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ABSTRACT

This thesis is concerned with the study of interpolétion
theorems involving-certain Orlicz spaces and spaces of functions of\
Bounded Mean Oscillation. In addition, we consider the Orlicz spaces
in a weighted sense by applying weight functions satisfying certain

growth conditions.
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CHAPTER I

Let T be a linear operator which maps a linear space X into a
linear space Y. Suppose that:X1 and X; (respectively Y; and Y3) are
Banach subspaces of X (respectively Y), such that T is a bounded, (that
is continuous), linear operator mapping Xi int; Yi for 1 = 1,2, Often,
using the boundedness properties of T, one can determine other pairs
(X',Y') of subspaces (X'c X,Y'c Y) such that T maps X' into Y'
continuously. Theorems concerned with the above are called
interpolation theorems. .

The first significant steps in interpolation theory were made‘
by Marcei %ﬁesz [15] in 1956. In his paper "Sur les m;xima des\formes

bilinéaires et sur les foncE}onnelles linéaires', Riesz considered the
1 ! é.

Banach spaces'Lp(X,M,p) of real-valued Lebesgue measurable functions,

defined on X, whoée pth power is integrable.

In 1939, G. 0. Thorin [21] extended and modified the

intérpolation or convexity theorem of M. Riesz. Thorin showed that a

: ) . P .
linear operator T, which maps L 1(X,M,u) continuously into L i(X,—M,u)

\

|
¥

)
2
s
‘a

(1 = 1,2), can be extended to a continuous linear operator (without

_‘
o akznd a

éhgnge of norm) from FP(X,M,u) to‘Lq(X,M,u); where p ¢ [pg,p3] and

|

Po i1llustrate this result, consider the Fourier Transform,

car el )

q € [q9,9;1.

“defined by Tf = £, where, for £ ¢ LI(R) n L2(R),

Ll
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b 1 ixt
f(x) = —~—-J e f(t)dt. ,
i >

-00

Fa-t

From the definition of £, it follows that

Hzel ], < ullg]],
and from Plancherel's Theorem,'

Herellz2 = [£]]2.
An application of the Riesz-Thorin Convexity Theorem then shows that
the Hausdorff—Youné Inequality, °

el s mllel],
where 1 < p £ 2 and q = EEI’ holds.

For many operators, the hypotheées of the Riesz-Thorin
Convexity Tﬁeorem are too strong t;\be applicable. The question then
ariseq whether the coniinu;ty of T at the endpoints can be replaced by
some weaker condition. Also, one might ask 4f the operator T could be
sublinear oxr quasi-linear.

J. Marcinkiewicz [11] obtained the first major results
éoncerning these questions. He considered quasi-~linear operators
which satisfied certain Tweak" boundedness conditions at the endpoints
and he obtained an interpolation theorem. It should be ﬂotgd that the
Marcinkiewicz\interpo}ation Theoéem does not imply the Riesz-Thorin

i «
Theorem, although fo# certain p and q it is more general.

For exampié, we look a4t the Hilbert Transform H, defined by
; © ' ‘o

N ¢ ) £(t)

(BE) () = 2L | 5L g,

00 ’ -

where the integral is considered in the Cauchy pridq4p31 value sense.
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Using Plancherel's Theorem, it,can be shown that H maps L2 onto itself

- - continuously. H 1s not, however, bounded from L! to LY, although it

is weakly bounded in the sense of Marcinkiewicz (see again, [11]).

_ Thus, we can apply the Marcinkiewicz Interpolation Theorem to obtain

Heell s wflell) 1 <ps2
A dualit§ argument shows that the norm estimate holds then for all
p e (1,%).

In 1957, Elias M. Stein and Guido Weiss [19] presented
interpolation theorems for analytic families of operators. In
particular, they extended the Riesz-~Thorin Theoréﬁj%y replacing the
single operator T by an analytic family of operators {Tw}m - x +‘1y’
0 < xs 1. Yoram Sagher [16] obtained a Mércinkiewicz Theorem for
analytic families of operators by working with Lorentz spaces. These
results made it possible to interpolate between Lp-spaces ha;ing
different measures. _

fhe prooés of some of these interpolat{on theorems involve the
concept of the non-increasing equimeasurable reérrangement of a
measurable fgnction. This in Eurﬁ led to the introduction of the
Lorentz‘;paces, L{(p,q), and thus quite naturally to the development of
an abstract theory. This workiwas largely pioneered by J. L. Lions,
J. Peetre, A. P. Calder6n and E. Gagliardo. They developed ﬁethods of
cons;ructing linear spaces which were intermediate to arbitrary Banach
spaces. For charﬁcterizations of intermediate spaces and their
application to boundary value ?roblems, we refer to Gégliardo £33 and

[y

J. L. Lions, and E. Magenes [10].
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This thesis concerns itself with the study of interpolation
theorems-specifically the Marcinkiewicz Theorem-for certain Orlicz
function sﬁaces and for spaces of functions of Bounded Mean Oscillation.
The primary o'bject': is to obtain an interpolation theorem involving the
spaces Lp(log+L)S and the Lorentz spaces L(p,q). Such a theorem was
introduced by Richard O0'Neil [14] in terms of the distribution of a
function. Our proof is different in that the distribution function is
repiaced by the non—increasing equimeasurable rearrangement of the
function. In addition, we introduce a weight in the spaces Lp(log+L)s
and prove an interpolation theorem :anolving. thesé and certain weighted
Lorentz spaces,

Interéolation theorems involving the function‘spaces L; were
:neviohsly given\by G. Stampacchia [17]. The spaces L:‘are more general
than the spaces of functions of Bounded Mean Oscillation and the& were
extended in {u4] to the spaces Lx(p,q) which are Lorentz spaces of

' functions of Bounded ﬁean Oscillation. 1In the iast ch‘apter,, we give an
interpolagion theorem involving functions of L¥(log+L)? and the sﬁﬁces

L)‘(p.q)-
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CHAPTER II

Section A. Notations and Definitions -

The following is a collection of definitionsxand notations to
which we will adhere throughout this thesis. We will consider measure
gpaces (X,M,p) which are either totally finite or o-finite, The
measures are all Lebesgue measures and the functions considered are
complex-valued Lebesgue measurable functions.

We begin by defining the Lebesgue spaceé, LP(X,M,u)

(0 < p < ©), of p—integraéle functions defined algost everywhere (with
respect‘to #) on X. Keeping in mind that the Lebesgue integral does
not distinguish functions which differ only on sets of measure zero,
we will refer to functions when in fact, we are discussing equivali?ce

classes of functions modulo a set of measure zero.

@

Definition 2.1: (i) For 0 < p < =, LP(X,M,p) consists of

those complex-valued Lebesgue measurable functions.f, defined almost
everywhere on X, for which 1£1P is intégraﬁle{

. (-] '
(i1) For p = =, L (X,M,n) consists of those

-complex-valued Lebesgue measurable functions f, defined almost-

everywhere on X, which are almost everywhere bounded.
 Remark 1: (i) For 0 < p < », we define

' Hpr = [ I'lf(x)lpdu(x))i/p.
S ¢
‘5
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For p 2 1, i['[(p is a norm and LP(X,M,u) is a normed linear space,
which is complete by the Riesz~Fischer Theorem [5, p. 192}, Thus,
~Lp(X,M,u) (1 £ p < @) 13 a Banach space. If 0 < p < 1, then

d(f,g) = ]]f - g]lg defines a metric, under which Lp(X,M,u) is
complete, Therefore, LP(X,M,u) (0 < p < 1) i8 a Fréchet space.

-

(11) For p = «, we define

€]}, = ess sup 1£(x)1,
x € X

where

ess sup |f(x)] = inf {a ¢ [0,+); u({x ¢ X; [£(x)] > a}) = 0}.

x e X

Il-]lu i8 a norm and, by the Riesz~Fischer Theofem, Lw(X,M,u) is a
{

| .

We note here that the above definitions and remarks can be

Banach space.

found, for example, in Hewitt and Stromberg [5].

‘A larger class of spaces is the class of Orlicz spaces. This
class is larger in the sense that the Orlicz spaces are Banach spaces
and that the Lp‘Bpaces, for 1 £ p < =, are particular examples of
Orlicz spaces. The following development of Otlicz spaces can be
found in Zygmupﬁ 24, Vol. I, pp. 170 - 1757.

For a non-negative functipn ¢ defined on {0,+=), and a measure
space (X,M,u), we denote, by L¢(X,M,u), the class of thoge complex—

valued Lebesgue measurable functions f, defined almost everywhere on

X, for which ¢(|£]) is integrable on X., That is, £ ¢ Ly (X,M,u) if

.

.

f SUIE(x) DAU(K) < 4.
X X .
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Consider two functions ¢ and ¥ which are defined on [0,4=)
and satisfy the following conditions:

~

’(i) ¢ and 4 are continuous.

j/ (i1) ¢(0) = y(0) = ©.

P, iii) ¢ and ¢ are strictly increasing.
/S
’ (Av) ¢ x)) = (o (x)) = x. )
If we sget
%
¢(x) = f ¢(t)dt
0
and

X
¥(x) = J y(t)de,
0
then we have, for any xg, yg 2 0, Young's Inequality: .

xoyg S $(xp) + ?(yo).’
¢ and ¥ are calied complementary functions in the sense of
Young. ‘
We note here, without proof, that for any ¢ defined on {0,+=),
with ¢ being non-negative, convex, zero at the origin and such that
lim ) 4<, there exists a function ¥ which is complementary to ¢
>
fn t;: sense of Young. The proof of this may be found in Zygmund [2u,

Vol. I, p. 251.

Definition 2.2: Let & be defined. on [0,4=), such that & is

non-negative, convex, zero at thé origin and satisfies 1lim =) = G,

X > 4o
We denote, by L;(X,M,p), the set consisting of those complex-valued

Lebeggue measurable functions £, defined almost eyerywhere.on X, for




.

which ifgi 18 integrable over X, for any g ¢ L?(X,M,u).

Remark 2: (i) By setting

€1l = syp IJ £(x)g(x)du(x) |, -
X
where the supremum is taken over all those g ¢ Lw(X,M,u) with

[ ¥(lg(x)Ddu(x) < 1,
X

~

L%(X,M,u) becomes a complete normed linear space. That is, it is a

Banach space.

(i1) Clearly, LP(X,M,u) is an Orlicz space for
p 2 1, where ¢(x) = xP.

(111) .In Chapéer,Ig; we will discuss the o
interpolation of certain operators in coﬁnection with the Orlicz spaces

Lp(log+L)S(X,M,u) where X = [0,1], 1 S p < +4+® and 0 S s £ 1. We define

these spaces as follows:

Definition 2.3: For 1 s p < 4+» and 0 < 8 s 1, LP(logL)®0,1]

consists of those complex-valued Lebesgue measurable functioms f,

defined almost everywhere on [0,1], for which

1 J " _
J 1£(x) [Plog 1y %dx < 4,
. 0 ¢
where log+if(x)| = JoglE(xY|if |£(x)] 21 and 0 otherwise.

© 1t is obvious, frﬁh the above definition, that if s = 0, then
Lp(log+L)°[O.1] = 1Pro,11. -

<,
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i

f Definition 2.4: If f is a complex-valued Lebesgue measurable (
function defined almost everywhere on X, the distribution function Df,

of £, is defined by

De(y) = ul{x € X; 1£G)1 > y}) y > 0.

We note that the distribution function D_ is non-increasing and

f
continuous on the right. Also, for y > 0, we have

D, g(2y) < De(y) + Dg(y)-
This inequality follows from the set inclusions
{x e X5 1£(x) +g(x)| > 2y} < {x e X5 [£x)] + |g(x)| > 2y}

c {fo X £ > yh o {x e X5 [g(x)| > vy}

Applying the measure i to both sides of the above inclusion yields the
desired inequality.

Closely connected with the distribution function is the

non-increasing equimeasurable rearrangement of a measurable function.

Definition 2.5: If f is a complex-valued Lebesgue measurable

function defined almost everywhere on X and Df its distribution on
(0,+=), then the non-increasing equimeasurable rearrangement f* of f
onto (0,4+=) is defined by

£x(x) = inf {y > 0; Df(y) < x} x > 0. ,

The non-increasing equimeagurable rearrangement f* of f is
also a non-increasing fungtion and is continuous on the right. 1f
Df is strictly decreasing, then f£* is the inverse/of Dé and
f*(Df(y)) = y, It should be noted that £* is called the

"equimeasurable' ‘rearrangement of f because Df = Dgy. We will show

- y
e My
R R

-
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this later on.

Remark 3: (i) An useful property of the non-increasing
equimeasurable rearrangement f* of £ is that, for x > 0,
(£ + g)*(2x) < £*(x) + g*(x).
This in?quality follows from the similar inequality for the
distribution function D_ and the fact that f* is the inverse of D_ if

f £

1)'_1 exists.
f
(ii) We also have that if E is a measurable subset

of X (E ¢ X) and u(E) s t < #4, then

t
j 1£(x) |du(x) = f fx(x)dx. -
E 0

In Chapter II1I we will also deal with spaces which are related
to the Lp(log+1)8—spaces defined abbve. They are the Kp(log+K)s-spaces

and are defined by:

//i> Definition 2.6: For 0 < p < +», 0 £ 8 < 4=, thg spaces

Kp(log+k)S(X,M,u) consist of those complex-valued Lebesgue measurable

functions f, defined almost everywhere on X, for which

1
J x1/P - 1f*(x)(log llx)slp dx < 4,

0
g

Definition 2.7: If X and Y are function spaces and T maps X

into Y such that T(f + g) is uniquely defined whenever Tf and Tg are
defined, then T is'called a quasi-linear operator if there exists a
constant k (> 0), independent.of f and g, such that

IT(f + 8)1 < w(ITEl + |Tgl).

(i

-
i 0 0479 N {M-Oarvaan

et




If xk = 1, then T is8 called a gublinear operator.

When discussing the interpolation of operators on the above
spaces, we will, for the sake of brevity, deal with, linear operators,
/ .

although the results hold also for quasi-linear and sublinear :

operators.

Definition 2.8: A linear operator T is said to be of strong

type (p,q) (0 < p,q S +=») if
' £ £
Hrell, < allell,

for some constant A (> 0).

b

Definition 2.9: A linear operator T is said to be of weak

type (p,q) (0 < p,q < +=) if there exists a constant A (> 0) such that,

for any y > O,

K
£
e

DTf y : ?
If 0 < p < 4= and q = 4=, we define weak type (p,q) to be the same as S A
strong type (p,q). That is, T is of weak type (p,~) if : 3

Hrell, s allel ],

where A is a gonstant (> 0). ' N

Reflark 4: (i) In terms of non—incﬁéasing equimeasurable

'

rearrangements, a linear operator T is of wéak type (p,q)
j

(0 < p,q < +») if there exists a constant A (> 0) such that

allell, .

*
(T£) (t) < -——711—-?— .
' et

/

(14) I£f T is of straﬁg type (p,q) then it is of

/

[
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weak type (p,q), but not conversely. TFor an example that the converse

does not hold, consider the~operator T defined by

T£ (x) =*-1£r|f(t)ldt, x > 0.
0 ,

This operator is of weak type (1,1) but is not of strong type (1,1).

Proof: We can consider f(x) = (x + 1)-2. Then
-] ‘i\\ N
J J£(x)){dx = Iw(x + 1)-2dx Kf//ﬂ—’-
0 0

= —-(x + 1) 1':

m 1 & o, f

That is, f € L1(0,+). However,

-

r&
Hzelfy = | {T€x) lax
Jo .
X .
.- Pli—f 1£(0) ldeldx .~ .
o o
o x '
- | xt I (¢ + 1) 2ar|dx
0 0
re X
- [t s 07 e

0y

- rlx'i(-(x + 17t + 1)/ dx
. .

- Iﬁlx-i(x(x +41)_1)|dx ' f
0 .

bk i AR b
) "
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]

- Jm(x + 1)_1dx / %

0 K

e

= o, B

Hence, there does not exist a finite positive constant A such that .
|IT£]]1 < A}|£|]1. 1In other words, T is not of strong type (1,1).

On the other hand, ?

* 1 (X B

(T£) (%) 2T f*(t)dt .

0 3

v 7

1 f“f*
< ; J (t)dte
0
1
el 1-
Hence, T is of weak type (i,i).
(111) We note here that throughout the thesis we
will denote constants by the letter A. Aé different appearances, A

may take on different values.

‘ i
The last chapter will deal with the interpélation of certain
sublinear operators defined on the Lx(p,q)—spaces (A € (—=,4);
P»q > 0) introduced by H. Heinig [4]. These spaces are defined by
)

combining the notions of Lorentz spaces and the L(p’k -spaces

(A € (~o,4=); p =2 1) of G. Stampacchia [17] as follows: :
Vo . " 3

Definitioh 2.10: For 0 < p,q S +», the Lorentz spaces

i(p,q)(x,u,u) consisL of those complex-valued Lebesgue measurable

functions £, defined almost everywhere on X, for which ||f]|; q is . i
. - . » K




&

14 ;
finite, whtere

r 1
q = _ .
[; r(cp £x(e))d ¢ dt]q 0 < p,q < +=° a
o - ‘

sup tP £x(t) 0 < p s 4o, q =4,

We will show later that Hf]lp = Hf*“p and hence
Hf” = Hf”* . From this we have that
P P>P

LP(x,M,1) = L(p,p) (X,M,un).

e —

In addition, we have that the L(p,q) (X,M,u)-spaces are, for

1

0 < p,q < +~, complete metric spaces (Fréchet spaces). For 1 < p < 4=
and 1 $ q S 4>, the spaces L(p,q) (X,M,nu) are Banach spaces under the

norm ll.llp,q defined by

( q > - 2’-
('ﬁj (eP £xx(r))} T 71 dt]q 1<p s+
0 1S q< 4
£ -4
el
i .
sup tP £rx(t) - 1 <psSim, q=-=,
t> 0 K

wherxe f** 1s‘défiﬁed by

- . (* ) -
£x%(x) = ;-I f*(t)de.
0

-




1]

For further details consult, for example, Hunt [6].

To define the L(p’x)—spaces, we consider a cube Cj in fhe
n-qimensional Eﬁclidepn space Rg, where n is a positive integér. We
note that R = (—m,+w5, the set of real numbers, and R® = R x R® ~ 1.
That is, R is the Cartesian product of n copies of R.

For any element x pf Co adﬁ for any positive real number op,
we consider C(x,p) to be the parallei subcube of Cp with centre x € Cy
and with side length p. Without loss of generality, we can and will

assume that Cp'is centred at the origin and has side length a. We then

have the following:

Definition 2.11: For 1 s p < += and A ¢ R, the spaces

consist of those complex-valued Lebeééue measurable
functions f, defined almost everywhere on Cp, such that llfll (p,A) is
L 4

finite, where

1

. 1
HEN oy = | e 0% 7™ [ 1£) - 217 ay P
L\P» C(x,p) < Cg- " C(x,0) )

In the above integrals, fc is the mean value of f over the subcube C(x,p) .

Of Co.

Remark 5: We note here that I! ]l ( ) is not a norm because
||£|I (p A) = 0 1mp11es only that f(y) = f almost everywhere on C(x,p).

That is, only th#t f is constant almost everywhere on the subcube

/C(x,p). The spaces L(?’A)

can be normed by setting
Held, = Hell o -+ |I£]] .

Py L'l(co) L(p’x)
t

S~

TSRS
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For details, see G. Stampacchia [17]. We also have two special cases

for particular values of A.

(pfk) is equal,

Cagse 1 A < 0. 1If XA is mnegative, then a function £ € L

almost everywhere, to a Holder continuous function. See Meyers [12].

(1,0)

Cage 2 A =0, If A=0andn=1, L coincides with the space of

functions of bounded mean oscillation which are defined below.

Definition 2.12: If f is a complex-valued Lebesgue measurable

function defined almost everywhere on Rn (n a pogitive integer), then £

is said to be of bounded mean oscillation (BMO) on R" if there exists a

constant A (> 0) such that é
k%4
2] 1g@y) - £ 1 dy s A
u(c) c
C

for every cube C in R®. In the above integral, fc is the mean value of

f over C.

Remark 6:  From the last Lefinition, it is clear that every

" bounded complex-valued Lebesgue/measurable function is of BMO. However,
the converse is not true. F. John and L. Nirenberg [8] provide the
following epample. In R2, the function f(x,y) = log|x - y| is not

bounded. illation.

The aboye ideas ean be combined to/ yleld“the notion of the

LACp,q)(Co)~spaces. If we write Fc t) = £(t) - £ and Necall the

definitions of the L(p,g)-spaces and the’ -gpaces8, we have the

following: - '

-

-~

Definition 2.13: For —» < A < 4= and 0 < P4 S *=, the spaces

A
Ve
LI
i
£
N
4
4
4

P T I TS
T
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Lx(p,q)(Co) = Lx(p,q) consist of those complex-~valued Lebesgue

measurable functions f, defined almost everywhere on Co; for which

llfll A is finite, where
L (p,q)
1 ® = =
sup [pk - I (tp F:(t))q t:.-1 dt}q.
C(x,p) = Cy o
‘ | 0 < psq < 4=
ep , 1=
L (p’q) X I ;
1 .
sup sup tP Fg(t) 0 <psS4o, q=4,"
C(x,p) = Cp t >0
\

4

Remark 7: For p = q 2 1, we have that the LA(p,q)~apaces

(p,2)

reduce to the L —-spaces of G. Stampacchia [17].

-

Section B. Preliminary Results

TKis section consists of results which will be used at later

o«

stages of the thesis. The first two theorems are proved for arbitrary
measure spaces even though we will deal only with measure spaces which

are totally finite or o-finite.

Theorem 2.1: (Zaanen [22, p. 127]1) I1f 1 < p < 4= and q is

such'that'%-+~% = 1, then for any f ¢ LP(X,M,u), where (X,M,u) is an

arbitrary measure space, ¢

‘lflip = sup l[,f(x)é(x)du(x)l
X

B T o

PRt

K owavie

Vg
o

.
-
i,
t
t
i
H
1)
-
3
!
:
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= gup f FE(x) g (x) [du(x),
g X

where the supremum is taken over all functions g € Lq(X,M,u), such

gl = 1.

Proof: For 1 < p < +<, HSlder's inequality shows that

f [£(x)g(x) ldu(x) < IIfllpllgIIq :
X .

s ety e (sl s 1.

If p = 1, then the inequality follows trivially.

To complete the proof, we need to produce a function for which ;f
;‘%
equality holds. For complex z, define { %
(. )
£ 4o
7] 0 < |zl <
sgn z = {
| 1 lz| = 4,
M
1

Now define h(x) = Cleafly h e Lm(X,M,u) and Ilhllm = 1,

sgn £(x)°

For p = 1, we define §£§) z h(x). Then

” N ‘ T
lj f(x)g(x)du(x)| = |I g(X)(;galfzgjadu(x)l '??
X x* =
- 1[ HE (x) ldudx) | ?&
Q X o .
) i?
- J I £(x) |du(x) 2
x 4\’
/ . “.‘)
el *
= |1£]};- o \\ :

N TV
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If 1 < p < 4=, then we define k(x) by

£l ~ 1 | ~

sgn f(x)

k(x) = |

Since

P __

e(x) 9 = Je@E) P 71

p - 1) —B—
i Jf(x)l IP -1
sgn f(x)

£ 1P
lsgn £(x) (P/® = D

1£(x) 1P,

k ¢ LY(X,M,1). Note also that I|k||q = ||f||g/q. Thus, 1if we set

g(x) = ) Y

p/q’
THIE

where f # 0, we have that g ¢ Lq(X,M,u) and ||g||q = 1. Finally,

p-1
|| fogcadueor = IJ £ () | L du () |
X X . llfllp sgn f(x)

( N

- l[ £GP du(x) |
HellD™ | &

\ J

N\

f
-*4L§q JufunPdnw

J
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- P - p/q -
el 12

- el

-
-~

o

Thus, the theorem is proved.

Theorem 2.2: (Zaanen [22, p. 127]) Let (X,M,u) be a measure
space such that for any set U ¢ M with u(U) < +=, there exists a get V

(V € M) with Vv < U and (V) < 4=, Then, for any f ¢ Lm(X,M,u),’

[E]], = sup IJ f(x)g(x)du(x) |
X

= agp J 1£(x)g (x) du (=) ,
X

where the supremum is taken over all functionsg g ¢ L! (X,M,u) for which

llgll1 < 1.

Proof: As in the last theorem, we easily have

IJ f(x)g(x)du(x)] s J £ (x)g(x) [du(x)
X X

< Hell lelly

< |lf] ..

To complete the proof, we must construct a function g ¢ Ll(X:M,u), for
-~

which equality holds.

For given € > 0, the set {x € X; If(x)| > ||£]]_ - €} contains a subset

V of finite measure. Defining g(x) by

. T el

R

AL

%

@ AT G W A Y e
VY




——

( 1
"] w(V) sgn £(x)

X eV

g(x) = {

. 0 x ¢ X\V,

we have

Hellh = | Tetxlduc

1
I u(V) sgn £(x) Hdu )

A h——

~

1
- oy | oo
v

z

=1,

That is, g ¢ L1(X,M,u) and ||gl|; = 1.

Also,

tI £(x)g(x)au(x) | = |
X

1
f(x)[u(v) sgn f(XS]dUCX)i
A

V)

Gl Sy

[ﬂfu)dm) |

X
u(v)

(Lgi—ll)duCX)

i 2

A Qe

[ll_f_U::.:__e] (%)

u(¥)

= |l - =

R e b A s % TN T N a
. ‘! S-
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Since € > 0 1s arbitrary, we have our result.

An integral inequality which will be used later is the

following theorem of G. Stampacchia [17]. g

Theorem 2.3: Let £(x), g(x), z(x) be non-negative Lebesgue
measurable functions defined on (0ga), (a > 0), with z(x) increasing.
For 1 s p < +w: the following integral iﬁequalities hold:

-

a z(x) ) a a 1/p P
(1) J £ (x) J g(y)dy| dx < J g(y) J f (x)dx dy
0 \ 0 . \ 0 \ E (Y)

a [ ra P [ (a i) 1/p P
(14) I £ (x) I g(y)dy| dx s I g(y) J f(x)dx dy{ ,
0 Lz (x) | 0 L 0
where £ is the inverée function of z. .

Proof: For p = 1, the result follows from a change of order of
integration. . ,
Let 1 < p < +», To prove inequality (i), consider

a IZ(Y) P

I=]| £(x) g(y)dy| dx . .

O\

0

a
= I (F(x)]p dx,
0

4 t

z (x)
where F(x) = (f(x))iﬁp I g(y)dy.
4 )

1
{
{
3

S Poarhan o pema

1
b

Am



Then, by Theorem 2.1, we have

1/p .
I = || P(x)G(x)dx|
o}
where G(x) = (f(x))1 - 1/p x{x) and x is any function which satisfies

Helly = 118 = P il = 1.

That 1is,

a z (X) _
e . syp |I [(f(x))llp j g(y)dy)[(f(x))1 t/p x(x))dx!
0 0

a z(x)
= sup |I f(X)[ J g(y)dy) x(x)dx!.
0 0

By interchanging the order of integration and the use of Holder's

inequality, we have

11/p < a a
sup g(y) f(x)x(x)dx|dy

0 E(y).

a a 1/p a . 1/q
S sup Js(y)( I f(X)dX] { [ £(x) (x(x))? dx] dy.

0 &(y) : E(y)

However, we have that

r £ (x) (x<x>)4 dx]“q < ( }af(x) (x(x))1 dx]
E(y) 0

i/q

<1,

23
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go that
a a 1/p
/P < syp I S(Y)[ f f(X)dX] dy
0 E(y)
a a i/p
= f g(y)[ [ f(x)dx] dy.
0 £(y)
Therefore,

0 E(y)

24

The proof of inequality (ii) follows along the same lines as the above.

The details are therefore omitted.

Remark 8: If, in the above theorem, z(x) is a decreasing
function, then the right side of inequality (ii) replaces the right

side of inequality (1) and vice versa.

Theorem 2.4: (Hewitt and Stromberg [5, pp. 421 - 422])
Let (X,M,u) be a o-finite measure space and let £ be a non-negative

Lebesgue measurable function defined almost everywhere on X and E a

measurable subset of X (E ¢ M). If ¢ is a real-valued, non-decreasing,

differentiable function defined on [0,+=), such that ¢(0) = 0 and

j $(£(x))du(x) < 4=,
E
then

!
t

J $(f(x))du(x) = qu(E n E )¢’ (t)de
B 0

{
i
{
H
7
!
+

~
4
b
&
3
1
¢
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f

where ¢' is the derivative of|¢ and Et = {x e X; £(x) > t}.

i
[

Proof:
/
f¢(f(X))du(X) = j Xg (X ¢ (£ (x))du(x)
E X
£ (x)
= I xE(x)( ¢'(t)dt]du(x)
X 0

rm
- I XE(x)[ X[O’f(x)](t)¢'(t)dt]du(x)
X

- Im¢'(t){ f XE(X)x[o,f(x)](t)du(X)]dt,
0

"

where Xp is the characteristic function of a set A and the interchange

of the order of integration is justified by the use of Fubini's

Theoremn.
Now,
. J XE(X)XT:O,f(x)J(t)dU(x) = u(E n EC).
X .
Theréfore, . N

e - rqa'(t)u(E a E )dt.
' E : 0

Corollary 1: If p > 0, then o

[ (£x))P au(x) = p fatp “ 1 uE n E )dt,
E 0 ‘

J P

LTDNRUIL LN SVIPIUR SaPS ST I AR ST RS VL IRE B

o BB R K A R i WA+ ) e
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provided the integral on the left hand side exists.
Proof: The result follows with ¢(t) = tP (p > 0).
Remark 9: If we replace E by X in the above, we have

f (EG))P dutx) = p [ e T 1w EDde
X o]

/ = p rtp -1 Df(t)dt.
0

Lemma 1: Let (X,M,p) be a measure space and f a Lebeégue
weasurable functiom defined almost everywhere on X. Then, for all
y >0,

De(y) = Dpy(y)-

Proof: By definition,
D(y) = ul{x ¢ X5 [£() 1> y1),
where y > 0.
Since f* is monotone non-increasing, we have
Ix € (0,4=); £4(x) > ¥} = (0,D (3)).
The conclusion follows at once as the measure of (O,Df(y)) is Df(y).
That is,

Dpply) = D(y)-

Theorem 2.5: Let (X,M,u) be a o-finite measure space and f

/

f

. ¥
et

PR P e
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P

)
P

O 56 TABLIY TN e
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|
{

LN
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*

a Lebesgue measurable function defined almost everywhere on X. If ¢

is a real-valued, non-decreasing, differentiable function defined on :

{0,4=), such that ¢(0) = 0 and

RS LAY

I ¢CHEX) Ddu(x) < =, 3

X 3

then é
I ¢(HE(x) 1)du(x) = ! ¢ (£*(t))dt. f

X 0 :

Proof: By Theorem 2.4 and Lemma 1, we have p ‘

'
!

I d(IE£(x) [)dux) = ﬁ7¢'(t)u(x n E )dt
X 0

S, B

'-J ¢‘(E)u(Et)dt
0

jm¢'(t)Df(t)dt
0

-

¥
rd
H
H
3
i
H
|
i

rcb'(t)Df*(t)dt !
o

- r¢'(t)u((0.+°°) n EX)dt
0

- !m¢(f*(t))dt.
0

where Eﬁ = {x e X; £*(t) > ul. : 1

Hence, we have the desiredrresult.

AN
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Coroliary 1: If p > 0, then

f 1£¢x) 1P du(x) = Jw(f*<t>)P dt.
X 0

The proof follows easily from Theorem 2.5 with ¢(t) = tp, for
p > O.

We now need a result of Colin Bennett [1].

Theorem 2.6: If O < s <1 and f is any integrable function

defined on [0,1], then the foliowing statements are equivalent:

f

1 + . s
/ (1) I 1£x) | (Log" 1£G)1)® dx < =
5 |

1 +
(11) J £%(t) (Log £*(t))® dt < =
0

. ) . |
(114) J £x(t) (log 3)° dt < =,
0 ;

where, as before, log+|xl = log |x] 1f x 21 and log+|xl = 0

otherwise.

Proof: That (i) and (1i) are equivalent ‘follows from Theorem 2.5.

Now, assume that (ii) holds. That is, ;

I £x ' I * 8 < @
(t_:) (108 £ (t)) dt N
0 '

[N

Setting By = {t e'[o,i]; £%(t) < t-1/2}~

L@ —emeema e

& g Py R e

L e

LS

EAP—

e el T A

iy o




© and E; = {t ¢ [0,1]; £*(r) > t—1/2}.

we have

1 -1
I f*(t)(log t )S dt
0

Ey 2

I, + I,, respectively.

"

Considering I,, we get

29

I £%(t) (log t )% at + I £x(t) (log t™1)% dat
E

J é*(t)(l°g F“l)s dt s I ¢1/2 (1og t—i)s dt

E; Ey

) )
< J t /2 (10g £71)° at

=T(s+1)2°F 1

.

wher;\;\is the Gamma function.

Now consider I,. We have

I, = J £x(t) (log £™1)* 4e.
E2

-1/2
——

> 1, and hence

Since £*(t) > t on E; and 0 <’ t. < 1, we have £*(t) > t

-1

-

(£5())2 > ¢
I, < [ £4(t) (log (£%())2)® at
E;

1/2 > 1, B0

¢

y

A,




- 2° I £x(t) (log £*(t))® at
Eo

1 +
s 2° J £x(t) (log £*(t))* dar
0

< e, by hypothesis.

Therefore, we have

1 -1
I £x(t) (log t™7)° dt
0

- J £*(t) (log t™1)® at + J £%(t) (log £h)® dt

E; E2
‘; + 1 s [* £yt s
< TI'(s + 1) + 2 I £x(t) {Log £*(r))° at
(0]
< o,

Thus, (ii) implies (iii).

For the converse, we note that if g satisfies

1
J {g(x)ldx s 1,
0
then tg*(t) < 1. To see this, note that for 0 < t < 1,

. t‘
tg*(t) = 8*(t)-I du
0 .
. !
. ./
\ < I g¥*(u)du
i | . )

30
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1
< J g*(u)du
0

1
- J lg(x) 1dx
0

< 1.
In other words, if |g! is integrable, them tg*(t) is bounded.
Now consider

1 + 8
£x(t) (log £*(t))° dt
) )

/e + s 1 + s
J £x(t) (log £%(t))° de + J £x(t) (1og £*x(t)}° dt
0 i/e

Jj + Jo, respectively.

J, is clearly bounded by f*(l/e)(log+f*(1/e))S because the function f*
is bounded away from the origin.

For Jy, we note that in the interval (0,1/e), log t1 51, I

- [4

particular, log t—1 > t. Using the fact that f*(t)(log t—l)s is

yed
integrable, we get, from the above remarks,
e (t)t® s te*(t) (log 1) )
<1, N
» “
or ' . £x(t) st 1 78,
Thus; ) J
1/e 1/e
I £4(t) (Log £* (1)) ®.dt < I £x(t) (Log £~ ¥ 3} 4¢
0 \ 0 ™ '

N

[

ey

P2
£
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8 1/e ~-1y8
o s 1+ s) I £x(t) (log t )7 dt
= 0
) s 1 ~1ys
s (1 + 8) I £%(t) (log t7°)° at
* 0
< ®, %
Therefore, (iii) implies (ii) and we are done.
Remark 10: If 1 < 8 < 4+ and f ¢ Ll(log+L)S£O,1], then
1 -1y 8 )
I fx(t) (log t™ )7 dt < =, :
0 ' .

This follows by the same methods psed in the last part of the proof Bf i f

Theorem 2.6.

‘1

We now prove the following useful inclusion relation:
Theorem 2.7: For 0 < 8 <1 and 1 < p < 4, the following
inclusions hold: ;
\? 1P1o,1] < L1 (log 1)%[0,1] < 91[0,13. o 3
Proof: Assume that f € 1Pr0,1] for 1 < p <~¥w. Then, by Theorems 2.4

and 2.5,

(o b g o e ot

1. 1/p 1 i/p
U [£¢x) 1P dx} - [ [ (ex(02)? at)
0

J i

0 .

it {

¢! N, 1/p j

- [ Df(y)py dy} #
0 :
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-_.f-"*"/
Clearly,
-1 ) -1
. mef(y)yp dy > Ime(y)yp dy

0 a
wvhere a > 1.
Thus,

p -1
© > | D (¥)y dy )
a

" -1 -8
- Ime(y)(log y) % yP (10g y)7° dy.
a
. .p-1 -8
Now consider g(y) = vy (log y) , where y 2 a and 1 < p < 4=,

Routine calculations yield that yg = es/(p - > 1 is a relative

minimum for g(y). Choosing 1 < a < yg,

Jmuf(y)(log y)® [yp "1 (108 Y)_S]dy

a

-

- Ime(y)[log y)s g(y)dy

a

2 g(yo) an(w (108 v}* dy.
a

Now,

1 ' ‘+ 8
I 1£¢x) | (Log™ 1£(x) 1)° dx
! )

N
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..J 1£(x) 1 (LogT1EGx) 1) % ax +I £ (x) | (tog ¥ 1£(x) 1)® dx, ) ;»

E; ' Ez :

where Ey = {x € [0,1]5 [f(x)| > a} B
and Ey, = {x ¢ [0,1]; I£(x)| < a}, !

for some constant a > 1. Now,

PR

&
f 1£x) 1 {1og 100 1)® dx
E2
s J a(log a)s dx
Eo - ‘
) . \'
< a(log a)® I dx . i
J 0 - :
= a(log a)s
= A, say.
On tﬁe other hand,
+ s . /
[ LE(x) | {1og" 1£(x) 1) ® ax
El . \\____\_// -
’ ~N T -
= Imnfﬁz)[(log y)s + s(log y)s - 1}dy

a .

>

e o
< [QDf(y)(log y)s dy + s(log a)B Ime(y)dy. ~

a &

Since £ ¢ LP[0,11, :




{

) fmbf(y)(log y)® dy < =

a

-

from above, and the second integral is finite since

i1-p ® p-1
ijf(y)dy < a J y D) dy

a a

Hence, we have the desired result.
That is,

| LPr0,11 ¢ 11 (log'L)%C0,11.
Now suppose that f ¢ Ll(log+L)S[O,1], where 0 < s < 1.

equivalent to saying

1 +
f £x(t) (log £%(t))% dt < =,
0

Setting Ey = {t e [0,1]; £*(t) > e}
and E; = {t € [0,1]; f§§:3 < e},
we have '

1

j fx(t)dt J £x(t)dt + I f*{t)dt
0 B E

¢ f

2

I; + I,, respectively,
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For I,,

I fx(t)dt < J edt
E2 Ep

Note that, on E;, f*(t) > e. Thus 1og+f*(t) = log f*(t) 2 1 and hence,
(log+f*(t)}B 2 1 and f*(t)(log+f*(t))8 2 £*x(t).
Therefore,

I, = j £*x(t)dt
Ey

< J £2(t) (Log £*(t))® at
E

1

1 + s
< | £%(t) (log £*(r))° dt
0 -

< =, by assumption.—— )

.

Collecting the above estimates,

1 1 + 8
: I £x(t)dt s e + f £%(t) (log £*(t))° dt
0 0

That is,

1! (1og™1)%00,13 < Lo0,13.
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Lastly, we extend the Hardy Inequalities by considering
certain weight functions. Recall that the Hardy Inequalities are

given by:

Theorem 2.8: ([6, p. 256 - 257]) 1f 1 S q < 4, 0 < r < 4=

and f is a non—-negative Lebesgue measurable function defined on (0,+=),

then
ot q _ 1/q w . 1/q
(1) [ fw [ J f(y)dy] e dt] s %-[ J GeE)? 5T 71 dy]
o 0 0
and

o q _ 1/q _ 1/q
(11) [ I [ rf(y)dy} eF 71 dt] < % [ r'(yf(y))q v 1 dy] .
o t 0

A

In order to extend the ;bove, we state{’without proof, the
following inequality of Jensen, which may be found, for example, in

Hewitt and Stromberg [5, p. 202].

Theorem 2.9: (Jensen's Inequality) Suppose ¢ is a convex
function defined on (0,+») and f is a non-negative Lebesgue measurable

function defined on X with

j Qu(x) = u(@) < =, u(® = 0.
X

Then
-4

¢['§%§T J f(x)du(x)] s E%ET I ¢(f(x)}du(x).

¥
i
i
<
4
i
;
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!
We now prove the following:

Theorem 2.10: If £ is a non-negative Lebesgue measurable

function defined on (0,+®) and if 1 £ q < +», 0 < r < 4+ and w is a
non-negative non-increasing function defined on (0,+») with the
property that for a = r/q there exists a constant A (> 0) such

that

-Q x a -1
x J t w(t)dt < An(x),
0

then

o q ‘
[ww(t)tr -1 { J f(y)dy) dt < A Jw(tf(t))q ef 7Y ouce)de.
0 t 0

Proof: We first note that

q - q
rm(t)tr -1 [ rf(y)dy] = rm(t)t 1 [ cT/a rf(y)dy] dt
0 t

t 0
- q q
- I“m(t)t 1[3] {5 £/a Jmf(y)dy) dt
0 t
q q
- [%] rm(t)t—l{-g- ¢F/d rf(y)dy] dt.
0 ' t

If we set du(y) = y_r/q -1 dy, then

deu(y) = u((t,»))
t

Lt

N

P
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since t € (0,+=).
Also, u((t,=)) is non-zero since t € (0,+°). Hence, we can apply

Theorem 2.9 to the above to get

o q
J w(e)er ~ 1 [ rf(y)dy] dt
A ,

t

| |
[ [ ofs ) [t 50,702 )

T
0 t
q-1
- [%} Jmt-l m(t)tr/q [ ro(f(y)yr/q * 1)q y-r/q -1 ddet
0 t

q-1 p4
- Eﬂ Jm(f(y)yr/q + 1)q y—r/q -1 [ j m(t)tr/q -1 dt]dy
0 0

q-1
- Eﬂ fm(f<y>yr’q tHa 7 [y f¥m<c>c"q " aefay
0 0

q-1 _
S A{;.q] , r(f(y)yr/q a5 ey
0

A f GE) 5y T wmnay.
0

» ) e
I

Theorem 2.11: Let f be a non-negative Lebesgue measurable

function defined on (0,4+*) and w a non-negative decreasing function

i

-ﬂ»uw

Cp aNIpA e
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A A0, B B
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defined on (0,+=). If 1 € q < +® and 0 < r < 4=, then

by po t q 1/q
[ [ MO [ [ f(y)dy) dc) s A[ Jw(yf<y>)q y ' T unay
0 0] 0

)1/q

Proof: We use the fact that w is decreasing to get

[ r’uu(t:)t:—r -1 [ Itf(y)dy)q dt:)llq i .

0 0

([ (i fronm)* 1)
0

0

o t q 1/q
< [ J £ __1 [ J (w(y))llq f(y)dy] dt]
0 0

We can now use Theorem 2.8, part (i), to estimate the last integral.
The result is

e . t q 1/q
j{'[ m(t)t“r -1 { J f(y)dy] dt]
0 ’ 0

J1/q

N

< A[ j°(y(m(y))1/q tE)ly T Tty
0

— 1/q
= {rmw&ﬂwﬁyr 1dﬂ

0

This is the desired inequality.

-

The last propositiod-of this section will be an extension of
Calderén's Lemma due to R. Johnson [9].
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Theorem 2.12: ([9, p. 293]) If f is a non-negative decreasing

Lebesgue measurable function defined on (0,+~) and 0 < p € q < 4=, then

for any real «a,

1/q 1/
[ r(t“ £(e))9 ¢ 71 dt] < [ r(t“ £(t))P ¢t dt] .
0 0

Remark 11: For a = 1/r, r > 0, the above inequality is

Calderén's Lemma.
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CHAPTER III

In this chapter we will deal with the interpolation of linear
operators on the Orlicz spaces Ll(log+L)S[0,1] and the spaces
Kp(log+k)s(X,M,u) which have been defined previously. Richard 0'Neil
[14] gave the first explicit formulation of an interpolation theorem
concerning these spaces. We will prdvide a different proof of his
result by utilizing non-increasing equimeasurable rearrangements
rather than distribution functions. This will correspond more closely
with the definitions of the Lorentz spaces and the Orlicz spaces
1.1 (log +I)s[0,1]. After proving O'Neil's results, we will extend them
further to weighted spaces with weigﬁts satisfying certain growth
conditions.

The first result is:

Theorem 3.1: ([14)) Suppose 0 < p< r < 4=, 0 < 8 < 1,
1 <q <+~ and T i8 a linear operator simultaneously of weak types
(1,p) and (q,r). Then, for any f € Ll(log+L)s[0,1], we have that
T € Lip,2) (X,M,1). "
Proof: Since we are dealing with spaces which are totally finite, we
may assume u(X) = 1, There 18 no loss of generality in making this
assumption.
For any measurable function £, defined on [0,1], we define

£(x)  Af 1£GO[ > £X(u)

f?(x) - ' ! . 3 -
0 ' otherwise, .
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and fu(x) = f(x) - fu(x), where u is a function to be determined later.

Then, by the definitions of f* and Df, we have =

£x(y) 0<y<u
*
£ (y) s
0 y2u
and
£*(u) 0<y<u
*
£X(y) <
f*(y) y 2 u.

Now we consider ]lel[ when 0 < 8 < 1. Then, by the linearity of

P’l/S
T, the properties of sums of rearrangements of functions, and

Minkowski's inequality,

Hrell, 478

8

- ((Tf)*(t)ti/p)l/S et ae
f |

8

- [ ji{(mf)*(t)tilp - 8)1/s dt)
0
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! 8
: [ I (CYNODE ("‘-'fu)*(::/2)t1/p - syt/s dt]
0

1
o [ [ty emette - oe o
) (€

([ remat e o),
0

= A(Il + 12], respectively.

Recall now that if T is a linear operator of weak type {p,q), then
there exists a constant A (> 0), such that,

(r£)*(t) =< ac~/a Hf]]p.
For I, since T is of weak type (1)p),

1
I%/S = J ((Tfu)*(t/2)t1/p - 9)1/5 dt
0

1
<o [11ee et e
y
N 0 .

1 i/s
= A J ( I\lfu(y)ldu(y)] 1 ae
.0 X :

1 u(X) = q R 1/8
=4 I [ [ fu*(Y)dy] e ae
0 0 /

S

10 i/s 1
s A ( f*(y)dy] £ dt.
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Suppose that u = u(t) = tx for some A > 0. Then, by Theorem 2.3, ’
1/s 1 tA 1/s -1 N
;7 < A j [ J f*(y)dy) t = dt N
0 0
*
1 1 1 s 1/s
S A [ I f*(y)[ t dt] dy}
) 1/x
y “
1 8 i/s
= A [ I f*(y)[log 1 ~ log yi/A) dy]
0 d
1 1/s .
* . 8 4 o
= A [ J f (y)(log 1/y) dy) T
) _ ;z'
i
< - ¢

by hypothesis and by Theorem 2.6. T J

Now consider I,. Since T is of weak type (q,r), we have

) —
/e J ((xe)*cerne/® =)o g
0

i

(1
<A J t1/sp - 1i/sr - 1i,f llils dt
u''qg
0

dt

1 _ _ 1/sq
- A J gt/op = A/ex 1A[ | e o dh(y))
0

X

.

1 . 1 <
<A I t1/sp ~‘1/sr -1 [ [ (fﬁ(y))q dy
0 0

1/sq
"

> <,4F(\'>< PR Dy et a A A -
MQ‘*“"Q:M(L%NQV&F@]"AE" R IO e e




1 1 1/8q
< A [ J t1/sp -~ 1/sr - 1 [ J“(f*(u))q dy + J (f*(y))q dyJ
. u

0 0

1 u 1/8q
< A{ I (1/8p = 1/st - 1 [ I (£% )9 dy] Y4
0 0

1 1 1/sq
+ I ct/ep - 1/sx -1 f (£x ()¢ dy] ch
0 u

= A(Jl + Jz), respectively.
Again, consider u = u(t) = tA where A > 0. We estimate the above
integrals by considering two cases.
C;se 1 8q € (0,1].

In this case,

' A
1 t 1/s8q
Iy o= J t1/8P - 1/sr - 1 [ J (f*(tk))q dy) at
0’ 0 |

1
- I ti/sp - 1/sr - 1 (f*(tx))lls tA/sq de.
0

Substituting tA = x in the last line yields

Jix(ifsp - 1/sx)/X + 1/8q - 1/A (f*(x))i/s xl/l - 1‘dx

Jy = A
0

1
- A J x(1/8p = 1/8T)/A + 1789 = 1 (£e(3))1/8 = 1 gxwyax.
0

Now £ ¢ Ll(log+1)8[0,1] € L1[0,1] and we have seen previously (see

B
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the proof of Theorem 2.6) that for f ¢ LI[0,1], £*(x) s Ax—i.

Substituting this inequality into the last integral we get
1
I, S A j x(1/sp - 1/sx)/X + 1/sq - 1/s (Ax—l)l/s -1 £ (x) dx
0

)

1
- A J x(1/sp - 1/sr)/X + 1/sq - 1/s £%(x)dx.
0

By choosing A ¢ (0,q(r - p)/pr(q -1)], the last integral is dominated
by . > &

1
A J f*(x)dx < «,
0

To estimate J;, we employ -Theorem 2.3. Then,
%! _ _ 1 1/sq
Jp = t1/SP 1/srx 1 [ I (f*(y))q dy] dt
J

0 tk

1/A
r (1 y sq 1/sq
< J (%(y))¢ [ J g1/8p — 1/sr - 1 dt] dy]
] 0

.

~ v

1/

1 y 8q 1/8q
A [ J (f*(y))q [tllsp - 1/srlO ] dy}
0

1 1/8q
- [ I (f*(l))q q(1/p - 1/r)/A dy]
4 :

f{]

1 1/8q
(e4 (1)1 = 1 ex(z)ydt/p - 1D dyJ

D Sy
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1 1/sq
1 -1 A+ 1 -
/
A 5
T
!
where the last inequality follows again from f*(x) < Ax—l. Choosing A

as above yields

1 1/sq
Jp S A [ I f*(y)dy)

0

Case 2 1 < 8q < =,
The procedure for estimating J; is the same as above and is therefore
onitted.

Now consider Jj. We' have

1 1 ' 1/s8q
Iy = J t1/sp - 1/sTr - 1 [ I (f*(y))q dy) dt
| 0 tl
1 B 1 y1/sq
<A I 1/sp = 1/er - 1 (f*(tk))ils ( I dy] 4t
0 tA

1 1 +1/sq
<A J t1/sp - 1/sr - 1 (f*(tl))ils [ J dy) it
D

0 ) T
1
- A J t1/Bp -~ 1/sr - 1 (f*(tl))ils dt
0

«
The substitution x = tA yields

1
3y < A J x(1/sp - 1/sr)<l -1 (f*(x))lls -1 £%(x)dx
0 b : ‘
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1
< A J x(1/8P - 1/31—’)/A - 1/8 f*(x)dx L Y

0

and, choosing X ¢ (0,(r -~ p)/prl, it follows that '

1
Jy S A J £*(x)dx
0

Note that if s = 0, then Ll(log+L)S[0,1] = L1{0,13, so that
o>

Hrell% , )0 = HTellx

. a1 e

*
= sup tI/p (T£) " (),
0<t«<1 -

and since T is of weak type (1i,p),

sup P (16)*(e) < sup 2P (ac”VP ||g|]y)
0 <t <1 0<t«<1i .

= sup A |igl]
0< <1

< @

which completes the proof.

Theorem 3.2: Suppose 0 < p < r < +», 1 S g < 4w, 1 5 q < +=

and T i8 a linear operator simultaneously of wehk'iypes (1,p) and

(q,r). Then for £ e‘leibg+i)§[0.1],*Tf € Kp(iog+k)p(8 - 1)(X,M,u).

Ly
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Proof: If we define f° and fu ags in Theorem 3.1, then i

Href i
Kp(log*K)p(s - 1) ’
1 .
- I /P -1 ('rf)*(t) (1o0g 1/t:)p<$ - D/p g,
1 i/p - 1 u * s - 1
- [e [(T(f +£0) %] (og 1/¢) at
0

1
s [P =2 (e ccrars (ae,) /2] (1og 176)% T ae
0

1
- J /P 71 (26%) ¥ (e/2) (1og 1/£)% T Y ae
0

1
- j /P 7 (2g ) (e/2) (Log 1/6)° T T ae
0

I3 + I, respectively.

ST ST S e

Since T is of weak type (1,p), we have , {

ey

1
I, = J £17P 7 1 (269) *(¢/2) (og 1/6)® T L a4
0

1 -1 8 - 1
< j £1a]1£%] |1 (tog 1/t) at
0

1 1
< A I £t (1og 1/¢)% ~ 1 [ I fu*(y)dy]dt
o 0
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1 -1 -1 u
<A J t (1og 1/t)8 [ J f*(y)dy]dt.
0 0

Setting u = u(r) = tA, A > 0, ylelds

Y .
1. s -1 ((°
I, A f t (1og 1/t) [ j f*(y)dy}dt @é
0 0 Y
.Ei
and, applying Theorem 2.3, we get f{
i
. A
1 toa s -1 [
I; < A J £x(y) J t " (log 1/t) dt|dy
T
0 1/ » i
y %f;

ot 17

«
Tom EE
T T TN

1 1
< A I f*(y)(log 1/y1/k)s -1 ( J t:'-1 dt]dy
0

1
= A [ f*(y)[log 1/y1/A)8 dy ) R
0

T e

5 wacs
\' B [y

1
= A j £%(y) (Log 1/y)° ay
0

. D N
v —— . -
~ LA CORN

A
8
.
.

P

by hypothesis.,

To estimate I,, we use the fact that T is of weak type (q,r), to get

.2 o v e
IRt e

e

1
= [P 7t (1e )" /2 (1o 1/6)° TP ae
0

Y

1
\\\‘ < A f t_'1/P -1 (log 1/t)s -1 {t-i/? llfu|lq)dt ) .

0
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1
- A J (/e -1/ -1 (1og 1/t)% ~ 1 i‘fullq de

0

1
<A J tllp - i/r -1 (log 1/t)S -
0

1
< A I (170 = 1T =1 (106 1/¢)8 7
0

1/q
)" a

! rl
! [ (ex»)¢ ay
0

ru

1 [ (£% )9 dy
P,
0

1/q
1" e

1
+ f (ex(y)) Y ay

u

1/q

1 u
< A [ ] Ry R RN YR [ j (£%(w)) 8 dy) ac

o

(0]

A (J, + J3), respectively.

With u defined as above,

1
Jy = J e (P T A

0

i
- J el/p - 1/x -1 (1og 1/¢)% ~
0

/

0

1 ¢ 1/q
+ I t1/p - i/ -1 (108 1/t)s -1 [ [ (f*(y))q dy] dt}
u

A
t . Y1i/q
1 [ J (£x(t™))9 ay dt
0

1 f*(tl)tk/q dt

£
i

. ’
- j (/P = U = 1M (150 476)8 T 1 ex(eMar,
0

i, ¢ v

B S AL LR R
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and the substitution x = t:A yields ks

1
3 = A J L/p = 1/r = 1)/x+1/q+ 1A -1 (1og 1/x1/x)s “ 1 fa(x)dx {

0

1 -
- A f x(1/p -1/r)/x -1+ 1/q (log 1/x)% ~ 1 £4(x)dx
0

i/e
- [ J L/P = UM =1+ 19 (150047508 = 1 grioyax

0

Eovog

PR AN

v

1
4 J L/p = 1/e)/x -1 +1/q (log 1/x)% ~ 1 f*(x)dx)

1/e -

= A (Ky +Kp), respectiv/e'fy\.

Now,

ey iy

1/e
Ky = I x(1/p = T/ -1+ 1/ (10g 1/x)° ~ 1 ex(x)dx 9

0
1/e (1/p - 1/x)/x - 1 + 1/ s
SJ x /P P 1 (log 1/x) f*(x)dx - i,
c‘\ t
0 ?
'_‘,,'1 :
1/e s ) r
< J ’, {1og 1/x)° £*(x)dx
0
;
1
< | £*%(x) (lqg 1/1i:)8 dx

O Sy




provided X ¢ (0,q(r - p)/pr(q - 1)1.

For the second integral, K;, 1f A belongs to the same set as above, we

get

1
Ko = I x(llp -/ +1/q -1 (log 1/x)B -1 f*(x)dx

1/e

1
< (log e)s -1 I x(:l'/p - 1/r)/} +1/q -1 fA2{x)dx

1
< A f fx(x)dx

i/e

1
I, = J AP~ 1/x -
0

1
< I t1/p - 1/r -
0

1
< I t1/1)-- 1/t -
0

1 (10g 1/t)s

1 (1og 1/¢)8

1 (108 1/t)°

-1 {10g 1/t)% ~

tk

1 gxcetyae,

e (|

1

A

t

0

o Ui(f*cy>)‘*""7]

dy

Al

i

}i/q

1/q

dt

1 i/q
= 1 ey [ [ dy} dt

dt

p

R
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and, with x = tk,

: 1
Jo, S A J x(1/p T o/ -1 (log 1/x)8 -1 f*(x)dx
0

1/e ’
- A [ [ R Ry N R I TRy

0

1
+ J L/ -1/ -t (1og 1/x)°% ~ 1 f*(x)dx)
1/e . |

A (Ql + QZ)’ respectively.

Clearly, if X € (0,(r - p)/prl,

1i/e
Q = J x(ilp -1/ -1 (log 1/x)s -1 fx(x)dx

.0
1/e

< [ P = =10 17%) 8 £x(x)ax
0

1/e .
S A J (1og 1/x)% £*x(x)dx
-

1.
< A J (log i/x)s fx(x)dx
0

/
< o, /

Lastly, we obtain, for XA e (0,(r - p)/prl], the estimate
:

1 .
Q = x(1/p -0/ -1 (log 1/x)s —.1 f£*(x)dx
1/e

)

S

N A wir

o ReptmARnu — S,

e

A A N SNA Py s}




1
< [1og e)s -1 I x(j'/p - U/ -1 f*(x)dx
i/e
1
<A Jff*(x)dx
1/e .

Collecting terms, we are done since (0,(r - p)/prl = ¢.

’

Remark 12: As an application of Theorem 3.1, we consider the
case when 8 = 1 and we retrieve the following theorem due to A. Zygmund

[23]: .

Theorem 3.3: If £ is a periodic function of period 27 such
that f ¢ Ll(log+1)1[0,2ﬂ], then £ ¢ L1[0,2n], where f is the conjugate

function of f.

Remark 13: We recall that for such a function £, the conjugate

function £ is defined by the Cauchy principal value integral

f(x

—-€ v
f(x) = -—-11; lim I L =0 g s j 5 tan-(-t72) dt}.

c > 0 2 tan(t/2)
-7 €

The operator T which maps f into f is interesting in that it is of
weak type (1,1) but not of strong type (1,1). T is also of strong type

(2, 2. See, for example, Edwards .[2, Vol. 2, pp. 169 —l177].
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Remark 1u4: We can also discuss the linear operator T defined

D9
x 1 I I£(t) ldt.
0

Tf (x)

As was shown in Chapter II, T is of weak type (1,1). T is also of
strong type (p,p) for 1 < p < +=, hence of weak type (p,p). Setting

p = 1/8, where 0 < s < 1, we can apply Theorem 3.1 so that for

f € Ll(log#i)stohll, Tf ¢ L(1,1/8). That is,

1 1/s
I xlls -1 [(Tf)*(x)] dx < =,
0]

This result was shown by Max Jodeit, Jr. [7] for the case when

1 + ‘
J If(x)l(lég 1£(x) 1) dx < .
0

\ /

\ - |
Theorem 3.1 will now be extended to a weighted form. We have

the following: /

/
Theorem 3.4: Suppose T is a linear operator simultaneously
of weak types (1,p) and (q,r) where 0 < p < r < 4w and 1 < q < 4+, ¢

Let w be a non-negative non-increasing function defined on (0,1),

f

with the property that there is a constant A (> 0) such that

- [Fa-1
x J t w(t)ydt < Aw(x)
- o]

for a = 1/p - 1/r. Then, if 0 < 8 < 1,

¢
)

ot gt .
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1 s :
[ J (w(t) ('.t‘f)*(t:))”s gi/sp - 1 dt] < =, ;
) .

whenever

1 1/o 8
w(t™ ®)e*(t) (1og 1/t)° 4t
0
is finite, where o is the slope of the line segment between (1,1/p) and .
(_1/q,1/1‘). That is, o = (1/P - 1/r)/(1 - 1/(1)-

Proof: Defining £ and fu as in the two previous theorems, recall that

£%(y) 0<y<u
* %
£ (y) s ©
i
0] “y2u f
and ::)
f£¥*(u) 0<y<u é
* :
£X(y) :
£%(y) y 2 u. i
Setting : ;
1 \ 8
* -
I = [ I (wiy) (z€) * () /8 y2/oP = 2 dy) . f
i
0
we have . ; ( {

1 ' i
/e . J (0 (z£) ") /e MR~ 1 gy
0

[
R R a o/ & L AR
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A

! 1/s
[ (@ o + @) o)) 5Pty
0

A

1
A [ J [m(y)(Tfu)*(y/Q))i/s y1/sp —.1 dy
0

1 —
+ I (w(y)(Tfu)*(y/’z))l/s yt/sp - 1 dy]
0

A (Il + 12), respectively.

From the hypothesis that T is of weak type (1,p),

1
I = J (wey) (z£%) *(y/2)) 178 y2/P ~ 1 gy
0

1 —
sa [bon™ NNty e
0

1 1 i/s
s A J (L) ¥/e y? [ I f"*(t)dt] dy
0 ~ 0

u 1/s
] dy.

. :
<A I (w(y)) /s y? [ I £*(t)dt
0 0

If we set u = u(y) = yo where 0 = (1/p - 1/x)}/(1 - 1/q), then

application of Theorem 2.3 yields

1 1 8 1/s
I} <A [ f f*(t){ J (m(y))lls y 2 dy] dt]
0 t1/°
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1 l 1 - ) i/s
° <A [ f f*(t)w(tilo)[ J y--1 dy] dt]
0 t1/0

1 : 1/s
A [ J ex () w(t2’%) (1og 1/¢1/9)8 dt]
0

-A[

which is finite by hypothesis.

ex(t)w(t/%) (1ag 1/t)° dt

1 }1/3

O

To estimate I,, we use the fact that T is of weak type (q,r) to get 2

1
2= | oo (e ) o) te 5o gy
o

)

+
.

i
1
‘
1
%.
»

1
< I (m(y))i/s I|f Illls 1/sp - 1/sr - 1 dy
0

A

1 u 1 1/qs _
Af (win)t/e [ I (£*w)? at + f (e%(x)) 9 dt] gi/se = et -1 gy
0 0 u :

A

1/qs
J e

1 u
A [ J (w(y))lls y1/sP -1/sr - 1 [ [ [f*(u))q dt
0 ]

1 1 1/qs
+ j (m(y))l(s y1/sp -1/sr - 1 { I (f*(t))q dt] dyJ
0 u

A (Jl + Jz), respectively. i

But, f
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1 1/s 1/sp - 1/sr - 1 y° 0.\149 '1/qs
Jy = j (w(¥)) y [ J (£*x(y)) dt) dy
o] 0
) Jl(m(y))lls y1/sp - 1/sxr - 1(f*(yo))1/s yo/sq dy,
0
so that the substitution x = yo yields 3
5= r(w(xilo)f*(x))lls ((1/sp =1/sT)/0 + 1/sq - 1 4
0 . ¥
1 1/ 1/s _~-1
= A f (w(x U)f*(x)x) & x71 dx.
0
k4
By Theorem 2.12, - ;
1 8 .
J?" A [ J (w(xllo)f*(x)x)ils x“1 dx]
0 3
. 3
1 1/p C
<A [ I (W N exox)P x7 “"]
0 o
y :
for any p ¢ (0,1/5]._ In particular, we can set p = 1, so that '
1 1/s ?
Jy S A [ J'w(xi/o)f*(x)dx] .
— o ]

]
But, since Ll(log+t)s[0,1] < L100,1], J; is finite.

For J,, we again make the substitution x = yc, to get

Y

i/8q
J dy.

1 1
3, = f (w(y))l/s y1/8p - 1/8r - 1 [ J (f*(t))q dt

0 (o]
Ly
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‘Case 1 sq € (0,1). We apply Theorem 2.3 and then Theorem 2.12 to get

1/co
1 t sq 1/sq
Iy s [ I (£%(t))d [ j (w(y))1/s yi/sp = 1/st = 1 dy] —dt]
. 0 0
1/o
1 t q 1/sq
< A [ J (£x(r))d { J w(y)yt/P ~ T -1 dyJ dt) .
0 0

We now apply the growth condition satisfied by the weight function w.

Note that we are using x = tllq and a = 1/p - 1/r. The result is

1 1/sq
Jo s A [ f (£%(t))? c44/9 (Am(tl/o))q dt)

0

1 1/sq
= A [ J (g% (e))? ¢~ 1 (m(tl/o))q dt}
0

1 1/8q w
S A [ J (£%¢t))? (w(e1/9))9 dt]
0

1/o

1/s
)dt]

1
<A [ J fx(t)w(t
Q

< @,

Case 2 8q € (1,). 1In this case we have

1 1 1/sq
Iy = J (w(y)}lls y1/sp -~ 1/sr - 1 [ J [f*(t))q dt)

0 (]
g y

LI, N S
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1/8q

1 1
- f (w(y))i/s y1/ap - 1/sr - 1 [ J (tl/q £ ()9 1 dt] dy

0

) Il(w(y))ifs y1/sp - 1/st - 1 [ I
0

4
y

1

(tlfsq (f*(t))l/s)sq t—l dt

i/sq
J ) dy.

a
y

Apprying Theorem 2.12 to the inner integral yields

1 1
3y 5 A J (w(y))2/® yt/ep = 1/sT - 1 [ J 1789 = 1 (gu(ey)l/e dt]dy.

0

(o}
y

We now interchange the oréer of integration and apply Theorem 2.12

again to get

1
3, < A J g1/ea -

where a = (1/p

t
-1 (f*(t))i/s [ J yl/P - 1/r -1 (L)(Y)dy
0

t
R (LI RS { e~/ J v T 1 ey

i/o

¢ )
1 (f*(t))ils [ ] y1/sp - 1/sr - 1 (m(y)]1/8 dy)dt
0

i/o

t
-1 (fﬁ(t))1/s [ [ (yilp - 1/r w(y))l/s y-idy)dt
0

1i/s
1

dt,

]1/A

1/r). By hypofﬁesis, the last line is dominated by

1 ;
A J t:tl./eq -1 (f*(t))lls t(1/p - 1/x) /8o (Aw(tilo))ils dat

0

A\ ]
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— 1

= A J (1/8a - 1 (f*(t))“S (1 - /s (w(ti/o))ils dt
0
1

= A J (tf*(t)w(tilo))lls £t ge.
0 %

Once again we apply Theorem 2.12 to obtain the estimate

e

i/o

1/s
ye 2 dtJ

1
Jy £ A [ J tf*(t)w(t
0

+*y1/s
1m)dt] .

1
= A { I fx(t)w(t
0

By hypothesis,

1 1/o s '
J w(t ' )E*(t) (log 1/t)° dt < =
0

and so, by Theorem 2.6, J, is finite.

Collecting terms, we are done.

Remark 15: We note here that in the case that w(x) = 1,

L
we retrieve the original theorem; that is, Theorem 3.1.
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CHAPTER IV

In this chapter we consider functions of bounded mean
oscillation and obtain an interpolation theorem involving the Lx(p,q)—
spéces. First we will state, without proof, interpolation results of
H. Heinig [4] involving functions in L(p,q), and then we will prové

results for functions which belong to the Ll(log+L)s~spaces.

Theorem 4.1: Suppose T 1s a quasi-linear operator defined on
Lebesgue measurable functions f which are defined almost everywhere on

IITfllu SAiIIfIIp
e TR 1
Ty29y

where 1 = 0,1; pg < p}, Yo # r] and O < q < +=, then _/

eell ,  sallells . ssaq
L"(r,q ’
where .
Byt m@-t)
QT dqo q1
Qe 9 q1
0<t<i
1.t ;1-¢
P PO P1
1t ,1-¢t
r Ty T
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As a corollgry to the above theorem, we have:

Corollary 1: If T is a quasi-linear operator and
Tf <A f
rel] o oy % & LIl
1774 1
L :
where 1 = 0,1; pg < p;, then

15211 (g, < 4 112118,

where
Bo.okot , (- t)
q q0 91
1, E_.+ 1-t 0<t <1
4 dp q1

e ?
P Po P1
If the parameters are restricted to being greater than 1, we
havet’

Theorem 4.2: If T is a quasi-linear operator and

e sa, lelly
e TN 1841
129

where 1 = 0,1; q > 8, > Py >1, pg * pP1, Yo * ry, then

*
Hzell sallgllx

where
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Byt L omd - t)

q 90 q1

q 4qq q1

0<t<1

1. L 1-t

P Po P1

1_ E_.+ 1 -t

r o r)

We now prove the following:

Theorem 4.3: Suppose T is a quasi-linear operator defined on
Lebesgue measurable functions f which are defined almost everywhere on

Cop. If

W (@) @ sap® M e g,
and

(11) (TFC)*(t) <A M- ud/r -1/ llfllq,

where 0 < p s 1, 0 < p<r <+4o, 0<gs1=x<q< +=,
i/p - 1/r > 1/q' = q/(q - 1) and p/r 2 ug/uy, then for A satisfying
A > u;/rs + max {n(1 - 1/rs), 1 - 1/rs},
[1Tef] < A |I£]] + C.
L (p,1/8) L1(log'L)®
Proof: We note here that, without loss of generality, we can consider

Cop to be a cube of side length 1, because Cy = C(0,a) has finite side

-

length by assumption. We consider u = u(t) to be a non-negative
function of one variable and define, for £ defined almost everywhere

on Co,

Moo
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£ (x) 1f [£(x) | >- £%(u)
£ (x) =
0 otherwisge

and £ (x) = £(x) - £%(x). As before, we apply the definitions of f*

and D, to obtain -

f
£%(y) 0<y<u
*
£ (y) s
0 y=zu
and
£*(u) - 0<y<u
*
fx(y) <
£*(y) y 2 u.

By setting Fg(x) = fu(x) - f:, where fz is the mean value of f° over
1 = -

C(x,p), and Fc(x) fu(x) fuc’ where fuc is the mean vﬁlue of fu

over C(x,p), it follows that Fc(x) = Fg(x) + Fé(g).

By Minkowski's inequality, we then have

n
. p 8
HTe] | A = sup (pA -n f (tl/p (TFC)*(C))l/S et dt} '
L"(p,1/8) e s 1 0

~

n
P 8
< sup [ [px -n f (tilp (TFg)*(t/2))1/8 ¢t dt}
ps1 0 ]

R BT Ay

R

ey
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-+

n
p 8
+ [pl -n I (tl/p (TFé)*(t/z)]lls 1 dt] ]

’ 0

A sup (Il + Iz), respectively.
ps1i

To estimate I, we note that, by (i),
P '
-— -— - .—1
I%/3 < pA n J (tl/P A p(n up)/p ¢ 1/p Ilfu|l1)1/8 Nt P

0

n
p -
A pk -n+ (n - ug)/ps f ||fu||%/s ¢ 1 dt

0

n
and, setting p x = t,

1/s A

1 -
/e s aph T nt (o o/ee e /e ot g

[=]

1¢ 1 1/s
= A p)‘ -n+ (n - pO)/ps I ( J fu*(y)dy] X—l dx
0

0

>
!

n+ (n - uo)/ps Il[ Ju(X)f*(y)dyllls x T dx.
0

0

Choose u(x) = xa, where o = pY and Yy > 0. Then by Theorem 2,3,
™"
& 1 1 ‘8 1/s
I%/s < A pA — o+ (n - up)/ps { J f*(y)[ I x 1 dx) dy]
' 0 1/a
. y
i
- A pk -a+ (n-

1 ' 1/s
Ho)/ps [ J £%(y) (Log 1/y1/u)s dy]
0

Py V-
. f -

T
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.
e

T
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. o 1 1/
- p;\ -n+ (n-up)lps - vy { f £*(y) (log 1/y)° dy) s.
0]

If A -n+ (n - yg)/ps 2y > 0, then from the fact that 0 < p < 1, we

have px -n+ (n-udlps - ¥ < 1 and so

1 1/s
13/8 < a [ j £%(y) (10g 1/y)°® dy}

0

which is finite if £ ¢ L!(log L)%[0,1].

Now consider I,. From (ii) we have
n
I%/s - pk -n Ip [tifp (Tfé)*(t/2)]1/8 e N
o .
] n
saph TRt (-udrs Ip (e/P - Ilfullq]lls £t e
0

1
ph -n+ (n-y)/rs + nfps - n/rs I x1/ps - 1/sr ||fu’|;/8 x—l dx

= A
0
by setting pnx = t, Therefore,
/s
‘ A 1 xa
< A pk - n + n/sp - u}/rs~f x1/ps - 1/rs { I (f*(xa))q dy
0 0
1 1/8q
+J (f*(Y))q dy] X 1 dx
. . ,
x v

Dy -

e Tav
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a
<A [pk - n + n/sp - uj/rs Jlxllsp - 1/sr - 1 { [x (f*(xa))q dy

0 0

1/sq
] dx

1 1 1/
+ pA - n + n/sp - uy/rs J x1/sp - 1/sr - 1 [ I (f*(y))q dy} sq dx}

0 a
x

= A (3 +J3,).

Substituting x* =t into J; yields

1
3 = pA - n+ n/ps - uy/rs - vy J t__1/otsp - 1/asr + 1/8q - 1 (f*(t))l/sdt.

0

Since ¥y > 0 and 0 < a $ 1, we have 1/as 2 1/s and

1
I s pA - n+n/ps - uy/rs - vy I t1/sp - 1/sr + 1/8q - 1 (f*(t))lls dt

0

If A = n + n/ps - u1/rs 2y >0, then 0 < p)t - n+a/ps - uy/rs -y

and this number is bounded above by 1, so that by Theorem 2.12,
1
I s f t(1/p -1/r + 1/q)/s - 1 (f*(t))ils de

0

1
- I (tllp -~ 1/r + 1/q f*(t))1/8 el ae
0

X ,
< A‘[ I (AP - 1/r +1/q - 1 £x(t)de

0

]1/8

-

However, 1f 1/p - 1/r > 1/q' = 1 - 1/q, the last integral is dominated

-
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1 1/s
A [ J f*(t)dt] ,
]

which is finite by Theorem 2.7 and the hypothesis that
£ ¢ L1(log'L)®C0,11.
Consldering J;, we set x* = t to obtain

1 1 1/8q
I, = pe -y J t:l/asp - 1,/(131' -1 [ J (f*(}'))q dy) ,
6] t

where 6 = X - n + n/ps - u;/rs. We note that if y is determined by the

restrictions indicated above, then

1 1 1/sq
Jp S A f (/P - 1/)/s -1 [ J (£x(n)) 1 dyJ © de

0 t

1
<A I (1/p - 1/r)/s - 1 (t(f*(t))q)ilsq dt
0

1
-a I (tllp - 1/r + 1/q f,‘(t))ﬂs 1 oae
0

1 ' 1/s
< A [ J (/P ~ 1/r +1/q -1 f*(t)dtJ

0

1 1/s
<A [ I f*(t)dt]

0

as above.

s

o

5 g,

ST

i e LT TR




73

“

Hence, collecting terms, we have the desired result.

Lastly, we have two corollaries of the above theorem.
Corollary 1: If p = s = 1, then

el gy = Mty s 8 Tl gagi + <

]

Corollary 2: If 1 < p =1/s < r < +», then

%

§
2

||Te] | = ||Te]| s A el 19004 y8 * C-
L(X,p) L)‘(p,p) Li(log L)
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