
State Diagrams: a New Visual Language For PLC's

STATE DIAGRAMS: A NEW VISUAL

LANGUAGE FOR PROGRAMMABLE

LOGIC CONTROLLERS

By

FANFAN HUANG, B.ENG

A Thesis
Submitted to the School of Graduate Studies

in partial fulfilment of the requirements for the degree of

lVLA.Sc
Department of Computing and Software

lVIcMaster University

© Copyright by FanFan Huang, April 26,2010

11

MASTER OF APPLIED SCIENCE(2009) McMaster University
Hamilton, Ontario

TITLE: State Diagrams: ANew Visual Language For Programmable Logic Controllers

AUTHOR: FanFan Huang, B.Eng(McMaster University)

SUPERVISOR: Dr. Martin von Mohrenschildt

NUMBER OF PAGES: viii, 82

iii

Ladder Logic has been the dominant defacto method for programming pro­
grammable logic controllers for over 30 years. Primarily designed as a replacement for
electronic relay boxes Ladder Logic uses the analogies of circuits and wires. With the
changes in education and training Ladder Logic has not kept up with the times. Lad­
der Logic is difficult to understand for a software background trained operators. In
addition with increasingly difficult control logic strategies, Ladder Logic has become
cumbersome and difficult to use.

This thesis seeks to examine a different approach to visual programming that is
more suitable to modern software trained individuals. A visual programming language
will be established based on finite state machines. VVe then define both the syntax
and semantics of our visual language, demonstrate the correctness of operation and
execution. This thesis also defines a reference hardware platform and shows our
graphical tool used to construct programs in this new language.

The major contributions of this thesis include the development of a prototype
programming language, a graphical integrated development environment tool, and a
prototype hardware environment.

Contents

Abstract

Abbreviations

1 Preface
1.1 Structure of this Thesis .

2 Overview of Existing Technology
2.1 PLC Hardware Controller Implementations .

3 Introduction to Ladder Logic
3.1 Background of Ladder Logic

4 Software
4.1 Goals
4.2 Overview of State Machines
4.3 Logic Control Chart
4.4 Syntax of Logic Control Chart .
4.5 Implementation.....

4.5.1 System Overview .. .
4.5.2 GUI and IDE

4.5.2.1 Introduction
4.5.2.2 Using The GUI: Parts of the GUI .

4.5.3 Data Flow
4.5.4 Generated Code Structure
4.5.5 Compiled Structure ..

4.5.5.1 Start Block .
4.5.5.2 Delay Block.
4.5.5.3 Input Block .
4.5.5.4 Output Block .
4.5.5.5 Store Block .

IV

iii

1

2
2

4
4

12
12

19
19
22
26
29
32
32
33
33
33
40
40
41
41
42
43
43
44

CONTENTS

4.6 Correctness .
4.6.1 Atoms

4.6.1.1
4.6.1.2
4.6.1.3
4.6.1.4
4.6.1.5

Start Block
Delay Block .
Output Block
Input Block .
Store Block .

4.6.2
4.6.3

Constructors and Transitions
Correctness of Translation . .
4.6.3.1 Table Representation.
4.6.3.2 Start Diagram Execution
4.6.3.3 Delay Diagram Execution
4.6.3.4 Output Diagram Execution
4,6.3.5 Input Diagram Execution
4.6.3.6 Store Diagram Execution .

5 Hardware
5.1 Platform.
5.2 Hardware Framework.

5.2.1 Purpose
5.2.2 Hardware Framework Overview
5.2.3 Sub-Component Implementations
5.2.4 Hardware Specific Definitions ..
5.2.5 Hardware .Specific Implementations

v

46
48
48
48
49
50
50
51
56
56
58
58
59
61
63

68
68
70
70
70
71
72
72

6 Summary 75
6.1 Conclusions 75

6.1.1 Conclusions......... 75
6.1.2 Summary of Contributions. 76

6.1.2.1 Ladder Logic Analysis 76
6.1.2.2 Development of Logic Control Chart Language 76
6.1.2.3 Development of A Prototype Tool and Hardware En-

vironment
6.1.2.4 Development of A Hardware Platform

6.2 Future Research. ..

A Appendix
Stepper Motor Examples

76
77
78

82
82

List of Tables

3.1 Semantics for Fig 3.2 14
3.2 Semantics for Fig 3.3 14
3.3 Semantics for Fig 3.4 and Fig 3.5 15
3.4 Semantics for Fig 3.4 and Fig 3.5 16

4.1 Start Diagram shown in Figure 4.23 . 57
4.2 Start code execution for compiled code from Figure 4.23 57
4.3 Start code execution for compiled code from Figure 4.23 extended 57
4.4 Start code execution combined table. For Figure 4.23 58
4.5 Delay code execution combined table. For Figure 4.24 . 59
4.6 Output code execution combined table. For Figure 4.25 61
4.7 Input code execution combined table. For Figure 4.26 62
4.8 Store code execution combined table. For Figure 4.27 . 65

VI

~I List of Figures

2.1 Mitsubishi PLC All In One Unit [6] . . 5
2.2 3D Diagram of A lVIodular PLC [9, 10] 5
2.3 PLC Execution Loop. 6
2.4 3D Diagram of A Modular PLC vVith One Module Being Inserted [11,12] 8

3.1 Togglable Light in Ladder Logic 12
3.2 Basic Ladder Logic Diagram 13
3.3 Simple AND Logic Diagram . . 14
3.4 Branching Rungs 15
3.5 Branching Rungs (Alternative) 15
3.6 State diagram conversion for Table 3.2 16
3.7 State diagram conversion for Table 3.3 17
3.8 State diagram conversion for Table 3.4 17
3.9 Latched Ladder Logic circuit. 18

4.1 Simple Toggle Light.
4.2 Moore (left) and Mealy (right) State Machines.
4.3 UML State Diagram of a Toggle Light .
4.4 UML2 State Machine Diagram Syntax[l]
4.5 Example of Basic Transitions
4.6 Incorrect Transitions
4.7 Example Of A Store Block As Implemented In PLCEdit
4.8 5 Tap Fir Filtering .
4.9 System Overview . .
4.10 The Drawing Canvas
4.11 The Tools Pallette .
4.12 Compile Preview vVindow
4.13 Simulator Window Starting Configuration
4.14 Simulator Window Program Running
4.15 Code Transformations

Vll

23
23
24
25
27
27
30
31
32
34
34
37
38
39
46

viii LIST OF FIGURES

4.16 Code Transition Structure
4.17 Start Atom .
4.18 Delay Atom .
4.19 Output Atom
4.20 Input Atom
4.21 Store Atom .
4.22 Transitions. .
4.23 Singular Start Block
4.24 Delay Block .
4.25 Output Block
4.26 Input Block
4.27 Store Block Example

5.1 Hardware Framework Components

A.1 Running a Stepper Motor with Logic Control Chart
A.2 Running a Stepper Motor with Ladder Logic part 1 of 3 .
A.3 Running a Stepper Motor with Ladder Logic part 2 of 3 .
A.4 Running a Stepper Motor with Ladder Logic part 3 of 3 .

47
48
48
49
50
50
53
56
58
60
61
63

70

83
84
85
86

Abbreviations

BLUID Block Unique Identifier, 41

CPU Central Processing Unit, 19

GND Ground (or negative in electronics), 12

GUI Graphical User Interface, 32

IDE Integrated Development Environment, 20

IL Intermediate Language, 40

LCC Logic Control Chart, 2

PLC Programmable Logic Controller, 2, 19, 68

TTL Transistor-transistor logic, 10

VCC Voltage at the Common Collector (or postitive

voltage in electronics), 12

1

Chapter 1

Preface

1.1 Structure of this Thesis

Chapter 2: Overview of Existing Technology. VVe will begin by introducing the reader

to existing PLC implementations. We will go into the history behind programmable

logic controllers and their usages. VVe will also give the user an idea of what kinds of

modules manufacturers have created in the industry over time.

Chapter 3: Introduction To Ladder Logic. In this chapter we will expose the reader

to the existing language (Ladder Logic) that is currently in use in the industry. The

reader will be exposed to the syntax and semantics of this language. In addition

the user will also obtain some background insight as to how the language came into

looking as it does today.

Chapter 4: Software. The software section covers all of the software implementation

information of the proposed language Logic Control Chart. We begin by defining

the goals in constructing LCe. Next the language is then defined for LCC. In the

final two sections we go into im.plementation details of the software package as well

as show correctness of the diagram to code translation.

2

1. Preface 3

Chapter 5: Hardware. In this section we go into detail about the hardware reference

platform. We introduce the hardware framework which allows multiple micro con­

trollers to be utilized. We finish by showing parts of the hardware driver code that

must be implemented should the reader wish to implement their own hardware board.

Chapter 6: S1Lmmary. This chapter present all the conclusions of the work. In

addition we also recommend future directions this thesis can go if continued.

Appendix: Contains examples and diagrams in Ladder Logic.

;1

I Chapter 2

Overview of Existing Technology

2.1 PLC Hardware Controller Implementations

Programmable Logic Controllers (PLC) have been around for over 30 years and as a

result there have been many iterations and designs. The original Programmable Logic

Controllers were a quick way for automotive manufacturers to replace traditil:mal

relays with digital control. These relays were hooked up to power rails and inputs,

and allowed for basic mechanical logic [4]. Due to their mechanical nature relays wore

out over time causing the logic they were performing to fail. In addition, because

hundreds to thousands could be used in a cabinet, it was also difficult to isolate the

worn out part. Relays also proved to be inflexible when a small change was required

to be added to the program, the entire plant was required to be taken offline in order

to make the change. Halting large production plants is often extremely costly and

thus eventually the relays were migrated out in favour of micro controllers that can

be reprogrammed on the fly. To this day modern PLC's still use graphical analogies

of circuits and relays in order to construct their programmable logic. This visual

language is now referred to as ladder logic due to the the finished program having a

similar visual structure to a ladder.

JVIitsubishi Automation see Figure (2.1), Siemens, ana Omron are a few of the

big producers of industry standard PLC's although the shape and form factor dif-

4

I
I

2. Overview of Existing Technology 5

Figure 2.1: Mitsubishi PLC All In One Unit [6]

fer between manufacturers PLC's always consist of three distinct parts: The input

module, the main controller unit and the output module (see Figure 2.2). This sep­

aration exists due to varying requirements for analog inputs and different output

capacity requirements in order to drive heavy machinery. I/O modules may consist

of thermal-sensors, ambient light sensors, resistive sensors, or a direct connection to

the external circuitry. The output module may also be composed of both analog and

digital output pins.

Figure 2.2: 3D Diagram of A Modular PLC [9, 10]

I

6 2. Overview of Existing Technology

Executions of programs on a PLC are always done in a loop. An iteration of

execution is referred to as a scan. Each scan is further broken up into 4 phases: 8e1£­

Test, Input scan, Logic solve / scan, and Output scan. Figure 2.3 shows the order in

which each of these steps are executed. The jobs performed in each step is described

in more detail below:

Self-Test

Input Scan

Logic Solve

Output Scan

Figure 2.3: PLC Execution Loop

• Self-Test: All PLC's contain self diagnostic routines, this includes communi­

cation checks between the main control unit and the I/O modules. If a fault is

found it is handled here before any of the execution is allowed to proceed .

• Input Scan: All inputs both from the input modules and from the internal

memory are reacl. This is done in a single step to make sure that all future

calculations for the currently executing scan has consistent data. You may note

that updates are not read during logic solve and will be delayed until the next

input scan.

2. Overview of Existing Technology 7

• Logic Solve / Scan: Calculations and computations from the user programs

are computed in this step. If values are to be stored back into internal regis­

ters they are now put into temporary registers. Similarly if external output is

required it is written to a temporary internal register that will hold the output

until the output phase is executed.

• Output Scan: Internal temporary registers are written to their destination

registers in one step. External outputs take on the values held by their as­

sociated temporary registers. All outputs also take place in one step and the

outcome is that it appears that all outputs change simultaneously.

In each scan operations are modelled as if executions happen concurrently thus, the

order of individual instructions in each phase is not important. All of this is done since

Ladder Logic (we refer the reader to Section 3.1) executes concurrently on multiple

rungs in order to emulate the behaviour of electrical circuitry. Internally however

PLC's are sequential machines with a deterministic order in which instructions are

executed. This is a side effect of using micro controllers in the main control unit

instead of relays and circuitry. Many temporary registers are used to store inputs

and outputs so that at the beginning of each phase they can be latched in one step.

This makes the reading of multiple inputs and outputs occur concurrently.

The input and output modules generally connect to the main module via serial

links however some manufacturers also include network communication over standard

shielded Ethernet [2,.3]. Generally, serial communication is used more often when the

input and output modules are at a close distance to the controller unit as in modular

PLC designs (see Figure 2.4). The network interface on the other hand is used when

the input or output module needs to be located far away from the main controller

unit [3] as is often the case in automated production facilities. Output modules are

generally relay driven and the driving current is provided by a transistor connected

to logic pins of the main controller. This is done to isolate the internal circuitry from

the high current demands of driving heavy machinery [7]. Alternatively some circuits

employ an opto-isolator circuitry to achieve the same effect. The trade off in this

8 2. Overview of Existing Technology

Figure 2.4: 3D Diagram of A Modular PLC With One Module Being Inserted [11, 12]

design is it will accommodate less current under load but has faster switching and

overall better service life [7]. Analog outputs are obtained by passing a binary value

through a digital to analog converter (DAC). A reference voltage is usually required

in such configurations.

All input and output modules contain some common features which allow for

modularity. Each I/O module is assigned a unique address so that the controller unit

running the PLC program can access it. Each controller also has what is referred to as

a backpane which contains the necessary connectors to connect to the bus so the CPU

can access it. Most I/O modules have multiple channels where each channel is either

a single ended wire or a differential pairs. Differential pairs can be commonly seen

in analog input modules where it is preferable to compare a signal with the sensor's

reference ground. This is done to avoid problems with the ground mismatch between

the PLC's CPU and the sensor. Such a mismatch would produce an undesirable

floating ground and would induce a permanent error on the input channel. Most

modules are designed so that the external inputs and outputs are completely isolated

from the CPU circuitry. As such, the CPU is connected to common ground via the

2. Overview of Existing Technology 9

serial bus while the input and output modules are usually connected to the power

supply via a ground screw (usually marked "common"). In analog input modules

conversion circuitry must exist to convert the sensed input values into quantized

values to be sent over the serial bus. The same is true for analog output modules

but in reverse. In digital inputs conversion is not needed however circuitry still

exists for isolation of the internal bus from the external input, and where applicable

the module itself may perform noise correction before the actual input enters the

PLC itself. In addition to individual modules some PLC manufacturers opted to

have the I/O modules embedded into the main CPU unit. These are generally more

commonly found in the micro sized PLC's and are generally less expensive then their

expandable counterparts. Although externally they are not expandable internally the

configuration of the input modules are actually identical.

Due to the varying requirements of manufacturing over the years a wide variety

of I/O modules now exist to fill in every need. A short list of common I/O modules

for the Allen-Bradley SLC500 series of PLC's is given below [8].

• Analog Input Module: Reads in analog voltages, converts them into digital

values and sends the information to the control unit.

• Analog Output Module: Takes in digital values and produces an appropriate

analog voltage level.

• ASCII Input Module: These modules take in character information usually

via serial links (RS-232) and convert it into a form the PLC controllers can

understand[8].

• ASCII Output Module: Takes PLC information converts it to an character

representation and sends it out via RS-232.

• Barrel-Temperature Module: This module monitors four zones of an auto­

tuned PID heating or cooling unit for temperature control. Molding machines

and extruder employ these modules for controlling barrel temperature while

injecting material [8].

10 2. Overview of Existing Technology

• BCD Input Module: This module reads in inputs from devices that output

binary-coded decimal (a method of representation where each decimal digit is

represented by four bits). An example of such a device is a thumb wheel [8].

• BCD Output Module: Essentially does the reverse of the input module,

usually used for compatibility when devices expect data in BCD format.

• Discrete Input Module: These are isolated digital inputs.

• Discrete Output Module: These are isolated digital output modules.

• Encoder Counter Module: Keeps track of angular positioning of shafts.

• Grey Encoder Module: Receives grey-code signals from a device that pro­

duces grey-code.

• High-Speed Counter-Encoder Module: This type of module allows count­

ing and encoding at a much faster rate than is normally possible inside a PLC

program.

• PID Module: These modules enable the user to perform closed loop automatic

control based on proportional integral and derivative values. If properly tuned

the module can hold a process at the desired set point.

• Synchronized Axes Module: Provides logic to synchronize machines like

hydraulic tailgate loaders, forging machines, and rolling-position operations.

• Thermocouple Modules: These modules allow the PLC to read temperatures

of a process and will output usually with Celsius or Fahrenheit.

• TTL Input Module: Allows reading inputs from TTL devices such as most

integrated circuits.

Programmable logic controllers can classified into three categories: Integrated such

as a Mitsubishi Melsec FX-32MR seen in Figure 2.1, Modular as seen in Figure 2.2,

I

I

2. Overview of Existing Technology 11

and Large Scale automation. The integrated category includes small one board solu­

tions generally better suited for low power or embedded applications. The modular

category consists of PLC's that have a rack that houses the power supply, and several

modular slots for both the micro controller and various input and output modules.

Compact units such as the Melsec previously mentioned commonly have an input

output port range from 8 - 24, these are not expandable due to its all-in-one nature.

The Melsec unit has 2000 steps of execution memory. Each step can be loosely

thought of as an instruction. However, the nature of Ladder Logic programming

tends to obscure what a step is after it is compiled. The output capacity of these

compact units can range anywhere from milliamps to a few amps. As an example

the Melsec FX-32MR in Figure 2.1 can output a maximum of 8A on 4 of its ports

and only 2A on the remaining ports. Modular units on the other hand are able to

scale to the diverse demands of operating heavy machinery by fitting them with high

capacity output units.

Chapter 3

Introduction to Ladder Logic

3.1 Background of Ladder Logic

button light light

button light

Figure 3.1: Togglable Light in Ladder Logic

Ladder logic was originally developed to replace physical relays used in PLC's. As

a result the "language" resembles a circuit diagram. The left most and right most

"rung" represent power rails analogous to GND (or negative) and VCC (or positive)

what's placed in between those rungs are the load components [4]. In the case of

programming, the entire logic is created from loads you place in between these power

rails. Each horizontal "rung" is then its own independent electrical circuit.

Several conventions exist, for example power always flows from left to right along

each rung. Power also flows from top to bottom along the rails. This is counter

12

3. Introduction to Ladder Logic 13

intuitive since Ladder Logic is suppose to be analogous to a circuit schematic and

a circuit is simply energized with no implicit power flow direction. In addition each

run must start with inputs and end with exactly one output. Any device that is on

a rung is shown in its initial state. This can be open or closed for inputs.

Modern PLC's operate more like a traditional micro controller and thus the orig­

inal schematic based language can prove to be awkward to work with.

The inputs in Ladder Logic are referred to as loads. A normally open input is

represented by the symbol -I 1-, and a normally closed input by -1/1-. In addition

an address is usually assigned to each input referring to which port on the physical

PLC the input is connected to. Logical AND can be formed by having two logical

loads on one rung [4]. Similarly logical OR can be formed by creating a branch along

one rung as shown in Figure 3.5.

VVe can define the language of Ladder Logic as follows Q = (NI, S, C, R, P)

• M: set of monitored variables.

• S: set of state variables.

• C: set of controlled outputs.

• R: set of rungs.

• P: set of power rails.

Figure 3.2: Basic Ladder Logic Diagram

The most basic structure of Ladder Logic is shown in Figure 3.2. We have

Note that rungl is not explicitly labelled in Ladder Logic but we give it a name here

so we may refer to it and complete our model.

14 3. Introduction to Ladder Logic

The semantics of Figure 3.2 is then given by:

Action Result
@T(inl = true) outl := true
@T(inl = false) outl := false

Table 3.1: Semantics for Fig 3.2

'Where @T(< condition » is used to denote the positive edge of a condition

becoming true. We also assume negligible delay between the action occurring and

the result being asserted. It is important to note that our function table must be

complete that is have an entry fOT all possible combinations in the input domain.

Figure 3.3: Simple AND Logic Diagram

When multiple inputs are connected on the same rung it is interpreted as a logical

AND expression. In Figure 3.3 we can expand our model to:

We can see that both inl and in2 are on nmgl. This is interpreted as follows:

Action Result
Initial inl := false, in2 := false, outl := false
@T(inl = true /\ in2 = true) outl := true
@T(inl = false V in2 = false) O1Lh := false

Table 3.2: Semantics for Fig 3.3

The conditions inl and in2 are combined to form our composed action @T(inl =
true /\ in2 = true) as seen in Table 3.2. vVe also note that there is no action for

each individual condition becoming true nor do we need to individually calculate the

timing on inl OT in2'

In addition to multiple inputs connected to the same rung, inputs can also be

branched. A branched rung as show in Figure 3.4 behaves like a logical OR. In

I

I

3. Introduction to Ladder Logic

hl'"'rr-Oi
I ~'n2~ I

Figure 3.4: Branching Rungs

15

addition two or more rungs can be joined as shown in Figure 3.5. The semantics are

equivalent for both Figure 3.4 and Figure 3.5.

Action
Initial

r-frr-Oi
l_f2~ I

Figure 3.5: Branching Rungs (Alternative)

Result
inl := false, in2 := false, outl := false

@Tn(inl = true V in2 = true) out 1 := true
@Tn(inl = false 1\ in2 = false) out 1 := false

Table 3.3: Semantics for Fig 3.4 and Fig 3.5

Since the semantics are the same for both Figure 3.4 and Figure 3.5 we can express

both outcomes with function Table 3.3. As before in Table 3.2 in Table 3.3 inl and

in2 are composed to form our composed action @T(inl = trueVin2 = true). However

it is also possible to represent this in another way as we will show below.

In Table 3.4 we choose to represent inl and in2 as separate inputs. This matches

Figure 3.5 more closely but also makes any verification harder than Table 3.3. For

smaller examples Table 3.3 make more sense since you can verify relatively simple

smaller functions quite fast. If a system becomes reasonably large however there

might be motivation to use the style shown in Table 3.4 since it will allow more

complex functions to be decomposed into simpler inputs. Since semantically the two

are equivalent this thesis will focus to the first convention.

16 3. Introduction to Ladder Logic

Action Result
Initial inl := false, in2 := false, outl := false
@T(inl = true) O1dl := true
@T(in2 = true) ouit := tr'ue
@T(inl = false 1\ in2 = false) outl := false

Table 3.4: Semantics for Fig 3.4 and Fig 3.5

Figure 3.6: State diagram conversion for Table 3.2

A rung can be defined as a directed graph with exactly one rungl(start) and one

rungl (end). The state variables form guard conditions along the edges. A branch in

this case represents 2 edges leaving one node. For example Figure 3.3 can be easily

converted into a state diagram by observing the results in Table 3.2. Each row of

Table 3.2 is directly converted into an edge with the appropriate guard conditions.

Each output assertion is given their own state. Finally in Figure 3.6 we observe

the start state of the rung, and the end state for the rung. In Ladder Logic each

rung is executed continuously with each scan, therefore it is necessary to also add an

loop from rungl(end) to rungl(start). We can similarily take Figure 3.4 observe its

Function Table 3.3 and produce a state diagram from its function table. Figure 3.7

represents said construction.

Thus, each rung can be converted into an equivalent state diagram by examining

3. Introduction to Ladder Logic 17

Figure 3.7: State diagram conversion for Table 3.3

its function table, assigning the state variables to guard conditions, and creating a

state for each of the outputs. For thoroughness we complete this procedure to produce

a state diagram shown in Figure 3.8 which is a representation of Figure 3.5 and its

corresponding Table 3.4.

Figure 3.8: State diagram conversion for Table 3.4

Another concept in ladder logic is latching. Suppose you have a light that you

want to be able to turn on and stay on after you push a button. vVith any of the

ladder diagrams shown above the light would go out as soon as the buttons were all

18 3. Introduction to Ladder Logic

released. In order to keep the light on and constantly on after the button is pressed we

introduce the latch. We modify our diagram shown in Figure 3.5 making the output

feed back into one of the inputs to our OR circuit. The result is show in Figure 3.9.

Figure 3.9: Latched Ladder Logic circuit.

The latched circuit operates the same way as the behaviour show in Table 3.4;

the key difference is the feedback of the OR circuit replaces the second row of the

function table. This causes latched_01Ltl to stay on after the initial input is removed.

All Ladder Logic programs are built of these basic primitives in addition each

manufacturer offers their own convenience functions and additional blocks. These

allow operations like add, subtract, and taking a measurement to be done in one

block rather than attempt to construct it through the circuit diagram.

Chapter 4

Software

4.1 Goals

This project aims to improve on current industrial programmable logic controllers

by introducing a more natural graphical programming method. In addition we will

evaluate how to create a cost effective alternative using off the shelf parts to construct

our own hardware PLC. In the process we aim to produce a final prototype that will

have the same basic feature set of modern PLC's. This includes a main controller

unit, with input and output capabilities, and a prototype of a basic IDE that will work

in our new visual language. In this project we propose state machine diagrams as the

method of choice. It is also important for this project to understand the deficiencies

of Ladder Logic (the current method). In addition we will evaluate the original use of

PLC's and if the old methodologies are still applicable to their modern application.

This analysis will provide further understanding on how the original programming

methods have been outpaced by more recent technology.

Due to the scope of this project we must deliver several components in order to

achieve an acceptable proof of concept. The components and their sub-goals are as

follows:

• vVe must deliver a main controller unit with an on-board embedded as. This

main controller will serve as our CPU and will include the input and output

19

20 4. Software

units in addition to running our program. The main controller must be able to

execute adequately fast in order to compete against commercial PLC's. Since

the user is not concerned with the execution speed of each instruction, fast refers

to the time it takes for an input to trigger an output. vVe hope to utilize cheaper

hardware but still equivalent speeds by allowing the user to specify instructions

more closer to the actual chip supported instructions. This reduces the actual

number of pseudo instructions required to perform a task. Our hardware will

aim to not require executing in scans (see Figure 2.3) and in doing so we hope

to make better use of available hardware.

• vVe must also design and formalize a visual programming language to be used

as a replacement for Ladder Logic. This language will require precise definitions

on how to interpret diagram elements. The language should also be designed to

be easily understandable and generate efficient code. It should also be advanced

enough to construct basic control programs. To practically utilize this language

we will deliver a proof of concept IDE that will allow the user to enter programs

using the visual programming language instead of Ladder Logic. This new IDE

should work like a flow chart drawing program allowing the user to add and

remove logic blocks at will. We aim to make this interface as intuitive as possible

and also provide a fast efficient translation into machine code. In addition a

simulator is also required to help developers visualize a program's execution.

The simulator should contain basic step features to allow the programmer to

step through each transition, and allow the developer to examine the contents

of the variables in memory. The main goal of the IDE will be to provide an

easy to understand visual environment where the user may enter their program

and to minimize error where possible .

• The final layer that would be added is a software to hardware compiler that will

take user generated programs from the IDE and produce actual machine code.

This would be achieved in two parts. First the IDE will compile the diagram

into intermediate code. This intermediate code would be code that would stay

4. Software 21

hardware neutral and would resemble C. The intermediate code would contain

many calls to functions that would be supported on the chip. These functions

would be part of our hardware framework that would take the calls placed by

intermediate language and translate them into hardware specific calls. From

this design choice hardware specific code will stay on the hardware portion of

this project and compiled software will stay hardware independent with specific

support implemented by the hardware framework.

By delivering an initial proof of concept software and hardware system this project

would allow for further development for modernizing programmable logic controllers.

In addition it may also serve as a practical example of visual programming languages

that are used to program embedded devices.

j
I

22 4. Software

4.2 Overview of State Machines

Our proposed visual programming language is modeled by state machines with

guarded edges. The language to describe the state machines differs in a few ar­

eas from the UML2 State Machine Diagram[l] syntax in order to support features

of the hardware. To better understand these differences we will first introduce the

syntax and semantics of more traditional Finite State Machines [5] and UML2 State

Machine Diagrams [1].

Definition 4.2.1 A Finite State Machine is defined as IvI = {Q,I, Z, 8, w, qo}

• Q: Set of states.

• I: Set of input symbols.

• Z: Set of output symbols.

• 8: A state transition f'unction: I x Q ----+ Q.

• w: An O'Ldp'Ltt f'Ltnction: Q ----+ Z

• qo: Starting state.

A state represents an operating condition. For example in Figure 4.1 the states

are "Light On" and "Light Off".

Given a state ql E Q an input i E I a transition is then a function 8(i, ql) = q2

where q2 is the next state and q2 E Q. Outputs are formalized to W(ql) = Zl where

Zl E Z. Machines that satisfy Definition 4.2.1 are referred to as Moore machines[5].

A Mealy machine is obtained by adjusting outputs to be dependent on inputs as well

as states. To obtain a Mealy machine from Definition 4.2.1 we change our output

function to I x Q ----+ Z. Although Figure 4.2 contains outputs for all edges, we can

define a null or a no change output in order to simulate an edge having no output as

well. For purposes of the Logic Control Chart language we do not require the power of

a Mealy machine and thus we ehose to keep our definitions closer to a Moore machine.

More details of this decision can be found in Section 4.3.

4. Software 23

Switch

Light Off Light On

Switch

Figure 4.1: Simple Toggle Light

0 010

_c,) ~~ C?\ " · rr[] ('2))
~~

0 011

Figure 4.2: Moore (left) and Mealy (right) State Machines

24 4. Software

To describe our state machines we use diagrams such as adopted by UML[l].

There are several ways a starting state can be drawn as seen in Figure 4.2. One such

way is to draw a edge that has no state connected to its tail. In our system we choose

incorporate a symbol similar to the UML[l] symbol where the start state edge has a

solid dot connected to the tail as shown in Figure 4.3. 'Logic Control Chart utilizes

a special start state that is functionaly identical to UML)s solid dot symbol.

Toggle Button
~ ---------------....

On Off

• LightOnO LightOffO

~ ~

Toggle Button

Figure 4.3: UML State Diagram of a Toggle Light

The UML State Diagram[l] as shown in Figure 4.3 also allows for state titles in

each state seen at the top of each state. In addition, each state may contain actions

that are executed. In Figure 4.3 "LightOnO" and "Light Off 0" refer to executed

actions that are calfed once the "On" and "Off" states are reached. The behaviour is

read as once the state "On" is reached "LightOnO" is executed right away. More than

one instruction to be executed can be listed and is understood that each instruction

is executed sequentially[l].

4. Software 25

state name (EnteringPassword

entry and exit { entry/ display password dialog

actions
exit! validate password

internal transitions (keypress/ echo "*,,
help/ display help

Internal activity (dol get password

Figure 4.4: UML2 State Machine Diagram Syntax[l]

The syntax ~hown in Figure 4.3 is that of UML2 State Machine Diagram[l]. Each

state bubble in UML2 State Machine Diagram contains the information given by

Definition 4.2.2 and shown in Figure 4.4. The additional information makes UML2

more useful for representing programs more conveniently.

Definition 4.2.2 UML2 State Machine Diagram by convention is given by the fol­

lowing:

• state name: The state name is mandatory for each UML2 state in cases where

this is the only information the horizontal divider may be omitted.

• entry and exit actions: Entry and exit actions are optional, they are com­

monly used for initializers and jinalizers that may occur in each state.

• internal transitions: These optional fields refer to simple transitions that

may happen in the state itself generally these are simple enough to not require

a separate diagram.

• internal activity: These are optional and refer to activities that OCC1Lr or are

exeC1Lted while in the state.

I

I

26 4. Software

4.3 Logic Control Chart

The language used for our project was purposely modelled after UML2 State Ma­

chine Diagram. As discussed in section 4.2 UML2 is similar to state machines with

additions to describe behaviours internal to states. The motivation in using UML2

State Machine Diagram as a basis for Logic Control Chart are as follows: First UML2

State Machine Diagram is quite well known and popular, this improves the potential

acceptance of our tool. Secondly UML2 State Machine Diagram state machine syntax

is more concrete than the other forms of state machines, giving a strong basis to con­

struct our language around. Finally UML2 State Machine Diagram has the concept

of internal activity or internal execution necessary for modelling the behaviour of an

actual useful program.

The model of Logic Control Chart is expressed mathematically as follows:

Definition 4.3.1 Logic Control Chart

• Q: Set of modes

• V: The state space V = (Va, VI, \12, '" Vn) where Vi E {ZI28,Z,lffi,lR}

• Vinit: vector of initial values Vinit: (vo, '" vn) where (Vi E Vi)

• G: Set of guard conditions V ----+ lffi

• A: Set of assignments V x Q ----+ V

• T: Set of transitions G x Q ----+ Q

• qo: The initial starting mode

Many states in the system can belong to the same mode. The state space in our

system is used for model variables. All variables in Logic Control Chart are typed.

The initial value in the system is given by a state Vinit in the state space V. Guard

conditions are mappings from states spaces to boolean values.

4. Software 27

Assignments in our system take the form V X Q ~ V. Suppose we the state (1,2)

meaning Vi = 1, V2 = 2 suppose we are in mode 5 an assignment vI := v2, V2 := °
can be described by: ((1,2),5) ~ ((2,0)). Assignments to variables are always

represented by changes to the state.

Figure 4.5: Example of Basic Transitions

, ___ BIO~C_kA __ ~I-__________ ~
. '<5 1 J

T<= 3

D
Figure 4.6: Incorrect Transitions

Transitions in our system must start from an block object and must terminate at

another block. Since Logic Control Chart does not support non-deterministic execu­

tion, transition conditions must be mutually exclusive to be valid. All edges departing

a mode must have Vq(q, gl, q') ETA (q, g2, q") E T q' f. q" ~ gl A g2 = false. In Fig­

ure 4.5 we see three possible outcomes (T <= 3, "Block A") ~ "Block e",

28 4. Software

(T > 5, "Block A") ~ "Block B", and for 3 < T <= 5 we stay in "Block A" since

there is no transition to take us out. An incorrect usage of transitions is shown in Fig­

ure 4.6. Values of T <= 3 will cause both guard conditions to become true,· violating

our requirement for mutual exclusion. Logic Control Chart considers the outcome of

mutliple possible transitions as undefined and is invalid in the language.

4. Software 29

4.4 Syntax of Logic Control Chart

Syntax of Logic Control Chart language:

Definition 4.4.1 Logic Control Chartis given by the following grammar:

• Eq --+ = I ¥- I < I <I > I >

• Op --+ + I - I * I / I % I && I / / I ~

• Expression --+ Expression Op Expression I Op Expression I Variable I Constant

• Type --+ byte I int I long I bool I float

• Variable --+ [A - Za - z]+[A - Za - zO - 9]*

• Condition --+ Expression Eq Expression I Variable

• StoreBlock --+ Type Variable := Expression I Type Variable := Expresion; Store­

Block

• DelayBlock --+ Expression

• Outp'UtBlock --+ PORTO UT := Variable

• InputBlock --+ Type Variable := paRTIN

• Block --+ StoreBlock I Outp'UtBlock I DelayBlock I Inp1dBlock

• Transition --+ EMPTY I Block Condition Transition

• Program --+ StartBlock Transition

In Figure 4.7 we see a store block represented as it is drawn by the Logic Control

Chart IDE. Each line consists of a type (can be seen in Figure 4.7 we have int, and

byte) an identifier, the equals symbol, and a expression. An expression can take

thc form of a constant as shown in Figure 4.7. Our syntax also allows for many

lines in each StoreBlock. This design choice allows formulae to be expressed more

30

StoreBlock

int TwoVars := a + b
int OneVar := c
byte Constant := Oxff
int OneVarWithConstant := x + 1

4. Software

Figure 4.7: Example Of A Store Block As Implemented In PLCEdit

conveniently as it can be done in sequence rather than a sequence of blocks used

together to perform a set of operations. Each of the assignment lines in a store blocks

are read in sequence, and is understood to occur one right after the other. This is

described in more detail below.

(4.1)

(4.2)

If assignments in Logic Control Charts would happen concurrently 4.1 and 4.2

would produce a swap where v~ = 'vo and vb = 'V1 (where 'v denotes the value

of v before the assignments are made and v' the value of v after the assignment is

completed). vVe read assignments such as in equations 4.1 and 4.2 as these assign­

ments will take place upon entry of the mode. For Logic Control Charts we read

them in a sequential fashion for example: Upon entry of the mode, first Equation 4.1

is assigned, then Equation 4.2. That is v~ = 'vo and then vb = v~ which results in

vb = v~ = 'vo after the second assign statement.

The advantage of sequential assignments over concurrent assignments can be seen

when trying to compute a 5 stage fir filter as seen in Figure 4.8. In Figure 4.8

sequential assignments are much more convenient when making many small assign-

4. Software

T
Initialize

Xo:=O
x,:=o
x,:=O
X 3 :=0
X 4 :=0

X5:=X4

xo:=input from PORTO

Simple 5 Tap Fir Filter

y :=Coxo+C, x, +C,X,+C3 X 3 +C4 X4+C,X,

Figure 4.8: 5 Tap Fir Filtering

31

ments. Without sequential assignments many more mode blocks would be required

to achieve the same behaviour.

32 4. Software

4.5 Implementation

4.5.1 System Overview

Software and Graphical User Interface Layer

" I------,iij
~. I Input Block Tools

,-. Output Block

Compiler

Scroll

Hardware Abstraction Layer I
[:~~m~h~f:-~=~,"C'c~=_~-c'm':cccp~-' ~'f"'; ~·~:c-c -. . T'. ==C--C-p=ro-gr-a-C-

m
--:--) --_ ••• _-_ •.•• _\J

Manufacturer's Chip Tools Layer
1-

Chip Specific C Compiler

Figure 4.9: System Overview

The entire project can be logically grouped into three major sections pictured in

Figure 4.9. At the upper most layer we have the high level software implementations.

The main part of the GUI is implemented in this layer. Simulation tools are also

implemented in this layer as they require access to the GUI.

The next layer down is the hardware abstraction layer. This allows the code

generated by the IDE to be run on different hardware platforms. This layer is talked

about in detail in the Hardware section.

The last layer is the chips tools layer. This layer is supplied by the manufacterer

of the micro controller.

4. Software 33

4.5.2 GUI and IDE

4.5.2.1 Introduction

The GUI and IDE are both implemented in JAVA with the JHotDraw 7.1 framework.

Early on it was decided that the GUI functions like other popular tools for drawing

flow charts such as Visio, IBM's Rational Rose software, and Dia. All of these tools

are interactive in the drawing of the diagram rather than compile a graph from a

descriptive language. The reason for enforcing interactive drawing is that this tool is

designed to simplify the original implementation of ladder logic, and building it on

a textual graphical language will significantly hurt the primary goal of ease of use.

JAVA was chosen for portability as it was simpler to deploy a JAVA implementation

than multiple ports for each target in the the short duration of this project.

The GUI itself remains minimal; there is a toolbar in which objects can be selected

from the tools palette and drawn. Properties of an object are directly editable on the

object itself once drawn instead of on a separate property palette. Again this design

decision was chosen as it is more immediately understandable and intuitive to the

user, rather than for power and expressiveness.

4.5.2.2 Using The GUI: Parts of the GUI

The Main Canvas The main canvas represents the main working area for the

user as shown in Figure 4.10. As one would expect from a drawing program the

canvas can be scrolled by using the horizontal and vertical scroll bars. In addition

the drawing can also be zoomed in and out by using the zoom buttons located at

the bottom of the canvas. Object manipulation is accomplished by selecting the

appropriate tool from the tools palette then manipulate the object directly in the

drawing canvas.

The Tools Palette The tools palette is were the user selects his/her tool to

use on the canvas shown in Figure 4.11. Only one tool can be used at a time. All

tools except for compile and simulation are selected for use on click. Compile and

34 4. Software

/
"'U-mTP=UT~--' UTPUT

RTA := OxF

true

PORTA== OxO

PORTA == OxFF

Figure 4.10: The Drawing Canvas

() "',>';'
;r~ I
\~ !
I···::::··· .. ······ .. · .. l
I Start I
! 5tor~
I Delay ,
jlnput

i
1 rl.~ ,,);;;::--.,-.,---,
!

i Output I Compile

1 Transition I Simulator
\. . ,""",,,no"'"

Figure 4.11: The Tools Pallette

4. Software 35

. simulation arc immediately executed on click. The tools listed on the tools palette

are as shown in Figure 4.11 and have the functionality as follows.

• Selection Tool: This tool allows you to select one or multiple objects. Or

edit properties of objects. You can move the object around the canvas by first

selecting the object with a single click, then clicking and dragging the object

to the desired location. Editing properties are accomplished by double clicking

the property you would like to edit on the object itself.

• Transition Tool: This tool draws transitions between one block to another.

Before you draw a transition you must have created the two blocks you wish to

connect. To draw the transition you start by clicking and holding down the left

mouse button over the starting block then dragging until the line snaps over

the ending block. On release of the left mouse button a transition is formed

and the two blocks are linked. For layout purposes you may also double click

on a. transition line to add more anchors.

• The Start Tool: The code will give a compile error if more than one start

block is placed on the diagram. Start blocks have no other data associated

with them but they serve as the starting point of your program when the PLC

unit is first turned on. Your diagram must contain exactly one start block and

there must only be one edge leaving the start block. No variables or guard

conditions can be evaluated at the start of the program since the controller is

still uninitialized so the result of the guard conditions is entirely dependent on

what the chip has at these memory locations.

• The StoreBlock Tool: You can use these blocks to perform calculations or

update internal variables. To begin drawing a store block you first select this

tool. Then you click on the canvas where you would like it to appear. Store

blocks are auto-resizing objects thus the size is determined by the content. To

edit each field in a store block you double click thc parameter you wish to edit.

If you wish to delete a line you can simply erase the identifier. If you wish to

36 4. Software

add a new line change the last identifier to something other than the default

placeholder value. A new placeholder will be created as soon as you perform

this action in order to allow you to add more lines.

• The Delay Tool: Delay blocks are used to insert a specified delay into your

program the length of the delay is specified in milliseconds. VVhen an edge is

taken to the delay block the code execution is delayed and none of the departing

edges are taken until the delay time specified has elapsed. It is often useful

to have your program wait for a specified period, although the same can be

achieved by using a store block and a counter update it is far easier and more

accurate to use the dedicated delay block.

• The Output Tool: Output blocks are used to send outputs from the program

to pins on the PLC itself. Depending on the chip type there can be one or

many different output ports. Each port is a 8-bit representation of the pins, an

expression is also allowed on the right hand side so masking could be done.

• The Input Tool: Similar to the format of the output block the input block

allows you to read data from one or many ports (depending on hardware) into

an internally used variable.

• Compile Action: Executing the compile action will start the compilation pro­

cess into PLC IL (intermediate Language) code this code is directly compilable

on targets that have implemented the hardware framework which is discussed

in detail in Section 5.2.

• Simulator Tool: The simulator action brings up a tracing and debugging

window. This window allows you to step through each of the code blocks to

simulate what might happen as your program runs.

Compile Preview Window After the compile button is invoked the compile

preview window is prcscnted as shown in Figure 4.12. The preview window serves as

a quick overview of the program code that can be loaded onto the device. The user

4. Software

ELUID2~

IIII/I//i/if/i/!/i/i//I/!/I/IIII//III!
1/ DELAY i/
11!1/lllf!f!!I!!!!II!/!!!I!!!!!!!!!!!!
delayma (lOCO) ;
.i.f {[,ORT}\ "'"., OxFF) goto BLLiID3 f

it jlX}RTA ""." OxO) (jetn BLUTDl;
goto EcOF,

fllll/jlll/I!I///II/!!!!!!!!lfl!!I!/!!
il OUTPUT
jjjj//I/jJJ/f/ljl///jji//I/jjl////j/j/
-"FORTA ;;:: UxOr
gotn BLUTD2;
HC}to· EOF;

EOF[

Figure 4.12: Compile Preview Window

37

then has the option of saving the text off to a compilable file for loading onto the

device.

Simulator Window In order to aid in debugging, a simulator mode has been

added to the visual editor. When the simulator window is brought up it helps the

programmer visually identify what their current memory layout looks like as well

as which block they are currently executing. In Figure 4.13 the following view is

presented right after the simulator button has been invoked. Note the contents of all

variables and all ports are shown. Also the start block is automatically highlighted

and the ports are initialized to their starting values.

The Step Once button allows the user to to step through the current block one

step at a time. The Step Next button finishes all operations in the current block and

jumps directly to the next block. Figure 11.l!! demonstrates what the program might

look like after a it is allowed to run for a few steps.

38

PORTS
PORTe
PORTD

(Reset) C Step Once) ('Step Next y

true

true

PORTA ~~ OxFF

o
o
o

Figure 4.13: Simulator Window Starting Configuration

4. Software

4. Software 39

ue

PORTA == 0

PORTA == 255

Figure 4.14: Simulator Window Program Running

40 4. Software

4.5.3 Data Flow

Construction of the final compiled code starts at the GUI level. The designer starts

by drawing the layout of the program they wish to construct. This drawing forms the

basis of the underlying code structure. The designer then tests the behaviour of their

program by utilizing the simulation tools. Once satisfied the designer uses the compile

tool to generate the final program code. This program code is then compiled onto the

final architecture by the embedded hardware compilation tools. Any hardware that

has implemented the support required by the hardware framework (which is discussed

in detail in Section 5.2) will run compile and run this program code.

4.5.4 Generated Code Structure

The structure of each compiled section was carefully constructed to preserve the

structure of the drawn graph as closely as possible. The basic structure of each

compiled block can be seen as follows:

Definition 4.5.1 Structure of Logic Control Chart generated code

BLUID5:

//////////////////////////////////
//// Block Header //

//////////////////////////////////
(Program Code)

if (g'uard condition) goto BLUID2;

goto EOF;

As you can observe from Definition 4.5.1 each code block generation first starts

with a BLUID (Block Unique Identifier). The purpose of the BLUID's is to give a

reference point for the start of the block having a BL UID label for each block enables

any block to be jumped to should we want to. The block header which comes right

after is an identifier to the type of block being generated.

I

I

4. Software 41

In the "(Program Code)" section of Definition IJ.5.1 sits the generated IL code.

This code is the same for each target platform. Each IL target will have appropriate

implementations that will map IL calls to hardware specific calls. Th~.se calls can be

found in Section 5.2. The generated IL code resembles C code with specific calls to

lower level functions that are supported by the PLC target's hardware framework.

The final block of if statements implement the edges leaving the block. Each

edge is guarded by an if statement, and will have the goto portion point the the cor­

rect BL UID as specified by the diagram. go to was chosen over conventional control

structures as it provided several advantages. The first is that translation from graph

structure to code is fundamentally easier. goto's are analogous to graph edges where

trying to analyze the diagram and fit structures like for while are inherently much

harder and prone to error. In addition these structures are more at home in textual

programming languages and do not improve the structure of the graphical program­

ming language. The next advantage was during code generation when trying to unroll

structure from our graphical programming language not using goto's will cause the

order of items to be important. This makes it necessary to form a dependency tree

of blocks to each other if they started requiring each other. All these problems were

easily avoided by staying with a simple goto structure inside the actual generated In­

termediate Lang'uage code itself. The trade off in this design decision is the resulting

generated code becomes a machine generated code and is not very user editable.

Finally if at any point no edges are valid the the program will terminate by going

to the label "EOF" which will be located at the end of the file.

4.5.5 Compiled Structure

Each of the blocks will compile their own snippets of code. It may be helpful when

reading this section to refer to Definition 4.5.1 for the generic block structure defini­

tion. Each block primative's construction is detailed below.

4.5.5.1 Start Block

I

I

1

42

00 BLUID#:

01 //////////////////////////////////////

02 / / PRmRAlvI START / /

03 //////////////////////////////////////

04

05 if (condition) goto LABEL;

06 goto EOF;

4. Software

The primary function of a start block is to provide a block that can have edges

directed at it, and to give a starting point for the program. Line 00 is the "block

unique identifier" as stated in Definition 4.5.1 this is used by other blocks when edges

are directed at this block. Lines 01-03 is a block description without this it becomes

difficult to determine what kind of block is executing if the code needs to be examined

by human eyes.

On line 06 the standard "goto EOF" is generated to ensure if no edges exist the

program will stay in the block and not execute any other block by going to the end

of the program.

4.5.5.2 Delay Block

00 BLUID#:

01 //////////////////////////////////////

02 // DELAY //

03 //////////////////////////////////////

04

05 delay _ms (in teger);

06

07 if (condition) goto LABEL;

08 goto EOF;

4. Software 43

Since the structural components are identical to the code sample provided in the

"Start Block" we will skip lines 00-04. Unlike the "Start Block" the "Delay Block"

does perform an operation during execution. On line 05 the "Delay Block" calls

delay ~1.s(integer) where integer refers to the integer specified in the diagram. The

routine for delay is done on the hardware side as the manufacturer will choose how to

appropriately determine 1ms on hardware. delay --1llS is a call that will be implemented

on the hardware framework show in Section 5.2.

4.5.5.3 Input Block

00 BLUID#:

01 //////////////////////////////////////

02 / / INPUT / /

03 //////////////////////////////////////

04

05 variable = PORTIN;

06

07 if (condition) goto LABEL;

08 goto EOF;

The input routine performs an operation of setting a variable to the value being

read off the input port. This value is located on line 05 "variable = PORTIN;". Lines

00-04 are the same as Definition 4.5.1 and line 07-08 are identical to the Delay block.

In this case variable can be any variable in our program that can accept a 8 bit integer

values.

4.5.5.4 Output Block

00 BLUID#:

01 //////////////////////////////////////

02 // OUTPUT //

i
-j

44

03 //////////////////////////////////////

04

05 POR'IDUT = variable;

06

07 if (condition) goto LABEL;

08 goto EOF;

4. Software

The "Output Block" is nearly identical to the "Input Block" the only difference

is on line 05 instead of reading a value from the input port a value is written to the

output port. This is accomplished by the line "PORTOUT = variable;".

4.5.5.5 Store Block

00 BLUID#:

01 //////////////////////////////////////

02 / / STORE / /

03 //////////////////////////////////////

04

05 variableO

06 variable1

07 variable2

expressionO ;

expression 1 ;

expression2 ;

08 if (condition) goto LABEL;

09 goto EOF;

Again we start the store block similar to the other blocks with identical structure

until line 04. Line 05-07 are the code conversions for the store block. The store block

converts each line in the diagram of the form "type variable-.llame := expression"

into "variable_name = expression" as seen on line 05. In addition if there is more

i
-I

;
. 1

4. Software 45

than one line they are thcn placed one after the other in sequence. The expressions

used can be any valid mathematical "e" style expression. Functions calls used in the

expressions are not supported.

46 4. Software

4.6 Correctness

In this section we look at the correctness of the code generation process. Correctness

can be described as the mapping shown in Figure 4.15. Expressions in our system

are compiled into the program code. Expressions can be evaluated by hand (8) to

produce a value. Likewise the program can be executed to produce a final value.

Correctness holds in the system if the value of the evaluation (8) is the same as a

value achieved by execution.

Expression f------- Program Compilation i ~gr~
____ ~--~ I

Execution

,
I

,
Identity Ii

f-------~

I
Value Value

Figure 4.15: Code Transformations

Our tool constructs executable code from the drawn diagram the constructs are

defined in Sections 4.4 and 4.3. To justify the correctness we need to demonstrate the

program structure generated from a graph structure is correct. To do so we extend

Figure 4.15 to obtain Figure 4.16 to incorporate the transition construct. If each

Figure 4.15 represents an individual block than the extended Figure 4.16 represents

the several blocks with the ability to transition between them.

In this section we begin by showing that each of the transformations to code are

correct by examining the basic atoms. vVe will start by looking at atoms that have

the simplest assignments first.

4. Software 47

Compilation ,---------.
Mode 1 -- ~ Program Section 1

I

6 Execution

- -"-- - - Identity - -"--
Value I----+--~ Value

Transition Goto

,
I Compilation

Mode 2

Execution

- - ~- - - Identity
Value

,- - -'- - -

Value I e------>---~

Transition Goto

,
Figure 4.16: Code Transition Structure

48 4. Software

4.6.1 Atoms

Each block in Logic Control Chart compiles to their own atomic assign statements.

In the case were variables are used the type information is not present in the atomic

assignment portion of the code generation. Variables are collected at compile time

declared and initialized as part of the program construction. By collecting variables

in this manner a variable with the same name but given two different types can be

identified and will cause a compile error. Also the syntax of Logic Control Chart uses

":=" as an assign symbol, the final generated code will use the "=" symbol.

4.6.1.1 Start Block

I START I

Figure 4.17: Start Atom

(No atomic assignments or operations in code)

The start atom is the only atom in our system that does not generate any actual

code for the atom itself. Instead the start atom is used as a place holder so that tran­

sitions can be constructed. It also structurally indicates where the program should

start. Since the start block contains no atomic code it is trivially correct as it does

nothing itself.

4.6.1.2 Delay Block

Figure 4.18: Delay Atom

I delayms (10) ;

I

~

4. Software 49

The delay atom generates "delayms(<Expression»". The expression is mirrored

in the diagram. The units shown in Figure 4.18 as "ms" are omitted in the code. The

units in the visual representation serves as a reminder to the user that the delay is

always measured in milliseconds. Expressions follow the syntax given in Section 4.4.

Since there are no assignments to values, the mappin gfrom evaluated values (none)

to executed values (none) is trivially correct.

4.6.1.3 Output Block

OUTPUT
PORTOUT := OxF2

Figure 4.19: Output Atom

jPOR'IDUT = OxF2;

The output atom generated refers to PORTOUT, which is mapped on a hardware

level to the PLC hardware's output port. This is done to allow the hardware manufac­

turer a bit of fiexability. In our implementation PORTOUT can be assigned any 8-bit

value. Any values larger than 8-bit will be trucated. In the example shown in Figure

4.19 we can see that the assignment in the diagram is "PORTQUT := OxF2". vVe can

say that the meaning of this line is 8(PORTOUT) = (F2)16. The final compiled out­

put code is "PORTOUT = OxF2". We can see that Exec1dion(PORTOUT) = (F2)16

since we have a direct mapping from the value in diagram to value in execution

(8(PORTOUT) = Execution(PORTOUT)) , we can conclude that the assignment

in the output block is done correctly with respect to the diagram.

50 4. Software

4.6.1.4 Input Block

INPlIT
int var := PORTIN

Figure 4.20: Input Atom

I var = PORTIN;

We can see in Figure 4.20 that the diagram clearly shows the assignment "int

var := PORTIN". vVe can say the meaning of the assignment in the diagram is

o(var) = PORTIN. The final compiled code for the atom is "var = PORTIN". The

left hand side must be a valid variable name as specified in the syntax of Logic Control

Chart (see section 4.4). The variable can be any type however PORTIN will always

be read as an 8-bit integer. Any variable on the left hand side that is not integer

would have PORTIN automatically casted to the appropriate type. Thus we can see

that Exec'Lltion(var) = PORTIN. vVe note that there is a direct mapping from

diagram value to execution value, that is: o(var) = Execution(var) = PORTIN.

Thus by our definition of correctness as defined in the beginning of this section and

Figure 4.15, we can conclude that the input block is correct.

4.6.1.5 Store Block

I STORE
Int a :"" a + 1
intb:= a

I STORE

Figure 4.21: Store Atom

Single Assign (Left Diagram)

la = 0;

Multiple Assign (Right Diagram)

4. Software 51

a + 1;

a' ,

The Store Block is used for assignments. In the left diagram of Figure 4.21 we see

a Store Block with one assign statement and in the right diagram of Figure 4.21 we

see that store blocks can also contain multiple atomic assign statements.

Looking at the left diagram first, we note that the assign statement is "int a :=

0" that is to mean 8(a) = O. We see the final generated code is "a = 0" meaning

Execution(a) = O. We see that 8(a) = Execution(a) that is to say there exists a

mapping from the value in the diagram to the value from the execution. We can

say that the code generated is correct with respect to the diagram. Looking at the

right diagram we see that each line of the Store Block becomes own atomic assign

statement in the code. We see that the diagram has "int a := a +1" and "int b :=

a" with evaluations 8(a) = a + 1, 8(b) = a. The generated code is then "a = a +
I" and "b = a" with the executed values Execution(a) = a + 1, Execution(b) = a.

vVe can see at this point that 8(a) = Execution(a) and 8(b) = Execution(b). Thus

we can conclude that the Store Block generated code is correct with respect to our

diagram. We note that we can create equivalent diagrams by having two single line

store atoms. Thus, it is not difficult to see that the right diagram is just a visual

simplification one dual line Store Block, corresponds to several atomic assigns. Being

able to group assigns together into one atomic diagram removes the need to have

several atomic assign blocks. This is ultimately removes visual clutter and makes the

overall diagram simpler.

4.6.2 Constructors and Transitions

Constructors takes the atoms and places structural elements around them. In the ex­

ample code below we demonstrate the constructed sections for any arbitrary compiled

code. On lines 00-07 we have the variable initialization section, any variables used

are initialized and the type is declared here. Variables in our program are collected at

I
1

52 4. Software

compile time by scanning all the diagram objects and collecting any variables used.

Any conflicts where a variable is given inconsistent types are caught and will cause

a code generation error. The initialization section will set all variables to a default

value after defning the type.

The generated constructs also exist to provide a way for each of the states to

terminate the program if no departing transitions exist. This is accomplished by

lines 32-33 an "end of file" label is generated to mark the end of the program followed

by a return statement to end the program and return control to the programmable

logic controller chip. On recieving a return the Programmable Logic Controller will

hold all last known values on every port and halt, this simulates a stop.

00 / / BEGIN VARIABLE INITIALIZATIONS / /

01 in t a O· ,
02 in t b O· ,
03 float c = O· ,
05 double d= o· ,
06 byte e = 0;

07 / / END VARIABLE INITIALIZATIONS / /

32 EOF:

33 return;

Transitions are used to string together a sequence of atoms in order to perform

the computations necessary in our program. In order to show correctness we must

show that the transitions are structurally correct. vVe must show transitions will

correctly map modes in the right sequence. Figure 4.16 shows how transitions factor

into our correctness justification. Figure 4.16 states that in addition to our original

correctness justification we must also demonstrate that the transitions take us to the

same n1.odes and program sections.

4. Software

true

BLOCK1

ttrue

I
B .. L.OCK2 I

L---. -----'-------'l a >= 3

a< 3 _

Figure 4.22: Transitions

00 / / BEGIN VARIABLE INITIALIZATIONS / /

01 ...

03 / / END VARIABLE INITIALIZATIONS / /

04

05 BLUIDO:

06 //////////////////////////////////////

07 // PruxmN~~ART //

08 //////////////////////////////////////

09 goto BLUIDl;

10 goto EOF;

11

12 BLUIDl:

13 //////////////////////////////////////

14 / / BLOCKI / /

15 //////////////////////////////////////

16 ...

17

18 goto BLUID2;

53

54

19 goto EOF;

20

21 BLUID2:

22 //////////////////////////////////////

23 // BLOCK2 //

24 //////////////////////////////////////

25

26

27 if (a >= 3) gotb BLUIDl;

28 if (a < 3) goto BLUID2;

39 goto EOF;

30

31 EOF:

32 return;

4. Software

Starting by looking at the code above we can see that our first entry point into

the program is the "PROGRAM START" block. This refers to the Start Block in

our diagram. During compilation the entire diagram is scanned to ensure there is

one and only one start block. The generated code for the start block is then placed

at the top of the program to ensure it is the first entry point of the program after

ini tializers.

Transitions in our program are compiled to "goto" statements. Each block is

given a unique "Block Unique Identifier" which is a line label starting with "BLUID".

BLUID's are generated as each block is scanned at compile time and a monotonically

increasing number is appended to the end of the label. The "goto" transitions are

insertedr after the atomic block assignments have been made.

Looking at the diagram given in Figure 4.22 we note that the Start Block tran­

sitions to "BLOCK1" with an edge guarded by "true". In the code "BLOCK1" has

label "BLUID1" associated with its section of code. vVe see that the generated code

for the Start Block has a "goto BLUID1" on line 9. This corresponds to transition

4. Software 55

leaving the Start Block. Next we have a transition from "BLOCKl" to "BLOCK2"

in Figure 4.22. vVe can see the code corresponding to the transition on line 18 "goto

BUILD2" where "BL UID2" refers to "BLOCK2". Finally we note the two guarded

transitions leaving "BLOCK2". For the guarded edge "a >= 3" we can see the gen­

erated code "if (a >= 3) goto BLUID1" on line 27. We note that "BLUIDl" refers

to "BLOCK 1" in the diagram so the transition goes from "BLOCK2" to "BLOCKl"

which is correct. For the transition guarded by "a < 3" we note the generated code

on line 28 "if (a < 3) goto BLUID2". We see that "BLUID2" refers to "BLOCK2"

so the transition is a self loop) which is correct with respect to the diagram in Figure

4.22. Since all the transitions are generated correctly for any arbitrary block we can

conlucle that the transtions are structurally correct in our system.

56 4. Software

4.6.3 Correctness of Translation

4.6.3.1 Table Representation

In order to show the correctness of the translation process it is necessary to identify

the differences between graphical evaluation and execution. Both contain a "mode"

in the translated code the mode is directly associated to a set of line numbers. Line

numbers are not in the diagram view. Both have variables and modes, and correct

execution can be defined as a trace where all modes and variables are identical. We

will use tables to compare the diagram trace vs the execution. We will start with a

simple start diagram as shown in Figure 4.23. A diagram trace is shown in Table 4.1.

I START I

Figure 4.23: Singular Start Block

The accompanying generated IL code for Figure 4.23.

00 / / BEGIN VARIABLE INITIALIZATIONS / /

01 / / END VARIABLE INITIALIZATIONS / /

02

03 BLUIDO:

04 //////////////////////////////////////

05 // Pruxmru~~ART //

06 //////////////////////////////////////
07 goto EOF;

08

09 EOF:

10 return;

4. Software 57

Table 4.1: Start Diagram shown in Figure 4.23
Mode Variables Transitions Next Mode
start (none) (none) (none meaning stop)
(none) (none) (none) (none)

To show an execution trace we replace mode with line number and we get the

following Table 4.2.

Table 4.2: Start code execution for compiled code from Figure 4.23
Line Variables Code N ext Executed Line
00 (none) (comment) 07
07 (none) gata EOF 09
09 (none) (line label) 10
10 (none) return (stop)

It is not to difficult to see that from lines 00 to 07 we are in the "start" mode so

we can append a mode marker to the end of the table. We can also identify that line

09 "EOF" represents the end of the file and thus has no mode associated with it.

Table 4.3: Start code execution for compiled code from Figure 4.23 extended
Line Variables Code N ext Executed Line Mode
00 (none) (comment) 07 start
07 (none) gata EOF 09 start
09 (none) (line label) 10 none
10 (none) return (stop) none

We can already see that the trace and execution will produce the same outcome

if we compare the two tables. For ease of comparison we can merge the two tables

side by side so we can directly compare each executed line to its associated graph.

In Table 4.4 we can easily compare the execution vs the diagram trace. vVe can see

that line numbers can be associated with a mode despite not having one themselves.

In order to verify correct execution it is necessary to show that the sequence of modes

and values are the same. In the above example in which we run our first trivially

simple start code snippet it is easy to see that this holds. Therefore we can conclude

58 4. Software

Table' 4.4: Start code execution combined table. For Figure 4.23
Mode Var (Diag) Transitions Next Line Va .. (Exec) Code Next

LN
start (noite) (none) (none 00 (none) (comment) 07

mean-
ing
stop)

07 (none) goto EOF 10
10 (none) return (stop)

that the execution is correct for the start diagram shown in Figure 4.23.

4.6.3.2 Start Diagram Execution

The start diagram analysis was already done as a previous example to construct our

comparision tables please see Table 4.4. We may note that the only mode is "start"

and that the mode is the same through the executed line by line trace. We can also

note that the code stops after "start" mode is finished which also is correct behaviour.

Finally there are no variables listed in our system so variables are trivially correct.

4.6.3.3 Delay Diagram Execution

trLl~

'if
I DELAY I

10 ms

Figure 4.24: Delay Block

Generated IL code for diagram in Figure 4.24.

00 / / BEGIN VABlARLE INITIALIZATIONS / /

01 / / END VARIABLE INITIALIZATIONS / /

02

03 BLUIDO:

4. Software

04 //////////////////////////////////////

05 / / PRCXiRA1VI START / /

06 //////////////////////////////////////

07 goto BLUIDl;

08 goto EOF;

09

10 BLUID1:

11 //////////////////////////////////////

12 // DELAY //

13 //////////////////////////////////////

14 delayms (10) ;

15 goto EOF;

16

17 EOF:

18 return;

Table 4.5: Delay code execution combined table. For Figure 4.24
Mode Var (Diag) Transitions Next Line Val' (Exec) Code

start (none) if (true) delay delay 00 (none) (comment)
07 (none) goto BLUIDI

delay (none) (none) (stop) 10 (none) (line label)
Vl (none) delayms(10)
15 (none) goto EOF
17 (none) (line label)
17 (none) return

59

Next
LN
07
10
14
15
17
18
(stop)

Once again in this example we don't have any variables so they are easily verified

by checking that in both cases there are. no variables. All that's left to justify cor­

rectness is ensuring the sequence of modes is executed correctly. It should be easy

to see that the sequence: start, delay, stop. Is clearly implemented by the executed

code from the Table 4.5. We can therefore conclude that the executed code trace is

correct with respect to the original diagram.

4.6.3.4 Output Diagram Execution

Generated IL code for diagram in Figure 4.25.

1

I

J
I

60

"TAR

true

UTPUT
ORTOUT : = OxF2

Figure 4.25: Output Block

00 / / BEGIN VARIABLE INITIALIZATIONS / /

01 / / END VARIABLE INITIALIZATIONS / /

02

03 BLUIDO:

04 //////////////////////////////////////

05 / / PRCXiRA1VI START / /

06 //////////////////////////////////////

07 goto BLUID1;

08 goto EOF;

09

10 BLUID1:

11 //////////////////////////////////////

12 / / OUIPUT / /

13 //////////////////////////////////////

14 POR'IDUT = OxF2;

15 goto EOF;

16

17 EOF:

18 return;

4. Software

4. Software 61

Table 4.6: Output code execution combined table. For Figure 4.25
Mode Var (Diag) Transitions Next Line Var (Exec) Code Next

LN
start PORTOUT if (true) output output 00 PORTOUT - 0 (comment) 07

=0
07 PORTOUT - goto BLUrD 10

(no change)
output PORTOUT (none) (stop) 10 PORTOUT - (line label) 14

= OxF2 (no change)
14 PORTOUT - PORTOUT _ OxF2 15

OxF2
15 PORTOUT - goto EOF 17

(no change)
17 PORTOUT - (line label) 18

(no chango)
18 PORTOUT - return (stop)

(no change)

First we make a note that PORTOUT is an special variable that is used to send

an output to the ports on the device. According to the hardware specification section

PORTOUT is initialized to 0 when the device first starts up. Likewise PORTOUT is

zero until changed in our diagram. Understanding this the rest of the code trace is as

follows: {(start, PORTOUT = 0), (output, PORTOUT = OxF2)} where we observe

that our tuple comprises of (mode, variables). It is not difficult to see that our two

code traces produce this sequence and by our definition we can conclude that our

output execution is correct with respect to the diagram.

4.6.3.5 Input Diagram Execution

true

INPur
tnt var := PORTIN

Figure 4.26: Input Block

Generated IL code for the diagram in Figure 4.26.

00 / / BEGIN VARIABLE INITIALIZATIONS / /

01 in t var = 0;

02 / / END VARIABLE INITIALIZATIONS / /

62

03

04 BLUIDO:

05 //////////////////////////////////////

06 / / PRCXiRANI START / /

07 //////////////////////////////////////

08 goto BLUIDl;

09 goto EOF;

10

11 BLUIDl:

12 //////////////////////////////////////

13 // Input //

14 //////////////////////////////////////

15 var = PORTIN;

16 goto EOF;

17

18 EOF:

19 ret urn;

4. Software

Table 4.7: Input code execution combined table. For Figure 4.26
Mode Var (Diag) Transitions Next Line Var (Exec) Code Next

LN
00 var UNDE- (comment) 01

FINED
01 var _ a iut var _ 0 04

start var _ 0 if (true) -----)- input input 04 var - (no (comment) 08
change)

08 var - (no goto BLUIDI 11
change)

input var - (none) (stop) 11 var - (no (line label) 15
PORTIN change)

15 var _ PORTIN var _ PORTIN 16
16 var - (no goto EOF 18

change)
18 var - (no (line label) 19

change)
19 var - (no return (stop)

change)

vVe must first note in this code trace that inputs require a variable in order to

store their data. These inputs are initialized at the beginning of the execuLion. Ini­

tialization is not required for our diagram it is understood that an initial value of 0 is

I
I

1
I

4. Software 63

used. Our table starts with line 00, and 01 which initialize our variable, we consider

this "house keeping" and on the left side of our table we do not associate this process

with one of our diagram modes. This time the start mode occurs 3 rows down with

the corresponding line 04. The execution of the start block and diagram is identical

to previous examples with the exception of different line numbers. The sequence of

modes and variables is observed as (start, var = 0), (input, var = paRTIN). We can

observed that "var" is set to "paRTIN" on row 5 in the diagram. Tn the execution

the corresponding set occurs on row 6. We note the sequence of modes and variables

are identical. Thus according to our definition of correctness we have shown that

both diagram and execution follow the same modes and variable values in the same

sequence. We can conclude from this that the execution of the input code is correct

with respect to the diagram.

4.6.3.6 Store Diagram Execution

true
,

STORE J
int a: 0

true
STORE a >= 3
inta:=a+l
intb:=a

a < 3

Figure 4.27: Store Block Example

Generated IL code for diagram in Figure 4.27.

00 / / BEGIN VARIABLE INITIALIZATIONS / /

01 in t a

02 int b

o· ,
Q. ,

~I
I

64

03 / / END VARIABLE INITIALIZATIONS / /

04

05 BLUIDO:

06 //////////////////////////////////////

07 / / PlliXiRANI START / /

08 //////////////////////////////////////

09 goto BLUID1;

10 goto EOF;

11

12 BLUID1:

13 //////////////////////////////////////

14 / / STORE / /

15 //////////////////////////////////////

16 a = 0;

17

18 goto BLUID2;

19 goto EOF;

20

21 BLUID2:

22 //////////////////////////////////////

23 // STORE //

24 //////////////////////////////////////

25 a = a + 1;

26 b = a;

27

28 if (a >= 3) goto BLUID1;

29 if (a < 3) goto BLUID2;

30 goto EOF;

31

32 EOF:

4. Software

4. Software

133 return;

Table 4.8: Store code execution combined table. For Figure 4.27
Mode Var (Diag)

2

4 start a-O
b=O

5 store! a - 0
b= NC

6

7

8 store2 a-I
b=1

9

10

11

12

13 store2 a - 2
b=2

14

15

16

17

18 store2 a - 3
b=3

19

20

21

22 store! a - 0
b= NC

23

Transitions Next Line

00

01

02

if (true) -----+ store! store! 09

if (true) ---+ store2 store2 12

16

18

if (a ::> 3) -> store2 21
store!
if (a < 3) ->

store2
25

26

28

29

if (a ::> 3) -> store2 21
store!
if (a < 3) ->

store2
25

26

28

29

if (a ::> 3) -> stOl"Bl 21
store!
if (a < 3) ->

25

26

28

if (true) -----+ store2 store2 12

Var (Exec) Code

a - UNDE- (comment)
FINED
b = UNDE­
FINED
a - 0 int a - 0
b = UNDE-
FINED
a-O
b=O
a NC
b=NC
a-NC
b=NC
a-O
b= NC
a_1Ve
b =NC
a-NC
b =NC

a 1
b=NC
a-NC
b=1
a_ NC
b=NC
a NC
b= NC
a_NC
b=NC

a_2
b=NC
a-NC
b=2
a_NC
b=NC
a-NC
b=NC
a- NC
b=NC

a-3
b=NC
a-NC
b=3
a NC
b=NC
a_NC
b=NC

int b - 0

goto BLUIDI

(line label)

a-O

goto BLUID2

(line label)

b-a

if (a >- 3) goto BLUIDI

if (a <3) goto BLUID2

(line label)

b-a

if (a >- 3) goto BLUIDI

if (a <3) goto BLUID2

(line label)

b_a

if (a >- 3) goto BLUIDI

(line label)

65

Next
LN
01

02

09

12

16

18

21

25

26

28

29

18

25

26

28

29

21

25

26

28

12

16

The reader should note that we have shortened "no change" in the previous tables

to "NC" in order to fit it in the tables. Similar to the input example the store example

also has variables that must be initialized before it can enter it's first state. Lines

00-02 in the Table 4.8 represent the "house keeping" steps required in order to define,

setup and initialize the variables. The entry of the start mode represents the start

66 4. Software

of our diagram. The reader can see from Table 4.8 the two variables are considered

initialized to 0 in the diagram, that is "a = 0, b = 0". vVe may also note that this is

taken care in the execution by lines 01 and 02.

On line 12 we enter our first store block which we have denoted stoTel' Observe

that only variable "a" is modified in this store block thus "b" takes on a value of "Ne".
The corresponding operation for "a = 0" in the diagram occurs in the execution on

line 16. Finally on line 18 we can see that mode stoTel is exited on the execution side

by executing "goto BLUID2".

On first entry to stoTe2 our diagram updates "a" and "b" to 1 and 1 respec­

tively. The corresponding line 21 of the execution is just a line label and the up­

date to variable "a" does not occur until line 25. In the generated code the order

of variable assignments is preserved so variable "a" is assigned before variable "b".

Thus, so far our execution produces the sequence (start, a=O,b=O), (stoTel,a=O,b=O),

(stoTe2,a=1,b=1). We note that both the diagram and execution produce the same

values at this point.

In the diagram transitions are understood to be evaluated and taken right after

the work is done inside the mode. from Table 4.8 row 8 we can see that the transitions

are if (a;::: 3) ~. stoTel, if (a < 3) ~ stoTe2' By evaluation stoTe2 is the result

where a=l and b=1. In lines 25-26 we can see the corresponding execution take place

to produced the results for the diagram in row 8. First on line 25 a = a+ 1 is executed

so a = 0 that was last set on row 6 now becomes a = 1 after the execution. The

following line 26 then sets b = a which is to say b = 1 at this point.

On row 11 we can see that the transitions are now being evaluated. Unlike row 8 on

the diagram side where we treat evaluating transitions as a parallel operation during

execution we see that the transitions are evaluated in sequence. Our definition for

Logic Contml Charl states that conditions for transitions must be mutually exclusive.

If mutual exclusion was not the case sequence would be important. However, if the

conditions are mutually exclusive it is not difficult to see that regardless of which

order each condition is evaluated only a maximum of one will be true at any point in

time. In our case on row 12 a < 3 is evaluated to true at this point and we continue

4. Software 67

to execute on the self-loop back into store2'

It is not difficult for the reader to see that row 13 to 17 plays out the same way

as 8 to 12 with updates to variables a = 2, b = 2. We will continue our justification

on row 18 were we see that on the diagram side a = 3, b = 3. We can see that with

this condition in place the edge that should be taken according to the diagram is now

changed to storel. On line 25 of the execution we see that a = a + 1 updates the

variable to a = 3, and line 26 updates b = a making b = 3. 'With the variable updated

we can now take a look at our conditions. We can see that a >= 3 is now true on

line 28 therefore we execute the goto that takes us to BLU I Dl which is on line 12.

This occurs on row 22 of our execution trace.

It is not difficult to see at this point that row 22 is identical to row 5 in both modes

and values so they are the same in our system. This means that our sequence repeats

and line 23,24,25 ... would be identical to 6,7,8 ... A full execution trace is now (start,

a=O,b=O), (storel,a=O,b=O), (store2,a=1,b=1, (store2,a=2,b=2), (store2,a=3,b=3),

(storel,a=O,b=O), (store2,a=1,b=1, (store2,a=2,b=2), (store2,a=3,b=3), ...) repeat­

ing forever. We note that both execution and the diagram were shown to produce

this sequence of modes and values, and by our definition we have shown that this

corresponding code execution is correct with respect to the diagram.

By showing all executions for all basic atoms in our system we have shown that

our system is correct in execution. All more complex systems can be demonstrated

correct in a similar fashion. Because all systems regardless of how complex are just

a combination of atoms any system constructed from these same atoms, will also

inherently be correct. Thus we can conclude that the execution of this system is then

correct by construction with respect to it's base atoms.

Chapter 5

Hardware

5.1 Platform

In Ladder Logic the compiled code runs on an embedded micro controller in the PLC.

Similarily for Logic Control Chart we also require such a hardware platform to run

our generated code (see Section 4.5.4). The initial hardware platform chosen for this

project was the PIC18F452 however this project was designed from the ground up to

allow for other hardware to be untilized with some effort from a hardware support

team. The PIC18F452 was chosen for this project due to its popularity in the industry

and low cost.

In addition the PIC18F452 has the following features that are essential for PLC

construction:

• 8 Digital inputs.

• 8 Digital outputs.

• 2 Ports.

• Has support for C syntax.

• Accessible hardware clock.

68

I
I

5. Hardware 69

• On board program memory.

These minimum specification have become the baseline for our hardware require­

ments. In order to utilize a different chip with our programming software the hardware

support team will be required to implement a framework layer as described in Section

5.2.

For real time operation hardware requirements on clock speed will become more

critical execution of "goto" should occur as close as possible to constant time or 0(1).

'Without the ability to execute "goto" in constant time delays between transitions

become increasingly harder to predict and account for.

The specifications for the PIC18F452 are as follmvs:

• CPU Frequency: 40Mhz

• Program Memory: 32K

• Data :Memory: 1536 Bytes

• I/O Ports: 5

• Timers: 4

• 10-Bit AID: 8 inputs channels

As the reader may observe the PIC18F452 exceeds our minimum requirements

for hardware that will run our as and software. In particular we currently do not

include provisions to take inputs from our A/D channels. This was done because the

original design had separate I/O modules to handle the inputs and outputs. Given

ll1.ore time 011 this project it would have been possible to more fully utilize the 011

board hardware.

70 5. Hardware

5.2 Hardware Framework

5.2.1 Purpose

The hardware framework allows different chips to be utilized with the same Interme-

I diate Language code generated from our software package "PLCEdit". The hardware

must meet the minimum requirements defined by Section 5.1. The framework con­

sists of a bunch of definitions which map the symbolic software references to hardware

specific calls. In addition the framework is also responsible for properly initializing

the chip and performing any clean up operations once the chip completes execution.

5.2.2 Hardware Framework Overview

~LC Edit IDE I

I

MPLab Ci8 Compiler

~~~PI7'C:m-r:.;~~p 'f~Zjil 
~~~~\. ~ I plcmcu.h I 

program.c I ' I
I i. PIC~CU'~J

.~~c=-~~ :;:\' .: .:'.' '

Figure 5.1: Hardware Framework Components

The hardware framework was designed to allow multiple targets. Our IDE gener­

ates a program.c file that refers to hardware functions and definitions implemented in

"plcmcu.h" and "plcmcu.c" to be combined with an optional "plcmcu.mcp" project

file. "plcmcu.h" contains definitions of the hardware. These are usually designer

choices such as oscillator selection, and which ports on the chip they will be using for

input and output. "plcmcu.c" will implement any function calls that are required and

5. Hardware 71

take care of any chip initializations. In addition it is "plcmcu.c" job to call the user

generated "program.c" once the chip is fully initialized and setup. The entire frame­

work is then sent to the MPLab C18 compiler, or a compiler of the implementer's

choosing. In the next section we will show and comment on some of the sample code

for our prototype system.

5.2.3 Sub-Component Implementations

File: plcmcu.h

Section: Chip configuration

Description: Sets configuration bits for the chip that cannot be done at run time.

Code:

#pragma config OSC = HSPLL //set occilator to HS-PLL

#pragma config OSCS = OFF //disable

#pragma config PWRT = OFF / / enable

#pragma config wor = OFF / / disable

#pragma config LVP = OFF //disable

File: plcmcu.c

Routine: iniLchip(void)

occilator switch

power on timer

watchdog timer

low power programming

Description: Initializes any chip specific configuration bits that must be done at

run time.

Code:

void ini Lchip (void)

{

TRISA OxFF; / / set all portA to input

TRISB OxOO; / / set all portB to output

}

72 5. Hardware

5.2.4 Hardware Specific Definitions

Hardware specific definitions are reserved for mapping specific characteristics of the

hardware to match up with the references in the Intermediate Language. For example

it may be necessary to define the input and output ports to a specific port on the

chip itself.

I * PORT s p e c i f i cat ion * I
#d e fin e PORTOUT PORTS

#d e fin e paRTIN PORTA

5.2.5 Hardware Specific Implementations

Function calls from our software that access more complex operations may be required

to be implemented directly into hardware. Our current software only requires that

the routine for delaying the execution by a number of milliseconds is implemented.

It is done as follows:

File:plcmcu.h

1* aDCK specification *1

#define OCCILATOR 10000000

Iiour occilator III seconds

#d e fi n e TCYTlNIE 1

Iinow many cycles I instruction 4 for non PLL 1 for PLL

5. Hardware

#define TCYTICK OCCILATOR / TCYTIME

/ /how long per i nst ru ct ion tick

#define MSTIME 1000

/ / milliseconds to seconds

#define MSTCY TCYTICK / MSTIME

/ /how many clocks in a ms (10000 for pll)

/ / crystal select block

#i f (l\IlSTCY >= 10000)

#endif

#define DEFDELAY(timevalms) \

Delay10KTCYx(timevalms * (char) (l\IlSTCY/10000))

#i f (:r../lSTCY >= 1000 && l\IlSTCY void delayms (in t time)

{

DEFDELAY(time) j

}< 10000)

#endif

#define DEFDELAY(timevalms) \

Delay1KTCYx(timevalms * (char) (NlSTCY/1000))

#if (NlSTCY < 1000)

#endif

#error "Unsupported OCCILATOR defined by" \

, 'hardware manufacturer please ensure crystal" \

"is faster than 1Mhz"

/ * End anCK s p e c i f i cat ion * /

73

I
I

74 5. Hardware

File: plcmcu.c

void delayms (in t time)

{

DEFDELAY(time) ;

}

It is highly recommended to avoid macros where possible however the nature

of the PIC18F452 required macros in order to prevent inaccurate delays caused by

repeatedly calculating the oscillator conversions at run time.

Chapter 6

Summary

6 .1 Conclusions

6.1.1 ConcI Hsions

Throughout this thesis we seek to answer the question on whether the current imple­

mentations of ladder logic have been keeping pace with the technologies and training

received by today's students. We have discovered that ladder logic although adequate

before, have proven to be difficult to use and error prone to a modern trained software

engineer. Typically ladder logic programs incorporate a great deal of sequential logic

and that can only be faked in ladder logic. This not only adds to unintuitiveness but

also adds a strain on hardware since modern micro controller hardware is inherently

sequential in nature.

In constructing Logic Control Chari we have shown that a graphical programming

language is still possible, and that state machines serves as an excellent metaphor.

vVe have shown that with a properly constructed framework Logic Control Chart can

be an platform independent solution where multiple hardware can utilize the same

Intermediate Language code generated by our tool.

75

I

I

76 6. Summary

6.1.2 Summary of Contributions

6.1.2.1 Ladder Logic Analysis

Ladder logic has been around for nearly 30 years and it remained the unchallenged

defacto standard language in the industry. As such no one has ever asked the question

as to whether this rather old system has kept up with modern times. Unsurprisingly

this thesis has shown with analysis of ladder logic that there are several short comings

when compared to a system where we take advantage of modern training programmers

recieved.

6.1.2.2 Development of Logic Control Chart Language

Part of the thesis looked at current different variants for traditional state machine di­

agrams. This analysis led to the conclusion that UML2 was best suited to be modified

into a language that was precise enough to allow for definitions of behaviours of a pro­

gram so that it may be directly translated into code without additional programmer

intervention.

A significant contribution of this thesis comes in the form of the development

of Logic Control Chart a new visual programming language based on state machine

diagrams. In this thesis we define the syntax, and semantics of the language. The

goal achieved here is that we have successfully created a language that is very similar

to UML2 with only minor extensions and is able to define precise executable code

without the need of a programmer to fill in the gaps.

In the development of Logic Control Chart this thesis also demonstrates how

correctness may be shown by analysis of structure and demonstrating that execution

paths produce the same traces. This work may be useful in the future for any work

involving construction of an entirely new visual programming language.

6.1.2.3 Development of A Prototype Tool and Hardware Environment

In order to justify the effectiveness of the Logic Control Chart language it was nec­

essary to develop a working tool. The tool contains the programmer's IDE, the

6. Summary 77

Compiler, and the Simulator which are described in detail below.

The main IDE described in section 4.5.2 presented a significant challenge to us.

The goal was to use Logic Control Chart to describe the operation of our system but

also to require no program code to be written after the tool compiled our diagrams.

In addition the design goals was to make our tool simple to use and to perform as if

it was a vector drawing program. This thesis achieves this design goal and the results

are shown in Section 4.5.2 the IDE usage is similar to any drawing program that you

are use to and is extendable to incorporate new drawing elements.

The goal of the compiler was to take our raw diagram and to generate executable

code without the need of a "programmer in the loop". This compiler which works

in conjunction to the models used in the IDE is a significant contribution to anyone

intending on making a language based on state machine diagrams. In construction

of the compiler which is detailed in Section 4.5.5 challenges were overcome as to how

to take a visual metaphor and preserve all the structure of the diagram into the final

output of the compiled code. vVe believe this presents a contribution to a practical

view of how visual programming languages may be possible and practical.

Finally the simulator borrows much from other state diagram based trace systems.

It can highlight and animate the state diagram to help the diagram constructor

visualize how their states will play out. In addition to aid in understanding how

the system will operate the sinmlator will also list all variables in a watch list so the

outcomes of each state can be carefully monitored against their design.

6.1.2.4 Development of A Hardware Platform

Since Programmable Logic Controllers are embedded devices it was also necessary to

construct an embedded platform in order to ensure this thesis is not purely theoreti­

cal. vVe have developed a hardware platform based on the PIC18F452 chip and the

MPLAB C18 C compiler tool chain.

The details of the construction of the hardware platform and framework are listed

in Sections 5.1 and 5.2. It is important to point out at this point that any hardware

the implements the hardware framework will be able to utilize PLCEdit and all the

I

I
I

78 6. Summary

other developed tools. vVe have designed this hardware platform from the ground up

to allow usage of any micro controller that meets the minimum requirements outlined

in Section 5.1. The cross platform nature of this tool-chain is unique to our tool chain

as conventional Programmable Logic Controllers stay on a proprietary tool chain and

programs must be reconstructed to work on different chips.

6.2 Future Research

There was not adequate time during the project to go deeper in to the hardware

implementation side of Programmable Logic Controllers. In particular the following

features are missing in our design.

• In line programming: at present programming requires that a the micro con­

troller be taken offline it would be ideal that the controller stay operational in

order to decrease downtime. In addition taking the miCro controller off of the

board is not ideal and therefore a system for in line programming would be a

much improved design.

• Input and output modules: at present I/O are directly connected to the micro­

controller's 10 channels. This means that I/O is restricted to the chip's design.

Buffers should be set up between the chip when higher current loads are re­

quired. A more ideal design is to utilize dedicated I/O boards that will plug

into the main unit much like how commercial Programmable Logic Controllers

operate. The added benefit would be in the ability to replace modules as well

as have specialized hardware on the I/O boards to deal with special cases.

• Plug in architecture for PLCEdit: At present adding a new block to PLCEdit

requires edits to the source code. Although every effort has been made to make

this an easy affair, a more ideal implementation involves a plug-in architecture

blocks could become modular and not require any modifications to the main

source at all.

6. Summary 79

• Sub-diagrams: The ability to break one massive diagram up into sub diagrams

would be highly beneficial to a more modularized approach to designing pro­

grams.

In addition while constructing Logic Control Chart and our tool PLCEdit we

realized that the methods used here to program micro controllers are also applicable

to full scale applications with the addition of "sub-diagrams". It is quite possible to

create a version of the IDE that is capable of creating programs on standard desktop

computers and may be worth exploring. We believe that this thesis serves as a good

starting point for future exploration in these areas.

For desktop interactive programs state explosion might become an issue espe­

cially in user interfaces. Future research might also look into if incorporating "sub­

diagrams" is actually sufficient for creating a large scale program.

Bibliography

[1] J. Arlow and 1. Neustadt, UML 2 and the Unified Process: Practical Object­

Oriented Analysis and Design (2nd Edition) (Addison- Wesley Object Technology

Series). Addison-"Wesley Professional, 2005.

[2] A. B. R. Automation, Rockwell Automation: I/O Adapter Specifications. Rock­

well Automation, 1201 South Second St., Milwaukee, "VI 53204-2496, USA.

[3] A. B. R. Automation, PLC-5 Selection Guide. Rockwell Automation, June 2006.

Publication 1785-SGOOIB-EN-P.

[4] "V. Bolton, Programmable Logic Controllers, F01Lrth Edition. Newnes, 2006.

[5] T. L. Booth, Sequential Machines adn Automata Theory. John Wiley and Sons,

Inc., 1967.

[6] M. Corp., "Mitsubishi electric automation: Catalog." Used image from product

catalog only, 01 2009.

[7] A. J. Crispin, Programmable Logic Controllers and Their Engineering Applica­

tions. McGraw-Hill Companies, 1996.

[8] R. Filer, Programmable Controllers Using Allen-Bradley Slc 500 and Control­

logix. Englewood Cliffs: Prentice Hall, 2002.

[9] PlcDev, "How plc's work." Image was used with permission, 01 2009.

[10] PlcDev, "How plc's work." Image was used with permission, 01 2009.

80

I

BIBLIOGRAPHY

[11] PIcDev, "How pIc's work." Image was used with permission, 01 2009.

[12] PIcDev, "How pIc's work." Image was used with permission, 01 2009.

81

I

j
I Appendix A

Appendix

Stepper Motor Examples

82

A. Appendix

STORE
~

TART

true

\

int stepdelay := 300
<double click here> <name'" := <value",

OUTPUT
PORTOUT:", 1

true

~I DELAY
~ ___ stepdelay

.-----­true
true

-~~~-----r-:- --.. true

I OUTPUT . true
PORTOUT := 4 ~

. -------~ DELAY I
_~-ll-'s"'-t"'ep=-d!.!.e-Ia-y-m-s-j

-~~
__ ~---- true

I OUTPUT 1""'-- true
PORTOUT := 2 I--____ ~

. ~~==~---j

true

Figure A.l: Running a Stepper Motor with Logic Control Chart

83

84 A. Appendix

j
1

Sets up and latches current slate.
Sl Dc'ay

----1 i :+f-------------1()----
I I I
-1~

~ "'"' ---11 I :+f~~~~~~~--I()-

~~~ 
~ """' 

-11 [J+------------1()-

I f---J 
~ ~., 

-1~1 ~I-J+----------------~()-

'1-J 
i 

Prepares Iile next slate. 

-11 I ;t(------------1()-
i 

-1!~ 
,~= 

-11 J+------------1( )-

--rW 
s ..... :dl3 

--1 I r-------------------i( )-

~-~ 
I -lk J ,-

,I I /i :-----------------, ;---
'aO' I 
-1~ 

Figure A.2: Running a Stepper Motor with Ladder Logic part 1 of 3 



A. Appendix 85 

Enforces delay between switching states (prevents stepper motor from running too fast). 
Note: S1-S4 only occur for 1 scan it's used to signify the entry into the state. 

Slalch1-4 are used to designate running while in the slate. 

-i 1--1 ----II f---I .------------{()----
1-----11 f-I ----" 

"'" 
-il II ( )--

-il II I ( }-
",., 

I II ( )--I 

Notify we entered the slale and break.s any orders to transmon back 10 this state next 

-il-i ~~~~~~~~~-------j( )--

~II---------------~()-· 

-ill---------------~( )--

-il e--------------{()---

Figure A.3: Running a Stepper Motor with Ladder Logic part 2 of 3 



86 

Timing delay flip-flop circuit. 
Nole: Delay is a special oulput that only goes ON after power is held on for longer than the delay period. 

-----------{( )-

~il~----~----------------~( )-

~ I 
I~";' ~~/ I 
~i~ 

Send output to the molor. Nole: ou10-3 are wired 10 the stepper motor. 

---1 ir--------------{( }-­

~I (}--

~~---------------------~( }--

~ ~------------{( }--

A. Appendix 

Figure A.4: Running a Stepper Motor with Ladder Logic part 3 of 3 


