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Abstract 

Wild-type Drosophila larvae display photophobic behaviour when confronted with a light 

stimulus. This behaviour is mediated by changes in larval locomotion including increased 

direction change and pausing in addition to decreased contraction frequency. Foraging third 

instar larvae that are homozygous mutant for the Drosophila Ran Binding Protein in the 

Microtubule Organizing Center (dRanBPM) gene exhibit a reduced response to light and two 

alleles display a severe locomotion deficit. dRanBPM functional domains show a considerable 

number of identical amino acids when compared with orthologous genes. The human orthologue 

RanBPM binds to Fragile X Mental Retardation Protein (FMRP), a protein for which the loss of 

expression causes Fragile X syndrome. Wandering Drosophilafragile X mental retardation 1 

(dfmrl) mutant larvae show increased direction change and reduced time spent in linear 

locomotion in a dark assay. Double mutant larvae homozygous for a dfmrl mutant allele and 

carrying one copy of a dRanBPM mutant allele were tested for turning and response to light 

phenotypes. The results presented here indicate that dRanBPM and dfmrl act independently to 

modulate aspects of larval locomotion. Expression of dRanBPM is found in distinct sets of 

neurons in the larval eNS including the mushroom bodies (MBs). Neuronal silencing of the 

MBs in foraging third ins tar larvae resulted in a reduction in response to light. Finally, this 

reduction in response to light stimuli was characterized as a decrease in mean direction change 

during the light. 
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1.1 Photosensory System of Drosophila 

The core neuronal circuitry underlying photosensory input in Drosophila larvae 

has been known for some time, yet the mechanism behind the modulation of larval 

locomotion by light has not been fully elucidated. In Drosophila, there are two systems 

that detect and convey photosensory input: the input pathways of the circadian system, 

which functions to entrain biological rhythms, and the visual system, which analyzes the 

spatial and temporal world (Helfrich-Forster et aI., 2002). As in many other organisms, 

the adult Drosophila circadian system has an extraocular element. This extraretinal 

component designated as the Hofbauer-Buchner (H-B) eyelet consists of a cluster of 

Rhodopsin-6 (Rh6) expressing photoreceptor cells that project to the main circadian 

pacemaker neurons (Helfrich-Forster et aI., 2002). These photoreceptors derive from the 

larval visual system structure called Bolwig's organ (Helfrich-Forster et aI., 2002). 

Bolwig's organ is a structure of bilaterally symmetrical clusters of 12 photoreceptors with 

axonal projections to the optic lobe primordium (Steller et aI., 1987; Campos et aI., 1995; 

Busto et aI., 1999; Hassan et aI., 2000). 

1.2 Drosophila Larval Locomotion Behaviour 

Despite a spatial overlapping of the adult circadian input pathway and larval 

visual systems, all motor response to light in Drosophila larvae is regulated by the larval 

visual system (Hassan et aI., 2005). Larval crawling behaviour is characterized by regular 
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muscle contractions from the posterior to anterior in a straightforward motion broken up 

by pauses, head swinging and turning (Berrigan and Pepin, 1995). During this 

movement, the head of the larva is observed to move forward in a quick motion and then 

towards the substrate in an effort to anchor the larvae (Berrigan and Pepin, 1995). Often, 

the head of the larva is unable to secure attachment and slides backwards which accounts 

for the noticeable shOliening and lengthening of the larva (Berrigan and Pepin, 1995). In 

contrast to the head, the posterior of the larva consistently moves forward pausing only at 

the end of a contraction (Berrigan and Pepin, 1995). 

The time that a larva spends in the foraging third instar stage is spent largely in the 

food source away from light stimulus, eating to reach a critical mass to enter pupation 

(Bakker, 1959). Consistent with this behaviour, larvae are repelled by a visible light 

stimulus (Sawin-McCormack et aI., 1995). The behaviour of wild-type foraging third 

instar larvae was analyzed in an ON/OFF assay that subjected them to alternating pulses 

of light and dark (Busto et aI., 1999; Scantlebury et aI., 2007). This established that 

larvae have reduced locomotion and increased head swinging behaviour during light 

pulses (Busto et aI., 1999). In addition to head swinging, increased direction changes 

result in a shorter distance traveled during the light pulse (Busto et aI., 1999; Scantlebury 

et aI., 2007). Analysis of wild-type strains revealed that larvae have significantly 

increased direction change going from dark to light than from light to dark (Busto et aI., 

1999; Scantlebury et aI., 2007). Furthermore, direction change from light to dark was still 

higher than in complete darkness but this difference was not significant (Busto et aI., 

1999). All of these behaviours describe wild-type larval response to light. 
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Analysis of complex larval locomotion behaviour revealed that wild-type strains 

have a reduced frequency of muscle contractions during linear movement and reduced 

linear speed in the presence of light compared to dark (Scantlebury et al., 2007). This 

decrease in peristaltic contractions did not affect the stride length of the larvae 

(Scantlebury et al., 2007). 

1.3 Drosophila Ran Binding Protein in the Microtubule Organizing Center 

(dRanBPM) 

To better understand the underlying genetic pathway of larval response to light 

behaviour a mutant screen was conducted to identify genes that are required for normal 

response to light (Scantlebury, 2007). Candidate lines carrying an inselted P{lacW} 

element were screened for a reduced response to light in the ON/OFF assay as described 

in Scantlebury et al. (2007). A response index (RI) value was calculated for each larva as 

the difference of the distance the larva traveled in the light from the dark, divided by the 

total distance traveled in the assay. To identify mutants with a reduced response to light, 

mutant strains were compared with wild-type larvae to identify the strains with low mean 

RI values (Scantlebury, 2007). The most promising candidate gene identified in this 

screen was Drosophila Ran Binding Protein in the Microtubule Organizing Center 

(dRanBPM k05201). 

The dRanBPM gene is 6.87 kb in length and contains 12 exons that code for a 

long transcript (A) and a shOlt transcript (C) (Fig. 1). The dRanBPM k05201 allele carries a 
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Figure. 1. Organization of the dRanBPM gene. dRanBPM is composed of 12 exons 
and codes for two possible transcripts. The two ATG sites are shown here in exon 2. 
Three protein domains are depicted, the SPRY domain CTLHlLisH domain, and the CRA 
domain. The P{lacW} element ofthe dRanBPM k05201 allele is inserted in the second exon 
of transcript A. 
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Figure. 1. Organization of the dRanBPM gene. 
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P{lacW} element inserted in the second exon, in the region that is specific to the long 

transcript (Fig. 1). After alternative splicing, these transcripts differ by 346 nucleotides at 

the 5' region of the second exon. The short transcript is predicted code for a protein of 

66.4 kD protein (dRanBPMshort) and the long transcript is predicted to encode a 106.5 kD 

product (dRanBPM1ong). The annotation ofthe SWISS-PROT entry of dRanBPM 

(accession code Q4Z8K6) lists two domains: the Spla and the Ryanodine Receptor 

domain (SPRY) and the C-terminal to LisH motif domain (CTLHlLisH). The SPRY 

domain is found in many diverse proteins and is considered to function in protein-protein 

interactions (Woo J.-S et aI., 2006). LisHlCTLH domains are also considered to be 

involved in protein-protein interactions and it has been proposed that these domains can 

bind microtubules (Umeda et aI., 2003). 

The original mutant identified in the screen displayed a low RI in the ON/OFF 

assay and a locomotion deficit (Scantlebury, 2007). Larvae homozygous for this inseltion 

allele displayed lethality in the third instar, decreased head swinging, reduced locomotion 

in the ON/OFF assay and reduced size due to lack of feeding (Scantlebury, 2007; 

unpublished results). Two independently created deletion mutants dRanBPM S135 and 

dRanBPM ts7 (produced by imprecise excision of P-elements), also displayed reduced RI 

values but in contrast to the other alleles, dRanBPM ts7 did not exhibit a locomotion defect 

(Scantlebury, 2007). Mutants homozygous for dRanBPM S135 are reduced in size and 

exhibit lethality in the third instar while dRanBPM ts7 mutants die between pupation and 

the adult stage (Scantlebury, 2007). Larvae with heteroallelic combinations of these 

mutant alleles also displayed reduced response to light behaviour in the ON/OFF assay. 
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Furthermore, the dRanBPM ts7 allele did not have the reduction in size phenotype found 

with the other two alleles. Analysis of larval feeding behaviour revealed that this 

decrease in larval size was due to reduced feeding of larvae that were homozygous for 

dRanBPM k05201, dRanBPM S135 or the heteroallelic combination of these two alleles 

(unpublished data). Homozygous dRanBPM ts71arvae and larvae with heteroallelic 

combinations of dRanBPM ts7 with the other two alleles did not have a feeding phenotype 

or a reduction in larval size (unpublished data). 

The long isoform is required for maintaining the organization of the germline 

stem cell niche (GSC) in the ovary as its loss results in defects in cell size and leads to 

supernumerary GSCs attached to the niche (Dansereau and Lasko, 2008). Expression 

analysis in the ovary revealed a complex expression pattern as dRanBPM protein was 

found to be expressed in the nuclei, cytoplasm and at the cell membrane depending on the 

isoform, cell type and the stage during development (Dansereau and Lasko, 2008). 

Further analysis of dRanBPM10ng expression has revealed that this long isoform is 

expressed in the central nervous system (CNS) of foraging third instar larvae (Fig. 2, 

Scantlebury, 2007). Immunolabeling of the CNS using a dRanBPM10ng specific antibody 

showed that the long isoform was observed to co-localize around the lateral edges of the 

Ventral Nerve Cord (VNC) with the neuronal marker elav (Fig.2 G-I, Scantlebury, 2007). 

Similar analysis of the brain lobes demonstrated that the long isoform is expressed in 

neurons however, expression in the lobes was stronger than in the VNC and bilaterally 

clustered (unpublished data). This strong bilateral expression was shown to be in the 

neurons of the mushroom bodies (MBs) (Fig. 2 A-E), an unmistakable and 
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Figure 2. dRanBPM10ng is expressed in neurons of the mushroom bodies and the 
ventral nerve cord. dRanBPM10ng co-localizes with targeted expression ofUAS­
CD8::GFP in the mushroom bodies using the 247-GAIA driver (A-F). dRanBPM10ng co­
localizes with the post-mitotic neuronal marker elav in the ventral nerve cord (G-I, 
arrow). Images in panels A-C were taken with the 20x objective, panels D-I were taken 

. with the 63x objective. All images taken by Xiao Li Zhao. 
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