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Abstract

In this thesis, Robust Slepian-Wolf coding problem is discussed. Two correlated
source sequences X™ and Y™ are encoded at separate encoders and decoded together.
When the encoder of source Y is broken, another sequence X™ still can be decoded
to achieve a nontrivial distortion. Further, X™ can be recovered losslessly once that
broken encoder is restored. A practical coding scheme is developed using low density
graph codes. Moreover, by generalizing the coding scheme of Robust Slepian-Wolf
coding problem, two approaches are proposed for the Wyner-Ziv problem using the

low density graph codes.
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Chapter 1

Introduction

1.1 Backgroud

In this section, some brief results of lossless and lossy source coding are reviewed for

a single source and two correlated sources.

1.1.1 Lossless Source Coding
1.1.1.1 Single Source

For a single information source, a well-known result shows the encoding rate R must
be greater than or equal to the entropy of the source for lossless reproduction. Let
X be a discrete random variable selecting the values from the set A = {1,2,..., A}
with the probability distribution by p(z) = Pr{X = z},z € A. Then a sequence of
X1, X, ..., X, is formed through i.i.d drawn from the probability distribution of X

by p(z) and the probability of this sequence p(X;, Xs,...,X,) is calculated by:

p(X1, X, X)) = [[p(Xs) Xi€ Ai=1,2,...,n.
i=1



M.A.Sc: Min Huang McMaster - Electrical and Computer Engineering

Given the definition of strongly typical sequence [1], the probability of a typical

sequence is:

p(X1, Xa,y .o, Xn) = HP(Xi) (1.1)
i=1

_ H p(a)™@X) (1.2)
a€A

~ H p(a)™@ (1.3)
a€A

—  9n¥.p(a)logp(a) (1.4)

_ 2—17,H(X) (15)

In the equation (1.2), n(a|X™) denote the number of a in the sequence X™. The
approximation step (1.3) follows from the fact that X™ is a typical sequence. The
result (1.5) shows all elements of the typical set are nearly equiprobable. By the
weak law of large numbers, the probability of typical set is nearly 1. So the size of the
typical set is approximately 27X If R > H (X), a one-to-one mapping relationship
is built hetween each typical sequence X" generated by the source and a codeword

included in the codebook with 2™ codewords, which guarantees the lossless recovery

of compressed source.

1.1.1.2 Slepian-Wolf Coding

The result from last part can be extended to show that compressing two independent
sources X and Y requires the encoding rate R = R, + R, > H(X)+ H(Y') for lossless
recovery. However, what is the encoding rate for two correlated sources? Slepian-
Wolf coding discusses such problem: two correlated sources (X,Y) with the joint
probability p(z,y) are encoded separately at two encoders and decoded together at
one joint decoder, and its admissible rate region R is illustrated in Figure 1.1.

As shown in figure 1.1, the two-dimensional rates (Ry, Ry ) must satisfy the following
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H(VY)
HI)
R}’
HIY
HATD HY) HX.T)
R

Figure 1.1: Achievable rate region of Slepian-Wolf coding
three inequalities [2]:

Rx > H(X|Y)
Ry > H(Y|X)

Rx+ Ry > H(X,Y)

It is obvious that the sum of two encoding rates could be less than the sum of
their entropies for lossless recovery from the three inequalities above. Let’s take
a closer look at the admissible rate region, two corner points (H(X|Y), H(Y)) and
(H(X),H(Y|X)), which are symmetrical through replacing source X and Y, are of
significant importance and the dominant face between them is achievable through
the time sharing scheme. So only one corner point (H(X|Y), H(Y)) is analyzed and

corresponding coding scheme is illustrated in Figure 1.2.
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¥ ———m» Encoder > Decoder A — ¢
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Figure 1.2: Coding Scheme of Slepian-Wolf coding problem

Firstly, the codebook is generated by using random bins. All the n-length typ-
ical sequences generated by source X are uniformly dropped into 2™%= bins, which
composes the codebook. Two sequences X™ and Y™ of length n are generated from
two correlated sources (X,Y’) with the joint distribution p(z,y). In the process of
encoding, the sequence X" is encoded with Rx to produce an index pointing to which
bin the sequence X is in. In the process of decoding, the sequence Y™ is directly
transmitted to the decoder as the side information for decoding the sequence X™.
At the decoder the side information sequence Y™ compared with those sequences in
the bin specified by the index from the X encoder. If one of sequences in that bin
and the side information Y™ are jointly typical sequences, then that sequence is de-
clared as the decoded sequence X™. If the encoded rate Ry is greater than H (X|Y),
the decoder will recover the lossless sequence X™ with high probability. The details

about the implementation of Slepian-Wolf coding with LDPC will be discussed in the

chapter 3.
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1.1.2 Lossy Source Coding

1.1.2.1 Single Source

Let’s us discuss the simplest case first. A sequence of X1, Xy, ..., X, is generated in
one source through i.i.d drawn from the alphabet A with the probability distribution
of p(x). By using an encoding function f,, : X* — {1,2,...,2"%} the encoder
output is an index that represents a codeword included in the code hook, whose size
is 2"%. By using the decoding function g, : {1,2,...,2"%} — X" the decoder output
is a corresponding codeword mapped by the index from the encoder output. The

distortion hetween sequences X™ and X™ is defined by
(X", X" = Zd i, &) (1.6)

where d(z,%) is a measure of the distortion of representing the symbol « by the

symbol £. The minimum achievable rate at distortion D is given by the classical

rate-distortion theory:

~

R(D) = 1%’11|11)I()x ; X) (1.7)
p(Z]|x
subject to Lp Yp(Zlz)d(z,2) < D (1.8)

(=.8)

Among all conditional distributions p(Z|z), a p(Z|z) is found to minimize I(X;X)
and satisfy the expected distortion constraint. After finding the optimum p(z|z)
from equation (1.7), the codebook is generated through the marginal distribution
p(Z). Due to the fact that the sequence of Xn is i.i.d.generated, each codeword
X™ can be produced with the distribution p(&") = []r, p(:). To form the whole
codebook simply, it is considered as a 2"% x n matrix and each entry is i.i.d drawn
from the alphabet A with the probability distribution of p(&). In the process of

encoding, the sequence X™ is compared with each codeword in the codebook until
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finding one codeword which is jointly typical with X™. Then the index of those
codeword is recorded as the output of encoding. If no such codeword exists, the
output of encoding is set to the index of the first codeword in the codebook. In the

process of decoding, the sequence X™ is the codeword specified by that index.

1.1.2.2 Wyner-Ziv Coding

Wyner-Ziv coding is about the rate distortion coding with side information. Two
sequences X” and Y™ of length n are generated from two correlated sources (X,Y)
with the joint distribution p(z,y). The sequence X™ is encoded with the minimum
rate Ry z(D) and decoded with the aid of the side information Y, which is available
to the decoder, to achieve distortion D. The same distortion function (1.6) is applied.

The rate distortion function with side information is [3]:

Rwz(D) = (inlf)[I(X; W) — I(Y; W)] (1.9)
plwiz
Subject to E[D(X,X)] < D, where X = f(Y,W) (1.10)

where random variables X, Y, and W form a markov chain ¥ < X < W. The
minimal rate Ry z(D) is found over conditional distribution p(w|z) and functions f,
so that the expected distortion is less than . Then the codebook could be generated
by the marginal distribution p(w). Firstly, the whole codebook is considered as a
2" % matrix, where Ry = I(X;W). Each entry in the matrix is i.i.d drawn from
the alphabet W with the probability distribution of p(w) and index every codeword.
After that, all the index of that codebook is dropped into 2™ bins with the uniform
distribution, where Ry = I(X; W) — I(Y; W). In the process of encoding, the source
sequence X™ is compared with the codeword in the codebhook until it is jointly typical
with W™, Then the index of that codeword W™ is stored. If no such codeword W™
exist, the index is set to 1. If more than one codeword W™ are jointly typical with

X", the smallest index is stored. The output of encoder is an index of bin that
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contains that index of W™. In the process of decoding, the side information Y™ is
compared with the codewords specified by those indices in the bin, which is pointed
by the encoder. If there is a unique codeword jointly typical with ¥Y™. This codeword
is considered as W™ and X™ is estimated through the function X; = f (W, ;). If
there is not one or more than one codewords jointly typical with Y. X" is set to
any codeword.

Due to the assistance of the side information, the rate Ry z(D) with side informa-
tion is less than or equal to the one without side information. For the special case of

D =0, it is converted to Slepin-Wolf coding problem. Then rate required is H(X|Y)

bits.

1.2 Motivation and Contribution of the Thesis

Some applications of source coding have been developed using LDPC and LDGM
codes with message passing algorithms. Quantizing the source of arbitrary distribu-
tion is also implemented by LDGM code with survey propagation and the correspond-
ing simulation result [4] is extremely good. The general Slepian-Wolf coding problem
has been developed by applying LDPC codes with belief propagation. For the binary
source, the performance of simulation [5] is good. In this thesis, a practical scheme
of Robust Slepian-Wolf coding is developed based on previous two applications and
simulation is performed in a special case. After that, two approaches for Wyner-Ziv
coding are derived from the application of Robust Slepian-Wolf coding. However, it

is not completed due to the fact that the optimal degree distribution is still unknown.
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1.3 Organization of the Thesis
The thesis is structured as follows:
e In Chapter 2, the concepts of LDGM and LDPC codes are introduced.

e In Chapter 3, the general Robust Slepian Wolf coding problem is formulated
and the detailed coding scheme is developed with low density graph codes.

Simulation result of a special case is provided.

o In Chapter 4, two incomplete approaches for Wyner-Ziv coding problem are
developed with low density graph codes. The problem encountered in both

approaches is discussed.

e In Chapter 5, this thesis is concluded and some potential methods are provided

to solve the problem in Chapter 4.



Chapter 2

Low Density Graph Codes and
Factor Graph

Some applications of source coding have been developed by LDPC and LDGM codes
with message passing algorithms. Quantizing the source of arbitrary distribution is
also implemented by LDGM code with survey propagation and the corresponding
simulation result [4] is extremely good. The general Slepian-Wolf coding scheme has
been developed by applying LDPC codes with belief propagation. For the binary
source, the performance of simulation [5] is good. In this chapter, the concepts and

some properties of LDGM and LDPC are introduced.
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2.1 Low Density Generator Matrix Codes

An (n,k) binary linear block code C with low density generater matrix (LDGM) G,

which is a k X n matrix, is defined as follows:
C={x:x=uG,uc GF:2)} (2.1)

where u is a 1 X k information vector and x is a 1 x n codeword and GF'(2) is the

Galois field of two elements. The “low density” means the sparseness of ones in G.

Check Node : n

Variable Node : k

Figure 2.1: LDGM factor graph

The factor graph associated with the LDGM (2.1) is demonstrated in the Figure
2.1. Variable nodes (()) store information vector u and check nodes () store the
codeword x based on the entire generator matrix G. The edges hetween variable
nodes and check nodes are drawn according to the entries g; ; of generator matrix G.
When the entry g;; is not zero, one connection is built from the jth check node to
the ith variable node.

The rate of this LDGM code is calculated by the equation (2.2). To build the
irregular LDGM codes, the equations (2.3) must be satisfied. A(z) and p(z) are the

degree distributions in the form of polynomials for the variable nodes and check nodes,

10
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respectively. ); is the portion of edges on the variable node of degree 7 and p; is the
portion of edges on the check node of degree ¢. d, denotes the maximum variable

degree and d. denotes the maximum check degree.

R:% (2.2)
fo pi”)f; =~ R (2.3)
Mz) = B \at? (2.4)
p(x) = Tfe,pia (2.5)

2.2 Low Density Parity Check Codes

Low density parity check (LDPC) codes were introduced by Gallager in the 1960s [6].

It is defined as follows:
Ce = {x:Hx" =s,x € GF"(2)} (2.6)

where H is an (n—k) xn matrix termed parity check matrix with low density referring
to the sparseness of ones, s is a 1 x (n—k) vector and is called syndrome. C; is the coset
that contains a set of = satisfying Hx? = s. Furthermore, when all the syndrome
bits are 0, Cs is called linear code. The factor graph associated with the LDPC (2.6)
is demonstrated in Figure 2.2. Variable nodes store the codeword x and check node
store the syndrome calculated by HxT. The edges between variable nodes and check
nodes are drawn according to the entries h;; of parity check matrix H. When the
entry h;; is not zero, one connection is built from the jth variable node to the ith
check node. The rate of this LDPC code is calculated by the equation (2.7). To build
the irregular LDGM codes, the equations (2.8) must be satisfied.

R=TTE g —f‘i plo)dz (2.7)

n Jo Mz)dz

11
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Variable Node : n

Check Node : n-k

Figure 2.2: LDPC factor graph

L fol plz)dz _
fol Az)dz

The definitions of A(z) and p(z) are the same as in the section 2.1.

12
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Chapter 3

Robust Slepian Wolf Coding

The general Slepian Wolf coding has been discussed in Section 1.1.1.2. Two correlated
sources X and Y are encoded at two separate encoders and decoded together at a
joint decoder. However, if the encoder of source Y is broken, then the joint decoder
is not able to recover both sources. For enhancing the utilization of rate R,, it is
split into two parts Ry = Ry + Rgo: 1) the decoder has a capacity for decoding a
sequence of W™ to achieve distortion D, in the absence of the side information Y™,
with rate R,1, 2) the sequence X™ is recovered losslessly at the same decoder with
the side information Y™ and W™ with the rate R,,. This special Slepian Wolf coding
is called as Robust Slepian Wolf coding.

In this chapter, the required constraints to achieve the Robust Slepian Wolf coding

will be discussed and a coding scheme is developed with low density graph codes.
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3.1 Robust Slepian Wolf Coding

3.1.1 Problem Background and Formulation

As mentioned at the beginning of this chapter, Robust Slepian Wolf coding is achieved
while only some constraints are satisfied. The following items list these constraints

that cited from [7] and provided the corresponding explanations.

1. An auxiliary random variable W exists such that Y «<» X < W forms a Markov

chain.
2. Bd(X,W)]| <D

Then the Robust Slepian Wolf coding problem is formulated as:

Rrsw(D) = 1(ni|n) I(X; W)+ H(X|Y,W) (3.1)

p(w|z
subject to  E[d(X,W)] < D (3.2)
Y & X e W (3.3)

In the equation (3.1), the first term is derived from quantizing the sequence X™
to W™ with the distortion D using rate R, and the second term is derived from
recovering the sequence X™ with both side information W™ and Y™ using rate Ryo. If
Rrsw = H(X|Y), then one more constraint meeds to be added, that is Y and W are
independent. This can be shown using the following argument. Firstly, the encoding

rate of Robust Slepian Wolf Coding is calculated as follows:

RRSW(D) = I(X,Y’V) + H(X“/V, Y) 3.4

= H(X)- H(X|W)+ H(X|W,Y)

w W
o Ot

= H(X)—I(X;Y)+ I(W,Y)

oo
~J

(3.4)

( (3.5)

= HX) - I(X;Y|W) (3.6)
( (3.7)

( (3.8)

= H(X[Y)+I(W;Y) 3.8

14
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The property of Markov chain Y « X < W is applied from (3.6) to (3.7).

I(Y;W[X) = 0 (3.9)
I(Y; X, W) = IV, W)+ I1(Y; X|W) (3.10)

= I(Y; X))+ I(Y; W|X) (3.11)
HY; X|W) = I(Y;X)— 1Y, W) (3.12)

Then, it is simplified until the final result (3.8) that must be less than or equal to the

limited rate H(X|Y) of Slepian Wolf Coding .

Rpsw(D)

IN

Rsw
HX|Y)+I(W;Y) < H(X[|Y)

I(W;Y) < 0

From the fundamental information theory, the mutual information is greater than
or equal to 0. So the mutual information between W and Y can only be 0. Note
that /(W;Y) = 0 if and only if W and Y are independent. So W and Y must be
independent. Due to the fact that the sequence W™ is output from quantizing X™, X
and W are not independent. In order to satisfy those two relationships, the alphabet
set size of X must be greater than that of Y, i.e. |X| > |Y|. Under the constrain

Rprsw = H(X|Y), one can readily formulate the following optimization problem.
min F[d(X, W)] (3.13)
subject to Y and W are independent (3.14)
According to the discussion about those constraints, the coding scheme of Fig.3.1 is
developed. Two sequences X™ and Y™ are generated with a joint distribution p(z,y).

Then, the sequence X™ is quantized with the rate R, and the corresponding output

of quantizer is the sequence W™ with the distortion D between them. After that,

15
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pomm——e! - QLtaNtizer
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¥ ————p! Encoder > Decoder - ¥
A
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g

Figure 3.1: Coding Scheme of Robust Slepian-Wolf Coding Problem

a codebook is constructed through dropping all the typical sequences generated by
source X into 272 bins uniformly. The output of encoding the sequence X™ is an
index pointing to one of those bins. In the decoder, it receives two sequences Y™
and W™, which are compared with the sequences in the bin pointed by the index of
encoding the sequence X™. If one of sequences is jointly typical with Y™ and W™,
that sequence is assigned as the decoded sequence X, If no such sequence exists, one
sequence is chosen from that bin as the decoded sequence randomly. If the encoding
rate Rye is greater than or equal to H(X|Y, W), the decoder will recover the lossless
sequence X™ with high probability. The sum (R, + Rg2) of rates in these two steps
equals to the H(X|Y) and does not exceed the limited rate of the general Slepian

Wolf coding.

16
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3.2 General Case

3.2.1 Test Channels

After building the coding scheme, the quantization between sequence X™ and W™ de-
pends on the conditional distribution p(w;|z;) and the distribution p(z;) of the source
X. The problem of minimizing distortion D is converted to one linear programming

problem.
|X]-1  [W]-1

minimize D = Z Z p(w;|z;)p(e:)d(z;, w;) (3.15)

i=0 j=0,w;j#z;

subject o p(ye) — plykhwy) = O (3.16)
%E(wﬂz»—l = 0 (3.17)

” plwjlz) —1 < 0 (3.18)

—plwjlz;) < 0 (3.19)

Given the distribution p(z;), the objective function (3.15) describes that the minimum
distortion D is found through all possible p(wj;|z;), which satisfy all the constraints
listed last section. The equation (3.16) describes the independence between Y and
W. The equation (3.17), the inequalities (3.18) and (3.19) describe the properties of
the conditional distribution p(w;|z;): the sum of all p(w;|z;) with z; must be 1 and

each p(w;|x;) must be in the range of [0, 1]. The test channels graph is shown as in

the Figure 3.2 and |X| = |W| > |V|.

17
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Figure 3.2: General Case of Slepian-Wolf Coding Mapping

18
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3.2.2 Coding

Once the conditional probabilities p(w;|z;) are fixed by solving the linear program-
ming problem (3.15). The code scheme could be implemented through the LDGM

and LDPC codes, and the corresponding factor graph is drawn as follows:

Variable y\ 4 !\ 7 . . R a
Nodes Q ) & / )

Check Nodes ,
[ ] [ ] [ ] L 2 L ] [ ] [ ] L ] L]
Q
Network . . R
Nodes
Source Nodes n z . . o5 ( = ()

Side
informaton

Variable
Nodes SW

Check Nodes
Sw

Figure 3.3: Factor Graph of Robust Slepian-Wolf Coding Scheme

There are totally 6 layers in this factor graph. The first 4 four layers construct
a LDGM factor graph for quantizing the source sequence X™. The last 3 layers
construct a LDPC factor graph for encoding and decoding X™. Due to the fact that

both LDGM and LDPC factor graph have the variable nodes and check nodes, the
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notations “Q” and “SW?” are added to distinguish.

3.2.2.1 Quantization and Encoding

In the Sun’s thesis [4], the quantization of one source uniform and nonuniform dis-
tribution is researched using LDGM codes with survey propagation. The encoding
simulation is very good. So this method is adopted to quantize X to W with the rate
Ry1. According to the marginal distribution p(w), a deterministic mapping is built
between the network node and check nodes Q). This deterministic mapping could be
considered as a function fp; : Y™ — A= {1,2,..., A}. There are totally 2M possible
binary sequences generated by the uniform distribution. Based on the distribution

p(w), m; sequences are assigned to the value w. So that the following equation is

satisfied.
m;

o & p(w) = Pr{W =w},we A (3.20)

Besides, each sequence is only allowed to assign to one value in order to construct a
deterministic mapping. Then each network node connects to M check nodes in the
fact graph. Once the values of check nodes are fixed, the value of network node is
calculated by the function fj;. To pass message along the factor graph, the fy is
also used from network nodes to check nodes shown as equation (77).

The first four layers in the Figure 3.3 constructs the factor graph of quantiza-
tion. The sequence of message-passing is listed as follows and the corresponding the

calculation of message are shown as Figures 3.7, 3.5 and 3.6.

1. Initialize the vector message Mcy, vy, Mcg—n; and Mg, ,y,. Jump to the

step 3

2. Send the vector message Mc,—v,, out from the check node Q Cg; to the variable

node Q Vg;. Denote A,q(7) is the set of variable nodes Q connected to the check
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node Q Cg;. Send the vector message Mc,,_n, out from the check node Q Cg;

to the network node Nj.

3. Send the vector message My, ¢, out from the variable node Q Vg; to the
check node Q C;. Denote Ceg(j) is the set of check nodes Q connected to the
variable node Q Vg;. Send the vector message My, _.c,; out from the network
node N; to the check node Q Cg;. Denote D.g(j) is the set of check nodes

connected to the network node N;.

4. Go back the step 2 until both vector messages Mc,, vy, and Mc,, .y, converge

or the number of iteration reaches 150 times

5. Calculate the marginal distribution My, in each variable node Q. Set the values
of some variable nodes whose bias |1\/[8j —M ‘1,] | are greater than source threshold,
which usually is greater than 0.9. If there is no such bias, the value of one
variable node which has the biggest bias is set. Then, remove those variable

nodes from the factor graph.
6. Go back the step 2 until all the values of variable nodes are set.

7. Calculate the values of the check nodes by uG. u is a vector representing the

values of variable nodes.

8. Calculate the values of the network nodes according to the deterministic map-

ping between network nodes and check nodes.

After quantizing the sequence X™ to the sequence W™, the sequence X™ is com-
pressed into an index of length k£ = nR,, = nH (XY, W). In the process of encoding,
the value of scquence X™ is passed into the variable nodes SW firstly, then the values

of syndrome stored in check nodes, which is called the encoded index of sequence of
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Initial vector message at the check node
M@, vy, =05
ML . =05
CaimVa; (3.21)
Mg, .y, = 0.5
Mg, .y, = 0.5
Check node to variable node
My vy = 051+ (MR, oo, — May—c:) 11 (M4, ca: = Mg —cay)]
Vom €Avq (N {Vq;} (3.22)
M, vig; = 0501 = (MR, L. — My —c0:) 11 (MY, o = Mg —cos)]
Vom€Avq(\{Ve;}
Check node to network node
Mgy, =051+ [ My, oo — My, —co)]
V '"leA‘U !
Q o(i) (3.23)
Moo, =050 =[] (MY, —c0 = Mg, 0ol
Vom€Auq(?)

Figure 3.4: Calculation of the Message in Check Node Q

X", are calculated by Hx”, where compression rate Ry = 5“—1 For the binary se-
quence, the value in each check node is computed by operating X OR with all values

stored in the variable nodes connected to that check node.
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Variable node to check node

0 _ 0
IV[VQj—)C'Qi - H (]\/[CquVQj)
CQm. €Bcq (])\{CQI}

A/[‘l/QJ-HCQi - H (A/[éQ.,n—)VQj)

Com€Beq(iN\{Caqi}

Marginal distribution in Variable node

My; = I (MEg.—vg))
CQmEBCQ(j)

My;= I (Megovg))
Com€Beq(d)

(3.24)

(3.25)

Figure 3.5: Calculation of the Message in Variable Node Q

3.2.2.2 Decoding

As illustrated in Figure 3.3, the factor graph of decoding includes the last 4 layers.

Both source nodes and side information nodes connect to variable nodes one by one.

The edges between check nodes and variable nodes are built through a k x n parity

check matrix H described in the section 2.2.

A lossless sequence X™ is required to recover. In the decoding process, the belief

propagation is adopted. The output sequence X™ from the decoder is generated as

follows and the detail calculations of message are listed in Figure 3.7.

1. Initialize the vector message My, in the form of (My, My,, . .. ,Z\/[‘l;flfl) in each

variable node based on the values of both side information Y and W and the

conditional probability p(z;|y:,w;), and set received vector message Mg, v, to

1.

2. Send the vector message Mygy,,.cgy, Out from the variable node SW Vgyy; to

the check node SW Cgyy;. Denote Agsy (4) is the set of check nodes connected

to the variable node SW Vgw;.
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Source node to network node

Mg .y, =exp(y)/(exp(y)+ > amexp(—7))  z=ug

meEX m#£z; (326)
Mgy, = axexp(—=7)/(exp(M) + D oamexp(-y))  z#m
meEX m#Ax;
Network node to check node
0 _ z Y'm.
]\/[Nj_"CQi - Z A/[Sj_“)NJ' H ﬂ/[Coz—ﬂ\’j
zEX CQ[EDEQ(j)\{CQi},YCQj =0,z=fpr (Y1,Y2,..., Yo ye-s YI\,[)
(3.27)
1 - z Yin
My, cq: = Z Mg, n; H A/[CQLHNJ'
zE€X CeDeIN\{Cqi} Yo, =lz=fa (Y1,Y2, -, Yinsoo . Yar)

Figure 3.6: Calculation of the Message in Network Node

3. Send vector message Megy; >Vsw; oub from the check node SW Cgyw; to the
variable node SW Vg, . Denote B,sw () is the set of variable nodes connected

to the check node SW Cgw;.
4. Go back the step 2 until the number of iteration reaches 150 times

5. Estimate z; according to the final decision rule:

x; = m, where Mp(i) = max{Mp(i), Ma(3), ..., ME(i)} (3.28)

3
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Initial vector message at the variable node

M. = p(z; = z|ys, w;) ze X
]V[és"Vj“’VS“’i =1 z€X

Variable node to check node
VE i Sz
A[szl' HC'SWmEAesW(1)\{Csw]'} A[CSVVIH’_“/S“’{

—Cswi % z
/] ) gz
22:0 A[VSWi HCSWm €Assw(i\{Csw;} A[Csnrv,nHVSL\H

4
A{[Vs Wi

Check node to variable node

. AVSWm
ZVSWmEBuSW UN{Vswi},) vswm=si—2 H A[Vsunn—’csr\'j

A/[é R 7 —
SWi P Vswi ZZ E H ]\,[’USWm
2=0 LoVswmEBysw (H)\{Vswil ), vswm=si—2 Vswm—Cswj

Final decision rule in the variable node

Z(0 z z
A/[F (7') - A/[V SWi H ]\/[Cs wm—>Vsw;
CswimEAcsw ()

(3.29)

(3.30)

(3.31)

(3.32)

Figure 3.7: Calculation of the Message in Variable Node and Check Node SW
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3.3 Special Case

v We consider a special case given in Figure 3.8 and meanings of notations in that figure
' g g g g
are listed in the table 3.1.
X I
z P
D \,\\ iy Kf‘( \l 0
- 4.——""’-_‘ A //’l
}. Py ’al o ,// — \‘:\gfl [/" /.«/ \"_"
”‘\, " / N s
o f _ o] v = p Y ~. /
; NN X<
’ - i SN /
PxM=q " "\ AL
— . N - / \\\
f \ «f/m AN / \\\ J/ ~ .
- g /}'\\ X I‘._\\‘ ] )
/ - a\@u / \\ -
/ Tl -a AR
m :9/7 . \

\ ) p(XIy) by \\ // \\‘

Pl )=~ \
- .

i

Figure 3.8: A Special Case of Robust Slepian-Wolf Coding Mapping
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a = p(z = 0y = 0)

by = p(z = lly = 0)

a1 = p(z = 2|y = 0)

az = pla = Oy = 1)

by = p(z =1y = 1)

e =plx =2y =1)

moo = p(w = 0jz = 0)

mp = p(w = 1|z = 0)

moz = p(w = 2|z = 0)

my = p(w = 0jz = 1)

mn = plw = 1z =1)

mip = plw =2z =1)

Mgy = plw = Olz = 2)

(
mg1 = plw = 1|z = 2)

Moy = p(w = 2|z = 2)

Table 3.1: Notation in General Mapping Graph

For this special case, the linear program problem is rewritten as follows:

D

minimize (mo1 + mo2)[a1p + c2(1 — p)]

(Mo + maz)[bip + ba(1 — p))

(Moo + mai)[c1p + az(1 — p)] (3.33)

subject to

hi(M) = (1 —mg —moe2){a1 — c2) +mag(by — ba) + mao(c; — ag) = 0 (3.34)

ho(M) = moi(ar — e2) + (1 — Mo — M2) (b1 — by) + magy (1 — az) = 0 (3.35)

AM) = mg —me <0 (3.36)

fo(M) = mg, —mgy <0 (3.37)

fs(M) = mly—myp <0 (3.38)

fa(M) = m2, —myp <0 (3.39)
fs(M) = mjy —mgp <0 (3.40)
fo(M) = mg —mg <0 (3.41)

Function h(M) is derived from the independence between Y and W and Function

J(M) derives from the properties of the conditional probabilities p(w;|z;). In the
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equation (3.33), hamming distortion is applied.

0 ifz;=w;
d(fCi, wi) = (342)

3.3.1 Symmetric Case

Firstly, the simplest case is analyzed. Assume the conditional probabilities p(z|y)

between the sources X and Y are symmetric,

a = a1 = a9 (343)
c = a=oc (3.45)

then this linear programming problem is simplified further.

minimize D = mgfap+ (1 — p)c] + moalap + (1 — p)(]

+ ’I’I’Llob + 77?/12b

+ maolep+ (1 — pla] + ma[ep + (1 — p)a] (3.46)
subject to (oo —mso)(a—c) = 0 | (3.47)
(mo1 —ma1)(a—c) = 0 (3.48)

(mga —mag)(a—c) = 0 (3.49)

Note that the condition a # ¢ must be held to avoid the violation of |X| > |V
Once a = c exists, the probabilities from y; to xp and x5 are the same. So that these
two bits zg and x4 are equivalent and are merged to one bit. The alphabet set size

of X decreases to 2, which is the same as that of Y.
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Given the following definitions:

Mo = Mg = A

Moy = Mgy = B

Mog = Mgy = C

apt+c—cp=FE > 0

ecpta—ap=FEy, > 0
D=Ax(Fy,—E) + BXxXE,

There are 3 kinds of solutions in this problem based on the relationship between £

and Fj.

Case: By > By Case: By = Fy Case: By < By

A=1 A+C=1 A=0
B=0 B=0 B=0
C=0 C=1

From the above solution, it is obvious that the cases /1y > Ey and E, < FE, are
similar and symmetric. So only solutions of two cases By > Fy and F, = FE, are
displayed in Figure 3.9 and Figure 3.10, respectively.

As observed from those figures above, the X in the decoder can be estimated by
both side information Y and W directly, without the index from encoding X. These
mappings reveal that the total rate of Robust Slepain-Wolf coding is consumed in the

quantizer Ry = H(X|Y) and R, = 0 in the symmetric case.
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e \ gy ’f 'W> 0
I.' _ B /"’ ,

I T
=N iy

Figure 3.9: Robust Slepian-Wolf Coding Mapping with 5, > Fs

X "
Plw|x)=1/2 P
T Pl =10 ( ) A ) o

T Ple= o)=1/xp(w|x)=1/ 2 / -
% ) ,,
P(y 0)= 12 T~ P(ylx) 1/2 /

e e T\ _Pw|x) \ f\/ ") |

,/’// \_,/ _
- e Plx=1)=1/3
T Pylxy=1i2 \
' Q)
D1z "'\x..ﬁ\% Pw|x)=1/2 \\
'\\ N ST
Plx=1"~ ) N 2
{ / Paw|0)=1/2 ./

Plc= 2) 1/3

Figure 3.10: Robust Slepian-Wolf Coding Mapping with Fy = F,
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a1

by

winy [l

a2

Ll [N

by

Table 3.2: Values of the Conditional Probabilities p(z;|v;)

Moo = 0 mo1 = 0 Moy = 1

miyg=0|my;=1|mp=0
_ _ 1 —

Mmoo =0 | my = 1| T2 =5

Table 3.3: Optimum Mapping Values

3.3.2 Asymmetric Case

In this section, an asymmetric case is analyzed. The value of conditional probabilities

p(a;|y;) 1s set in the following table 3.2. The mapping values in the table 3.3 between

X and W is found by applying the numerical method and proved that they satisfy

the KKT condition [8]. As discussed in Appendix A, the corresponding A and v of

this optimization problem exist and is listed as follows:

o’

R
/\1:53~§
Mo =15 -
N=i+s

3 2
vy € (—g;g)
1 1
12)) A2: 5—57/2
1 3
- Ay =
67 M0
12} /\6 =0

According to the conditional probability p(z|y) and the optimum mapping, the map-

ping diagram Figure 3.11 is drawn. In this figure, when both y and w are 1, x has

two possible outputs 1 or 2. So the estimated X can no longer be obtained through

Y and X directly, the encoding index of X is required to losslessly recover X.
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X i

. 7N 7N
o / 1
- " Kk—»/ v /‘\\_.,‘)
ﬁf,/' ' POx=1=2/5 e
) A//’”P(xly)=l:‘3 P
(‘\ 7 my =114
1 ) /
. \"'-._\
== \x._\
Py =1)=3/5 ~— y \
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\\d/ my =314 N

Px=2=2/5

Figure 3.11: Asymmetrical Case of Robust Slepian-Wolf Coding Mapping

3.3.3 Coding

After building the mapping of Markov chain Y «» X « W, the detailed implemen-
tation is developed by applying LDGM and LDPC. The factor graph is shown in the
Figure 3.3.

3.3.3.1 Quantization with LDGM

According to the equation (3.27) and the constraints of deterministic function, the
alphabet set size of quantized sequence must be the same as one of source sequence.
So the mapping shown in in Figure 3.12 is modified based on the Figure 3.11. In
this new mapping, the conditional probability p(w = 2|z = 0) = 1 is replaced by
p(w = Olz = 0) = 1, so the alphabet set size of W is still ternary. After quantization,

all the symbol “0” in W™ are converted to 2. The deterministic mapping is built
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RY e

-
o \ mgq =1 /ﬁ \ 0
Q_,/ \_/

PGc=0)=1/5

7 my =1 (/J_-D
5 1
U i\
PGe=1)=2/5 e
my =114 //‘/;
o
-

N / my=314
Plx=2=2/5

Figure 3.12: Grouping Side information

in the network node as shown in Figure 3.13 by the distribution of W. From the
optimal mapping in figure 3.12 between X and W, the conditional probabilities of
p(w = 0]z = 0) and p(w = 1|z = 1) are 1. So the penalties from z = 0 to w = 0 and
from z = 1 to w = 1 must be set to 0. However, it is impossible to reach 0 in the
penalty equation (3.26) so that some inevitable errors are generated. For this issue,
the extra rate R, is used to store the index of those bits of z and force them into

mapping the correct w.

3.3.3.2 Decoding with LDPC

The process of decoding is almost the same as that in section 3.2.2.2. According to
the mapping in Figure 3.11, z only requires to be distinguished when y equals to 1
and w equals to 1. So other combinations between Y and W could be grouped into

one set as shown in Figure 3.14.
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0 1 0 |1

{0 1 i 1

Figure 3.13: Mapping of Network Node in LDGM
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Figure 3.14: Grouping Side information

After grouping the side information, the format of message is changed to LLR
(Log-likelihood Ratio) instead of the vector message for the binary source and the
corresponding calculation of message is listed in figure 3.15. The final decision rule

in the variable node is also modified as

0 if Mp(i) >0
B = (3.50)
1 if Mp(i) <0

3.3.4 Simulation Result

Two kinds of sequences from source X with different lengths are simulated for the
coding scheme discussed above. Their performances are demonstrated in Figure 3.16.
The red line and blue line represent the simulated results of the sequences of length
10,000 and 100,000, respectively. For each length, 1000 sequences are tested to
average their performance. The total rate R is composed of three parts R; used
in quantization, R, used for fixing the inevitable error in quantization and R, used

for encoding the index of X. During the simulation, the maximum number of the
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Initial vector message at the variable node

My, — log p(wi = Olys, wy)
p(zi = yi, w;) (3.51)
1\/[01.4,\/1. =0
Variable node to check node
My,~c; = My, + Yo M, (3.52)
Cm€Ac(iN{C;}

Check node to variable node

Mc. v, My, _.c.
tanh(Lf)Yi) = (1 - 2s;) H tanh(—v"i'z—ci) (3.53)
- Vin€ Bv AN\ {Vi}

Marginal distribution in the variable node

Mp(i) =My + [ Mo,->v (3.54)
Ci€Ac(i)

Figure 3.15: Calculation of the Message in Variable Node and Check Node in the
Format of LLR

inevitable error bit is 10 when the length of test sequence is 10,000, so R, is set to
0.014. Similarly, the maximum number of the inevitable error bit is 20 when the
length of test sequence is 100, 000, so R, is set to 0.00332. Comparing two lines in the
Figure 3.16, the line representing the performance of the sequence of the sequence of

length 100, 000 is obviously closer to the Slepian-Wolf limit.
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Figure 3.16: Simulated Result of Robust Slepian-Wolf Coding Problem
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Chapter 4

Two Incomplete Approaches for
Wyner-Ziv Coding Using Low
Density Graph Codes

In Chapter 1, the coding problem of two correlated sources X and Y is introduced.
Slepian-Wolf coding problem is analyzed and is implemented by using Low Density
Graph Codes in previous chapter. The coding scheme for Wyner-Ziv coding problem
is developed based on one of the Slepian-Wolf schemes. As illustrated in Figure 4.1,
the step of encoding includes two parts: 1) The sequence X™ of length n is quantized
into the sequence W™ with the distortion d. 2) A codebook is constructed as a
21 (XsW) » . matrix and each entry in the matrix is i.i.d drawn from the alphabet with
the probability distribution of p(w). All codewords in the codebook are uniformly
dropped into 2%wz(@ hins. The quantized sequence W is encoded to an index to
point to one bin. In the decoder, it receives sequences Y™, which is compared with
the sequences in the bin pointed by the index of encoding the sequence W™. If one

of sequences is jointly typical with Y™, that sequence is assigned as the decoded
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Rig(d)

i

/———> Quantizer »  Encoder

Xr Decoder — XA'
N /] A
A b

AN
/N

Figurc 4.1: Coding Scheme of Wyner-Ziv

sequence X™. If no such sequence exists, one sequence is chosen from that bin as
the decoded sequence randomly. If the encoding rate R, is greater than or equals to
(X, W) — I(Y; W), the decoder will recover the sequence X™ with distortion with
high probability.

In this chapter, we only discuss one special case doubly symmetric binary sources
X and Y. The size of alphabet set of X and Y is binary, and sequences X™ and Y™
are generated from those two sources by a crossover probability p, which is in the
range of [0, %] The minimum achievable rate region is found in Appendix B. The

following two approaches are developed for the case d < d,.

4.1 First Approach Using LDGM and LDPC

The idea of first approach is from the Robust Slepian-Wolf coding problem, so they
have the similar factor graphs. The sequence X" is quantized into W™ by using
LDGM. Then W™ is encoded into an index of length nRy z(d) through LDPC. At
last, combining that LDGM and LDPC is to decode the sequence X™. As shown in

the Figure 4.2, there are totally 5 layers. The first 3 layers construct the factor graph
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of LDGM used to quantize the sequence X™. The last 3 layers construct the factor
graph of LDPC used to encode the sequence W™. The entire factor graph is used to

decode the sequence Xm,

i () ()

Check Nodes Q ‘

X
Source Nodes .

e

Side information SW

Variable Nodes SW

R4
E/H

Check Nodes SW

Figure 4.2: Factor Graph of First Approach
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The encoding and decoding of this approach are analyzed in following subsections.

4.1.1 Encoding

The detailed process of quantization using LDGM code has been described in the
section 3.2.2.1 and it is applied directly in this part. So there is no more discussion
about it. After obtaining the quantized sequence W™, the values of W™ are passed
into variable nodes in the fourth layer. Then an index of W™ is calculated by the

Hw?, where H is nRyyz(d) x n parity check matrix.

4.1.2 Decoding

Due to using the side information Y™ and an index of W™ in the decoding process, the
message in the form of LLE = log ];E'z—j};% is passed, where the conditional probability
p(wly) is found through the Markov chain Y « X < W. Here, it provides the reason
why the sequence W™ can not be decoded by using only LDPC, not like general
Slepain-Wolf coding problem. The Wyner-Ziv rate Ry z(d) is less than or equal to
the Slepian-Wolf rate H(W|Y') and the number of bins is , which is less than or equals
to 28WIY)  The LDGM constraint is added to ensure the codebook generated by the
marginal distribution p(z), dropped the indices of the codewords in that codebook
into 2%wz() hing, and identity the codeword from the other sequences jointly typical
with Y™ in the bin pointed by the index from encoding the sequence W™. So the
factor graph of LDGM code used in the quantization is connected with the one of
LDPC code as the constraint. Now, the decoder sequence X is not only in the bin
pointed by the index of W™, but also is the output of quantizing X™. The is why the
factor graph combined by both LDPC and LDGM codes is required to decode the

sequence X™.
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The detailed message-passing algorithm in the factor graph is presented as follows:

ot

. Initialize the My, computed in the equation (4.2) in the form of LLR (Log-

likelihood Ratio) in each variable node SW based on the value of side infor-
mation Y and the conditional probability p(w;|y;). Set all received messages

Megy;—Vsw; and Mg, .yg,, 50 0

. Send message My, .cg; computed in the equation (4.4) out from the variable

node SW Vg, to the check node SW Cgyy;. Denote Aqsw (¢) as the set of check

nodes SW connected to the variable node Vg,

Send message My,,,,—s, computed in the equation (4.5) out from the variable
node SW Vow; to the source node 5;. Then send Ms, .o, computed in the
equation (4.8) out from the source node .S; to the check node Q Cp; with the

format of message converted from LLR to a set of p(w = OJy) and p(w = 1|y).

- Send message Mc,, v, computed in the equation (4.9) out from the check

node Q Cg; to the variable node Q Vg;. Denote Byg(4) is the set of variable

nodes Q connected to the check node Cy;.

Send message Mgy, ;—vsy; computed in the equation (4.9) out from the check
node Cgw; to the variable node Vs, . Denote B,sw () is the set of variable

nodes connected to the check node Cgyy,.

Send message My,;—.c,, out from the variable node Q Vjp; to the check node
Cgi . Denote A.(j) is the set of check nodes Q connected to the variable node
V- Then send Mg, _.s, out from the check node Q Cp; to the source node

Si and convert the message format from a set of p(w = 0ly) and p(w = 1ly) to

LLR.

. Go back the step 2 until the number of iteration reaches 150 times
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8. Estimate z; according to the final decision rule: where Mp(i) computed in the

equation (4.7)
0 it Mp(i) >0

& = (4.1)
1 if NIF(Z') <0
Initial message at the variable node SW
p(w; = 0ly;)
]V[v vi log — T~
sw p(w; = 1y;)
4.2
IV[CSWJ'—’VSWi =0 ( )
]\/[SiHVSWi =0
Source node to Variable Nodes SW
M s
. N Qi—%
]\{[Si—’VSH/i = log A/[é'qi_;si (43)
Variable node SW to check node SW
]\/[VSWi—‘CSWj = ]\/[Si—’VS‘Vi -+ N[VSWi + Z ]\/ICSH/m.“VS\vVi (4.4)
Cswm€Acsw (iIN\{Csw;}
Variable node SW to source node
A/[VSW'i—»Si = Z ]V[CSWm—>szi (45)
CswmEAcsw ()
Check node SW to variable node SW
Mc swi—Vswi A/[Vs wmn—Cswj
tanh(——;—) = (1 —2s;) H tanh(—T——]) (4.6)
Vswim€Bysw (3)\{Vswi}
I"inal decision rule in the variable node
Mp()) =My, + ) Mg,->u (4.7)

Cm€Ac (i)

Figure 4.3: Calculation of the Message in Variable Node SW and Check Node SW

According to the rate Ry z(d), the optimal degree distributions of check node SW

and variable node SW are found in the website [9], However, the degree in the check
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nodes is too high. So that one problem is met in step 5 that the message Mgy, ; vsw:)
which is calculated by in the equation 4.6, is close to 0 and Mygy;~Csw; never changes

in each iteration.
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4.2 Second Approach Using LDPC

Quantization in the second approach is implemented by LDPC instead of LDGM in
order to modify the degree distribution of variable nodes and check nodes. The whole
factor graph is shown in the Figure 4.5. There are 2 parity check matrixes in this
factor graph. H; 1s used to quantize the X™ to W™ and Hs is used to encode W™ to
an index of length nRy z(d). After that, one combines two matrices to H = [E—:] for

decoding the Xn,

4.2.1 Encoding

Quantization is implemented by LDPC with survey propagation. The sequence W™
must satisfy Hy(W™)T = 0 and all values of syndrome in the check nodes are 0.
Encoding is accomplished using survey propagation on the factor graph obtained

from Figure 4.5 by removing check nodes Hs.

1. Initialize the vector message Mg, i, computed in the equation (4.12)and mes-

sage.

2. Send message My,_,c, computed in the equation (4.13) out from the variable
node V; to the check node C;. Denote A.(7) as the set of check nodes connected

to the variable node V.

3. Send message Mc,_,y, computed in the equation (4.14) out from the check node

C; to the variable node V; . Denote B,(j) as the set of variable nodes connected

to the check node Cj.

4. Go back the step 2 until the vector message M, .y; computed in the equation

(4.14) or the number of iteration reaches the 150 times
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5. Calculate the marginal distribution My, computed in the equation (4.15) in each
variable node. Set the values of some variable nodes whose bias | M. ‘O,j — N[%,jl are
greater than one threshold, which usually is less than 0.1. If there is no such
bias, the value of one variable node which has the biggest bias is set. Then,

remove those variable nodes from the factor graph.
6. Go back the step 2 until all the values of variable nodes are set.

Once the sequence W™ is generated, Ho(W™)T produces an index of length nRyw z(d).
However, the index used by decoding is composed of Hy (W™)T and Hy(W™)T. As we
know, Hy(W™)T always is 0, so the decoder is assumed to know H(W™)T already.

Therefore, the coding rate is Ry z(d).

4.2.2 Decoding

In the process of decoding, the sequence X™ is decoded by the side information Y™
and the index from H(W™)?. The message passed along the factor graph H. Hence,
the process of decoding is exactly the same as Slepian-Wolf coding problem. The
procedure can be refereed in the section 3.3.3.2. In this approach, although the
degree in the variable node is increase, the degree in the check node referring Hy is
unchanged. Therefore, the same problem exist. The message Mc,_,, in the Hy is

close to 0 in each iteration.
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Source node to Check node Q
M _ Mvswins:
Si—Coi 1— A/[VSI»\’i’—'Si
1
M =—
SimCa - j\/[VS\r\’i_’Si
Check node Q to variable node Q
1
]\/[g’oi——»VQj = 5[1 + (A{[.giaCQi - A{[.%'i—)CQi) H (A/[‘O/QMHCQ,' - 1\{[‘1/Q1,1-—)CQ1' )]
meBuq()\{Va;}
1
A/[éQi—)VQ]- = 5[1 - (A/IgiHCQi - ]V‘[;'i—'CQi) H (B/[‘(}QTH—)CQI' - Z\/l"llQ.m—)CQi)]
meByq(i)\{Va;}
Variable node Q to Check node Q
A{[‘(}Qj"’CQi = H Mgam—"’oj
meAQ(i)\{Cam}
A/[‘l/Qj—i(;'Qi = H Z\/[éin“*ij
mEAQ(IN\{Cam}
Check node @ to Source Node
A/fg‘qi—’si = H A/[‘O/Qm_'CQi
meByg(i)
1 _ 1
A/[CQi—'SI - H ]\/IVQm”CQi
meBy,q(i)

(4.8)

(4.9)

(4.10)

(4.11)

Figure 4.4: Calculation of the Message in Variable Node Q and Check Node Q, M,

and M; have to be normalized to sum to 1
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%y xq X3 Xy %, x,
Source Nodes (‘) > (3 iy ;)
Side information %! \J\ Y2 Y3 N Y4 N J’x—x\j) Y N
/\" \ e P s \ P /5- -
Variable Nodes | ( j ( \ ( . . ( Vo \
\ AN, SN ) ./ /
l ¢ * . Sl Sy [ . . s
\ ) L
Y v
H, H,
Check Nodes Q Check Nodes SW

Figure 4.5: Factor Graph of Second Approach
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Source node to Variable node
M, _y, =exp(y)/(exp()+ >, amexp(—y)  z=uz
medim A (4.12)
| MEy, = apexp(-2)/(exp() + S amexp(-7)) 2w
; meX m#An;
Variable node to check node
My ¢, = Mg .y, I g )
Cn€A(N\{C:
€A(IN\{C:} (4.13)
CmeAc(j)\{Ci}
Check node to variable node
; Mgy, =051+ [ (M) ¢ — M, c)
Vi €B, (D\{V;
O\{V;} (4.14)
AJ&,_H‘/_, = 05[1 - H (Z\/[\(},"—»Ci - N[\l/,n—»ci)]
‘/’llLeBﬂ(i)\{Vj}
Marginal distribution in variable node
My =My v, [ g, )
C'HI AL’ j
€Ac(F) (4.15)
]\/[‘1/]‘ = A/[.é]——)‘/J H (A/[é',n—)\/j)
Cm€A(])

Figure 4.6: Calculation of the Message in Variable Node and Check Node, My and

My have to be normalized to sum to 1
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, some basic concepts of source coding have been introduced and the
low density graph codes (LDPC and LDGM) have been briefly discussed. A coding
scheme of Robust Slepian-Wolf coding problem is implemented in two steps: 1) an
LDGM code is applied for quantizing the source sequence, then an LDPC code is
used for encoding. 2)In the process of decoding, only LDPC codes is used. Two
kind of sequences of different length is simulated and the corresponding result is
good. After that, two incomplete approaches are developed from the coding scheme
of Robust Slepian-Wolf coding problem in order to achieve the rate of Wyner-Ziv
problem. However, it is blocked by one problem that the optimal degree distribution

is not found.
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5.2 Future Work

The future work focuses on finding the optimal degree distribution, so that those
two incomplete approaches could work, especially the second one. Right now, the
entire parity matrix H = [II:II—:] is generated by H; and H, separately. Although two
matrixes H; and Hj satisfy the constraint in each part, the whole matrix does not
ensure the constraint of decoding. Because the decoder requires the entire matrix H,
the entire parity matrix H must be generated to satisfy the constraints of quantization

and decoding at same time. It is probably implemented by density evolution [10],

[11], [12].
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Appendix A

K.K.T conditions

All the optimal solution of the linear program problem 3.33 must satisfy the following

K.K.T conditions:

6 2
L(M) = D(M)+ > _Nfi(M) + > vihy(M)
i=1 i=1

H(M® < 0,i=1,..6

hi(M*) = (1 —mg —mg){a1 — cz) +mig(by — by) +mig(ci —ag) =0
ho(M*) = m§ (a1 —ca) + (1 —miy —miy) (b1 — ba) +mii(c1 —ag) =0
N > 0i=1.6

X fi(M*) = 0,i=1,..6
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[aip + c2(1 — p)] + 2A1mg; — M — vi(ar — ¢3) + valay — c3) =0

la1p + ca(1 — p)] + 2h9mg, —

[bup + ba(1 — p)] + 2A3m],

[b1p + bo(1 — p)] + 2\4m], —

[e1p + ag(1 — p)] + 2 smi, —

)\2 — 1/1(@1 — Cg) =0

- /\3 — I/1(b1 - bg) — l/g(bl - bg) =0

Mg = va(by = by) =0

)\5 — V1(61 - ag) =0

[clp + 61,2(1 — p)] + 2/\6777,;1 — /\6 + I/Q(Cl — Cl.2) =0
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Appendix B

Minimum Rate of Doubly

Symmetric Binary Source with the

Distortion d

Two sequences X™ and Y™ are generated from two bhinary sources X and Y by a
crossover probability p, which is in the range of [0, %] X™ is encoded to an index
of length nR(d). Y™ is sent to the decoder directly as the side information. The

minimum rate R(d) [3] with distortion d is found as:

g(d) ifd <d,
R(d) = § ¢dde=d) ¢ g, < 4 < p (B.1)
0 ifd>p
where
g(d) = h(pxd) — h(d),0<d<p (B.2)

where h(k) = —kloghk — (1 — k)log(l —k),0<k<lfor 0 <u,v <1
prd=p(l—d)+d(1-p) (B.3)
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d. is solved by the following equation.
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