MODELLING OF A LATHE STRUCTURE
MODELLING OF A LATHE STRUCTURE
FOR THE COMPUTATION
OF
DYNAMIC CHARACTERISTICS

By
CEDRIC PARK, B.Sc.(Eng.)

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfilment of the Requirements
for the Degree
Master of Engineering

McMaster University
September 1973

© Cedric Park 1974
MODELLING OF A LATHE STRUCTURE FOR THE COMPUTATION OF DYNAMIC CHARACTERISTICS

AUTHOR: Cedric Park, B.Sc.(Eng.) (University of London)

SUPERVISOR: Dr. J. Tlusty

NUMBER OF PAGES: x, 146
ABSTRACT

As part of a general programme of machine tool research, this work initiates development of mathematical models of machine tool structures.

The lumped-parameter method is employed in modelling a lathe spindle assembly, importance being attached to the effect of components in contact with the spindle proper. For the complete lathe structure, the finite element approach is used and computations are carried out on a commercially-available computer programme.

In both cases the dynamic behaviour of the model is determined and compared with the behaviour of the actual structures obtained directly by measurement. The measurements belong to related studies in the general programme.

The work also includes an introductory study of the static and modal characteristics of a model milling machine adopted by several universities in an international co-operative programme in machine tool research.
ACKNOWLEDGEMENTS

The author gratefully acknowledges the valuable guidance and advice of Dr. J. Tlusty, given consistently throughout the course of this work.

The author also acknowledges the support of the National Research Council in making it possible to carry out the computations.

Thanks are also expressed to Mrs. A. Smith and Mrs. S. Mountain whose valuable assistance in preparing this document is greatly appreciated.
TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGEMENTS iv

TABLE OF CONTENTS v

LIST OF FIGURES vi

CHAPTER I INTRODUCTION 1

1.1 General introduction 1
1.2 A problem in dynamics 3
1.3 A brief history 5
1.4 The case for computing 7
1.5 Object and scope

CHAPTER II LATHE SPINDLE 9

2.1 Introduction 10
2.2 Developing the mathematical model 14
2.3 Analysis 18
2.4 Computer programmes 21
2.5 Experimental work 22
2.6 Results

CHAPTER III COLCHESTER LATHE 29

3.1 Introduction 32
3.2 Analysis 39
3.3 Computer programmes 46
3.4 Preparation of the model 49
3.5 Experimental work 50
3.6 Results

CHAPTER IV MODEL MILLING MACHINE 57

4.1 Introduction 58
4.2 The work in phase one 59
4.3 Results

APPENDIX 61

BIBLIOGRAPHY 64
LIST OF FIGURES

2.1 (a) Lathe spindle
(b) Initial mathematical model
(c) Final mathematical model
2.2 Stiffness influence coefficient, k_{ij}
2.3 Co-ordinate system for beam model
2.4 (a) Beam with single translational displacement only
(b) Beam with single rotational displacement only
2.5 Programme test model
2.6 Schematic of experimental set-up for lathe spindle
2.7 Experimental set-up. Spindle in machine
2.8 Spindle suspended freely
2.9 Initial mode shapes for the programme test model
2.10 Analytical and final computed mode shapes for programme test model
2.11 Special model for chuck investigation
2.12 Special model. Natural frequencies for 5" 'workpiece'
2.13 Special model. Natural frequencies for 11" 'workpiece'
3.4 Imaginary receptance
3.5 Absolute receptance
3.6 Phase shift
3.7 (a) 2 D.O.F. system
 (b) 1st mode
 (c) 2nd mode
 (d) Combined mode
3.8 Summing the real and imaginary parts
3.9 Commonly used finite elements
3.10 STARDYNE system analysis summary
3.11 DYNRE 2 deck set-up
3.12 Computer programme for receptance
3.13 Elliptical cross-ribbing
3.14 Arrangement of equipment
3.15 First 10 eigenvalues
3.16 First mode shape
3.17 First mode shape-rotated view
3.18 Fifth mode shape
3.19 Fifth mode shape - rotated view
3.20 Measured mode shape, 97.3 Hz
3.21 Measured mode shape, 105.4 Hz
3.22 3rd Mode shape
3.23 3rd Mode shape-rotated view
3.24 2nd Mode shape
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.25</td>
<td>2nd Mode shape - rotated view</td>
<td>110</td>
</tr>
<tr>
<td>3.26</td>
<td>7th Mode shape</td>
<td>111</td>
</tr>
<tr>
<td>3.27</td>
<td>7th Mode shape - rotated view</td>
<td>112</td>
</tr>
<tr>
<td>3.28</td>
<td>Measured mode shape, 140 Hz</td>
<td>113</td>
</tr>
<tr>
<td>3.29</td>
<td>Horizontal dynamic response-tool</td>
<td>114</td>
</tr>
<tr>
<td>3.30</td>
<td>Horizontal phase shift-tool</td>
<td>115</td>
</tr>
<tr>
<td>3.31</td>
<td>Horizontal dynamic response-workpiece</td>
<td>116</td>
</tr>
<tr>
<td>3.32</td>
<td>Horizontal phase shift-workpiece</td>
<td>117</td>
</tr>
<tr>
<td>3.33</td>
<td>Vertical dynamic response-tool</td>
<td>118</td>
</tr>
<tr>
<td>3.34</td>
<td>Vertical phase shift-tool</td>
<td>119</td>
</tr>
<tr>
<td>3.35</td>
<td>Vertical dynamic response-workpiece</td>
<td>120</td>
</tr>
<tr>
<td>3.36</td>
<td>Vertical phase shift-workpiece</td>
<td>121</td>
</tr>
<tr>
<td>3.37</td>
<td>Real receptance, horizontal</td>
<td>122</td>
</tr>
<tr>
<td>3.38</td>
<td>Real receptance, vertical</td>
<td>123</td>
</tr>
<tr>
<td>3.39</td>
<td>Absolute receptance, horizontal</td>
<td>124</td>
</tr>
<tr>
<td>3.40</td>
<td>Absolute receptance, vertical</td>
<td>125</td>
</tr>
<tr>
<td>4.1</td>
<td>Model milling n/c</td>
<td>126</td>
</tr>
<tr>
<td>4.2</td>
<td>Mathematical model for C.I.R.P. milling n/c</td>
<td>126</td>
</tr>
<tr>
<td>4.3</td>
<td>C.I.R.P. model, Horizontal loading, 'Y' displacements</td>
<td>127</td>
</tr>
<tr>
<td>4.4</td>
<td>C.I.R.P. model, Horizontal loading, 'Z' displacements</td>
<td>128</td>
</tr>
<tr>
<td>4.5</td>
<td>C.I.R.P. model, Vertical loading 'Y' displacements</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4.6</td>
<td>C.I.R.P. model, Vertical loading, 'Z' displacements</td>
<td>130</td>
</tr>
<tr>
<td>4.7</td>
<td>C.I.R.P. model Natural frequencies</td>
<td>131</td>
</tr>
<tr>
<td>4.8</td>
<td>C.I.R.P. model 1st Mode, McMaster and U.M.I.S.T.</td>
<td>132</td>
</tr>
<tr>
<td>4.9</td>
<td>C.I.R.P. model, 2nd and 3rd. modes</td>
<td>133</td>
</tr>
<tr>
<td>4.11</td>
<td>C.I.R.P. model, 4th and 6th modes</td>
<td>135</td>
</tr>
<tr>
<td>A.1</td>
<td>Computer programmes</td>
<td>136</td>
</tr>
</tbody>
</table>
INTRODUCTION
1. **INTRODUCTION**

1.1 **General Introduction**

Only in this decade has an attempt been made to apply digital computing methods to machine tool design. Such methods are well-established in the aircraft and civil engineering industries but it was not until 1964 that the digital computer was first used in the investigation of static and dynamic characteristics of machine tool structures. The investigators at that time were Taylor and Tobias [1]. Since then the computer has not only been adopted in machine tool research in the universities but also in more applied research and in design in the machine tool industry in several countries.

1.2 **A Problem in Dynamics**

The design of a machine tool must include consideration of its rigidity and stability as a structure. Deformations can occur due to various factors: cutting forces; weight forces; forced vibrations from unbalanced rotating parts; self-excited vibrations at the cutting point. It follows therefore that the quality of the machined work depends appreciably upon the static and dynamic

Numbers in square brackets indicate references given in bibliography.
stiffness characteristics of the tool and workpiece. The machine tool structure as a vibratory system determines chatter stability, which has been defined as the maximum width of cut which can be taken without causing the machine to chatter. Chatter phenomena has been the subject of considerable investigation [2,3].

A detailed treatment of the theory of chatter and associated self-excited vibrations is given in reference [4]. The mechanism of chatter is shown as a closed-loop system having these fundamental components:

(i) the cutting process
(ii) the vibratory system of the machine structure
(iii) the mutual directional orientation of these two components.

The cutting process, characterized by the feed, the cutting speed, the tool geometry and the material of the workpiece, will not be considered in this thesis.

As a vibratory system, the machine tool structure has an infinite number of degrees of freedom and with this, in turn, is associated an infinite number of natural frequencies and mode shapes. From these, together with the related mass and stiffness characteristics of the structure, can be obtained the appropriate equations of motion and hence the dynamic response of the tool and workpiece to harmonic excitation. This is dealt with in more detail in Chapter III, where it is shown that not all modes are of
practical importance and usually only the lower modes are considered. The discrete model in Chapter III has over 400 dynamic degrees of freedom, yet only the first ten modes are computed.

The mutual directional orientation of the cutting process with respect to the vibratory system occurs because the machined surface has a definite location in space, the cutting forces have a definite direction and because also the vibratory system of the machine has a definite location in space, with definite directions of vibrations in its individual modes. By changing the mutual directional orientation of both basic components, their mutual influence is changed and also the limit conditions for stable machining change [5].

1.3 A Brief History

The original computer-aided work carried out by Taylor and Tobias [1] covered two types of machines; a radial drill and a lathe. The flexibility method was used in the matrix formulation on 'lumped-parameter' models and the results obtained were compared with those obtained from measurements made with plexiglass models. Results were encouraging, although it must be realized that the comparison was not made with the actual machines.
In 1967 Cowley [6] reported on a computer analysis of a plano-milling machine structure. His method of analysis was similar to that just described but in his study, amongst other refinements, he took into account the contributions various machine elements made to deflection.

In January 1970, six universities from five countries embarked on a co-operative programme of work concerned with computer-aided design of machine tool structures. Under the auspices of the C.I.R.P. Group Ma they selected a model milling machine in use at the University of Leuven. The primary objective of the first phase of the work was to establish the nature of the computational procedures adopted by the various contributors and to compare the results obtained from their individual computations of the static and dynamic properties of the model [7]. When the results were in and the comparison made, one or two modifications to the model were agreed and the computations repeated. The first phase has now concluded satisfactorily and the computer programs created, and regarded as now thoroughly tested, will be used in subsequent phases for computations on actual machine tools [7,8].

In 1968 Stephens used the stiffness matrix method in the form of the finite element technique in the analysis of machine tool sections. Further studies employing this method were made by Wilson [9] and Hinduja [10].

1.4 The Case for Computing

Prior to the introduction of the digital computer in machine tool design, the most reliable method of predicting static and dynamic behaviour before manufacture was by construction and testing of a physical model, usually made of plastic. Model testing has produced much valuable information and, no doubt, has on many occasions led to modifications in design [11]. Brown et al report [3] that as a result of model testing of hobbing machine structures, the quasi-static stiffness was increased by 100%. Model-testing fails through its limitations. Between the model and the prototype there are serious differences in properties of materials and in the tolerances of manufacture. Model analysis cannot truly reflect small changes since the effects of minor modifications are lost in differences in manufacture for the different materials and in tolerance differences. Moreover, a small modification in design is not necessarily followed by correspondingly small shop cost.

The computer as a design tool has much to commend it and its principal value is the ease with which it allows comparison of alternative designs to be made. The design of a new machine model is based on the previous one.
Measurements made on the old model indicate which parts of the machine should be made stiffer. It is here that the computing of static stiffness of these parts in a preliminary design in several variants, helps considerably in choosing the best variant. However, one cannot, at this stage, reliably determine dynamic stability of the machine mainly because of an inability to determine damping as related to design. Prediction of the dynamic behaviour is also inhibited by the lack of knowledge of the characteristics of such machine elements as joints, bearings and irregular sections.

Therefore, it is necessary to wait until the prototype is constructed and measured. Then the natural frequencies, mode shapes and receptances are computed for a mathematical model of the machine. This computational model is modified until it matches the measured one. The final computed model is then an important basis for checking any proposed changes in design between the prototype and the machine to be manufactured. In this stage because the changes will affect the structure only partly, it is assumed that the damping remains as measured. References [12,13,14] report on comparison of computations made on alternative designs.
1.5 **Object and Scope**

This study on the mathematical modelling of machine tools falls into three parts:

(i) Development of a model of a lathe spindle complete with chuck, workpiece and mounted parts such as gears. The study includes the case of the spindle held in bearings. By making refinements to the model an attempt is made to match the computed natural frequencies and mode shapes with those measured on the actual spindle. The lumped-parameter method is used in the computations.

(ii) Development of a model for the complete lathe. Natural frequencies and mode shapes are computed and also the relative receptance between the tool and the workpiece is determined. A comparison is made with results obtained from measurements on the lathe. The problem is formulated using the finite-element method.

(iii) Using the dimensional, inertia and stiffness data supplied to the various universities, computations are made on the C.I.R.P. model to determine the static deflections due to certain cases of loading and also to determine the lower natural frequencies and mode shapes. The lumped-parameter method is used.

The three parts are dealt with in Chapters II, III and IV respectively.
The experimental work, with which the results in Chapters II and III are compared comprised harmonic excitation tests on the lathe. The experimental work is reported in reference [5].
II. LATHE SPINDLE

2.1 Introduction

It was noted in Chapter I that one of the reasons for the computer not playing a greater role in machine tool design is the present lack of factual data on the structural elements which make up the machine. Elements having simple cross-sections, for example tubular or thin-walled box-type sections, admit to theoretical treatment and close agreement with experimental results can be achieved in static or modal analysis. Such elements can be readily represented when modelling the complete machine. However, when cutaways, riblings, irregular sections or bearings are encountered in machine elements, the complexity of the structure does not lend itself easily to theoretical analysis.

In recent years a start has been made in solving this problem with the aid of computers, in conjunction with experimental investigation [13,14,20]. This chapter deals with the development of a mathematical model for a lathe spindle complete with chuck and workpiece. This type of spindle is more complex than most and Section 2.2 describes these complexities.
The lumped-parameter method is used to determine natural frequencies and mode shapes of the model. These results are compared with those obtained by measurement on the actual spindle in similar configuration and refinements then made to the model with the purpose of obtaining good agreement between measured and computed results. In the lumped-parameter method, the structure under consideration is represented by a number of lumped masses located at points, known as nodes and connected by weightless, elastic beams. The accuracy of the results obtained by this method depends largely on how well the stiffness of the structure is represented by the stiffness of the connecting beams and also how well the distribution of the mass of the actual structure is represented by the distribution of the lumped masses.

2.2 Developing the mathematical model

Obtaining a suitable discrete model of a lathe spindle, without any attachments, presents little difficulty as it is a simple matter to calculate the inertias and stiffnesses involved. But when the spindle is considered completely assembled as it would be when functioning normally, then the assembly represents a complicated substructure. The following elements in the assembly must then be considered:
(a) The basic spindle, comprising various cross-sections, collar and nose;

(b) The chuck with its jaws, a complicated structure whose rotary inertia could be significant if transverse vibrations are present. Of great importance here is the contact between jaws and workpiece. This is characterized by small contact area and large local deformation and suggesting the possibility of certain relative rotation between chuck and workpiece.

(c) The attached masses on the spindle, including gears, dog clutch and bearings. These items constitute additional mass but what is more difficult to gauge is by how much they increase the stiffness of the spindle.

(d) The bearings. The unknown here, the stiffness of a system of the two rings with a row of balls between, is not easy to determine and is further complicated by such factors as, the accuracy of the bearing, the diametrical clearance and the pre-load.

The investigation is based on these four elements. Each of the last three is taken in turn and its effect on the modal behaviour of the spindle isolated from the others and thereby examined. The work is therefore carried out in three phases, both experimentally on the actual spindle and by computation on the model. Details of the experimental work are given in Section 7.5 while an outline of the three phases is given below.
(i) The spindle was removed from the lathe and suspended, complete with chuck and workpiece but without any other attached masses and without bearings, from ropes. Natural frequencies and mode shapes were obtained experimentally as it vibrated as a 'free-free' beam. When this was simulated on the computer, the important parameters referred to the chuck. They were chuck stiffness and clamping of the chuck jaws. These two were studied together in the first phase and the optimum values resulting from the study were used in the second phase. Optimum values were those values which gave best agreement between the computed and measured frequencies and mode shapes.

(ii) The gears and other masses which are normally part of the spindle assembly were mounted on the spindle and the procedure as in (i) was repeated. However, in the computations the parameter under investigation was now the stiffening effect of the masses on the spindle.

(iii) The final phase was with the spindle back in the lathe. The effects of the chuck stiffness, clamping and of the mounted masses had been assessed and were incorporated into the input data in the final computations. The final parameter to be examined was the stiffnesses of the two bearings.

During the investigation described in the three phases above, actually two workpieces were used, - one, long and heavy compared with the other. In this way, the
modelling procedure had to accommodate correctly the
two stiffnesses on the chuck (the body of the chuck and
the jaws in contact with the workpiece) for more than
one type of workpiece.

Figure 2.1 (a) is a drawing of the actual spindle
while below in Figure 2.1 (b) is shown the initial version
of the mathematical model. The selection of the location
of station points or nodes was determined by changes in
cross-section of the spindle and location of the two
bearings. The mass of the attached gears, dog clutch and
bearings was apportioned between appropriate nodes. The
chuck represented the greatest concentration of mass. Its
mass was initially divided between two nodes and connected
by a rigid beam. The clamping of the workpiece in the
chuck was assumed to allow certain relative rotation and
was represented by a torsion spring located at the face
of the chuck. Two springs located between the appropriate
nodes and ground represented the bearings.

To obtain closer agreement between the computed
and measured results certain modifications were later made
to the model. Mode shapes disallowed the assumed rigidity
of the chuck, necessitating the rigid link be replaced
by a beam of finite stiffness. The torsion spring was
replaced by a short flexible beam. The flexible beam...
provided the necessary relative rotation between workpiece and jaws yet, as it was short, contributed little to nodal displacements. This produced an improvement in mode shape but, more important, it resulted in a model which offered wider application (Figure 2.1 (c)).

2.3 Analysis

There is one equation of motion for each degree of freedom and for each degree of freedom there is one generalized co-ordinate. Thus the matrix embodying the equations of motion will be square. The equations can be set up using influence coefficients. The stiffness influence coefficient, \(k_{ij} \) is defined as the applied force associated with \(x_i \) (see Figure 2.2) required to hold the system in static equilibrium when \(x_j \) is given unit displacement; the displacement of the other co-ordinates being zero. Then, for a system of static forces and displacements, the applied forces are:

\[
\begin{align*}
F_1 &= k_{11}x_1 + k_{12}x_2 + \cdots + k_{1j}x_j + \cdots + k_{1n}x_n \\
\vdots \\
F_i &= k_{i1}x_1 + k_{i2}x_2 + \cdots + k_{ij}x_j + \cdots + k_{in}x_n \\
\vdots \\
F_n &= k_{n1}x_1 + k_{n2}x_2 + \cdots + k_{ng}x_j + \cdots + k_{nn}x_n \\
\end{align*}
\]

or

\[
\begin{pmatrix} F \end{pmatrix} = \begin{pmatrix} [K] \end{pmatrix} \begin{pmatrix} -X \end{pmatrix} \quad \ldots (2.1a)
\]
Where $[K]$ is a square matrix and (F) and (X) are the applied force and displacement vectors respectively. The reactive elastic force vector is then $= -[K]^{-1} (X)$.

The inertia force on mass m_i is

$$F_i \text{ (inertia)} = -m_i \dot{x}_i$$

Assuming that the system vibrates harmonically with circular frequency ω, such that

$$x_i = X_i \sin \omega t$$

then the equations of motion can be expressed in the following matrix form for a conservative system:

$$[K] \quad (X) = \omega^2 \quad [M] \quad (X) \quad \ldots \ldots (2.2)$$

$[M]$ being a diagonal matrix.

(2.2) can be written as follows:

$$\frac{1}{\omega^2} \quad (X) = [K]^{-1} \quad [M] \quad (X)$$

$[K]^{-1}$ being the inverse stiffness or flexibility matrix.

Then if the matrix product $[K]^{-1} \quad [M] = [A]$

$$\frac{1}{\omega^2} \quad (X) = [A] \quad (X) \quad \ldots \ldots (2.3)$$

Equation (2.3) represents the eigenvalue problem which is satisfied for every eigenvector (X_i) with corresponding eigenvalue or characteristic value $\frac{1}{\omega_i^2}$.
Once formulated, the eigenvalue problem can be solved using a computer library sub-routine. At one stage in the computing when difficulties developed with mode shapes, or eigenvectors, the problem was re-formulated to give

\[\omega^2(x) = [K] [M]^{-1} (x) \quad \ldots \quad (2.4) \]

As the mass matrix contained several zeros, a reduced mass matrix method had to be used. Details of this method are given in the appendix.

Consideration will now be given to the determination of stiffness influence coefficients. A simple method for a beam having many degrees of freedom is given in reference [15]. In Figure 2.3 each node is shown having two co-ordinates, one translational and one rotational. By including the rotational co-ordinates the effects of a single displacement when determining the coefficients are confined to the immediate neighbourhood of that displacement. For example, referring to Figure 2.3, if unit displacement is given to co-ordinate 3 only, then reactive forces are introduced at co-ordinates 3 and 4 and at the neighbouring nodes only, i.e. at co-ordinates 1, 2, 5 and 6. This limits the number of non-zero terms in Equations (2.1) to six.
By giving each co-ordinate in turn unit displacement, the necessary reactive forces and moments can be found from flexural analysis. In Figures 2.4 (a) and 2.4 (b) the beam is given unit translational and unit rotational deflections, respectively, at the free end of the beam. This gives the following influence coefficients taking unit deflection at co-ordinate No. 3 (Fig. 2.3)

\[k_{33} = 12 \frac{EI_1}{L_1^3} + 12 \frac{EI_2}{L_2^3} \]
\[k_{13} = -12 \frac{EI_1}{L_1^3} \]
\[k_{23} = -6 \frac{EI_1}{L_1^2} \]
\[k_{43} = 6 \frac{EI_2}{L_2^2} - 6 \frac{EI_1}{L_1^2} \]

These coefficients then become the elements of the stiffness matrix as shown (overleaf)
On a practical note, the construction of the matrix is simplified on account of its symmetry. For example, $k_{21} = k_{12}$, as stated in Maxwell's Reciprocal Theorem.

2.4 Computer Programme

The programme includes two sub-routines. INVMAT inverts a general non-singular matrix, using a modification of the Gauss pivotal method. EIGENP finds all the eigenvalues and corresponding eigenvectors of a real general matrix. Because we do not take into account any damping this is a suitable sub-routine. During the second phase of the computations an overall 'do' loop allowed trials to be made on the stiffening effect of mounted parts. A similar 'do' loop was used in phase 3 for trials on bearing stiffness.
In the preparation of the data, the elastic and inertia properties were obtained mainly from manufacturer's drawings or by weighings. Rotary inertias of the chuck and large gear were determined from the frequency of small oscillations when the part was suspended from a peripheral point, i.e. the oscillations were about a non-centroidal axis.

When the beam is computed as a 'free-free' beam (during phases 1 and 2) it is capable of rigid body motion. As there are no restraints there can be no reactive forces. The unit forces necessary in the flexibility method of structural analysis cannot therefore be applied and hence the flexibility matrix, implicit in Eqn. (2.3), cannot exist. This difficulty was overcome by artificially introducing very soft bearings as springs between this body and the "ground", by which the reality of the model is not changed in any substantial way. The stiffness matrix form of the eigenvalue problem, as in Eqn. (2.4), was the alternative solution. This was also done, as stated in the Analysis.

An estimate of the clamping stiffness of the chuck was obtained by a quasi-static testing of the workpiece in the chuck. From a measurement of the amplitudes in the lower two modes, the inertia forces were determined. Torsional stiffness of clamping was then calculated from
the moments of the exciting and inertia forces and the angular deflection. This checked sufficiently well with the value obtained by static deflection to be used as a starting trial value in the computing.

The programme was first tested on a uniform beam. The programme test model is shown in Fig. 2.5. The theoretical analysis for a continuous system gives

\[
\frac{d^4 y}{dx^4} - \alpha^4 y = 0
\]

as the form of the equation of motion for the beam in lateral vibration. The natural frequencies are

\[
\omega_n = n^2 \sqrt{\frac{gEI}{\omega}}
\]

where \(\omega \) = weight per unit length and for a 'free-free' beam [16],

\[
(n_1 L)^2 = 22.4 \quad \text{in fundamental mode}
\]
\[
(n_2 L)^2 = 61.7 \quad \text{in second mode, etc.}
\]
\[
L = \text{length of beam}
\]

The mode shapes for this beam are:

\[
y = \cosh k_n x + \cos k_n x - B_n (\sinh k_n x + \sin k_n x)
\]
For fundamental mode, \(k_n = \frac{4.73}{L} \); \(B = 0.9825 \).

For second mode, \(k_n = \frac{7.853}{L} \); \(B = 1.0008 \).

The beam will also act as a rigid body with zero frequency and displacement, \(y = 1 \).

2.5 Experimental work

Figure 2.6 shows the experimental set-up to obtain natural frequencies and mode shapes. The oscillator, OS, fed a sinusoidal signal through the power amplifier, PA, to the electro-dynamic exciter, EX, in turn applying a harmonic force to the workpiece through the force link, FL. Feedback of the charge generated in the force link was amplified in the charge amplifier, CA, and fed back as a voltage to the oscillator. A Philips velocity pick-up was used in measuring the vibration amplitudes. The output voltage from the pick-up, which was proportional to the vibrational velocity at the point being sensed, was taken direct to an oscilloscope.

Figure 2.7 shows the spindle being measured in the machine, with the exciter resting on the lathe, while Figure 2.8 shows the spindle being measured as it hung freely, with the exciter resting on the ground.

To identify the natural frequencies, the vibration signal on the scope was observed as the frequency of
excitation was slowly swept from 10 to 500 Hz. All frequencies at which the magnitude of vibration reached a maximum were natural frequencies. Each frequency represented a mode of vibration and with the excitation frequency set at each natural frequency in turn, the amplitudes and sense (i.e. either in phase or out-of phase) of vibration at selected locations on the spindle were measured.

Reference [5] gives a full description of the equipment used.

2.6 Results

Computations made on the initial model consistently produced unrealistic mode shapes, in the form of 'kinks' in the curves. When the problem was reformulated according to Eqn. 2.4 frequencies obtained were identical to previous results but the mode shapes were still unsatisfactory. Removing the rigid link produced a slight improvement. Results for the programme test model (see Fig. 2.5) gave frequencies within 1.5% of the theoretical values. However, when the first three mode shapes were plotted, 'hooks' appeared at the ends of the curve in each case (Fig. 2.9), though the rest of the curve agreed closely with the theoretical shape.

After all other possibilities were exhausted, suspicion focused on the sub-routine used to extract the
eigenvalues and eigenvectors (the parameters of the sub-routine having already been examined). EBERVC, the sub-routine being used, was suitable for a non-symmetric matrix and was based on the iterative method of Eberlein. This sub-routine was replaced by EIGENP, which computes the eigenvalues by the QR Double-Step Method. The eigenvectors are computed by inverse iteration. This sub-routine gave completely satisfactory results for the programme test model, Fig. 2.10. As before, the computed first natural (non-zero) frequency was 177 Hz as compared with 179 Hz for the theoretical value.

On using this new sub-routine on the spindle model, the mode shapes became more realistic, but agreement with the measured mode shapes was still not acceptable. It was decided to use the modified model (the short flexible beam replacing the torsion spring) and try-out various combinations of chuck stiffness and clamping stiffness. This was tried out first on a more uniform beam (Fig. 2.11) to see if any pattern emerged. The results are shown in Figures 2.12 and 2.13. For the 5" work-piece' there is a sharp increase in the value of the second natural frequency as the clamping stiffness increases, but this is less marked for the larger 'workpiece'. Figures 2.14 and 2.15 show how the ratio of the second to the first frequency varies in the two cases. If
compared with the ratio of the measured frequencies for the actual spindle an interesting convergence is seen. With the 5" workpiece the family of chuck stiffness curves for all but the least stiffness converge towards the value of the measured frequencies ratio. For the 11" specimen the lines converge, rising towards the experimental value at a much lower value of clamping stiffness.

This procedure was then carried out on the model of the actual spindle. Figure 2.16 shows the results for the 5" specimen. Optimum value for the clamping stiffness appears to be 0.17 and for the chuck stiffness, 6.0. For these values of the stiffnesses the two lower computed frequencies are 455 and 772 Hz as compared with measured frequencies of 405 and 820 Hz, a discrepancy of 10% and 6%, respectively. The results for the longer specimen are shown in Fig. 2.17. Again, the chuck stiffness of 6.0 appears to be the more reasonable, although chuck stiffness has little effect in the second mode frequency. With this frequency there is less agreement with the measured frequency than there is in the first mode or, than there is in the case of the smaller workpiece. The clamping stiffness selected for the longer workpiece was 0.102 which gave 1% and 17-1/2% discrepancy respectively for the first two modes. As in the trials on the more uniform beam, the clamping stiffness selected was considerably less for the longer workpiece than for the
shorter one.

Mode shapes for the 5" specimen with the above clamping stiffness are shown in Fig. 2.18. Close agreement will be noted between the measured and computed shapes. Good agreement can also be seen for the 11" specimen, Fig. 2.19, although the measured second mode shape shows more deflection of the workpiece and less deflection of the outer end of the spindle than is shown in the corresponding computed shape.

In Phase 2, the spindle was measured with the gears and other parts mounted on the shaft. The longer workpiece only, was used in this phase. As regards the computational model, it was assumed that the effect of sliding members on the stiffness of the spindle assembly was not significant. In fact, the only part that was likely to contribute to any extent was the inner ring of the outer bearing, which would be a light interference fit on the spindle, (the inner bearing was never removed from the spindle and so was already included in the stiffness of the spindle). The area moment of inertia I_2, at this point on the spindle was given various values from the original value of 6.76 up to 15.0 inch4 units in computations on the model, with the mass of the mounted parts added to the model masses.
Figure 2.20 shows a comparison of computed and measured results. The first mode shows good agreement on both frequency and mode shape, - the computed frequency being 189 Hz compared with 175 Hz measured. The effect of the stiffening due to the bearing ring is insignificant, merely raising the frequency to 190 Hz. With the second mode there is a greater discrepancy in frequency, - 482 Hz computed compared with the measured frequency of 700 Hz. That the second measured frequency had not decreased with additional mass, suggested that some of the other mounted parts made a considerable contribution to the spindle assembly stiffness, thereby compensating for the additional inertia. An examination of the computed and measured shapes for the second mode would seem to confirm this. The effect of including the bearing ring, increased the frequency from 482 to 516 Hz., - still a 26% discrepancy with the measured frequency. Figure 2.21 shows how the frequencies of the two modes vary with moment of inertia, I_2.

In Phase 3, measurement were taken with the spindle in the lathe Fig. 2.7. Natural frequencies and mode shapes were measured for both workpieces. In the computations, to facilitate plotting and to establish a basis for comparison the ratio of the stiffness of the two bearings was considered. Using this ratio as a parameter and also the stiffness of one of the bearings, computed
frequencies were obtained over a wide range of bearing stiffness. The results are shown in Fig. 2.22. It was found that closest agreement with measured frequencies was obtained with bearings having a stiffness of 8×10^4 lb./in. for the outer bearing. Computed mode shapes for these values of bearing stiffness are shown compared with the measured modes in Fig. 2.23. The first mode shows very good agreement but the second and third modes show very little agreement.

The difference in the shapes can be attributed to an assumption made in Phase 3: This was that the lathe proper which was supporting the spindle, would act as a rigid structure and that the only displacements would be those of the spindle. This apparently was not the case. The lathe itself was vibrating and so Phase 3 of the spindle study was extending into an area that is dealt with in Chapter III of this thesis. A comparison of the measured results for the cases of the spindle (i) in the bearings and (ii) suspended freely show the frequencies for the latter to be greater which would not be the case if the lathe frame was rigid. On the other hand, the computations on the model assumed the lathe frame to be rigid and the bearing 'ground' to have no displacement. It is clear that the optimum values of bearing stiffness obtained are softer than those on the actual spindle.
To summarize, the results show that the model developed for the basic spindle assembly is satisfactory, giving close agreement with the actual spindle as far as modal behaviour is concerned. As to the attached masses, their effect on the stiffness of the system can be underestimated. Results indicate that they have some influence on the second mode and it was in this mode that the discrepancy (between computed and measured results) was noticeable. Finally, a more fundamental problem arises when determining bearing stiffness. With the lathe frame as flexible as it was, the experimental measurements with the spindle in the machine led to no valid determination of bearing stiffness. The problem was entering the preserve of Chapter III.
THE COLCHESTER LATHE
III. THE COLCHESTER LATHE

3.1 Introduction

In the previous chapter a model was developed for a lathe spindle assembly, treating it as an entity rather than an integral part of the lathe. This chapter covers a study of the whole lathe, setting up a model and examining its dynamic behaviour as a machine structure.

Previous computer studies of a lathe have employed the lumped-parameter method. The accuracy of this method depends largely on the accuracy of the stiffnesses assigned to the beams representing the various elements in the lathe structure. Assessing the static stiffnesses of these elements is not an easy task as the shapes are both complicated and diverse. Valuable contributions in this area have been made by Kaminskaya et al [17] in their theoretical studies on box sections and apertures. Also in the same area is the extensive treatment by Gorbatov and Valenta in reference [4]. Formulae derived from these theoretical studies have been the standard for comparison adopted by several investigators in computer studies on the static stiffness of the more regular machine sections [9,18].

The finite element method has been developed in machine tool study to better represent the geometry of the structure when computing static deformations. In this
method the structure is considered as a mathematical assem-
blage of individual structural elements. Common elements
used are, triangular and rectangular plates, beam and solid
elements. The smaller the element size, the more accurate
the result but the greater the number of elements used, the
greater the computer storage required and also the com-
puting costs.

The elements are assumed to be interconnected at
a discrete number of nodal points situated on their bound-
aries. The displacements of these nodal points will be
the basic unknown parameters of the problem. A function
(or functions) is chosen to define uniquely the state of
displacement within each element in terms of its nodal
displacements. The stiffness properties of the individual
elements are first expressed in a convenient local (element)
coordinate system. The element stiffness matrix is then
transformed from its local coordinate formulation to a form
relating to the general coordinate system. The individual
element stiffnesses contributing to each nodal point
are superimposed to obtain the total assemblage stiffness
matrix, $[K]$. Eqn. 2.1a may be solved to determine the nodal
displacements, given a set of applied nodal forces.
Reference [19] is a standard work on the finite element
method.
In this chapter, however, the finite element method is used to solve the dynamic problem. The formulation of the problem expressed in Eqn. 2.4 is the basis upon which natural frequencies and mode shapes are computed. From these, in turn, the dynamic responses of the tool and workpiece to harmonic exciting forces are determined. Unlike the static stiffness, the dynamic stiffness and also its reciprocal, the dynamic compliance, are frequency-dependent. Dynamic compliance, - the ratio of the amplitude of displacement to the amplitude of the exciting force, is known as 'receptance'. It is effectively mechanical admittance and can be evaluated for a single mass or for a combination of discrete elements. This is developed in more detail in section 3.2. The only vibration of concern to the designer is that of the tool and workpiece relative to each other. It is therefore only the relative receptance between these two stations that is considered in this chapter.

Machine details

Manufacturer: Colchester Lathe Co. Ltd. Colchester, Essex, England

Model: 'Dominion 17' 17" x 72"

Spindle Bearings: 'Gamet' Taper Roller

A diagram of the lathe is shown in Figure 3.1.
3.2 Analysis

The value of the concept of receptance is that in a linear multi-degree-of-freedom (D.O.F.) system the receptance at a particular frequency is the sum of the factored responses in the individual modes. In other words, the system is treated as a series of single D.O.F. systems. To develop this a single D.O.F. system is first considered.

(i) Single degree-of-freedom system

Figures 3.2 (a) and (b) show two different single D.O.F. systems which are identical in treatment. The masses, m, being restrained by the spring, of spring rate or stiffness, k. In case (b) the massless flexible beam is the spring. The system in both cases has a damping coefficient, c.

When performing natural vibrations, the displacement of the mass is

$$x = x_0 e^{(-\delta+j\nu) t}$$ \hspace{1cm} \ldots (3.1)

in the direction (X).

where $\delta = \frac{c}{2m}$; \hspace{1cm} \nu^2 = \omega_n^2 - \delta^2$

and $\omega_n = \sqrt{\frac{k}{m}}$.

The damping ratio, \(\xi = \frac{c}{c_c} \) where \(c_c \) is the critical damping,

\[c_c = 2m\omega_n. \]

If an external force \(p = Pe^{j\omega t} \) acts on the mass in the direction (X), the system vibrates, adapting to the forcing frequency, \(\omega \). The steady state motion is

\[x = Xe^{j\omega t} \text{ where } X = Ac^{j\phi} \]

where \(A \) is the amplitude and \(\phi \) is the phase shift.

\[X = \frac{P}{(k - m\omega^2) + j\omega c} = \frac{P}{k + \frac{c}{2}\omega} = \frac{\omega_n^2}{\omega_n^2 - \omega^2 + 2j\delta \omega} \]

\[X = P \cdot \phi (\omega) \]

\(\phi (\omega) \) is the receptance of the system. As the receptance is a complex quantity it can also be written as:

\[\phi (\omega) = \left[\frac{k - m\omega^2}{(k - m\omega^2)^2 + c^2}\right] - 1 \left[\frac{c\omega}{(k - m\omega^2)^2 + c^2}\right] \]

The real part of \(\phi (\omega) \) is called the 'real receptance',

\[\text{Re} (\phi) = G = \frac{k - m\omega^2}{(k - m\omega^2)^2 + c^2}\omega^2 = \frac{\omega_n^2(\omega_n^2 - \omega^2)}{k[(\omega_n^2 - \omega^2)^2 + (2\delta \omega)^2]} \]

The imaginary part of \(\phi (\omega) \), - the 'imaginary receptance',
\[\text{Im} \left(\phi \right) = H = - \frac{c_\omega}{\left(k - m_\omega^2 \right)^2 + c_\omega^2} = - \frac{2 \omega_n^2 \delta \omega}{k[\omega_n^2 - \omega^2]^2 + (2\delta \omega)^2} \]

...(3.5)

The real receptance is in phase with the applied force \(P \), while the imaginary receptance is in quadrature with \(P \). The absolute value of the receptance is then the absolute value of the vectorial sum of the real and imaginary parts.

\[
| \phi(\omega) | = \frac{1}{k[\omega_n^2 - \omega^2]^2 + (2\delta \omega)^2} \]

...(3.6)

The phase shift, \(\phi \), of \(X \) with respect to \(P \) is

\[
\phi = \tan^{-1}\left(\frac{H}{G} \right) = - \frac{2 \delta \omega}{\omega_n^2 - \omega^2} \]

...(3.7)

Equations (3.4) to (3.7) are shown plotted against forcing frequency, \(\omega \), for various values of the damping ratio, \(\zeta \), in Figures (3.3) to (3.6).

(iii) Unidirectional system with two degrees of freedom.

In Figure 3.7(a) a two D.O.P. system is represented with the two masses \(m_a \) and \(m_b \) free to move only along the parallel lines, \((X_a) \) and \((X_b) \), respectively. Damping and elastic properties, \(c_a, c_b, k_a \) and \(k_b \) refer.
If the system is initially disturbed and then allowed to vibrate freely, the resulting motion will be the sum of two simultaneous motions pertaining to the two modes of vibration. The modal shape for either mode can be defined as the ratio of the displacements of the two masses:

\[
\lambda_1 = \frac{X_{b1}}{X_{a1}} \quad \text{and} \quad \lambda_2 = \frac{X_{b2}}{X_{a2}}
\]

where subscripts 1 and 2 refer to modes 1 and 2, respectively. The mode shapes are represented by full lines in Figures 3.7(b) and (c). When the system is vibrating, the displacement at any instant will be the sum (Fig. 3.7(d)) of two factored modal displacements (shown by dashed lines in Figures 3.7(b) and (c)). The shape of the deformed system will be changing continuously because of the difference in the mode frequencies. The instantaneous displacement of mass \(m_b\) is:

\[
x_b = x_{b1} + x_{b2}
\]

where

\[
x_{b1} = x_{b1}e^{-\delta_1 + j\nu_1}t
\]

and

\[
x_{b2} = x_{b2}e^{-\delta_2 + j\nu_2}t
\]

\[
\nu_1 = \omega_{n1} - \delta_1
\]

\[
\nu_2 = \omega_{n2} - \delta_2
\]
Using the shape coefficients λ_1 and λ_2 the displacement of mass m_a will be

$$x_a = \lambda_1 x_{b1} + \lambda_2 x_{b2}$$

As the values of λ_1 and λ_2 depend only on the parameters of the system, the motion of the system can be described in terms of the two partial co-ordinates x_{b1} and x_{b2}, thus replacing the original co-ordinates. Initial conditions will determine the two vectors, x_{b1} and x_{b2}.

If one of the masses, say m_b, is subjected to an exciting force $p = Pe^{j\omega t}$ acting in the direction (X_b), the vibration will be

$$x_b = X_b e^{j\omega t}$$

where $X_b = A_b e^{j\phi}$

$$= P \left(\frac{1}{k_{b1} \omega_{n1}^2 - \omega^2 + 2j\omega \delta_{b1}} \right) + \frac{1}{k_{b2} \omega_{n2}^2 - \omega^2 + 2j\omega \delta_{b2}}$$

$$= P \cdot \delta_b (\omega) \quad \text{(3.8)}$$

Eqn. (3.8) may be re-written as

$$X_b = X_{b1} + X_{b2}$$

with

$$X_{b1} = \frac{P}{k_{b1} \omega_{n1}^2 - \omega^2 + 2j\omega \delta_{b1}} = P \cdot \delta_{b1} (\omega)$$

$$X_{b2} = \frac{P}{k_{b2} \omega_{n2}^2 - \omega^2 + 2j\omega \delta_{b2}}$$
and \[X_{b2} = \frac{P}{k_{b2}} \cdot \frac{2}{\omega_{b2} \omega} = P \phi_{b2}(\omega) \]

again, \(X_b = X_{b1} + X_{b2} \)

\[= X_{b1}e^{j\omega t} + X_{b2}e^{j\omega t} = P(\phi_{b1} + \phi_{b2})e^{j\omega t} \]

The sum,

\[\phi_{b1} + \phi_{b2} = \phi_b \]

signifies that the receptance of the system can be obtained by summing the receptances of the first and second modes.

Or considering the components

\[\phi_b = (G_{b1} + G_{b2}) + j(H_{b1} + H_{b2}) \quad ...(3.9) \]

i.e. the simple arithmetic sum in both cases, (see Figure 3.8).

In steady state vibration, every point on the system experiences harmonic motion of the same frequency as the excitation. If the frequency is in the neighbourhood of a natural frequency, then the corresponding mode contributes largely to the resulting vibration. The contribution from the other mode is relatively small.

In the computational work on the lathe, summation of this kind was made to obtain the resulting
response from the contributions of individual modes, whereas in the case of the experimental work, the resulting receptance was resolved to determine the contributions of the modes.

It was stated in Chapter I that a machine tool is a structure with an infinite number of degrees of freedom, with an infinite number of modes, and natural frequencies. The infinite number would make it impossible to sum or resolve receptances were it not for the fact that with the higher modes both the stiffness and the damping is greater than with the lower modes. That is to say, mode contribution decreases with mode number and in practice it is sufficient to consider the lower modes only.
3.3 Computer Programmes

3.3.1 STARDYNE Programmes

The STARDYNE System developed by Mechanics Research Inc. of California, consists of a series of digital computer programmes designed to analyse linear elastic structural models. The following programmes are included in the system:

(i) STAR

STAR has two distinct functions:

(a) Static load analysis. Once the structural model has been defined, the reaction to any general type of static load may be investigated.

(b) Modal analysis. For any stiffness matrix and associated mass matrix, the programme will extract eigenvalues and eigenvectors in a desired frequency range. Two sub-programmes are available, one using inverse iteration and the other, the Householder Q-R method.

The following types of elements are available in STAR:

1. Beam elements with shear stiffness
2. Two triangular plate elements. Thick plate and thin plate.
3. Quadrilateral plate element
4. Infinitely rigid members
5. Springs
6. Hexahedron element
7. Tetrahedron element

(ii) DYNRE1

Transient response to imposed dynamic loadings are treated in DYNRE1. Input forcing functions may be in the form of forces, initial displacements, initial velocities and base accelerations.

(iii) DYNRE2

Steady state frequency response to imposed dynamic loadings are computed by DYNRE2. Further details on this and STAR programmes are given later.

(iv) DYNRE3

Response of multi-degree-of-freedom linear elastic structural models subjected to stationary random dynamic loading. DYNRE3 will compute the rms nodal responses, rms element stresses and generate response power spectral density curves for selected nodal degrees of freedom.

(v) DYNRE4

Response of multi-degree-of-freedom, linear elastic models subjected to an arbitrarily oriented foundation shock input. The user may enter shock spectra for any of the directions of motion or call for some ratio of the 1940 El Centro (California) earthquake
spectra. DYNRE4 will compute the absolute and/or rms sum of the nodal responses, and/or element stresses.

(vi) DYNRES

Computes shock spectrum values from a transient base acceleration time history digitized at equal or unequal time intervals. The user may specify frequencies at which shock spectrum values for displacement, velocity and acceleration will be computed, in turn for each value of damping entered.

An analysis summary chart of the Stardyne System is given in Fig. 3.10. For both types of plate elements, the displacement of the element was defined by three translations and two notations at each corner.

The dimensional capability of the STAR programme with 6 D.O.F. per node is as follows:

- Number of degrees of freedom (static): 15000
- Number of degrees of freedom (other): 6000
- Number of nodes and maximum node number (static): 2500
- Number of nodes and maximum node number (other): 999
- Number of beams (rigid, pinned, elastic): 99999
- Number of tri-plates: 9999
- Number of quad-plates: 9999
- Number of cubes: 9999
Number of tetrahedrons 9999
Number of elements into one node no limit
Number of rigid systems no limit
Number of nodes per rigid system no limit
Number of rigid bar elements no limit
Number of static load cases no limit
Number of entries to material property table 250
Number of entries to beam property table 999
Number of nodes with individual ref. systems 2500
Number of individual reference systems 999
Dynamic DOF for modal extraction
 Householder-QR 350
 Inverse Iteration 6000
Matrix Bandwidth - Nodal no limit
 - D.O.F. (after re-numbering) 1185

The following geometry formulation procedure for
the STAR programme was used:
1. A nodal diagram of the idealized structure
 was made (more information is given in
 Section 3.4)
2. Numbers were assigned to the node points.
3. Section properties, co-ordinates, member
 identifications restraints and weights were
 computed.
4. The input data was coded on data sheets and
 key-punched.
5. The STAR programme was run and terminated after the geometry phase in order to check running time estimates and to inspect the node/element table.

During the geometry formulation, the nodes are re-ordered internally to produce a minimum bandwidth. If requested, the re-formulated geometric data is written on tape.

For triangular and quadrilateral plate elements a choice was available in the type of force the plate would resist. In-plane and bending forces were selected, requiring a minimum of 5 D.O.F. per node. For beam elements, beam shear shape factors were used. These factors when multiplied by the beam area yielded the effective shear areas for two transverse areas of the beam. A 'pin code' option in the beam connectivity table allowed a load carrying capability to be included or released.

In the Inverse Iteration modal extraction sub-programme, the frequency range and the number of eigenvectors desired can be specified. This method is used only when the Householder-QR method maximum for dynamic D.O.F. is exceeded (as in this case) or if only a few modes are desired or when time estimations indicate that the Inverse Iteration Method is more
economic. The procedure attempts simultaneously, during any iteration to converge upon (a) a single eigenvector (b) two close roots (quadratic procedure) and (c) three close roots (cubic procedure). The successful convergence of any of these is dependent upon satisfying the tolerance number associated with each process.

The DYNRE2 programme requires a data tape created during a STAR run. DYNRE2 reads this tape to obtain the required geometry, eigenvalues and eigenvectors for the response history. The input data requirements are specified on the DYNRE2 deck set-up diagram, Fig. 3.11. For the dynamic response a list of possible exciting frequencies is determined by the following:

(a) Each natural frequency selected and one point midway between each pair of adjacent natural frequencies will become a possible exciting frequency.

(b) A finer distribution of exciting frequencies between adjacent natural frequencies may be generated.

(c) A list of specific frequencies may be entered. A damping factor must be entered for every mode used. If damping data is omitted, a damping ratio of 0.04 is entered.
The forcing function input may be one of three types:

(i) Sinusoidal motion of the base of the structure. These may be accelerations, velocities or displacements.

(ii) A force may be distributed over the structure and given a sinusoidal variation; the amplitude changing as the frequency of excitation changes.

(iii) A unit sinusoidal excitation may be applied at a specific point on the structure and transfer functions computed for all of the remaining co-ordinates.

Type (ii) was adopted to allow equal and opposite forces to be applied simultaneously to the workpiece and the tool. The amplitude of the exciting forces was kept constant over the frequency range selected.

3.3.2. Programme for real and absolute receptance

DYNRE2 computes the response of any selected station or stations to given input forces. The final step then in determining tool and workpiece dynamic behaviour is the determination of the relative receptance at these two station points. The real receptance \(G(\omega) \) of each point is computed by taking the cosine component of the dynamic response per unit exciting
force, using the DYRNE2 programme output. The algebraic difference of these two values then gives the relative dynamic behaviour of tool and workpiece in terms of real receptance, $G(\omega)_{rel}$. A similar procedure, but taking the sine component instead, gives the imaginary receptance $H(\omega)_{rel}$ of the tool relative to workpiece. The absolute value of receptance of one to the other is determined from:

$$|\phi(\omega)|_{rel.} = \sqrt{|G(\omega)|_{rel.}^2 + |H(\omega)|_{rel.}^2}$$

A simple programme for computing these relative receptances is shown in Fig. 3.12.

3.4 Preparation of the model

The preparation of the model was based on a set of drawings obtained from the manufacturer. From these, tracings were made of parts with non-regular plane areas and the areas were then divided up into finite elements, either triangular or rectangular. All other plane areas were divided up in like manner,
for the three-dimensional structure. To minimize the risk of overlooking an element (and hence leaving a weak spot in the structure model) the elements lying in the different planes were drawn on different isometric drawings of the lathe. Flanges around castings, the top part of the bed and generally parts that could not be considered as plate elements were represented by beam elements. The model can be seen in Figure 3.1(b), which is actually one of the mode shapes. The quadrilateral elements that can be seen were introduced as an additional Stardyne facility after the initial preparation of the model. Its introduction resulted in a decrease in the number of nodes and hence, in the number of D.O.F. The elliptical cross-ribbing shown in Fig. 3.13 was represented by rectangular plates. The spindle of Chapter II had to be located at appropriate nodes in the headstock. The bearings could not be represented by springs between the spindle and 'ground' as the bearing housing could not be considered rigid. Neither was there provision in Stardyne for springs to be located between nodes. However, the matter was simply settled by placing pairs of beams between appropriate nodes on the spindle and on the headstock. The longitudinal stiffness of the beam was made equal to
that of the bearing it represented. The two beams per bearing allowed for bearing stiffness in the horizontal and vertical directions. Load bearing capabilities in the other co-ordinates were released. One beam representing one of the bearings was given certain transverse stiffness to prevent free axial float of the spindle model.

A similar provision was made for the bearing in the 'live' centre on the tailstock. Rotation of the spindle was fully restrained at the outer bearing but the torque capability of the workpiece, where it was held by the 'live' centre, was released. Where the legs of the lathe were in contact with the ground, the nodes were constrained in the three translational co-ordinates. As drawings and information were not available relating to the saddle and tool post, an adjacent point on the top of the lathe bed was taken to represent the tool when considering tool/workpiece dynamic behaviour.

Summary of input:

Number of nodes = 143
Number of beams = 115
Number of tri-plates = 36
No. of quad-plates = 97
No. of nodes with restraints = 9
No. of D.O.F./node 6
No. of D.O.F. 833
No. of dynamic D.O.F. 414

3.5 Experimental work

In the harmonic excitation tests carried out on the lathe an electro-magnet was used as the source of excitation. It was used with concave poles of radius 2-3/4 in. acting on a workpiece of diameter 5-1/2 inches. The gap between the poles and the workpiece was kept at 0.04 inch.

The arrangement of the equipment is shown in Fig. 3.14. The automatic sweep oscillator OS supplied a constant harmonic voltage to the E.M. amplifier (amplifier supplying current to the electro-magnet). The frequency of that harmonic voltage was swept from 10 HZ to 500 HZ at a slow sweeping speed. The output of the E.M. amplifier EA was connected to the magnet. Hall probes, which are flux (magnetic) sensing transducers, fed back signal of the force into the E.M. amplifier so as to keep the magnetic force across the gap at a constant amplitude throughout the whole test. For all the tests, a static force of 50 newtons (11.21 lb.) and a dynamic force of amplitude equal to 10 newtons (2.24 lb.) were used. Force-analogous voltage was employed as one of the inputs to the multiplier MU, part of a standard analogue computer. The vibra-
tion signal was sensed by a capacitive vibration pick-up VP, amplified by Wayne Kerr vibration meter WM. It was used as the other input to the multiplier. Output of the multiplier was then connected to the X-Y plotter PT. Since the plotter was a good AC filter for the purpose, no further filter for the AC signal was required. The product of force and vibration signals was recorded as the Y-component and the log-frequency of excitation as the X-component. This set up gave direct plotting of real-receptance. A full treatment of the experimental work is given in Ref. [5].

3.6 Results

The STAR modal extraction programme computed the first ten eigenvalues and frequencies and these are given in Table 3.15. Corresponding mode shapes for five modes together with the measured mode shapes are shown in Figures 3.16 to 3.28. Because in this phase we still treat the case as of natural vibrations, with no damping, necessarily all the eigenvectors have been normalized and the mode shapes do not differ in the general magnitude of displacements. It is not possible to see which of the modes are dominant on the actual machine. This presents some difficulty when comparing the computed modes with the measured ones. The main
parameter relating the two sets is the natural frequency.

The problem of significance of modes was dealt with by considering the dynamic responses. These responses, computed from the DYNRE2 programme, for the bed and workpiece are shown in Figures 3.29 to 3.32 for horizontal response and in Figures 3.33 to 3.36 for vertical response. Finally, from the output from the dynamic response programme, the relative receptance between the bed and the workpiece was computed. The plotted results for the real receptance, $G(\omega)$ in the horizontal and vertical planes are shown in Figs. 3.37 (a) and 3.38. Absolute values of the receptance, $|\Phi(\omega)|$ can be seen in Figures 3.39 and 3.40.

The fifth computed mode has a natural frequency of 97.6 Hz and the horizontal $G(\omega)$ curve Fig. 3.37 indicates that this is the dominant horizontal mode. This is very similar to the principal measured horizontal mode of frequency 97.3 Hz. Fig. 3.37 (b). Comparison of the mode shapes, Figs. 3.18, 3.19 and 3.20 shows good correlation on the distortion of the workpiece spindle and tailstock barrel though there is more flexing of the spindle in the bearings for the model and, secondly, the computed mode shape shows more flexibility in the lathe bed. It also shows the workpiece and bed to be out-of-phase. This is also clear
from the phase shift diagrams, Figs. 3.30 and 3.32.

Comparing Figures 3.22, 3.23 and 3.21 both representing dominant vertical modes (see Fig. 3.38) the spindle bearings for the model again appear not to be as stiff as for the actual machine. The difference in bearing stiffness appears to be more pronounced in the vertical plane and this, coupled with the more flexible bed, could account for the low computed frequency, 76.1 compared with the measured frequency 105.4 Hz.

It will be noted that the two measured natural frequencies are close, 97.3 and 105.4 Hz. This is not uncommon in lathes because of the symmetry of parts along the spindle axis (as many are circular in section). The significance of this is clear when it is realized that the workpiece is the main vibrating mass with the spindle and the tailstock as 'springs'. Further, the geometry of the lathe in the region of the workpiece and bed beneath, would suggest greater stiffness in a plane opposing vertical deflection, than in that opposing horizontal deflection. The higher measured vertical frequency would support this. Examination of the responses in Figures 3.33 and 3.35 shows that the large real receptance in this mode
(third mode with computed frequency 76.1 Hz) is almost entirely due to the workpiece - not to the bed. It would therefore appear that increased bearing stiffness in the model would bring it more 'in-line' with the actual machine.

Out of the six lowest computed natural frequencies, five are horizontal modes. This is in agreement with experience, the reason being, as stated, that the vertical stiffness is greater than the horizontal. In the first mode, at a frequency of 53.9 Hz, there is simple bowing of the lathe bed horizontally, (Figs. 3.16 and 3.17) this time in phase with the workpiece. Again the "springs" are the spindle bearings, tailstock barrel and centre. The "spring" acting on the point masses representing the saddle is the lathe bed. The second mode, frequency 60.8 Hz. (Figs. 3.24 and 3.25) shows twisting of the frame about the longitudinal axis, rather than bowing. Both modes 1 and 2 appear on the computed receptance curve, though not on the measured curve. Fig. 3.3 (a) and (b). It is worth noting, however, that the experimenters taking the measurements did identify a mode in the vicinity of 60 Hz but the magnitude of the dynamic responsible was small.
The measured vertical real receptance curve Fig. 3.38 (b) shows a dominant mode at 140 Hz. From the mode shape, Fig. 3.21, it can be seen that the bed is bowing upwards. The corresponding computed mode has a frequency of 126.9 Hz (consistent in that it is somewhat lower than the measured) and the mode shape, Figs. 3.26 and 3.27, indicates the same bowing of the bed. Another feature of the computed shape (not indicated on the measured shape) is the vertical displacement of the workpiece, with the chuck clamping as one of the 'springs'.

This chapter will be concluded with an assessment of the model created. For a first model without any modifications there is good correlation between the dynamic behaviour patterns of the machine and the model. As a vibratory system, the lathe model has as its main 'mass', its workpiece, with the spindle bearings, tailstock barrel and live centre behaving as the 'springs'. The saddle also appears to act as a second mass with the lathe bed as the 'spring'. The first modes are horizontal, which correctly reflects a higher stiffness in the vertical plane. However, some of the lower horizontal modes for the model are much more dominant than for the actual machine.
The results indicate where improvements might be made to the model:

(i) Additional stiffening of the bed. The 'square box' model for the elliptical ribbing could be replaced by one of hexagonal or octagonal section. This would, of course, mean additional nodes.

(ii) The saddle of the lathe, as a major machine element, could be considered to provide both some stiffening and damping to the lathe structure.

(iii) Spindle bearings could be stiffened. This was discussed in Chapter 2.

Modifications to the model can easily be made but cost is a major factor and the largest element in the cost is in the determination of modal behaviour. The time required to extract ten eigenvalues with corresponding eigenvectors was 1170 system second (642 CP seconds), whereas the time to determine the frequency response for the two station points based on 56 exciting frequencies was 37 system seconds (20 CP seconds).

One alternative to the procedure that was followed would be to use the finite element method to create a model and by static analysis of this model determine all stiffnesses necessary to set up a lumped parameter model. The latter model could then be used to examine dynamic behaviour. The model analysis
would then be performed on a model having a greatly reduced number of degrees of freedom.
MODEL MILLING MACHINE
IV MODEL MILLING MACHINE

4.1 Introduction

The computations of the static and dynamic characteristics of a model milling machine was part of a co-operative programme of work embarked on in January 1970 by members of the C.I.R.P. Group Ma. The following universities participated in the programme:

University of Leuven, Belgium
Eindhoven University of Technology, Holland
Technische Hochschule, Aachen, Germany
University of Kyoto, Japan
University of Birmingham, England
University of Manchester Institute of Science and Technology, England

A common idealized mathematical model was adopted by all participating, so that computational procedures might be compared. Studies on actual machine tools would commence after the computer programmes had been thoroughly tested. The initial phase has been completed and reported [7,8].

Collège International pour Recherche de Production mécanique 57
Computations, similar to those performed in other universities, were carried out by the author and this chapter is a report on the results. The milling machine model presented an opportunity to try-out the STARDYNE system before commencing the work on the Colchester lathe.

4.2 The work in phase one

The model milling machine was built at the University of Leuven, where it was subjected to static and dynamic tests. The machine is a fabricated steel structure and is shown in Fig. 4.1. The tapered column and the knee assembly are stiffened with diagonal ribbing, the table is constructed from three I-section beams and the spindle is welded both to the column wall and the overarm assembly.

The mathematical model agreed upon, is shown in Fig. 4.2 and consists of twenty uniform beams. The mass of the machine is considered distributed over the nineteen nodes. The beams shown by heavy lines are assumed to be completely rigid and the structure assumed to be connected to a massive foundation. Rotary inertia is neglected in this simple lumped-parameter model.
The programme members were asked to compute the following:

(i) Static deflections of all structural nodes caused by various loadings.

(ii) The natural frequencies of the lowest six modes of vibration.

(iii) The corresponding model shapes.

(iv) The model flexibilities between points 7 and 14.

Information relating to the computer was also requested. This included computer type, storage, cost and time. Input data, by way of nodal masses and the geometric properties of all beams, was made available to all members.

4.3 Results

Two cases of static loading were computed and the results are shown together with loading details in Figs. 4.3 to 4.6. The results from only two other universities are included as only partial results were available from the others.

It will be noted that the McMaster and U.M.I.S.T. results show very close agreement. However, when these computed values are compared with the measured
values (of the very few measured values available, two are shown in brackets in Fig. 4.6), considerable discrepancy is seen. It was found from further study [7], that the discrepancy arose because of local deformation of the front wall of the column of the physical model where the arbor and overarm were connected. This local deformation was confirmed by a finite element analysis.

The computed values of natural frequencies also showed good correlation. The slight discrepancies in the Kyoto results are due to differences in the Kyoto model. No measured values were available for comparison, but reports from Leuven indicate that the natural frequencies of the physical model were considerably less than the computed values. This was attributed to the flexibility of the mounting of the model on its foundation being ignored in the mathematical model.

Again good correlation in the computed mode shapes from McMaster and U.M.I.S.T. was obtained. The first six modes shapes are shown in Figures 4.8 to 4.11 with the first and fifth U.M.I.S.T. shapes included.

Computational costs reported by the co-operating universities ranged from $9.00 to $150.00. Not including any work on model flexibilities (an unsuccessful feature with the first model in the co-operative programme), the cost of the McMaster computations was approximately $13.00.
APPENDIX
Appendix

It was stated in section 2.2 that at one stage in the study of the lathe spindle, the problem was re-formulated to give
\[\omega^2 (X) = [K] [M]^{-1} (X) \]
Inverting the mass matrix was not immediately possible as it contained some zero rotational inertias. The matrix can be reduced to eliminate the zero masses by the following method, given in Ref. [15].
Eqn. (2.1a) gave \((F) = [K] (X) \)
The co-ordinates are re-numbered to allow all non-zero masses to precede zero masses in order. In other words, the zeros are at the bottom of the matrix. The stiffness matrix is correspondingly re-ordered and then partitioned with those elements corresponding to zero masses occupying the lower subdivisions. This is shown below. The vertical portion is selected to make the subdivisions, R and V, square.

\[
\begin{pmatrix}
 f_1 \\
 \vdots \\
 f_0 \\
 0 \\
 \vdots \\
 0
\end{pmatrix}
= \begin{bmatrix}
 R & T \\
 U & V
\end{bmatrix}
\begin{pmatrix}
 z_1 \\
 \vdots \\
 z_n
\end{pmatrix}
\]

--- A.1

61
Expanding:

\[
\begin{pmatrix}
 f^i \\
 f^p
\end{pmatrix} = \begin{bmatrix}
 R \\
 T
\end{bmatrix} \begin{pmatrix}
 x_i \\
 x_p
\end{pmatrix} + \ldots \text{ A.2}
\]

and

\[
0 = \begin{bmatrix}
 U \\
 V
\end{bmatrix} \begin{pmatrix}
 x_i \\
 x_p
\end{pmatrix} + \ldots \text{ A.3}
\]
Premultiplying eqn. 3 by V^{-1} gives

$$
\begin{bmatrix}
X_{PH} \\
X_{H} \\
\vdots \\
X_{n}
\end{bmatrix} = -\tilde{C}^{-1}U
\begin{bmatrix}
X_{1} \\
\vdots \\
X_{P}
\end{bmatrix}
$$

..... A.4

and substituting in eqn. 2

$$
\begin{bmatrix}
\ddot{f}_1 \\
\vdots \\
\ddot{f}_P
\end{bmatrix} = R - TV^{-1}U
\begin{bmatrix}
X_{1} \\
\vdots \\
X_{P}
\end{bmatrix}
$$

..... A.5

Eqn. 5 contains no co-ordinates associated with zero masses. Comparing A.5 with eqn. (2.1a) shows that the stiffness matrix $[K]$ has been replaced by matrix $[R - TV^{-1}U]$ of an order lower by an amount equal to the number of zero masses. If this reduced stiffness matrix is called K^α and the corresponding reduced mass matrix called M^α then

$$
[S^\alpha] (x) = \omega^2 [M^\alpha] (x)
$$

A listing of a programme using this method is given in Fig. A.1.
BIBLIOGRAPHY
BIBLIOGRAPHY

FIG. 2.1a Lathe Spindle

FIG. 2.1b Initial Mathematical Model

FIG. 2.1c Final Mathematical Model
FIG. 2.2 Stiffness Influence Coefficient, k_{ij}

FIG. 2.3 Co-ordinate System for Beam Model
FIG. 2.4a Unit translational displacement

FIG. 2.4b Unit rotational displacement
Uniform shaft, diameter: 3" length: 4.5" No. of nodes: 16

FIG. 2.5 Programme test model

FIG. 2.6 Schematic of experimental set-up for lathe spindle
Fig. 2.8. Spindle Suspended Freely
FIG. 2.9 Initial mode shapes for programme test model
FIG. 3.19 Calculated and final computed mode shapes for program test model
FIG. 2.11 Special model for chuck investigation
FIG. 7.13 "Natural frequencies of special model with 11" workpiece"
FIG. 2.14 Frequency ratio for special model with 5" workpiece.
FIG. 3.15 Frequency ratio for special model with 11" workpiece
FIG. 2.16 Natural frequencies
Spindle suspended without rears
9" workpiece

'Stiffness' of chuck
in in.4 units:
--- 50
--- 6

'Experimental'

VALUE

820 Hz.

405 Hz.

FREQ. (Hz.)

0.05 0.1 0.15 0.2 0.25 0.3

Clamping 'Stiffness'

(in.4 units)
FIG. 2.17 Natural frequencies
Spindle suspended without gears
11" workpiece

Clamping 'Stiffness'

EXPERIMENTAL VALUE 700 Hz.
6 in. units

I for chuck
50
6 in. units

EXPERIMENTAL VALUE 198 Hz.

0 0.05 0.1 0.15 0.2 0.25 0.3
(in inb units)
FIG. 2.18 Mode shapes 5" workpiece
FIG. 2.19 Mode shapes 11" workpiece
FIG. 2.20 Mode shapes
11" workpiece with gears
FIG. 2.21 Effect of bearing ring on natural frequencies
FIG. 3.1a Colchester Lathe

FIG. 3.1b Mathematical Model
FIG. 3.2 Single D.O.F. system
FIG. 3.3 Real receptance
FIG. 3.4 Imaginary receptance.
FIG. 3.5 Absolute receptance
FIG. 3.6 Phase shift
FIG. 3.7 2 D.O.F. System
FIG. 3.8 Summation of receptances of individual nodes
Commonly Used Finite Elements

- Bar (2 nodes)
- Triangular Plate(s) (3 nodes)
- Quadrilateral Plate (4 nodes)
- General Six Sided Solid (Hexahedron) (8 nodes)
FIG. 3.10 STARDYNE System analysis summary

- Structural Model Data
- Loads Data

STAR Program (See Section B)
- Static Analysis
- Modal Extraction
- Element Loads/Stresses

Plot3d Program (See Section F)
- Plot Structure

Dynamic Program (See Section E)
- Frequency (steady state) dynamic response
- Element Loads/Stresses

Dynamic Program (See Section E)
- Frequency dependent dynamic response
- Element Loads/Stresses

Dynamic Program (See Section E)
- Frequency dependent forces/displacements

Dynamic Program (See Section E)
- Time dependent forces/displacements

User Specified Transient Base Acceleration

Input Program (See Section E)
- Sinch Spectrums Values

STAR Program (Optional)
- Process Loads and Stress Data Due to Dynamic Response Analysis

Tape1
- Contains original and reordered geometry for the structural model (optional). See page R-0.

Tape2
- Other vector tape. See page R-0. [Force and or Displacement vectors]

Tape3
- Star output tape. See page R-0. [Model data/displacements/loads/stresses]

Tape4
- Selected system coordinate responses, displacements, velocities and accelerations. See page C-310.
RESPONSE HISTORY NUMBER 2
(If required) etc.

ALL DONE
FORCING FUNCTION DATA D-205
* DATA TAPE3 CONTROLS D-170
* EXTRA FREQUENCY POINTS D-160
* GENERATE FREQUENCY CONTROLS D-150
* PRINT CONTROL LIST D-140
* PLOT CONTROL LIST D-130
MODAL DAMPING COEFFICIENTS D-120
* MODAL DELETE DATA D-110
ANALYSIS/OUTPUT CONTROL D-70

RESPONSE HISTORY NUMBER 1

DYNRE2 SECTION E

Optional Input Sections

FIG. 3.11 DYHRE2 DECK SETUP DIAGRAM
FIG. 3.12 Computer programme for receptance
FIG. 3.13, Elliptical cross-ribbing
FIG. 3.14 Arrangement of equipment
***** EIGENVALUE SEARCH HAS BEEN COMPLETED *****

THE NUMBER OF EIGENVALUES EXTRACTED = 10.

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>EIGENVALUE</th>
<th>FREQUENCY(E)</th>
<th>GENERALIZED WEIGHT</th>
<th>FREQUENCY(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.294937E+03</td>
<td>5.971034E+02</td>
<td>3.926977E+03</td>
<td>63.9103</td>
</tr>
<tr>
<td>2</td>
<td>3.783696E+03</td>
<td>5.645543E+02</td>
<td>2.646073E+03</td>
<td>60.8543</td>
</tr>
<tr>
<td>3</td>
<td>3.917738E+03</td>
<td>7.510591E+02</td>
<td>2.261148E+03</td>
<td>76.1039</td>
</tr>
<tr>
<td>4</td>
<td>3.727017E+03</td>
<td>9.112479E+02</td>
<td>6.592995E+03</td>
<td>91.1120</td>
</tr>
<tr>
<td>5</td>
<td>7.734571E+03</td>
<td>9.761063E+02</td>
<td>1.777743E+03</td>
<td>97.6116</td>
</tr>
<tr>
<td>6</td>
<td>1.472767E+04</td>
<td>1.120165E+03</td>
<td>1.161626E+03</td>
<td>114.2078</td>
</tr>
<tr>
<td>7</td>
<td>6.457942E+04</td>
<td>1.260920E+03</td>
<td>1.567721E+03</td>
<td>126.9078</td>
</tr>
<tr>
<td>8</td>
<td>2.294222E+04</td>
<td>1.477317E+03</td>
<td>7.026527E+02</td>
<td>147.7317</td>
</tr>
<tr>
<td>9</td>
<td>2.357364E+04</td>
<td>1.518980E+03</td>
<td>1.548213E+03</td>
<td>151.9990</td>
</tr>
<tr>
<td>10</td>
<td>2.642273E+04</td>
<td>1.609153E+03</td>
<td>0.710199E+12</td>
<td>102.6196</td>
</tr>
</tbody>
</table>

FIG. 3.15 First ten eigenvalues for Colchester Lathe
FIG. 3.17 1st Mode 53.9 Hz
FIG. 3.19 5th Mode 97.6 Hz.
FIG. 3.20
Measured Mode shape 97.3 Hz. VIEW A

FIG. 3.21
Measured Mode shape 105.4 Hz. VIEW A
FIG. 3.24 2nd mode 60.8 Hz.
FIG. 3.25 2nd Mode 69.8 Hz.
FIG. 3.28 Measured Mode Shape 140 Hz
FIG. 3.29 Dynamic Response - Tool Horizontal
FIG. 3.30 Phase Shift - Tool Horizontal
FIG. 3.31 Dynamic Response - Workpiece Horizontal
FIG. 3.33 Dynamic Response - Tool, Vertical
FIG. 3.3b Phase Shift - Tool, Vertical
FIG. 3.35 Dynamic Response - Workpiece, Vertical
FIG. 3.36 Phase Shift - Workpiece Vertical
Fig. 4.3. C.I.R.P. Model, Horizontal loading

Y - displacements

Horizontal Load (Y-axis) - 100 N at node 15

Y - Displacements

<table>
<thead>
<tr>
<th>Node</th>
<th>U.M.I.S.T.</th>
<th>Leuven</th>
<th>McMaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-.1371 E-06</td>
<td>-.2874 E-06</td>
<td>-.1371 E-06</td>
</tr>
<tr>
<td>2</td>
<td>-.5400 E-06</td>
<td>-.8532 E-06</td>
<td>-.5406 E-06</td>
</tr>
<tr>
<td>3</td>
<td>-.5400 E-06</td>
<td>-.8532 E-06</td>
<td>-.5406 E-06</td>
</tr>
<tr>
<td>4</td>
<td>-.5400 E-06</td>
<td>-.8532 E-06</td>
<td>-.5406 E-06</td>
</tr>
<tr>
<td>5</td>
<td>-.5400 E-06</td>
<td>-.8532 E-06</td>
<td>-.5406 E-06</td>
</tr>
<tr>
<td>6</td>
<td>-.5400 E-06</td>
<td>-.8532 E-06</td>
<td>-.5406 E-06</td>
</tr>
<tr>
<td>7</td>
<td>-.9591 E-06</td>
<td>-.1272 E-05</td>
<td>-.9596 E-06</td>
</tr>
<tr>
<td>8</td>
<td>-.9591 E-06</td>
<td>-.1272 E-05</td>
<td>-.9596 E-06</td>
</tr>
<tr>
<td>9</td>
<td>-.9591 E-06</td>
<td>-.1272 E-05</td>
<td>-.9596 E-06</td>
</tr>
<tr>
<td>10</td>
<td>-.1763 E-05</td>
<td>-.2372 E-05</td>
<td>-.1764 E-05</td>
</tr>
<tr>
<td>11</td>
<td>-.1763 E-05</td>
<td>-.2372 E-05</td>
<td>-.1764 E-05</td>
</tr>
<tr>
<td>12</td>
<td>-.2753 E-05</td>
<td>-.3569 E-05</td>
<td>-.2755 E-05</td>
</tr>
<tr>
<td>13</td>
<td>-.2753 E-05</td>
<td>-.3569 E-05</td>
<td>-.2755 E-05</td>
</tr>
<tr>
<td>14</td>
<td>-.2752 E-05</td>
<td>-.3569 E-05</td>
<td>-.2754 E-05</td>
</tr>
<tr>
<td>15</td>
<td>-.3507 E-05</td>
<td>-.4462 E-05</td>
<td>-.3509 E-05</td>
</tr>
<tr>
<td>16</td>
<td>-.3507 E-05</td>
<td>-.4462 E-05</td>
<td>-.3509 E-05</td>
</tr>
<tr>
<td>17</td>
<td>-.3507 E-05</td>
<td>-.4462 E-05</td>
<td>-.3509 E-05</td>
</tr>
<tr>
<td>18</td>
<td>-.3508 E-05</td>
<td>-.4462 E-05</td>
<td>-.3510 E-05</td>
</tr>
<tr>
<td>19</td>
<td>-.2751 E-05</td>
<td>-.3594 E-05</td>
<td>-.2754 E-05</td>
</tr>
</tbody>
</table>
Fig. 4.4 C.I.R.P. Model, Horizontal loading

Z displacements

Horizontal load (y-axis) -1000 N at node 15

Z - Displacements

<table>
<thead>
<tr>
<th>Node</th>
<th>U.M.I.S.T.</th>
<th>Leuven</th>
<th>McMaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>.9167 E-07</td>
<td>.9297 E-07</td>
<td>.9296 E-07</td>
</tr>
<tr>
<td>4</td>
<td>.6875 E-06</td>
<td>.6875 E-06</td>
<td>.6874 E-06</td>
</tr>
<tr>
<td>5</td>
<td>.1145 E-05</td>
<td>.1146 E-05</td>
<td>.1146 E-05</td>
</tr>
<tr>
<td>6</td>
<td>.1511 E-05</td>
<td>.1512 E-05</td>
<td>.1512 E-05</td>
</tr>
<tr>
<td>7</td>
<td>.1145 E-05</td>
<td>.1146 E-05</td>
<td>.1146 E-05</td>
</tr>
<tr>
<td>8</td>
<td>.1145 E-05</td>
<td>.1146 E-05</td>
<td>.1146 E-05</td>
</tr>
<tr>
<td>9</td>
<td>.1145 E-05</td>
<td>.1146 E-05</td>
<td>.1146 E-05</td>
</tr>
<tr>
<td>10</td>
<td>.9167 E-07</td>
<td>.9297 E-07</td>
<td>.9296 E-07</td>
</tr>
<tr>
<td>11</td>
<td>.2381 E-06</td>
<td>.2395 E-06</td>
<td>.2395 E-06</td>
</tr>
<tr>
<td>12</td>
<td>.2381 E-06</td>
<td>.2395 E-06</td>
<td>.2395 E-06</td>
</tr>
<tr>
<td>13</td>
<td>.1503 E-05</td>
<td>.1305 E-05</td>
<td>.1305 E-05</td>
</tr>
<tr>
<td>14</td>
<td>.2302 E-05</td>
<td>.2323 E-05</td>
<td>.2305 E-05</td>
</tr>
<tr>
<td>15</td>
<td>.2381 E-06</td>
<td>.2395 E-06</td>
<td>.2395 E-06</td>
</tr>
<tr>
<td>16</td>
<td>.1338 E-05</td>
<td>.1340 E-05</td>
<td>.1340 E-05</td>
</tr>
<tr>
<td>17</td>
<td>.2323 E-05</td>
<td>.2352 E-05</td>
<td>.2325 E-05</td>
</tr>
<tr>
<td>18</td>
<td>.5108 E-05</td>
<td>.3197 E-05</td>
<td>.3111 E-05</td>
</tr>
<tr>
<td>19</td>
<td>.5108 E-05</td>
<td>.3197 E-05</td>
<td>.3111 E-05</td>
</tr>
</tbody>
</table>
Fig. 4.5 C.I.R.P. Model Vertical loading

Y - displacements

Vertical Load -1000 N at node 6
 1000 N at node 19

Y - Displacements

<table>
<thead>
<tr>
<th>Node</th>
<th>U.M.I.S.T.</th>
<th>Leuven</th>
<th>McMaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>3.944 E-06</td>
<td>3.997 E-06</td>
<td>3.998 E-06</td>
</tr>
<tr>
<td>8</td>
<td>3.944 E-06</td>
<td>3.997 E-06</td>
<td>3.998 E-06</td>
</tr>
<tr>
<td>9</td>
<td>3.944 E-06</td>
<td>3.997 E-06</td>
<td>3.998 E-06</td>
</tr>
<tr>
<td>10</td>
<td>-3.523 E-06</td>
<td>-3.540 E-06</td>
<td>-3.541 E-06</td>
</tr>
<tr>
<td>11</td>
<td>-3.523 E-06</td>
<td>-3.540 E-06</td>
<td>-3.541 E-06</td>
</tr>
<tr>
<td>14</td>
<td>-1.380 E-06</td>
<td>-2.526 E-06</td>
<td>-1.380 E-06</td>
</tr>
<tr>
<td>15</td>
<td>-1.597 E-05</td>
<td>-1.684 E-05</td>
<td>-1.599 E-06</td>
</tr>
<tr>
<td>16</td>
<td>-1.597 E-05</td>
<td>-1.684 E-05</td>
<td>-1.599 E-06</td>
</tr>
<tr>
<td>17</td>
<td>-1.759 E-05</td>
<td>-1.821 E-05</td>
<td>-1.759 E-06</td>
</tr>
<tr>
<td>18</td>
<td>-1.887 E-05</td>
<td>-1.931 E-05</td>
<td>-1.887 E-06</td>
</tr>
<tr>
<td>19</td>
<td>5.233 E-06</td>
<td>3.151 E-06</td>
<td>5.214 E-06</td>
</tr>
</tbody>
</table>
Fig. 4.6 C.I.R.P. Model, Vertical Loading

Z - displacements

Vertical Load
-1000N at node 6
-1000N at node 19

Z - Displacements

<table>
<thead>
<tr>
<th>Node</th>
<th>U.M.I.S.T.</th>
<th>Leuven</th>
<th>McMaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>-0.2468 E-06</td>
<td>-0.5069 E-06</td>
<td>-0.2467 E-06</td>
</tr>
<tr>
<td>6</td>
<td>-0.6530 E-06</td>
<td>-0.1122 E-05</td>
<td>-0.6539 E-06</td>
</tr>
<tr>
<td>7</td>
<td>-0.2468 E-06</td>
<td>-0.5069 E-06</td>
<td>-0.2467 E-06</td>
</tr>
<tr>
<td>8</td>
<td>-0.2468 E-06</td>
<td>-0.5069 E-06</td>
<td>-0.2467 E-06</td>
</tr>
<tr>
<td>9</td>
<td>-0.2468 E-06</td>
<td>-0.5069 E-06</td>
<td>-0.2467 E-06</td>
</tr>
<tr>
<td>10</td>
<td>0.8800 E-07</td>
<td>0.8794 E-07</td>
<td>0.8794 E-07</td>
</tr>
<tr>
<td>11</td>
<td>0.1567 E-06</td>
<td>0.1566 E-06</td>
<td>0.1566 E-06</td>
</tr>
<tr>
<td>12</td>
<td>0.2187 E-06</td>
<td>0.2185 E-06</td>
<td>0.2185 E-06</td>
</tr>
<tr>
<td>13</td>
<td>0.1016 E-05</td>
<td>0.1016 E-05</td>
<td>0.1016 E-05</td>
</tr>
<tr>
<td>14</td>
<td>0.5113 E-05</td>
<td>0.6798 E-05</td>
<td>0.5113 E-05</td>
</tr>
<tr>
<td>15</td>
<td>0.2610 E-06</td>
<td>0.2603 E-06</td>
<td>0.2606 E-06</td>
</tr>
<tr>
<td>16</td>
<td>0.1294 E-05</td>
<td>0.1296 E-05</td>
<td>0.1294 E-05</td>
</tr>
<tr>
<td>17</td>
<td>0.4690 E-05</td>
<td>0.6386 E-05</td>
<td>0.4694 E-05</td>
</tr>
<tr>
<td>18</td>
<td>0.8674 E-05</td>
<td>0.1292 E-04</td>
<td>0.8677 E-05</td>
</tr>
<tr>
<td>19</td>
<td>0.8861 E-05</td>
<td>0.1221 E-04</td>
<td>0.8862 E-05</td>
</tr>
</tbody>
</table>

(-6.0mm) (23.0mm)
<table>
<thead>
<tr>
<th>Mode</th>
<th>Louvain</th>
<th>U.M.I.S.T.</th>
<th>Aachen</th>
<th>Eindhoven</th>
<th>Birmingham</th>
<th>Kyoto</th>
<th>McMaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>185/184</td>
<td>184</td>
<td>189</td>
<td>184</td>
<td>184</td>
<td>189</td>
<td>187</td>
</tr>
<tr>
<td>2</td>
<td>334/381</td>
<td>334</td>
<td>318</td>
<td>334</td>
<td>334</td>
<td>352</td>
<td>338</td>
</tr>
<tr>
<td>3</td>
<td>410/425</td>
<td>408</td>
<td>401</td>
<td>408</td>
<td>408</td>
<td>384</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>497/499</td>
<td>478</td>
<td>-</td>
<td>476</td>
<td>485</td>
<td>476</td>
<td>470</td>
</tr>
<tr>
<td>5</td>
<td>529/670</td>
<td>670</td>
<td>-</td>
<td>670</td>
<td>687</td>
<td>761</td>
<td>676</td>
</tr>
<tr>
<td>6</td>
<td>678/720</td>
<td>713</td>
<td>555</td>
<td>713</td>
<td>713</td>
<td>873</td>
<td>712</td>
</tr>
</tbody>
</table>

Fig. 4.7 C.I.R.P. Model Natural frequencies
PROGRAM TST (INPUT, OUTPUT, TAPE=INPUT, TAPE=OUTPUT)

DIMENSION XI(4), XL(4), SI(11,7), RI(4), P(4), Q(4), XY(7,7),
 U(4), V(4,4), WU(4), TVU(7,7)

WRITE(6,301)
301 FORMAT(1H1, 8X, 4CHSPINDLE SUSPENDED FREELY (WITHOUT GEARS)
 //)
WRITE(6,303)
303 FORMAT(1X, 11HCHUCK NO. 2 //)
WRITE(6,304)
304 FORMAT(1X, 1EHWORKPIECE NO. 2 //)
WRITE(6,307)
307 FORMAT(1X, 1EHMODEL NO. 1 ///)

N = NO. OF DEGREES OF FREEDOM, NE = NO. OF BEAM ELEMENTS
N = 11
NE = 6
EMOD = 20*6
NR = NO. OF BEARINGS
NR = 6

TS IS STIFFNESS OF SPIRAL SPRING (WORKPIECE IN CHUCK)
TS = 10*FA
DO 20 I = 1, NE
 READ (5,1) XI(I), XL(I)
 CONTINUE
20 CONTINUE
NEN = NE - 2
DO 90 J = 1, NE
 B1(J) = EMOD*(XI(J))/XL(J)
 B2(J) = B1(J)/XL(J)
 CONTINUE

STIFFNESS ** MATRIX
DO 35 I = 1, N
 DO 30 J = 1, N
 S(I,J) = 0.0
 CONTINUE
30 CONTINUE

LEADING DIAGONAL
S(1,1) = 12*90.7
S(2,2) = 2.891
S(N-1, N-1) = 12*36.2*NE-2+TS/(XL(N-1))^2*(XL(N-1))^2/XL(N-1)
S(N, N) = TS/(XL(N-1))^2*(XL(N-1))^2/XL(N-1)
DO 40, T = 1, NE
40 CONTINUE

LE2 = 1
S(L+L) = 12*36.2*RI(J)+B2(J-1)

FIG. A.1 Programme using the reduced mass-matrix method
LL = 2*I
SL(L+L) = 4*(R1(I)+P1(I-1))
CONTINUE

FIRST UPPER DIAGONAL
S(I+1) = 6*R2(I)
S(N-2*M-1) = -6*R2(NF) + TS/XL(NF)
S(N-M) = -TS/XL(NF)
DO 60 I = 1,NF
L = 2*I
SL(L+L+1) = -6*R2(I)
CONTINUE
DO 60 I = 2,NF
L = 2*I
SL(I+L) = 6*(R2(I)-R2(I-1))
CONTINUE

SECOND UPPER DIAGONAL
S(N-2*M) = -TS/((XL(NF)+XL(NF-1))
DO 70 I = 1,NF
L = 2*I
SL(I+L+1) = -12*R2(I)
S(L+L) = 2*E1(I)
CONTINUE
THIRD UPPER DIAGONAL
DO 80 I = 1,NF
L = 2*I
SL(I+L+2) = 6*R2(I)
CONTINUE
LOWER DIAGONALS
DO 90 I = 2,N
L = I-1
DO 90 J = 1,L
S(I,J) = S(J,I)
CONTINUE

READING STIFFNESS
100 READ (15,F15.0) MC(I)*BS(I)
CONTINUE
WRITE (15,240)
FORMAT (15X,16HSTIFFNESS MATRIX //)
DO 102 I = 1,N
WRITE (15,222) (S(I,J), J = 1,N)
FORMAT (11E11.3 /)
CONTINUE

INTERCHANGE ROWS AND COLUMNS
CALL PRINT (S,N,N,11,9)
CALL PRINT (S,N,N,6,9)
CALL PRINT (S,N,N,2,9)
CALL PRINT (S,N,N,10)
CALL CINT (S,N,11,9)
CALL CINT (S,N,8,9)
CALL CINT (S,N,2,9)
CALL CINT (S+IN, 11, 0)

PARTITION STIFFNESS MATRIX
CALL CCUT (S+I1, S+I2, S+I1, 10, 7, C)
CALL DCUT (S+I1, S+I2, S+I1, 11, 7, C)
CALL DCUT (S+I1, S+I2, S+I1, 12, 7, C)
WRITE (6, 560)
 FORMAT (1X, 'MATRIX: ')
 DO 550 I = 1, 7
 WRITE (6, 561) (D(I,J), J = 1, 7)
 CONTINUE
560 FORMAT (1X, 'MATRIX: ')
 DO 570 J = 1, 7
 WRITE (6, 562) (T(I,J), I = 1, 7)
 CONTINUE
570 FORMAT (1X, 'RHY MATRIX: ')
 DO 580 I = 1, 4
 WRITE (6, 581) (W(I,J), J = 1, 7)
 CONTINUE
580 FORMAT (1X, 'VHY MATRIX: ')
 DO 590 J = 1, 4
 WRITE (6, 582) (V(I,J), I = 1, 7)
 CONTINUE
590 FORMAT (1X, 'VHY MATRIX: ')
 DO 600 I = 1, 4
 WRITE (6, 583) (T(I,J), J = 1, 4)
 CONTINUE
600 FORMAT (1X, 'REDUCED STIFFNESS MATRIX: ')

FORM REDUCED STIFFNESS MATRIX

INVERT MATRIX V
 DO 96 J = 1, 4
 DO 106 J = 1, 4
 WS(I,J) = W(I,J)
 CONTINUE
 CONTINUE
 DO 110 J = 1, 4
 DO 120 I = 1, 4
 WS(I,J) = (V(I,J))/1.04A
 CONTINUE
 CALL INVMAT (V+4, 4, -7, 1, ERR, N)
 IF (IFOR .EQ. 0) GO TO 130
 WRITE (6, 160) ERR
 GO TO 130
120 FORMAT (1X, 'INVERSION FAILS. IERR= ', I4)
130 WRITE (6, 164)
 DO 140 J = 1, 4
 DO 150 I = 1, 4
 WS(I,J) = (V(I,J))/1.04A
 CONTINUE
 CONTINUE
 DO 160 J = 1, 4
 WRITE (6, 173) (V(I,J), J = 1, 4)
160 FORMAT (1X, 'CONTINUE: ')
 CONTINUE
 DO 200 J = 1, 4
DO 200 J=1,4
UNIT(I,J)=0.0
DO 205 K=1,4
UNIT(I,J)=UNIT(I,J)+(CK(I,K))*(*V(K,J))
205 CONTINUE
200 CONTINUE
WRITE(4,106)
106 FORMAT(/16X,13HINVERSE CHEC/)
DO 108 I = 1,4
WRITE(A,107) (UNIT(I,J), J=1,4)
107 FORMAT(4F11.4/)
108 CONTINUE

MULTIPLY INVERSE V R Y U
DO 500 I = 1,4
DO 505 J = 1,7
VU(I,J)=0.0
DO 505 K=1,4
VU(I,J)=VU(I,J)+(V(I,K))*(U(K,J))
505 CONTINUE
500 CONTINUE
WRITE(6,605)
605 FORMAT(/16X,10HVU PRODUCT/)
DO 610 I = 1,4
WRITE(6,615) (VU(I,J), J=1,7)
615 FORMAT(7F11.3/)
610 CONTINUE

MULTIPLY T R Y VU
DO 510 I=1,7
DO 515 J=1,7
TVU(I,J)=0.0
DO 515 K=1,4
TVU(I,J)=TVU(I,J)+(T(I,K))*(VU(K,J))
515 CONTINUE
510 CONTINUE
WRITE(6,620)
620 FORMAT(/16X,10HVU PRODUCT/)
DO 625 I = 1,7
WRITE(6,625) (TVU(I,J), J=1,7)
625 FORMAT(7F11.3/)
620 CONTINUE

SUBTRACT TVU FROM R. SP IS REDUCED STIFFNESS MATRIX
DO 525 I = 1,7
DO 530 J = 1,7
SP(I,J)=R(I,J) - TVU(I,J)
530 CONTINUE
WRITE(6,635)
635 FORMAT(/16X,10HREDUCED STIFFNESS MATRIX/)
DO 640 I = 1,7
WRITE(6,640) (SP(I,J), J=1,7)
640 FORMAT(7F11.3/)
640 CONTINUE

REDUCED MASS MATRIX (IN NEW ORDER)
DO 110 I = 1,7

DO 110 J=1*I*7
X*M(I,J)=0.0
110 CONTINUE
DO 120 I=1*I*7
WRITE(*,125) X*M(I,I)
125 FORMAT(1X,11HMASS MATRIX /)
DO 124 I=1*I*7
WRITE(*,123) (X*M(I,J),J=1*I*7)
124 FORMAT(1X,7F10.5)
CONTINUE

INVERT MASS MATRIX
CALL INVMA(X**,7**,1**.F-7.,IF**.N2)
IF (IF**.EQ.5.) GO TO 130
WRITE(*,165) IF**
GO TO 150

INVERTED MASS -- STIFFNESS PRODUCT
WRITE(*,220)
FORMAT(15X,14HMASS PRODUCT: //)
DO 210 I=1*I*7
DO 216 J=1*I*7
A(I,J)=0.0
DO 215 K=1*I*7
A(I,J)=A(I,J)+(X*M(I,K))*(S0(K,J))
215 CONTINUE
210 CONTINUE
WRITE(*,225) (A(I,J),J=1*I*7)* I=1*I*7
FORMAT(17F11.3)
DO 120 I=1*I*7
DO 130 J=1*I*7
WRITE(*,127) (A(I,J)+J=1*I*7)
WRITE(*,128)
120 FORMAT(15X,12HMASSVALUES /)
WRITE(*,129)
127 FORMAT(17F11.3)
WRITE(*,130)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,131)
127 FORMAT(17F11.3)
WRITE(*,132)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,133)
127 FORMAT(17F11.3)
WRITE(*,134)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,135)
127 FORMAT(17F11.3)
WRITE(*,136)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,137)
127 FORMAT(17F11.3)
WRITE(*,138)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,139)
127 FORMAT(17F11.3)
WRITE(*,140)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,141)
127 FORMAT(17F11.3)
WRITE(*,142)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,143)
127 FORMAT(17F11.3)
WRITE(*,144)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,145)
127 FORMAT(17F11.3)
WRITE(*,146)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,147)
127 FORMAT(17F11.3)
WRITE(*,148)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,149)
127 FORMAT(17F11.3)
WRITE(*,150)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,151)
127 FORMAT(17F11.3)
WRITE(*,152)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,153)
127 FORMAT(17F11.3)
WRITE(*,154)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,155)
127 FORMAT(17F11.3)
WRITE(*,156)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,157)
127 FORMAT(17F11.3)
WRITE(*,158)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,159)
127 FORMAT(17F11.3)
WRITE(*,160)
128 FORMAT(15X,12HMASSVECTORS //)
WRITE(*,161)
127 FORMAT(17F11.3)
140 CONTINUE
150 STOP
END

6480 END OF RECORD

1.78
1.78
1.78
1.78
1.78
1.78
1.78
1.78
1.78
1.78
END OF FILE

CD TOT 0.0305
PROGRAM 1ST (INPUT, OUTPUT, TAPE = INPUT, TAPE = OUTPUT)

DYNAMIC ANALYSIS OF LATHE SPINDLE

DIMENSION XI(9), XL(9), SI(20, 20), RI(9), A2(9), A2(9), XM(20, 20),
1 N1(20), A(20, 20), SI(20, 20), B1(20, 20), 8(20, 20),
2 NR(2), YS(2), EY(2), E2(2), EIGVAL(20, 20),
3 VECR(20, 20), VECI(20, 20), INDIC(20, 20), EVI(20, 20), XC(6)

WRITE(6, 301)
101 FORMAT(14X, 5x, 4CH, SPINDLE - SUSPENDED FREELY (WITHOUT GEARS) //)
WRITE(6, 303)
303 FORMAT(5X, 11H, CHUCK NO. 2 //)

N = NO. OF DEGREES OF FREEDOM, NE = NO. OF BEAM ELEMENTS

Y = 21
N = 23
H = 41

EMC9 = 30.06
49 = NO. OF BEARINGS
N = 2
DO 20 I = 1, NE
20 FORMAT(2F10, 0)

RFAN(5, 725) XC(I)
725 FORMAT(F10.0)
726 CONTINUE

READING STIFFNESS

WRITE(6, 900)
900 FORMAT(// 5X, 51HB, BEARINGS LOCATED NODES AND STIFFNESSES IN LB./IN.
1 //)

DO 717 I = 1, NA
717 FORMAT(5E10.5) NC(I), BS(I)
WRITE(6, 831) NC(I), BS(I)
801 FORMAT(10X, 4, F10.2 //)
105 FORMAT(I19, F15.0)
733 CONTINUE

MASS-MATRIX

DO 110 I = 1, N
110 CONTINUE
DO 120 J = 1, N
120 CONTINUE
122 FORMAT(10X, 11H, MASS MATRIX //)

Fig. A.2
Final program, used to determine clamping stiffness.
"C
CONTINUE
100 CONTINUE
101 DO 30 I = 1,N
30 CX(J,J) = CX(I,J) + CX(I,I)
96 CONTINUE
WRITE (6,240)
240 FORMAT(1X,'10X,16HSTIFFNESS MATRIX //')
DO 92 I = 1, N
92 CONTINUE
WRITE (6,93)
93 FORMAT(1X,'7E10.3 //')
G
CONTINUE
TINVPT MATRIX
DO 170 I = 1,N
170 S(I,J) = S(I,J) / (1.0E6)
CALL THM4AT(S,N,N,1,E-7,IERR,N1)
IF (IERR .NE. 0) GO TO 160
WRITE (6,165) IERR
160 WRITE (6,164)
164 FORMAT(1X,'24HINVERSION FAILS, IERR= ',I4)
94 FORMAT(1X,'10X,14HINVERSE MATRIX //')
DO 170 I = 1,N
170 S(I,J) = S(I,I) / (1.0E6)
CONTINUE
DO 192 I = 1,N
192 WRITE (G,103) (S(I,J),J=1,N)
103 FORMAT(1X,'7E10.3 ')
CONTINUE
DO 200 I = 1,N
200 UNIT(I,J) = 0.0
DO 205 K = 1,N
205 UNIT(I,J) = UNIT(I,J) * (CK(I,K) * (S(K,J))
CONTINUE
WRITE (6,206)
206 FORMAT(1X,'10X,13HINVERSE CHECK //')
DO 106 I = 1,N
106 WRITE (6,107)
107 FORMAT(1X,'7E10.3')
CONTINUE
WRITE (6,220)
220 FORMAT(1X,'10X,14HMATRIX PRODUCT //')
DO 310 I = 1,N
310 A(I,J) = 0.0
00 CONTINUE
10 CONTINUE
225 WRITE (6,225) ((A(I,J), J=1,N), I=1,N)
225 FORMAT (7F10.3)
256 CALL HTGENP (N, N, M, 48.0, EIGVAL, EVI, VECR, VECI, INDIC)
256 WRITE (6,256)
176 FORMAT (/1X,10HETGENVALUES /)
176 WRITE (6,176) (EIGVAL(I), I=1,N)
176 WRITE (6,176)
176 FORMAT (/1X,10HETGENVECTORS /)
176 WRITE (6,176) (VECR(J,I), J=1,N, I=1,N)
137 FORMAT (7F10.3)
400 WRITE (6,400)
400 FORMAT (1H1, 5X, 7HFRSQUENCES AND MODE SHPES ///)
400 WRITE (6,400)
333 FORMAT (5X, 18HMODEL TRY-OUT NO. ..I2///)
333 DO 140 I=1,N
333 XL(I)=E(I,2)
333 IF (EIGVAL(I), LE, XL(I)) GO TO 142
333 FPRED=(1.0/6.284)*SQR(T.0/EIGVAL(I))
333 WRITE (6,145) I, FPRED
333 WRITE (6,145)
145 FORMAT (/1X, 5X, 12HFRSQUENCY = ,E10.3,4H HZ. /)
145 WRITE (6,145) (VECR(J,I), J=1,N, I=2)
146 FORMAT (/4X,10F11.3)
146 GO TO 140
142 WRITE (6,143) I, EIGVAL(I)
143 CONTINUE
140 CONTINUE
140 DO 77? I=1,NE
140 WRITE (6,723) XI(I), XL(I)
723 FORMAT (10X, 2F11.3)
732 CONTINUE
731 CONTINUE
150 STOP
<table>
<thead>
<tr>
<th></th>
<th>FREQUENCY</th>
<th>Eigenvectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.82E+00 Hz</td>
<td>-.632</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.544</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.393</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.292</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.021</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.032</td>
</tr>
<tr>
<td>2</td>
<td>1.64E+00 Hz</td>
<td>.390</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.4281</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.097</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.027</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.127</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.259</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.358</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.369</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.423</td>
</tr>
<tr>
<td>3</td>
<td>4.15E+03 Hz</td>
<td>.635</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.366</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.131</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.156</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.103</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.037</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.071</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.299</td>
</tr>
<tr>
<td>4</td>
<td>7.12E+03 Hz</td>
<td>.671</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.204</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.212</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.230</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.144</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.067</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.157</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.122</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.220</td>
</tr>
<tr>
<td>5</td>
<td>1.14E+04 Hz</td>
<td>.522</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.038</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.414</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.221</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.149</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.211</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.216</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.093</td>
</tr>
<tr>
<td>6</td>
<td>1.92E+04 Hz</td>
<td>.780</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.116</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.493</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.714</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.026</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.023</td>
</tr>
<tr>
<td>7</td>
<td>4.49E+04 Hz</td>
<td>.673</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.421</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.394</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.156</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.248</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.074</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.005</td>
</tr>
<tr>
<td>8</td>
<td>3.46E+04 Hz</td>
<td>.780</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.384</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.303</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.109</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.039</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.031</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.012</td>
</tr>
<tr>
<td>9</td>
<td>4.12E+04 Hz</td>
<td>.410</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.237</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.072</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>.312</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.517</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.441</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-.156</td>
</tr>
</tbody>
</table>