## INTERPOLATION ON ORLICZ AND BMO FUNCTION SPACES

$\cdots$ is
$\because$.
".

INTERPOLATION OF LINEAR OPERATORS
ON
ORLICZ AND BMO FUNCTION SPACES
$\#$

1 By
MARCUS ANDREW ROBERTSON, B.SC.

A Thesis
Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree

Master of Science

KcMaster University
April 1976
(C)


TITLE: Interpolation of Linear Operators on Orlicz and BMO function spaces.

AUTHOR: Marcus Andrew Robertson, B.Sc. (McMaster University)
SUPERVISOR: Dr.H. P. Heinig
NUMBER OF PAGES: $v, 75$

## ABSTRACT

This thesis is concerned with the study of interpolation theorems involving certain Orlicz spaces and spaces of functions of Bounded Mean Oscillation. In addition, we consider the Orlicz spaces in a weighted sense by applying weight functions satisfying certain growth conditions.

## ACKNOWLEDGEMENTS

I would like to take this opportunity to express my deep gratitude to Dr. Hans P. Heinig for his indispensible aid in the preparation of this thesis.

My thanks are also offered to McMaster University for the generous financial support $I$ received as a graduate student.


## CHAPTER I

Let $T$ be a linear operator which maps a linear space $X$ into a Inear space $Y$. Suppose that $X_{1}$ and $X_{2}$ (respectively $Y_{1}$ and $Y_{2}$ ) are Banach subspaces of $X$ (respectively $Y$ ), such that $T$ is a bounded, (that is continuous), linear operator mapping $X_{i}$ into $Y_{i}$ for $i=1,2$. Often, using the boundedness properties of $T$, one can determine other pairs $\left(X^{\prime}, Y^{\prime}\right)$ of subspaces $\left(X^{\prime} \subset X, Y^{\prime} \subset Y\right)$ such that $T$ maps $X^{\prime}$ into $Y^{\prime}$ continuously. Theorems concerned with the above are called interpolation theorems.

The first significant steps in interpolation theory were made by Marcel RHesz [15] in 1926. In his paper "Sur les maxima des formes bilinéaires et sur les fanctionnelles linéaires", Riesz considered the

- Banach spaces $L^{p}(X, M, \mu)$ of real-valued Lebesgue measurable functions, defined on $X$, whose $p^{\text {th }}$ power is integrable.

In 1939, G. 0. Thorin [21] extended and modified the Interpolation or convexity theorem of $M$. Riesz. Thorin showed that a linear operator $T$, which maps $L^{P_{i}}(X, M, \mu)$ continuousiy into $L^{q_{i}}(X, M, \mu)$ ( $1=1,2$ ), can be extended to a continuous linear operator (without change of norm) from $L^{p}(X, M, \mu)$ to $L^{q}(X, M, \mu)$; where $p \in\left[p_{0} ; P_{1}\right]$ and $q \in\left[q_{0, q_{1}}\right]$.

To illustrate this result, consider the Fourier Transform, defined by Tf $=\hat{f}$, where, for $f \in L^{1}(R) \cap L^{2}(R)$,

$$
\hat{f}(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i x t} \underset{f}{f}(t) d t
$$

From the definition of $\hat{f}$, it follows that

$$
\left|\left|\mathrm{Tf}\left\|_{\infty} \leq M| | \mathrm{f}\right\|_{1},\right.\right.
$$

and from Plancherel's Theorem,

$$
\|T f\|_{2}=\|f\|_{2}
$$

An application of the Riesz-Thorin Convexity Theorem then shows that the Hausdorff-Young Inequality,

$$
\|T f\|_{q} \leq M| | f \|_{p}
$$

where $1 \leq p \leq 2$ and $q=\frac{p}{p-1}$, holds.
For many operators, the hypotheses of the Riesz-Thorin Convexity Theorem are too strong to be applicable. The question then arises whether the continuity of $T$ at the endpoints can be replaced by some weaker condition. Also, one might ask if the operator $T$ could be sublinear or quasi-linear.
J. Marcinkiewicz [11] obtained the first major results concerning these questions. He considered quasi-linear operators which satisfied certain "weak" boundedness conditions at the endpoints and he obtained an interpolation theorem. It should be noted that the Marcinklewicz Interpolation Theorem does not imply the Riesz-Thorin Theorem, although for certain $p$ and $q$ it is more general.

For example, we look 奴t the Hilbert Transform $\mathbb{H}$, defined by

$$
(H f)(x)=\frac{(P)}{\pi} \int_{-\infty}^{\infty} \frac{f(t)}{x-t} d t
$$

where the integral is considered in the Cauchy principal value senge.

Using Plancherel's Theorem, it, can be shown that $H$ maps $L^{2}$ onto itself continuously. $H$ is not, however, bounded from $L^{l}$ to $L^{l}$, although it is weakly bounded in the sense of Marcinkiewicz (see again, [11]). Thus, we can apply the Marcinkiewicz Interpolation Theorem to obtain

$$
\left\|\left.H f\right|_{p} \leq M| | f\right\|_{p} \quad 1<p \leq 2
$$

A duality argument shows that the norm estimate holds then for all $p \in(1, \infty)$.

In 1957, Elias M. Stein and Guido Weiss [19] presented Interpolation theorems for analytic families of operators. In particular, they extended the Riesz-Thorin Theorem by replacing the single operator $T$ by an analytic family of operators $\left\{T_{\omega}\right\} \omega=x+1 y$, $0 \leq x \leq 1$. Yoram Sagher [16] obtained a Marcinkiewicz Theorem for analytic families of operators by working with Lorentz spaces. These results made it possible to interpolate between $L^{p}$-spaces having different measures.

The proofs of some of these interpolation theorems involve the concept of the non-increasing equimeasurable rearrangement of a measurable function. This in turn led to the introduction of the Lorentz spaces, $L(p, q)$, and thus quite naturally to the development of an abstract theory. This work was largely pioneered by, J. L. Lions, J. Peetre, A. P. Calderbn and E. Gagliardo. They developed methods of constructing linear spaces which were intermediate to arbitrary Banach spaces. For characterizations of intermediate spaces and their application to boundary value problems, we refer to Gagliardo [3] and J. L: Lions, and E. Magenes [10].

This thesis concerns itself with the study of interpolation theorems-specifically the Marcinkiewicz Theorem-for certain Orlicz function spaces and for spaces of functions of Bounded Mean Oscillation. The primary object is to obtain an interpolation theorem involving the spaces $L^{p}\left(\log ^{+} L\right)^{s}$ and the Lorentz spaces $L(p, q)$. Such a theorem was introduced by Richard 0 'Neil [14] in terms of the distribution of a function. Our proof is different in that the distribution function is replaced by the non-increasing equimeasurable rearrangement of the function. In addiction, we introduce a weight in the spaces $L^{p}\left(\log ^{+} L\right)^{s}$ and prove an interpolation theorem involving these and certain weighted Lorentz spaces.

Interpolation theorems involving the function spaces $L_{p}^{\lambda}$ were previously given by G. Stampacchia [17]. The spaces $L_{p}^{\lambda}$ are more general than the spaces of functions of Bounded Mean Oscillation and they were extended in [4] to the spaces $L^{\lambda}(p, q)$ which are Lorentz spaces of functions of Bounded Mean Oscillation. In the last chapter, we give an interpolation theorem involving functions of $L^{1}\left(\log ^{+} L\right)^{s}$, and the spaces $L^{\lambda}(p, q)$.

## CHAPTER II

Section A. Notations and Definitions
The following is a collection of definitions and notations to which we will adhere throughout this thesis. We will consider measure spaces ( $X, M, \mu$ ) which are either totally finite or $\sigma$-finite, The measures are all Lebesgue measures and the functions considered are complex-valued Lebesgue measurable functions.

We begin by defining the Lebesgue spaces, $L^{p}(X, M, \mu)$ . $(0<p \leq \infty)$, of $p$-integrable functions defined almost everywhere (with respect to $\mu$ ) on $X$. Keeping in mind that the Lebesgue integral does not distinguish functions which differ only on sets of measure zero, we will refer to functions when in fact, we are discussing equivalence classes of functions modulo a set of measure zero.

Definition 2.1: (i) For $0<p<\infty, L^{p}(X, M, \mu)$ consists of those complex-valued Lebesgue measurable functions f, defined almost everywhere on $X$, for which $|f|^{p}$ is integrable.
(1i) For $p=\infty, L^{\infty}(X, M, \mu)$ consists of those complex-valued Lebesgue measurable functions $f$, defined almost. everywhere on $X$, which are almost everywhere bounded.

Remark 1: (i) For $0<p<\infty$, we define

$$
\|f\|_{p}=\left(\cdot \int_{X}|£(x)|^{p} d \mu(x)\right)^{1 / p}
$$

For $p \geq 1,\|\cdot\| \|_{p}$ is a norm and $L^{p}(X, M, \mu)$ is a normed inear space, which is complete by the Riesz-Fischer Theorem [5, p. 192]. Thus, $-L^{P}(X, M, \mu)(1 \leq p<\infty)$ is a Banach space. If $0<p<1$, then $d(f, g)=\| f-\left.g\right|_{p} ^{P}$ defines a metric, under which $L^{p}(X, M, \mu)$ is complete. Therefore, $L^{p}(X, M, \mu)(0<p<1)$ is a Fréchet space.

$$
\text { (11) For } p=\infty \text {, we define }
$$

$$
||f||_{\infty}=\operatorname{ess}_{x \in X}|f(x)|
$$

where
ess $\sup |f(x)|=\inf \{a \in[0,+\infty) ; \mu(\{x \in X ;|f(x)|>a\})=0\}$. $x \in X$
$\|\cdot\|_{\infty}$ is a norm and, by the Riesz-Fischer Theorem, $L^{\infty}(X, M, \mu)$ is a Banach space.

We note here that the above definitions and remarks can be found, for example, in Hewitt and Stromberg. [5].

A larger class of spaces is the class of Orlicz spaces. This class is larger in the sense that the Orlicz spaces are Banach spaces and that the $\dot{L}^{p}$-spaces, for $1 \leq p<\infty$, are particular examples of Orlicz spaces. The following development of Orlicz spaces can be found in Zygmund [24, Vol. I, pp. 170-175].

For a non-negative function $\Phi$ defined on $[0,+\infty)$, and a measure space $(X, M, \mu)$, we denote, by $L_{\phi}(X, M, \mu)$, the class of those complexvalued Lebesgue measurable functions $f$, defined almost everywhere on $X$, for which $\Phi(|f|)$ is integrable on $X$. That is, $f \in L_{\phi}(X, M, \mu)$ if

$$
\int_{\frac{X}{x}} \phi(|f(x)|) \mathrm{d} \mu^{i}(x)<+\infty
$$

Consider two functions $\phi$ and $\psi$ which are defined on $[0,+\infty)$
and satisfy the following conditions:
$\because$
(i) $\phi$ and $\psi$ are continuous.


$$
\Phi(x)=\int_{0}^{x} \phi(t) d t
$$

and

$$
\Psi(x)=\int_{0}^{x} \psi(t) d t,
$$

then we have, for any $x_{0}, y_{0} \geq 0$, Young's Inequality:

$$
x_{0} y_{0} \leq \Phi\left(x_{0}\right)+\psi\left(y_{0}\right) .
$$

$\Phi$ and $\Psi$ are called complementary functions th the sense of Young.

We note here, without proof, that for any defined on $[0,+\infty)$, with $\Phi$ being non-negative, convex, zero at the origin and such that $\lim _{x \rightarrow+\infty} \frac{\Phi(x)}{x}=+\infty$, there exists a function $\Psi$ which is complementary to $\Phi$ In the sense of Young. The proof of this may be found in Zygmund [24, Vol. I, p. 25].

Definition 2.2: Let $\Phi$ be defined on $[0,+\infty)$, such that $\Phi$ is non-negative, convex, zero at thé origin and satisfies $\underset{x \rightarrow+\infty}{ } \frac{\Phi(x)}{x}=+\infty$. We denote, by $L_{\phi}(X, M, \mu)$, the set consisting of those complex-valued Lebeggue measurable functions $f$, defined almost everywhere on $X$, for
which | fRi is integrable over $X$, for any $g \in L_{\Psi}(X, M, \mu)$.
Remark 2: (1) By setting

$$
\|f\|_{\Phi}=\sup _{\mathcal{E}}\left|\int_{X} f(x) g(x) d \mu(x)\right|, .
$$

where the supremum is taken over all those $g \in L_{\Psi}(X, M, \mu)$ with

$$
\int_{X} \Psi(\lg (x) \mid) d \mu(x) \leq 1,
$$

$L_{\phi}^{*}(X, M, H)$ becomes a complete normed linear space. That is, it is a Banach space.
(ii) Clearly, $L^{P}(X, M, \mu)$ is an Orlicz space for $p \geq 1$, where $\Phi(x)=x^{p}$.
(iii) In Chapter III we will discuss the interpolation of certain operators in connection with the Orlicz spaces $L^{P}\left(10{ }^{+} L\right)^{8}(X, M, \mu)$ where $X=[0,1], 1 \leq p<+\infty$ and $0 \leq s \leq 1$. We define these spaces as follows:

Definition 2.3: For $1 \leq p<+\infty$ and $0 \leq s \leq 1, L^{P}\left(\log ^{+} L\right)^{s}[0,1]$ consists of those complex-valued Lebesgue measurable functions $f$, defined almost everywhere on $[0,1]$, for which

$$
\int_{0}^{1}|f(x)|^{p}(\log +|f(x)|)^{8} d x<+\infty
$$

where $\log ^{+}|f(x)|=\log |f(x)| 1 f|f(x)| \geq 1$ and 0 otherwise.

It is obvious, from the above definition, that if $s=0$, then $L^{P}\left(\log ^{+} L\right)^{0}[0,1] \equiv L^{p}[0,1]$.

Definition 2.4: If $f$ is a complex-valued Lebesgue measurable function defined almost everywhere on $X$, the distribution function $D_{f}$, of $f$, is defined by

$$
D_{f}(y)=\mu(\{x \in X ;|f(x)|>y\}) \quad y>0
$$

We note that the distribution function $D_{f}$ is non-increasing and continuous on the right. Also, for $y>0$, we have

$$
D_{f}+g^{(2 y)} \leq D_{E}(y)+D_{g}(y)
$$

This inequality follows from the set inclusions
$\{x \in X ;|f(x)+g(x)|>2 y\} \subset\{x \in X ;|f(x)|+|g(x)|>2 y\}$

$$
\subset\{x \notin \in X ;|f(x)|>y\} \cup\{x \in X ;|g(x)|>y\}
$$

Applying the measure $\mu$ to both sides of the above inclusion yields the desired inequality.

Closely connected with the distribution function is the non-increasing equimeasurable rearrangement of a measurable function.

Definition 2.5: If $f$ is a complex-valued Lebesgue measurable function defined almost everywhere on $X$ and $D_{f}$ its distribution on $(0,+\infty)$, then the non-increasing equimeasurable rearrangement $f *$ of $f$ onto $(0,+\infty)$ is defined by

$$
f *(x)=\inf \left\{y>0 ; D_{f}(y) \leq x\right\} \quad x>0
$$

The non-increasing equimeasurable rearrangement $f *$ of $f$ is also a non-increasing function and is continuous on the right. If $D_{f}$ is strictly decreasing, then $f *$ is the inverse of $D_{f}$ and $f *\left(D_{f}(y)\right)=y$. It should be noted that $f *$ is called the "equimeasurable" rearrangement of $f$ because $D_{f}=D_{f *}$. We will show
this later on.

Remark 3: (i) An useful property of the non-increasing equimeasurable rearrangement $f$ * of $f$ is that, for $x>0$,

$$
(f+g) *(2 x) \leq f *(x)+g^{*}(x)
$$

This inequality follows from the similar inequality for the distribution function $D_{f}$ and the fact that $f *$ is the inverse of $D_{f}$ if $\mathrm{D}_{\mathrm{f}}^{-1}$ exists.
(ii) We also have that if $E$ is a measurable subset of $X(E \subset X)$ and $\mu(E) \leq t<+\infty$, then

$$
\int_{E}|f(x)| d \mu(x) \leq \int_{0}^{t} f *(x) d x
$$

In Chapter III we will also deal with spaces which are related to the $L^{p}\left(\log ^{+} L\right)^{s}$-spaces defined abbve. They are the $K^{p}\left(\log ^{+} K\right)^{s}$-spaces and are defined by:

Definition 2.6: For $0<p<+\infty, 0 \leq s<+\infty$, the spaces $K^{P}\left(\log ^{+} K\right)^{s}(X, M, \mu)$ consist of those complex-valued Lebesgue measurable functions $f$, defined almost everywhere on $X$, for which

$$
\int_{0}^{1} x^{1 / p-1} f *(x)(\log 1 / x)^{s / p} d x<+\infty .
$$

Definition 2.7: If $X$ and $Y$ are function spaces and $T$ maps $X$ into $Y$ such that $T(f+g)$ is uniquely defined whenever $T f$ and $T g$ are defined, then $T$ is called a quasi-linear operator if there exists a constant $K(>0)$; independent of $f$ and $g$, such that

$$
|T(f+g)| \leq k(|T f|+|T g|)
$$

If $K=1$, then $T$ is called a sublinear operator.

When discussing the interpolation of operators on the above. spaces, we will, for the sake of brevity, deal with, linear operators, although the results hold also for quasi-linear and sublinear operators.

Definition 2.8: A linear operator $T$ is said to be of strong type $(p, q)(0<p, q \leq+\infty)$ if

$$
\|T f\|_{q} \leq A| | E \|_{p}
$$

for some constant $A(>0)$.

Definition 2.9: A IInear operator $T$ is said to be of weak type $(p, q)(0<p, q<+\infty)$ if there exists a constant $A(>0)$ such that, for any $y>0$,

$$
D_{T f}(y) \leq\left(\frac{A| | f| |_{p}}{y}\right)^{q}
$$

If $0<p<+\infty$ and $q=+\infty$, we define weak type ( $p, q$ ) to be the same as strong type ( $p, q$ ). That is, $T$ is of weak type $(p, \infty)$ if

$$
\|T f\|_{\infty} \leq A| | f \|_{p}
$$

where A is a gonstant (> 0 ).

Remark 4: (i) In terms of non-increasing equimeasurable rearrangements, a linear operator $T$ is of weak type ( $p, q$ ) $(0<p, q<+\infty)$ if there exists a constant $A(>0)$ such that $(T f)^{*}(t) \leq \frac{A| | f| |_{p}}{t^{1 / q}}$.
(i1) If T is of strong type ( $p, q$ ) then it is of
weak type ( $p, q$ ), but not conversely. For an example that the converse does not hold, consider the operator $T$ defined by

$$
T f(x)=\frac{1}{x} \int_{0}^{x}|f(t)| d t, \quad x>0
$$

This operator is of weak type ( 1,1 ) but is not of strong type ( 1,1 ). Proof: We can consider $f(x)=(x+1)^{-2}$. Then

$$
\begin{aligned}
\int_{0}^{\infty}|f(x)| d x & =\int_{0}^{\infty}(x+1)^{-2} d x \\
& =-(x+1)+\left.1\right|_{0} ^{\infty} \\
& =1<\infty .
\end{aligned}
$$

That is, $f \in L^{1}(0,+\infty)$. However,

$$
\begin{aligned}
\|T E\|_{1} & =\int_{0}^{\infty}|T f(x)| d x \\
& =\int_{0}^{\infty}\left|\frac{1}{x} \int_{0}^{x}\right| f(t)|d t| d x \\
& =\int_{0}^{\infty}\left|x^{-1} \int_{0}^{x}(t+1)^{-2} d t\right| d x \\
& =\int_{0}^{\infty}\left|x^{-1}\left(-\left.(t+1)^{-1}\right|_{0} ^{x}\right)\right| d x \\
& =\int_{0}^{\infty} \mid x^{-1}\left(-(x+1)^{-1}+1\right) d x \\
& =\int_{0}^{\infty}\left|x^{-1}\left(x(x+1)^{-1}\right)\right| d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\infty}(x+1)^{-1} d x \\
& =\infty .
\end{aligned}
$$

Hence, there does not exist a finitye positive constant A such that $\|T f\|_{1} \leq A\|f\|_{1}$. In other words, $T$ is not of strong type (1,1). On the other hand,

$$
\begin{aligned}
(T f)^{*}(x) & \leq \frac{1}{x} \int_{0}^{x} f *(t) d t \\
& \leq \frac{1}{x} \int_{0}^{\infty} f *(t) d t \\
& =\frac{1}{x}| | f \|_{1} .
\end{aligned}
$$

Hence, $T$ is of weak type $(i, 1)$.
(iii) We note here that throughout the thesis we will denote constants by the letter $A$. Af different appearances, $A$ may take on different values.

The last chapter will deal with the interpdlation of certain sublinear operators defined on the $L^{\lambda}(p, q)$-spaces $(\lambda \in(-\infty,+\infty)$; $p, q>0$ ) introduced by $H$. Heinig [4]. These spaces are defined by combining the notions of Lorentz spaces and the $L^{(p, \lambda)}$-spaces ( $\lambda \in(-\infty,+\infty) ; p \geq 1$ ) of G. Stampacchia [17] as follows:

Definition 2.10: For $0<p, q \leq+\infty$, the Lorentz spaces $\dot{L}(p, q)(X, M, \mu)$ consist of those complex-valued Lebesgue measurable functions $f$, defined almost everywhere on $X$, for which $\|f\|_{p, q}^{*}$ is
finite, where

$$
\|f\|_{p, q}^{*}= \begin{cases}\left(\frac{q}{p} \int_{0}^{\infty}\left(t^{\frac{1}{p}} f_{f(t))^{q}} t^{-1} d t\right)^{\frac{1}{q}}\right. & 0<p, q<+\infty \\ \sup _{t>0} t^{\frac{1}{p}} f *(t) & 0<p \leq+\infty, q=+\infty\end{cases}
$$

We will show later that $\|f\|_{p}=\|f *\|_{p}$ and hence $\|f\|_{p}=\|f\|_{p, P^{\cdot}}^{*}$ From this we have that

$$
\mathrm{L}^{\mathrm{P}}(\mathrm{X}, \mathrm{M}, \mathrm{H}) \equiv \mathrm{L}(\mathrm{p}, \mathrm{p})(\mathrm{X}, \mathrm{M}, \mathrm{H}) .
$$

In addition, we have that the $L(p, q)(x, M, \mu)$-spaces are, for $0<p, q \leq+\infty$, complete metric spaces (Fréchet spaces). For $1<p . \leq+\infty$ and $1 \leq q \leq+\infty$, the spaces $L(p, q)(X, M, \mu)$ are Banach spaces under the norm $\|\cdot\| \|_{p, q}$ defined by
where f** is defined by

$$
f * *(x)=\frac{1}{x} \int_{0}^{x} f *(t) d t .
$$

For further details consult, for example, Hunt [6].
To define the $L^{(p, \lambda)}$-spaces, we consider a cube $C_{0}$ in the $n$-dimensional Euclidean space ${ }^{n}$., where $n$ is a positive integer. We note that $R=(-\infty,+\infty)$, the set of real numbers, and $R^{n}=R \times R^{n-1}$. That is, $R^{n}$ is the Cartesian product of $n$ copies of $R$.

For any element $x$ of $C_{0}$ and for any positive real number $\rho$, we consider $C(x, \rho)$ to be the parallel subcube of $C_{0}$ with centre $x \in C_{0}$ and with side length $\rho$. Without loss of generality, we can and will assume that $C_{0}$ is centred at the origin and has side length $a$. We then have the following:

Definition 2.11: For $1 \leq p<+\infty$ and $\lambda \in R$, the spaces $L^{(p, \lambda)}\left(C_{0}\right) \equiv L^{(p, \lambda)}$ consist of those complex-valued Lebesgue measurable functions $f$, defined almost everywhere on $C_{0}$, such that $\|f\|_{L}(p, \lambda)$ is finite, where

$$
\begin{equation*}
\|f\|_{L}(p, \lambda)=\left(\sup _{c(x, p)} c_{c_{0}} \rho^{\lambda-n} \int_{C(x, p)}\left|f(y)-f_{c}\right|^{p} d y\right)^{\frac{1}{p}} \tag{0}
\end{equation*}
$$

In the above integrals, $f_{c}$ is the mean value of $f$ over the subcube $C(x, \rho)$. of $\mathrm{C}_{0}$.

Remark 5: We note here that $\|\cdot\|_{L}(p, \lambda)$ is not a norm because $\|f\|_{L}^{\prime}(p, \lambda)=0$ implies only that $f(y)=f_{c}$ almost everywhere on $C(x, \rho)$. That is, only that $f$ is constant almost everywhere on the subcube $C(x, p)$. The spaces $L^{(p, \lambda)}$ can be normed by setting

$$
\|f\|_{p, \lambda}=\|f\|_{L^{\frac{1}{1}}\left(C_{0}\right)}+\|f\|_{L}(p, \lambda)
$$

For details, see G. Stampachia [17]. We also have two special cases for particular values of $\lambda$.
Case $1 \lambda<0$. If $\lambda$ is negative, then a function $f \in L^{(p, \lambda)}$ is equal, almost everywhere, to a Hölder continuous function. See Meyers [12]. Case $2 \lambda=0$. If $\lambda=0$ and $n=1, L^{(1,0)}$ coincides with the space of functions of bounded mean oscillation which are defined below.

Definition 2.12: If $f$ is a complex-valued Lebesgue measurable function defined almost everywhere on $\mathbb{R}^{n}$ ( $n$ a positive integer), then $f$ is said to be of bounded mean oscillation (BMO) on $R^{n}$ if there exists a constant A (> 0) such that

$$
\frac{1}{\mu(C)} \int_{C}^{2}\left|f(y)-f_{c}\right| d y \leq A
$$

for every cube $C$ in $\mathbb{R}^{n}$. In the above integral, $f_{c}$ is the mean value of f over $\mathbf{C}$.

Remark 6: From the last definition, it is clear that every bounded complex-valued Lebesgue, measurable function is of BMO. However, the converse is not true. F. John and L. Nirenberg [8] provide the following example. In $R^{2}$, the function $f(x, y)=\log |x-y|$ is not bounded. Howerer, it is of bounded mean oscillation.

The aboye ideas ean be combined to yield the notion of the $L^{\lambda}(p, q)\left(C_{0}\right)$-spaces. If we write $F(f)=f(t)-f_{c}$ and decall the definitions of the $L(p, q)$-spaces and the $(p, \lambda)$-spaces, we have the following:

$$
\text { Definition-2.13: For }-\infty<\lambda<+\infty \text { and } 0<p, q \leq+\infty \text {, the spaces }
$$

$L^{\lambda}(p, q)\left(C_{0}\right) \equiv L^{\lambda}(p, q)$ consist of those complex-valued Lebesgue measurable functions $f$, defined almost everywhere on $C_{0}$, for which $\|f\|_{L^{\lambda}(p, q)}$ is finite, where

Remark 7: For $p=q \geq 1$, we have that the $L^{\lambda}(p, q)$-spaces reduce to the $L^{(p, \lambda)}$-spaces of $G$. Stampacchia [17].

Section B. Preliminary Results

TKis section consists of results which will be used at later stages of the thesis. The first two theorems are proved for arbitrary measure spaces even though we will deal only with measure spaces which are totally finite or $\sigma$-finite.

Theorem 2.1: (Zaanen [22, $p, 127]$ ) If $1 \leq p<+\infty$ and $q$ is such that $\frac{1}{p}+\frac{1}{q}=1$, then for any $f \in L^{p}(X, M, \mu)$, where $(X, M, \mu)$ is an arbitrary measure space,

$$
\|f\|_{p}=\sup _{\mathcal{P}}\left|\int_{X} f(x) g(x) d u(x)\right|
$$

$=\sup _{g} \int_{X}|f(x) g(x)| d \mu(x)$,
where the supremum is taken over all functions $g \in L^{q}(X, M, \mu)$, such $\|g\|_{q} \leq 1$.

Proof: For $1<p<+\infty$, Holder's inequality shows that

$$
\begin{aligned}
\int_{X}|f(x) g(x)| d \mu(x) & \leq\|f\|_{p}\|g\|_{q} \\
& \leq\|f\|_{p} \quad \text { if }\|g\|_{q} \leq 1 .
\end{aligned}
$$

If $p=1$, then the inequality follows trivially.
To complete the proof, we need to produce a function for which equality holds. For complex $z$, define

$$
\operatorname{sgn} z=\left\{\begin{array}{rr}
\frac{z}{|z|} & 0<|z|<+\infty \\
1 & |z|=+\infty
\end{array}\right.
$$

Now define $h(x)=\frac{1}{\operatorname{sgn} f(x)} . \quad$ Clearly $h \in L^{\infty}(X, M, \mu)$ and $\|h\|_{\infty}=1$. For $p=1$, we define $g(x) \equiv h(x)$. Then

If $1<p<+\infty$, then we define $k(x)$ by

$$
k(x) \equiv \frac{|f(x)|^{p-1}}{\operatorname{sgn} f(x)}
$$

Since

$$
\begin{aligned}
|k(x)|^{q} & =|k(x)|^{\frac{p}{p-1}} \\
& =\left|\left[\frac{|f(x)|^{p-1}}{\operatorname{sgn} f(x)}\right)\right|^{\frac{p}{p-1}} \\
& =\frac{|f(x)|^{p}}{|\operatorname{sgn} f(x)|^{p /(p-1)}} \\
& =|f(x)|^{p}
\end{aligned}
$$

$k \in L^{q}(X, M, \mu)$. Note also that $\|k\|_{q}=\|f\|_{p}^{p / q}$. Thus, if we set

$$
g(x) \equiv \frac{k(x)}{\|f\|_{p}^{p / q}}
$$

where $f \neq 0$, we have that $g \in L^{q}(X, M, \mu)$ and $\|g\|_{q}=1$. Finally,

$$
\begin{aligned}
\left|\int_{X} f(x) g(x) d \mu(x)\right| & =\left|\int_{X} f(x)\left(\frac{|f(x)|^{p-1}}{\|f\|_{p}^{p / q} \operatorname{sgn} f(x)}\right) d \mu(x)\right| \\
& =\frac{1}{\|f\|_{p}^{p / q}}\left[\left.\left|\int_{X}\right| f(x)\right|^{p} d \mu(x) \mid\right) \\
& =\frac{1}{\|f\|_{p}^{p / q}}\left(\int_{X}|f(x)|^{p} d \mu(x)\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\|f\|_{p}^{p-p / q} \\
& =\|f\|_{p} .
\end{aligned}
$$

Thus, the theorem is proved.

Theorem 2.2: (Zaanen [22, p. 127]) Let ( $\mathrm{X}, \mathrm{M}, \mathrm{H}$ ) be a measure space such that for any set $U \in M$ with $\mu(U)<+\infty$, there exists a set $V$ $(V \in M)$ with $V \cong U$ and $\mu(V)<+\infty$. Then, for any $f \in L^{\infty}(X, M, \mu)$,

$$
\begin{aligned}
\|f\|_{\infty} & =\sup _{\mathcal{B}}\left|\int_{X} f(x) g(x) d \mu(x)\right| \\
& =\sup _{\mathcal{X}} \int_{X}|f(x) g(x)| d \mu(x),
\end{aligned}
$$

where the supremum is taken over all functions $g \in L^{l}(X, M, \mu)$ for which $\|g\|_{1} \leq 1$.

Proof: As in the last theorem, we easily have

$$
\begin{aligned}
\left|\int_{X} f(x) g(x) d \mu(x)\right| & \leq \int_{X}|f(x) g(x)| d \mu(x) \\
& \leq\|f\|_{\infty}\|g\|_{1} \\
& \leq\|f\|_{\infty} .
\end{aligned}
$$

To complete the proof, we must construct a function $g \in L^{1}(\bar{X}, M, \mu)$, for which equality holds.

For given $\varepsilon>0$, the set $\left\{x \in X ;|f(x)|>||f||_{\infty}-\varepsilon\right\}$ contains a subset $\nabla$ of finite measure. Defining $g(x)$ by
we have

$$
\begin{aligned}
& g(x)= \begin{cases}\frac{1}{\mu(V) \operatorname{sgn} f(x)} & x \in V \\
0 & x \in X \backslash V,\end{cases} \\
& \|g\|_{1}=\int_{X}|g(x)| d \mu(x)
\end{aligned}
$$

$$
\left.=\int_{V} 1 \frac{1}{\mu(V) \operatorname{sgn} f(x)} \right\rvert\, d \mu(x)
$$

$$
\begin{aligned}
& =\frac{1}{\mu(V)} \int_{V} d \mu(x)
\end{aligned}
$$

$$
=1
$$

That is, $g \in L^{1}(X, M, \mu)$ and $\|g\|_{1}=1$. Also,

$$
\begin{aligned}
\left|\int_{X} f(x) g(x) d \mu(x)\right| & =\left|\int_{V} f(x)\left(\frac{1}{\mu(V) \operatorname{sgn} f(x)}\right) d \mu(x)\right| \\
& =\left|\int_{V}\left(\frac{\| f(x) \mid}{\mu(V)}\right) d \mu(x)\right| \\
& =\int_{V}\left(\frac{\lfloor f(x) \mid}{\mu(V)}\right) d \mu(x) \\
& \geq \int_{V}\left(\frac{\left\lfloor f \|_{\infty}-\varepsilon\right.}{\mu(\bar{V})}\right) d \mu(x) \\
& =\|f\|_{\infty}-\varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, we have our result.

An integral inequality which will be used later is the following theorem of $G$. Stampacchia [17].

Theorem 2.3: Let $f(x), g(x), z(x)$ be non-negative Lebesgue measurable functions defined on $(0, a),(a>0)$, with $z(x)$ increasing. Fof $1 \leq p<+\infty$, the following integral inequalities hold:
(i) $\int_{0}^{a} f(x)\left(\int_{0}^{z(x)} g(y) d y\right)^{p} d x \leq\left(\int_{0}^{a} g(y)\left(\int_{\xi(y)}^{a} f(x) d x\right)^{1 / p} d y\right)^{p}$
(ii) $\int_{0}^{a} f(x)\left(\int_{z(x)}^{a} g(y) d y\right)^{p} d x \leq\left(\int_{0}^{a} g(y)\left(\int_{0}^{\xi(y)} f(x) d x\right)^{1 / p} d y\right)^{p}$,
where $\xi$ is the inverse function of $z$.

Proof: For $p=1$, the result follows from a change of order of integration.

Let $1<p<+\infty$. To prove inequality (i), consider

$$
\begin{aligned}
I & =\int_{0}^{a} f(x)\left(\int_{0}^{z(y)} g(y) d y\right)^{p} d x \\
& =\int_{0}^{a}(F(x))^{p} d x
\end{aligned}
$$

where $F(x)=(f(x))^{1 / p} \int_{0}^{2(x)} g(y) d y$.

Then, by Theorem 2.1, we have

$$
I^{1 / P}=\left|\int_{0}^{a} F(x) G(x) d x\right|
$$

where $G(x)=(f(x))^{1-1 / p} X(x)$ and $X$ is any function which satisfies $\|G\|_{q}=\left\|f^{1-1 / p} x\right\|_{q} \leq 1$.

That is,

$$
\begin{aligned}
I^{1 / p} & =\sup _{X}\left|\int_{0}^{a}\left((f(x))^{1 / p} \int_{0}^{z(x)} g(y) d y\right)\left((f(x))^{1-1 / p} x(x)\right) d x\right| \\
& =\sup _{X}\left|\int_{0}^{a} f(x)\left(\int_{0}^{z(x)} g(y) d y\right) x(x) d x\right|
\end{aligned}
$$

By interchanging the order of integration and the use of Holder's inequality, we have

$$
\begin{aligned}
I^{1 / p} & \leq \sup _{X} \int_{0}^{a} g(y)\left(\int_{\xi(y)}^{a} f(x) x(x) d x\right) d y \\
& \leq \sup _{X} \int_{0}^{a} g(y)\left(\int_{\xi(y)}^{a} f(x) d x\right)^{1 / p}\left(\int_{\xi(y)}^{a} f(x)(x(x))^{q} d x\right)^{1 / q} d y .
\end{aligned}
$$

However, we have that

$$
\left(\int_{\xi(y)}^{a} f(x)(x(x))^{q} d x\right)^{1 / q} \leqslant\left(\int_{0}^{a} f(x)(x(x))^{q} d x\right)^{1 / q}
$$

so that

$$
\begin{aligned}
I^{1 / P} & \leq \sup \int_{0}^{a} g(y)\left(\int_{\xi(y)}^{a} f(x) d x\right)^{1 / p} d y \\
& =\int_{0}^{a} g(y)\left(\int_{\xi(y)}^{a} f(x) d x\right)^{1 / P} d y
\end{aligned}
$$

Therefore,

$$
I \leq\left(\int_{0}^{a} g(y)\left(\int_{\xi(y)}^{a} f(x) d x\right)^{1 / P} d y\right)^{P} .
$$

The proof of inequality (ii) follows along the same lines as the above. The details are therefore omitted.

Remark 8: If, in the above theorem, $z(x)$ is a decreasing function, then the right side of inequality (ii) replaces the right side of inequality (i) and vice versa.

Theorem 2.4: (Hewitt and Stromberg [5, pp. 421-422])
Let $(X, M, \mu)$ be a $\sigma$-finite measure space and let $f$ be a non-negative Lebesgue measurable function defined almost everywhere on $X$ and $E a$ measurable subset of $X(E \in M)$. If $\phi$ is a real-valued, non-decreasing, differentiable function defined on $[0,+\infty)$, such that $\phi(0)=0$ and

$$
\int_{E} \phi(f(x)) d \mu(x)<+\infty
$$

then

$$
\int_{\mathbf{E}} \phi(f(x)) d \mu(x)=\int_{0}^{\infty} \mu\left(E \cap E_{t}\right) \phi^{\prime}(t) d t
$$

where $\phi^{\prime}$ is the derivative of $\phi$ and $E_{t}=\{x \in X ; f(x)>t\}$.

## Proof:

$$
\begin{aligned}
\int_{E} \phi(f(x)) d \mu(x) & =\int_{X} X_{E}(x) \phi(f(x)) d \mu(x) \\
& =\int_{X} X_{E}(x)\left(\int_{0}^{f(x)} \phi^{\prime}(t) d t\right) d \mu(x) \\
& =\int_{X} X_{E}(x)\left(\int_{0}^{\infty} X_{[0, f(x)]}(t) \phi^{\prime}(t) d t\right) d \mu(x) \\
& =\int_{0}^{\infty} \phi^{\prime}(t)\left[\int_{X} X_{E}(x) X_{[0, f(x)]}(t) d \mu(x)\right) d t,
\end{aligned}
$$

where $X_{A}$ is the characteristic function of a set $A$ and the interchange of the order of integration is justified by the use of Fubini's Theorem.

Now,

$$
\int_{X} X_{E}(x) X_{[0, f(x)]}(t) d \mu(x)=u\left(E \cap E_{t}\right)
$$

Therefore,

$$
\int_{E} \phi(f(x)) d \mu(x)=\int_{0}^{\infty} \phi^{\prime}(t) \mu\left(E \cap E_{t}\right) d t .
$$

Corollary 1: If $p>0$, then

$$
\int_{E}(f(x))^{p} d \mu(x)=p \int_{0}^{\infty} t^{p-1} \mu\left(E \cap E_{t}\right) d t
$$

provided the integral on the left hand side exists.

Proof: The result follows with $\phi(t)=t^{P}(p>0)$.

Remark 9: If we replace $E$ by $X$ in the above, we have

$$
\begin{aligned}
\int_{X}(f(x))^{p} d \mu(x) & =p \int_{0}^{\infty} t^{p-1} \mu\left(X \cap E_{t}\right) d t \\
& =p \int_{0}^{\infty} t^{p-1} \mu\left(E_{t}\right) d t \\
& =p \int_{0}^{\infty} t^{p-1} D_{f}(t) d t
\end{aligned}
$$

Lemma 1: Let $(X, M, \mu)$ be a measure space and $f$ a Lebesgue measurable function defined almost everywhere on $X$. Then, for all Y > 0,

$$
D_{f}(y)=D_{f *}(y)
$$

Proof: By definftion,

$$
D_{f}(y)=\mu(\{x \in X ;|f(x)|>y\})
$$

where $y>0$.
Since f* is monotone non-increasing, we have

$$
\{x \in(0,+\infty) ; f *(x)>y\}=\left(0, D_{f}(y)\right)
$$

The conclusion follows at once as the measure of $\left(0, D_{f}(y)\right)$ is $D_{f}(y)$. That is,

$$
D_{f \star}(y)=D_{f}(y) .
$$

Theorem 2.5: Let $(X, M, \mu)$ be a $\sigma$-finite measure space and $f$
a Lebesgue measurable function defined almost everywhere on $X$. If $\phi$ is a real-valued, non-decreasing, differentiable function defined on $[0,+\infty)$, such that $\phi(0)=0$ and

$$
\int_{X} \phi(|f(x)|) d \mu(x)<\infty,
$$

then

$$
\int_{X} \phi(|f(x)|) d \mu(x)=\int_{0}^{\infty} \phi(f *(t)) d t .
$$

Proof: By Theorem 2.4 and Lemma 1, we have

$$
\begin{aligned}
\int_{X} \phi(|f(x)|) d \mu(x) & =\int_{0}^{\infty} \phi^{\prime}(t) \mu\left(X \cap E_{t}\right) d t \\
& =-\int_{0}^{\infty} \phi^{\prime}(t) \mu\left(E_{t}\right) d t \\
& =\int_{0}^{\infty} \phi^{\prime}(t) D_{f}(t) d t \\
& =\int_{0}^{\infty} \phi^{\prime}(t) D_{f *}(t) d t \\
& =\int_{0}^{\infty} \phi^{\prime}(t) \mu\left((0,+\infty) \cap E_{u}^{*}\right) d t \\
& =\int_{0}^{\infty} \phi(f *(t)) d t,
\end{aligned}
$$

where $E_{u}^{*}=\left\{x \in X_{;} f *(t)>u\right\}$.
Hence, we have the desired resuilt.

Corollary 1: If $p>0$, then

$$
\int_{X}|f(x)|^{p} d \mu(x)=\int_{0}^{\infty}(f *(t))^{p} d t
$$

The proof follows easily from Theorem 2.5 with $\phi(t)=t^{\text {p }}$, for $p>0$.

We now need a result of Colin Bennett [1].

Theorem 2.6: If $0<s \leq 1$ and $f$ is any integrable function defined on $[0,1]$, then the following statements are equivalent:
(i) $\int_{0}^{1}|f(x)|\left(\log ^{+}|f(x)|\right)^{s} d x<\infty$

$$
\text { (ii) } \int_{0}^{1} f *(t)\left(\log { }^{+} f^{\prime} *(t)\right)^{s} d t<\infty
$$

$$
\text { (iii) } \int_{0}^{1} f *(t)\left(\log \frac{1}{t}\right)^{s} d t<\infty
$$

where, as before, $\log ^{+}|x|=\log |x|$ if $x \geq 1$ and $\log ^{+}|x|=0$ otherwise.

Proof: That (i) and (ii) are equivalent'follows from Theorem 2.5. Now, assume that (ii) holds. That is,

$$
\int_{0}^{1} f *(t)(\log +f *(t))^{s} d t<\infty
$$

Setting

$$
E_{1}=\left\{t \in[0,1] ; f *(t) \cdot s t^{-1 / 2}\right\}
$$

and $E_{2}=\left\{t \in[0,1] ; f *(t)>t^{-1 / 2}\right\}$,
we have

$$
\begin{aligned}
& \int_{0}^{1} f *(t)\left(\log t^{-1}\right)^{s} d t \\
& =\int_{E_{1}} f *(t)\left(\log t^{-1}\right)^{s} d t+\int_{E_{2}} f *(t)\left(\log t^{-1}\right)^{s} d t \\
& \equiv I_{1}+I_{2}, \text { respectively. }
\end{aligned}
$$

Considering $I_{1}$, we get

$$
\begin{aligned}
\int_{E_{1}} f *(t)\left(\log t^{-1}\right)^{s} d t & \leq \int_{E_{1}} t^{-1 / 2}\left(\log t^{-1}\right)^{s} d t \\
& \leq \int_{0}^{1} t^{-1 / 2}\left(\log t^{-1}\right)^{s} d t \\
& =\Gamma(s+1) 2^{s+1}
\end{aligned}
$$

$$
<\infty,
$$

where $\Gamma$ is the Gamma function.
Now consider $\mathrm{I}_{2}$. We have

$$
I_{2}=\int_{E_{2}} f *(t)\left(\log t^{-1}\right)^{s} d t
$$

Since $f *(t)>t^{-1 / 2}$ on $E_{2}$ and $0<t$ < 1 , we have $f *(t)>t^{-1 / 2}>1$, so $(f *(t))^{2}>t^{-1}>1$, and hence

$$
I_{2} \leq \int_{E_{2}} f *(t)\left(\log (f *(t))^{2}\right)^{s} d t
$$

4

$$
\begin{aligned}
& =2^{s} \int_{E_{2}} f *(t)(\log f *(t))^{s} d t \\
& \leq 2^{s} \int_{0}^{1} f *(t)\left(\log ^{t} f *(t)\right)^{s} d t \\
& <\infty, \text { by hypothesis. }
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \int_{0}^{1} f *(t)\left(\log t^{-1}\right)^{s} d t \\
& =\int_{E_{1}} f *(t)\left(\log t^{-1}\right)^{s} d t+\int_{E_{2}} f *(t)\left(\log t^{-1}\right)^{s} d t \\
& \leq \Gamma(s+1)^{s+1}+2^{s} \int_{0}^{1} f *(t)(\log +f *(t))^{s} d t \\
& <\infty .
\end{aligned}
$$

Thus, (ii) implies (iii).
For the converse, we note that if $g$ satisfies

$$
\int_{0}^{1}|g(x)| d x \leq 1
$$

then $\operatorname{tg} *(t) \leq 1$. To see this, note that for $0<t<1$,

$$
\begin{aligned}
t g^{*}(t) & =g^{*}(t) \cdot \int_{0}^{t} d u \\
& \leq \int_{0}^{t} g^{*}(u) d u
\end{aligned}
$$

$$
\begin{aligned}
& \leq \int_{0}^{1} g *(u) d u \\
& =\int_{0}^{1} \lg (x) \mid d x
\end{aligned}
$$

$\leq 1$.
In other words, if $|g|$ is integrable, then $t g^{*}(t)$ is bounded. Now consider

$$
\begin{aligned}
& \int_{0}^{1} f *(t)\left(\log ^{+} f *(t)\right)^{s} d t \\
& =\int_{0}^{1 / e} f *(t)\left(\log ^{+} f *(t)\right)^{s} d t+\int_{1 / e}^{1} f *(t)\left(\log { }^{+} f *(t)\right)^{s} d t
\end{aligned}
$$

$$
\equiv J_{1}+J_{2}, \text { respectively. }
$$

$J_{2}$ is clearly bounded by $f *(1 / e)\left(\log ^{+} f *(1 / e)\right)^{s}$ because the function $f *$ is bounded away from the origin.
For $J_{1}$, we note that in the interval $(0,1 / e), \log t^{-1}>1$. In particular, $\log t^{-1}>t$. Using the fact that $f *(t)\left(\log t^{-1}\right)^{s}$ is integrable, we get, from the above remarks,

$$
\begin{aligned}
t f *(t) t^{8} & \leq t f *(t)\left(\log t^{-1}\right)^{8} \\
& \leq 1
\end{aligned}
$$

or $f *(t) \leq t^{-1}-s$

Thus,

$$
\int_{0}^{1 / e} f *(t)\left(\log ^{+} f *(t)\right)^{s} d t^{\prime} \leq \int_{0}^{1 / e} f *(t)\left(\log t^{-(1+s)}\right)^{s} d t
$$

$$
\begin{aligned}
& \infty(1+s)^{s} \int_{0}^{1 / e} f *(t)\left(\log t^{-1}\right)^{s} d t \\
& \leq(1+s)^{s} \int_{0}^{1} f *(t)\left(\log t^{-1}\right)^{s} d t \\
&<\infty .
\end{aligned}
$$

Therefore, (iii) implies (ii) and we are done.
Remark 10: If $1 \leq s<+\infty$ and $f \in L^{1}\left(\log ^{+} L\right)^{s}[0,1]$, then

$$
\int_{0}^{1} f *(t)\left(\log t^{-1}\right)^{s} d t<\infty
$$

This follows by the same methods ysed in the last part of the proof of Theorem 2.6.

We now prove the following useful inclusion relation:
Theorem 2.7: For $0<s \leq 1$ and $1<p<+\infty$, the following inclusions hold:

$$
L^{P}[0,1] \cong L^{1}\left(\log ^{+} L\right)^{s}[0,1] \cong L^{1}[0,1] .
$$

Proof: Assume that $f \in L^{p}[0,1]$ for $1<p<+\infty$. Then, by Theorems 2.4 and 2.5,

$$
\begin{aligned}
\left(\int_{0}^{1}|f(x)|^{p} d x\right)^{1 / p} & =\left(\int_{0}^{1}(f *(t))^{p} d t\right)^{1 / p} \\
& =\left(\int_{0}^{1} D_{f}(y) p y^{p}-1 d y\right)^{1 / p}
\end{aligned}
$$

Clearly,

$$
\int_{0}^{\infty} D_{f}(y) y^{p-1} d y>\int_{a}^{\infty} D_{f}(y) y^{p-1} d y
$$

where $a>1$.
Thus,

$$
\begin{aligned}
\infty & >\int_{a}^{\infty} D_{f}(y) y^{p-1} d y \\
& =\int_{a}^{\infty} D_{f}(y)(\log y)^{s} y^{p-1}(\log y)^{-s} d y
\end{aligned}
$$

Now consider $g(y) \equiv y^{p-1}(\log y)^{-s}$, where $y \geq$ a and $1<p<+\infty$. Routine calculations yield that $y_{0}=e^{s /(p-1)}>1$ is a relative minimum for $g(y)$. Choosing $1<a<y_{0}$,

$$
\begin{aligned}
& \int_{a}^{\infty} D_{f}(y)(\log y)^{s}\left(y^{p-1}(\log y)^{-s}\right) d y \\
& =\int_{a}^{\infty} D_{f}(y)(\log y)^{s} g(y) d y \\
& \geq g\left(y_{0}\right) \int_{a}^{l} \cdot D_{f}(y)(\log y)^{s} d y
\end{aligned}
$$

Now,

$$
\int_{0}^{1}|f(x)|\left(\log ^{+}|f(x)|\right)^{8} d x
$$

$$
=\int_{E_{1}}|f(x)|\left(\log { }^{+}|f(x)|\right)^{s} d x+\int_{E_{2}}|f(x)|\left(\log ^{+}|f(x)|\right)^{s} d x
$$

where

$$
E_{1}=\{x \in[0,1] ;|f(x)|>a\}
$$

and

$$
E_{2}=\{x \in[0,1] ;|f(x)| \leq a\}
$$

for some constant $a>1$. Now,

$$
\begin{aligned}
& \int_{E_{2}}|f(x)|\left(\log g^{+}|f(x)|\right)^{s} d x \\
& s \int_{E_{2}} a(\log a)^{s} d x \\
& \leq a(\log a)^{s} \int_{0}^{1} d x \\
& \leq a(\log a)^{s} \\
& =A, s a y .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \int_{E_{1}}|f(x)|(\log |f(x)|)^{s} d x \\
& =\int_{a}^{\infty} D_{f}(y)\left((\log y)^{s}+s(\log y)^{s-1}\right) d y \\
& \leq \int_{a}^{\infty} D_{f}(y)(\log y)^{s} d y+s(\log a)^{s-1} \int_{a}^{\infty} D_{f}(y) d y .
\end{aligned}
$$

- Since $f \in \mathbb{L}^{p}[0,1]$,

$$
=\int_{a}^{\infty} D_{f}(y)(\log y)^{s} d y<\infty
$$

from above, and the second integral is finite since

$$
\begin{aligned}
\int_{a}^{\infty} D_{f}(y) d y & \leq a^{1-p} \int_{a}^{\infty} y^{p-1} D_{f}(y) d y \\
& \leq a^{1-p} \int_{0}^{\infty} y^{p-1} D_{f}(y) d y \\
& =\frac{a^{1-p}}{p}\|f\|_{p}^{p} \\
& <\infty
\end{aligned}
$$

Hence, we have the desired result.
That is,

$$
\vdash^{L^{P}}[0,1] \subseteq \Psi^{1}\left(\log ^{+} L\right)^{s}[0,1] .
$$

Now suppose that $f \in L^{1}\left(\log ^{+} L\right)^{s}[0,1]$, where $0<s \leq 1$. This is equivalent to saying

$$
\int_{0}^{1} f *(t)\left(\log ^{+} f *(t)\right)^{s} d t<\infty
$$

Setting
and

$$
\begin{aligned}
& E_{1}=\{t \in[0,1] ; f *(t)>e\} \\
& E_{2}=\{t \in[0,1] ; f *(t) \leq e\}
\end{aligned}
$$

we have

$$
\begin{aligned}
\int_{0}^{1} f \star(t) d t & =\int_{\mathbb{Z}_{1}} f *(t) d t+\int_{E_{2}} f *(t) d t \\
& \equiv I_{1}+I_{2}, \text { respectively. }
\end{aligned}
$$

Far $I_{2}$,

$$
\begin{aligned}
\int_{E_{2}} f *(t) d t & \leq \int_{E_{2}} e d t \\
& \leq \int_{0}^{1} e d t \\
& =e
\end{aligned}
$$

Note that, on $E_{1}, f *(t)>e$. Thus $\log ^{+} f *(t) \geq \log f *(t) \geq 1$ and hence, $\left(\log ^{+} f *(t)\right)^{s} \geq 1$ and $f *(t)\left(\log ^{+} f *(t)\right)^{s} \geq f *(t)$.

Therefore,

$$
\begin{aligned}
I_{1} & =\int_{E_{1}} f *(t) d t \\
& \leq \int_{E_{1}} f *(t)\left(\log ^{+} f *(t)\right)^{s} d t \\
& \leq \int_{0}^{1} f *(t)\left(\log ^{+} f *(t)\right)^{s} d t \\
& <\infty, \text { by assumption. }
\end{aligned}
$$

Collecting the above estimates,'

$$
\begin{aligned}
\int_{0}^{1} f *(t) d t & \leq e+\int_{0}^{1} f *(t)\left(\log ^{+} f *(t)\right)^{s} d t \\
& <\infty .
\end{aligned}
$$

That 1s,

$$
L^{1}\left(\log ^{+} L\right)^{s}[0,1] \cong L^{1}[0,1]
$$

Lastly, we extend the Hardy Inequalities by considering certain weight functions. Recall that the Hardy Inequalities are given by:

Theorem 2.8: ([6, p. 256-257]) If $1 \leq q<+\infty, 0<r<+\infty$ and $f$ is a non-negative Lebesgue measurable function defined on ( $0,+\infty$ ), then
(1) $\left(\int_{0}^{\infty}\left(\int_{0}^{t} f(y) d y\right)^{q} t^{-r-1} d t\right)^{1 / q} \leq \frac{q}{r}\left(\int_{0}^{\infty}(y f(y))^{q} y^{-r-1} d y\right)^{1 / q}$
and
(11) $\left(\int_{0}^{\infty}\left(\int_{t}^{\infty} f(y) d y\right)^{q} t^{r-1} d t\right)^{1 / q} \leq \frac{q}{r}\left(\int_{0}^{\infty}(y f(y))^{q} y^{r-1} d y\right)^{1 / q}$.

In order to extend the above, we state, without proof, the following inequality of Jensen, which may be found, for example, in Hewitt and Stromberg [5, p. 202].

Theorem 2.9: (Jensen's Inequality) Suppose $\phi$ is a convex function defined on $(0,+\infty)$ and $f$ is a non-negative Lebesgue measurable function defined on $X$ with

$$
\int_{X} d \mu(x)=\mu(X)<\infty, \mu(X) \neq 0 .
$$

Then

$$
\phi\left(\frac{1}{\mu(X)} \int f(x) d \mu(x)\right) \leq \frac{1}{\mu(X)} \int_{X} \phi(f(x)) d \mu(x)
$$

```
We now prove the following:
```

Theorem 2.10: If $f$ is a non-negative Lebesgue measurable function defined on ( $0,+\infty$ ) and if $1 \leq q<+\infty, 0<r<+\infty$ and $\omega$ is a non-negative non-increasing function defined on ( $0,+\infty$ ) with the property that for $\alpha=r / q$ there exist's a constant $A(>0)$ such that

$$
x^{-\alpha} \int_{0}^{x} t^{\alpha-1} \omega(t) d t \leq A \omega(x),
$$

then

$$
\int_{0}^{\infty} \omega(t) t^{r-1}\left(\int_{t}^{\infty} f(y) d y\right)^{q} d t \leq A \int_{0}^{\infty}(t f(t))^{q} t^{r-1} \omega(t) d t
$$

Proof: We first note that

$$
\begin{aligned}
\int_{0}^{\infty} \omega(t) t^{r-1}\left(\int_{t}^{\infty} f(y) d y\right)^{q} & =\int_{0}^{\infty} \omega(t) t^{-1}\left(t^{r / q} \int_{t}^{\infty} f(y) d y\right)^{q} d t \\
& =\int_{0}^{\infty} \omega(t) t^{-1}\left(\frac{q}{r}\right)^{q}\left[\frac{r}{q} t^{r / q} \int_{t}^{\infty} f(y) d y\right)^{q} d t \\
& =\left[\frac{q}{r}\right]^{q} \int_{0}^{\infty} \omega(t) t^{-1}\left(\frac{r}{q} t^{r / q} \int_{t}^{\infty} f(y) d y\right)^{q} d t .
\end{aligned}
$$

If we set $d \mu(y)=y^{-r / q-1} d y$, then

$$
\int_{t}^{\infty} d \mu(y)=\mu((t, \infty))
$$

$$
\begin{aligned}
& =\frac{q}{r} t^{-r / q} \\
& <\infty,
\end{aligned}
$$

since $t \in(0,+\infty)$.
Also, $\mu((t, \infty))$ is non-zero since $t \in(0,+\infty)$. Hence, we can apply Theorem 2.9 to the above to get

$$
\begin{aligned}
& \int_{0}^{\infty} \omega(t) t^{r-1}\left(\int_{t}^{\infty} f(y) d y\right)^{q} d t \\
& \leq\left(\frac{q}{r}\right)^{q} \int_{0}^{\infty} t^{-1} \omega(t)\left[\frac{r}{q} t^{r / q}\right)\left(\int_{t}^{\infty}\left(f(y) y^{r / q}+1\right)^{q} y^{-r / q-1} d y\right) d t \\
& =\left(\frac{q}{r}\right)^{q-1} \int_{0}^{\infty} t^{-1} \omega(t) t^{r / q}\left(\int_{t}^{\infty}\left(f(y) y^{r / q}+1\right)^{q} y^{-r / q-1} d y\right) d t \\
& =\left(\frac{q}{r}\right)^{q-1} \int_{0}^{\infty}\left(f(y) y^{r / q}+1\right)^{q} y^{-r / q-1}\left[\int_{0}^{y} \omega(t) t^{r / q}-1 d t\right] d y \\
& =\left(\frac{q}{r}\right)^{q-1} \int_{0}^{\infty}\left(f(y) y^{r / q}+1\right)^{q} y^{-1}\left(y^{-r / q} \int_{0}^{y} \omega(t) t^{r / q-1} d t\right] d y \\
& \leq A\left(\frac{q}{r}\right]^{q-1} \int_{0}^{\infty}\left(f(y) y^{r / q}+1\right)^{q} y^{-1} \omega(y) d y \\
& =A \int_{0}^{\infty}(y f(y))^{q} y^{r-1} \omega(y) d y .
\end{aligned}
$$

Theorem 2.11: Let $f$ be a non-negative Lebesgue measurable function defined on ( $0,+\infty$ ) and $\omega$ a non-negative decreasing function
defined on $(0,+\infty)$. If $1 \leq q<+\infty$ and $0<r<+\infty$, then

$$
\left(\int_{0}^{\infty} \omega(t) t^{-r}-1\left(\int_{0}^{t} f(y) d y\right)^{q} d t\right)^{1 / q} \leq A\left(\int_{0}^{\infty}(y f(y))^{q} y^{-r-1} \omega(y) d y\right)^{1 / q}
$$

Proof: We use the fact that $\omega$ is decreasing to get

$$
\begin{aligned}
& \left(\int_{0}^{\infty} \omega(t) t^{-r}-1\left(\int_{0}^{t} f(y) d y\right)^{q} d t\right)^{1 / q} \\
& =\left(\int_{0}^{\infty} t^{-r-1}\left((\omega(t))^{1 / q} \int_{0}^{t} f(y) d y\right)^{q} d\right)^{1 / q} \\
& \leq\left(\int_{0}^{\infty} t^{-r}-1\left(\int_{0}^{t}(\omega(y))^{1 / q} f(y) d y\right)^{q} d t\right)^{1 / q}
\end{aligned}
$$

We can now use Theorem 2.8 , part (i), to estimate the last integral. The result is

$$
\begin{aligned}
& \left(\int_{0}^{\infty} \omega(t) t^{-r-1}\left(\int_{0}^{t} f(y) d y\right)^{q} d t\right)^{1 / q} \\
& \leq A\left(\int_{0}^{\infty}\left(y(\omega(y))^{1 / q} \dot{f}(y)\right)^{q} y^{-r-1} d y\right)^{1 / q} \\
& =\left(\int_{0}^{\infty} \omega(y)(y f(y))^{q} y^{-r-1} d y\right)^{1 / q}
\end{aligned}
$$

$x$

This is the desired inequality.

The last proposition of this section will be an extension of Calderon's Lemma due to $R$. Jónnson [9].

Theorem 2.12: ([9, p. 293]) If $f$ is a non-negative decreasing

- Lebesgue measurable function defined on ( $0,+\infty$ ) and $0<p \leqslant q<+\infty$, then for any real $\alpha$,

$$
\left(\int_{0}^{\infty}\left(t^{\alpha} f(t)\right)^{q} t^{-1} d t\right)^{1 / q} \leq\left(\int_{0}^{\infty}\left(t^{\alpha} f(t)\right)^{p} t^{-1} d t\right)^{1 / p}
$$

Remark 11: For $\alpha=1 / r, r>0$, the above inequality is Calderón's Lemma.

## CHAPTER III

In this chapter we will deal with the interpolation of linear operators on the 0 orlicz spaces $L^{1}\left(\log ^{\dagger} L\right)^{s}[0,1]$ and the spaces $K^{P}\left(\log ^{+} K\right)^{s}(X, M, \mu)$ which have been defined previously. Richard $0^{\prime} N e i l$ [14] gave the first explicit formulation of an interpolation theorem concerning these spaces. We will provide a different proof of his result by utilizing non-increasing equimeasurable rearrangements rather than distribution functions. This will correspond more closely with the definitions of the Lorentz spaces and the Orlicz spaces $L^{1}\left(\log ^{+} L\right)^{s}[0,1]$. After proving $0^{\prime} N e i l ' s$ results, we will extend them further to weighted spaces with weights satisfying certain growth conditions.

The first result is:

Theorem 3.1: ([14]) Suppose $0<p<r<+\infty, 0 \leq s \leq 1$, $15 \mathrm{q}<+\infty$ and T is a linear operator simultaneously of weak types $(1, p)$ and $(q, r)$. Then, for any $f \in L^{1}\left(\log ^{+} L\right)^{s}[0,1]$, we have that Tf $\in L\left(p, \frac{1}{s}\right)(X, M, \mu)$.

Proof: Since we are dealing with spaces which are totally finite, we may assume $\mu(X)=1$. There is no loss of generality in making this assumption.

For any measurable function $f$, defined on $[0,1]$, we define

$$
f^{u}(x)= \begin{cases}f(x) & \text { if }|f(x)|>f *(u) \\ 0 & \text { otherwise }\end{cases}
$$

and $f_{u}(x)=f(x)-f^{u}(x)$, where $u$ is a function to be determined later. Then, by the definitions of $f *$ and $D_{f}$, we have

$$
f^{u *}(y) \leq\left\{\begin{array}{cc}
f *(y) & 0<y<u \\
0 & y \geq u
\end{array}\right.
$$

and

$$
f_{u}^{*}(y) \leq\left\{\begin{array}{lc}
f *(u) & 0<y<u \\
f *(y) & y \geq u
\end{array}\right.
$$

Now we consider $\|T f\|_{p, 1 / s}$ when $0<s \leq 1$. Then, by the Iinearity of $T$, the properties of sums of rearrangements of functions, and Minkowski's inequality,

$$
\begin{aligned}
&\|\mathrm{Tf}\|_{p, 1 / s} \\
&=\left(\int_{0}^{1}\left((\mathrm{Tf})^{*}(t) t^{1 / p}\right)^{1 / s} t^{-1} d t\right)^{s} \\
&=\left(\int_{0}^{1}\left((\mathrm{Tf})^{*}(t) t^{1 / p-s}\right)^{1 / s} d t\right)^{s} \\
& \therefore=\left(\int_{0}^{1}\left(\left(T\left(f^{u}+f_{u}\right)\right)^{*}(t) t^{1 / p-s}\right)^{1 / s} d t\right)^{s}
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left(\int_{0}^{1}\left(\left(\mathrm{Tf}^{u}\right)^{*}(t / 2) t^{1 / p-s}+(\mathrm{Tf})^{*}(t / 2) t^{1 / p-s}\right)^{1 / s} d t\right)^{s} \\
& \leq A\left(\left[\int_{0}^{1}\left(\left(T f^{u}\right)^{*}(t / 2) t^{1 / p-s}\right)^{1 / s} d t\right)^{s}\right. \\
& \left.\qquad+\left(\int_{0}^{1}\left(\left(T f_{u}\right)^{*}(t / 2) t^{1 / p-s}\right)^{1 / s} d t\right)^{s}\right) \\
& \equiv \mathbb{A}\left(I_{1}+I_{2}\right), \text { respectively. }
\end{aligned}
$$

Recall now that if $T$ is a linear operator of weak type $(p, q)$, then there exists a constant $A(>0)$, such that,

$$
(\mathrm{If})^{*}(t) \leq A t^{-1 / q}\|f\|_{\mathrm{p}}
$$

For $I_{1}$, since $T$ is of weak type ( $1, p$ ),

$$
\begin{aligned}
& I_{1}^{1 / s}= \int_{0}^{1}\left(\left(\mathrm{Tf}^{u}\right)^{*}(t / 2) t^{1 / p-s}\right)^{1 / s} d t \\
& \leq A \int_{0}^{1}\left\|f^{u}\right\| \|_{1}^{1 / s} t^{-1} d t \\
&= A \int_{0}^{1}\left(\int_{X} 1 f^{u}(y) \mid d \mu(y)\right)^{1 / s} t^{-1} d t \\
& \leq A \int_{0}^{1}\left[\int_{0}^{u(X)=1} f^{u *}(y) d y\right)^{1 / s} t^{-1} d t \mid \\
& \leq A \int_{0}^{1}\left[\int_{0}^{u} f^{u *(y) d y)^{1 / s} t^{-1} d t .}\right.
\end{aligned}
$$

Suppose that $u \equiv u(t)=t^{\lambda}$ for some $\lambda>0$. Then, by Theorem 2.3,

$$
\begin{aligned}
I_{1}^{1 / s} & \leq A \int_{0}^{1}\left(\int_{0}^{t^{\lambda}} f *(y) d y\right)^{1 / s} t^{-1} d t \\
& \leq A\left(\int_{0}^{1} f *(y)\left(\int_{y^{1 / \lambda}}^{1} t^{-1} d t\right)^{s} d y\right)^{1 / s} \\
& =A\left(\int_{0}^{1} f *(y)\left(\log 1-10 g y^{1 / \lambda}\right)^{s} d y\right)^{1 / s} \\
& =A\left(\int_{0}^{1} f *(y)(10 \% 1 / y)^{s} d y\right)^{1 / s} \\
& <\infty .
\end{aligned}
$$

by hypothesis and by Theorem 2.6.
Now consider $I_{2}$. Since $T$ is of weak type ( $q, r$ ), we have

$$
\begin{aligned}
I_{2}^{1 / s} & =\int_{0}^{1}\left(\left(T f_{u}\right)^{*}(t / 2) t^{1 / p-s}\right)^{1 / s} d t \\
& \leq A \int_{0}^{1} t^{1 / s p-1 / s r-1} \mid f_{u} \|_{q}^{1 / s} d t \\
& =A \int_{0}^{1} t^{1 / s p-1 / s r-1}\left(\int_{X}\left|f_{u}(y)\right|^{q} d u(y)\right)^{1 / s q} d t \\
& \leq A \int_{0}^{1} t^{1 / s p-1 / s r-1}\left(\int_{0}^{1}\left(f_{u}^{*}(y)\right)^{q} d y\right)^{1 / s q} d t
\end{aligned}
$$

$$
\begin{aligned}
& \leq A\left(\int_{0}^{1} t^{1 / s p-1 / s r-1}\left(\int_{0}^{u}(f \star(u))^{q} d y+\int_{u}^{1}(f *(y))^{q} d y\right)^{1 / s q} d t\right. \\
& \leq A\left(\int_{0}^{1} t^{1 / s p-1 / s r-1}\left(\int_{0}^{u}(f *(u))^{q} d y\right)^{1 / s q} d t\right. \\
& \quad+\int_{0}^{1} t^{\left.\left.1 / s p-1 / s r-1 \int_{u}^{1}(f *(y))^{q} d y\right)^{1 / s q} d t\right)} \\
& \equiv A\left(J_{1}+J_{2}\right), \text { respectively. }
\end{aligned}
$$

Again, consider $u \equiv u(t)=t^{\lambda}$ where $\lambda>0$. We estimate the above integrals by considering two cases.

Case $18 q \in(0,1]$.
In this case,

$$
\begin{aligned}
J_{1} & =\int_{0}^{1} t^{1 / s p-1 / s r-1}\left(\int_{0}^{t^{\lambda}}\left(f^{*}\left(t^{\lambda}\right)\right)^{q} d y\right)^{1 / s q} d t \\
& =\int_{0}^{1} t^{1 / s p-1 / s r-1}\left(f^{*}\left(t^{\lambda}\right)\right)^{1 / s} t^{\lambda / s q} d t
\end{aligned}
$$

Substituting $t^{\lambda}=x$ in the last line yields

$$
\begin{aligned}
J_{1} & =A \int_{0}^{1} x^{(1 / s p-1 / s r) / \lambda+1 / s q-1 / \lambda}(f *(x))^{1 / s} x^{1 / \lambda-1} d x \\
& =A \int_{0}^{1} x^{(1 / s p-1 / s r) / \lambda+1 / s q-1}(f *(x))^{1 / s-1} f *(x) d x .
\end{aligned}
$$

Now $f \in L^{1}\left(\log ^{+} L\right)^{s}[0,1] \subseteq L^{1}[0,1]$ and we have seen previously (see

the proof of Theorem 2.6) that for $f \in L^{1}[0,1], f *(x) \leq A x^{-1}$.
Substituting this inequality into the last integral we get

$$
\begin{aligned}
J_{1} & \leqslant A \int_{0}^{1} x^{(1 / s p-1 / s r) / \lambda+1 / s q-1 / s}\left(A x^{-1}\right)^{1 / s-1} f *(x) d x \\
& =A \int_{0}^{1} x^{(1 / s p-1 / s r) / \lambda+1 / s q-1 / s} \operatorname{ft}^{(x) d x} .
\end{aligned}
$$

By choosing $\lambda \in(0, q(r-p) / p r(q-1)]$, the last integral is dominated by.

$$
A \int_{0}^{1} f *(x) d x<\infty
$$

To estimate $\mathrm{J}_{2}$, we employ Theorem 2.3. Then,

$$
\begin{aligned}
J_{2} & =\int_{0}^{1} t^{1 / s p-1 / s r-1}\left(\int_{t^{\lambda}}^{1}(f *(y))^{q} d y\right)^{1 / s q} d t \\
& s\left[\int_{0}^{1}(f *(y))^{q}\left[\int_{0}^{y^{1 / \lambda}} t^{1 / s p-1 / s r-1} d t\right)^{s q} d y\right)^{1 / s q} \\
& =A\left(\int_{0}^{1}(f *(y))^{q}\left[\left.t^{1 / s p-1 / s r}\right|_{0} ^{y^{1 / \lambda}}\right)^{s q} d y\right)^{1 / s q} \\
& =A\left(\int_{0}^{1}(f *(y))^{q} y^{\circ q(1 / p-1 / r) / \lambda} d y\right)^{1 / s q}: \\
& =A\left(\int_{0}^{1}(f *(y))^{q-1} f *(y) y^{q(1 / p-1 / r) / \lambda} d y\right)^{1 / s q}
\end{aligned}
$$


where the last inequality follows again from $f *(x) \leq A x^{-1}$. Choosing $\lambda$ as above yields

$$
\begin{aligned}
J_{2} & \leq A\left(\int_{0}^{1} f \star(y) d y\right)^{1 / s q} \\
& <\infty
\end{aligned}
$$

Case $21<8 q<\infty$.
The procedure for estimating $J_{1}$ is the same as above and is therefore omitted.

Now consider $J_{2}$. We have

$$
\begin{aligned}
J_{2} & =\int_{0}^{1} t^{1 / s p-1 / s r-1}\left(\int_{t^{\lambda}}^{1}(f *(y))^{q} d y\right)^{1 / 8 q} d t \\
& \leq A \int_{0}^{1} t^{1 / s p-1 / s r-1}\left(f *\left(t^{\lambda}\right)\right)^{1 / s}\left(\int_{\lambda}^{1} d y\right)^{1 / 8 q} d t \\
& \leq A \int_{0}^{1} t^{1 / s p-1 / s r-1}\left(f *\left(t^{\lambda}\right)\right)^{1 / s}\left(\int_{0}^{1} d y\right)^{1 / s q} d t \\
& =A \int_{0}^{1} t^{1 / 8 p-1 / s r-1}\left(f *\left(t^{\lambda}\right)\right)^{1 / s} d t
\end{aligned}
$$

The substitution $x=t^{\lambda}$ yields

$$
J_{2} \leq A \int_{0}^{1}(1 / 8 p-1 / 8 x) / \lambda-1(f *(x))^{1 / 8-1} f *(x) d x
$$

$$
\leq A \int_{0}^{1} \mathrm{x}^{(1 / \mathrm{sp}-1 / \mathrm{sr}) / \lambda-1 / \mathrm{s}} \mathrm{f} *(\mathrm{x}) \mathrm{dx}
$$

and, choosing $\lambda \in(0,(r-p) / p r]$, it follows that

$$
\begin{aligned}
J_{2} & \leq A \int_{0}^{1} f *(x) d x \\
& <\infty .
\end{aligned}
$$

Note that if $s=0$, then $L^{1}\left(\log ^{+} L\right)^{8}[0,1] \equiv L^{1}[0,1]$, so that

$$
\begin{aligned}
\|T f\|_{p, 1 / s}^{*} & =\|T f\|_{p, \infty}^{*} \\
& =0 \sup _{t<1} t^{1 / p}(T f)^{*}(t)
\end{aligned}
$$

and since $T$ is of weak type ( $1, p$ ),

$$
\begin{aligned}
0<t<1 & t^{1 / p}(\mathrm{Tf})^{*}(t)
\end{aligned}
$$

which completes the proof.

Theorem 3.2: Suppose $0<p<r<+\infty, 1 \leqslant s<+\infty, 1 \leqslant q<+\infty$ and $T$ is a linear operator simultaneously of weak types ( $1, p$ ) and $(q, r)$. Then for $f \in L^{1}\left(\log ^{+} L\right)^{s}[0,1], T f \in R^{p}\left(\log ^{+} K\right)^{p(s-1)}(X, M, \mu)$.

Proof: If we define $f^{u}$ and $f_{u}$ as in Theorem 3.1, then

$$
\begin{aligned}
& \|T f\|_{R^{P}\left(\log ^{+} K\right)^{p(s-1)}} \\
& =\int_{0}^{1} t^{1 / p-1}(T f)^{*}(t)(\log 1 / t)^{p(s-1) / p} d t \\
& =\int_{0}^{1} t^{1 / p-1}\left(\left(T\left(f^{u}+f_{u}\right)\right)^{*}(t)\right)(\log 1 / t)^{s-1} d t \\
& s \int_{0}^{1} t^{1 / p-1}\left(\left(T f^{u}\right)^{*}(t / 2) \neq\left(T f_{u}\right)^{*}(t / 2)\right)(\log 1 / t)^{s-1} d t \\
& =\int_{0}^{1} t^{1 / P-1}\left(T f^{u}\right)^{*}(t / 2)(10 g 1 / t)^{s-1} d t \\
& +\int_{0}^{1} t^{1 / p-1}\left(T f_{u}\right)^{*}(t / 2)(\log 1 / t)^{s-1} d t \\
& \equiv I_{1}+I_{2}, \text { respectively. }
\end{aligned}
$$

Since $T$ is of weak type ( $1, \mathrm{p}$ ), we have

$$
\begin{aligned}
I_{1} & =\int_{0}^{1} t^{1 / p-1}\left(T f^{u}\right)^{*}(t / 2)(\log 1 / t)^{s-1} d t \\
& \leq \int_{0}^{1} t^{-1} A| | f^{u} \mid \|_{1}(\log 1 / t)^{s-1} d t \\
& \leq A \int_{0}^{1} t^{-1}(\log 1 / t)^{s-1}\left(\int_{0}^{1} f^{u *}(y) d y\right] d t
\end{aligned}
$$

$$
\leq A \int_{0}^{1} t^{-1}(\log 1 / t)^{s-1}\left(\int_{0}^{u} f *(y) d y\right) d t
$$

Setting $u \equiv u(t)=t^{\lambda}, \lambda>0$, yields

$$
I_{1} \quad A \int_{0}^{1} t^{-1}(\log 1 / t)^{s-1}\left(\int_{0}^{t^{\lambda}} f *(y) d y\right) d t
$$

and, applying Theorem 2.3, we get

$$
\begin{aligned}
I_{1} & \leq A \int_{0}^{1} f *(y)\left(\int_{y^{1 / \lambda}}^{1} t^{-1}(\log 1 / t)^{s-1} d t\right) d y \\
& \leq A \int_{0}^{1} f *(y)\left(\log 1 / y^{1 / \lambda}\right)^{s-1}\left(\int_{y^{1 / \lambda}}^{1} t^{-1} d t\right) d y \\
& =A \int_{0}^{1} f *(y)\left(\log 1 / y^{1 / \lambda}\right)^{s} d y \\
& =A \int_{0}^{1} f *(y)(\log 1 / y)^{s} d y \\
& <\infty,
\end{aligned}
$$

by hypothesis.
To estimate $I_{2}$, we use the fact that $T$ is of weak type ( $q, r$ ), to get

$$
\begin{aligned}
I_{2} & =\int_{0}^{1} t^{1 / p-1}\left(T f_{u}\right)^{*}(t / 2)(\log 1 / t)^{s-1} d t \\
& \leq A \int_{0}^{1} t^{1 / p-1}(\log 1 / t)^{s-1}\left[t^{-1 / r}\left\|f_{u}\right\|_{q}\right] d t
\end{aligned}
$$

$$
\begin{aligned}
& =A \int_{0}^{1} t^{1 / p-1 / r-1}(\log 1 / t)^{s-1}| | f_{u} \|_{q} d t \\
& \leq A \int_{0}^{1} t^{1 / p-1 / r-1}(\log 1 / t)^{s-1}\left(\int_{0}^{1}\left(f_{u}^{*}(y)\right)^{q} d y\right)^{1 / q} d t \\
& \leq A \int_{0}^{1} t^{1 / p-1 / r-1}(\log 1 / t)^{s-1}\left(\int_{0}^{u}(f *(u))^{q} d y\right. \\
& \left.+\int_{u}^{1}\left(f^{*}(y)\right)^{q} d y\right)^{1 / q} d t \\
& \leq A\left(\int_{0}^{1} t^{1 / p-1 / r-1}(\log 1 / t)^{s-1}\left(\int_{0}^{u}(f *(u))^{q} d y\right)^{1 / q} d t\right. \\
& \left.+\int_{0}^{1} t^{1 / p-1 / r-1}(\log 1 / t)^{s-1}\left(\int_{u}^{1}(f *(y))^{q} d y\right)^{1 / q} d t\right) \\
& \equiv A\left(J_{1}+J_{2}\right) \text {; respectively. }
\end{aligned}
$$

With $u$ defined as above,

$$
\begin{aligned}
J_{1} & =\int_{0}^{1} t^{1 / p-1 / r-1}(\log 1 / t)^{s-1}\left(\int_{0}^{t^{\lambda}}\left(f *\left(t^{\lambda}\right)\right)^{q} d y\right)^{1 / q} d t \\
& =\int_{0}^{1} t^{1 / p-1 / r-1}(\log 1 / t)^{s-1} f^{*}\left(t^{\lambda}\right) t^{\lambda / q} d t \\
& =\int_{0}^{1} t^{1 / p-1 / x-1+\lambda / q}(\log 1 / t)^{s-1} f^{*}\left(t^{\lambda}\right) d t
\end{aligned}
$$

and the substitution $x=t^{\lambda}$ yields
$J_{1}=A \int_{0}^{1} x^{(1 / p-1 / r-1) / \lambda+1 / q+1 / \lambda-1}\left(\log 1 / x^{1 / \lambda}\right)^{s-1} f *(x) d x$
$=A \int_{0}^{1} x^{(1 / p-1 / r) / \lambda-1+1 / q}(\log 1 / x)^{s-1} f *(x) d x$
$=A\left(\int_{0}^{1 / e} x^{(1 / p-1 / r) / \lambda-1+1 / q}(\log 1 / x)^{s-1} f *(x) d x\right.$
$\left.+\int_{1 / e}^{1} x^{(1 / p-1 / r) / \lambda-1+1 / q}(\log 1 / x)^{s-1} f *(x) d x\right)$
$\equiv \mathrm{A}\left(\mathrm{K}_{1}+\mathrm{K}_{2}\right)$, respectively.
Now,

$$
\begin{aligned}
\mathrm{K}_{1} & =\int_{0}^{1 / \mathrm{e}} \mathrm{x}^{(1 / \mathrm{p}-1 / \mathrm{r}) / \lambda-1+1 / \mathrm{q}(\log 1 / \mathrm{x})^{\mathrm{s}-1} \mathrm{f} *(\mathrm{x}) \mathrm{dx}} \\
& \leq \int_{0}^{1 / \mathrm{e}} \mathrm{x}^{(1 / \mathrm{p}-1 / \mathrm{r}) / \lambda-1+1 / \mathrm{q}(\log 1 / \mathrm{x})^{\mathrm{s}} \mathrm{f} *(\mathrm{x}) \mathrm{dx}} \\
& \leq \int_{0}^{1 / \mathrm{e}}(\log 1 / \mathrm{x})^{\mathrm{s}} \mathrm{f} *(\mathrm{x}) \mathrm{dx} \\
& \leq \int_{0}^{1} \mathrm{f} *(\mathrm{x})(\operatorname{lqg} 1 / \mathrm{x})^{\mathrm{s}} \mathrm{dx} \\
& <\infty
\end{aligned}
$$

provided $\lambda \in(0, q(r-p) / p r(q-1)]$.
For the second integral, $K_{2}$, if $\lambda$ belongs to the same set as above, we get

$$
K_{2}=\int_{1 / e}^{1} x^{(1 / p-1 / r) / \lambda+1 / q-1}(\log 1 / x)^{s-1} f *(x) d x
$$

$$
\leq(\log e)^{s-1} \int_{1 / e}^{1} x^{(1 / p-1 / r) / \lambda+1 / q-1} f^{*}(x) d x
$$

$$
\leq A \int_{1 / e}^{1} f *(x) d x
$$

$$
\leq A \int_{0}^{1} f *(x) d x
$$

Now congiders.

$$
\begin{aligned}
J_{2} & =\int_{0}^{1} t^{1 / p-1 / r-1}(\log 1 / t)^{s-1}\left(\int_{t^{\lambda}}^{1}(f *(y))^{q} d y\right)^{1 / q} d t \\
& \leq \int_{0}^{1} t^{1 / p-1 / r-1}(\log 1 / t)^{s-1} f *\left(t^{\lambda}\right)\left(\int_{t^{\lambda}}^{1} d y\right)^{1 / q} d t \\
& \leq \int_{0}^{1} t^{1 / p-1 / r-1}(\log 1 / t)^{s-1} f *\left(t^{\lambda}\right)\left(\int_{0}^{1} d y\right)^{1 / q} d t \\
& \leq \int_{0}^{1} t^{1 / p-1 / r-1}(\log 1 / t)^{s-1} f *\left(t^{\lambda}\right) d t
\end{aligned}
$$

and, with $x=t^{\lambda}$,

$$
\begin{aligned}
& J_{2} \leq A \int_{0}^{1}(1 / p-1 / r) / \lambda-1(\log 1 / x)^{s-1} f *(x) d x \\
& =A \iint_{0}^{1 / e}(1 / p-1 / r) / \lambda-1(\log 1 / x)^{s-1} f *(x) d x \\
& \left.+\int_{1 / e}^{1}(1 / p-1 / r) / \lambda-1(\log 1 / x)^{s-1} f *(x) d x\right) \\
& \equiv A\left(Q_{1}+Q_{2}\right) \text {, respectively. }
\end{aligned}
$$

Clearly, if $\lambda \in(0,(r-p) / p r]$,

$$
\begin{aligned}
Q_{1} & =\int_{0}^{1 / e} x^{(1 / p-1 / x) / \lambda-1}(\log 1 / x)^{s-1} f *(x) d x \\
& \leq \int_{0}^{1 / e} x^{(1 / p-1 / r) / \lambda-1}(\log 1 / x)^{s} f *(x) d x \\
& \leq A \int_{0}^{1 / e}(\log 1 / x)^{s} f *(x) d x \\
& \leq A \int_{0}^{1}(\log 1 / x)^{s} f *(x) d x \\
& .
\end{aligned}
$$

Lastly, we obtain, for $\lambda \in(0,(r-p) / p r]$, the estimate

$$
Q_{2}=\int_{1 / e}^{1} x(1 / p-1 / x) / \lambda-1(\log 1 / x)^{s-1} f *(x) d x
$$

$$
\begin{aligned}
& \quad \leq(\log e)^{s-1} \int_{1 / e}^{1}(1 / p-1 / x) / \lambda-1 f *(x) d x \\
& \leq A \int_{1 / e}^{1} f *(x) d x \\
& \\
& \leq A \int_{0}^{1} f *(x) d x \\
& \quad<\infty . \\
& \text { Collecting terms, we are done since }(0,(r-p) / p r] \neq \phi .
\end{aligned}
$$

Remark 12: As an application of Theorem 3.1, we consider the case when $s=1$ and we retrieve the following theorem due to A. Zygmund [23]:

Theorem 3.3: If $f$ is a periodic function of period $2 \pi$ such that $f \in \dot{L}^{1}\left(\log ^{+} L\right)^{1}[0,2 \pi]$, then $\bar{f} \in L^{l}[0,2 \pi]$, where $\bar{f}$ is the conjugate function of $f$.

Remark 13: We recall that for such a function $f$, the conjugate function $\overline{\mathbf{f}}$ is defined by the Cauchy principal value integral

$$
\bar{f}(x)=-\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0^{+}}\left(\int_{-\pi}^{-\varepsilon} \frac{f(x-t)}{2 \tan (t / 2)} d t+\int_{\varepsilon}^{\pi} \frac{f(x-t)}{2 \tan (t / 2)} d t\right) .
$$

The operator $T$ which maps $f$ into $\overline{\mathbf{f}}$ is interesting in that it is of weak type $(1,1)$ but not of strong type ( 1,1 ). $T$ is also of strong type (2, 2). See, for example, Edwards [2, Vol. 2, pp. 169-177].

Remark 14: We can also discuss the linear operator $T$ defined by

$$
\operatorname{Tf}(x)=x^{-1} \int_{0}^{x}|f(t)| d t
$$

As was shown in Chapter II, $T$ is of weak type (1,1). $T$ is also of strong type ( $p, p$ ) for $1<p<+\infty$, hence of weak type ( $p, p$ ). Setting $\mathrm{p}=1 / \mathrm{s}$, where $0<\mathrm{s}<1$, we can apply Theorem 3.1 so that for $f \in L^{1}\left(\log ^{\dagger} L\right)^{s}[0,1]$, If $\in L(1,1 / s)$. That is,

$$
\int_{0}^{1} x^{1 / s-1}\left((T f)^{*}(x)\right)^{1 / s} \mathrm{~d} x<\infty
$$

This result was shown by Max Jodeit, Jr. [7] for the case when

$$
\int_{0}^{1}|f(x)|\left(\log ^{+}|f(x)|\right)^{s} d x<\infty
$$

Theorem 3.1 will now be extended to a weighted form. We have the following:

Theorem 3.4: Suppose $T$ is a linear operator simultaneously of weak types ( $1, \mathrm{p}$ ) and ( $\mathrm{q}, \mathrm{r}$ ) where $0<\mathrm{p}<\mathrm{r}<+\infty$ and $1<\mathrm{q}<+\infty$. Let $\omega$ be a non-negative non-increasing function defined on ( 0,1 ), with the property that there is a constant $A(>0)$ such that

$$
x^{-\alpha} \int_{0}^{x} t^{\alpha-1} \omega(t) d t \leq A \omega(x)
$$

for $\alpha=1 / p-1 / r$. Then, if $0<s<1$,

$$
\left(\int_{0}^{1}\left(\omega(t)(\mathrm{Tf})^{*}(t)\right)^{1 / s} t^{1 / s p-1} d t\right)^{s}<\infty
$$

whenever

$$
\int_{0}^{1} \omega\left(t^{1 / \sigma}\right) f *(t)(\log 1 / t)^{8} d t
$$

is finite, where $\sigma$ is the slope of the line segment between ( $1,1 / \mathrm{p}$ ) and $(1 / q, 1 / r)$. That is, $\sigma=(1 / p-1 / r) /(1-1 / q)$.

Proof: Defining $f^{u}$ and $f_{u}$ as in the two previous theorems, recall that

$$
\mathbf{f}^{\mathbf{u *}}(\mathrm{y}) \leq\left\{\begin{array}{cc}
\mathrm{f*}(\mathrm{y}) & 0<\mathrm{y}<\mathrm{u} \\
0 & -\mathrm{y} \geq \mathbf{u}
\end{array}\right.
$$

and

$$
f_{u}^{*}(y)\left\{\begin{array}{lc}
f *(u) & 0<y<u \\
f *(y) & y \geq u .
\end{array}\right.
$$

## Setting

$$
I=\left(\int_{0}^{1}\left(\omega(y)(T f)^{*}(y)\right)^{1 / s} y^{1 / s p-1} d y\right)^{s},
$$

we have

$$
I^{1 / s}=\int_{0}^{1}\left(\omega(y)(T f)^{*}(y)\right)^{1 / s} y^{1 / s p-1} d y
$$

$$
\begin{aligned}
& \leq \int_{0}^{1}\left(\omega(y)\left(\left(\mathrm{Tf}^{\mathrm{u}}\right)^{*}(\mathrm{y} / 2)+\left(\mathrm{Tf}_{u}\right)^{*}(\mathrm{y} / 2)\right)\right)^{1 / \mathrm{s}} \mathrm{y}^{1 / \mathrm{sp}-1} \mathrm{dy} \\
& \leq A\left(\int_{0}^{1}\left(\omega(y)\left(\mathrm{Tf}^{u}\right)^{*}(y / 2)\right)^{1 / s} y^{1 / s p-1} d y\right. \\
& \left.+\int_{0}^{1}\left(\omega(y)\left(T f_{u}\right)^{*}(y / 2)\right)^{1 / s} y^{1 / s p-1} d y\right) \\
& \equiv A\left(I_{1}+I_{2}\right) \text {, respectively. }
\end{aligned}
$$

From the hypothesis that $T$ is of weak type ( $1, \mathrm{p}$ ),

$$
\begin{aligned}
I_{1} & =\int_{0}^{1}\left(\omega(y)\left(T f^{u}\right)^{*}(y / 2)\right)^{1 / s} y^{1 / s p-1} d y \\
& \leq\left. A \int_{0}^{1}(\omega(y))^{1 / s}\left\|f^{u}\right\|\right|_{1} ^{1 / s} y^{-1} d y \\
& \leq A \int_{0}^{1}(\omega(y))^{1 / s} y^{-1}\left(\int_{0}^{1} f^{u *}(t) d t\right)^{1 / s} d y \\
& \leq A \int_{0}^{1}(\omega(y))^{1 / s} y^{-1}\left[\int_{0}^{u} f *(t) d t\right)^{1 / s} d y
\end{aligned}
$$

If we set $u \equiv u(y)=y^{\sigma}$ where $\sigma=(1 / p-1 / r) /(1-1 / q)$, then application of Theorem 2.3 yields.

$$
I_{1} \leq A\left[\int_{0}^{1} f *(t)\left[\int_{t^{1 / \sigma}}^{1}(\omega(y))^{1 / s} y^{-1} d y\right]^{s} d t\right)^{1 / s}
$$

$$
\begin{aligned}
& \leq A\left(\int_{0}^{1} f *(t) \omega\left(t^{1 / \sigma}\right)\left(\int_{1 / \sigma}^{1} y^{-1} d y\right)^{s} d t\right)^{1 / s} \\
& =A\left(\int_{0}^{1} f *(t) \omega\left(t^{1 / \sigma}\right)\left(\log 1 / t^{1 / \sigma}\right)^{s} d t\right)^{1 / s} \\
& =A\left(\int_{0}^{1} f *(t) \omega\left(t^{1 / \sigma}\right)(\log 1 / t)^{s} d t\right)^{1 / s}
\end{aligned}
$$

which is finite by hypothesis.
To estimate $I_{2}$, we use the fact that $T$ is of weak type ( $q, r$ ) to get

$$
\begin{aligned}
& I_{2}=\int_{0}^{1}\left(\omega(y)(T f)^{*}(y / 2)\right)^{1 / s} y^{1 / s p-1} d y \\
& \leq \int_{0}^{1}(\omega(y))^{1 / s}\left\|f_{u}\right\|_{q}^{1 / s} y^{1 / s p-1 / s r-1} d y \\
& \leq A \int_{0}^{1}(\omega(y))^{1 / s}\left(\int_{0}^{u}(f *(u))^{q} d t+\int_{u}^{1}(f *(t))^{q} d t\right)^{1 / q s} y^{1 / s p-1 / s r-1} d y \\
& \leq A\left[\int_{0}^{1}(\omega(y))^{1 / s} y^{1 / s p-1 / s r-1}\left(\int_{0}^{u}(f *(u))^{q} d t\right)^{1 / q s} d y\right. \\
& \\
& \left.\quad+\int_{0}^{1}(\omega(y))^{1 / s} y^{1 / s p-1 / s x-1}\left(\int_{u}^{1}(f *(t))^{q} d t\right)^{1 / q s} d y\right)
\end{aligned}
$$

$\equiv A\left(J_{1}+J_{2}\right)$, respectively.
But,

$$
\begin{aligned}
J_{1} & =\int_{0}^{1}(\omega(y))^{1 / s} y^{1 / s p-1 / s r-1}\left(\int_{0}^{y^{\sigma}}\left(f *\left(y^{\sigma}\right)\right)^{q} d t\right)^{1 / q s} d y \\
& =\int_{0}^{1}(\omega(y))^{1 / s} y^{1 / s p-1 / s r-1}\left(f *\left(y^{\sigma}\right)\right)^{1 / s} y^{\sigma / s q} d y
\end{aligned}
$$

so that the substitution $\mathrm{x}=\mathrm{y}^{\sigma}$ yields

$$
\begin{aligned}
J_{1} & =A \int_{0}^{1}\left(\omega\left(x^{1 / \sigma}\right) f *(x)\right)^{1 / s} x^{(1 / s p-1 / s r) / \sigma+1 / s q-1} d x \\
& =A \int_{0}^{1}\left(\omega\left(x^{1 / \sigma}\right) f *(x) x\right)^{1 / s} x^{-1} d x
\end{aligned}
$$

By Theorem 2.12,

$$
\begin{aligned}
J_{1}^{s} & =A\left(\int_{0}^{1}\left(\omega\left(x^{1 / \sigma}\right) f *(x) x\right)^{1 / s} x^{-1} d x\right)^{s} \\
& \leq A\left(\int_{0}^{1}\left(\omega\left(x^{1 / \sigma}\right) f *(x) x\right)^{p} x^{-1} d x\right)^{1 / p}
\end{aligned}
$$

for any $p \in(0,1 / s]$. In particular, we can set $p=1$, so that

$$
\mathrm{J}_{1} \leq A\left(\int_{0}^{1} \omega\left(x^{1 / \sigma}\right) \mathrm{f} *(x) \mathrm{d} x\right)^{1 / \mathrm{s}}
$$

But, since $L^{1}\left(\log ^{+} L\right)^{s}[0,1] \cong L^{1}[0,1], J_{1}$ is finite.
For $J_{2}$, we again make the substitution $x=y^{\sigma}$, to get

$$
J_{2}=\int_{0}^{1}(\omega(y))^{1 / s} y^{1 / s p-1 / s r-1}\left(\int_{y^{\sigma}}^{1}(f *(t))^{q} d t\right)^{1 / s q} d y
$$

Case 1 sq $\in(0,1]$. We apply Theorem 2.3 and then Theorem 2.12 to get $J_{2} \leq\left(\int_{0}^{1}(f *(t))^{q}\left(\int_{0}^{t^{1 / \sigma}}(\omega(y))^{1 / s} y^{1 / s p-1 / s r-1} d y\right)^{s q} \cdot d t\right)^{1 / s q}$

$$
\leq A\left(\int_{0}^{1}(f *(t))^{q}\left(\int_{0}^{t^{1 / \sigma}} \omega(y) y^{1 / p-1 / r-1} d y\right)^{q} d t\right)^{1 / s q}
$$

We now apply the growth condition satisfied by the weight function $\omega$. Note that we are using $x=t^{1 / \sigma}$. and $\alpha=1 / p-1 / r$. The result is

$$
\begin{aligned}
J_{2} & \leq A\left(\int_{0}^{1}(f *(t))^{q} t^{\alpha q / \sigma}\left(A \omega\left(t^{1 / \sigma}\right)\right)^{q} d t\right)^{1 / s q} \\
& =A\left(\int_{0}^{1}(f *(t))^{q} t^{q-1}\left(\omega\left(t^{1 / \sigma}\right)\right)^{q} d t\right)^{1 / s q} \\
& \leq A\left(\int_{0}^{1}(f *(t))^{q}\left(\omega\left(t^{1 / \sigma}\right)\right)^{q} d t\right)^{1 / s q} \\
& \leq A\left(\int_{0}^{1} £ *(t) \omega\left(t^{1 / \sigma}\right) d t\right)^{1 / s} \\
& <\infty .
\end{aligned}
$$

Case 2 sq $\in(1, \infty)$. In this case we have

$$
J_{2}=\int_{0}^{1}(\omega(y))^{1 / s} y^{1 / s p-1 / s r-1}\left(\int_{y^{\sigma}}^{1}(f *(t))^{q} d t\right)^{1 / s q} d y .
$$

$$
\begin{aligned}
& =\int_{0}^{1}(\omega(y))^{1 / s} y^{1 / 8 p-1 / s r-1}\left(\int_{y^{\sigma}}^{1}\left(t^{1 / q} f *(t)\right)^{q} t^{-1} d t\right)^{1 / 8 q} d y \\
& =\int_{0}^{1}(\omega(y))^{1 / s} y^{1 / s p-1 / s r-1}\left(\int_{y^{\sigma}}^{1}\left(t^{1 / s q}(f *(t))^{1 / s}\right)^{s q} t^{-1} d t\right)^{1 / s q} \cdot d y .
\end{aligned}
$$

Applying Theorem 2.12 to the inner integral yields

$$
J_{2} \leq A \int_{0}^{1}(\omega(y))^{1 / s} y^{1 / s p-1 / s r-1}\left(\int_{y^{\sigma}}^{1} t^{1 / s q-1}(f *(t))^{1 / s} d t\right) d y
$$

We now interchange the order of integration and apply Theorem 2.12 again to get

$$
\begin{aligned}
& J_{2} \leq A \int_{0}^{1} t^{1 / s q-1}(f \star(t))^{1 / s}\left(\int_{0}^{t^{1 / \sigma}} y^{1 / s p-1 / s r-1}(\omega(y))^{1 / s} d y\right) d t \\
& =A \int_{0}^{1} t^{1 / s q-1}(f *(t))^{1 / s}\left[\int_{0}^{t^{1 / \sigma}}\left(y^{1 / p-1 / r} \omega(y)\right)^{1 / s} y^{-1} d y\right) d t \\
& \left.\leq A \int_{0}^{1} t^{1 / 8 q-1}(f *(t))^{1 / 8} \iint_{0}^{t^{1 / \sigma}} y^{1 / p-1 / r-1} \omega(y) d y\right)^{1 / s} d t \\
& =A \int_{0}^{1} t^{1 / 8 q-1}(f *(t))^{1 / s} t^{\alpha / s \sigma}\left(t^{-\alpha / \sigma} \int_{0}^{t^{1 / \sigma}} y^{\alpha-1} \omega(y) d y\right)^{1 / 8} d t,
\end{aligned}
$$

where $\alpha=(1 / p-1 / r)$. By hypothesis, the last line is dominated by

$$
A \int_{0}^{1} t^{1 / 8 q-1}(f *(t))^{1 / s} t^{(1 / p-1 / r) / s \sigma}\left(A \omega\left(t^{1 / \sigma}\right)\right)^{1 / s} d t
$$

$$
\begin{aligned}
& =A \int_{0}^{1} t^{1 / s q-1}(f *(t))^{1 / s} t^{(1-1 / q) / s}\left(\omega\left(t^{1 / \sigma}\right)\right)^{1 / s} d t \\
& =A \int_{0}^{1}\left(t f *(t) \omega\left(t^{1 / \sigma}\right)\right)^{1 / s} t^{-1} d t .
\end{aligned}
$$

Once again we apply Theorem 2.12 to obtain the estimate

$$
\begin{aligned}
J_{2} & \leq A\left(\int_{0}^{1} t f *(t) \omega\left(t^{1 / \sigma}\right) t^{-1} d t\right)^{1 / s} \\
& =A\left(\int_{0}^{1} f *(t) \omega\left(t^{1 / \sigma}\right) d t\right)^{1 / s}
\end{aligned}
$$

By hypothesis,

$$
\int_{0}^{1} \omega\left(t^{1 / \sigma}\right) £ *(t)(\log 1 / t)^{s} d t<\infty
$$

and so, by Theorem 2.6, $J_{2}$ is finite.
Collecting terms, we are done.

Remark 15: We note here that in the case that $\omega(x) \equiv 1$, we retrieve the original theorem; that is, Theorem 3.1.

## CHAPTER IV

In this chapter we consider functions of bounded mean oscillation and obtain an interpolation theorem involving the $L^{\lambda}(p, q)-$ spaces. First we will state, without proof, interpolation results of H. Heinig [4] involving functions in $L(p, q)$, and then we will prove results for functions which belong to the $L^{1}\left(\log ^{+} L\right)^{s}$-spaces.

Theorem 4.1: Suppose $T$ is a quasi-linear operator defined on Lebesgue measurable functions $f$ which are defined almost everywhere on $C_{0}=C(0, a) . \quad I f$

$$
\|\mathrm{rf}\|_{L^{\mu_{1}}\left(r_{1}, q_{1}\right)} \leq A_{i}\|f\|_{p_{1}}
$$

where $i=0,1 ; p_{0}<p_{1}, r_{0} \neq r_{1}$ and $0<q_{1}<+\infty$, then


$$
\|T f\|_{L^{\mu}(r, q)} \leq A| | f \|_{p, s}^{*} \quad s \leq q
$$

where

$$
\begin{aligned}
& \frac{\mu}{q}=\frac{\mu_{0} t}{q_{0}}+\frac{\mu_{1}(1-t)}{q_{1}} \\
& \frac{1}{q}=\frac{t}{q_{0}}+\frac{1-t}{q_{1}} \\
& \frac{1}{p}=\frac{t}{p_{0}}+\frac{1-t}{p_{1}} \\
& \frac{1}{r}=\frac{t}{r_{0}}+\frac{1-t}{r_{1}} .
\end{aligned}
$$

As a corollary to the above theorem, we have:

Corollary 1: If T is a quasi-linear operator and

$$
\|T f\|_{L}\left(q_{i}, u_{i}\right) \leq A_{i}\|f\|_{p_{i}}
$$

where $1=0,1 ; p_{0}<p_{1}$, then

$$
\|T f\|_{L}(q, \mu) \leq A\|f\|_{p, q}^{*}
$$

where

$$
\begin{aligned}
& \frac{\mu}{q}=\frac{\mu_{0} t}{q_{0}}+\frac{\mu_{1}(1 i-t)}{q_{1}} \\
& \frac{1}{q}=\frac{t}{q_{0}}+\frac{1-t}{q_{1}} \quad 0<t<1 . \\
& \frac{1}{p}=\frac{t}{P_{0}}+\frac{1-t}{P_{1}} .
\end{aligned}
$$

If the parameters are restricted to being greater than 1 , we have:

Theorem 4.2: If $T$ is a quasi-linear operator and

$$
\|T f\|_{\left.L_{i} \mu_{i}, q_{i}\right)} \leq A_{i}\|f\|_{p_{i}, s_{i}}^{*}
$$

where $1=0,1 ; q_{1}>s_{i}>p_{i}>1, p_{0} \neq p_{1}, r_{0} \neq r_{1}$, then

$$
\|T f\|_{L^{\mu}(r, q)} \leq A\|f\|_{p, q}^{*}
$$

where

$$
\begin{aligned}
& \frac{\mu}{q}=\frac{\mu_{0} t}{q_{0}}+\frac{\mu_{1}(1-t)}{q_{1}} \\
& \frac{1}{q}=\frac{t}{q_{0}}+\frac{1-t}{q_{1}} \\
& \frac{1}{P}=\frac{t}{P_{0}}+\frac{1-t}{P_{1}} \\
& \frac{1}{r}=\frac{t}{r_{0}}+\frac{1-t}{r_{1}} .
\end{aligned}
$$

We now prove the following:

Theorem 4.3: Suppose $T$ is a quasi-1inear operator defined on Lebesgue measurable functions $f$ which are defined almost everywhere on $C_{0}$. If

$$
\text { (i) } \quad\left(\mathrm{TF}_{c}\right)^{*}(t) \leq A p^{\left(n-\mu_{0}\right) / p} t^{-1 / p}| | f| |_{1}
$$

and

$$
\text { (ii) } \quad\left(\mathrm{TF}_{\mathrm{c}}\right)^{*}(\mathrm{t}) \leq A \rho^{\left(\mathrm{n}-\mu_{1}\right) / \mathrm{r}} t^{-1 / \mathrm{r}}\|\mathrm{f}\|_{q}
$$

where $0<p \leq 1,0<p<r<+\infty, 0<s \leq 1 \leq q<+\infty$, $1 / p-1 / r>1 / q^{\prime}=q /(q-1)$ and $p / r \geq \mu_{0} / \mu_{1}$, then for $\lambda$ satisfying $\lambda>\mu_{1} / r s+\max \{n(1-1 / r s), 1-1 / r s\}$,

$$
\left|\left|\operatorname{Tf}\left\|_{L^{\lambda}(p, 1 / s)} \leq A| | f\right\|_{L^{1}\left(\log ^{+} L\right)^{s}}+C\right.\right.
$$

Proof: We note here that, without loss of generality, we can consider $C_{0}$ to be a cube of side length 1 , because $C_{0}=C(0, a)$ has finite side length by assumption. We consider $u \equiv u(t)$ to be a non-negative function of one variable and define, for $f$ defined almost everywhere on $C_{0}$,

$$
f^{u}(x)= \begin{cases}f(x) & \text { if }|f(x)|>\cdot f *(u) \\ 0 & \text { otherwise }\end{cases}
$$

and $f_{u}(x)=f(x)-f^{u}(x)$. As before, we apply the definitions of $f$ * and $D_{f}$ to obtain

$$
f^{u *}(y) \leq\left\{\begin{array}{cc}
f *(y) & 0<y<u \\
0 & y \geq u
\end{array}\right.
$$

and

$$
f_{u}^{*}(y) \leq\left\{\begin{array}{lc}
f *(u) & 0<y<u \\
f *(y) & y \geq u .
\end{array}\right.
$$

By setting $F_{c}^{0}(x)=f^{u}(x)-f_{c}^{u}$, where $f_{c}^{u}$ is the mean value of $f^{u}$ over $C(x, \rho)$, and $F_{c}^{l}(x)=f_{u}(x)-f_{u c}$, where $f_{u c}$ is the mean value of $f_{u}$ over $C(x, \rho)$, it follows that $F_{c}(x)=F_{c}^{0}(x)+F_{c}^{1}(x)$.

By Minkowski's inequality, we then have

$$
\begin{aligned}
\|T f\|_{L}{ }_{(p, 1 / s)} & \equiv \sup _{\rho \leq 1}\left(\rho^{\lambda-n} \int_{0}^{\rho^{n}}\left(t^{1 / p}\left(T_{c}\right)^{*}(t)\right)^{1 / s} t^{-1} d t\right)^{s} \\
& \leq \sup _{\rho \leq 1}\left(\left\{\rho^{\lambda-n} \int_{0}^{\rho^{n}}\left(t^{1 / p}\left(\operatorname{TF}_{c}^{0}\right)^{*}(t / 2)\right)^{1 / 8} t^{-1} d t\right)^{s}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad+\left(\rho^{\lambda-n} \int_{0}^{\rho^{n}}\left(t^{1 / \rho}\left(T F_{c}^{1}\right)^{*}(t / 2)\right)^{1 / s} t^{-1} d t\right)^{s}\right) \\
& \equiv A \sup _{\rho \leq 1}\left(I_{1}+I_{2}\right), \text { respectively. }
\end{aligned}
$$

To estimate $I_{1}$, we note that, by (1),

$$
\begin{aligned}
I_{1}^{1 / s} & \leq \rho^{\lambda-n} \int_{0}^{\rho^{n}}\left(t^{1 / p} A \rho^{\left(n-\mu_{0}\right) / p} t^{-1 / p}\left\|f^{u}\right\|_{1}\right)^{1 / s} t^{-1} d t \\
& =A \rho^{\lambda-n+\left(n-\mu_{0}\right) / p s} \int_{0}^{\rho^{n}}\left\|f^{u}\right\|_{1}^{1 / s} t^{-1} d t
\end{aligned}
$$

and, setting $\rho^{n} x=t$,

$$
\begin{aligned}
I_{1}^{1 / s} & \leq A \rho^{\lambda-n+\left(n-\mu_{0}\right) / p s} \int_{0}^{1}\left\|f^{u}\right\|_{1}^{1 / s} x^{-1} d x \\
& =A \rho^{\lambda-n+\left(n-\mu_{0}\right) / p s} \int_{0}^{1}\left(\int_{0}^{1} f^{u *}(y) d y\right)^{1 / s} x^{-1} d x \\
& \leq A \rho^{\lambda-n+\left(n-\mu_{0}\right) / p s} \int_{0}^{1}\left(\int_{0}^{\mu(x)} f *(y) d y\right)^{1 / s} x^{-1} d x .
\end{aligned}
$$

Choose $u(x)=x^{\alpha}$, where $a=\rho^{\gamma}$ and $\gamma>0$. Then by Theorem 2.3,

$$
\begin{aligned}
I_{1}^{1 / s} & \leq A \rho^{\lambda-n^{+}+\left(n-\mu_{0}\right) / p s}\left(\int_{0}^{1} f *(y)\left(\int_{y^{1 / \alpha}}^{1} x^{-1} d x\right)^{s} d y\right)^{1 / s} \\
& =A \rho^{\lambda-n+\left(n-\mu_{0}\right) / p s}\left(\int_{0}^{1} f *(y)\left(\log 1 / y^{1 / \alpha}\right)^{s} d y\right)^{1 / s}
\end{aligned}
$$

$$
=A \rho^{\lambda-n+\left(n-\mu_{0}\right) / p s-\gamma}\left(\int_{0}^{1} f *(y)(\log 1 / y)^{s} d y\right)^{1 / s}
$$

If $\lambda-n+\left(n-\mu_{0}\right) / p s \geq \gamma>0$, then from the fact that $0<\rho \leq 1$, we have $\rho^{\lambda-n+\left(n-\mu_{0}\right) / p s-\gamma} \leq 1$ and so

$$
I_{1}^{1 / s} \leq A\left(\int_{0}^{1} f \star(y)(\log 1 / y)^{s} d y\right)^{1 / s}
$$

which is finite if $f \in L^{l}\left(\log ^{+} L\right)^{s}[0,1]$.
Now consider $I_{2}$. From (ii) we have

$$
\begin{aligned}
& I_{2}^{1 / s}=\rho^{\lambda-n} \int_{0}^{\rho^{n}}\left(t^{1 / p}\left(\mathrm{TF}_{c}^{l}\right)^{*}(\mathrm{t} / 2)\right)^{1 / s} t^{-1} d t \\
& \left.\leq A \rho^{\lambda-n+\left(n-\mu_{1}\right) / r s \int_{0}^{\rho^{n}}\left(t^{1 / p}-1 / r\right.}\left\|_{u}\right\|_{q}\right)^{1 / s} t^{-1} d t \\
& =A \rho^{\lambda-n+\left(n-\mu_{1}\right) / r s+n / p s-n / r s \int_{0}^{1} x^{1 / p s}-1 / s r}\left\|f_{u}\right\|_{q}^{1 / s} x^{-1} d x
\end{aligned}
$$

$$
\text { by setting } p^{n} x=t . \quad \text { Therefore }
$$

$$
\mathrm{I}_{2}^{1 / \mathrm{B}}
$$

$$
\leq A \rho^{\lambda-n+n / s p-\mu_{1} / r s} \cdot \int_{0}^{1} x^{1 / p s-1 / r s}\left(\int_{0}^{x^{\alpha}}\left(f *\left(x^{\alpha}\right)\right)^{q} d y\right.
$$

$$
\left.+\int_{x^{\alpha}}^{1}\left(f^{*}(y)\right)^{q} d y\right)^{1 / 8 q} x^{-1} d x
$$

$$
\begin{aligned}
& \leq A\left(\rho^{\lambda-n+n / s p-\mu_{1} / r s} \int_{0}^{1} x^{1 / s p-1 / s r-1}\left(\int_{0}^{x^{\alpha}}\left(f *\left(x^{\alpha}\right)\right)^{q} d y\right)^{1 / s q} d x\right. \\
&\left.+\rho^{\lambda-n+n / s p-\mu_{1} / r s} \int_{0}^{1} x^{1 / s p-1 / s r-1}\left(\int_{x^{\alpha}}^{1}(f *(y))^{q} d y\right)^{1 / s q} d x\right)
\end{aligned}
$$

$$
\equiv A\left(J_{1}+J_{2}\right)
$$

Substituting $x^{\alpha}=t$ into $J_{1}$ yields
$J_{1}=\rho^{\lambda-n+n / p s-\mu_{1} / r s-\gamma} \int_{0}^{1} t^{1 / \alpha s p-1 / \alpha s r+1 / s q-1}(f *(t))^{1 / s} d t$.
Since $\gamma>0$ and $0<\alpha \leq 1$, we have $1 / \alpha s \geq 1 / s$ and
$J_{1} \leq \rho^{\lambda-n+n / p s-\mu_{1} / r s-\gamma} \int_{0}^{1} t^{1 / s p-1 / s r+1 / s q-1}(f *(t))^{1 / s} d t$.
If $\lambda-n+n / p s-\mu_{1} / r s \geq \gamma>0$, then $0<\rho^{\lambda-n+n / p s-\mu_{1} / r s-\gamma}$ and this number is bounded above by 1 , so that by Theorem 2.12,

$$
\begin{aligned}
J_{1} & \leq \int_{0}^{1} t^{(1 / p-1 / r+1 / q) / s-1}(f *(t))^{1 / s} d t \\
& =\int_{0}^{1}\left(t^{1 / p-1 / r+1 / q} f *(t)\right)^{1 / s} t^{-1} d t \\
& \leq A \cdot\left(\int_{0}^{1} t^{1 / p-1 / r+1 / q-1} f *(t) d t\right)^{1 / s}
\end{aligned}
$$

However, if $1 / p-1 / r>1 / q^{\prime}=1-1 / q$, the last integral is dominated

$$
A\left(\int_{0}^{1} f *(t) d t\right)^{1 / s}
$$

which is finite by Theorem 2.7 and the hypothesis that $f \in L^{1}\left(\log ^{+} L\right)^{s}[0,1]$.
Considering $J_{2}$, we set $x^{\alpha}=t$ to obtain

$$
J_{2}=\rho^{\theta-\gamma} \int_{0}^{1} t^{1 / \alpha s p-1 / \alpha s r-1}\left(\int_{t}^{1}(f *(y))^{q} d y\right)^{1 / s q}
$$

where $\theta=\lambda-n+n / p s-\mu_{1} / r s$. We note that if $\gamma$ is determined by the restrictions indicated above, then

$$
\begin{aligned}
J_{2} & \leq A \int_{0}^{1} t(1 / p-1 / r) / s-1\left(\int_{t}^{1}(f *(y))^{q} d y\right)^{1 / s q} d t \\
& \leq A \int_{0}^{1}(1 / p-1 / r) / s-1\left(t(f *(t))^{q}\right)^{1 / s q} d t \\
& =A \int_{0}^{1}\left(t^{1 / p-1 / r+1 / q} f *(t)\right)^{1 / s} t^{-1} d t \\
& \leq A\left(\int_{0}^{1} t^{1 / p-1 / r+1 / q-1} f *(t) d t\right)^{1 / s} \\
& \leq A\left[\int_{0}^{1} f *(t) d t\right)^{1 / 8} \\
& <\infty
\end{aligned}
$$

as above.

Hence, collecting terms, we have the desired result.

Lastly, we have two corollaries of the above theorem.

Corollary 1: If $\mathrm{p}=\mathrm{s}=1$, then

$$
\|T f\|_{L}(\lambda, 1)=\|T f\|_{L} \lambda_{(1,1)} \leq A\|f\|_{L^{1}(\log +L)^{1}}+C .
$$

Corollary 2: If $1 \leq p=1 / s<r<+\infty$, then

$$
\|T f\|_{L}(\lambda, p)=\|T f\|_{L} \lambda_{(p, p)} \leq A\|f\|_{L^{1}\left(\log _{L}\right)^{+} s+C .} .
$$

## BIBLIOGRAPHY

1. Bennett, Colin. "Intermediate spaces and the class L log ${ }^{+}$"', Arkiv for matematik, II (1973), No 2, 215-228.
2. Edwards, R. E. Fourier Series, A Modern Introduction, Vols. I and II. New York: Holt, Rinehart and Winston, 1967.
3. Gagliardo, E. "Interpolation d'espaces de Banach et applications $I$ - III", C. R. Acad. Sci. Paris, CCXLVIII (1959), 1912-1914, 3388-3390, 3517-3518.
4. Heinig, Hans P. "Interpolation in $L^{\lambda}(p, q)$-spaces", Mathematical Report No 81, McMaster University, 1976.
5. Hewitt, Edwin and Karl Stromberg. Real and Abstract Analysis. New York: Springer-Verlag, 1975.
6. Hunt, Richard A. "On L(p,q) spaces", L'Enseignement Math., XII (1966), 249-276.
7. Jodeit, Max, Jr. "An inequality for the indefinite integral of a function in $L^{\text {q }}$, Studia Mathematica, XLIV (1972), 545 554.
8. John, F. and L. Nirenberg. "On functions of bounded mean oscillation", Communications on Pure and Applied Mathematics, XIV (1961), 415-426.
9. Johnson, Raymond. "Temperatures, Riesz potentials, and the Lipschitz spaces of Herz", Proc. London Math. Soc., (3) XXVII (1973), 290-316.
10. Lions, J. L. and E. Magenes. Non-homogeneous Boundary Value Problems and Applications I - III. New York: SpringerVerlag, 1972 (I and II), 1973 (III).
11. Marcinkiewicz, J. "Sur 1'interpolation d'operations", C. R. Acad. Sci. Paris, CCVIII (1939), 1272 - 1273.
12. Meyers, Norman G. "Mean oscillation over cubes and Hölder continuity", Proc. Amer. Math. Soc., XV (1964) 717 721.
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 

Muckenhoupt, Benjamin. "Hardy"s inequality with weights", Studia Mathematical, XLIV (1972), 31-38./
0'Neil, Richard. "Les fonctions conjugées et les intégrales fractionnaires de la class $L\left(\log ^{\prime} L\right)^{S "}$, C. R. Acid. Sci. Paris, Ser A - B, CCLXIII (1966), A463-466.

Riesz, Marcel. "Sur les maxima des forme bllinéaires et sur les fonctionnelles lineaires", Act Mathematic, XLIV (1926), 465-497.

Sagher, Yoram. "On analytic families of operators", Israel Journal of Mathematics, VII (1969), 350-356.

Stampacchia, Guido. "LD, $)_{\text {-spaces and Interpolation", Comm. }}^{\text {. }}$ on Pure and Applied Mathematics, XVII (1964), 293-306.

Stein, E. M. Singular Integrals and Differentiability Properties of Functions. Princeton, New Jersey: Princeton University Press, 1970.


Stein, E. M. and G. Weiss. "On the interpolation of analytic families of operators acting on $\mathrm{H}^{\mathrm{p}}$-spaces", Tôhoku Mathematical Journal, IX (1957), 318-339.

Thorin, G. O. "An extension of a convexity theorem due to M. Riesz", Kungl. Fysiografiska Saellskapet i Lung Forhaendlinger, VIII (1939), No 14.

Zaanen, Adriaan $C$. An Introduction to the Theory of Integration. Amsterdam: North Holland, 1958.

Zygmund, Antoni. "Some points in the theory of trigonometric and power series", Trans. Amer. Math. Society, XXXVI (1936), 586-617. Spaces. Princeton, New Jersey: Princeton University Press, 1971. Cambridge: Cambridge University Press, 1968. Vt.

