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Abstract 

Mixture distributions are typically used to model data in which each observation be­

longs to one of some number of different groups. They also provide a convenient and 

flexible class of models for density estimation. When the number of components k is 

assumed known, the Gibbs sampler can be used for Bayesian estimation of the com­

ponent parameters. We present the implementation of the Gibbs sampler for mixtures 

of Normal distributions and show that, spurious modes can be avoided by introducing 

a Gamma prior in the Kiefer-Wolfowitz example. 

Adopting a Bayesian approach for mixture models has certain advantages; it is 

not without its problems. One typical problem 'associated with mixtures is non­

identifiability of the Gomponent parameters. This causes label switching in the Gibbs 

sampler output and makes inference for the individual components meaningless. We 

show that the usual approach to this problem by imposing simple identifiability con­

straints on the mixture parameters is sometimes inadequate, and present an alterna­

tive approach by arranging the mixture components in order of non-decreasing means 
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whilst choosing priors that are slightly more informative. We illustrate the success of 

our approach on the fishery example. 

When the number of com12onents k is considered unknown, more sophisticated 

methods are required to perform the Bayesian analysis. One method is the Reversible 

Jump MCMC algori~hm described by Richardson and Green (1997), which they ap­

plied to univariate Normal mixtures. Alternatively, selection of k can be based on 

a comparison of models fitted with different numbers of components by some joint 

measures of model fit and model complexity. We review these methods and illustrate 

how to use them to compare competing mixture models using the acidity data. 

We conclude with some suggestions for further research. 
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Chapter 1 

Introduction 

1.1 Introduction 

While based on elementary distributions, mixture models provide a much wider range 

of modeling possibilities than their components. They date back to the work of New­

comb (1886) and Pearson (1894), but advances in computational methods such as 

maximum likelihood (Baum et al., 1970), the EM algorithm (Dempster et al., 1977) 

and Markov chain Monte Carlo (MCMC) Bayesian methods (Diebolt and Robert, 

1994) have substantially expanded the areas of their applications. These areas include 

genomics (Broet et al., 2002; Fraley and Raftery, 2002), epidemiology (Schlattmann 

and Bohning, 1993; Green and Richardson, 2002), econometrics (Jedidi et al., 1997; -

Allenby et al., 1998),. macroeconomics (Hamilton, 1989; Lesage, 1992), finance (Lam-
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oureux and Lastsrapes, 1994; Robert et aL, 2000; Kaufman and Friihwirth-Schnatter, 

2002), and so on. 

A number of recent books on mixtures that deserve mentioning are Lindsay (1995), 

Bohning (1999), McLachlan and Peel (2000), Friihwirth-Schnatter (2006) and Schlattmann 

(2009), which update the previous books by Everitt and Hand (1981), Titterington et 

al. (1985), and McLachlan and Basford (1988). A diversity of publications on mix-

tures before and after 2003 are reviewed in Bohning and Seidel (20'03) and Bohning 

et al. (2007). As the list of references indicates, there is a very large literature on 

methodology for and applications of finite mixture models. We try to refet to as many 

of the techniCal papers as possible at appropriate points in this thesis. 

1.2 Basic Definitions 

Definition 1.2.1. Suppose that a random variable or vector X takes values in a sample 

space X, and that its distribution can be represented by (1, probability density function 

(or mass function in the case of discrete X) of the form 

k 

g(x) = L Wjh(x) (x EX), (1.1) 
j=l 

where '0 ::::: Wj ::::: 1, 2:;=1 Wj = 1, j = 1, ... , k, k > 1. 

We say that X has a finite mixture distribution and that 9 (.) defined by (1.1) is 
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a finite mixture density function. The parameters (WI"'" Wk) are called the mixing 

weights or mixing proportions) and fl (x), ... , fk (x) the component densities of the 

mixture. 

If the components fj (-) come from a parametric family, with unknown parameters 

OJ, then the parametric mixture model is 

k 

g(xlw) = ~ WjiJ(xIOj), (1.2) 
j=1 

Vie denote the collection of all distinct parameters occurring in the component densities 

by 0, and the complete collection of all distinct parameters occurring in the mixture 

model by lJ!, following the notation in Titterington et al. (1985, §1.1). 

Consider a two-component mixture model of the form 

g(xlw) .= W¢(XIILI, O"i) + (1 - w)¢(xIIL2' O"~), (1.3) 

where ¢(xIILj,O"J), j = 1,2, denotes a univariate Normal density with mean ILj and 

In many applications, the component densit,ies in (1.2) belong to the same para-
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metric family, and the finite mixture density function can be written as 

k 

g(xlw) = L Wjf(xIOj), 
jd 

(1.4) 

where I(-IO) denotes ~ generic member ofthe parametric family, k is called the number 

of components, and (e l , .. . , ek ) are called the component parameters. Note however, 

it is not required that all the components belong to the same parametric family. 

Such formulations are of interest in a context where there is a reason to assume 

that 9 is genuinely a mixture of a fixed number of components. For instance, we may 

believe that the xi's are drawn from a heterogeneous population which is composed 

of subsets, and the distribution of members of the jth subset is fj(xIOj). Consider 

an example where the xi's are measures of size of a species of fish caught in the fall. 

If these fish spawn only in the spring, then the population will be composed of one 

group that are around 6 months old, another that are about is months old, and so on. 

Each age cohort defines a subset of the population with its own size distribution. Even 

where the population is known to be heterogeneous in this way, the number of mixture 

components mlW be unknown and even potentially unbounded. In this case, one may 

be interested in developing a nonparametric formulation, allowing the mixture to have 

.an arbitrary and unlimited number of components. 

A difference between (,he two motivations for mixture is that in the nonparametric 

context we are primarily interested in infereilce about g, and the components of the 
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mixture are not in themselves important. The mixture is simply a convenient way to 

achieve a flexible representation for g, without constraining it to belong to a para-

metric family. In contrast, where there is a scientific basis for a mixture model, the 

components fj('IOj), the mixing weights W = (WI, ... , Wk) and even tht? number of 

components k are of intrinsic interest. 

An important concept associated with the mixture model is identifiability. In order 

to estimate W, it is necessary that they should be identifiable. In "general, a parametric 

distribution family is said to be identifiable if distinct parametric values determine 

distinct members of the family. This is defined similarly for mixture models. 

Definition 1.2.2. Let f(xlw) = 2:7=1 Wjf(xIOj) be the member of a parametric family 

of finite mixture models. This class of finite mixtures is said to be identifiable if for 

any two members f(xlw) and f(xlw*)J 

k ~* 

LWjf(xIOj) = Lwjf(xIOj) 
j=l j=l 

if and only if k = k*, Wj = wj and OJ = OJ after permuting the component labels. 

Teicher (1963) showed that except for mixtures of uniform distributions, many 

finite mixtures of continuous densities are identifiable. These results were extended to 

multivariate families such as multivariate mixtures of Normals (Yakowitz and Spragins, 

1968). While mixtures of discrete distributions need not be identifiable, finite mixtures 
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of Poisson distributions (Teicher, 1960) and Negative Binomial distributions (Yakowitz 

and Spragins; 1965) are identifiable. See Titterington et al. (19S5, §3.1) for a detailed 

account of the identifiability of finite mixture models: 

When the numbel~ of components k is large, some of the mixing weights can become 

so close to 0 that the mixture models are close to non-identifiable; or if two components 

are very.close to each other, a mixture density with k components can be empirically 

indistinguishable ftom a mixture with fewer than k components. 

1.3 Estimation in Mixture Models 

Various methods have been developed for estimating the parameters in finite mixture 

models .. We mention four of them that are widely used in practice and cited in the lit­

erature: method of moments, minimum distance method, maximum likelihood method 

and Bayesian method. 

Dating back to t11e work of Pearson (19S4), the method .of moments is one of the 

earliest methods for estimating the parameters in finite mixture models. It was widely 

used in applications when computers were not fast enough to find the maximum of 

the log-likelihood function. Some developments of moment estimators can be found 

in Lindsay and Basak (1993), Furman and Lindsay (1994a, 1994b), Lindsay (1995), 

Withers (1996), as well as Craigmile and Titterington (199S). Even today, they are 
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still useful serving as initial values for iterative numerical methods to compute the 

maximum likelihood estimates (Lindsay, 1995). 

Minimum distance estimation, introduced by Wolfowitz (1957), is another general 

method for estimating W in a finite mixture. It minimizes the distance between the 

empirical distribution and the mixture distribution, or between the kernel density and 

the mixture density. Titterington et al. (1985, §4.5) gave a detailed review of the 

minimum distance estimators. Note that the maximum likelihood estimator (MLE) 

can be viewed as a sp,ecial case of minimum distance estimators, since it minimizes the 

Kullback-Leibler (1951) distance between the empirical distribution and the mixture 

distribution. 

Since finding numerical solutions of a likelihood equation became feasible, likelihood-

based inference has enjoyed fast development and played an important role in the scope 

of finite mixture models. Let the data take the form of a random sample of observations 

Xl = Xl, . .. ,Xn = Xn , where the distributions of each X is described by a parametric 

finite mixture density of the form (1.4). The likelihood function and log-likelihood 

function of W'are given by 

n k 

Ln(w) = II [L: wj'j(xiI 8j)] (1.5) 
i=l j=l 
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and 

n k 

In(\[I) = L log { L Wjf(XiIBj)}. (1.6) 
i=l j=l 

The maximum likelihood estimator of \[I is defined to be 

when this exists. Because the explicit expression for the MLE's are typically not 

available, a number of numerical algorithms have been developed for maximizing the 

log-likelihood function. Among them, the expectation-maximization (EM) algorithm 

(Dempster et al, 1977) is one of the most popular methods. More details ca.n be found 

in McLachlan and Krishnan (1997), as well as McLachlan and Peel (2000). An R 

package mixdist by Macdonald and Du (2010) deserves mentioning here. It contains 

functions for fitting finite mixture models to grouped data and conditional data by the 

method of maximum likelihood using a combination of a Newton-type algorithm and 

the EM algorithm; the components can be Normal, Lognormal, Gamma, Exponential, 

Weibull, Binomial, Negative Binomial or Poisson distributions. 

Under some classes of mixture models, ordinary MLE's are inconsistent or not 

well defined. For example, the MLE is not well defined in the two-component Normal 

mixture (1.3), because In(\[I) -t 00 when JlI = Xl, at -t 0 and the other parameters are 
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held fixed. Ta accaunt far this case, Hathaway (1985) and Tan et al. (2006) discussed 

the use .of canstrained MLE, and Chen et al. (2008) investigated the praperties .of 

penalized MLE. 

Thefaurth methad for estimating W is the Bayesian metl~ad. Let Ln(X1 , . .. ,Xnlw) . 

be the likelihaad functian .of W. Assuming that a prior distributian p( w) an W is 

available, then the pasterior density P(WIXl' . .. ,Xn ) can be .obtained by 

using Bayes' thearem. 

There are variaus' reasans why peaple may be interested in, using Bayesian meth­

ads in finite mixture models (Friihwirth-Schnatter, 2006, §2.4.5). First, introducing 

a suitable priar distributian far W can avaid spuriaus mades when maximizing the 

lag-likelihaad functian. Secandly, when the pasterior distributian for the unknawn 

parameters is available, Bayesian methads pravide valid inference withaut relying an 

the asymptatic normality. This is an advantage especially when the sample size n is 

small, because the asymptatic theory .of the MLE can apply .only when n is very large. 

What can we da. if we want ta campare different madels for a particular set .of 

data? In frequentist statistics, three methads for madel camparisan are papular: the 

likelihaad ratia test (LRT) , Akaike's infarmatian criterian (AIC) and the Bayesian 
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information criterion (BIC). The LRT is used to compare the fit of two models one of 

which is nested within the other. Both AIC and BIC are based on the log-likelihood 

evaluated at the MLE and penalized for the number of parameters in the model. 

There is a danger of over-parameterization, so only those parameters that substantially 

improve the model should be included. Spiegelhalter et al. (2002) reviewed a number 

of Bayesian approaches to tackling the' question of model fit and model comparison 

including Bayes Factors, the deviance information criterion (DIC) and the penalized 

expected.deviance (FED). In addition, Reversible Jump MCMC (RJMCMC) method 

(Green, 1995) enables us to get a handle on both model selection and parameter 

estimation in one single algorithm. 

1.4 Data Sets 

1.4.1 The Galaxy Data 

The galaxy data, first given by Roeder (1990), consist of 82 velocities of distant galaxies 

diverging from our own, sampled from 6 well-separated conic sections of the corona 

borealis. It was believed that galaxies further from us are moving at greater velocities, 

due to the expansion of the Universe. Thus, distance is proportional to and can be 

estimated from velocity. This data set has been analyzed under a variety of mixture 

models by many researchers, including Crawford (1994), Chib (1995), Carlin and Chib 
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(1995), Escobar and West (1995), Phillips and Smith (1996), Richardson and Green 

(1997), and Stephens (2000a). 

1.4.2 The Fishery Data 

The fishery data, given in Cassie (1954) and Titterington et al. (1985, §2.1), consist 

of lengths of 256 snappers. The underlying categories are the possible age groups 

to which an individual fish may belong. Thus the component densities describe the 

length distributions for fish of different ages and the mixing weights indicate the age 

distribution of snappers in the total population. For a given age group, the length of 

a fish is assumed to follow a Normal distribution. 

1.4.3 The Acidity Data 

The acidity data concern an acidity index measured in a sample of 155 lakes in north­

central Wisconsin. This index describes the capability of a lake to absorb acid; low 

values can lead to a loss of biological resources. It was believed that seepage lakes, 

which have neither inlets or outlets, tend to have lower acidity index, and drainage 

lakes with both inlet$ and outlets tend to have higher values. This data set has been 

analyzed as a mixture of Normal distributions on the log-scale by Crawford et al. 

(1992, 1994), as well as Richard and Green (1997) using reversible jump algorithms. 
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1.5 Purpose and Motivation 

This thesis is a review and discussion of recent published work in Bayesian modeling· 

and inference for finite mixture distributions and an attempt to find methods that will 

succeed in applications of practical interest. 

So far, Bayesian methods that have been proposed and developed for mixture 

models are not simple to implement. We bring together several approaches for mixtures 

with both known and unknown number of components to see if any of them could 

work in problems of practical importance. Although complicated methods have been 

proposed for issues such as label switching, few of them have been found to be both 

natura] and effective. We also review some of the computer software that is available. 

The rest of my thesis is organized as follows. Chapter 2 is a review of Bayesian 

framework for mixture distributions; we discuss issues on choices of priors, non-identifiability 

and convergence monitoring. Chapter 3 concerns mixtures with a known number of 

components; we illustrate the implementation and applications of Gibbs sampling to 

mixtures of Normal distributions. In Chapter 4 we consider the case when the number 

of components is unknown; a fully Bayesian analysis to the acidity data is presented. 

Finally, we offer some concluding remarks and some directions for further research in 

Chapter 5. 
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Chapter 2 

Bayesian Framework for Mixture 

Distributions . 

2.1 Completion 

Like the EM algorithm, practical Bayesian estimation using MCMC methods is based 

on the work of Dempster et al. (1977) who pointed out that a finite mixture model 

can always be expressed as an incomplete-data problem by introducing the allocations 

as missing data. That is, every observation Xi can be associated with a latent variable 

Zi E {I, ... ,k} that indicates the allocation of Xi. The corresponding completion of 
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the mixture model is then 

where Mk(WI, .. " Wk) denotes a multinomial distribution with parameters k and w = 

(WI, ... " Wk)' Therefore, the density of the complete data Yi = (Xi, Zi) is 

and the likelihood function (1.5) becomes 

n 

and 
n 

, 1[(0, wlx, z) ex [II wzJ(xiIOzJ] 1[(0, w), 
i=I 

. One may wonder why such completion is useful in this setting since the observed 

marginal likelihood can be computed in closed form. The reason is that using la-

tent indicator variables usually leads to an effkient simulation algorithm that quickly 

focuses on the modes of the posterior distribution. Diebolt and Robert (1994) first 

constructed MCMC inference for this model with fixed number of components k. If the 
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prior distribution ·of w is Dirichlet, then its posterior distribution given z = (Zl' ... , zn) 

is also Dirichlet; the, posterior conditional distribution of OJ given w is simply ob­

tained by combining its prior distribution with the sample values Xi for which Zi=j. 

Generalization to unknown k was given by Richardson and Green (1997), using the 

Reversible Jump MCMC algorithm. For a different Bayesian approach to computation 

for mixture models, see Fraley and Raftery (2002). 

2.2 Choices of Priors 

2.,2.1 Objective and Subjective Priors 

Objective priors should be used when we have no prior information about the param­

eters in the model. However, there exist no general rules about how this ignorance 

should be expressed in terms of a probability distribution. Therefore, improper priors 

which are not integrable over the parameter space are often used, in the hope that 

the data themselves are informative enough to turn the improper prior into a proper 

posterior distribution .. The choice of objective priors is particularly difficult for fi­

nite mixture models, since some commonly-used improper priors can lead to improper 

posteriors. 

Subjective priors bring prior knowledge into the analysis and offer the advantage 

of being proper. They are usually obtained by choosing priors that are conjugate for 
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the complete-data likelihood function. It is common to assume that the parameters 

(lh, ... ,(h) . are independent of the weight distribution w. The standard prior for 

the weight distribution w is the Dirichlet distribution, and the priors on the compo-

nent parameters (01 , ... ,Ok) depend on the distribution family underlying the mixture 

distribution. 

The parameters of a subjective prior are called hyper-parameters. Results from 

Bayesian analyses of finite mixture models using subjective prior information often 

highly depends on particular choices of hyper-parameters. However, it is not always 

eEl,sy to assess these hyper-parameters. To reduce their sensitivity, hierarchical priors 

are often used, where the hyper-parameter is equipped with a prior of its own. In any 

case, in a Bayesian analysis of finite mixture models, the prior distribution has to be 

selected carefully. 

2.2.2 Proper and Improper Priors 

The possibility of getting few or no observations from a given component in the sample 

has a direct drawback. It prohibits the use of independent priors 

k 

1f(0) = II 1f(Oj) , 
j=l 
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since if 

then for eVery sample size n and any sample x, 

J 1f(O,wlx)dOdw = 00. 

Note that using improper priors .in mixture models is not impossible, by adding 

some degree of dependence between the component parameters, as demonstrated in 

IvIengersen and Robert (1996). Alternatively, Marin et al. (2005) proposed to introduce 

first a common reference parameter (/-k, T), and to define the original parameters in 

terms of departure from those references. For other approaches to the use of default or 

non-informative priors in the setting of mixture models, see Wasserman (2000), Perez 

and Berger (2002), as well as Moreno' and Liseo (2003). 

2.3 N onidentifiability 

In Bayesian mixture models, parameter estimation is not always straightforward. The 

common practice of estimating parameters by their posterior mean and summarizing 

joint posterior distributions by marginal distributions often leads to nonsensical an­

swers. This is due to,the so-called "label-switching" problem, caused by symmetry in 

the likelihood of the model parameters. For a k-component mixture, the parameter 
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space has k! regions over which the likelihood is identical, that is, the component 

parameters are not marginally identifiable. Thus, if (e1 , ... ,ek ) is a local maximum, 

so is ((}un"" (}ak) for every permutation ()" E I:n . This makes maximization and ex-

ploration of the posterior surface difficult. Moreover, if an exchangeable prior is used 

on () ,= (() all ... , () ak)' all the marginals on () will be identical. 
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Figure 2.1: Histogram of the galaxy data. 

We illustrate this label switching problem using the galaxy data introdu,ced in 

Chapter 1. A histogram of the 82 velocities is shown in Figure 2.1. We model the data 
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as independent observations from a mixture of k = 6 univariate Normal distributions: 

6 

L wjN(xlfLj, (Tn, 
j=l 

(2.1) 

where N(·lfL, (T2) denotes the density function of a Normal distribution with mean fL 

and variance (T2. 

We fitted model (2.1) using Gibbs sampling, with non-informative priors proposed 

by Raftery (1996b). Figure 2.2 shows the effects of label switching in the sampled 

values of the component means. As the MCMC scheme moves between relatively well-

separated regions of parameter £pace, we can see distinct jumps in the traces of the 

means. Intuitively, these regions correspond to some of the 6! ways of labeling the 

mixture components. 

Figure 2.3 shows that the estimates of the marginal posterior distributions of the 

means are very similar to each other, therefore the estimation of the means based on 

the MCMC output will not be straightforward. For the mixing weights and variances, 

the traces and estimates of their marginal posterior distributions behave in the same 

way (not shown here). 

If the galaxies are clumped, the distribution of their velocities will be multimodal, 

each mode representing a cluster that moves away at its own speed. Due to label 

switching, inference for the individual cluster is no longer meaningful. 
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the raw output of the Gibbs sampler when fitting a mixture of Normal distributions 
to the galaxy data. 
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A frequent response to this problem is to remove the symmetry by imposing an 

artificial identifiability constraint on the parameters. For instance, we could arrange 

the mixture components in order of non-decreasing means JlI :::; Jl2 :::; .. , :::; Jlk and 

increasing variances al < a2 < ... < ak when some means are equal. However, 

imposing a constraint on one and only one of the different types of parameters (weights, 

locations, scales) may fail to discriminate between some components of the mixture. 

We illustrate this in Table 2.1 and Figure 2.4. While one of the estimations is close to 

the true density, the other two both miss at least one of the three modes. 

Table 2. L Parameter estimates obtained from simulated sample of 500 observations 
from a thr.ee-component Normal mixture, by re-ordering according to one of three 
constraints, W : WI < W2 < W3, Jl : JlI < Jl2 < Jl3, or a : al < a2 < a3' 

Order PI P2 P3 JlI Jl2 Jl3 al (12 a3 
True 0.50 0.30 0.20 -1.50 0 1.50 0.5 0.30 0.20 
Onp 0.22 0.33 0.45 0.01 -1.49 1.48 0.31 0.50 0.26 
On Jl 0.44 0.33 0.23 -1.50 0.00 1.45 0.49 0.34 0.27 
On a 0.15 0.20 0.65 -1.62 1.50 -0.59 0.23 0.29 0.91 

Marin et al. (2005) pointed out that the introduction of an identifiability constraint 

has severe consequences on the resulting inference. When reducing the parameter space 

to its constrained part, the imposed truncation has no reason to respect the topology of 

either the prior or the likelihood. The constrained parameter space may include parts 

of several modes and the resulting posterior mean may lie in. a very low probability 

region, while the high posterior probability areas are located at the boundaries of 

this space. In addition, the constraint may radically modify the prior modeling and 
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contradict the prior information. 

For other approaches to this problem, see Roeder and Wasserman (1997b), Celeux 

et al.(2000), Stephens (2000b), Jasra et al. (2005), Marin et al. (2005), Yao and 

Lindsay (2009), and Sperrin et al. (2010). Note that label switching is only a problem 

when we wish to make inference about individual components of the mixture. When 

the mixture is being used as a nonparametric representation, the focus is on inference 

about g, and label switching is then irrelevant. 

2.4 Issues on Convergence 

2.4.1 The Burning-in Period 

For an MCMC sampler, the number of steps until the chain approaches stationarity 

is called the length of the burn-in period. Typically the first 1000 to 5000 elements 

can be discarded. Since a poor choice of starting values or proposal distribution can 

greatly increase the required burn-in period, an area of current research is whether 

optimal starting points and proposal distribution can be found. One suggestion is to 

start the chain as close to the center of the distribution as possible. 

A chain is called poorly m~xing if it stays in small regions of the parameter space 

for long periods of time, while a well mixing chain happily explores the space. If the 

target distribution is multimodal and our choice of starting values traps us near one 
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of the modes, then it is easy to obtain a poorly mixing chain. Two approaches have 

been suggested for situations where the target distribution may have multiple peaks: 

one is to use multiple highly dispersed initial values to start several chains (Gelman 

and Rubin 1992), and the other is to use a simulated annealing algorithm (Metropolis 

et al., 1953). 

2.4.2 Convergence Diagnostics 

In the previous sections, we have assumed that under general conditions the MeMe· 

algorithms are convergent, because the chains they produce are ergodic (Tierney, 1994). 

We wish that there existed some clear convergence· markers so that no sequential 

processing would be needed. Unfortunately this is almost impossible in practice. It 

is illusional to think that we can assess the convergence behavior of a Markov chain 

based on a few thousand realizations of it. No theories tell us when to stop and make 

estimations with enough confidence. In this subsection, we describe several techniques 

that are mostly empirical to assess the convergence behavior. 

The minimal requirement for the convergence of an MeMe algorithm is that the 

distribution of the chain (x(t)) should be the stationary target g. To detect non­

. stationarity, a first approach is to plot the evolution of the output from the simulated 

chains, componentwise and jointly. This is not as straightforward as it seems. For a· 

given time t, it is difficult for (x(t)) to be exactly distributed from 9 when 9 is a complex 
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distribution. Moreover, it is theoretically impossible if we only consider a single real­

ization of (x(t)). Another useful plot is to draw the empirical cumulative distribution 

functions (cdf) derived from the Markov chains and check for their stability. 

What if we want. to access convergence in a mor.e formal way? One can use the 

Geweke test (Geweke, 1992), which splits the sample into two parts, the first 10% 

and last 50%, after removing the burn-in's. If the chain has reached stationarity, the 

means of the two samples should be equal. A modified z-test can be used to compare 

the two samples, and the resulting test ~tatistic is often referred to as the Geweke 

z-score. A value larger than 2 indicates that the mean of the series is still drifting, and 

a longer burn-in is required. Additional diagnostic checks for stationarity are discussed 

. by Geyer (1992), Gelman and Rubin (1992), as well as Raftery and Lewis (1992b). 

2.4.3 The coda Package 

An R package coda written by Plummer et al. (2006) contains a number of tools 

for convergence diagllostics of an MCMC algorithm. T~e majority of diagnostics are 

based on the review of Cowles and Carlin (1996), as well as Brooks and Roberts (1998). 

While coda was primarily intended for processing the output of a BUGS run (Lunn et 

al., 2000), it can also be used to handle an arbitrary output from users' own MCMC 

programs. Some of the generic functions in this package are listed in Table 2.2. 

Consider an example of simulating samples from a bivariate Normal with zero 
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produced by a Gibbs sampler for the bivariate Normal example. 

28 



x 

:t \;, ... \~ ,t \ I~" f" ,- ............ # ........... ,,- .. - .... ~ ............................ -- .. .. 

I 

a r-
I 

')' ;/I~ .. ',,_ .,1'" ....... I~_,,_- -1_" "'-- ', __ ' ..... _ ............ -~--- ....... - ... 

a 

C\I 
I 

o 500 1000 1500 2000 

iterations 

y 

", ,: ',:',' .... /." ....... ,.,.-- .. ,.. / ........ ,. ............ __ ...... -,-- .. ,--" 
,') 

1\1 
II 

I 

I r 
: I ,. ....... , .... , ' ..... -_ .......... --.- ...................................... .. 

I", "" ,; ",' , 

o 500 1000 1500 2000 

iterations 

Figure 2.6: Outcome of the cwnuplot function applied to the same MCMC sample as 
in Figure 2.5. The lower (upper) plot corresponds to the 2.5% (97.5%) quantile, the 
central plot to the median. . 

29 



Fraction in 2nd window = 0.5 

x y 
0.5463 0.2600 

For multiple chains with possibly different initial values, we can use the convergence 

. tool of Gelman and Rubin (1992), implemented as gelrilan.diag and gelm~n.plot. Its 

stopping rule is based on the difference between a weighted estimator of the variance 

and the variance of estimators from the different chains.. Figure 2.7 describes the 

evolution of the criterion (called shrink factor) for two parallel chains. It shows a clear 

stabilization around the target value 1 as early as 1200 iterations. The conclusion is 

thus in agreement with the above Geweke test. 

Ideally, the approximation to 9 provided by MCMC algorithms should extend to 

the approximate production of iid samples from g. Note that even within a stationary 

regime, there exists a difference between the number of iterations and the size of an iid 

sample from 9 that would lead to the same variability. Using the same example, the 

following result returned by autocorr. diag shows that at least one out of 5 points 

should be considered for an iid sample based on this output. 

> autocorr.diag(mcmc2) 
x y 

Lag 0 1.00000000 1.000000000 
Lag 1 0.24408941 0.252013506 
Lag 5 -0 . 00838563 , 0.023634908 
Lag 10 -0.03563237 -0.048437273 
Lag 50 0.02242023 -0.002957836 
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The effective· sample size, available as e.ffecti veSize, provides an indication of 

the loss in efficiency due to the use of it Markov chain instead of an iid sample. The 

outcome below leads 'to an effective sample size of approximately 1215 for x and 1195 

for y, which again agrees with the message from Figure 2.7. 

> effectiveSize(mcmc2) 
x y 

1214.595 1194.256 

Another useful function is summary. mcmc. It produces summary statistics for each 

variable; these statistics are the mean, standard deviation, naive standard' error of 

the mean, time-serie~standard error, and quantiles of the sample distribution. More 

functions and their usage can be found in the latest coda manual on CRAN. 

> summary(mcmc2) 

Iterations = 1:2000 
Thinning interval = 1 
Number of chains = 1 
Sample size per chain = 2000 

1. Empirical mean and standard deviation for each variable, 
plus standard error of the mean: 

Mean SD Naive SE Time-series SE 
x 0.02979 1.009 .0.02255 0.02847 
y. 0.02547 1.026 0.02295 0.03010 

2. Quantiles for each variable: 

2.5% 25% 50% 75% 97.5% 
x -1.867 -0.6611 0.02595 0.7180 2.019 
Y -1.995 -0.6838 0.01638 0.7485 2.004 
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2.4.4 One Long Chain or Many Shorter Chains? 

One can either use a single long chain (Geyer 1992, Raftery and Lewis 1992b) or mul­

tiple chains each starting from different initial values (Gelman and Rubin 1992). Note 

that with parallel processing machines, using multiple chains may be computationally 

more efficient than a single long chain. However, Geyer (1992) argues that using a 

single longer chain is the better approach. If long burn-in periods are required, or if 

the chains are highly auto correlated , using a number of smaller chains may result in 

each not being long enough to be useful. 
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Chapter 3 

Bayesian Modeling and· I.nference 

for Mixt·ure Distributions with 

Known Number of Components 

3.1 Gibbs Sampling 

3.1.1 Introduction 

Gibbs sampling or the Gibbs sampler,named after the physicist J. W. Gibbs, is an 

algorithm that generates a sequence of samples from the joint probability distribution 

of two or more random variables. It was first described in a· statistical paper by 
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brothers Stuart and Donald Geman (1984), whose work built on that of Metropolis 

et al. (1953), Hastings (1970) and Peskun (1973). Influenced by Geman and Geman 

(1984), Gelfand and Smith (1990) wrote a paper that had an enormous impact on 

Bayesian methods, statistical computing, and stochastic processes. Since then, the 

Gibbs sampler has become one of the most popular methods for summarizing complex 

posterior distributions. Although Tanner and Wong (1987) and Besag and Clifford 

(1989) had proposed similar solutions, they did not receive the same response from 

the statistical community. 

Let us first consider a bivariate random variable (x; y), and suppose we wish to 

compute one or both marginals, p(x) and p(y). The idea behind the Gibbs sampler is 

that it is much easier to consider a sequence of conditional distributions, p(XjIY) and 

p(Yj Ix), than it is to obtain the marginal by integration of the joint density p( x; y). 

The sampler starts with an initial value Yo for Y and obtains Xo by generating a random 

variable from the conditional distribution p(Xjly = Yo). It then generate Yl based on 

the value of xo, drawing from the conditional distribution p(yjlX = xo). 

Repeating this 

Xi rv p(xly· = Yi-l), 

Yi rv p(ylx = Xi) 

k times, we obtain a Gibbs sequence of length k. A subset ofthis sequence (Xj; Yj), 1 .::; 
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j s: m < k, can be taken as our simulated draws from the full joint distribution p(x; y). 

After a sufficient blun-in to remove the effects of the initial sampling values, one can 

sample m points from the chain for estimation and inference purposes. The Gibbs 

sequence converges to a stationary or equilibrium distribution that is independent of 

the starting values, and this stationary distribution is the target distribution we are 

trying to simulate (Tierney 1994). 

The implementation of Gibbs sampling is straightforward in this case. We illustrate 

this using the example mentioned in subsection 2.4.3. Simulating samples from a 

bivariate Normal with zero mean, unit variance for the marginals and a correlation of 

p = 0.5 between the two variables, the core of the R code is 

> bn_gibbs <- function (n 500,' rho 0.5, startx 0, starty 0) 
{ 

} 

X <- rep(NA, n) 
y <- X 

X [1J <- startx 
y [1J <- starty 
for (i in 2:n) { 

} 

x[i] <- rnorm(1; y[i - 1J * rho, sqrt(1 - rho~2)) 
y[iJ <- rnorm(1, x[iJ * rho, sqrt(1 - rho~2)) 

data. frame (cbind(x, y)) 

When more than two variables are involved, the sampler is extended in an obvious 

fashion. The value of the kth variable is drawn from the distribution p(e(k)18(-k))), 

where 8(-k) denotes a vector containing all variables but k. Therefore, to obtain the 

value e~k) during the ith iteration, we draw from the distribution 

36 



e~k) rv p(e(k) le(l) = e~l) e(k-l) = e~k-1) e(k+1) = e~k+1) e(n) = e~n) 
2 2 , •.• , 2' 2-1 , ••• , 2-1 • 

For example, if there are three variables (x; y; z) involved, the sampler becomes 

Not "necessarily the most appropriate MCMC method in any given example, the 

Gibbs sampler and its various adaptations remain the most popular one in applied 

Bayesian statistics. This is because for many Bayesian models, the implementation 

of the Gibbs sampler is particularly convenient due to two properties: conditional 

conjugacy and conditional independence. The conditional conjugacy ensure that the 

posterior conditional distributions required by the Gibbs sampler are from the same 

family as the prior conditional distributions. If this family is easy to sample from, then 

the Gibbs sampler will be straightforward to implement. 

, 

Conditional independence arises in hierarchical models. Suppose that the likelihood 

for data i is f(xI8), the prior for 8 is f(814)) and the hyperprior for 4> is f(4)). Then 

4> is conditionally independent of x given 8, and the posterior conditional densities 

are given by f(814)) ex: f(xI8)f(814» and f(4)18) ex: f(814))f(4>). Therefore, if each 
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stage of the hierarchical model permits convenient sampling, the Gibbs sampler will 

be again straightforward to implement. 

3.1.2 General Gibbs Sampling for Mixture Models 

Definition 3.1.1. Given a distribution f(x)) a den~ity g that satisfies Jzg(x,z)dz = 

f (x) is called a completion of f. When the vector of auxiliary parameters corresponds 

to latent data that are not directed observed) this is also called data augmentation; 

The data augmentation method proposed by Tanner and Wong (1987) was to notice 

that it may be simpler and more efficient to sample from a distribution fCB, ¢Ix) than 

from f(Blx). The augmentation parameter, also called the auxiliary variable ¢, can 

be anything. If we can sample from f(B, ¢Ix), then the required f(Blx) is simply a 

marginal distribution of the augmented distribution, and a sample from f( Blx) consists 

of ignoring the ¢ components of the (B, ¢) sample. 

The Gibbs sampler has been the most commonly used approach in Bayesian mix­

ture estimation (Diebolt and Robert, 1994; Lavine and West, 1992; Verdinelli and 

Wasserman, 1991; Chib, 1995; Escobar and West, 1995). Its basic feature in the 

mixture setup is the augmentation of the parameters, by associating each of the allo­

cation variables zi's with one of the observation xi's. That is, we introduce a missing 

multinomial variable Zj rv Mk(llwl,' .. ,Wk) such that Xilzj = i rv f(xIBi)' This al­

lows simulation of the parameters of each component conditionally on the allocations, 
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taking into account only the observations allocated to this component. 

Therefore, in a heterogeneous population made of several homogeneous subgroups, 

it makes sense to interpret zj, which is missing in the observation, as the index of 

the population which Xj comes from. In the alternative non-parametric perspective, 

it is often meaningles~ to analyze the individual mixture components. However, since 

the goal of an MCMC sampler is to provide a Markov chain that converges to the 

posterior distribution, the difference between natural and artificial completion is lost, 

and completion is merely a tool to generate such a chain. 

Let n( wlz, x) denote the density of the distribution of w given z = (Zl, ... , zn) 

and x.Let n(Olz,x) be the density of the distribution of 0 given (z,x). Note that 

n(wlz, x) is independent of x, so n(wlz, x) = n(wlz). 

We now describe the Gibbs sampler for mixture models given in Diebolt and Robert 

(1994), based on successive simulation of z, W, 0 conditional on one another and on 

the data: 

o. Initialization: choose w(O) and 0(0) arbitrarily. 

1. Step t. For t = 1, ... 

1.1 Generate zY) (i = 1, ... , n) from (j = 1, ... , k) 

JP> ( ~t) = ·1 ~t-l) e~t-l).) ~t-l)f ( .Ie~t-l)) 
Zt J W J 'J ' X t <X W J X t J •. 

1.2 Generate w(t) from n( wlz(t)). 
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1.3 Generate e(t) from 1f(Olz(t),x). 

3.2 Finite Mixture of Normal Distributions 

3.2.1 Introduction 

The density of a finite mixture of k univariate Normal distributions is given by 

(3.1) 

with N(YIJ-lk, O"~) being the density of a univariate Normal distribution. Here we are 

interested in the estimation of the weight distribution w = (WI, ... , Wk), the compo­

nent means M = (J-lI,' .. ,J-lk) and the component variances a 2 = (O"I,··. , O"n, based 

on the data y -,- (YI, ... , Yn). 

Pioneering work on the estimation of Normal mixtures was based on the method 

of moments (Pearson, 1894). Maximum likelihood estimation was used for a mixture 

of two univariate Normal distributions with O"I = O"~ as early as Rao (1948),and 

Hasselblad (1966). Later, numerical optimization procedures such as the EM algorithm 

(Dempster et al., 1977) became available too. 

A difficulty with the maximum likelihood estimation, first noted by Kiefer and 

Wolfowitz (1956) for univariate mixtures of Normals, is that the mixture likelihood 
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function 

n k 

p(ylp" 0-
2

, w) = II [2: Wj<P(Yi Iltj, o})] (3.2) 
i=1 j=1 

is unbounded and has many local spurious modes, therefore the resultant likelihood 

estimator is only a local maximum. We illustrate this using .the Kiefer-Wolfowitz 

example in the next subsection. 

3.2.2 The Kiefer-Wolfowitz Example 

Consider the following mixture of two Normal distributions 

Y rv wN(It, 1) +(1- w)N(It,a2
), (3.3) 

where W is fixed, It and a 2 are unknown. This example was used by Kiefer andWol-

fowitz (1956) to show that each observation in an arbitrary data set y = (YI,: .. ,Yn), 

of arbitrary size n, generates a singularity in the niixture likelihood function (3.2). 

Whenever It = Vi, as a2 --+ 0, the mixture likelihood p(yllt = .Yi, a2
) is dominated by 

a term proportional to a constant times 1/a2
. Therefore, 
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To illustrate this, we simulate n = 20 observations from the model (3.3), with w = 

0.5, Jl = 0, and (J2 ----.: 4. The sorted observations are: 

-3.1954 -3.1063 -1.7727 -1.5011 -0.9633 -0.6443 -0.3316 -0.1623 
-0.1162 

1.6338 
0.2987 
1. 8173 

0.3706 
2.9116 

0.5202 
3.6102 

1.1207 1.2242 1.2408 1.5592 

0.6 

Figure 3.1: The Kiefer-Wolfowitz example - zoom of surface plot for very small values 
of standard deviation (J. 

There is a mode (not shown in graph) around the true value (f-l, u) = (0, 2), but the 

mixture likelihood is unbounded over a region corresponding to very small values of u. Figure 

3.1 zooms on this part of the parameter space, where we find more than one spurious local 

mode in the surface plot of logp(YIf-l = Yi, ( 2 ). 
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This pathological part of the parameter corresponds to mixtures that fit one component 

to a small group of silnilar observations, whereas all other observations are assumed to 

belong to the second component. Thus, the EM algorithm or other numerical methods f6r 

maximizing this likelihood will have a high risk of being trapped at the spurious local modes. 

Now assume that t~e mixture likelihood p(YIJ.L, 0-2) is combined with the prior p(J.L, 0-2) ex 

p(0-2) , where 0-2 
r-..J JG(l, 2). Figure 3.2 shows the the MCMC draws of J.L and 0-2 from the 

posterior density p(J.L, 0-21Y) . under the prior 0-2 
r-..J JG(l, 2) for the ~imulated data with n = 

20 and n = 200. The Inverse Gamma prior introduces a constraint and keeps the variance 

sufficiently away from 0, and all singularities and local modes are cut out. In addition, for 

the larger data set with n = 200, it is less likely to run an MCMC sampler being "trapped"; 

we will discuss this issue in the next subsection. 

3.2.3 Gibbs Sampling for Normal Mean Mixtures 

Consider a two-component Normal mixture 

WN(J.Ll' 1) + (1 - W)N(J.L2' 1), (3.4) 

where the weight w is known and not equal to 0.5. In this case, the parameters are identifiable, 

because J.Ll cannot be confused with J.L2 when w is known and different from 0.5. The log­

likelihood surface exhibits two modes: one is close to the true values of the parameters and 

the other one is a spurious mode but always present, see Figure 3.3. However, if we plot the 

likelihood, only one mode is visible because of the difference in their magnitudes. 
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Figure 3.2: The Kiefer-Wolfowitz example - MCMC draws of jJ, and ()'2 from the pos­
terior p(jJ" ()'2IY) under the prior ()'2 rv JG(l, 2) based on different sample sizes n = 20 
(top) and' n = 200 (bottom); the horizontal line indicates the true values. 
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Under a Normal prior N(fl, 1/ A) on both J-tl and fJ.2, with (sj) = L:~=llIzi=jXi' it is easy 

to see that J-tl and J-t2 are independent, given (z, x), with conditional distributions . 

for j =1, 2. Similarly, the conditional posterior distribution of z given (fJ.I, fJ.2) is easily seen 

to be a product of Bernoulli random variables on {1, 2}, with (i = 1, ... ,n) 

The Gibbs sampling for a two-component Normal mean mixture (3.4) is 

O. Initialization: choose fJ.~O) and fJ.~O). 

1. Step t. For t = 1,. .. . 

(t) .-
1.1 Generate zi ('I, = 1, ... ,n) from 

1.2 Comp.ute n;t) ~ L:~=llIz~t)=j and (sj)(t) = L:~=llIz~t)=jXi' 

1.3 Generate fJ.;t) (j = 1,2) from 

Although this scheme seems straightforward, MCMC algorithms that use Gibbs sampling 
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through completion do 'not necessarily enjoy good convergence properties, as shown in Diebolt 

and Robert (1990b), One of the main defects of the Gibbs sampler is the strong attraction 

of the local modes, which are usually called trapping (or absorbing) states. While the Gibbs 

sampler chain (z(t) , e(t)) is formally irreducible, escaping from these trapping states usually 

requires an enormous number of iterations" 

When bnly a small numbel~ of observations are allocated to a given component, the proba-

bility of allocating new observations to this component is very small, and so is the probability 

of reallocating observations of this component to another component. Components with very 

small variances can also become so concentrated that there is little probability of moving 

observations in or out of them. 

Figure 3.4: Log-posterior surface and the corresponding Gibbs sample for the model 
0.7 N(O, 1) + 0.3N(2.5, 1), based on 5000 draws. 
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Figure 3.4 and 3.5 illustrate the false security of the performance of the Gibbs sampler for 

a simulated data set of n = 500 observations from 0.7N(0, 1) + 0.3N(2.5, 1). Since the Gibbs 

sampler uses conditional distributions, its moves are restricted in their width. Conditioning 

on z, the proposals for the means are quite concentrated and do not allow for big jumps in 

the allocations at the next steps. Even after many iterations, a Gibbs sampler initialized 

close to the spurious second mode is unable to leave it easily. Unfortunately, there is no way 

to judge whether the neighborhood of a specific mode has been sufficiently explored, even 

thought the path of the Markov chain can be exploited to provide an approximation of the 

marginal posterior distribution of the component parameters. 

Figure 3.5: Same graph, when initialized close to the second and lower mode, based 
on 5000 draws. 
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3.2.4 Gibbs Sampling for I~ormal Iv1ixtures 

Consider a 3-component Normal mixture of the form 2:1=1 wjN(fLj, a-y). As in Casella et al. 

(2001) we use conjugate priors 

where IG denotes the Inverse Gamma distribution and Aj,Tj,C'ij,!3j('(j are known hyper-

parameters. If we denote 
n 

(sj)(v) = 2:1Izi=j(xi - fLj?, 

i=1 

then 

A '0' + (s~) (x) O"~ 
[ -,2 1 ( J J J J) fLj O"j'X,Z r--J N " 

Tj + nj Tj + nj 

Raftery (1996b) used the following data-dependent hyper-parameters: A = 1}, T = 2.6/(Ymax-

Ymin) 2 
, C'i = 1.28, !3 = 0.36s;, whereas Bensmail et al. (1997) use A = 1}, T = 1, C'i = 2.5, and 

!3 = 0.5s;. 

The Gibbs sampler for a 3-component Normal mixture described by Marin et al. (2005) 

is as follows: 

O. Initialization: choose w(O) and 0(0). 

1. Step t. For t = 1, . .. 
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1.1 Generate zIt) (i = 1, ... , n) from (j = 1,2,3) 

(t-l) 
JP>(zY) = j) ex :~t---:-l)exp ( - (Xi - J-l.;t-l)?/2(a});t-l)), 

J 

Compute n;t) = 2:f=l IIzft)=j,(sj)(t) = 2:f=l IIzft)=jXl. 

1.2 Generate w(t) from D("(l- +nl,'Y2 +n'2,'Y3 +n3)' 

1.3 Generate J-l.;t) from 

Compute (sj)(t) = 2:f=l IIz?)=j (Xl - J-l.;t))2. 

1.4 Generate (a})(t)(j = 1,2, 3)from 

To incorporate with any finite number of components, I programmed this in R to estimate 

the means, variances and weights in a Normal mixture. 

gibbsnorm <- function (dat, k, niter, alpha = 1.28, beta = 0.36 * var(dat), 
lam = mean(dat), tau = 2.6/(diff(range(dat»)~2, g = 1) 

{ 

rigamma <- function(n, a, b) { 
return(1/rgamma(n, shape = a, rate b» 

} 

rdirichlet <- function(n, par) { 
k length (par) 
z = array (0 , dim c(n, k» 
s = array(O, dim = c(n, 1) 

for (i in 1:k) { 

z [, iJ = rgamma(n, shape 
s = s + z[, i] 

= par [i]) 
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} 

} 

for (i in 1:k) { 
z [ , iJ = z [ , iJ! s 

} 

return(z) 

n <- length(dat) 
mu <- rnorm(k, mean = meari(dat), sd sd(dat)) 
sig <- sd(dat)!k 
p <- rep(1!k, k) 
mixparam <- list(p p, mu = mu, sig = sig) 
z <- rep(O, k) 
nj <...:. z 
sj <- z 
sj2 <- z 
gibbsmu <- matrix(O, nrow niter, neol k) 
gibbssig <- gibbsmu 
gibbsp <- gibbsmu 
for (i in 1:niter) { 

for (t in 1:n) { 

} 

prob <- mixparam$p * dnorm(dat[t], mean = mixparam$mu, 
sd = mixparam$sig) 

z[tJ <- sample(x = 1:k, size = 1, prob = prob) 

for (j in 1:k) { 

} 

nj[j] <- sum(z == j) 
sj[j] <- sum(as.numerie(z j) * dat) 

repeat { 

} 

gibbsmu[i, ] <- rnorm(k, mean = (lam * tau + sj)!(nj + 
tau), sd = sqrt(mixparam$sig~2!(tau + nj))) 

if (max(gibbsmu[i, ]) < max(dat) & min(gibbsmu[i, 
J) > min(dat)) 
break 

mixparam$mu <- gibbsmu[i, ] 
for (j in 1: k) { 

sj2[jJ = sum(as.numeric(z -- j) * (dat - mixparam$mu[j])~2) 

} 

gibbssig[i, J <- sqrt(rigamma(k, alpha + 0.5 * (nj + 
1), beta + 0.5 * tau * (mixparam$mu - lam)~2 + 0.5 * 
sj2) ) 

mixparam$sig <- gibbssig[i, J 
gibbsp[i, ] <- rdiriehlet(1, par nj + g) 
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mixparam$p <- gibbsp[i, ] 
} 

data.frame(p = gibbsp, mu = gibbsmu, sigma = gibbssig) 
} 

3.3 Practical Example: The Fishery Data 

A histogram of the fishery data is shown in Figure 3.6. We fit a Normal mixture model 

with k = 3 and k = 4 respectively, assuming a Dirichlet( 4, ... ,4) prior for wand using the 

hierarchical independence priors introduced by Richardson and Green (1997). 
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Figure 3.6: Histogram for the fishery data. 

We used the Gibbs sampler described in the previous subsection and stored 2000 MCMC 
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Table 3.1: The fishery data, Normal mixtures with k = 3 

Parameter Posterior Mean Posterior SD Lower 2.5% Upper 2.5% 

PI 0.107 0.022 0.067 0.153 

P2 0.372 0.054 0.264 0.480 

P3 0.520 0.058 0.413 0:641 

fLl 3.285 0.099 3.097 3.499 

fL2 5.171 0.072 5.030 5.308 

fL3 7.294 0.269 6.764 7.822 
0"1 0.373 0.070 0.261 0.536 
0"2 0.482 0.066 0.363 0.618 
0"3 1.749 0.140 1.481 2.036 

draws after a burn-in period of 3000 draws. The parameter estimation for k = 3 is given in Ta-

ble 3.1. Figure 3.7 sh~ws a two-dimensional scatter plot of the MCMC draws of (fL(m) , O"(m)). 

We can see three well-separated clusters, and the means are different between the groups. 

The variances are nearly identical for group 1 and group 2 with smaller .fish, but are quite 

large for the group with the largest fish. In this case, while 0" is not a suitable variable for 

ordering the component estimates, it is sensible to order with respect to fL. 

Figure 3.8 shows that the predictive density based on the 3-component Normal mixture 

is inadequate for the observed data, calling for more components. We thus fitted a Normal 

mixture with k = 4, using the same Gibbs sampler. A two-dimensional scatter plot of the 

draws of (fL(m) , O"(m)) is given in Figure 3.9. Groups 1 and 2 remain roughly where they are as 

in the three-component mixture, whereas the third group seems to be split into two separate 

groups. The variance of the third group is now much smaller and similar to that of groups 

1 and 2; the variance of the fourth group is still considerably large. 

The MCMC draws from the marginal bivariate density P(fLk, fLziy) , with k i= l, are shown 
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Figure 3.7: MCMC draws from a 3-component Normal mixture of the fishery data for 
/-tk against (J"k· 

<n 
0 

..;-
0 

CO) 

i!' 
0 

·iii 
c: 
Q) 

a 
C\J 
0 

0 

a 
0 

I' 

4 6 8 10 12 

Length (in) 

Figure 3.8: Predictive density based on the 3-component Normal mixture. 
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Figure 3.9: MCMC draws from a 4-component Normal mixture of the fishery data for 
J-Lk against O"k· 

in Figure 3.10. For k = 3, all of the k(k - 1) = 6 modes are far away from the diagonal line 

/-Lk = /-Lz which corresponds to a model where two components have equal means. Therefore 

. . 

the constraint /-Ll :S /-L2 :S /-L3 induces a unique labeling. However, for k = 4,. the MCMC 

draws from the marginal bivariate density P(/-Lk, /-Lzly) indicate that not all of the k (k -1) = 12 

possible modes are bounded away from the line /-Lk = /-Lz. Thus, the constraint /-Ll :S ... :S /-L4 

alone does not induce a unique labeling. 

In this case, we find that the label switching effect is very likely to occur if we use 

non-informative data-dependent priors on a2 , such as IG(1.28, 0.3682 ) suggested by Raftery 

(1996b) and IG(2.5, 0.582 ) by Bensmail et al. (1997), where 82 denotes the sample variance. 

However, this problem can be solved if we arrange the mixture components in order of nOll-
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Figure 3.10: MCMCdraws from a'Normal mixture of the fishery data for J.lk against 
J.ll for k = 3 (top) and k = 4 (bottom). 
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Figute 3.11: MCMC draws from a Normal mixture of the fishery data for f-tk against 
/-Ll for k = 4, using IG(10, 1) on 0-
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decreasing means whilst choosing priors that are more informative. Here we used IG(10, 

0.5) instead to reduce the simulated values of (J2. Figure 3.11 illustrates the success of our 

approach. It shows that we have achieved a unique labeling and can proceed with parameter 

estimation. The estimates of the parameters for k = 4 are given in Table 3.2. 

The predictive density based on the 4-component Normal mixture indicates a reasonable 

fit to the observed data, as in Figure 3.12. Based on these results, the mean lengths (in) 

of the 256 snappers are 3.262 ± 0.076, 5.289 ± 0.065, 7.461 ± 0.105, and 9.794 ± 0.330, 

respectively; the length standard deviations are 0.316 ± 0.039, 0.584 ± 0.055, 0.484 ± 0.090, 

and 0.938 ± 0.145, respectively; the proportions for the 4 age groups are 0.104 ± 0.021, 0.543 

± 0.038, 0.236 ± 0.040, and 0.117 ± 0.030, respectively. 
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Table 3.2: The fishery data, Normal mixtures with k = 4 

Parameter ,Posterior Mean Posterior SD Lower 2.5% Upper 2.5% 

PI 0.104 0.021 0.067 0.149 

P2 0.543 0.038 0.463 0.613 

P3 0.236 0.040 0.162 0.320 

P4 0.117 0.030 0.067 0.187 

fJ-l 3.262 0.076 3.115 3.420 

fJ-2 5.289 0.065 5.159 5.417 

fJ-3 7.461 0.105 7.234 7.647 

fJ-4 9.794 0.330 9.058 10.381 
0"1 0.316 0.039 0.250 0.406 -
0"2 0.584 0.055 0.482 0.697 
0"3 0.484 0.090 0.342 0.692 
0"4 0.938 0.145 0.699 1.264 
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Figure 3.12: Predictive density based on the 4-component Normal mixture. 
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Chapter 4 

Bayesian Modeling and Inference 

for Mixture Distributions with 

U nknown Number of Components 

One of the things we do not know is the number of things we do not know. 

- P. Green (1996) 

A number of approaches have been proposed for estimating k, the number of components 

in a finite mixture model. In particular, Richardson and Green (1997) showed how to use the 

reversible jump Markov chain Monte Carlo (RJMCMC) algorithm to model the number of 

components and the mixture parameters simultaneously. Alternatively, selection of k can be 

based on a comparison of models fitted with different numbers of components by the means of 
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some joint measure of model fit and model complexity. Especially in Bayesian modeling, the 

deviance information criterion (DIC, Spiegelhalter et al., 2002) and the penalized expected 

deviance (PED, Plummer, 2008) are popular. 

We introduce a, recent R package mixAK (Komarek, 2009) which implements the reversible 

jump, birth death and other trans-dimensional MCMC algorithms for mixture problems. It 

works either with a pre-specified number of components or with the number of components 

estimated jointly with the remaining model parameters. 

This chapter is organized as follows. Section 1 displays an introduction to the Reversible 

Jump MCMC algorithm for mixtures. Section 2 reviews the DIC and PEDmethods for 

Bayesian model comparison. A fully Bayesian mixture analysis of the acidity data using 

mixAK is illustrated in Section 3. We present a discussion in Section 4. 

4.1 Reversible Jump MCMC 

4.1.1 Hierarchical Model and Priors 

In the Bayesian framework, the number of components k, the mixing weights w and com­

ponent parameters 0 are regarded as drawn from appropriate prior distributions. The joint 

distribution of all variables can be written as 

p(k, w, z, 0, y) = p(k)p(wlk)p(zlw, k)p(Olz, w, k)p(yIO, z, w, k), 
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by allowing the priors for k, wand () to depend on hyper-parameters" A, 8 and 17 respectively. 

The joint distribution of all variables can be expressed by the factorization 

p(A, 8,17, k, w, z, (), Y) = p(A)p(8)p(17)P(kIA)p(wlk, 8)p(zlw, k)p(()lk, 17)p(yl(), z). 

'\ 

In the univariate Normal mixture setting, the parameter () is a vector of pairs (f.Lj, a}), 

j = 1,2, ... , k. Richardson and Green (1997) only considered Bayesian Normal mixtures 

estimation in the setups where strong prior information on the mixture parameters are un­

available. Dirichlet prior for w, Normal and Gamma priors for f.Lj and a} are used in the 

following form: 

wrvD(o,o, ... ,o), 

f.Lj rv N ( ~, 11:-
1

), 

o} rv r(a,[3). 

The N(~,11:-1) is taken to be flat over an.interval of variation ofthe data, by setting ~ equal 

to the midpoint of this interval and setting 11:" equal to a small multiple of 1/ R2, where R is 

the length of the interval. 

" Concerning o} rv r( a, [3), Richardson and Green (1997) introduced an additional hierar­

chicallevel by allowing [3 to follow a r(g, h) distribution. They set a > 1 > g to express the 

belief that the a} are similar. The scale parameter h is a small multiple of 1/ R2. For k, a 

uniform distribution between 1 and a pre-specified integer kmax is used. Finally, A and ° are 
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held fixed. 

The completed hierarchical model is displayed as a directed acyclic graph (DAG) in 

Figure 4.1, in which the square boxes represent fixed or observed quantities and circles the 

unknowns. 

Figure 4.1: DAG of a Normal mixture model. 

With the specification of the proper conjugate priors above, the intent is to avoid using 

strong prior information ou the mixture parameters. It is not possible to have fully non­

informative- priors and obtain proper posterior distributions, because there is always the 

possibility that no observations will be allocated to one or more components. Therefore, 

.independent improper non-informative priors carmot be used (Diebolt and Robert, 1994; 

Roeder and Wasserman, 1997). 
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4.1.2 Reversible Jump lvioves for r~ormal lviixtures 

The key idea in RJMCMC is to allow moves between parameter subspaces of different di-

mensionality by permitting a series of different "move types". For a Normal mixture model, 

six move types are involved: 

(a) updating the weights w; 

(b) updating the parameters (f.L, 0"); 

(c) updating the allocation z; 

(d) updating the hyper-parameter {3; 

(e) splitting one mixture component into two, or combining two into one; 

(f) the birth or death of an empty component. 

Move types (a), (b), (c) and (d) are conventional, following Diebolt and Robert (1994); 

they do not alter the dimension of the complete parameter vector ({3, f.L, 0", k, w, z). The only 

randomness is the random choice between splitting and combining in move (e), or birth and 

death in move (f). 

The split-combine move consists of either splitting an existing component into two new 

components or combining two existing components into a new one. First, a random choice is 

made whether to perform the split or combine move. Given k, the probability of attempting 

the split move is 1f~plit and the probability of attempting the combine move is 1fkmbine = 

1 split 
-1fk . 

When a combine move is attempted, a pair of neighboring components is chosen at 

random. Let kl and k2 be such that f.Lkl < f.Lk2 and there is no other mixture mean in the 
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interval [/l-kl' /l-k2J· Then we transform the current vector of pairs Wkl' Wk2' /l-kl' /l-k2' (J"~l' (J"~2 

to the new vector (Wk*' /l-k* , (J"~*), given by 

With components kl and k2 replaced by k* and the number of mixture components k 

decreased by 1, this move is then either accepted or rejected with a certain Metropolis-

Hastings probability (Richardson and Green, 1997). In the case of acceptance, observations 

allocated originally in kl and k2 are re-allocated in the new component k*. Note that once 

the choice of the pair has been made, the combine move is deterministic. 

In the split move, a component k* is chosen at random and two new components kl and 

k2 are proposed such that the split move is a reverse to the combine move. The weights Wkl' 

Wk2' the means /l-kl' /l-k2' and the variances (J"~l' d"~2 of the two new components are given by 

where U = (Ul' U2, U3)'- is an auxiliary random vector whose components are generated ran-

domly and independently, and Uz are from Beta(az, bz), l = 1, 2, 3. Again, once the choice of 
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the pair has been made, the split proposal is deterministic. The birth-death move (f) con-

sists of either proposing a new component (birth) or deleting one of the empty components 

(death). Similarly to the split-combine move, a random choice is made whether to perform 

the bii·th or the death move. Given k, the probability of attempting the birth move is 1r~irth 

and the probability of attempting the death move is 1rfeath = 1 - 1r~irth. 

When a birth move is attempted, a new component weight Wk*, mean J.Lk* and variance 

lT~* are sampled from the prior distributions, the weights of existing components are re-

scaled to satisfy the sum-to-one constraint and the whole proposal is accepted with a certain 

Metropolis-Hastings probability (Richardson and Green, 1997). 

. . 
When a death move is attempted, one of the "empti' components that have no observa-

tiohs is chosen at random. The proposal consists of deleting this comppnent and re-scaling 

the remaining weights to sum to one. Similarly to the previous case, the whole proposal is 

accepted with a certain Metropolis-Hastings probability (Richardson and Green, 1997). 

4.2 Bayesian Model Comparison 

4.2.1 Introduction 

Model selection and model comparison are a fundamental step of data analysis. Within 

Bayesian modeling, a number of approaches have been proposed for these problems. The 

Bayes factor (Kass and Raftery, 1995), which quantifies the weight of evidence in favOl: of 

one model over another, is widely recognized as a formal solution. However, Bayes factors 
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have some practical limitations: they are undefined when the model parameters are given 

improper prior distributions, and are numerically unstable when proper but diffuse reference 

priors are used. To overcome these limitations, modifications to the Bayes factor have been 

proposed (O'Hagan, 1~95i Berger and Pericchi, 1996) by sacrificing a small fraction of the 

data to estimate model parameters and using the remainder to calculate the Bayes factor. 

Another approach is cross-validation (Geisser and Eddy, 1979), in which the notion of 

splitting the data between parameter estimation and assessment of model adequacy is used 

as well. In this case, a model is considered useful if, given a set of data, it makes accurate 

out-of-sample predictions. A third approach to Bayesian model choice is based on hypothet­

ical replicates from the same process that generated the data. In this posterior predictive 

approach, replicate data are simulated from the posterior distribution, and the adequacy of 

the model is assessed by the closeness of these replicates to the original data. The approach 

is recommended as a general framework for model criticism by Gelman et al. (2002). 

A more recent addition to the collection of Bayesian model-choice methods is the de­

viance information criterion (DIC) (Spiegelhalter et al., 2002), a Bayesian analogue of clas­

sical model choice criteria, such as the Akaike information criterion (AIC). DIC combines 

a measure of model fit with a measure of model complexity. It is simple to calculate using 

Markov chain Monte Carlo simulation and has been implemented in the WinBUGS software 

package (Spiegelhalter et al., 2004). Plummer (2008) provided a formal justification for DIC 

by demonstrating the link between DIC and cross-validation. He showed that DIC is an 

approximation to a penalized loss function based on th.e deviance, with a penalty derived 

from a cross-validation argument. 
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4.2.2 The Deviance Information Criterion 

A general approach to compare 'complex models based on the samples from the posterior dis­

tribution was suggested by Spiegelhalter et al. (2002), who defined the deviance information 

criterion (DIC) as: 

DIG = D +PD, 

where the expected deviance D = E(D(O)IY) is considered to be a measure of model fit, 

and PD = D - D(iJ), called the "effective number of parameters", is a measure of model 

complexity, where iJ = E(OIY). 

Note that DIC can also be written as D(iJ) + 2PD, .since 

DIG = D + PD = D + (D - D(iJ)) 

= 2D + (D(iJ) - 2D(iJ)) 

= D(e) + 2(D - D(e))' 

= D(iJ) '+ 2PD. 

In this form it resembl~s the classical Akaike Information Criterion (AIC, Akaike, 1974) 

D(e) + 2p, 

where e is the maximum likelihood estimate of 0 and P is the number of parameters. For 
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non-hierarchical models with a non-informative prior on e, DIC = AIC. 

4.2.3, Loss Functions and Penalized Losses 

In an ideal situation, two independent data sets are available: a set of training data ¥tr and 

a set of test data Y = Y1 , ... , Yn . Suppose we assess the model adequacy by a loss function 

L(Y, ¥tr), which measures the ability of the model to make accurate predictions of Y from 

¥tr. Given a set of candidate models for Y and ¥tr, we would choose the one with the 

smallest loss, or more'realistically, we would choose a subset of models with losses close to 

the minimum for further consideration. 

Based on the deviance, consider two loss functions: the "plug-in deviance": 

LP(Y, ¥tr) = -2log[p{YI 8(¥tr)}], 

where Ytr = E(el¥tr), and the "expected deviance": 

where the expectation is taken over the posterior distribution of e given Ytr, and the test 

data Yare fixed. Since the deviance is defined only up to an additive function of the data, 

both these loss functions are relative losses. That is, only the difference in loss between two 

candidate models is meaningful. 

Although both LP and Le are derived from the deviance function, there are some dif-
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ferences between them. The plug-in deviance is sensitive to re-parametrization. Changing 

the coordinates of () changes the definition of the posterior expectation, and hence the loss 

function- LP. It gives equal loss to all models that yield the same posterior expectation of 

(), regardless of the precision of this estimate. On the other hand, the expected deviance 

is coordinate free. Furthermore, it is a function of the full posterior of () given ¥tr, and 

therefore takes precision of the estimates into account. 

When there are no training data ¥tr, the test data Y must be used both to estimate () 

and to assess the adequacy of the model. A natural loss function would be L(Y, Y), which 

was referred to as the "exact replicate" form of the loss function by Plummer (2008). -In 

general, L(Y, Y) gives an optimistic assessment of model adequacy, since the same data are 

used twice, for calculating the posterior distribution of the model parameters and in place 

of new test data. The degree of optimism can be estimated for loss functions that can be 

decomposed into the sum of individual contributions: 

n 

L(Y, ¥tr) = L L(Yi, ¥tr). 
i=l 

For such loss functions, the extent to which L(Yi, Y) overstates the model adequacy can 

be assessed by comparing it with the cross-validation loss L(Yi, Y- i ) , where Y- i denotes the 

set of observations Y1 , ... , Yn with Yi removed. The expected decrease in loss from using 

L(Yi, Y) instead of L(Yi, Y-d is 
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Following the terminology of Efron (1983), POpti is called the "optimism" of L(Yi, V). 

The penalized loss fun6tion L(Yi, Y) +POpti has the same expectation given Y- i as the cross-

validation loss L(Yi, V-i). The two loss functions are therefore equivalent to an observer 

who has not seen Yi. Applying the same argument to each observation Yi'in turn, Plummer 

(2008) proposed to use the sum of the penalized loss functions L(Yi, Y) +Popt to assess model· 

adequacy, where the total optimism Popt = L:i POpti is a rational cost that must be paid for 

using the observed data Y twice. When there are no influential observations PDi « 1 such 

that 

LPD;/(l- PDi) ~ LpDi = PD, 
i i 

DIC is an approximation to th~ penalized plug-in deviance. 

4.2.4 Challenges 

Despite the practical advantages of DIC, its theoretical foundations remain controversial. 

DIC inherits some of the limitations of AIC, including that it is restricted to nested models; 

it is not consistent (given a set of nested models, DIC will tend to choose a model that is 

too large as n goes to (0); outside of exponential family models, PD is not easy to calculate; 

it is not coordinate free. Although various ad hoc extensions or modifications to DIC have 

been proposed (Gelman et al., 2002; Plummer, 2002; Celeux et al., 2006a), none of them is 

more convincing than DIC it~'l81f. 

In the finite mixture model framework, it is challenging to use DIC as model-choice 
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criterion, as noted by several contributors to the dis'cussion of Spiegelhalter et al. (2002). 

In such models, the posterior expectation is not a suitable plug-in estimate for the model 

parameters since it lies in between multiple modes of the posterior density, and alternative 

plug-in estimators are hard to define. Celeux et al. (2006a) applied eight variations of DIC 

to mixture distributions, but were unable to recommend any of them in the end, concluding 

that DIC was neither a well-defined criterion nor a solution to a well-defined optimization. 

problem. 

The difficulties in defining a plug-in estimate rule but the use 'of V as a loss function. 

Consequently, Plummer (2008) considered the penalized expected deviance Le as a loss func­

tion. In the next section, we will use the R package mixAK to analyze the acidity data and 

illustrate how DIC and PEp can be used to assess the numher of components in a mixture 

model.' 

4.3 Practical Example: The Acidity Data 

A histogram of the acidity data is given in Figure 4.2. The following prior distributions, 

their parameters and parameters of the proposal densities have been used: uniform prior on 

k with kmax = 30, 8 = 1, semiconjugate prior on p, and Q with ~k = 4.73, Dk = 1.94 for 

all k, (' = 4, gl = 0.2, hi = 0.29, al = bl = 2, a2 = b2 = 2, a3 = b3 = 1. The data were 

neither shifted nor scaled before running the RJMCMC, that is, m = 0, S = 1. We report 

results based on 100,000 iterations of RJMCMC obtained after a burn-in period of 100,000 

iterations. 
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Figure 4.2: Histogram of the acidity data. 

During th~ course of the RJMCMC, the chain visited models with the number of mixture 

components k ranging from 1 to 8 with the highest posterior probabilities of 0.71, 0.24, and 

0.04 for k = 2, 3, and 4, respectively: For the remaining values of k, the posterior probability 

was lower than 0.01, see Figure 5. The split-combine move was accepted in around 4.3% of 

cases and the birth-death in around 2.4%.of cases. We will discuss the sensitivity of posterior 

distributions, as well as the performance of MCMC sampler in §4.4. 

4.3.1 Preparation of MCMC Simulation 

# Load packages and data 
> library(mixAK) 
> library(coda) 
> data(Acidity) 
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> mixdat <- ACidity 

# Summary of the data 
> summary(mixdat) 

Min. 1st Qu. Median 
2.92~ 4.219 4.727 

Mean 3rd Qu. 
5.105 6.075 

# Length of the MCMC simulation: 
# 100,000 burn-in iterations 

Max. 
7.105 

# 100,000 additional iterations for inference 
> nMCMC <- c(burn=100000, keep=100000, thin=1, info=2000) 

4.3.2 Specification of the Prior Distributions 

# The minimal specification of the prior distribution 
# RJMCMC with default values for all prior parameters (Not run) 
RJPrior1 <- list (priorK="uniform", Kmax=30) 
RJModel1 <- NMixMCMC(yO=mixdat, prior=RJPrior1, nMCMC=nMCMC, 
scale=list(shift=O, scale=1), PED=TR~E) 

In the following allalysis, we will use the same prior hyper-parameters and tuning pa-

rameters as in Richardson and Green (1997). Note that the prior for the mixture inverse 

variances in mixAK is parameterized in terms of the Wishart distribution while a Gamma 

distribution was used by Richardson and Green (1997). 

# Use the same prior hyper-parameters as in Richardson and Green (1997) 
# Here priors for the mixture inverse variances follow a Wishart distribution 
# xi=2*2 corresponds to alpha=2 in [RG] 
# h=5/R-2 corresponds to h=10/R-2 in [RG] 
# D=(R/3)-2 instead of D=R-2 to allow higher k 
> R <- diff(range(mixdat)) 
> RJPrior2 <- list(priorK=luniform", Kmax=30, priormuQ=lindependentC", 
+ xi=median(mixdat)·, D=(R/3)-2, g=O.2, h=5/R-2, zeta=4) 

# Use the same tuning parameters as in Richardson and Green (1997) 
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> parRJMCMC2 <- list(par.u1=c(2,2), par.u2=c(2,2), par.u3=c(1,1)) 

# Running the MCMC simulation 
> set.seed(12345) 
> RJMode12 <- NMixMCMC(yO=mixdat, prior=RJPrior2, RJMCMC=parRJMCMC2, 
+ nMCMC=nMCMC, scale=list(shift=O, scale=1),PED=TRUE) 

Chain number 1 
============== 

MCMC sampling started on Thu Jun 24 16:15:00 2010. 
Burn-in iteration 100000 
Iteration 200000 
MCMC sampling finished on Thu Jun 24 16:15:59 2010. 

Chain number 2 

MCMC sampling started on Thu Jun 24 16:16:00 2010. 
Burn-in iteration 100000 
Iteration 200000 
MCMC sampling finished on Thu Jun 24 16:16:56 2010. 

Computation of penalized expected deviance started on Thu Jun 24 16:16:57 2010. 
Computation of penalized expected deviance finished on Thu Jun 24 16:18:42 2010. 

# Acceptance rates of different move types 
> print(RJMode12[[1]]$moves) 

Performed Accepted PropoL'tion 
Gibb~ with fixed K 100000 100000 
Split 49885 1584 
Combine 50115 2567 
Birth 50060 1565 
Death 49940 582 
> print(RJMode12[[2]]$moves) 

Performed Accepted Proportion 
Gibbs with fixed K 100000 100000 
Split 50230 1629 
Combine 49770 2663 
Birth 49842 1707 
Death 50158 672 
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4.3.3 Posterior Inference 

# Posterior summary of the fitted model 
> print(RJMode12) 

Normal mixture with at most 30 components estimated using RJMCMC 
==~============================================================== 

Posterior distribution of K: 

1 2 3 4 5 6. 7 8 
Chain 1 0.00019 0.70782 0.24090 0.04432 0.00632 0.00040 0.00005 Oe+OO 
Chain 2 0.00005 0.66921 0.26782 0.05454 0.00695 0.00122 0.00017 4e-05 

Posterior summary statistics for moments of mixture for original data: 

Mean: 
MeanStd.Dev. Min. 2.5% 1st Qu. Median 

Chain 1 5.105700 0.09008539 2.591163 4.945561 5.049160 5.104579 
Chain 2 5.105358 0.08982873 2.644795 4.944281 5.048685 5.104114 

3"rd Qu. 97. 5% Max. 
Chain 1 5.161148 5.271408 8.758423 
Chain 2 5.160636 5.271328 9.957364 

Standard deviation: 
Mean Std.Dev. Min. 2.5% 

Chain 1 1.038854 0.04881007 0.08640945 0.9608796 
Chain 2 1.039019 0.04834467 0.72040780 0.9606500 

3rd Qu. 97.5% Max. 
Chain 1 1.064918 1.119777 4.80476 
Chain 2 1.065335 1.119950' 6.11653 

1st Qu. Median 
1.011393 1.038057 
1.011429 1.038102 

# Grid of values for evaluating and plotting predictive densities 
> ygrid <- seq(2, 8, length=200) 

# Computation of the predictive density 
> PDensRJ2<-list() 
> PDensRJ2 [[1J J <-NMixPredDensMarg (RJMode12 [[1J J, grid=ygrid) 
> PDensRJ2[[2JJ<-NMixPredDensMarg(RJMode12[[2JJ, grid=ygrid) 

# Plot the predictive density, see Figure 2 
> plot (PDensRJ2 [[1JJ , xlab="Acidity Index", col=1) 

# Plots of conditional predictive densities given K 
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# along with the overall predictive density, see Figure 3 
> plot (pDensRJ2 [[1]'J, K=c(2: 5), lty=c(1, 2, 3,4), xlab="Acidity Index", 
+ ylim=c(0,.7), col=l) 

# Plots of predictive densities with histograms, see Figure 4 
> par(mfrow=c(2,1)) 
## Chain1 
> hist(mixdat,prob=TRUE, breaks=40, 
+ xlab="Acidity In~ex", ylab="Density" ,main="Chain 1") 
> lines.cPDensRJ2 [[1J J $x$x1 , PDensRJ2 [[1] J $dens [[1J J ,lwd=2) 
## Chain2 
> hist(mixdat,prob=TRUE, breaks=40, 
+ xlab="Acidity Index", ylab="Density" ,main="Chain 1") 
> lines (PDensRJ2 [[2J J $x$x1; PDensRJ2[ [2J J $dens [[1] J ,lwd=2) 

# Traceplot of K of last 10000 iterations drawn, see Figure 5 
> chKpart <- mcmc(~JMode12[[CHJJ$K, start=start, end=end) 
> traceplot(chKpart, smooth=FALSE, main="K") 
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Figure 4.3: Predictive density based on the model with a random number of mixture 
components from Chain 1. 
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Figure 4.4: Overall predictive density and conditional predictive densities for K = 2, 
3,4,5. 
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Figure 4.5: Predictive density based on the model with a random number of mixture 
components. 
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4.3.4 Convergence Diagnostics 

# Converting the chains into mcmc objects 
# Single chain convergence diagnostics using Chain 1 
> CH<-1 

# Converting the chains into mcmc objects 
> start<-RJMode12 [[CH]] $nMCMC [Ilburn"] +1 
> end<-RJMode12[[CH]] $nMCMC[lburn"]+RJMode12[[CH]] $nMCMC ["keep"] 
> chK<-mcmc(RJMode12[[CH]]$K,start=start,end=end) 
> chgammaInv<-mcmc (RJMode12 [[CH]] $gammaInv, start=start, end=end) 
> chmixture<-mcmc(RJMode12[[CH]]$mixture,star-t=start,end=end) 
> chdeviance<-mcmc (RJMode12 [[CH]] $deviance ,start=start, end=end) 

# Traceplot of K of last 1QOOO iterations drawn, see Figure 5 
> chKpart <- mcmc(RJMode12[[CH]]$K, start=start, end=end) 
> traceplot(chKpart, smooth=FALSE, main=IK") 

# Posterior density estimates for selected parameters, see Figure 6 
> par(mfrow=c(2,2), bty=I'n'.') 
> densplot(chK, show.obs=FALSE, main=IK") 
> densplot(chgammaInv[,l gammaInv1"], show.obs=FALSE, 
+ main="gamma~{-1}I, xlim=c(0,4)) 
> densplot (chmixture [, "y.Mean. 1"] , show.obs=FALSE, 
+ main= II EY II , xlim=c(4. 5,6)) 
> densplot(chmixture[,ly .SD.1"], show.obs=FALSE, 
+ main="sd(Y)I, xlim=c(.8,1.4)) 

# Autocorrelation plots for selected parameters, see Figure 7 
> par(mfrow=c(2,2), bty="n") 
> autocorr.plot(chK, auto.layout=FALSE, ask=FALSE, lwd=2, main=IK") 
> autocorr .plot (chgammaInv[, II gammaInv1 "] , auto .1ayout=FALSE, ask=FALSE, 
+ lwd=2,main="gamma~{-1}") 
> autocorr.plot(chmixture[," y .Mean,1"], auto.layout=FALSE, ask=FALSE, 
+ lwd=2,main=IEY") 
> autocorr.plot(chmixture[," y .SD.1"], auto.layout=FALSE, ask=FALSE, 
+ lwd=2,main="sd(Y)I) 
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Figure 4.6: Model with a random number of mixture components. Trace plots for the 
number of mixture components k using the last 10,000 iterations. 
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Figure 4.7: Model with a random number of mixture components. Posterior density 
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plots for selected parameters. 

82 



Model with a Fixed I~ umber of Components 

We will fit a mixture model for k = 1, ... , 6, compare the deviance based quantities and 

predictive densities. For the prior hyper-parameters, we will use the same ones as in the 

model RJMode12. 

# Specification of ,the prior hyper-parameters: 
> FixPrior2 <- list (priorK="fixed", xi=medianCmixdat), 
+ D=CR/3)~2, g=0.2, h=5/R~2,zeta=4) 

# Length of the MCMC simulation: 
# 40,000 burn-in iterations 
# 40,000 additional iterations for inference 
> nMCMC2 <- c(burn=40000, keep=40000, thin=1,info=1000) 

# Running MCMC simulation for k = 1, ... ,6, compute the predictive densities 
# Then remove all chains from resulting objects to save some.memory 
> Keep<-c("iter", InMCMC2", "dim", "prior", "init", "RJMCMC", 
+ "scale", "state", IfreqK", IpropK", "DIC", "moves", 
+ "pm.y", "pm.z", Ipm.indDev", "pred.dens", II summ.y.Mean" , 
+ Isumm.y.SDCorrl,lsumm.z.Meanl,lsumm.z.SDCorr") 
> set.seed(12345) 
> FixModeI2<-list() 
> PDensFix2<-list() 
> for(k in 1:6){ 
+ cat (paste (~'K=" ,k, "\n-------------------------------\n" ,sep="")) 
+ PriorNow<-FixPrior2 
+ PriorNow$Kmax<-k 
+ FixModeI2[[k]]<-NMixMCMC(yO=mixdat,prior=PriorNow, nMCMC=nMCMC2, 
+ scale=list(shift=0,scale=1),PED=TRUE) 
+ 
+ cat (paste (lI\nComputationofpred. densi tiesstartedon" ,date 0, 
+ "\n",sep="")) 
+ PDensFix2[[k]]<-list() 
+ PDensFix2[[k]] [[1]] <-NMixPredDensMarg(FixModeI2 [[k]] [[1]],grid=ygrid) 
+ PDensFix2[[k]] [[2]]<-NMixPredDensMarg(FixMod~12[[k]] [[2]],grid=ygrid) 
+ cat (paste("Computationofpred. densitiesfinishedon" , dateO, 
+ "\n\n\n",sep="")) 
+ 

. + FixModel2 [[k]] [[1]] <-FixModeI2 [[k]] [[1]] [Keep] 
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+ FixMode12[[kJJ [[2JJ <-FixMode12 [[kJJ [[2JJ [KeepJ 
+ class (FixMode12 [[kJ J [[1J J ) <-class (FixMode12 [[k] J [[2J J ) <-INMixMCMC" 
+ } 

# Summary of PED and DIC for the fitted models 
> PED<-RJMode12$PED 
> DIC<-list (Chain1=RJMode12[[1J J $DIC ,Chain2=RJMode12 [[2J J$DIC) . 
> for(k in 1:length(FixMode12»{ 
+ PED<-rbind(PED,FixMode12[[kJJ$PED) 
+ DIC[[1JJ<-rbind(DIC[[1JJ ,FixMode12[[kJJ [[1JJ$DIC) 
+ DIC[[2JJ<-rbind(DIC[[2JJ,FixMode12[[kJJ [[2JJ$DIC) 
+ } 
> rownames (PED) <-rownames (DIC [[1] J) <-rownames (DIC [[2J J) <-c ("RJMCMC" , 
+ paste ("K=" ,1: length (FixMode12) ,sep=""» . 

> print(PED) 
D.expect p(opt) PED wp(opt) wPED 

RJMCMC 372.9857 14.968286 387.9540 18.002013 390.9877 
K=1 453.5623 4.056124 457.6184 4.077197 457.6395 
K=2 374.3781 11.779583 386.1577 11.879171 386.2573 
K=3 367.7564 15.974221 383.7306 16.856490 384.6129 
K=4 367.4465 19.867253 387.3138 22.315775 389.7623 
K=5 366.4559 22.711205 389.1671 26.261377 392.7173 
K=6 365.8764 25.254817 391.1312 28.297167 394.1735 
> print(DIC) 
$Chain1 

DIC pD D.bar D.in.bar 
RJMCMC 380.9548 7.701561 373.2533 365.5517 
K="1 . .454.9422 1.381621 453.5605 452.1789 
K=2 380.2232 5.854943 374.3683 368.5133 
K=3 375.8324 7.829397 368.0030 360.1736 
K=4 376.9114 9.431267 367.4801 358.0489 
K=5 376.7353 10.317638 366.4177 356.1001 
K=6 377.0222 11.131525 365.8907 354.7592 

.$Chain2 
DIC pD D.bar D.in.bar 

RJMCMC 380.7260 7.802109 372.9239 365.1218 
K=1 454.9528 1.388840 453.5640 452.1751 
K=2 380.2637 5.875719 374.3880 368.5123 
K=3 375.0512 7.541466 367.5098 359.9683 
K=4 376.6985 9.285583 367.4130 358.1274 
K.=5 376.8632 10.369001 366.4942 356.1252 
K=6 377.0582 11.196126 365.8620 354.6659 
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# Plot the predictive densities for different values ofk (Chain 1) 
# See Figure 8 and 9 
> hist (mixdat, prob=TRUE" breaks=30, xlab=1I Acidity Indexll, 
+ ylab="Densi ty", main="II) 
> for(k in 1:6){ 
+ lines (PDensFix2 [[k]] [[1]]$x$x1,PDensFix2[[k]] [[1]]$dens[[1]]) 
+ } 

> par(mar=c(3,2,2,1)+O.1) 
> par~mfrow=c(3,2), bty="n") 
> forCk in 1:6){ 
+ hist(mixdat; prob=TRUE, breaks=30, xlab=lIl1,ylab=lIlI, 
+" main=paste(IIK=II, k, sep=IIII)) 
+ lines (PDensFix2 [[k]] [[1]] $x$x1, PDensFix2 [[k]] [[1]] $dens [[1]] , Iwd=2) 
+ } 
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Figure 4.9: Predictive densities based on the models with a fixed number of mixture 
components from Chain 1. 
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Figure 4.10: Predictive densities based on the models with a fixed number of mixture 
components from Chain 1. 
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Table 4.1:. Pe.nalized Expected Deviance and Related Quantities 

K D.expect p(opt) PED wp(opt) wPED 
K=l 453.56 4.06 457.62 4.08 457.64 
K=2 374.38 11.78 386.16 11.88 386.26 
K=3 367.76 15.97 383.73 16.86 384.61 
K=4 367.45 19.87 387.31 22.32 389.76 
K=5 366.46 22.71 389.17 26.26 392.72 
K=6 365.88 25.25 391.13 28.30 394.17 

Table 4.2: DIC for Chain 1 

K DIC PD D.bar D.in.bar 
K=l 454.94 1.38 453.56 452.18 
K-...:...2 380.22 5.85 374.37 368.51 
K=3 375.83 7.83 368.00 360.17 
K=4 376.91 9.43 367.48 358.05 
K=5 376.74 10.32 366.42 356.10 
K=6 377.02 11.13 365.89 354.76 

Table 4.3: DIC for Chain 2 

K DIC PD D.bar D.in.bar 
K=l 454.95 1.39 453.56 452.18 
K=2 380.26 5.88 374.39 368.51 
K=3 375.05 7.54 367.51 359.97 
K=4 376.70 9.29 367.41 358.13 
K=5 376.86 10.37 366.49 356.13 
K=6 377.06 11.20 365.86 354.67 
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Table 4.1 shows the expected deviance fJ, the optimism Popt, and the penalized expected 

deviance fJ + Popt for models with 1 - 6 components. The expected deviance was identic~l 

(within Markov chain error) for models with 3 - 6 components. If any additional component 

beyond 3 was added to the model, it would improve the model adequacy only by accounting 

for a small number of outliers, probably those with low acidity index. Such outliers are likely 

to be an artifact of the log transformation. 

Table 4.2 and 4.3 show a similar pattern. Since we would choose the model with the 

smallest DIe, a 3-component mixture was preferred. Note that the predictive plots for k = 2 

are very similar to those for k = 3. Therefore, a Normal mixture of either 2 or 3 components 

are acceptable. 

These results indicate the existence of either two or three distinct groups of lakes with 

different distributions of acidity index. Group membership thus provides a crude indicator 

of risk for loss of biological resources. To obtain a better prediction ,on which lakes will be 

!1t risk, characteristics such as lake type (seepage or drainage), lake area, and geochemistry 

should be considered. 

4.4 Discussion 

4.4.1 Sensitivity to Prior Distribution of Means 

For the prior on the means /-Lj, which are drawn independently from the Normal distribution 

N(e, /1;-1), Richardson and Green (1997) su~gested that e was set equal to the mid-range and 
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precision fl, such that fl,-1/2 was equal to the range R, claiming that these sensible weakly 

informative priors place no constraint on the location of the f-Lj. 
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Figure 4.11: Histogram of 200 points simulated from the model 1/3N(10,4) + 
1/3N(20,4) + 1/3N(30, 4) .. 

We present. a simulation study to explore the relationship between the prior information 

on the location of the means and the number of components k. A histogram is shown in 4)1 

for the simulated data set of size n = 200 from a 3-component Normal mixture 1/3N(10, 4) + 

1/3N(20,4) + 1/3N(30, 4). Using the same hierarchical structures as in §4.1.1 but varying 

fl,-l, we find that at first reducing fl,-l tends to favor a higher number of components. This 

can be interpreted as the result of defining a prior which is increasingly more permissive of 

components with close means.J:Iowever, as fl,-l is further reduced, the number of components 

start to decrease; this is called a shrinkage effect. It prohibits components with means located 
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towards the extremes. of the range. 

We illustrate this in Table 4.4. As the values of K,-1/2 decrease from R to R/50, the 

number of components with the highest posterior p~obability first increases to reach a peak 

value of k = 13 for K,-i./2 between R/3 and R/4, and. then decreases. 

Table 4.4: Influence of prior N(~, reI) for J..L on the posterior of k 

K,-1/2 Range of k with Range of k with 
k with highest p(k) 

p(k\y) ~ 0.05 p(f>;\y) ?: 0.001 
R 5-12 2-17 8 

R/2 7-15 3-22 11 
R/3 9-17 4-24 13 
R/4 9-17 4-25 13 
D/h J.\, u 8-16 4-23 11 
R/6 8-16 4-24 11 
R/8 6-13 4-20 10 
R/10 5-11 2-17 8 
R/20 4-10 3-15 7 
R/50 2-7 1-12 3 

4.4.2 Performance of MCMC Sampler 

An essential element of the performance of the reversible jump MCMC sampler is its ability 

to move between different values of k. Therefore, the acceptance rate of a chain acts as a 

barometer of the quality of the sampling process. If the acceptance rate is too low, then the 

chain will not be able to move freely and it will take a long time to sample the probability 

density functions fully. However, a high acceptance rate may also be a problem, since the 

chain will explore only a small portion of the parameter space. From the convergence point of 

view, the too high acceptance rate is a worse situation. A low acceptance rate is undesirable 
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only from the computing-time point of view. 

In practice, one should try to tune the chain until the acceptance rate is acceptable. 

This -is unfortunately not easily to achieve using the package mixAK, especially for a complex 

algorithm like the RJMCMC. A plot of the changes in k against the number of iterations 

was presented in Figure 4.6. It shows that the MCMC algorithm mixes reasonably well over 

k, excursions into high values being short lived. The proportions of accepted split-combine 

moves and birth-death moves are both less than 10% in our case, but they are still adequate 

to obtain good statistics. 

Working with other data sets, we find that the acceptance rates for reversible jump moves 

_ are highest for those with small sample sizes and multiple modes. Thus it is not surprising 

that in the example of the acidity data, we have low acceptance rates for the reversible jump 

moves. 
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Chapter 5 

Conclusion and Suggestion for 

Future Work 

In this thesis, we reviewed some of the recent published work in Bayesian inference for 

finite mixture models. For a mixture with known number of components, we illustrated 

the implementation of Gibbs sampler and applied it to Normal mixture models. When the 

number of components is unknown, we used the reversible jump MCMC algorithm to perform 

a fully Bayesian analysis. Application to the acidity data was presented and the choice of k 

was based on criterion such as the DIC and PED. Issues in Bayesian framework including 

trapping states, choices of priors, label switching, and convergence diagnostics were discussed 

and illustrated with examples. 

Adopting a Bayesian approach for finite mixture models has many advantages. First, 

including a proper prior may introduce a smoothing effect on the mixture likelihood function 
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and reduce the risk of obtaining spurious modes. This was shown to be useful in particular 

for mixtures of Normal distributions, as in the Kiefer-Wolfowitz example. Secondly, Bayesian 

estimation does not rely on asymptotic normality. It provides valid inference in cases where 

regularity conditions are violated, such as when the sample size is small and the component 

weights are small. Finally, with the fast development and straightforward implementation of 

many MCMC methods, Bayesian estimation of finite mixture models has become possible. 

While being a fairly natural algorithm, the Gibbs sampler can easily fall victim to label 

switching. We simply do not know how to estimate the parameters when this happens. To 

avoid label switching, we suggest that the mixture components should be arranged in order 

of non-decreasing meaps Ji.1 :S Ji.2 :S ... :S Ji.k and increasing variances 0"1 < 0"2 < ... < O"k 

when the means are equal. If this fails, we should choose more informative priors instead of 

data-dependent ones on the parameters. As shown in the fishery example, choosing hyper­

parameters that reduce the simulated variances in a Normal mixture can be effective in 

removing label switching. Note however, our goal is to make "minimal" assumptions on 

the data, and modifications of hyper-parameters can be rather influential and delicate. It is 

usually difficult to make sensible choices of them, unless something else is known about the 

model. 

The techniques we have mentioned for convergence diagnostics of an MCMC sampler in 

this thesis are mostly empirical. We suggest that such diagnostics should always be used, 

however, they can only find obvious problems. It is almost impossible for us to control the 

flow of a Markov chain or assess its convergence behavior based on a few thousand or million 

realizations of this chain. 
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It is important to start the MCMC algorithms with "good" initial values. Despite the 

formal irreducibility of the Gibbs sampler, escaping from trapping states usually requires an 

enormous number of iterations. In general, if no good initial valueB are available, we should 

try to improve the sampler or simply use a better one. The longer we run the chain, the 

better. 

Since we only presented the implementation of the Gibbs sampler for mixtures of Normal 

distributions in this thesis, future work should include Gibbs sampling for other mixtures 

that are also commonly used, such as the Poisson, Gamma, Wei bull, and Lognormal. 

-Several recent computer packages for Bayesian mixture models deserve exploring, includ­

ing bayesm by Rossi and McCulloch (2008), an R package that provides the implementation 

of multivariate Normal mixtures; AdMit by Ardia et al. (2009), an R package for fitting 

adaptive mixtures of Student-t distributions to a target density through its kernel function; 

a MATLAB package bayesf by Fruhwirth-Schnatter (2008) and its R version bayesmix by 

Gruen (2010), both designed to fit finite mixture models using a Bayesian approach based 

on MCMC methods. 

94 



Bibliography 

. [1] Akaike, H. (1974). A new look at statistical model identification. IEEE Transactions on 

Automatic Control 19: 716-723. 

[2] Allenby, G. M., Arora, N. and Ginter, J. L. (1998). On the heterogeneity of demand. 

Journal of Marketing Research 35: 384-389. 

[3] Ardia, D., Hoogerheide, L. F. and Van Dijk H. K. (2009). The 'AdMit' Package: 

Adaptive Mixture of Student-t Distributions. R package version 1-01.03. http://www . 

jstatsoit.org/v29/i03/ 

[4] Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique 

occurring in the statistical analysis of probabilistic functions of Markov chains. The 

Annals of Mathematical Statistics 41: 164-171. 

[5] Bensmail, H., Celeux, G., Raftery, A. E. and Robert, C. P. (1997). Inference in model­

based cluster analysis. Statistics and Computing 7: 1-10. 

[6] Berger, J. and Pericchi, L. (1996). The intrinsic Bayes factor for model selection and 

prediction. Journal of the American Statistical Association 91: 109-122. 

95 



[7] Besag, J. and Clifford, P. (1989). Generalized Monte Carlo significance tests. Biometrika 

76: 633-642. 

[8] Bohning, D. (2000). Computer Assisted· Analysis of Mixtures and Applicatio~s. London: 

Chapman & Hall. 

[9] Bohning, D. and Seidel, W. (2003). Editorial: recent developments in mixture models, 

Computational Statistics f3 Data Analysis 41: 349-357. 

[10] Bohning, D., Seidel, W., AHa, M., Garel, B., Patilea, V., and Walther, G. (2007). 

Editorial: advances in mixture models, Computational Statistics f3 Data Analysis 51: 

5205-5210. 

[11] Broet, P., Richardson, S., and Radvanyi, F. (2002) Bayesian hierarchical model for 

identifying changes in gene expression from microarray experiments. Journal of Com-

putational Biology 9(4): 671-683. 

[12] Brooks, S. and Roberts, G. (1998). Assessing convergence of Markov chain Monte Carlo 

algorithms. Statistics and Computing 8: 319-335. 

[13] Cassie, R. M. (1954). Some uses of probability paper in the analysis of size frequency 

disributions, Australian Journal of Marine f3 Freshwater Research 5: 513-522. 

[14] Carlin, B. P. and Chib, S. (1995). Bayesian model choice via Markov chain Monte Carlo 

methods. Journal of.the Royal Statistical Society, Series B 57: 473-484. 

[15] Casella, G. and Berger, R. (2001). Statistical Inference, 2nd edition. Belmont, CA: 

Wadsworth. 

96 



[16] Celeux, G. (1998). Bayesian inference for mixture: The label switching problem. In: 

Green, P. J. and Rayne, R. (eds.) COMPSTAT 1998, pp. 227-232. Heidelberg: Physica. 

. [17] Celeux, G., Forbes, F., Robert, C. and Titterington, D. (2006a). Deviance information 

criteria for missing data models. Bayesian Analysis i: 651-706. 

[18] Celeux, G., Forbe~, F., Robert, C. and Titterington, D. (2006b). Rejoinder to discussion 

of deviance information criteria for missing data models. Bayesian Analysis 1: 701-706. 

[19] Celeux, G., Hum, M. and Robert, C. P. (2000). Computational and inferential difficulties 

with mixture posterior distributions. Journal of the American Stati$tical Association 95: 

957-970. 

[20] Chen, H., Chen, J. and Kalbfleisch, J. D. (2002). Testing for a finite mixture mo~el with 

two components. Statistics and Actuarial Science Technical Report 2001-02, University 

of Waterloo. 

[21] Chen, J., Tan, X. and Zhang, R. (2008). Inference for normal mixtures in mean and 

variance. Statistica Sincia 18: 443-465. 

[22] Chib, S. (1995). Marginal likelihood from the Gibbs output. Journal of the America'rL 

Statistical Association 90: 1313-1321. 

[23] Cowles, M. and Carlin, B. (1996). Markov chain Monte Carlo convergence diagnostics: 

a comparative study. Journal of the American Statistical Association 91: 883-904. 

97 



[24] Craigmile, P. F. and Titterington, D. M. (1998). Parameter estimation for finite mixtures 

of uniform distributions. Communications in Statistics - Theory and Methods 26: 1981-

1995. 

[25] Crawford, S. L. (1994). An application of the Laplace method to finite mixture distri­

butions. Journal Qf the American Statistical Association 89: 259-267. 

[26] Crawford, S. L., DeGroot, M. H., Kadane, J. B., and Small, M. J. (1994). Modeling lake 

chemistry distributions: Approximate Bayesian methods for estimating a finite mixture 

model. Technometrics 34: 441-453. 

[27] Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from 

incomplete data via EM algorithm (with discussion). Journal of the Royal Statistical 

Society, Series B 39: 1-38. 

[28] Diebolt, J. and Robert, C. P. (1990) Bayesian estimation of finite mixture distributions: 

part II, Sampling implementation. Technical Report 111. Laboratoire de Statistique 

TMorique et Appliquee, Universite Paris VI, Paris. 

[29] Diebolt, J. and Robert, C. P. (1994). Estimation of finite mixture distributions through 

Bayesian sampling. Journal of the Royal Statistical Society, Series B 56: 363-375. 

[30] Efron, B. (1983). Estimating the error rate of a prediction rule: improvements on cross­

validation. Journal of the American Statistical Association 78: 316-331. 

[31] Everitt, B. S. and Hand, D. J. (1981). Pinite Mixture Distributions. London: Chapman 

& Hall. 

98 



[32J Fraley, C. and Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and 

density estimation. Journal of the American Statistical Ass9ciation 97: 611-631. 

[33J Friihwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. New 

York/Berlin/Heidelberg: Springer. 

[34J Friihwirth-Schnatter, S. (2008). Finite Mixture and Markov Switching Models: Imple­

mentation in MATLAB using the package bayesf Version 2.0. Berlin/Heidelberg/New 

York/Hong Kong/London/Milan/Paris/Tokyo: Springer. 

[35J Furman, W. D. and Lindsay, B. G. (1994a). Testing for the number of components in a 

mixture of normal distributions using moment estimators. Computational Statistics and 

Data Analysis 17: 473-492. 

[36J Furman, W. D. and Lindsay, B. G. (1994b). Measuring the effectiveness of moment es­

timators as starting values in maximizing mixture likelihoods. Computational Statistics 

and Data Analysis 17: 493-507. 

[37J Geisser, S. and Eddy, W. (1979). A predictive approach to model selection. Journal of 

the American Statistical Association 74: 153-160. 

[38J Gelfand, A. E. and Smith A. F. M. (1990) .. Sampling-based approaches to calculating 

marginal densities. Journal of the American Statistical Association 85: 398-409. 

[39J Gelman, A., Carlin, J., Stern, H. and Rubin, D. (2002). Bayesian Data Analysis, 2nd 

edition. Boca Raton, FL: Chapman & Hall/CRC. 

99 



[40] Gelm?-n, A. and Rubin, D. B. (1992). Inferences from iterative simulation using multiple 

sequences (with discussion). Statistical Science 7: 457-511. 

[41] Geman, S, and Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the 

Bayesian restoration of images. -IEEE Transaction on Pattern Analysis and Machine 

Intelligence 6: 721-741. 

[42] Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the cal-

cuI at ion of posterior moments. In: Bernardo, J. M., Berger, J. 0., Dawid, A. P. and 

Smith, A. F. M. (eds.) Bayesian Statistics 4. Oxford University Press. 

[43] Geyer, C. J. (1992). Practical Markov chain Monte Carlo (with discussion). Statistical 

Science 7: 473~511. 

[44] Green, P. J. and Richardson; S. (2002). Hidden Markov models and disease mapping. 

Journal of the American Statistical Association 97: 1-16. 

[45] Gruen, B. (2010). bayesmix: Bayesian Mixture Models with JAGS. R package version 

0.1-0. http://CRAN . R-pro j ect .org/package=bayesmix 

[46] Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary ti'me 

series and the business cycle. Econometrica 57: 357-384. 

[47} Hartigan, J. A. (1985). A failure of likelihood asymptotics for normal mixtures. In: 
, 

LeCam, L. and Olshen, R. A. (eds.) Proceedings of the Berk Conference in Honor of J. 

Neyman and J. Kiefer 2: 807-810. 

100 



[48] Hasselblad, V. (1966). Estimation of parameters for a mixture of normal distributions. 

Technometrics 8: 431-444. 

[49] Hastings, W. (1970). Monte Carlo sampling methods using Markov chains and their 

application. Biometrika 57: 97-109 .. 

[50] Hathaway, R. J. (1985). A constrained formulation of maximun-likelihood estimation 

for normal mixture distributions. The Annals of Statistics 13: 795-800. 

[51] Heidelberger, P. and Welch, P. (1983). A spectral method for confidence interval gen­

eration and run length control in simulations. Communications of the Association for 

Computing Machinery 24: 233-245. 

[52] Jasra, A., Holmes, C. C. and Stephens, D. A. (2005). Markov chain Monte Carlo meth­

ods and the label switching problem in Bayesian mixture modeling. Statistical Science 

20(1): 50-67. 

[53] Jedidi, K., Jagpal, H. S. and DeSarbo, W. S. (1997) Finite-mixture structural equa­

tion models for response-based segmentation and unobserved heterogeneity. Marketing 

Science 16(1): 39-59. 

[54] Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical 

Associdtion 90: 773-795. 

[55] Kaufman, S., F'riihwirth-Schnatter, S. (2002). Bayesian analysis of switching ARCH 

models. Journal of Time Series Analysis 23: 425-458. 

101 



[56J Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum likelihood estimates in 

the presence of infinitely many incidental paramters. Annals of Mathematical Statistics 

27: 887-906. 

[57J Komarek, A. (2009). A new R package for Bayesian estimation of multivariate normal 

mixtures allowing for selection of number of components and interval-censored data. 

Computational Statistics and Data Analysis 53: 3932-3947. 

[58J Kullback, S. and Leibler, R. A. (1951). On the information and sufficiency. Annals of 

Mathematical Statistics 22: 79-86. 

[59J Lamoureux, C. G., Lastsrapes, W. D. (1994). Endogenous trading volume and momen­

tum in stock return volatility. Journal of Business fj Economic Statistics 12: 253-260. 

[60J Lavine, M. and M. West (1992). A Bayesian method for classification and discrimination. 

The Canadian Journal of Statistics 20: 451-461. 

[61J LeSage, J. P. (1992), A comparison oftime-varying parameter and multiprocess mixture 

models in the case of money-supply announcements. Journal of Business fj Economic 

Statistics 10: 201-211. 

[62J Lindsay, B. G. (1995). Mixture Models: Theory, Geometry, and Applications. Hayward: 

Institute of Mathematical Statistics. 

[63J Lindsay, B. G. and Basak, P, (1993). Multivariate normal mixtures: a fast, consistent 

method of moments. Journal of the American Statistical Associat'ion 86: 96-107. 

102 



[64] Lunn, D., Thomas, A., Best, N., and Spiegelhalter, D. (2000). WinBUGS - a Bayesian 

modelling framework: concepts, structure, and extensibility. Statistics and Computing 

10: 325-337. 

[65] Macdonald, P. D. M. and Du, J. (2010). mixdist: Finite Mixture Distribution Models. 

R package version 0.5-3. http://CRAN . R-pro j ect .org/package=mixdist 

[66] ,Marin, J. and Mengersen, K. L. and Robert, C. (2005) Bayesian modelling and inference 

on mixtures of distributions. In: Dey, D. and Rao, C. R. (eds.) Handbook of Statistics -

25. Elsevier. 

[67] McLachlan, G. J. and Basford, K. E. (1988). Mixture Models: Inference and Applications' 

to Clustering. New York/Basel: Marcel Dekker. 

[68] McLachlan, G. J. and Krishnan, T. (1997). The EM algorithm and Extensions. New 

York: Wiley. 

[69] McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models. New York: Wiley. 

[70] Mengersen, K. and Robert, C. P. (1996) Testing for mixtures: a Bayesian entropy 

approach. In: Berger, J. 0., Bernardo, J. M., Dawid, A. P., Lindley, D. V. and Smith 

A. F. M. (eds.) Bayesian Statistics 5, pp. 255-276. London: Oxford University Press. 

[71] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953). Equa-

, 
tions of state calculations by fast computing machines. Journal of Chemical Physics 

21(6): 1087-1892, 

103 



[72] Moreno, E. and Liseo, B. (2003). A default Bayesian test for the number of components 

in a mixture. Journal of Statistical Planning and Inference 111(1): 129-142. 

[73J Newcomb, S. (1886). A generalized theory of the combination of observations so as to 

obtain the best result. American Journal of Mathematics 8: 343-366. 

[74] O'Hagan, A. (1995). Fractional Bayes factors for model comparison (with discussion). 

Journal of the Royal Statistical Society, Series B 57: 99-138. 

[75] Pearson, K. (1894). Contributions to the mathematical theory of evolution. Philosophical 

Transactions of the Royal Society Of London A 185: 71-110. 

[76] Perez, J. M. and. Berger, J. (2002). Expected posterior prior distributions for model 

selection. Biometrika 89: 491-511. 

[77] Peskun, P. (1973). Optimum Monte Carlo sampling using Markov chains. Biometrika 

60: 607-612. 

[78] Phillips, D. B. and Smith, A. F. M. (1996). Bayesian model comparison via jump diffu­

sions. In Gilks, W., Richardson, S. and Spiegelhalter, D. J. (eds.) Markov Chain Monte 

Carlo in Practice, pp. 215-239. London: Chapman & Hall. 

[79] Plummer, M. (2002). Discussion of the paper by Spiegelhalter et al. Journal of the Royal 

Statistical Society, Series B 64: 620. 

[80] Plummer, M. (2008). Penalized loss functions for Bayesian model comparison. Biostatis­

tics 9(3): 523-539. 

104 



[81] Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: convergence diagnosis 

and output analysis for MCMC. R News, 6(1): 7-11. 

[82] Raftery, A. E. (1996b). Hypothesis testing and model selection. In Gilks, W. R., Richard­

son, S. and Spiegelhalter D. J. (eds.) Markov Chain Monte Carlo in Practice, pp. 163-

188. London: Chapman & Hall. 

[83] Raftery, A. E. and Lewis, S. (1992b). Comment: One long run with diagnostics: Imple­

mentation strategies for Markov Chain Monte Carlo. Statistical Science 7: 493-497. 

[84] Rao, C. (1948). The utilization of multiple measurements in problems of biological 

classification. Journal of the Royal Statistical Society, Series B 10: 159-203. 

[85J Richardson, S. and Green, P. J. (1997). On Bayesian analysis of mixtures with an 

unknown number of components. Journal of the Royal Statistical Society, Series B 59: 

731-792. 

[86J Robert, C. P., Ryden, T., Titterington, D. M. (2000). Bayesian inference in hidden 

Markov models through the reversible jump Markov chain Monte Carlo method. Journal 

of the Royal Statistical Society: Series B 62: 57-75. 

[87] Roeder, K. (1990). Density estimation with confidence sets exemplified by superclusters 

and voids in the galaxies. Journal of the American Statistical Association 85: 617-624. 

[88] Roeder, K. and Wasserman, L. (1997). Practical Bayesian density estimation using 

mixtures of normals. Journal of the American Statistical Association 92: 894-902. 

105 



[89] Rossi, P. and McCulloch, R. (2008). bayesm: Bayesian Inference for Marketing/Micro­

econometrics. R package version 2.2-2. http://faculty . chicagogsb. edu/peter. 

rossi/research/bsm.html 

[90] Schlattmann, P.· (2009). Medical Applications of Finite Mixture Models. Ver-. 

lag/Berlin/Heidelberg: Springer. 

[91] Schlattmann, P. and Bohning, D. (1993). Mixture models and disease mapping. Statistics 

in Medicine 12: 943-1950. 

[92] Sperrin, M., Jaki, T. and Wit, E. (2010). Probabilistic relabelling strategies for the 

label switching problem in Bayesian mixture models. Statistics and Computing 20(3): 

357-366. 

[93] Stephens, M. (2000a). Bayesian analysis of mixture models with an unknown number of 

components - An alternative to reversible jump methods. The AnnalS of Statistics 28: 

40-74. 

[94] Stephens, M. (2000b). Dealing with label switching in mixture models. Journal of the 

Royal Statistical Society, Series B 62: 795-809. 

[95] Tan X., Chen J. and Zhang R. (2006). Consistency of the constrained maximum likeli­

hood estimator in finite normal mixture models. Submitted. 

[96] Tanner, M. Y. and Wong, W. H. (1987) The calculation of poserior distribution by data 

augmentation. Journal of the American Statistical Assoc'iation 67: 702-708. 

106 

1· 



[97] Teicher, H. (1960). On the mixture of distribut.ions. Annals of Mathematical Statistics 

31: 55-73. 

[98] Tei~her, H. (1963). Identifiability of finite mixtures. Annals of Mathematical Statistics 

34: 1265-1269. 

[99] Tierney, L.(1994). Markov chains for exploring posterior distributions Annals of Statis­

tics 22(4): 1701-1728. 

[100] Titterington, D. M., Smith, A. F. M. and Markov, U. E. (1985). Statistical Analysis of 

.Finite Mixture Distributions. New York: Wiley. 

[101] Verdinelli,1. and L. Wasserman (1991). Bayesian analysis of outlier problems using the 

Gibbs sampler. Statistics and Computing 1: 105-117. 

[102] Wasserman, L. (2000). Asymptotic inference for mixture models using datadependent 

priors. Journal of the Royal Statistical Society, Series B 62: 159-180. 

[103] Withers, C. S. (1996). Moment estimates for mixtures of several distributions its differ­

ent means of scales. Communications in Statistics - Theory and Methods 25: 1799-1824. 

[104] Wolfowitz, J. (1957). The Minimum Distance Method. The Annals of Mathematical 

Statistics 28(1): 75-88. 

~105] Yao, W. and Lindsay, B. (2009). Bayesian mixture labelling by posterior density. Jour­

nal of American· S.tatistical Association 104: 758-767. 

[106] Yakowitz, S. J. and Spragins, J. D. (1968). On the identifiability of finite mixtures. 

Annals of Mathematical Statistics 39: 209-214. 

107 


