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ABSTRACT 

The subject of this study is the mechanical response of soil masses consisting of 

numerous strata in their elastic range. The study comprises analytical, experimental and 

numerical aspects and provides an insight to the concept of 'equivalent' homogeneous 

cross-anisotropic material indicating that a system of strata can be replaced by an 

equivalent transversely isotropic material. 

The elastic material properties of such an equivalent transversely isotropic are 

derived analytically, based on the elastic constants of the constituents. The experimental 

study is carried out to investigate and verify the concept of the equivalent transversely 

isotropic material. The experiments involve triaxial tests on samples of two types of 

homogeneous clay, as well as tests on layered samples consisting of the homogeneous 

materials. In the numerical part of the study, the tests conducted in the experiments, were 

simulated via finite element analysis. A comparison is made between the elastic constants 

obtained from the mathematical formulation, the experiments and FE simulations. 
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CHAPTER! 

INTRODUCTION 

1.1 Problem Statement 

Natural soils and sedimentary rocks often have roots in sedimentation processes 

as they are typically fonned by deposition and progressive consolidation during their 

fonnation. They usually have a distinct internal structure, which is characterized by the 

appearance of multiple layers or bedding planes. As a result, the mechanical 

characteristics display an inherent anisotropy. Typical examples of such materials include 

limestone and mudstone. The primary manifestation of the microstructure on a larger 

scale is the anisotropy of the mechanical properties, in both elastic and inelastic ranges 

(e.g. ada et al. 1978, Yamada and Ishihara 1979, Lo and Hori 1979, Graham and 

Houlsby 1983, Kirkgard and Lade 1991, Niandou et al. 1997, Duveau et al. 1998, aka et 

al. 2002, Nishimura et al. 2007). 

In practice, many geotechnical projects involve rock or soil masses consisting of 

numerous strata on which loads of various kinds, either nonnal, shear or rotational, are 

applied, or in which excavations are made. Most often, it is an extremely complex 

operation to take into account the individual properties of each of these strata in a stress-

strain or stability analysis. The complexity comes from considering anisotropic behavior 

for each individual layer, and also using a very fine spatial discretization. Even with 

advanced computers and the available computational tools it is too costly to perfonn such 

1 
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an analysis. Under certain conditions, however, a system of strata can be replaced by an 

'equivalent' homogeneous cross-anisotropic material (Salamon 1968) that considerably 

simplifies any analysis or prediction of behavior. These conditions are (Wardle and 

Gerrard 1972): 

1- each of the layers are bounded by parallel planes and consist of homogeneous elastic 

cross-anisotropic material with the axis of symmetry being normal to the bounding planes 

2- all interface planes between layers remain in contact and are fully continuous in the 

sense that no relative displacements occur between the layers at the interface 

3- the REV (representative element volume) of the stratified mass, on the basis of which 

the equivalent homogeneous properties are calculated, must on one hand contain a large 

number of layers and on the other hand the length of such a representative sample, in the 

direction perpendicular to the bounding plane, must be much smaller than the 

characteristic length of the excavation or load associated with the particular problem 

The properties of the equivalent homogeneous material, usually calculated by a 

homogenization technique (averaging), has some shortcomings: 

1- layers which require completely different structure of constitutive relations may render 

averaging difficult because incompatible sets of parameters are used for each layer. 

2- generally, neither stiffness nor compliance can be averaged. 

3- a very thin and weak layer may often facilitate failure. Such layers, however, have 

little influence on average parameters if the thickness of the layer is taken as a weighting 

factor. 

2 
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In elastic soil models, at a wide variety of scales, the subsurface is a layered 

sequence of different constituent media. It is therefore important to understand the elastic 

properties of such a sequence, in particular for determining the response of a layered 

medium to seismic waves. It can be shown that if the individual layer thicknesses are 

much less than the wavelength of a seismic wave passing through the stack, the wave will 

propagate as though it were traversing a homogenous, anisotropic medium (Postma, 

1955). This property has been subjected to rigorous testing both experimentally (Melia 

and Carlson, 1984) and numerically (Carcione et aI., 1991). The elastic properties of this 

"equivalent medium" can be derived algebraically from the elastic properties of the 

materials that comprise the layers (Backus, 1962). The homogenous equivalent medium 

will be transversely isotropic, the axis of symmetry lying perpendicular to the layering. 

1.2 Scope of the Work 

This report is structured as follows. Chapter 2 presents a brief review of elastic 

constitutive models. It also presents an introduction on the equivalent transversely 

isotropic material, consisting of layers of isotropic materials. The experimental program 

of the study is presented in Chapter 3. This involves describing the materials used in the 

investigation, sample preparation techniques, testing methods/setups, the equipments 

used and the obtained results and observations. Data Analysis and verification of 

analytical and experimental results are presented in Chapter 4. Mechanical response of 

the equivalent transversely isotropic material is also simulated in Finite Element analyses. 

A comparison between the experimental, analytical and numerical results concludes 

3 
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Chapter 4. Conclusions and recommendations for future work are presented in the last 

Chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Elastic constitutive equations for isotropic, orthotropic and cross anisotropic 

(transversely isotropic) materials are reviewed in this chapter. The homogenization 

equations to find the properties of the equivalent homogeneous medium consisting of 

layers of different material are also presented. 

2.2 Defmition of an Elastic Material 

There are both physical and mathematical definitions of an elastic material. If 

under applied loads a material stores but does not dissipate energy, and it returns to its 

original shape when the loads are removed, we call such a material elastic. This is the 

physical defmition of an elastic material. If a strain energy or elastic potential function 

can be defined for a material, and the stress state in the material can be obtained by 

differentiating the strain energy function, such a material can also be called elastic (e.g. 

Timoshenko and Goodier 1970, Saada 1993). This last definition can be attributed to 

George Green, an English mathematician (1791-1840). We can see that the mathematical 

definition of an elastic material is related to the physical definition. The main physical 

characteristic of a purely elastic material is that it stores "strain" energy due to a load. 

Mathematically, an elastic material is one, for which a strain energy function can be 

defined. The strain energy function depends both on strains and on constants that must be 
5 
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experimentally detennined. Thus, for the case of small deformation, the stress tensor ( (J U 
I 

I 
j 

.j 
) can be obtained from the small strain tensor (IOU)' via the potential function W as 

I 
(2.1) 

For a linear elastic medium the strain energy is a quadratic expansion in tenns of 

i 
I the strain tensor &ij; i.e. 
1 

(2.2) 

where DUkl is the fourth order elastic constitutive tensor. 

2.3 Generalized Hooke's Law 

For a large number of solids, the measured strain is proportional to the load over a 

wide range of loads, which means that when the load increases, the measured strain 

increases in the same ratio. Also when the load is reduced to zero, the strain disappears. 

These experimental facts lead by inductive reasoning to the generalized Hooke's law of 

the proportionality of the stress and strain. The general form of the law is expressed by 

the statement: each of the components of the state of stress at a point is a linear function 

of the components of the state of strain at the point. Mathematically, this is expressed by 

(2.3) 

6 
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Given the 81 constants (for the 3D cases), it is fortunately possible to reduce the 

number of constants taking into account symmetry. Considering ftrst, the symmetry in the 

stress tensor 

(2.4) 

we have, 

(2.5) 

and the ftrst pair of indices can be freely interchanged. Using the symmetry of the strain 

tensor and some mathematical manipulations, it is possible to prove that the second pair 

of indices can be freely interchanged. This reduces the 81 elastic constants to 36. 

The existence of the strain energy function facilitates a further simpliftcation of 

Hooke's law. According to equation (2.2) in general one can write 

(2.6) 

This shows that the elastic constitutive tensor is symmetric. Accordingly, the number of 

independent elastic coefftcients for the general anisotropic linearly elastic material is 

reduced to 21. The elastic constitutive relation, with its 21 independent constants, can be 

written in matrix notation as 

7 
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0"11 DUll DU22 D1l33 Dll12 DUB D 1123 8 11 

0"22 D2222 D 2233 D2212 D 2213 D 2223 8 22 

0"33 D3333 D3312 D 3313 D 3323 8 33 (2.7) 
0"12 D1212 D 1213 D 1223 8 12 

0"13 Sym. D1313 D1323 813 

0"23 D 2323 8 23 

2.4 Elastic Symmetry 

A type of symmetry is expressed by the statement that the coefficients Dijkl 

remain invariant under a transformation of coordinates. Following Saada 1993, the cases 

considered here are 

1) symmetry with respect to a plane 

2) symmetry with respect to two mutually perpendicular planes 

3) symmetry of rotation with respect to one axis 

4) symmetry of rotation with respect to two mutually perpendicular axes, in other 

words isotropy 

If we consider that the transformation tensor, which consists of the direction 

cosines of the new coordinate system relative to the old one, to be Rij' i.e x; = Rijxj , the 

transformed the elastic constitutive tensor D~qrs can be found as 

(2.8) 

8 
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2.4.1 Symmetry with Respect to One Plane 

A material that exhibits symmetry of its elastic properties with respect to one 

plane is called a monoclinic material. Considering that plane is oX1 - ox2 in Fig. 2-1, this 

symmetry is expressed by the requirement that the elastic constants do not change under a 

change from the system (Xp X2,X3) to the system (x:,x;,x~). The corresponding 

transformation tensor is 

R=(~ ~ ~] 
o 0 -1 

o 

I 
I 
I 
I 

T x~ 

Fig. 2-1 Systems of coordinates for analyzing a monoclinic material 

(2.9) 

From the symmetry, the term D;123 should be equal to D1123 • Substituting R, defined in 

Eqn. (2.9), into Eqn. (2.8) leads to 

(2.10) 

9 
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This is only possible when D;I23 = Dll23 = O. A similar reasoning for D U13 ' D 2213 , D 2223 , 

D 3313 , D 3323 , D I213 and D I223 shows that the number of elements of the stiffness matrix is 

reduced to 13. The resulting matrix can be written as 

D llU Dll22 D1l33 DUl2 0 0 

D2222 D 2233 D22I2 0 0 

D3333 D3312 0 0 

Dl212 0 0 
(2.11) 

Sym. D1313 D1323 

D 2323 

2.4.2 Symmetry with Respect to Two Orthogonal Planes 

A material which exhibits symmetry of its elastic properties with respect to two 

orthogonal planes is called an orthotropic material. Considering that planes OXI - ox2 and 

OX2 - oX3 are the planes of symmetry in Fig. 2-2, this symmetry is expressed by the 

requirement that the elastic constants do not change under a change from the system 

(XI' X 2 , x3 ) to the system (x:, x; ,x~) . The corresponding transformation tensor becomes 

R=[~l ~ ~J 
o 0 -1 

(2.12) 

Similar to the case of monoclinic material, considering the symmetry and the 

transformation law simultaneously reveals that some more terms of the elastic 

10 
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constitutive tensor are equal to zero. The number of elastic constants is then reduced to 9, 

as shown in the matrix that follows 

, 

, , , , 

Fig. 2-2 Systems of coordinates for analyzing an orthogonal material 

DUll DU22 D I133 0 0 0 

D2222 D 2233 0 0 0 

D3333 0 0 0 

Dl212 0 0 

Sym. D1313 0 

D 2323 

2.4.3 Symmetry of Rotation with Respect to One Axis 

(2.13) 

A material that possesses one axis of symmetry, in the sense that all rays at right 

angles to this axis are equivalent, is called transversely isotropic or cross anisotropic. The 

symmetry is expressed by the requirement that the elastic constants are unaltered in any 

rotation () around the axis of symmetry (Fig. 2-3). Taking ox3 as the axis of symmetry, 

the direction cosines and the transformation tensor are 

11 
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[ 

cose 

R= -s~e 

sine 

cose 

o 
(2.14) 

Starting from the elastic constitutive equation, Eqn. (2.3), for both systems of 

coordinates one can write 

(2.15) 

Fig. 2-3 Systems of coordinates for analyzing a transversely isotropic material 

For a rotation of axes around ox3 the strain state in (x;,x;,x;) is expressed as 

&;1 = &11 cos2 e + 2&12 cose sine + &22 sin2 e 
&~2 = &11 sin 2 e - 2&12 cos e sin e + &22 cos2 e 
, 

&33 = &33 

&;2 = (&22 -&l1)cosesine + &12 (cos2 e -sin2 e) 
&;3 = &13 cos e + &23 sin e 
&~3 = -&13 sin e + &23 cos e 

12 

(2.16) 
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The components of the stress tensor transform exactly in the same way. Considering that 

0"~3 = 0"33' then from Eqn. (2.15) one can write 

0"~3 = D 33118;1 + D33228~2 + D33338~3 + 2(D33128;2 + D 33138;3 + D33238~3) = 

0"33 = D 33118 11 + D3322822 + D33338 33 + 2(D3312812 + D33138 13 + D3323823) 

Substituting the values for 8~ from Eqn. (2.16) into Eqn. (2.17), one can find 

D3311 ( 811 cos2 e + 2812 cos e sin e + 822 sin2 e) + 

D3322 ( 811 sin2 e - 2812 cos e sin e + 822 cos2 e) + 

D33338~3 + 2D3312 ( (822 - 811 ) cos e sin e + 812 (cos2 e - sin2 e) ) + 

2D3313 ( 813 cos e + 823 sin e) + 2D3323 (-813 sin e + 823 cos e) = 

D 33118 11 + D3322822 + D33338 33 + 2(D3312812 + D33138 13 + D3323823) 

(2.17) 

(2.18) 

Equating to zero the sum of the coefficients of 8 11 in the above relation, one can find that 

for all values of e , 

(D3311 - D3322)sin
2 B+ 2D3312 sinBcosB = a (2.19) 

from which it follows that 

(2.20) 

Considering 8 22 and 8 12 , leads to the same results. Equating the sum of the coefficients 

of 813 and 8 23 to zero results in 

(2.21) 
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Similar manipulations can be performed for 0"13 and 0";3' and once again by considering 

the sum ofthe coefficients of &11' it can be concluded that 

(2.22) 

The sum of the coefficients of &12 , when equated to zero, leads to 

(2.23) 

while the sum of the coefficients of &13 yields the relation 

(2.24) 

Repeating the steps for 0"11 and 0";1' one can fmd, after equating to zero the sum of the 

coefficients of &ll' &22 and &33' that 

(2.25) 

The sum of the coefficients of &12' when equated to zero, yields 

(2.26) 

Finally, considering the sum of the coefficients of &13 in the equation obtained from 0"23 

and 0";3' we get 

14 
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(2.27) 

The constitutive matrix, with its five remaining independent constants, can now be 

simplified to 

D1111 D1122 D1133 0 0 0 

D1111 D 1133 0 0 0 

D3333 0 0 0 

1 
2"( D1111 -D1122 ) 0 0 

(2.28) 

Sym. DI313 0 

D1313 

2.4.4 Isotropy 

An isotropic material possesses elastic properties that are independent of the 

orientation of the axes. In other words, it is a material which possesses a rotational 

symmetry with respect to two perpendicular axes. By repeating the argument of the 

previous subsection, one obtains 

(2.29) 

so that, there are only 2 independent terms remaining in the constitutive matrix 

15 
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·1 
I 

DUll D1122 D1l22 0 0 0 

j D1111 D1122 0 0 0 

.1 D1111 0 0 0 

! 1 

! 
2" (D1111 - D112J 0 0 (2.30) 

1 
Sym. 2" (D1111 -DI122 ) 0 

1 
I 

2" (D1111 - D112J 
I 

'I 
I 
i 

The elastic coefficients in Eqn. (2.30) are often expressed using Lame's constants (A, Jl) 

1 
D1122 =A ; DI212 =2"(D1111 -DI122 )=Jl ; D11ll = A+ Jl (2.31) 

A+Jl A A 0 0 0 

A+Jl A 0 0 0 

A+Jl 0 0 0 

Jl 0 0 
(2.32) 

Sym. Jl 0 

Jl 

and the constitutive equations can be expressed in index notation as 

-A6ij 1 
s .. = (J" +-0" .. 

I] 2Jl(3A + 2Jl) nn 2Jl I] 

(2.33) 

where 6ij = 1 if i = j and 6ij = 0 otherwise. 

The two independent constants most often considered in engineering are however 

.. j the elastic modulus, E, and Poisson's ratio, v . Under a uniaxial state of stress 0"11 

16 
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IL + J1 0'"11 
5 = 0'" =-

11 J1(31L+2J1) II E 

-IL v 
5 = 0'" = --0'" 

22 2J1(3A + 2J1) 11 E 11 
(2.34) 

-A v 
5 = 0'" = --0'" 

33 2J1(3A + 2J1) 11 E 11 

Poisson's ratio is thus the ratio between the lateral contraction and the axial elongation 

under a uniaxial stress condition. From Eqn. (2.34) elastic modulus and the Poisson's 

ration are 

E=J1(3A+2J1) . V= A 
A+ J1 ' 2(A+ J1) 

(2.35) 

2.5 Equivalent Transversely Isotropic Material 

The elastic constitutive model for transversely isotropic material was presented in 

the previous subsection. This type of material has 5 independent constants. In terms of 

elastic modulus and Poisson's ratio, with five independent variables of E",Ev' v", v"v and 

J1"v' the elastic constants of the constitutive tensor for a transversely isotropic material 

can be expressed as 

where 

DUll = D2222 = E"(l-vv"v,,v)Y 

D3333 = Ev(l- V/~)Y 

Dll22 = E"(v,, +vv"v"JY 

DIl33 = E" (vv" + vv"v,,)Y = Ev (v"v + v"vv,,)Y 

D1212 = J1" 

D1313 = /-l,," 

17 
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-!(D -D )_ E" 
fi" - 2 1111 1122 - 2(1 + v,,) (2.37) 

E" vV" = Ev v"v 

In the above, the symmetry of rotation is around the vertical axis (v) and plane of 

isotropy is horizontal (h ). Poisson's ratio, v ij' corresponds to a contraction in directionj 

;1 
! when an extension is applied in direction i. 

As pointed out in the first chapter, the strength and the mechanical behavior of a 

medium consisting of parallel layers of different materials, under certain conditions can 

be approximated by an 'equivalent' homogeneous cross-anisotropic material (e.g. Wardle 

and Gerrard 1972, Brittan et al. 1995, Niemunis et al. 2000, Stolle and Guo 2007, Guo 

and Stolle 2009). What follows in this subsection is the determination of the material 

properties of the "equivalent" transversely isotropic material in the elastic range 

(Salamon 1968). 

Fig. 2-4 shows a simple case of a stratified medium consisting of a large number 

of alternating parallel layers of two homogeneous, isotropic materials for which the 

elastic behavior of each layer is given by Lame's constants (~,f1J), and (~,fi2)' 

respectively. The layer thickness for the first material is dl ; for the second is d2 • The 

z-axis is taken perpendicular to and the x and y axes that are parallel to the layers. The 

height of the parallelepiped is n(dl + d2 ), where n is an integer, providing a RVE with 

length and width of a and b , respectively. 

18 
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I z 

I 
,I 

I 
b 

x 

Fig. 2-4 Schematic of an idealized stratified medium 

To find the properties of the equivalent transversely isotropic medium, the 

behavior of the system shown in Fig. 2-4 should be analyzed for various loading 

conditions. Suppose that on the faces perpendicular to the z axis a normal traction Zz' is 

exerted and that there are no tangential components Zx = Zy = O. On the faces 

perpendicular to the x -axis also consider only normal tractions, Xxi on the layers (1) and 

X X2 on the layers (2). Similarly, on the faces perpendicular to the y-axis assume normal 

tractions ~I and ~2 .The normal tractions X and Y, are such that 8.0;1 = 8 x.<2 = 8 xx and 

8 yyl = 8 yy2 = 8 yy' where 8.0;1 is the linear dilatation of a line element in the direction of the 

x-axis in material (1), etc. This restriction is necessary to insure the continuity of the 

displacement. 

From Hooke's law, one can write for materials (1) and (2) 

19 
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X x1 = (~ + 2Jlt)sxx + ~Syy + ~szzl 

¥;,1 = ~SXt + (~ + 2Jlt)syy + ~szzl 

Zz =~SXt+~Syy+(~ +2Jlt)szzl 

X x2 = (~+ 2fl2)sxx + ~Syy + ~szz2 

¥;,2 = ~sxx + (~ + 2fl2)Syy + ~szz2 

Zz = ~sxx + ~Syy + (~+ 2fl2)szz2 

(2.38)a 

(2.38)b 

In above the traction on the face perpendicular to the z -axis is Zz. The average tractions 

on a face perpendicular to the x and y become 

x = d1Xx1 + d2X x2 
x d1 +d2 

Form Eqn. (2.38), and Eqn. (2.39) one can find 

(d1 +d2)Xx =SXX[d1(~ +2Jlt)+d2(~ + 2fl2)] + 

Syy(d1~ +d2~)+SZZl~d1 +szz2~d2 

(d1 +dJ¥;, =SxJd1~ +d2~)+syy[d1(~ +2Jlt)+d2(~ + 2fl2)] + 

szzl~d1 +szz2~d2 

(d1 +dJZz =SXt(d1~ +d2~)+syy(d1~ +d2~)+ 

szzld1 (~ + 214) + szz2d2 (~ + 2fl2) 

If szz' the overall dilation of a linear element parallel to the z axis, is defined as 

20 
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(2.41) 

Then from Eqns. (2.38) and (2.41) one can fmd 

(dl + d2)(~ + 2,u2)&ZZ -(~ -~)( &)X + &yy )d2 
&zzl = dl (~+2,u2)+d2 (~+2.ur) 

(2.42) 

Substituting Eqn. (2.42) into Eqn. (2.40) leads to 

x = & (dl +dJ2 (~+2.ur)(~ +2,u2)+dld2 [[(~ +2.ur)-(~ +2,u2)J -(~ _~)2J 
x )X D 

~~ (dl + d2)2 + 2( dl~ + d2~)(,u2dl + .urdJ 
y =& 

Y )X D 

(dl +dJ2 (~+2.ur)(~ +2,u2)+dld2 [[(~ + 2.ur)-(~ +2,u2)J -(~ _~)2J 
+~ D 

(dl + d2)[ ~dl (~+ 2112) + ~d2 (AI + 2/lr)] 
+&zz D 

21 
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Zz =(Bxx+BJY)(dj +d2)[dj~(~ +~f-i2)+d2~(~ +2J4)J 

(dj +dJ2(~ +2J4)(~ +2f-i2) 
+Bzz D 

(2.43) 

Following the same approach by applying a tangential traction ~ to the faces 

perpendicular to the z -axis, one can write 

(2.44) 

Thus: 

(2.45) 

In a similar way 

(2.46) 
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i 
! 
1 

Yz -.. ~----------------

Fig. 2-5 Schematic of an idealized stratified medium (Salamon 1968) 

The next step is to apply a tangential force Xy1ad1 to the faces perpendicular to 

the y -axis of the layers of material (1), and a tangential force X y2ad2 to the faces of 

material (2). Note that cxyl should be equal to cxy2 to insure the continuity of the 

displacement. Considering X y1 = fltcxy and X y2 = J.l2cxy' there is 

(2.47) 

Comparing these results with the constitutive equations for a transversely 

_l isotropic material in (2.36) one can conclude that, when viewed on a proper scale, the 

layered medium may be considered as transversely isotropic medium with the elastic 

constants as follow 
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(di + d2)2 (~ + 2flt)( ~ + 2P2)+4dId2 (flt - P2)[ (~ + flt)-( ~ + P2)] 
D1111 = (di +d2)[ dl (~+2P2)+d2 (~+2flt)] 

(di +d2)2 ~~ +2(~dl +~d2)(fltd2 + Jlzdl ) 
D1122 = (di +d2)[ dl (~+2P2)+d2 (~+2flt)] 

(di +dJ[ ~dl (~+2Jlz)+~d2 (~+2flt)] 
DI133 = (di +d2)[ dl (~+2P2)+d2 (~+2flt)] 

24 
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CHAPTER 3 

EXPERIMENTAL PROGRAM 

3.1 Introduction 

The experimental study to investigate the properties of the "equivalent" 

transversely isotropic material in the elastic range is presented in this Chapter. This 

involves selecting and describing the materials used in the investigation, sample 

preparation techniques, testing methods/setups and the equipment used. The data analysis 

and the discussion of the results are presented in the chapter that follows. 

3.2 Materials 

Based on some preliminary tests on some clay, sand and mixed materials, such as 

Ottawa clay, crushed limestone sand, Dundas clay and kaolinite, the two materials 

selected for the investigation were brown Dundas clay (passing sieve #25) and kaolinite 

(passing sieve #50). The layered composite was fabricated by consecutive layering of 

these two clays. Details of sample preparation are presented later in this Chapter. 

Experiments presented here were all performed while keeping track of only total 

stresses, i.e. the samples were not fully saturated and were prepared at a certain water 

. i content. The excess pore water pressure was not measured. 
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3.3 Image Processing Procedure 

For measurements of lateral (horizontal) deformations in the triaxial tests 

I conducted in this study an image processing technique was employed. The axial (vertical) 

i displacement was easily measured by a transducer mounted on the top of the shaft that 

~I 

'I applied the vertical load. During each test, the vertical displacement was recorded by a 

,I data acquisition system and stored to the hard drive of the computer. Simultaneously, the 
1 

sample was photographed at a constant rate and pictures were also stored to the hard 

drive of the computer for later image processing. By analyzing the shape of the sample in 

the photos, via Photoshop, the lateral deformation of the sample could be determined. 

Fig. 3-1 shows a 6-layer specimen that was considered for the image processing. 

To calculate the average horizontal strain, the diameter of each layer was measured at the 

beginning of the test. The horizontal displacements of the sample for the various layers 

were then obtained by interpreting the images. The average lateral strain was taken to be 

the average of the lateral strains of all the layers. The same process was repeated for all 

specimens. It should be noted that the lateral strains were determined only for those 

layers in the central portion to eliminate the influence of boundary effects. 

3.4 Phase I 

Based on the sample preparation technique, the number of the layers in a sample, 

,j and testing procedures the experimental study in this work was divided in two phases. 

Phase I was the preliminary phase, where the elastic range of the materials and the 

26 
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required stress level were determined, and the sample preparation technique was 

perfected. 

Fig. 3-1 A layered sample in the triaxial cell, measurements of vertical and lateral deformations 

3.4.1 Test Specimens 

In the early stages to investigate the sample preparation technique, bulk samples 

of Dundas clay and kaolinite were remolded in a cylindrical mold, 7 cm in diameter and 

30 cm high (see Fig. 3-2). The inside of the mold had been sprayed with Teflon to reduce 

the friction between soil and mold, and thus reduce the sample disturbance during 

molding and extraction of the sample from the mold. Dundas clay samples with 20%, and 

kaolinite samples with 14% moisture contents were consolidated in 12 layers of about 

2 cm thickness (almost 300g) under an axial stress of 48 kPa. Each layer was kept under 
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pressure for 5 min. To prevent separation between the layers, the surface of each 

consolidated layer was scratched with a sharp instrument before adding the next layer. 

The bulk sample within the mold was then kept under 48 kPa axial stress for an 

additional consolidation time of 48 hrs. 

The bulk samples were then extracted from the mold by a hydraulic jack and cut 

perpendicular to the axis of the cylinder, to provide the different layers of the sample 

shown in Fig. 3-3. The layered samples consisted of 6 layers, 3 layers from Dundas clay 

and the other 3 layers from kaolinite. Thereafter each sample was wrapped in plastic-

wrap and placed in the moisture room for another 48 hrs. The layered samples of the type 

shown in Fig. 3-3, with an approximate height of IDem, are called Sample A herein. 

Fig. 3-2 Preparation of bulk samples of Dundas clay and kaolinite 
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Fig. 3-3 Layered specimens investigated in phase one; consisting 3 layers of Dundas clay and 3 layers 
of kaolinite; Sample A (7cm in diameter and 10 cm high) 

To investigate the behavior of each individual material, the bulk homogeneous 

samples of Dundas clay and kaolinite were also prepared and examined in triaxial tests. 

To simplify the process of sample preparation and to obtain samples with more 

consistent properties, the sample preparation technique for the layered samples was 

modified as follows. The process was almost the same as what has been described with 

the exception that when making the bulk samples of Dundas clay and kaolinite, after 

compacting each of the 2 cm thickness (almost 300g) layers, a thin layer offme sand was 

placed on top of the compacted layer. Presence of the thin layer of sand eliminated the 

need for cutting the sample and thus reduced the sample disturbance. Also, measurements 
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of the moisture content within a layer at different location, e.g. at the center and close to 

the edges, proved that this method helped to provide a material with less variation in the 

moisture content; see Appendix. Hence the addition of the sand layers both simplified the 

process and helped obtain layers with more consistent mechanical behavior. A bulk 

sample of kaolinite prepared with this method is shown in Fig. 3-4. After removing the 

samples from the moisture room the thin layers of sand were removed and the layers 

were put back together to form the sample shown in Fig. 3-3. 

Sand Layer 

Fig. 3-4 Bulk sample of kaolinite, layers of kaolinite separated by presence of thin layers of sands in 
between them 
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I 
3.4.2 Test Setup 

:1 

After allowing stress relaxation of the samples in the moisture room and allowing 

, 
I 

i 
them to reach a state of equilibrium, the specimens were subsequently removed from the 

moisture room and transferred to the base of the triaxial cell and enclosed in a membrane. 

1 To minimize the end friction effects two layers of membrane, with silicon grease in 

between, were placed between the sample and loading platens. Proper cuts were made on 

the membranes to allow free lateral expansion of the sample. The confIning pressure was 

applied to the sample by controlling the air pressure inside the triaxial cell, and then the 

sample was failed by applying a vertical displacement via the bottom loading platen. 

3.4.3 Experimental Results 

The stress-strain and deformation characteristics of the layered and homogeneous 

samples are presented in Fig. 3-5. The variation of vertical stress and horizontal strain 

with increasing vertical stress are shown in Fig. 3-5a and Fig. 3-5b, respectively. 

From the stress-strain curves in Fig. 3-5a one can observe three distinct stages for 

each curve. Considering the kaolinite sample, at the axial strain range between 0% to 2% 

it is clear that the imperfection in the system influences the results and a stiffening is 

observed that corresponds to the compliance associated with fabrication and seating 

being eliminated. From 2% to 5% the stress-strain curve resembles a fairly linear 

behavior, and beyond 5% the plastic behavior dominants until the sample fails. To find 

the elastic properties of the samples, the linear part of the stress-strain path must be 

considered, as shown in Fig. 3-6 to Fig. 3-8 . 
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Fig. 3-5 Variation of (a) vertical stress and (b) horizontal strain with vertical strain for the layered, 
kaolinite and Dundas clay samples 
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Fig. 3-6 Variation of (a) vertical stress and (b) horizontal strain with vertical stress for kaolinite 
sample at the elastic range 
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Fig. 3-7 Variation of (a) vertical stress and (b) horizontal strain with vertical stress for Dundas clay 
sample at the elastic range 
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Fig. 3-8 Variation of (a) vertical stress and (b) horizontal strain with vertical stress for layers sample 
at the elastic range 
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To find the elastic constants the linear best fits were evaluated for each curve, 

with the slopes providing the elastic modulus and Poisson's ratio. The elastic modulus of 

the layered sample is between the elastic modulus of the constituent materials, as it was 

expected; i.e. 

Ekaolinite = 15.25 MPa ; vkaolinite = 0.388 

EDlIndascaly = 30.5 MPa ; vDlIlldascaly = 0.414 

ELayeredsample =17.23 MPa ; vLayeredsample =0.417 

The general failure trend observed after each test was shear cracking in the 

samples as shown in Fig. 3-9 for the Dundas clay sample. 

Fig. 3-9 Failure mechanism for Dundas clay sample in a triaxial compression test 
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3.5 Phase II 

After having identified the elastic range of the samples, in Phase II of the 

experimental program the samples were tested only for that range. The experiments in 

Phase II focused on determining the elastic constants. 

3.5.1 Test Specimens 

The sample preparation method was the same as for Phase I, with the exception 

being that samples were also prepared in 12 layers (6 layers of Dundas clay and 6 layers 

of kaolinite) as shown in Fig. 3-10. These samples are referred to as Sample B type. 

Fig. 3-10 Layered specimens investigated in phase two; consisting 6 layers of Dundas clay and 6 
layers of kaolinite; Sample B (7cm in diameter and 10 cm high) 
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3.5.2 Test Setup 

Samples were tested in a triaxial apparatus, however to find the elastic properties 

they were tested under both cyclic axial and lateral loading. Based on the results of Phase 

I, the stress level was selected so that the samples remained in the elastic range. To have 

a better control of applied confining pressure, the triaxial chamber was filled with water 

and the confining pressure was applied to the sample by controlling the water pressure, 

rather than by air. To minimize the effects of sample preparation flaws, e.g. the small 

gaps between the layers in Fig. 3-10, the samples were kept under the hydrostatic 

pressure for a duration of two days. This also helps to eliminate the unrepresentative 

stress-strain behavior observed at the first stage of the tests in Fig. 3-5. 

Keeping the stress level at the elastic range enabled the samples to be reused for 

more than one loading path. This helped save time and lead to more consistent results, 

since making identical samples would have been exceptionally difficult. Fig. 3-11 and 

3-12 show a schematic and actual test setup used for this phase ofthe study, respectively. 

Cell Pressure Vertical load 

Static load High pressure Static load High pressure 

Ratio Adjuster 

OUT 

OUT 

Fig. 3-11 Schematic of the test setup used in phase two, stress path setup 
38 
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Fig. 3-12 Test setup used in phase two, stress path setup 

3.5.3 Experimental Results 

In the first family of the tests, a triaxial sample of the Sample A type, was tested 

under a cyclical axial load. The confining pressure was kept constant throughout the 

experiment at 0'3 = 48 kPa . During the first stage the load was applied as a square wave 

varying from 0'1 = 160kPa to 0'1 = 200kPa for 5 cycles as shown in Fig. 3-13. 

The averaged states of vertical stress and vertical stress at the extremums of the 

applied load are shown in Fig. 3-14a. For the next stage of the test, the magnitude of the 

cyclic vertical load on the sample was varied from 0'1 = 200 kPa to 0'1 = 240 kPa, again 

for 5 cycles and in a square wave form. The same procedure was followed for the last 

stage but with the loading interval of 0'1 = 240 kPa to 0'1 = 253 kPa. Mohr circle 

representation of the testing procedure is presented in Fig. 3-15. The vertical 

displacement of the sample and the average change in the radius of central layers at each 

stress level are listed in Table 3-1. Note that the initial height of the sample was 10.1 cm. 
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Fig. 3-13 Loading process in phase two, stress path loading pattern 
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A linear trend was observed in the stress-strain behavior as was expected. To fmd 

the elastic constants the lines of best fit were determined as shown in Fig. 3-14. 

The same Sample A was then tested under cyclic lateral load, while keeping the 

vertical stress constant equal to 150 kPa. The loading intervals were chosen to be 

0'"3 = 48 -150 kPa, 0"3 = 150 - 250 kPa and 0"3 = 250 - 350 kPa, with 5 cycles for each 

interval. The Mohr circle representation of the testing procedure is presented in Fig. 3-16, 

and the test results, in the form of averaged states of lateral stress and axial/lateral strain 

at the load extremums, are presented in Fig. 3-17. The vertical displacement of the 

sample and the average change in the radius of central layers at each stress level are listed 

in Table 3-2. Once again a linear pattern was observed in the stress-strain behavior. The 

linear best fits were used in the identification of elastic characteristics. 
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Table 3-1 Results of triaxial test with cyclic axial load on Sample A; the vertical displacement of the 
sample and the average change in the radius of central layers at different stress levels 

Vertical Stress (kPa) 200 240 253 

Vertical Displacement (mm) -0.234078 -0.504847 -0.573579 

Change in Radius (mm) 0.028 0.0525 0.0637 

(a) 300 

y = 15781x + 162.41 
250 

'iii' 
a... 200 
~ 
en 
en 
~ 150 

U5 
ro 
u 

100 :e 
OJ 
> 

50 

0 

0 0.001 0.002 0.003 0.004 0.005 0.006 

Vertical Strain 

(b) 0 

-0.0002 

-0.0004 

-0.0006 
y = -0.3091x - 3E-05 

c -0.0008 
.~ • 
...-

-0.001 CJ) 

1.i1 
-0.0012 OJ 

ro 
--l 

-0.0014 

• -0.0016 

-0.0018 

-0.002 

0 0.001 0.002 0.003 0.004 0.005 0.006 

Vertical Strain 

Fig. 3-14 Results of triaxial test with cyclic axial load on Sample A; (a) averaged states of vertical 
stress and vertical strain at the load extremums and the best fit to the experimental data and (b) 
variation oflateral strain versus vertical strain and the linear best fit 
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Fig. 3-15 Mohr circle representation of a triaxial test with cyclic axial load; 

S = (O"v +0",,)/2 t = (O"v -O"h)/2 , 

t (KPa) 
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Fig. 3-16 Mohr circle representation of a triaxial test with cyclic lateral load 

42 



I 

:1 
- ~ 

M.Eng. Project - F. Vatandoost McMaster - Civil Engineering 

Table 3-2 Results of triaxial test with cyclic lateral load on Sample A; the vertical displacement of the 
sample and the average change in the radius of central layers at different stress levels 

Horizontal Stress (kPa) 

Verticai Displacement (mm) 

Change in Radius (mm) 

(a) 350 

300 

250 
r0-
c... 
~ 200 
!fJ 
!fJ 

~ 
150 Ci5 

~ 
OJ 100 rn 
....J 

50 

0 

0 

(b) 350 

300 

250 
r0-
c... 
~ 200 
!fJ 
!fJ 
~ 

150 Ci5 
~ 
OJ 

100 rn 
....J 

50 

0 
-0.012 

• 

150 

0.454512 

-0.136 

0.002 

• 

0.004 

250 

0.979731 

-0.243 

y = 30689x + 39.037 

• 

0.006 0.008 

Lateral Strain 

y = -21636x + 49.698 

0.01 

-0.01 -0.008 -0.006 -0.004 -0.002 0 

Vertical Strain 

300 

1.11154 

-0.2865 

Fig. 3-17 Results of triaxial test with cyclic lateral load on Sample A; (a) averaged states of lateral 
stress and lateral strain at the load extremums and the best fit to the data; (b) averaged states of 
lateral stress and vertical strain at the load extremums and the best fit to the data 
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For the second family of tests a triaxial sample of Sample B type was tested under 

a cyclic axial load. Analogous to the previous tests, the confining pressure was kept 

constant at a3 = 48 kPa. In the first stage the load was applied in a square wave form 

varying from a 1 = 154kPa to 0"'1 = 192kPa for 5 cycles. The cyclic axial load intervals 

for the next stages of the test were a1 = 192-230kPa and 0"'1 = 230-242kPa, 

respectively. Table 3-3 presents the displacement of the sample and the average change in 

the radius of central layers at each stress level. 

As illustrated in Fig. 3-18a, a linear trend was observed in the stress-strain 

behavior. The linear best fit to the experimental data in Fig. 3-18a and Fig. 3-18b was 

used to identify the elastic properties of the sample. 

The same sample was also tested under cyclic lateral load, with constant vertical 

stress of 0"'1 = 150 kPa. The loading intervals were chosen to be a3 = 49 -150 kPa , 

0"'3 = 150 - 250 kPa and 0"'3 = 250 - 300 kPa, with 5 cycles for each interval. Table 3-4 

presents the displacements of the sample at each stress level. The test results, in the form 

of averaged states of lateral stress and axial/lateral strain at the load extremums, are 

presented in Fig. 3-19. The linear pattern that was observed in the first two intervals was 

selected to find the linear best fits in Fig. 3-19a and Fig. 3-19b. Sample B tested here was 

10.3 high. 
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Table 3-3 Results of triaxial test with cyclic axial load on sample B; the vertical displacement of the 
sample and the average change in the radius of central layers at different stress levels 

Vertical Stress (kPa) 192 230 242 

Vertical Displacement (rum) -0.229315 -0.477598 -0.551666 

Change in Radius (rum) 0.028 0.063 

(a) 

(b) 

300 

y = 16200x + 155.71 
250 
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0+--------------------------------------, 
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en 
~ 
Q) 

'til -0.0015 
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-0.002 

y = -0.381x + 1E-05 

-0.0025 +----r-----.------r------.-----,----I 
o 0.001 0.002 0.003 0.004 0.005 0.006 

Vertical Strain 

0.0705 

Fig. 3-18 Results oftriaxial test with cyclic axialload on sample B; (a) averaged states of vertical 
stress and vertical strain at the load extremums and the best fit to the experimental data and (b) 
variation of lateral strain versus vertical strain and the linear best fit 
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Table 3-4 Results of triaxial test with cyclic lateral load on sample B; the vertical displacement of the 
sample and the average change in the radius of central layers at different stress levels 

Lateral Stress (kPa) 150 250 300 

Vertical Displacement (mm) 0.498521 0.824425 0.8755172 

Change in Radius (mm) -0.113 -0.215 -0.23 

(a) 350 

300 III 

250 Y = 32927x + 46.578 
r0-
c... 
~ 

200 <Jl 
<Jl 
~ -CJ) 150 
~ 
Cll 
iii 100 ...J 

50 

0 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 

Lateral Strain 

(b) 350 

300 iii! 

ro- 250 • 
c... 
~ 

200 <Jl 
<Jl 
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~ 
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iii 100 ...J 

Y = -25434x + 39.491 

50 

0 

-0.01 -0.008 -0.006 -0.004 -0.002 0 

Vertical Strain 

Fig. 3-19 Results of triaxial test with cyclic lateral load on sample B; (a) averaged states of lateral 
stress and lateral strain at the load extremums and the best fit to the data; (b) averaged states of 
lateral stress and vertical strain at the load extremums and the best fit to the data 
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The properties of the homogeneous samples, i.e. Dundas clay and kaolinite, were 

tested in similar manner using the same stress path and loading sequences. The results of 

triaxial tests with cyclic axial load on a sample of Dundas clay are presented in Fig. 3-20. 

The prepared Dundas clay sample was 10.9 cm high. The cyclic axial load intervals were 

0'1 =148-215kPa, 0'1 = 215-240kPa and 0'1 = 240-255kPa. The linear best fit to the 

i 

-I 
! 

obtained data is presented in Fig. 3-20a and Fig. 3-20b and could be used to identify the 

elastic properties of Dundas clay. 

The behavior of Dundas clay in triaxial test with cyclic lateral load, under a 

constant vertical stress, is presented in Fig. 3-21. The loading intervals were chosen to be 

0'3 = 49 -150 kPa , 0'3 = 150 - 250 kPa and 0'3 = 250 - 300 kPa. The linear best fits are 

presented in Fig. 3-21b and Fig. 3-21b. Fig. 3-22 and Fig. 3-23 present the results of 

similar tests on kaolinite. The koalinite sample was 11.3 cm high. 

As mentioned earlier, the experimental results presented in this chapter 

investigated the elastic properties of layered system to confirm the concept of 

"equivalent" transversely isotropic material. The data analysis of the results and 

identification of material properties is presented in the following chapter. 
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Table 3-5 Results of triaxial test with cyclic axial load on Dundas clay; the vertical displacement of 
the sample and the average change in the radius of central layers at different stress levels 

Vertical Stress (kPa) 

Vertical Displacement (mm) 

Change in Radius (mm) 

(a) 300 

250 

~ 200 
~ 

U; 

'" ~ 
150 en 

!ii 
u 
:e 100 <Il 
> 

50 

0 

0 

(b) 0 
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c 
.~ 

en 
~ -0.0008 

~ 
...J 
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0.003 

• 
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0.0462 
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0.004 

• 

-0.0016 +-------,-------,-----.---------i 
o 0.001 0.002 

Vertical Strain 

0.003 0.004 

Fig. 3-20 Results of triaxial test with cyclic axial load on Dundas clay; (a) averaged states of vertical 
stress and vertical strain at the load extremums and the best fit to the experimental data and (b) 
variation oflateral strain versus vertical strain and the linear best fit 
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Table 3-6 Results of triaxial test with cyclic lateral load on Dundas clay; the vertical displacement of 
the sample and the average change in the radius of central layers at different stress levels 

Vertical Stress (kPa) 150 250 300 

Vertical Displacement (mm) 0.190751 0.545341 0.654261 

Change in Radius (mm) -0.0324 -0.156 -0.1729 

(a) 350 

300 Y = 39994x + 86.858 • 

ro 250 
c... 
~ 

200 <n 
<n 
~ 

U5 150 
~ 
Q) 

iii 100 --l 

50 
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~ ..... 

U) 

~ 
150 • 

Q) 

iii 100 --l Y = -38252x + 67.209 

50 

0 

-0.007 -0.006 -0.005 -0.004 -0.003 -0.002 -0.001 0 

Vertical Strain 

Fig. 3-21 Results of triaxial test with cyclic lateral load on Dundas clay; (a) averaged states of lateral 
stress and lateral strain at the load extremums and the best fit to the data; (b) averaged states of 
lateral stress and vertical strain at the load extremums and the best fit to the data 

49 



M.Eng. Project - F. Vatandoost McMaster - Civil Engineering 

Table 3-7 Results of triaxial test with cyclic axial load on kaolinite; the vertical displacement of the 
sample and the average change in the radius of central layers at different stress levels 

Vertical Stress (kPa) 215 241 255 

Vertical Displacement (mm) -0.555988 -1.002792 -1.127560 

Change in Radius (mm) 0.0666 0.1172 0.1406 

(a) 300 

y = 10044x + 156.32 
250 

r0-
Il. 200 
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II) 
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~ 150 en 
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'E 
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-0.005 

0 0.004 0.008 0.012 

Vertical Strain 

Fig. 3-22 Results of triaxial test with cyclic axial load on kaolinite; (a) averaged states of vertical 
stress and vertical strain at the load extremums and the best fit to the experimental data and (b) 
variation of lateral strain versus vertical strain and the linear best fit 
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Table 3-8 Results of triaxial test with cyclic lateral load on kaolinite; the vertical displacement of the 
sample and the average change in the radius of central layers at different stress levels 

Vertical Stress (kPa) 150 250 300 

Vertical Displacement (mm) 0.757118 1.864538 2.147421 

Change in Radius (mm) -0.1112 -0.347 -0.4503 

(a) 350 

300 

til 250 y = 17914x + 75.684 
n. 
e-
rn 200 rn 
~ -C/) 
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Q) 
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-0.02 -0.015 -0.01 -0.005 o 

Vertical Strain 

Fig. 3-23 Results of triaxial test with cyclic lateral load on kaolinite; (a) averaged states of lateral 
stress and lateral strain at the load extremums and the best fit to the data; (b) averaged states of 
lateral stress and vertical strain at the load extremums and the best fit to the data 
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CHAPTER 4 

ANALYSIS AND VERIFICATION 

4.1 Introduction 

The experimental data obtained in the previous chapter is analyzed next, with the 
, 

'I 
1 

elastic properties of Dundas clay and kaolinite and the layered samples made of these 

materials being identified. The material properties of the layered material, i.e. the 

"equivalent" transversely isotropic material, are obtained from the experiments conducted 

on Samples A and B and a comparison is made between the measured and calculated 

material properties of the "equivalent" transversely isotropic material. Finite element 

simulations of the tests were carried out to further investigate the behavior the equivalent 

material with the FE results being compared to the results obtained from the 

mathematical formulation and experiments. 

4.2 Elastic Characteristics of the Equivalent Transversely Isotropic Material 

In this section, the elastic constants of the equivalent transversely isotropic 

material (Samples A and B) are identified. The following subsection identifies the elastic 

constants from the experimental test data. In the subsequent subsection, the elastic 

constants of the equivalent transversely isotropic samples are estimated based on the 

equations presented in Chapter 2 together with the properties of constituent materials 

identified from the experiments. 
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4.2.1 Properties a/the Layered Samples a/Types A and B 

To find the properties of the equivalent transversely isotropic material, first the 

properties of the constituents must be identified. 

It should be noted that only normal components of stress and strain were involved 

in the experiments presented in Chapter 3. For an isotropic material, such as Dundas clay 

and kaolinite, the elastic constitutive relation can be simplified to 

1 -v -v 

rll} 
E E E 

F'} 
1 -v 

(4.1) ~22 = E E 
(J"22 

8 33 1 
0-33 

Sym. 
E 

Note that in the triaxial tests with cyclic axial load the stress rates were such that 

0-11 = 0-22 = 0 and 0-33 *- O. Strain state was such that the lateral strains were equal, i.e. 

&11 = &22· Considering the loading conditions in the cyclic axial and cyclic lateral triaxial 

tests with the results presented in Fig 3-20 and Fig 3-21 on Dundas clay, one can obtain 

usmg Eqn. (4.1): E=27.09 MPa, v=0.352, EI(2v) = 38.25 MPa and 

E I (1-v) = 39.99 MPa. The results for the cyclic lateral triaxial test can be reinterpreted 

as E = 26.26 MPa, v = 0.343 . Averaging the obtained values of the elastic constants for 

Dundas clay leads to 

EDlllldasciay = 26.68 MPa ; vDlllldasciay = 0.348 

(4.2) 

ADlllldasciay = 22.66 MPa ; JlDlllldasciay = 9.9 MPa 
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With the same argument for the results presented in Fig 3-22 and Fig 3-23 for 

kaolinite under cyclic axial load, it can be concluded that E = 10.04 MPa, v = 0.392, 

and E / (2v) = 12.18 MPa, E / (1-v) = 17.91 MPa. The results for the cyclic lateral tests 

can be expressed as E = 10.32 MPa, v = 0.424, thus by averaging one finds 

Ekaolillite = 10.18 MPa ; vkaolillite = 0.408 

(4.3) 

Akaolillite = 16.03 MPa ; Jlkaolillite = 3.615 MPa 

Considering only normal components of the stress and strain, for an elastic 

transversely isotropic material the elastic stress-strain relationship can be simplified as 

(also see Eqn. (2.36)) 

1 -v" -vv" 

rll} 
E" E" Ev 

FI} 1 -vv" (4.4) ~22 = 
E" Ev 

CT22 

l'33 
1 

CT33 

Sym. 
Ev 

The symmetry of rotation is around the vertical axis (v) or direction 3 and plane of 

isotropy is horizontal (h) parallel to the plane 1-2. The dot above the stresses and strains 

should be interpreted as change in stress and strain. 

The results presented in Fig 3-14,17,18 and 19, were obtained from triaxial tests 

with cyclic vertical load on Samples A and B, respectively, such that 0-11 = 0-22 = O. Thus 
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I 
the only non-zero component of stress tensor was 0-33 • The strain state was such that the 

I 
lateral strains were equal, i.e. 811 =822 • Considering the pair (833 ,0-33 ) in Eqn. (4.4) and 

I 
the linear best fit from Fig 3-14a it can be shown that Ev = 15.78 MPa. Also from Eqn. 

(4.4), and the linear best fit shown in Fig 3-14b one can find that vvll = 0.3091. Based on 

similar arguments with respect to the results presented in Fig 3-18, another evaluation of 

the aforementioned parameters are Ev = 16.2 MPa and vvll = 0.381. 

At this point it is worth to recall that Sample A consists of alternates of 3 layers of 

Dundas clay and 3 layers of kaolinite while Sample B consists of 6 layers of each of the 

aforementioned homogeneous materials. 

The results presented in Fig 3-17 and Fig 3-19, are from triaxial tests with cyclic 

lateral load with a constant vertical stress on Samples A and B, respectively. The loading 

condition is such that 0-33 = 0 and the other two components of stress tensor are equal and 

non-zero 0-11 = 0-22 "* o. Once again, the strain state is such that the lateral strains are 

linear best fits in Fig 3-17a it can be concluded that Ell l(l-v,J = 30.69 MPa. Also from 

the linear best fit shown in Fig 3-17b there is E v /(2vvll )=21.64 MPa. From Fig 3-19, 

another evaluation of the abovementioned terms are Ell I (1- vll ) = 32.93 MPa and 

Ev I (2vvll ) = 25.43 MPa. 

In view of Eqn. (2.48) one can conclude that the Samples A and B should have 

the same elastic constants, since for Sample A and B there is dlA = d2A = 2dIB = 2d2B • 
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From the discussion presented and conclusions derived on the experimental results 

obtained for Samples A and B, the averaged elastic constants of the equivalent 

transversely isotropic material from both samples yield 

A: vvll = 0.3091} _ 
~ vv" - 0.345 

B: vvll = 0.3810 

A: E" 1(1-v,,) = 30.69 MPa} 

B:EI<(1-VIJ~32.93 MPa ~ Ell =19.88 MPa 

assummg v" -0.375 

(4.5) 

It should be noted that some of the difference in the elastic properties of Samples 

A and B may be due to differences in stress and strain fields. It is most likely that the 

differences are associated with the sample fabrication; i.e. the samples were not perfect. 

4.2.2 Properties of the Equivalent Transversely Isotropic Material, Samples A and B 

Referring to Eqn. (2.48) the components of the elastic constitutive tensor can be 

identified from the values presented in Eqns. (4.2) and (4.3) 

Dl1l1 = Dl1l1 = 32.53 MPa 

D3333 = 30.06 MPa 

Dl122 = 19.01 MPa 

DI133 = D2233 = 18.38 MPa 
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By considering the values detennined and Eqns. (2.36) and (2.37) with some 

mathematical manipulation one can obtain 

Ell =18.45 MPa 

Ev = 16.95 MPa 

VII = 0.365 

vvll =0.357 
(4.7) 

The results on the elastic constants from the fonnulation (Eqn. (4.7)) and from the 

experiments (Eqn. (4.5)) are in a good agreement, with a relative error ofless than 10%. 

Experiments Ell =19.88 MPa , Ev =16.12 MPa , vvll =0.345 

Fomulation Ell = 18.45 MPa , Ev = 16.95 MPa , vvll = 0.357 

4.3 Equivalent Transversely Isotropic Material in FEM 

(4.8) 

In this section, the mechanical behavior of the layered material (Samples A and 

B) is analyzed via finite element simulations. The finite element package used here is 

ABAQUS. The elastic properties of Dundas clay and kaolinite layers are depicted from 

the values presented in Eqns. (4.2) and (4.3), respectively. The averaged stress-

defonnation characteristics from the simulations are then compared to the experimental 

results. The geometry and finite element meshes of the Samples A and B are illustrated in 

Fig. 4-1. The dimensions of the samples are the same as reported in Chapter 3. The 

samples were simulated using an axial symmetric condition. To include the effects of 

loading platen on the top of the samples, a rigid block was placed on top of the sample 

and the vertical pressure was applied on top of that block. The contact surface between 

the platen and the sample was considered to be frictionless. Roller boundary condition 

was considered along the bottom edge of the model. 
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(a) (b) 

Fig. 4-1 Geometry and the Finite elememt mesh of the models of (a) Sample A and (b) Sample B 

The loading steps m the simulations follow the same procedures as m the 

experiments. 

In the fIrst simulation on Sample A, an initial vertical pressure of 160 kPa and 

lateral pressure of 50 kPa were applied to the models to create similar initial condition 

(see Table 3-1, Fig. 3-14). In the second step ofloading for the axial compression test on 

Sample A, analogous to the loading steps presented in Table 3-1 and Fig. 3-14, the axial 

pressure on top of the sample was fIrst increased to 200 kPa, then 240 kPa and [mally 253 

kPa. The vertical displacement and the average change in the radius of the sample at each 

stress level are listed in Table 3-1. The vertical and radial deformations of the sample are 

compared to the experimental values and the relative errors are presented in the sa.l1le 

table. The comparison shows a reasonable agreement between the experimental and 

numerical results. 
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Table 4-1 Numerical and experimental results of axial compression test on Sample A; the vertical 
displacement of the sample and the average change in the radius of central layers at different stress 
levels, and the relative errors 

Vertical Stress (kPa) 200 240 253 
Vertical Numerical -0.252351 -0.504701 -0.586711 

Displacement(mm) Experimental -0.234078 -0.504847 -0.573579 

Relative Error (Vertical) 7.81% 0.03% 2.29% 

Change in Numerical 0.03294681 0.06589358 0.07660135 
Radius (mm) Experimental 0.028 0.0525 0.0637 

Relative Error (Radial) 17.67% 25.51% 20.25% 

The contours of vertical and horizontal stress in the deformed domain for 

simulation of Sample A are presented in Table 3-2. Note that the deformations are 

magnified by a factor of 5 to better illustrate the deformation pattern. The stress 

distribution, in general, is not uniform and although the applied loads on the sample are 

all compressive, the kaolinite layers are under tension in horizontal direction near the axis 

of symmetry of the sample. It should be kept in mind that the concept of equivalent 

transversely isotropic material is only investigated in elastic range in this study and 

therefore the consideration of such detail is secondary, as we are interested in average 

response. As mentioned in the first chapter, in a system consisting of layers of different 

materials, the weak layer often facilitates failure. The failure mechanism of such systems 

is beyond the scope of this research. 

For lateral compression test on Sample A, at the first step of the loading a vertical 

stress of 150 kPa and a lateral stress of 50 kPa were applied to the sample, and at the 

second step the lateral pressure was increased to 150 kPa, 250 kPa and [mally 300 kPa. 
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The results of the simulation are presented in Table 3-2. The simulation results are 

compared to the experimental values in Table 4-2 and the relative errors in the 

deformations are also presented. Clearly the numerical and experimental results are in a 

good agreement. The contours of vertical and horizontal stress in the deformed domain 

are shown in Fig. 4-3. Once again the stress distribution is not uniform. 

Table 4-2 Numerical and experimental results of axial compression test on Sample A; the vertical 
displacement of the sample and the average change in the radius of central layers at different stress 
levels, and the relative errors 

Horizontal Stress (kPa) 150 250 300 
Vertical Numerical 0.471118 0.942236 1.177796 

Displacement 
(mm) 

Experimental 0.454512 0.979731 1.11154 

Relative Error (Vertical) 3.65% 3.83% 5.96% 

Change in Numerical -0.13131923 -0.26263839 -0.32829811 
Radius (mm) Experimental -0.136 -0.243 -0.2865 

Relative Error (Lateral) 3.44% 8.08% 14.59% 

Similar simulations were performed for Sample B. In the axial compression test 

the sample was first compressed under a vertical stress of 154 kPa and a radial stress of 

50 kPa. At the second step the axial pressure was increased to 192 kPa, 230 kPa and 

finally 242 kPa. The results of the simulation are presented in Table 3-3. The simulation 

results are compared to the experimental values in Table 4-3 and the relative errors in the 

deformations are also presented. Clearly the numerical and experimental results are in a 

good agreement. 
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Table 4-3 Numerical and experimental results of axial compression test on Sample B; the vertical 
displacement of the sample and the average change in the radius of central layers at different stress 
levels, and the relative errors 

Vertical Stress (kPa) 192 230 242 

Vertical Displacement (mm) Numerical -0.231731 -0.462464 -0.536644 

Experimental -0.229315 -0.477598 -0.551666 

Relative Error (Vertical) 1.05% 3.17% 2.72% 

Change in Numerical 0.0295044 0.059009 0.068326 

Radius (mm) Experimental 0.028 0.063 0.0705 

Relative Error (Lateral) 5.37% 6.34% 3.08% 

For lateral compression test on Sample B, at the first step of the loading a vertical 

stress of 150 kPa and a lateral stress of 50 kPa were applied to the sample, and at the 

second step the lateral pressure was increased to 150 kPa, 250 kPa and finally 300 kPa. 

The results of the simulation are presented in Table 3-4. The simulation results are 

compared to the experimental values in Table 3-4 and the relative errors in the 

deformations are also presented. Except for the last increment, the numerical and 

experimental results are in a fair agreement. 

The deformed mesh and contours of vertical and horizontal stress from the 

simulations on Sample Bare presented in Fig. 4-4 and Fig. 4-5. 

Comparing the results presented in Fig. 4-2 and Fig. 4-3 with the results in Fig. 

4-4 and Fig. 4-5, one finds that the nonuniformity in the stress distribution has a similar 

pattern for Samples A and B, but the stress values are different. The fact that the stresses 

in 6 and 12 layer samples are different would indicate that some differences in the 
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evaluated elastic parameters should be expected. These differences are not captured in 

Eqn. (2.48). It should be noted that an increase in the number of layers for the given 

geometry appears to have the effect increasing the zones of uniform layer stresses; see, 

for example, Fig. 4-5 where the contour of vertical stress is more uniform along the left 

hand side when compared to that that shown in Fig. 4-3. 

Table 4-4 Numerical and experimental results of lateral compression test on Sample B; the vertical 
displacement of the sample and the average change in the radius of central layers at different stress 
levels, and the relative errors 

Lateral Stress (kPa) 150 250 300 

Vertical Numerical 0.444854 0.889709 1.112136 

Displacement (rum) 
Experimental 0.498521 0.824425 0.8755172 

Relative Error (Vertical) 10.76% 7.92% 27.03% 

Change in Numerical -0.12542828 -0.25085656 -0.31357066 

Radius (rum) 
Experimental -0.113 -0.215 -0.23 

Relative Error (Lateral) 11% 16.68% 36.33% 
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Fig. 4-2 FE simulation results on Sample A in an axial compression triaxial test; contours of vertical 
and horizontal stress in the deformed domain (deformation scale factor=5.0) 
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Fig. 4-3 FE simulation results on Sample A in a lateral compression triaxial test; contours of vertical 
and horizontal stress in the deformed domain (deformation scale factor=5.0) 
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Fig. 4-4 FE simulation results on Sample B in an axial compression triaxial test; contours of vertical 
and horizontal stress in the deformed domain (deformation scale factor=5.0) 
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CHAPTERS 

CONCLUSIONS AND RECOMMENDATIONS 
FOR FUTURE WORK 

5.1 Summary and Conclusions 

This study includes analytical, experimental and numerical aspects, and it 

provides an insight into the mechanical response of triaxial soil specimens consisting of 

numerous strata in the elastic range. 

By using a homogenization technique it is shown that a system of strata can be 

replaced by an 'equivalent' homogeneous cross-anisotropic material. The elastic material 

properties of such an equivalent transversely isotropic were derived analytically, using 

the elastic constants of the constituents. 

In the experimental program, samples consisting of layers of two different types 

of materials were tested in a triaxial apparatus to investigate and validate the assumption 

of equivalent transversely isotropic material. Layered samples were prepared in 6 and 12 

layers, called Samples A and B respectively, using alternate layers of Dundas clay and 

kaolinite. In Phase I of the experimental investigation samples of Dundas clay, kaolinite 

and the layered system (Sample A) were tested in a triaxial apparatus to estimate the 

elastic range of their mechanical behavior. In Phase II, knowing the elastic range of the 

materials, the samples were tested in cyclic axial/lateral triaxial tests to find the elastic 

constants. 
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The observed behavior of the layered material and the constituents were analyzed 

and their elastic material properties were identified. Taking the elastic properties of 

Dundas clay and kaolinite from the experimental study and using them as inputs to the 

mathematical model, elastic constants of the layered system were evaluated analytically. 

The estimates of the elastic parameters from the analytical and the experimental studies 

of the equivalent transversely isotropic material were in a good agreement. 

The stress-strain behavior of Samples A and B were also simulated using the 

finite element analysis. Once again the properties of the constituents were introduced as 

inputs. The predicted stress-strain characteristics of the layered system were examined 

and the elastic constants of the system were identified. The material properties of the 

equivalent transversely isotropic material found experimentally, analytically and 

numerically were compared to each other and were found to be in good agreement. 

It has been demonstrated that a system of strata can be replaced by an 'equivalent' 

homogeneous cross-anisotropic. 

5.2 Recommendations for Further Work 

The experiments conducted in this study were only on samples with horizontal 

layers. Using a triaxial apparatus, the behavior of such systems with vertical layers 

should also be investigated. A more versatile test apparatus to investigate the behavior of 

anisotropic materials is the hollow cylinder device. Using this device the behavior of the 

material can be studied in various and complex stress states. Also the behavior of the 

material can be investigated under rotation of principal stresses with respect to material 
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axes, to experimentally examine the behavior for more complex loading histories. A 

study should also be carried out to identify the errors associated with the fabrication of 

non perfect samples. 
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Appendix 

Uniform layer by layer samples prepared in Phase I and using thin layer of fine sand 

between layers in Phase II are illustrated ill Fig.A-1. 
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Fig. A-I (a). Uniformly layer by layer samples preparation in phase I without sand layer (b). Sample 

preparation using a thin layer of sand in phase II 
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After testing each sample the water content was measured for every layer. For this 

purpose each layer was divided to a ring and core as shown in Fig. A-2. 

Fig. A-2 Water content flow from core to ring and to ends through the samples. 
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The water contents were measured separately for ring and core for each layers. 

The difference in water content distribution in both phases are shown in Table A-I and 

TableA-2. 

Table. A-I Water content variations in the layers of Kaolnite in Phase I and Phase II 

Layer Core Ring Variation Layer Core Ring Variation 

1 14.43 17.63 3.21 1 12.26 14.99 2.72 
Without 2 11.76 14.37 2.61 With 2 12.12 14.81 2.69 

Sand 3 10.82 13.22 2.40 Sand 3 11.90 14.55 2.64 
layers 

4 10.10 12.34 2.24 
layers 

4 11.76 14.37 2.61 

5 13.49 16.49 3.00 5 11.90 14.55 2.64 

6 15.87 19.39 3.53 6 12.48 15.25 2.77 

Table. A-2 Water content variations in the layers of Brown clay in Phase I and Phase II 

Layer Core Ring Variation Layer Core Ring Variation 
1 12.55 15.34 2.79 1 14.43 17.63 3.21 

Without 2 12.40 15.16 2.76 2 11.76 14.37 2.61 
Sand 3 12.18 14.89 2.71 With 3 10.82 13.22 2.40 
layers Sand 

4 12.03 14.71 2.67 layers 4 10.10 12.34 2.24 

5 12.18 14.89 2.71 5 13.49 16.49 3.00 

6 12.77 15.61 2.84 6 15.87 19.39 3.53 
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