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I 
Abstract 

In this thesis, Robust Slepian-\iVolf coding problem is discussed. Two correlated 

source sequences xn and yn are encoded at separate encoders and decoded together. 

When the encoder of source Y is broken, another sequence xn still can be decoded 

to achieve a nontrivial distortion. Further, xn can be recovered losslessly once that 

broken encoder is restored. A practical coding scheme is developed using low density 

graph codes. Moreover, by generalizing the coding scheme of Robust Slepian-\!\ToIf 

coding problem, two approaches are proposed for the Wyner-Ziv problem using the 

low density graph codes. 
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Chapter 1 

Introduction 

1.1 Backgroud 

In this section, some brief results of loss less and lossy source coding are reviewed for 

a single source and two correlated sources. 

1.1.1 Lossless Source Coding 

1.1.1.1 Single Source 

For a single information source, a well-known result shows the encoding rate R must 

be greater than or equal to the entropy of the source for lossless reproduction. Let 

X be a discrete random variable selecting the values from the set A = {I, 2, ... ,A} 

with the probability distribution by p( x) = PT{ X = x}, x E A. Then a sequence of 

Xl, X 2 , ... ,Xn is formed through i.i.d drawn from the probability distribution of X 

by p(x) and the probability of this sequence P(X1 ,X2 , ... ,Xn ) is calculated by: 

n 

P(X1 ,X2 , ... ,Xn ) = IIp(Xi) Xi E A,i = 1,2, ... ,11,. 

i=l 
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Given the definition of strongly typical sequence [1], the probability of a typical 

sequence IS: 

n 

i=1 

II p(a)n(aIX) 

aEA 

~ II p(a)np(a) 
aEA 

2n ~ap(a) logp(a) 

2-nH(X) 

(1.1 ) 

(1.2) 

(1.3) 

(1.4) 

(1.5) 

In the equation (1.2), n(alxn) denote the number of a in the sequence xn. The 

approximation step (1.3) follows from the fact that xn is a typical sequence. The 

result (1.5) shows all elements of the typical set are nearly equiprobable. By the 

weak law of large numbers, the probability of typical set is nearly 1. So the size of the 

typical set is approximately 2nH(X). If R ?: H(X), a one-to-one mapping relationship 

is built between each typical sequence xn generated by the source and a codeword 

included in the codebook with 2nR codewords, which guarantees the lossless recovery 

of compressed source. 

1.1.1.2 Slepian-Wolf Coding 

The result from last part can be extended to show that compressing two independent 

sources X and Y requires the encoding rate R = Rx + Ry ?: H(X) + H(Y) for loss less 

recovery. However, what is the encoding rate for two correlated sources? Slepian­

Wolf coding discusses such problem: two correlated sources (X, Y) with the joint 

probability p(x, y) are encoded separately at two encoders and decoded together at 

one joint decoder, and its admissible rate region R is illustrated in Figure 1.1. 

As shown in figure 1.1, the two-dimensional rates (Rx, Ry) must satisfy the following 

2 
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HCLYJ 

H(l) 
R y 

Figure 1.1: Achievable rate region of Slepian-·Wolf coding 

three inequalities [2]: 

Rx > H(XIY) 

Ry > H(YIX) 

Rx + Ry > H(X, Y) 

It is obvious that the sum of two encoding rates could be less than the sum of 

their entropies for lossless recovery from the three inequalities above. Let's take 

a closer look at the admissible rate region, two corner points (H(XIY), H(Y)) and 

(H(X), H(YIX)), which are symmetrical through replacing source X and Y, are of 

significant importance and the dominant face between them is achievable through 

the time sharing scheme. So only one corner point (H(XIY), H(Y)) is analyzed and 

corresponding coding scheme is illustrated in Figure 1.2. 

3 
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R. 

• Y ~l Encoder ~I Decoder ... X 

I 
p(x,Y) 

I 
y 

Figure 1.2: Coding Scheme of Slepian-Wolf coding problem 

Firstly, the codebook is generated by using random bins. All the n-length typ­

ical sequences generated by source X are uniformly dropped into 2nRx bins, which 

composes the codebook. Two sequences xn and yn of length n are generated from 

two correlated sources (X, Y) with the joint distribution p(x, y). In the process of 

encoding, the sequence xn is encoded with Rx to produce an index pointing to which 

bin the sequence xn is in. In the process of decoding, the sequence yn is directly 

transmitted to the decoder as the side information for decoding the sequence xn. 

At the decoder the side information sequence yn compared with those sequences in 

the bin specified by the index from the X encoder. If one of sequences in that bin 

and the side information yn are jointly typical sequences, then that sequence is de­

clared as the decoded sequence xn. If the encoded rate Rx is greater than H(XIY), 

the decoder ·will recover the lossless sequence xn with high probability. The details 

about the implementation of Slepian-Wolf coding with LDPC will be discussed in the 

chapter 3. 

4 
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1.1.2 Lossy Source Coding 

1.1.2.1 Single Source 

Let's us discuss the simplest case first. A sequence of X 1 ,X2 , ... ,Xn is generated in 

one source through i.i.d drawn from the alphabet A with the probability distribution 

of p(x). By using an encoding function in : xn -----> {I, 2, ... ,2nR}, the encoder 

output is an index that represents a codeword included in the code book, whose size 

is 2nR. By using the decoding function gn : {I, 2, ... ,2nR} -----> xn, the decoder output 

is a corresponding codeword mapped by the index from the encoder output. The 

distortion between sequences xn and xn is defined by 

(1.6) 

where d(x, x) is a measure of the distortion of representing the symbol x by the 

symbol X. The minimum achievable rate at distortion D is given by the classical 

rate-distortion theory: 

R(D) min J(X;X) 
p(xlx) 

subject to ~ p(x)p(x\x)d(x, x) < D 
(x,x) 

(1.7) 

(1.8) 

Among all conditional distributions p(x\x), a p(x\x) is found to minimize J(X;X) 

and satisfy the expected distortion constraint. After finding the optimum p(x\x) 

from equation (1.7), the codebook is generated through the marginal distribution 

p(x). Due to the fact that the sequence of xn is i.i.d.generated, each codeword 

xn can be produced with the distribution p(xn) = TI~=l P(Xi). To form the whole 

codebook simply, it is considered as a 2nR x n matrix and each entry is i.i.d drawn 

from the alphabet A with the probability distribution of p(x). In the process of 

encoding, the sequence xn is compared with each codeword in the codebook until 

5 
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finding one codeword which is jointly typical with xn. Then the index of those 

codeword is recorded as the output of encoding. If no such codeword exists, the 

output of encoding is set to the index of the first codeword in the codebook. In the 

process of decoding, the sequence xn is the codeword specified by that index. 

1.1.2.2 Wyner-Ziv Coding 

Vlyner-Ziv coding is about the rate distortion coding with side information. Two 

sequences xn and yn of length n are generated from two correlated sources (X, Y) 

with the joint distribution p( x, y). The sequence xn is encoded with the minimum 

rate Rl1o,1Z(D) and decoded with the aid of the side information yn, which is available 

to the decoder, to achieve distortion D. The same distortion function (1.6) is applied. 

The rate distortion function with side information is [3]: 

Rl'vz(D) inf [I(X; l1V) - I(Y; HI)] 
p(wlx) 

Subject to E[D(X,X)] < D, where X = j(Y, ltV) 

(1.9) 

(1.10) 

where random variables X, Y, and HI form a markov chain Y f--+ X f--+ HI. The 

minimal rate Rwz(D) is found over conditional distribution p(wlx) and functions j, 

so that the expected distortion is less than D. Then the codebook could be generated 

by the marginal distribution p( w). Firstly, the whole codebook is considered as a 

2nRl x n matrix, where Rl = I(X; HI). Each entry in the matrix is i.i.d drawn from 

the alphabet W with the probability distribution of p( w) and index every codeword. 

After that, all the index of that codebook is dropped into 2nR2 bins with the uniform 

distribution, where R2 = I(X; Hi) - I(Y; HI). In the process of encoding, the source 

sequence xn is compared with the codeword in the codebook until it is jointly typical 

with llvn. Then the index of that codeword Hln is stored. If no such codeword Hln 

exist, the index is set to 1. If more than one codeword lVn are jointly typical with 

xn, the smallest index is stored. The output of encoder is an index of bin that 

6 
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contains that index of Hln. In the process of decoding, the side information yn is 

compared with the codewords specified by those indices in the bin, which is pointed 

by the encoder. If there is a unique codeword jointly typical with yn. This codeword 

is considered as vvn and j(n is estimated through the function Xi = f(TiVi , Yi). If 

there is not one or more than one codewords jointly typical with yn. xn is set to 

any codeword. 

Due to the assistance of the side information, the rate Rwz(D) with side informa­

tion is less than or equal to the one without side information. For the special case of 

D = 0, it is converted to Slepin-Wolf coding problem. Then rate required is H(XjY) 

bits. 

1.2 Motivation and Contribution of the Thesis 

Some applications of source coding have been developed using LDPC and LDGM 

codes with message passing algorithms. Quantizing the source of arbitrary distribu­

tion is also implemented by LDGM code with survey propagation and the correspond­

ing simulation result [4] is extremely good. The general Slepian-Wolf coding problem 

has been developed by applying LDPC codes with belief propagation. For the binary 

source, the performance of simulation [5] is good. In this thesis, a practical scheme 

of Robust Slepian-Wolf coding is developed based on previous two applications and 

simulation is performed in a special case. After that, two approaches for Vlyner-Ziv 

coding are derived from the application of Robust Slepian-vVolf coding. However, it 

is not completed due to the fact that the optimal degree distribution is still unknmvn. 

7 
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1.3 Organization of the Thesis 

The thesis is structured as follows: 

• In Chapter 2, the concepts of LDG.M and LDPC codes are introduced. 

• In Chapter 3, the general Robust Slepian Wolf coding problem is formulated 

and the detailed coding scheme is developed with low density graph codes. 

Simulation result of a special case is provided. 

• In Chapter 4, two incomplete approaches for vVyner-Ziv coding problem are 

developed with low density graph codes. The problem encountered in both 

approaches is discussed. 

• In Chapter 5, this thesis is concluded and some potential methods are provided 

to solve the problem in Chapter 4. 

8 



Chapter 2 

Low Density Graph Codes and 

Factor Graph 

Some applications of source coding have been developed by LDPC and LDGTvr codes 

vvith message passing algorithms. Quantizing the source of arbitrary distribution is 

also implemented by LDGM code with survey propagation and the corresponding 

simulation result [4] is extremely good. The general Slepian-Wolf coding scheme has 

been developed by applying LDPC codes with belief propagation. For the binary 

source, the performance of simulation [5] is good. In this chapter, the concepts and 

some properties of LDGTvr and LDPC are introduced. 
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2.1 Low Density Generator Matrix Codes 

An (n,k) binary linear block code C with low density generater matrix (LDGIVI) G, 

which is a k x 11, matrix, is defined as follows: 

C = {x : x = uG, u E G Fk (2)} (2.1 ) 

where u is a 1 x k information vector and x is a 1 x 11, codeword and GF(2) is the 

Galois field of two elements. The "low density" means the sparseness of ones in G. 

Check Node: n 

Variable Node: k 

Figure 2.1: LDGNI factor graph 

The factor graph associated with the LDGM (2.1) is demonstrated in the Figure 

2.1. Variable nodes (0) store information vector u and check nodes (D) store the 

codeword x based on the entire generator matrix G. The edges between variable 

nodes and check nodes are drawn according to the entries gi,j of generator matrix G. 

When the entry gi,j is not zero, one connection is built from the jth check node to 

the ith variable node. 

The rate of this LDGM code is calculated by the equation (2.2). To build the 

irregular LDGM codes, the equations (2.3) must be satisfied. ),(x) and p(x) are the 

degree distributions in the form of polynomials for the variable nodes and check nodes, 

10 
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respectively. Ai is the portion of edges on the variable node of degree i and Pi is the 

portion of edges on the check node of degree i. dv denotes the maximum variable 

degree and de denotes the maximum check degree. 

R=~ 

fo1 p(x)dx 

fo1 A(X )dx 

A(X) 

p(x) 

n 

R 

2.2 Low Density Parity Check Codes 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Low density parity check (LDPC) codes vvere introduced by Gallager in the 1960s [6]. 

It is defined as follows: 

(2.6) 

where H is an (n- k) x n matrix termed parity check matrix with low density referring 

to the sparseness of ones, s is a 1 x (n- k) vector and is called syndrome. Cs is the coset 

that contains a set of x satisfying HxT = s. Furthermore, when all the syndrome 

bits are 0, Cs is called linear code. The factor graph associated with the LDPC (2.6) 

is demonstrated in Figure 2.2. Variable nodes store the codeword x and check node 

store the syndrome calculated by HxT. The edges between variable nodes and check 

nodes are drawn according to the entries hi,j of parity check matrix H. When the 

entry hi,j is not zero, one connection is built from the jth variable node to the ith 

check node. The rate of this LDPC code is calculated by the equation (2.7). To build 

the irregular LDGlVI codes, the equations (2.8) must be satisfied. 

n - k fo1 p(x)dx 
R=--=l--"--";----

n fo1 A(x)dx 
(2.7) 

11 
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Variable Node: n 

Check Node: n-k 

Figure 2.2: LDPC factor graph 

10
1 

p(x)dx 
1- -R 

101 A(x)dx -
(2.8) 

The definitions of A(X) and p(x) are the same as in the section 2.1. 

12 
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Chapter 3 

Robust Slepian Wolf Coding 

The general Slepian Wolf coding has been discussed in Section 1.1.1.2. Tvvo correlated 

sources X and Yare encoded at two separate encoders and decoded together at a 

joint decoder. However, if the encoder of source Y is broken, then the joint decoder 

is not able to recover both sources. For enhancing the utilization of rate R x , it is 

split into two parts Rx = Rxl + R x2 : 1) the decoder has a capacity for decoding a 

sequence of Hln to achieve distortion D, in the absence of the side information yn, 

with rate Rx1 , 2) the sequence xn is recovered losslessly at the same decoder with 

the side information yn and Hln with the rate R x2 . This special Slepian ,,yolf coding 

is called as Robust Slepian ~Wolf coding. 

In this chapter, the required constraints to achieve the Robust Slepian vVolf coding 

will be discussed and a coding scheme is developed with low density graph codes. 
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3.1 Robust Slepian Wolf Coding 

3.1.1 Problem Background and Formulation 

As mentioned at the beginning of this chapter, Robust Slepian Wolf coding is achieved 

while only some constraints are satisfied. The following items list these constraints 

that cited from [7] and provided the corresponding explanations. 

1. An auxiliary random variable HI exists such that Y ~ X ~ HI forms a NIarkov 

chain. 

2. E[d(X, VV)] ::; D. 

Then the Robust Slepian \i\Tolf coding problem is formulated as: 

RRSW(D) 

subject to E[d(X, HI)] 

n1.in 1(X; W) + H(X\y, HI) 
p(wlx) 

< D 

Y ~ X~HI 

(3.1) 

(3.2) 

(3.3) 

In the equation (3.1), the first term is derived from quantizing the sequence xn 

to Hln with the distortion D using rate Rxl and the second term is derived from 

recovering the sequence xn with both side information Hln and yn using rate Rx2 . If 

RRSW = H(X\y), then one more constraint meeds to be added, that is Y and VV are 

independent. This can be shown using the following argument. Firstly, the encoding 

rate of Robust Slepian Wolf Coding is calculated as follows: 

RRSW(D) 1(X; HI) + H(X I \11/, Y) 

H(X) - H(XlvV) + H(XITtV, Y) 

H(X) - 1(X; YITIV) 

H(X) - 1(X; Y) + 1(\11/ ; Y) 

H(XIY) + 1(W; Y) 

14 
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The property of lVIarkov chain Y f--+ X f--+ vV is applied from (3.6) to (3.7). 

1(Y; H/IX) 

1(Y;X, VV) 

1(Y;XIH/) 

0 

1(Y; VV) + 1(Y; XIH/) 

1(Y; X) + 1(Y; H/IX) 

1(Y; X) - 1(Y; TiV) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

Then, it is simplified until the final result (3.8) that must be less than or equal to the 

limited rate H(XIY) of Slepian Wolf Coding. 

H(XIY) + 1(vV; Y) < H(XIY) 

1(\tV; Y) < 0 

From the fundamental information theory, the mutual information is greater than 

or equal to O. So the mutual information between HI and Y can only be O. Note 

that 1(H/; Y) = 0 if and only if HI and Yare independent. So HI and Y must be 

independent. Due to the fact that the sequence Hln is output from quantizing X'\ X 

and HI are not independent. In order to satisfy those two relationships, the alphabet 

set size of X must be greater than that of Y, i.e. IXI > IYI. Under the constrain 

RRSW = H(XIY), one can readily formulate the following optimization problem. 

min E[d(X, ltV)] 

subject to Y and 'tV are independent 

(3.13) 

(3.14) 

According to the discussion about those constraints, the coding scheme of Fig.3.l is 

developed. Two sequences xn and yn are generated with a joint distribution p(x, y). 

Then, the sequence xn is quantized with the rate Rxl and the corresponding output 

of quantizer is the sequence livn with the distortion D between them. After that, 

15 
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Rj 

W 

/ 
.. Quantizer 

R2 

.\ X Encoder • Decoder X 

I 
pC?-,)') 

I 
y 

Figure 3.1: Coding Scheme of Robust Slepian-vVolf Coding Problem 

a codebook is constructed through dropping all the typical sequences generated by 

source X into 2nRx2 bins uniformly. The output of encoding the ~equence xn is an 

index pointing to one of those bins. In the decoder, it receives two sequences yn 

and Hln, -which are compared with the sequences in the bin pointed by the index of 

encoding the sequence xn. If one of sequences is jointly typical with yn and 1;1ln, 

that sequence is assigned as the decoded sequence xn. If no such sequence exists, one 

sequence is chosen from that bin as the decoded sequence randomly. If the encoding 

rate Rx2 is greater than or equal to H(XIY, HI), the decoder will recover the lossless 

sequence xn with high probability. The sum (Rxl + Rx2 ) of rates in these two steps 

equals to the H(XIY) and does not exceed the limited rate of the general Slepian 

vVolf coding. 
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3.2 General Case 

3.2.1 Test Channels 

After building the coding scheme, the quantization between sequence xn and Hln de­

pends on the conditional distribution p( Wj \Xi) and the distribution p( Xi) of the source 

X. The problem of minimizing distortion D is converted to one linear programming 

problem. 
IXI-l IWI-l 

minimize D = L L P(Wj\Xi)P(Xi)d(Xi, Wi) (3.15) 
i=O j=O,1Vrf=xi 

subject to P(Yk) - p(Yk\Wj) 0 (3.16) 
IWI-l 

L P(Wj\Xi) - 1 0 (3.17) 
j=O 

P(Wj\Xi) - 1 < 0 (3.18) 

-P(Wj\Xi) < 0 (3.19) 

Given the distribution P(Xi), the objective function (3.15) describes that the minimum 

distortion D is found through all possible P(Wj\Xi), which satisfy all the constraints 

listed last section. The equation (3.16) describes the independence between Y and 

TV. The equation (3.17), the inequalities (3.18) and (3.19) describe the properties of 

the conditional distribution P(Wj\Xi): the sum of all P(Wj\Xi) with Xi must be 1 and 

each p(Wj\Xi) must be in the range of [0,1]. The test channels graph is shown as in 

the Figure 3.2 and \X\ = \W\ > \y\. 
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Figure 3.2: General Case of Slepian-Wolf Coding 1tIapping 
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3.2.2 Coding 

Once the conditional probabilities p( Wj !Xi) are fixed by solving the linear program­

ming problem (3.15). The code scheme could be implemented through the LDGM 

and LDPC codes, and the corresponding factor graph is drawn as follows: 

Variable 
Nodes Q 

Check Nodes 
Q 

Network 
Nodes 

Source NOdes 

Side 
informalon 

Variable 
Nodes SW 

Check Nodes 
SW 

Figure 3.3: Factor Graph of Robust Slepian-vVolf Coding Scheme 

There are totally 6 layers in this factor graph. The first 4 four layers construct 

a LDGM factor graph for quantizing the source sequence X71. The last 3 layers 

construct a LDPC factor graph for encoding and decoding X71. Due to the fact tha.t 

both LDGIVI and LDPC factor graph have the variable nodes and check nodes, the 
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notations "Q" and "SW" are added to distinguish. 

3.2.2.1 Quantization and Encoding 

In the Sun's thesis [4], the quantization of one source uniform and nonuniform dis­

tribution is researched using LDGIvI codes with survey propagation. The encoding 

simulation is very good. So this method is adopted to quantize X to I/V with the rate 

Rx1 ' According to the marginal distribution p( w), a deterministic mapping is built 

between the network node and check nodes Q. This deterministic mapping could be 

considered as a function hv! : yM --7 A = {I, 2, ... ,A}. There are totally 2M possible 

binary sequences generated by the uniform distribution. Based on the distribution 

p( w ), m'i sequences are assigned to the value w. So that the following equation is 

satisfied. 
Tn· 
2N~ ~ p(w) = Pr{HI = w},w E A (3.20) 

Besides, each sequence is only allowed to assign to one value in order to construct a 

deterministic mapping. Then each network node connects to fliJ check nodes in the 

fact graph. Once the values of check nodes are fixed, the value of network node is 

calculated by the function hoi!' To pass message along the factor graph, the hv! is 

also used from network nodes to check nodes shown as equation (??). 

The first four layers in the Figure 3.3 constructs the factor graph of quantiza­

tion. The sequence of message-passing is listed as follows and the corresponding the 

calculation of message are shown as Figures 3.7, 3.5 and 3.6. 

1. Initialize the vector message l\1[cQi--->vQj' l\1[cQi--->Nj and 11/[si--->Ni . Jurnp to the 

step 3 

2. Send the vector message ]1/[CQi--->VQj out from the check node Q GQi to the variable 

node Q VQj . Denote AvQ (i) is the set of variable nodes Q connected to the check 
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node Q CQi . Send the vector message j\![CQi--->Nl out from the check node Q CQi 

to the network node Nl . 

3. Send the vector message j',l!VQj--->CQi out from the variable node Q VQj to the 

check node Q Ci . Denote CcQ(j) is the set of check nodes Q connected to the 

variable node Q VQj. Send the vector message NINj--->cQi out from the network 

node Nj to the check node Q CQi . Denote DcQ(j) is the set of check nodes 

connected to the network node Nj . 

4. Go back the step 2 until both vector messages l\1fcQi--->vQj andlV[cQi--->Nj converge 

or the number of iteration reaches 150 times 

5. Calculate the marginal distribution IY[vj in each variable node Q. Set the values 

of some variable nodes whose bias 11'1t.. -1'1~.1 are greater than source threshold, 
J J 

which usually is greater than 0.9. If there is no such bias, the value of one 

variable node which has the biggest bias is set. Then, remove those variable 

nodes from the factor graph. 

6. Go back the step 2 until all the values of variable nodes are set. 

7. Calculate the values of the check nodes by uG. u is a vector representing the 

values of variable nodes. 

8. Calculate the values of the network nodes according to the deterministic map­

ping between network nodes and check nodes. 

After quantizing the sequence xn to the sequence Hln, the sequence xn is com­

pressed into an index of length k = nRx2 = nH(XIY, HI). In the process of encoding, 

the value of sequence xn is passed into the variable nodes SW firstly, then the values 

of syndrome stored in check nodes, which is called the encoded index of sequence of 
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Initial vector message at the check node 

Check node to variable node 

MgQi-->vQj = 0.5 

MbQi-->vQj = 0.5 

MgQi-->Nj = 0.5 

MbQi-->Nj = 0.5 

i\lIgQi-->vQj = 0.5[1 + (i1if?v,-->cQi - M];,,-->CQJ II (MtQm-->CQi - M~Qm-->cQJl 
VQm EAvQ(i)\{VQj } 

Check node to network node 

IvfbQi-->Nl = 0.5[1 - II (MtQm-->CQi - M~Qm-->cQ,)l 
VQmEAvQ(i) 

Figure 3.4: Calculation of the lVIessage in Check Node Q 

(3.21) 

(3.22) 

(3.23) 

X", a.re calculated by HxT, where compression rate Rx2 = ~. For the binary se­

quence, the value in each check node is computed by operating X 0 R vvith all values 

stored in the variable nodes connected to that check node. 
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Variable node to check node 

MtQj~CQi = II (MgQm~vQj) 
CQm EBcQ (j) \ {CQ,} 

IV[\~Q]~CQ' - II (l'!{bQm~VQj) 
CQmEBcQ(j)\{CQ,} 

Marginal distribution in Variable node 

M~j = II (MgQm~VQj) 
CQmEBcQ(j) 

lVIv
l 

. = II (Mcl V. .) J Qm~ ~ 

CQmEBcQ(j) 

Figure 3.5: Calculation of the lVlessage in Variable Node Q 

3.2.2.2 Decoding 

(3.24) 

(3.25) 

As illustrated in Fi.gure 3.:i, the factor graph of decoding includes the last 4 layers. 

Both source nodes and side inform.ation nodes connect to variable nodes one by one. 

The edges between check nodes and variable nodes are built through a k x 11, parity 

check matrix H described in the section 2.2. 

A lossless sequence xn is required to recover. In the decoding process, the belief 

propagation is adopted. The output sequence xn from the decoder is generated as 

follows and the detail calculations of message are listed in Figure 3.7. 

l. Initialize the vector message )\/f\l; in the form of (J\![~, )\/f,\, . .. ,1\/f~~YI-l) in each 

variable node based on the values of both side information Y and HI and the 

conditional probability p(Xi!Yi, Wi), and set received vector message i\l[Cj->'1;. to 

1. 

2. Send the vector message 1\/fVsw;->CSWj out from the variable node S,A! VSWi to 

the check node SVV CSWj . Denote Acsw(-i) is Lhe set of check nodes connected 

to the variable node SW VSWi . 
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Source node to network node 

MSi--->Ni = expb)/(expb) + L amexp(-,)) Z=Xi 

mEX:m"eXi 
(3.26) 

N1Si--->Ni = ak exp( -,)/(expb) + L am exp( -,)) Z of Xi 

mEX:m"exi 

Network node to check node 

MCJvj--->CQi = L NISj--->Nj II l\ll;;~'--->Nj 
zEX CQ,EDcQ(j)\{CQ;}'YCQj=O,z=hvI(YI .Y2,""Y'" , ... ,YM) 

(3.27) 

Figure 3.6: Calculation of the IVlessage in Network Node 

3. Send vector message l\!{cswr-->vsHf i out from the check node SVV CSWj to the 

variable node SVV VSWi . Denote Bvsw(j) is the set of variable nodes connected 

to the check node S\f\T CSWj . 

4. Go back the step 2 until the number of iteration reaches 150 times 

5. Estimate Xi according to the final decision rule: 

Xi = Tn, where NFj} ( i) = max{ J\I{J,( i), l\!{~( i), ... , Mffi (i)} (3.28) 
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Initial vector message at the variable node 
i 
I 

I 
z E X 

(3.29) 
z E X 

Variable node to check node 

N[,/ IT . MZ f 
~1Z = __ =-_l_s_w_i ___ c~s~H;~m~E_A~c~S\~v~('~)\~{~C~S~\\~;j~} ___ C_S~\V~,,~,~ __ \s~\~V,_· __ 
VSWi~CSWj "'z 1\1[Z IT . l\1JZ 

DZ=O VSWi CSWmEAcsw(,)\{CSWj} CSWm~lfSWi 

(3.30) 

Check node to variable node 

(3.31 ) 

Final decision rule in the variable node 

I\I[}(i) = MVSWi II NJZ CSHT 1Il - > VSlYi (3.32) 
CSWmEAcsw{i) 

Figure 3.7: Calculation of the JVlessage in Variable Node and Check Node SVV 
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3.3 Special Case 

vVe consider a special case given in Figure 3.8 and meanings of notations in that figure 

are listed in the table 3.1. 

Figure 3.8: A Special Case of Robust Slepian-vVolf Coding :Mapping 

26 



I 
'j 

1 

I 

lVLA.Sc: lVlin Huang lVlclVlaster - Electrical and COlnputer Engineering 

a1 = p(x = Oly = 0) b1 = p(x = 11Y = 0) C1 = p(x = 21Y = 0) 

a2 = p(x = Oly = 1) b2 = p(x = 11Y = 1) C2 = p(x = 21Y = 1) 

moo = p(w = olx = 0) mOl=p(w=llx=O) 171,02 = p( W = 21x = 0) 

mlO=p(w=Olx=l) 171,11 = p(w = 11x = 1) 171,12 = p( W = 21x = 1) 

m20=p(w=0Ix=2) m2l=p(w=1Ix=2) 171,22 = p( W = 21x = 2) 

Table 3.1: Notation in Genera.llVlapping Graph 

For this special case, the linear program problem is rewritten as follows: 

mmml1ze 

subject to 

D (171,01 + 171,02) [a1P + C2(1 - p)] 

+ (171,10 + 171,12) [b1P + b2 (1 - p)] 

+ (171,20 + 171,21) [C1P + a2(1 - p)] (3.33) 

h1(iVI) 

h2 (1\11) 

(1 - 171,01 - m02)(a1 - C2) + mlO(b1 - b2) + m20(cl - a2) = 0 (3.34) 

mOl(al - C2) + (1 - 171,10 - m12)(b1 - b2) + m2l(cl - a2) = 0 (3.35) 

II (N1) 171,61 - 171,01 ::; 0 (3.36) 

12(1111) 171,62 - 171,02 ::; 0 (3.37) 

h(N1) mio - 171,10 ::; 0 (3.38) 

14(1\11) mi2 - 171,12 ::; 0 (3.39) 

15 (1\1) m~o - 171,20 ::; 0 (3.40) 

16(1111) m~1 - 171,21 ::; 0 (3.41) 

Function h(i\1) is derived from the independence between Y and HI and Function 

1(1\1) derives from the properties of the conditional probabilities P(WjIXi)' In the 
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equation (3.33), hamming distortion is applied. 

d(Xi. Wi) ~ {: (3.42) 

3.3.1 Symmetric Case 

Firstly, the simplest case is analyzed. Assume the conditional probabilities p(xly) 

between the sources X and Yare symmetric, 

a 

b 

c 

then this linear programming problem is simplified further. 

minimize D mOl[ap + (1 - p)c] + 7n02[ap + (1 - p)c] 

+ m20[cp + (1 - p)a] + m21[cp + (1- p)a] 

subject to (mOO - m20) (a - c) 

(mOl - m21)(a - c) 

(m02 - m22) (a - c) 

o 

o 

o 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 

Note that the condition a =I c must be held to avoid the violation of IXI > IYI. 
Once a = c exists, the probabilities from Yi to Xo and X2 are the same. So that these 

two bits Xo and X2 are equivalent and are merged to one bit. The alphabet set size 

of X decreases to 2, which is the same as that of Y. 
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Given the following definitions: 

7nOO = 7n20 A 

7nOl = m21 B 

7n02 = m22 C 

ap+ c - cp = El > 0 

cp+ a - ap = E2 > 0 

D = A x (E2 - E1 ) + B X E2 

There are 3 kinds of solutions in this problem based on the relationship between El 

and E2 . 

A=l A+C=l A=O 

B =0 B =0 B=O 

C=l 

From the above solution, it is obvious that the cases El > E2 and El < E2 are 

similar and symmetric. So only solutions of two cases El > E2 and El = E2 are 

displayed in Figure 3.9 and Figure 3.10, respectively. 

As observed from those figures above, the X in the decoder can be estimated by 

both side information Y and TV directly, without the index from encoding X. These 

mappings reveal that the total rate of Robust Slepain-~\iVolf coding is consumed in the 

quantizer Rxl = H(XIY) and Rx2 = 0 in the symmetric case. 
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TV 
}---_lll_OO ______ -----;((··-) 0 

Figure 3.9: Robust Slepian-vVolf Coding Nlapping with El > E2 

Figure 3.10: Robust Slepian-Wolf Coding Mapping with El = E2 
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1 
al ="2 b1 = ~ Cl = 0 

2 
a2 = 3' b2 = ~ C2 = 0 

Table 3.2: Values of the Conditional Probabilities P(XjIYi) 

moo = 0 mOl = 0 7n02 = 1 

mlO = 0 7nn = 1 7n12 = 0 

m20 = 0 1 
7n21 = 4 

3 
m22 = 4 

Table 3.3: Optimum NIapping Values 

3.3.2 Asymmetric Case 

In this section, an asymmetric case is analyzed. The value of conditional probabilities 

p(xiIYj) is set in the following table 3.2. The mapping values in the table 3.3 between 

X and HI is found by applying the numerical method and proved that they satisfy 

the KKT condition [8]. As discussed in Appendix A, the corresponding A and v of 

this optimization problem exist and is listed as follows: 

According to the conditional probability p(xIY) and the optimum mapping, the map­

ping diagram Figure 3.11 is dravvn. In this figure, when both Y and ware 1, x has 

two possible outputs 1 or 2. So the estimated X can no longer be obtained through 

Y and X directly, the encoding index of X is required to losslessly recover X. 
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HT 

III 02 = I 

p(x=2)=215 

Figure 3.11: Asymmetrical Case of Robust Slepian-Wolf Coding :Mapping 

3.3.3 Coding 

After building the mapping of IVIarkov chain Y ~ X ~ liV, the detailed implemen­

tation is developed by applying LDGiVI and LDPC. The factor graph is shown in the 

Figure 3.3. 

3.3.3.1 Quantization with LDGM 

According to the equation (3.27) and the constraints of deterministic function, the 

alphabet set size of quantized sequence must be the same as one of source sequence. 

So the mapping shown in in Figure 3.12 is modified based on the Figure 3.11. In 

this new mapping, the conditional probability p(w = 21x = 0) = 1 is replaced by 

p(w = Olx = 0) = 1, so the alphabet set size of HI is still ternary. After quantization, 

all the symbol "0" in vvn are converted to 2. The deterministic nmpping is built 
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m 02 ~ 1 

"'21 ~ 1/4 // 

/ 

/ 
/ 

/' 

TV 

() 0 
_/ 

/ 

Figure 3.12: Grouping Side information 

111 the network node as shown in Figure 3.13 by the distribution of IV. From the 

optimal mapping in figure 3.12 between X and H!, the conditional probabilities of 

p(w = Oix = 0) and p(w = 1ix = 1) are 1. So the penalties from x = 0 to 'LV = 0 and 

from x = 1 to 'LV = 1 must be set to O. However, it is impossible to reach 0 in the 

penalty equation (3.26) so that some inevitable errors are generated. For this issue, 

the extra rate Re is used to store the index of those bits of x and force them into 

mapping the correct 'LV. 

3.3.3.2 Decoding with LDPC 

The process of decoding is almost the same as that in section 3.2.2.2. According to 

the mapping in Figure 3.11, x only requires to be distinguished when y equals to 1 

and w equals to 1. So other combinations between Y and H! could be grouped into 

one set as shown in Figure 3.14. 
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>1 
(; 1 1 1 
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1 0 0 1 
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-
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Figure 3.13: :Mapping of Network Node in LDGIVI 
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y ltV X 

y x 
0 1 --.,. [1 L-o 0 ... -

! + 1 

J I I 
1 ... \.-0 .;. 

1 1 III ... -

Figure 3.14: Grouping Side information 

After grouping the side information, the format of message is changed to LLR 

(Log-likelihood Ratio) instead of the vector message for the binary source and the 

corresponding calculation of message is listed in figure 3.15. The final decision rule 

in the variable node is also modified as 

3.3.4 Simulation Result 

if 1\1[ F( i) =:: 0 

if MF(i) < 0 
(3.50) 

Two kinds of sequences from source X with different lengths are simulated for the 

coding scheme discussed above. Their performances are demonstrated in Figure 3.16. 

The red line and blue line represent the simulated results of the sequences of length 

10,000 and 100,000, respectively. For each length, 1000 sequences are tested to 

average their performance. The total rate R is composed of three parts Rl used 

in quantization, Re used for fixing the inevitable error in quantization and R2 used 

for encoding the index of X. During the simulation, the maximum number of the 
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Initial vector message at the variable node 

Variable node to check node 

Check node to variable node 

lVlv,--4Cj = 1I1Vi + L 1\1[Cm --4 Vi 
C",EAc(i)\{Cj } 

M c ·-->\7; II Mv --4C' tanh( J ') = (1- 2s j ) tanh( no J) 
2 2 

\I,,,EBv(j)\{V,} 

Marginal distribution in the variable node 

MF(i) = 1\1[v, + II 1\1[c",-->v, 
CmEAc{i) 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

Figure 3.15: Calculation of the Ivlessage in Variable Node and Check Node in the 

Format of LLR 

inevitable error bit is 10 when the length of test sequence is 10,000, so Re is set to 

0.014. Similarly, the maximum number of the inevitable error bit is 20 when the 

length of test sequence is 100,000, so Re is set to 0.00332. Comparing two lines in the 

Figure 3.16, the line representing the performance of the sequence of the sequence of 

length 100,000 is obviously closer to the Slepian-vVolf limit. 
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cr: 
W 
III 

1O~~95---~O.~96---~O~97---~O.~98-------;;-O",~------7----~IO:;;-I---~1 "2 

Code Rate(bits) 

Figure 3.16: Simulated Result of Robust Slepian-vVolf Coding Problem 
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Chapter 4 

Two Incomplete Approaches for 

Wyner-Ziv Coding Using Low 

Density Graph Codes 

In Chapter 1, the coding problem of two correlated sources X and Y is introduced. 

Slepian-vVolf coding problem is analyzed and is implemented by using Low Density 

Graph Codes in previous chapter. The coding scheme for Wyner-Ziv coding problem 

is developed based on one of the Slepian-Wolf schemes. As illustrated in Figure 4.1, 

the step of encoding includes two parts: 1) The sequence xn of length n is quantized 

into the sequence lVn with the distortion CZ. 2) A codebook is constructed as a 

2I (X;W) x n matrix and each entry in the matrix is i.i.d drawn from the alphabet 'with 

the probability distribution of p( 'W). All codewords in the codebook are uniformly 

dropped into 2Rwz(d) bins. The quantized sequence H! is encoded to an index to 

point to one bin. In the decoder, it receives sequences yn, which is compared with 

the sequences in the bin pointed by the index of encoding the sequence \!l!n. If one 

of sequences is jointly typical with yn, that sequence is assigned as the decoded 
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H·T 

Decoder 

1 

Figure 4.1: Coding Scheme of vVyner-Ziv 

sequence )(n. If no such sequence exists, one sequence is chosen from that bin as 

the decoded sequence randomly. If the encoding rate Rd is greater than or equals to 

I(X; ltV) - I(Y; HI), the decoder will recover the sequence )(n with distortion with 

high probability. 

In this chapter, we only discuss one special case doubly symmetric binary sources 

X and Y. The size of alphabet set of X and Y is binary, and sequences xn and yn 

are generated from those two sources by a crossover probability p, which is in the 

range of [0, H The minimum. achievable rate region is found in Appendix B. The 

following two approaches are developed for the case d < de. 

4.1 First Approach Using LDGM and LDPC 

The idea of first approach is from the Robust Slepian-\!\Tolf coding problem, so they 

ha.ve the similar factor graphs. The sequence xn is quantized into Hln by using 

LDGM. Then Hln is encoded into an index of length nRwz(d) through LDPC. At 

last, combining that LDGJVI and LDPC is to decode the sequence )(n. As shown in 

the Figure 4.2, there are totally 5 layers. The first 3 layers construct the factor graph 
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of LDGlVI used to quantize the sequence XT!. The last 3 layers construct the factor 

graph of LDPC used to encode the sequence HiT!. The entire factor graph is used to 

decode the sequence XT!. 

Variable Nodes Q 

Check Nodes Q 
• • • 

iii I 

Source Nodes 

Figure 4.2: Factor Graph of First Approach 
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The encoding and decoding of this approach are analyzed in following subsections. 

4.1.1 Encoding 

The detailed process of quantization using LDGNI code has been described in the 

section 3.2.2.1 and it is applied directly in this part. So there is no more discussion 

about it. After obtaining the quantized sequence Hln, the values of I/\1n are passed 

into variable nodes in the fourth layer. Then an index of Hln is calculated by the 

HWT, where His nRyvz(d) x n parity check matrix. 

4.1.2 Decoding 

Due to using the side information yn and an index of vvn in the decoding process, the 

message in the form of LLR = log ~~::~l~~ is passed, where the conditional probability 

p(w\y) is found through the lVIarkov chain Y ~ X ~ HI. Here, it provides the reason 

why the sequence 1tVn can not be decoded by using only LDPC, not like general 

Slepain-\i\Tolf coding problem. The Wyner-Ziv rate Rwz(d) is less than or equal to 

the Slepian-vVolf rate H(v\1\Y) and the number of bins is , which is less than or equals 

to 2H (W\Y). The LDG1VI constraint is added to ensure the codebook generated by the 

marginal distribution p( z), dropped the indices of the codewords in that codebook 

into 2nRwz(d) bins, and identity the codeword from the other sequences jointly typical 

with yn in the bin pointed by the index from encoding the sequence Hln. So the 

factor graph of LDGM code used in the quantization is connected with the one of 

LDPC code as the constraint. Now, the decoder sequence xn is not only in the bin 

pointed by the index of iiVn, but also is the output of quantizing xn. The is why the 

factor graph combined by both LDPC and LDGNI codes is required to decode the 

sequence xn. 
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The detailed message-passing algorithm in the factor graph is presented as follows: 

1. Initialize the fl.ifVSWi computed in the equation (4.2) in the form of LLR (Log­

likelihood Ratio) in each variable node SvV based on the value of side infor­

mation Y and the conditional probability p(wiIYi). Set all received messages 

11ifcSWj --> VS.Vi and 11ifsi --> VSWi to 0 

2. Send message j'lifVSWi-->cSWj computed in the equation (4.4) out from the variable 

node SW IISWi to the check node SVV GSWj . Denote Acsw(i) as the set of check 

nodes SW connected to the variable node IISWi 

3. Send message Nlvswi-->si computed in the equation (4.5) out from the variable 

node SW lIswi to the source node Si' Then send fl.ifSi--->cQi computed in the 

equation (4.8) out from the source node Si to the check node Q GQi with the 

format of message converted from LLR to a set of p(w = Oly) and p(w = lIY). 

4. Send message 11ifcQi-->vQj computed in the equation (4.9) out from the check 

node Q GQi to the variable node Q lIQj . Denote Bvd i) is the set of variable 

nodes Q connected to the check node GQi . 

5. Send message 11ifcSWj -->vswi computed in the equation (4.9) out fron1 the check 

node GSWj to the variable node lIswi . Denote Bvs'vv(j) is the set of variable 

nodes connected to the check node GSWj . 

6. Send message NlvQj-->cQi out from the variable node Q lIQj to the check node 

GQi . Denote ACQ(j) is the set of check nodes Q connected to the variable node 

IIQj . Then send f\.ifCQi-->Si out from the check node Q GQi to the source node 

Si and convert the message format from a set of p( 'W = 0 I y) and p( w = 11 y) to 

LLR. 

7. Go back the step 2 until the number of iteration reaches 150 times 
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8. Estil11,ate Xi according to the final decision rule: where lV[F(i) computed in the 

equation (4.7) 

Initial message at the variable node S'vV 

Source node to Variable Nodes S,iV 

Variable node SW to check node SW 

Variable node S'vV to source node 

Check node S,iV to variable node SW 

if MF(i) 2 0 

if l\l!p(i) < 0 

CswmEAcsw{i}\{Csw;} 

!l1cSWm ->VsWi 

CswmEAcsw{i} 

(4.1) 

(4.2) 

(4.3) 

]V[CSW"m ------) VSHFi (4.L1 ) 

(4.5) 

t 1 (!l1Csw;--> VSWi) (1 2 ) II t 1 (111Vswm -->CSWj ) 'anl 2 = - Sjanl 2 (4.6) 
VSWm EBvs\·v{j}\ {\7sw;} 

Final decision rule in the variable node 

MF(i) = MVi + L MCm->vi 
C",EAc{i} 

(4.7) 

Figure 4.3: Calculation of the Message in Variable Node SW and Check Node SVV 

According to the rate Rwz(cl), the optimal degree distributions of check node SV,r 

and variable node SW are found in the website [9], However, the degree in the check 
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nodes is too high. So that one problem is met in step 5 that the message j\!{cS1.\fj---->VSWi ' 

which is calculated by in the equation 4.6, is close to 0 and !I!{VSWi---->CSWj never changes 

in each iteration. 
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4.2 Second Approach Using LDPC 

Quantization in the second approach is implemented by LDPC instead of LDG1/I in 

order to modify the degree distribution of variable nodes and check nodes. The whole 

factor graph is shown in the Figure 4.5. There are 2 parity check matrixes in this 

factor graph. HI is used to quantize the xn to Hln and H2 is used to encode ltVn to 

an index of length nRwz(d). After that, one combines two matrices to H = [ii~l for 

decoding the )en. 

4.2.1 Encoding 

Quantization is implemented by LDPC with survey propagation. The sequence H/71 

must satisfy HI(Hln)T = 0 and all values of syndrome in the check nodes are O. 

Encoding is accomplished using survey propagation on the factor graph obtained 

from Figure 4.5 by removing check nodes H 2 . 

1. Initialize the vector message ]..!{Si->1!; computed in the equation (4.12)and mes-

sage. 

2. Send message ]..Ifv;->cj computed in the equation (4.13) out from the variable 

node Vi to the check node Cj. Denote Ac(i) as the set of check nodes connected 

to the variable node Vi, 

3. Send message ]..!{Cj->V; computed in the equation (4.14) out from the check node 

Cj to the variable node Vi . Denote Bv(j) as the set of variable nodes connected 

to the check node Cj . 

4. Go back the step 2 until the vector message ]..!{Cj->v; computed in the equation 

(4.14) or the number of iteration reaches the 150 times 
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5. Calculate the marginal distribution MVj computed in the equation (4.15) in each 

variable node. Set the values of some variable nodes whose bias \lkft. -l\IN;:.\ are 
J J 

greater than one threshold, which usually is less than 0.1. If there is no such 

bias, the value of one variable node which has the biggest bias is set. Then, 

remove those variable nodes from the factor graph. 

6. Go back the step 2 until all the values of variable nodes are set. 

Once the sequence ltVn is generated, H 2 (H1nf produces an index of length nRvvz(d). 

However, the index used by decoding is composed of HI (1tVn f and H 2 (ltVn f. As we 

know, H 1 (I/l/nf always is 0, so the decoder is assumed to know Hl(1t\ln)T already. 

Therefore, the coding rate is Rw z (d). 

4.2.2 Decoding 

In the process of decoding, the sequence 5(n is decoded by the side information yn 

and the index from H(H/nf. The message passed along the factor graph H. Hence, 

the process of decoding is exactly the same as Slepian-vVolf coding problem. The 

procedure can be refereed in the section 3.3.3.2. In this approach, although the 

degree in the variable node is increase, the degree in the check node referring H2 is 

unchanged. Therefore, the same problem exist. The message l\lIcj->vi in the H2 is 

close to 0 in each iteration. 
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Source node to Check node Q 

Check node Q to variable node Q 

1 
MgQi-->vQj = 2[1 + (l11~i-->CQi -l\1[§i-->cQJ II (M~Qm-->CQi -l\I{'~Qm-->CQJ] 

mEBvQ(i)\{VQj} 

1\1[1 = ~[1 - (MO - M1 ) II (1\1[° - Jo.IP )] CQi--> VQj 2 Si-->CQi Si-->CQi VQm-->CQi vQm -->cQi 
mEBvQ(i)\{VQj} 

Variable node Q to Check node Q 

l\1[~Qj-->CQi = II i\I[gQm --> I/Qj 

mEAcQ(j)\{cQm} 

M1 = II M1 VQj-->CQi cQm-->vQj 

rnEAcQ(j)\{cQm} 

Check node Q to Source Node 

(4.8) 

(4.9) 

( 4.10) 

(4.11) 

Figure 4.4: Calculation of the Message in Variable Node Q and Check Node Q, 1\110 

and 1\111 have to be normalized to sum to 1 

47 



\ 

1 

r·/I.A. Sc: lVIin Huang lVIcMaster - Electrical and Computer Engineering 

B-, 

Check Nodes Q Check Nodes SW 

Figure 4.5: Factor Graph of Second Approach 
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Source node to Variable node 

MSi-->Vi = exp(')')!(exp(')') + L CYm exp( -1")) 
mEX:m#Xi 

MSi-->Vi = CYk exp( -1")!(exp(')') + L CYm exp( -1")) 
mEX:m#Xi 

Variable node to check node 

M~j-->Ci = l\lI~j-->vj II UVIgm-->v) 

CmEAc(j}\ {Ci} 

l\/f~-->c = M1-->v II (1\/fb --> y) 
J"t ] J m J 

CmEAcU)\{C;} 

Check node to variable node 

Mgi-->vj = 0.5[1 + II (M~m-->Ci - M'~m-->cJl 
V",EBv(i)\{Vj} 

Mbi-->vj = 0.5[1 - II (Mt-->ci - i,/f,t-->c')l 
V",EBv{i)\{Vj} 

Marginal distribution in variable node 

MyO = Ms°-->y. II (M
O 

) 
1 1 1 Cm-->Vj 

CmEAc(j) 

M,~. = MSI .... ,!. II (NIl ) 
1 1~ 1 Cm-->Vj 

CmEAc(j) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

Figure 4.6: Calculation of the IvIessage in Variable Node and Check Node, j1,l/o and 

j1,l/l have to be normalized to sum to 1 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

In this thesis, S0111.e basic concepts of source coding have been introduced and the 

low density graph codes (LDPC and LDGM) have been briefly discussed. A coding 

scheme of Robust Slepian-Wolf coding problem is implemented in two steps: 1) an 

LDGM code is applied for quantizing the source sequence, then an LDPC code is 

used for encoding. 2)In the process of decoding, only LDPC codes is used. Two 

kind of sequences of different length is simulated and the corresponding result is 

good. After that, two incomplete approaches are developed from the coding scheme 

of Robust Slepian-"Wolf coding problem in order to achieve the rate of Vlyner-Ziv 

problem. However, it is blocked by one problem that the optimal degree distribution 

is not found. 
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5.2 Future Work 

The future work focuses on finding the optimal degree distribution, so that those 

two incomplete approaches could work, especially the second one. Right now, the 

entire parity matrix H = [~~] is generated by HI and Hz separately. Although two 

matrixes HI and Hz satisfy the constraint in each part, the whole matrix does not 

ensure the constraint of decoding. Because the decoder requires the entire matrix H, 

the entire parity matrix H must be generated to satisfy the constraints of quantization 

and decoding at same time. It is probably implemented by density evolution [10], 

[11], [12]. 
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Appendix A 

K.K. T conditions 

All the optimal solution of the linear program problem 3.33 must satisfy the following 

K.K.T conditions: 

6 2 

L(NI) = D(1\!I) + L Adi(111!) + L V/Li(111I) 
i=1 i=1 

fi(JVI*) < 0, i = I, ... 6 

hI (1\11*) (1 - m~1 - m~2)(al - C2) + m~O(bl - b2) + m~O(Cl - a2) = 0 

h2UVI*) m~l(al - C2) + (1- m~o - m~2)(bl - b2) + m~l(cl - a2) = 0 

Ai > 0, i = 1, ... 6 

0, i = 1, ... 6 
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Appendix B 

Minimum Rate of Doubly 

Symmetric Binary Source with the 

Distortion d 

Two sequences xn and yn are generated from two binary sources X and Y by a 

crossover probability p, which is in the range of [0, H xn is encoded to an index 

of length nR( d). yn is sent to the decoder directly as the side information. The 

minimum rate R( d) [3] with distortion d is found as: 

where 

R(d) = 

g(d) if d < de 

g(dc)(p-d) 
p-dc 

a ifd~p 

g(d) = h(p * d) - h(d), 0<:; d <:; p 

where h(k) = -klogk - (1- k)log(l- k), 0<:; k <:; 1 for a <:; U,V <:; 1 

p * d = p(l - d) + d(l - p) 
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de is solved by the following equation. 

(B.4) 
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