have frequency lower than the Nyquist frequency can be exactly 

reconstructed. This indicates that, low-frequency components of image signals, such 

as smooth shades and large-scale edges/textures, can be reconstructed with ease. 

The real challenge of image/video resolution up conversion is the reconstruction of 

the high-frequency components of an image or video frame, such as sharp, fine-scale 

edges and textures, which exceed the Nyquist limit in the frequency domain. 

Over the past three decades significant amount of research has been devoted to 

11 
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image/video resolution up conversion technologies. The existing image/video reso­

lution up conversion methods fall into two categories: 1) simple signal-independent 

interpolation filtering and 2) adaptive directional filtering. The former methods are 

simple, inexpensive to implement, but they produce objectionable artifacts in the 

areas of edges and textures. The latter methods in general produce better visual 

quality than the former methods, but they incur significantly higher computational 

complexity. This is why consumer video products, both in software and hardware, 

adopt the former methods, because they need real-time low-cost solutions. 

2.1.1 Non-adaptive Image/Video Interpolation 

The simplest non-adaptive image interpolation method is the nearest neighbor tech­

nique. To interpolate a missing pixel x, the nearest neighbor algorithm copies the 

value of the existing pixel that is closest to x. The performance of nearest neighbor 

interpolation is poor because it ignores the values of other neighboring existing pixels 

that contain information of the 2D image waveform. Nearest neighbor interpolation 

produces objectionable checkboard artifacts, particularly for large scaling factors; 

The popular bilinear image interpolation method uses up to four neighboring 

pixel values to interpolate a missing pixel. Bilinear interpolation is simple and can 

be executed in real time even by software, but its performance leaves much to be 

desired. It tends to severely blur edges and textures. 

The bicubic algorithm is also widely used for scaling images and video sequences. 

It determines the value of a missing pixel from the weighted average of up to sixteen 

closest existing pixels. Bicubic interpolation preserves fine detail better than the 

bilinear and nearest neighbor algorithms and is often chosen over the previous two 

12 
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methods in image/video resampling. 

2.1.2 Adaptive Image/Video Interpolation 

As mentioned before, edges details play an important role in human visual system. 

Therefore, the reproduction of these high-frequency components namely, edge details 

and fine textures, is crucial to the visual quality of acquired images or video frames. 

The aforementioned non-adaptive interpolation methods tend to blur edges and/or 

introduce artifacts in edge areas due to their isotropic interpolation kernels. To main­

tain the edge sharpness and improve visual quality, a number of edge-guided image 

interpolation techniques have been proposed in recent years [6; 7; 8; 9]. Carrato 

and Tenze used some predetermined edge patterns to improve the parameters in the 

interpolation operator [6]. In [7], Li and Orchard proposed an new edge-directed in­

terpolation algorithm for image spatial resolution up conversion. The algorithm first 

estimates local covariance coefficients from the input low-resolution image and then 

uses these covariance estimates to conduct directional interpolation. Zhang and Wu 

proposed a soft-decision adaptive interpolation (SAl) technique that estimates missing 

pixels in groups [8]. The SAl technique learns and adapts to varying scene structures 

using a 2D piecewise autoregressive (PAR) modeL The model parameters are esti­

mated in a moving window in the input low-resolution image. The pixel structure 

dictated by the learnt model is enforced by the soft-decision estimation process onto 

a block of pixels. Another edge-based interpolation method [9] first interpolates a 

missing pixel from two mutually orthogonal directions. The two interpolation results 

are then adaptively fused by the minimum mean square error (MMSE) estimation. 

13 
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2.2 Video Deinterlacing 

In order to bridge the mismatch between interlaced video contents and progressive 

displays, many video deinterlacing algorithms were proposed [10; 11; 12; 13; 14; 15]. 

They fall into three categories: intrafield algorithms, interfield algorithms and hybrid 

algorithms, with different trade-offs between computational complexity and visual 

quality. The success of video deinterlacing relies on thorough exploitation of both 

intra- and inter-field correlations. 

2.2.1 Intrafield Video Deinterlacing 

Intrafield deinterlacing methods interpolate the missing lines by using the pixels of the 

sampled lines within the current field. Among them line doubling and line averaging 

are well known and widely used. The line doubling deinterlacing method duplicates 

lines of the field to fill in the missing lines; the line averaging algorithm interpolates 

every missing line by averaging two adjacent lines in the same field. The strength of 

these linear intrafield methods is their low implementation cost. But they often create 

an annoying artifact known as jagged edges. To alleviate the problem of jagged edges 

various directional interpolation methods were proposed. Such methods estimate the 

local edge direction and conduct interpolation along this direction [16; 17]. These 

algorithms work well if the edge directions are estimated correctly but, if not, they 

introduce errors and degrade the visual quality. Intrafield methods ignore the tem­

poral correlation between successive video fields, and consequently their performance 

is suboptimal. These methods are prone to severe video artifacts in regions of high 

vertical frequencies [10]. 
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2.2.2 Interfield Video Deinterlacing 

In interfield approach of deinterlacing, the missing lines are interpolated by utilizing 

the correlations between current field and previous and/or future fields. Field inser­

tion and bilinear field averaging are two popular interfield deinterlacing techniques 

[10]. 

The field insertion method, also called "weaving" in the computer community, 

fills in the missing lines with neighboring lines in time. The bilinear field averaging 

algorithm averages the before and after temporal neighboring lines of each missing 

line. Pure interfield methods work well in absence of motions, but they introduce 

serration, blurring or flickering artifacts if there are motions between the fields. 

2.2.3 Hybrid Deinterlacing Methods 

The hybrid deinterlacing methods aim to improve the visual quality by taking advan­

tage of both temporal and spatial corrections of an interlaced video sequence. The 

widely-used vertical temporal deinterlacing is a linear combination of line averaging 

and field averaging algorithms. Many variations of vertical temporal filters have been 

described by Thomas in [18]. 

The motion adaptive deinterlacing algorithms are among the most popular hy­

brid methods. They switch between different interpolation strategies (inter-filed or 

intra-filed), depending on the presence or absence of motions in the current field. 

In [19], Skarabot et al. proposed to first perform per pixel motion detection and 

then choose different deinterlacing schemes according to different conditions of the 

motion: a) field averaging when no motion is detected; b) spatio-temporal median 

filtering when the estimated motion is slow; c) line averaging when fast motion is 
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detected. A thresholding technique is used to classify the motion into the above three 

categories. Another approach is to make a smooth weighted transition between field 

averaging and line averaging interpolation schemes instead of a hard switching be­

tween the two schemes Kovacevic et al [11]. The weights are determined by sum of 

absolute differences (SAD). Generally, the hybrid deinterlacing approach obtains bet­

ter visual quality, but they have higher computational complexity than the previous 

two approaches. 
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Chapter 3 

Fundamentals of CUDA 

3.1 Background 

In this chapter, we present the basic terminologies of GPU and CUDA technolo­

gies that are needed to describe the GPU-aided image/video interpolation and video 

deinterlacing algorithms. 

A graphics processing unit or GPU is a specialized processor that offioads graph­

ics rendering computations from the CPU. It is used in embedded systems, mobile 

phones, personal computers, workstations, and game consoles. Modern GPUs use 

most of their transistors to perform calculations related to 3D computer graphics [1], 

as schematically illustrated by Fig. 3.1. Their highly parallel structure makes them 

more effective than general-purpose CPUs for a range of complex algorithms. More 

specifically, the architecture of GPUs is well suited to data-parallel computations, 

in which many data elements are processed concurrently in the same program. The 

CUDA programming model is very well suited to expose the parallel capabilities of 

GPUs [1]. At its core are three key abstractions-a hierarchy of thread groups, shared 
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Figure 3.1: The GPU devotes more transistors to data processing [1]. 

memories and barrier synchronization. These abstractions provide fine-grained data 

parallelism and thread parallelism, nested within coarse-grained data parallelism and 

task parallelism. They allow the programmers to partition the problem into coarse 

sub-problems that can be solved independently in parallel, and refine each of these 

subproblems into yet smaller pieces that can be solved in parallel with shared data. 

3.2 Hardware Architecture 

The GPU can be viewed as an array of Streaming Multiprocessors (SMs), each con­

taining eight Scalar Processors (SPs). Each SM contains four types of on-chip mem-

ory: registers, constant cache, texture cache and shared memory. Each GPU contains 

three types of off-chip memories: the constant memory and texture memory are read-

only memory for SPs, whereas the global memory is both readable and writable by 

SPs. Each SM also contains four types of on-chip memories that enable faster access: 

registers, constant cache, texture cache and shared memory. The data in the constant 

and texture memory are cached from the off-chip memory upon memory access, and 

is read-only within the SM. The 16-banked shared memory is readable and writable 

by all SPs within a single SM, which allows SPs to communicate with each other [1]. 
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Streaining "Multiproces-sor 

Figure 3.2: Memory architecture for CUDA GPU [1J. 

Fig. 3.2 shows the memory architecture for a streaming multiprocessor. 

3.3 Programming Model 

The CUDA programming platform is the first to provide the programmers with C-like 

programming environment. The CUDA uses heterogeneous programming method, 

where only the parallel code segments are executed on the device (GPU) while the 

rest of the program are executed on the host (CPU) in serial. The code segments 

to be executed on the device, known as kernel functions, are called and spawn from 

the host function. Fig. 3.3 shows an example of heterogeneous programming model, 

where the program alternates between single-threaded host function on the CPU and 

multi-threaded kernel functions on the GPU [1J. 

The kernel function is executed as a grid of thread blocks, and the total number 

of threads in the function is determined by the dimension of blocks and grid, as 

shown in Fig. 3.4. A thread block is a batch of threads that can cooperate with each 
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Host (CPU code) 

~ 
Device (Kernel Function) 

~~~~~~ 
Host (CPU code) 

~ 
Device (Kemel Function) 

~~~~~~ 

Figure 3.3: Heterogeneous programming model [1]. 

!lIoo.k(l, l' 

Figure 3.4: Thread, block, and grid arrangement inside kernel functions [1]. 

other through the on-chip shared memory and synchronize their execution [1]. Each 

SM may execute one or more thread blocks concurrently depending on the shared 

memory and register usage; however, threads in different blocks cannot share on-chip 

memory as they may be executed on a different SM. The SM maps each thread to one 

scalar processor core, and each thread executes independently with its own instruction 

address and register state. Each thread block is split into groups of 32 threads called 

"warps". Full efficiency will be achieved when all 32 threads of a warp agree on their 

execution paths [1]. 
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3.4 GPU Acceleration of Image/Video Processing 

Real-time video processing is challenging because video data are inherently volumi­

nous, incurring heavy computational burdens. In many cases when running video 

applications on PCs or servers, CPU can be so overwhelmed by heavy computation 

loads that itself alone cannot meet the real time requirements. For example, currently 

CPUs in most household PCs alone are not powerful enough to decode and playback 

1080p high definition (HD) video in real-time. On the other hand, most modern 

PCs are equipped with GPU. A question comes along naturally: can we leverage the 

power of GPU and off-load some or most of video processing operations from the 

CPU to GPU? The answer is positive. Many video applications that process large 

data sets can indeed benefit from data-parallel programming models and be sped up 

drastically by GPU. In 3D rendering large sets of pixels and vertices are mapped to 

parallel threads. Similarly, in video processing applications such as post-processing, 

video encoding and decoding, resolution up conversion and deinterlacing, one can eas­

ily map blocks of pixels to parallel processing threads. GPU-aided real-time video 

processing has recently evolved into an active research area [20; 21; 22; 23; 24]. 
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Chapter 4 

GPU-aided Directional 

Image /Video Interpolation for Real 

Time Resolution Upconversion 

The technical challenge of image/video spatial resolution up conversion is how to pre­

serve and reconstruct fine and sharp spatial details in the enlarged image/video while 

keeping the computational complexity low enough for real time applications. The 

widely used linear interpolation, cubic spline interpolation and cubic convolution in­

terpolation cannot preserve the edges very well, although they have relatively low 

computational complexity [25; 26]. Some edge-guided interpolation techniques have 

been proposed in recent years [7; 8; 9], but they involve complicated computations 

to maintain the edge sharpness and visual quality, and are therefore not suitable for 

real time applications. In particular, the method in [9] first interpolates a missing 

pixel from two mutually orthogonal directions. The two interpolation results are then 

adaptively fused using the statistics of a local window. The method achieves very 
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good performance, but it needs relatively complex computation to obtain the local 

statistics. 

In this chapter, by modifying the scheme in [9], we develop a highly parallelized 

two-pass directional image/video interpolation algorithm for real time resolution up­

conversion. A novel scheme of estimation and verification is introduced to reduce the 

computational complexity without significant degradation of the performance. 

The rest of the chapter is structured as follows. Section 4.1 presents the proposed 

directional interpolation algorithm. Section 4.2 discusses the detailed design consid­

erations for CUDA adaptation of the up conversion algorithm. Experimental results 

are reported and discussed in Section 4.3. Section 4.4 concludes. 

4.1 Adaptive Directional Image/Video Interpola­

tion 

For clarity and without loss of generality, we limit our description of the algorithm 

to resolution up conversion by a factor of two. 

The image interpolation is carried out in two passes, as shown in Fig. 4.1. The 

first pass generates a quincunx image by interpolating the missing pixels with four 

available diagonal neighbors, as marked by gray circles in Fig. 4.1 (a). The missing 

pixels in the quincunx image are then interpolated in the second pass, as shown in 

Fig. 4.1 (b). 

Each pass of the algorithm employs a three-step procedure to determine the value 

of a missing pixel: (1) generate two interpolation candidates for the missing pixel using 

two different interpolators; (2) verify the accuracy of each interpolator; (3) select the 
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Figure 4.1: Two pass interpolation. (a) The first pass; (b) The second pass . 
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Figure 4.2: Diagonal cubic interpolation. (a) 45 0 cubic interpolation; (b) 135 0 cubic 
interpolation. 

winning interpolator or fuse the two interpolators to get the final estimation. 

In the first step, we use the cubic convolution interpolation to estimate an un­

known pixel from two diagonal directions, denoted by Y+ and Y-, as shown in Fig. 

4.2. The estimation is given by [26] 

y+ = -~Xl + ~X2 + ~X3 - ~X4 
16 16 16 16 

(4.1) 

1 I 9 I 9 I 1 I 

y- = -16 X1 + 16 X2 + 16 X3 - 16 X4 ' (4.2) 

In the second step, we evaluate the accuracy of the two directional cubic convolution 

interpolations. This is achieved by applying the same formula to estimate the known 
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(a) (b) 

Figure 4.3: Diagonal cubic verification. ( a) 45 0 verification; (b) 135 0 verification. 

pixels using the interpolated pixels, as shown in Fig. 4.3, i. e., 

(4.3) 

(4.4) 

The errors of the two directional interpolators in a neighborhood around Y(i,j) can 

thus be obtained as 

(4.5) 
(m,n)EW(i,j) 

where el(i,j) (e2(i,j)) represents the error in the 450 (1350
) direction, X(m,n)'s are 

the known pixel values of the diagonal neighbors around Y (i, j) in a window W (i, j), 

X (m, n) 's are the diagonal estimations of X (i, j). For the 1350 cubic verification, 

the verification window W(i, j) is shown in Fig. 4.4, where the errors of four known 

neighbors of Y(i,j) are evaluated in Eq. 4.5. The 450 cubic verification process is 

obtained similarly. 

In the third step, the final value of the missing pixel Y(i,j) is determined based 
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Figure 4.4: The verification of the 135° cubic interpolator in a local window of four 
known pixels surrounding the missing pixel Y ( i, j). 

on el(i,j) and e2(i,j) [9]: 

Y+(i,j), 

Y(i,j) = 
Y-(i,j), 

(4.6) 

Yj'Use(i,j), otherwise, 

where T is a prespecified threshold, and 

y ( .. ) _ e2(i,j) y+( .. ) el(i,j) y_( .. ) 
fuse '/"J - ( .. ) + ( .. ) '/"J + ( .. ) + ( .. ) '/"J • 

el '/"J e2 '/"J el '/,,J e2 '/"J 
(4.7) 

Given the results of the first pass, the second pass of the interpolation algorithm 

is carried out with two interpolators applied horizontally and vertically. Accordingly, 

the estimation errors of the horizontal and vertical neighbors are collected in the 

verification step. These operations can be understood by rotating Fig. 4.2 to Fig. 

4.4 by 45°. The final upsampled image is produced after the second pass. 

Despite its simplicity, the performance of this algorithm is significantly better 

than the cubic methods, as shown in Sec. 4.3. In addition, the algorithm only uses 

local image information and is therefore suitable for GPU-based parallel computing. 
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4.2 CUDA Implementation of Adaptive Directional 

Image/Video Interpolation 

4.2.1 General Program Flow and Thread Configuration 

In this section, we describe how to efficiently implement the spatial up conversion al­

gorithm in Sec. 4.1 using GPU. For a GPU program to effectively use all available 

resources and achieve maximum performance, we must maximize parallel execution, 

optimize instruction usage to achieve the maximum instruction throughput, and op­

timize the memory usage for maximum memory bandwidth. 

Since the GPU is a massively threaded parallel processor, we choose to perform 

all calculations and interpolations on the GPU, and each thread only processes a 

single pixel. In this way, many pixels can be processed simultaneously. Due to the 

dependencies of the pixel values generated by each pass of the interpolation algorithm, 

each kernel function should only perform a single pass of calculation as the value 

generated would be required for the next kernel function. The general flow diagram 

of the GPU implementation of the proposed two-pass method is shown in Fig. 4.5. 

The wide yellow arrow shows the memory transfers: from host memory, to device 

shared memory, and back to host memory. 

It is recommended to have 192 or 256 threads per block in order to get optimal 

utilization of the available computing resources [1]. In addition, the thread dimensions 

should be aligned to the size of the warp to avoid diverging warp. So for a branch 

with condition determined by the x and y coordinates of the pixel, all threads within 

the warp will most likely branch in the same way. Therefore, we choose 32 as the x 

dimension of the thread block, and 32 x 8 as the dimension of the thread block. 
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Figure 4.5: General program flow of GPU implementation of the algorithm. 

4.2.2 Four-subimage-based Memory Allocation 

In the CUDA platform, the global memory spaces are the readable and writable 

regions of device memory for all SPs. Due to the lack of caching, the access to global 

memory is relatively slow. Therefore it is desired to improve the efficiency of the 

global memory access. This can be achieved if the simultaneous memory accesses by 

threads in a half-warp can be coalesced into a single memory transaction [1]. 

The straightforward implementation of the directional interpolation algorithm 

would allocate a memory space that equals to the size of the up converted image, 

and then perform all the two-pass computations in the allocated memory space. Al-

though this method requires less memory space, it precludes coalesced memory access 

when implemented in CUDA. This can be seen from Fig. 4.6 (a), where each thread 

must skip over a slot in memory to access the next desired pixel. Therefore, the 
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(a) (b) 

Figure 4.6: (a) Uncoalesced Memory Access; (b) Coalesced Memory Access. 

Oliginc-I imdge .Aftllr fu(,t pass 

Figure 4.7: Subimage-based memory allocation. The high resolution image is gener­
ated at the last stage. 

memory access is not contiguous. 

In order to achieve coalesced memory access, we group the pixels in each subset 

in Fig. 4.1 (b) into a subimage and assign a contiguous memory space. As a result, 

four memory spaces are allocated. After the first pass, the second subimage as shown 

by gray pixels in Fig. 4.1 (a) is generated. The two subimages together represent the 

quincunx image from the original algorithm. After the second pass, the other two 

subimages are generated. Finally, the four subimages are merged together to form the 

final high resolution output. Fig. 4.7 shows the process of this approach. With this 

method, the memory access is contiguous and can be coalesced for the computations 

performed on each subimage, as shown in Fig. 4.6 (b). 
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4.2.3 Caching Mechanism 

Since access to global memory is slow, it is necessary to cache the data into a faster 

memory before each computation. The shared memory is chosen in our current im­

plementation, because it has more spaces than the texture memory. Furthermore, for 

all threads of a warp, accessing the shared memory is as fast as accessing a register, 

as long as there is no bank conflict between the threads. Bank conflict occurs when 

more than one address of a memory request fall in the same memory bank. In this 

case, the access has to be serialized, which leads to significant performance degrada­

tion. Therefore, in order to avoid bank conflict, each of the 16 threads in a half-warp 

should access a different bank. 

In addition, since the algorithm needs to read the values of up to 2 pixels out of 

each image block in both the x and y directions when processing the boundary pixels, 

one to one mapping between the global and shared memory does not work well. A 

simple tradeoff is to cache two extra rows or columns of pixels around the target 

block, as shown in Fig. 4.8. This caching mechanism does not completely eliminate 

blank conflict, as bank conflict is still possible when threads in a half-warp access 

the memory addresses that fall in the same shared memory bank. However, such a 

probability is quite low and does not have significant impact to the performance. 

On the other hand, it is possible to completely avoid bank conflict by using texture 

memory. However, this requires smaller thread blocks and might affect the through­

put. In the future, we plan to implement this approach and compare the overall 

performance with the current scheme. 
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Figure 4.8: The size of cached data compared to block size. 

4.2.4 Branch and Loop Replacement 

Branches and loops should be avoided in GPU computing to prevent divergence 

among the threads within the same warp. For example, to clamp a pixel value x 

within 0 and 255, the branches can be replaced by the min and max functions: 

min(max(x, 0), 255). (4.8) 

Similarly, the flipping of image pixels at boundary can be implemented as 

min(max(x, -x), 2w - x - 2), (4.9) 

where w is the width of the image, and x is the target position. 

Branches also occur during the selection of the interpolators in Eq. 4.6. However, 

as the branch condition is generated from the interpolation errors calculated using 

Eq. 4.5, it is independent of thread configuration, thus divergent warp cannot be 

avoided in this case. 

In our implementation, the main loop for processing each pixel is replaced indi­

rectly by threads and blocks. There is no other loop inside the kernel function. 
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Table 4.1: Processing time for a 256 x 256 Lena image 
Running Time Relative Speed 

Original 41.6 ms 1.00x 
CUDA Optimized 11.2 ms 3.71x 
Optimized without malIoe/free 8.5 ms 4.89x 

4.3 Experimental Results and Discussion 

To evaluate the performance of the proposed interpolation algorithm on CUDA, the 

following experimental environment is used: (1) NVIDIA Quadro FX 1700 GPU card 

with 512MB SDRAM memory and 4 streaming multiprocessors, (2) 3GHz Intel Core 

2 Duo E8400 CPU, (3) Microsoft Windows XP sp3, (4) Microsoft Visual Studio 2005, 

(5) CUDA Toolkit and SDK 2.0, and (6) NVIDIA Driver for Microsoft Windows XP 

with CUDA Support (178.24). 

We first compare in Fig. 4.9, 4.10 and 4.11 the interpolation performance of the 

popular bicubic interpolation in [26] and the GPU-aided directional up conversion 

algorithm. It can be seen that the result of the proposed method is visually more 

pleasing than the bicubic interpolation, with edges faithfully reconstructed without 

any jaggy. 

vVe next compare the executing time of the image processing part for the 256 x 256 

lena image, by ignoring the program initialization and reading/saving of image file. 

As shown in Table 4.1, the CUDA optimized multi-threaded computation is close to 

4 times as fast as the original implementation. For video processing, memory on the 

device can be reused for each frame. Therefore, memory allocation is only needed 

for the first frame. If we ignore the overhead of memory allocation, the speed of the 

GPU-aided algorithm is almost 5 times of the original method. 

Table 4.2 shows the results for some video-sized images. When the cost of memory 
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(c) (d) 

Figure 4.9: Comparison of different methods. (a) (c) Bicubic interpolation; (b) (d) 
The GPU-aided directional interpolation. 

33 



M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering 

(c) (d) 

Figure 4.10: Comparison of different methods. (a) (c) Bicubic interpolation; (b) (d) 
The GPU-aided directional interpolation. 
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(c) (d) 

Figure 4.11: Comparison of different methods. (a)(c) Bicubic interpolation; (b)(d) 
The GPU-aided directional interpolation. 
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Table 4.2: Processing time for video-sized image 
Video size 640x480 720x480 1280x960 

Time Speed Time Speed Time Speed 
Original 187 ms 1.00x 213 ms 1.00x 763 ms 1.00x 
CPU-based 
CUDA- 40 ms 4.68x 44ms 4.84x 152 ms 5.02x 
Optimized 
Optimized 37 ms 5.05x 41 ms 5.20x 148 ms 5.16x 
without 
maUoe / free 

allocation is ignored, the CUDA optimized code is also about 5 times as fast as the 

original implementation. The first case of Table 4.2 has a regular 4:3 DVD-sized video 

frame input. The processing time of 37 milliseconds per frame corresponds to around 

27 frames per seconds(FPS), assuming the video decoding is handled by a co-processor 

such as the CPU or another graphics card. Therefore real time up conversion of DVD 

video input using GPU is possible. This represents a significant improvement over 

the original CPU implementation, which can barely handle 6 frames per seconds. 

Note that the graphics card used for the testing only contains 4 streaming multi-

processors, and each of them supports 768 threads, whereas the latest NVIDIA GPU 

card can have up to 30 multiprocessors, and each can handle 1024 threads. Therefore, 

significant speedup can be further obtained using these latest graphic cards. 

4.4 Conclusion 

In this chapter, we present an efficient interpolation algorithm for image/video res-

olution up conversion and its GPU implementation, by taking full advantage of the 

CUDA technology and the properties of the interpolation algorithm. Experimental 

results show that the GPU-aided algorithm can be 5 times as fast as the original 
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version, using a mid-range GPU card. 
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Chapter 5 

GPU-aided Motion Adaptive 

Video Deinter lacing 

In this chapter we develop a motion adaptive video deinterlacing algorithm that has a 

high degree of data parallelism so that it can be implemented on CPU. The remainder 

ofthe paper is organized as follows. Section 5.1 presents the proposed motion adaptive 

video deinterlacing algorithm. Section 5.2 discusses in detail how to adapt CUDA to 

video deinterlacing. Experimental results are reported and discussed in Section 5.3. 

Section 5.4 concludes. 

5.1 Motion Adaptive Video Deinterlacing With Adap­

tive Directional Interpolation 

Our motion adaptive video deinterlacing algorithm operates in two modes: interfield 

and intrafield, depending on whether significant motions are detected or not. If 
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the current pixel is in a static region of the video scene, then temporal (interfield) 

deinterlacing is performed that merges the associated even and odd fields to benefit 

from the correlations between consecutive fields. In the presence of motions, merging 

even and odd fields becomes error prone, the algorithm resorts to adaptive directional 

interpolation within the current field. 

The key issue in intrafield deinterlacing is how to preserve and reconstruct fine 

and sharp spatial details in the deinterlaced video while keeping the computational 

complexity sufficiently low for real time applications. The methods of line repetition 

and vertical line averaging tend to blur edges too much, although they have low 

computational complexity. Some edge dependent algorithms have been developed to 

preserve details and maintain edge sharpness [10; 11; 12; 13; 14; 15], but they are 

complicated and hence not suitable for real time applications. 

To strike a balance between performance and complexity, we develop a highly 

parallelized directional interpolation algorithm for real time intrafield deinterlacing. 

The algorithm is a three-step procedure to estimate the value of a missing pixel in 

current field: (1) generate five interpolation candidates for the missing pixel using 

five different directional interpolators; (2) verify the accuracy of each interpolator; 

(3) select and fuse two winning interpolators to get the final estimate. 

In the first step, five directional interpolators are used to compute five tentative 

values of a missing pixel, denoted by Yi(i = 1,2, ... ,5). In the first three directions 

as shown in Fig. 5.1, cubic interpolator is used. Simple averaging method is used for 

the remaining two cases. 

199 1 
Y;l - --XII + -Xl 2 + -Xl 3 - -Xl 4 

16 ' 16 ' 16 ' 16 ' 
(5.1) 
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Figure 5.1: Five directional interpolators. 

199 1 
Y;2 - --X21 + -X22 + -X23 - -X24 

16 ' 16 ' 16 ' 16 ' 

199 1 
Y3 - --X31 + -X32 + -X33 - -X34 

16 ' 16 ' 16 ' 16 ' 

1 1 1 1 
Y4 = - X 41 + -4X42 + -4X4 3 + -4X44 4) , , , 

i 
." .. ! 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

In the second step, we evaluate the accuracy of these five directional interpolators. 

This is achieved by applying the same formula to estimate the known pixels using the 

interpolated pixels, as shown in Fig. 5.2, i.e., 
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Figure 5.2: Verification process 

A 1 991 
Xl = --Yi 1 + -Yi2 + -Yi3 - -Yi4 

16' 16' 16' 16' 

A 1 991 
X 2 - --Y;21 + -Y;2 2 + -Y;2 3 - -Y;24 

16' 16' 16' 16' 

A 1 991 
X3 - --Y31 + -Y32 + -Y33 - -Y34 16' 16' 16' 16' 

All 1 1 
X 4 = "41'4,1 + "41'4,2 + "41'4,3 + "41'4,4 

All 1 1 
X5 = "4Y5,1 + "4Y5,2 + "4Y5,3 + "4Y5,4 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

The errors of these directional interpolators in a neighborhood around Y(i, j) can 

41 



M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering 

thus be obtained as 

L (X(m,n) -Xk (m,n))2,k = 1,2, ... ,5 (5.11) 
(m,n)EW(i,j) 

where ek ( i, j) represents the error in the corresponding direction, X (m, n)s are the 

known pixel values of the neighbors around Y(i,j) in a window W(i,j), Xk(m,n)'s 

are the different directional estimates of X (m, n), which are interpolated through 

Eq. 5.6 to Eq. 5.10. 

We select the best two directional estimates, denoted by Yist( i, j), Y2nd( i, j). Let 

the estimation errors for Yist(i,j) and Y2nd(i,j) be elst(i,j) and e2nd(i,j). 

In the third step, the final estimate of the missing pixel Y(i,j) is computed by 

fusing Yist( i, j) and Y2nd( i, j) based on elst( i, j) and e2nd( i, j): 

Yintra(i,j) = (5.12) 

Yfuse (i, j), otherwise, 

where T is a prespecified threshold, and 

Y ( .. ) e2nd(i,j) Y; ( .. ) e1st(i,j) 1" ( .. ) 
fuse ~,J = (. ')+ ( .. ) 1st ~,J + (' ')+ (' ') 2nd ~,J, 

e1st ~, J e2nd ~, J e1st ~, J e2nd ~, J 
(5,13) 

5.2 eUDA Implementation of Motion Adaptive Video 

Deinter lacing 

5.2.1 General Program Flow 

Having introduced the basics of GPU we are now ready to describe efficient imple-

mentation of the motion adaptive deinterlacing algorithm proposed in section 5.1 on 
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Figure 5.3: General program flow of GPU-aid implementation 

GPU. For a GPU program to effectively use all available resources and achieve maxi-

mum performance, we need to maximize the degree of parallelism, optimize the code 

to achieve the highest possible instruction throughput. In addition, we optimize the 

memory usage for maximum memory bandwidth. 

Since the GPU is a massively threaded parallel processor, we can assign the pro-

cessing of each pixel to a thread. High throughput is gained by deinterlacing a large 

number of pixels simultaneously. This is also the reason that we developed our dein-

terlacing algorithm to have identical operations on each pixel. Each kernel function 

should only perform a single step of the deinterlacing algorithm as the current re­

sults are required by the next kernel function. Fig. 5.3 demonstrates the general flow 

diagram of the GPU implementation of the proposed deinterlacing algorithm. 

43 



M.A.Sc. Thesis - Jie Cao McMaster - Electrical Engineering 

5.2.2 GPU Memory Allocation 

In the CUDA platform, the global memory spaces are the readable and writable 

regions of device memory for all SPs. Due to the lack of caching, the access to global 

memory is relatively slow. To make the use of memory bandwidth as efficient as 

possible, the simultaneous memory accesses by threads in a half-warp should coalesced 

into a single memory transaction [1]. 

The straightforward implementation of the motion adaptive deinterlacing algo­

rithm would allocate a memory space that equals to the size of the deinterlaced 

frame, and then perform all the computations in the allocated memory space. Al­

though requiring less memory space, this method prevents coalesced memory access 

when implemented in CUDA. This point is made by Fig. 5.5 (a), where each thread 

must skip over a slot in memory to access the next desired line of pixels. Therefore, 

the memory access is not contiguous. 

In order to achieve coalesced memory access, we allocate a contiguous memory 

space to store the pixel values in each field as shown in Fig. 5.4. To support the 

execution of the proposed deinterlacing algorithm, four contiguous memory spaces 

are created. 

The first memory space contains the pixel values of the current field. The second 

memory space stores the results of the intrafield deinterlacing process, namely the 

estimates of the missing pixels. The pixel values in these two memory spaces together 

represent the deinterlaced frame by the adaptive intrafield directional interpolation. 

The remaining two memory spaces contain pixel values of the previous and next fields. 

They are needed when merging the even and odd fields in the absence of motion. 

Fig. 5.4 shows the described memory organization. In this design the memory access 
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Figure 5.5: (a) Uncoalesced Memory Access; (b) Coalesced Memory Access. 

is made contiguous and coalesced as shown in Fig. 5.5 (b). 

5.2.3 Thread Configuration and Overlapped Caching Mech-

anlsm 

It is recommended to have 192 or 256 threads per block in order to get optimal 

utilization of the available computing resources [1]. In addition, the thread dimensions 

should be aligned to the size of the warp to avoid diverging warp. Therefore, the size 

of 32 x 8 is chosen for the dimension of the thread block. 

Since access to global memory is slow, it is necessary to cache the data into a 

faster memory before each computation. The shared memory is chosen in our current 
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- - Block size(row) 32 

Figure 5.6: Overlapped data caching mechanism compared to block size 

implementation, because it has more spaces than the texture memory. Furthermore, 

for all threads of a warp, accessing the shared memory is as fast as accessing a 

register, as long as there is no bank conflict between the threads. Bank conflict occurs 

when more than one address of a memory request fall in the same memory bank. 

In this case, the access has to be serialized, which leads to significant performance 

degradation. Therefore, in order to avoid bank conflict, each of the 16 threads in a 

half-warp should access a different bank. 

Another issue in memory management is the handling of boundary pixels for 

interpolation filters. The proposed algorithm needs to read the data up to three 

pixels outside of each thread block in the x direction, and two pixels outside of the 

block in the y direction. When processing the boundary pixels, one to one mapping 

between the global and shared memory does not work well. In order to cache all the 

pixels needed for processing, a boundary-overlapped memory allocation is required. 

It caches two extra rows and three extra columns of pixels around the block, as shown 

in Fig. 5.6. 
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5.3 Experimental Results and Discussion 

The performance of the proposed GPU-aided video deinterlacing algorithm is eval­

uated in the following hardware and software setting: (1) NVIDIA GeForce 9800 

GTX+ GPU with 512MB memory (2) 2.83GHz Intel Xeon CPU E5440, (3) Mi­

crosoft Windows XP sp3, (4) Microsoft Visual Studio 2005, (5) CUDA Toolkit and 

SDK 2.0, and (6) NVIDIA Driver with CUDA Support (178.24). 

We first compare in Fig. 5.7 the performances of our intrafield adaptive directional 

interpolation and the widely used bicubic interpolation. It can be seen that the 

result of the former is visually more pleasing than the latter, with edges faithfully 

reconstructed without any jaggy. 

We present the results of the proposed motion adaptive deinterlacing method in 

Fig. 5.8 and Fig. 5.9. Visual performance are compared between the bilinear field 

averaging method and the proposed motion adaptive algorithm. It can be found that 

the proposed motion adaptive method can adapt itself to motion level and achieves 

good performance both in presence and absence of the motion in the current field. 

Finally, we demonstrate that the proposed GPU implementation of the motion 

adaptive deinterlacing algorithm has sufficiently high throughput for real-time video 

applications. The execution times of the CPU and GPU implementations are com­

pared in Table 5.1. In the comparison we ignore the time for program initialization 

and reading/saving of video files to evaluate the speed up factor for deinterlacing 

operations only. For video processing, memory on the device can be reused for each 

frame or field. Therefore, we ignore the overhead of memory allocation. 

As shown in Table 5.1 the GPU-aided implementation is almost eight times as fast 

as the CPU version. The throughput of the GPU-aided implementation is around 
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Table 5.1: Processing time for interlaced video sequence 
Field size 640x240 720x240 1280x480 

fields / second speed fields / second speed fields / second speed 
Serial 15.2 1.00x 11.8 1.00x 3.1 1.00x 
C program 
CUDA- 110.3 7.26x 96.2 8.15x 30.7 9.90x 
Implementation 

100 fields per second for DVD-sized video sequences, excluding the time for video 

decoding. Even for high definition interlaced video sequences, the processing speed 

can still satisfy real-time requirement. In contrast, the CPU implementation can 

barely process around 10 frames per seconds at DVD size. 

5.4 Conclusion 

In this chapter, we designed an efficient motion adaptive video deinterlacing algorithm 

that is particularly suitable for GPU implementation. The design takes full advantage 

of the CUDA technology and the parallel nature of the problem. Experimental results 

show that the GPU-aided implementation offers real-time solutions even for large 

video formats, using a mid-range GPU card. 
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(e) 

(g) (h) 

Figure 5.7: Comparison of different methods. (a) (c) (e) (g) Bicubic interpolation (b) 
(d) (f) (h) Proposed intrafield interpolation 
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(b) 

(c) 

Figure 5.8: Comparison of different methods. (a)Bilinear field averaging (b) Proposed 
intrafield interpolation (c )Proposed motion adaptive deinterlacing 
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( c) 

Figure 5.9: Comparison of different methods. (a)Bilinear field averaging (b) Proposed 
intrafield interpolation (c) Proposed motion adaptive deinterlacing 
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Chapter 6 

Conclusions and Future Work 

In this thesis, we reexamined the problems of image/video spatial resolution upconver­

sion and video deinterlacing, aiming at real-time, adaptive solutions of these problems. 

In particular, we investigate the use of GPU technology to massively parallelize the 

computations involved in adaptive video scaling and deinterlacing. This is realized by 

novel directional interpolation algorithms for both scaling and deinterlacing and their 

GPU implementations. The future work includes further improvement of the visual 

quality of the proposed video deinterlacing and resolution up conversion algorithms, 

and a CUDA-based implementation for real-time SDTV to HDTV up conversion. 
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