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Abstract 

It is well known that the regularity of solutions to Navier-Stokes equation 
is controlled by the boundedness in time of the enstrophy. However, there 
is no proof of the existence of such bound. In fact, standard estimates for 
the instantaneous rate of growth of the enstrophy lead to finite time blow up, 
when straightforward time integration of the estimate is used. Moreover, there 
is recent numerical evidence to support the sharpness of these instantaneous 
estimates for any given instant of time. The central question is therefore, how 
to extend these instantaneous estimates to a finite time interval (0, T] in such 
a way that the dynamics imposed by the PDE are taken into account. 

We state the problem of saturation of finite time estimates for enstrophy 
growth as an optimization problem, where the cost functional is the total 
change of enstrophy in a given time interval. We provide an iterative algorithm 
to solve the optimization problem using Viscous Burgers Equation (VB E) as 
a "toi' version of Navier-Stokes equation. We give numerical evidence that 
analytic finite time estimates for enstrophy growth in VBE are conservative, 
in the sense that they are not saturated. 
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Chapter 1 

Introduction 

As the title indicates, this Thesis is about Burgers Equation. However, the 
ideas that originated this work are related to one of the fundamental equations 
of mathematical physics: Navier-Stokes Equation (NSE). The importance of 
NSE is the product of two factors: on the one hand, engineers and physicists 
have been using this set of equations to model the dynamics of fluids for more 
than a century with excellent results, e.g. aerodynamics, hydrodynamics and 
astrophysics [5]. On the other hand, NSE has eluded the mathematical rigour 
of proofs for global existence of solutions, which leaves in the air the following 
question: are solutions to NSE physically reasonable, at least in some sense, 
for large periods of time? The answer to this question is: we don't know. It is 
such the importance of this equation that the Clay Mathematics Institute has 
established a one million dollar prize for anyone who reveals its mathematical 
mysteries. 

To begin our discussion on this topic, consider, for simplicity, n = [0,1]3 
to be the domain of definition (this is one of the cases considered by the Clay 
Mathematics Institute [6]), u : n x [0,(0) -----+ lR3 be the velocity field and 
p : n x [0,(0) -----+ lR be the pressure field. Navier-Stokes equation is obtained 
by a balance of momentum in Newton's second law, and assuming the fluid is 
incompressible, its complete formulation [4] is given by: 

Ut + U· \7u + \7p =v.6.u in n 
\7. U =0 

U(x, 0) =uo(x), 

1 

(1.1a) 
(LIb) 

(1.1c) 
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where we consider periodic boundary conditions, and the viscosity v is the only 
parameter in the model. With the addition of other effects (e.g. external forces, 
rotation, temperature or electromagnetic coupling) this equation is routinely 
used to model systems across a large range of length and time scales, from 
microfluids modelling to oceanography [5]. 

The proof of existence of solutions for NSE is based on the construction of 
weak solutions. We say that u is a weak solution to NSE if for any infinitely 
differentiable, divergence-free test function v: S1 X [0,00) -+ lR.3 with compact 
support in t E [0,00), and for any smooth q : S1 X [0, 00) -+ lR. we have [5]: 

100 1 (u· Vt + U· (\7v) . U + vu· 6.v) dxdt = 0 (1.2) 

and 100 1 U· \7 q dxdt = O. (1.3) 

To construct these weak solutions, we start with a regularized approxi
mation to NSE for which global solutions are known, and then consider the 
limit case as the regularization is removed. In [5], Doering considers a natural 
regularization coming from the spectral Galerkin approximation to equation 
(1.1). For fixed positive integer K, let PK : L2(S1) -+ g2(Z3) be the projector 
operator defined as: 

(PKU)(X) = L uke27fik.x. (1.4) 
Ikl:<;K 

In other words, PK truncates the Fourier series of U to spectral components 
with wave number below K. The Galerkin approximation UK (x, t) = (PKu) (x, t) 
is the solution to the regularized NSE: 

(1.5a) 

(1.5b) 

with initial data uK(x,O) = (PKUo) (x). The Fourier coefficients Uk of UK 
satisfy the system of ordinary differential equations [4]: 

(1.6a) 

(1.6b) 

2 
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where l-k0k/lkI2 is the projector operator onto divergence-free vector fields. 
Local unique, bounded and smooth solutions to equation (1.6) follow from the 
theory of solutions of ordinary differential equations [4, 11]. Moreover, global 
solutions can be obtained thanks to the a priori bound [5]: 

(1.7) 
k k 

At this point, the idea would be to take K ----+ 00 and look for the conver
gence of the approximation UK to a limit u that solves NSE. To prove this 
assertion we would need to show that UK constitutes a Cauchy sequence in the 
space of continuous functions from the interval [0, T] to L2(0,), i.e. we should 
show that: 

(1.8) 

Doering shows in [5] that if there exists a finite real number R such that 

(1.9) 

uniformly in K, then we could prove (1.8), where Ilflloo = SUPxEO If(x)l. 
However, no such uniform bound is known. One important fact worth to 
keep in mind, is that this uniform bound is not sufficient to establish strong 
convergence, but it is sufficient to establish the convergence of subsequences 
of the Galerkin approximation to weak solutions [5]. 

Another issue with solutions to NSE, besides its existence and uniqueness, 
is its regularity. If smoothness of solutions is lost on some level, this would 
indicate the presence of small structures in the flow. A discontinuity implies a 
"macroscopic" change over a "microscopic" length scale [4]. This phenomena, 
by itself, should not generate any difficulties. However, the derivation of NSE 
relies on the smoothness of its solutions to show convergence from the micro
scopic to the macroscopic scales. For this reason, it is important to monitor 
the time and length scales involved in the solutions to NSE. 

A good way to approach the regularity problem is using the concept of 
enstrophy. The ens trophy [; is proporLional to the square of the L2 HorIIl of 
the vorticity w = V x u. For the setting where periodic boundary conditions 

3 
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are considered, the enstrophy is defined as: 

£(t) =! r IVxu(x, t)12 dx. 
2 in 

McMaster - Mathematics 

(1.10) 

It is shown in [4] that the rate of growth of the enstrophy satisfies 

(1.11) 

for large values of enstrophy, where c' > 0 is a constant and v > 0 is the 
viscosity. A useful regularity criterion can be derived from this inequality. To 
see this, notice that inequality (1.11) is equivalent to: 

(1.12) 

meaning that the quantity inside the parenthesis decreases from its initial 
value. Therefore: 

£(t) ::; £(0) exp { c'~y) } , (1.13) 

where V(t) is defined as: 

If we knew a priori that V(t) is finite for all positive t, we would have regularity 
of the solutions, since the enstrophy would be bounded for all t > 0, meaning 
that the gradient of the solution Vu E L2. However, no such bound is known to 
exist. Moreover, the instantaneous bound given by inequality (1.11) is sharp in 
the sense that there exist solutions that actually saturate it, as is shown by Lu 
Lu in his PhD thesis from 2006 [9]. This means that the sequence of estimates 
used in the derivation of this inequality cannot be improved substantially, but 
it does not mean that a singularity will develop in finite time. Since inequality 
(1.11) is of an instantaneous nature, the evolution of the velocity field may 
drive the flow away from the saturation condition, as in fact the example 
given by Lu Lu does. 

The traditional approach to obtain finite time estimates for the enstrophy is 
based on the integration over time of instantaneous estimates, like inequality 

4 
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(1.11). However, for NSE this approach leads to estimates that allow the 
formation of singularities in finite time (as Doering and Lu show in [10D. 
Having said this, some questions arise: Is simple integration in time the right 
way to obtain finite time estimates that take the dynamical properties of the 
equation into account? Or does it lead to conservative (in the sense of not 
being sharp enough) estimates? 

In the following pages we will address these questions in a computational 
sense, not for the full three-dimensional Navier-Stokes equation, but for a 
simpler case in one dimension: Viscous Burgers Equation (VBE). Although 
existence and uniqueness theory for VBE is a well understood topic (see [8] 
for an extensive treatment of this issue) and closed form solutions have been 
found via the Hopf-Cole transformation (as explained in [3D, the question 
whether sharp finite time estimates for the enstrophy of solutions to VBE can 
be obtained from sharp instantaneous estimates is still a relevant one. 

The structure of this work is as follows: the setup for the problem as 
well as the fundamental inequalities that will lead to finite time estimates 
are explained in chapter 2. Chapter 3 contains information regarding adjoint 
based optimization and the algorithm used to attack the problem. In chapter 
4 we present the numerical results and some comments on the validity of 
our approach. Conclusions and the discussion of the results are presented 
in chapter 5. Some remarks on the numerical methods used to solve the 
differential equations and on scaling properties of VBE are made in appendices 
A and B, respectively. 

5 
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Chapter 2 

Burgers Equation 

We can think of Viscous Burgers Equation (VBE) as the one-dimensional (lD) 
version of N avier-Stokes Equation. Although this idea is not exactly true since 
the incompressibility condition is taken out from the formulation of VBE, it 
maintains three important aspects of NSE: the evolution in time, the non 
linearity and its parabolic nature. For these reasons, Burgers equation has 
been extensively used as a "workhorse" to test numerical methods and to gain 
insight in the underlying theory behind the phenomena of fluid motion. 

To begin with, let n = [0,1] be the domain of definition and u : n x 
[0,(0) -----+ lR be the solution under consideration. Burgers equation is given by: 

AU au 02U 
- + u- - //- = 0 in n at ax ox2 

u(x, 0) = ¢(x). 

(2.1a) 

(2.1b) 

with periodic boundary conditions. Notice that in this case, the incompress
ibility condition can not be taken into account, since it would lead to trivial 
constant solutions u(x, t) = C. The theory of existence and uniqueness for 
Burgers equation is extensively covered in [8]. Moreover, it is possible to ob
tain closed form solutions to Burgers equation. The Hopf-Cole transformation 
given by 

u=-2//'¢X 
'¢ 

(2.2) 

7 
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reduces equation (2.1) to a heat equation for 'IjJ: 

8'IjJ 82'IjJ 
at - v 8x2 = 0, 

which can be solved using the Fourier Transform method [3]. However, this 
approach will not be used in this work, and a numerical method based on 
spectral approximation will be used instead. 

Two important quantities associated to solutions of equation (2.1) are the 
energy and the enstrophy. The energy is defined as: 

1 1 11 JC(t) = -llu(., t)ll~ = - lu(x, t)1 2dx, 
220 

(2.3) 

whereas the enstrophy is defined as: 

E(t) = ~llux(-' t)ll~ = ~ t 18xu(x, t)1 2dx. 
2 2 Jo 

(2.4) 

2.1 Instantaneous Bounds for Enstrophy and 
Energy Growth Rates 

It is possible to establish upper bounds for the instantaneous rate of growth 
(with respect to time) of the enstrophy. Using its definition in equation (2.4) 
and equation (2.1) we obtain: 

dE 

dt 
(2.5) 

(2.6) 

(2.7) 

where integration by parts has been used, and the periodicity of the boundary 
conditions was used to eliminate the boundary terms. We can now bound the 
cubic term using the following arguments: 

1 tIt 1 t -2 Jo (ux )3dx 2 Jo (-ux )3dx::; 211ux ll oo Jo (-ux )2dx (2.8) 

< 11Iuxlloolluxll~. (2:9) 

8 
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Using 1111100 ::; C1111xll~/211111~/2 which can be found in Appendix A of [4], and 

taking C1 = 2jFr, which is obtained in Appendix B of [9], we get: 

d£ 2 f2 1/2 5/2 
dt ::; -vlluxx l12 + V ;: IIuxx l1 2 IIuxl12 . 

By using Young's inequality 

ab < - -- + - {3 p q > 0 - + - = 1 1 ({3P aP bq 
) 1 1 

- 2 p {3qq'" , p q 

to split the product of Iluxxll~/2 and Iluxll~/2 we get: 

(2.10) 

(2.11) 

(2.12) 

where we chose p = 4, q = 4/3. Taking {34 = 41: to cancel the Iluxxll~ term 
we obtain: 

(2.13) 

On the other hand, the rate of growth of the energy is given by: 

(2.14) 

which tells us that the energy is a decreasing function of time and it is bounded 
by the energy of the initial data, i.e., 

JC(t)::; Ilu(·,O)II~= II¢II~ Vt. (2.15) 

To obtain an upper bound for the enstrophy we could, naively, integrate 
inequality (2.13) with respect to time. This approach leads to: 

£ t < £0 
( ) - (1 - Ct)~ (2.16) 

for some C > 0 that depends on the initial enstrophy. Let the right hand side 
of the last expression be G(t). Then, :3 t* = l/C such that limt--->t* G(t) = 00. 

9 
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That is, the inequality is telling us that the enstrophy is upper bounded by 
some expression that blows up in finite time. However this does not implies 
that the enstrophy actually blows up. 

One could argue that the problem with this "blow up" of the enstrophy has 
its roots in the analytic estimate we have used. Could it be possible that the 
scaling of dE / dt follows a power law with an exponent smaller than that of 
inequality (2.13)7 In that case, the exponent could be such that it prevents 
the blow up. To give an answer to this question, Lu Lu [9] looks for solutions 
that saturate this estimate, stating the question as an optimization problem. 

2.2 Maximum Growth Rate as an Optimization 
Problem 

In his 2006 PhD thesis (see [9]), Lu Lu addresses the following question: How 
accurate is the bound for the enstrophy rate of growth, given by inequality 
(2.13)7 The method described in his thesis looks for zero mean solutions U that 
saturate the instantaneous rate of growth of the enstrophy given by equation 
(2.7). That is, he solves the following problem: 

Problem 1 Maximize the instantaneous enstrophy growth rate given by: 

dE r1 
1 t 

dt = -l/ io luxx l
2
dx - "2 io (ux?dx 

subject to 

and 11 udx = O. 

It is quite remarkable that it is possible to find an analytic solution to the 
problem just stated, and Lu Lu describes how to obtain it. The main ideas 
are the following: first notice that dE / dt depends explicitly only on U x, so it 
seems natural to define v = U x and apply the Euler-Lagrange equation to the 
functional: 

R(v) = -11 L(x, v, vx)dx (2.17a) 

( ) 
2 1 3 A. 2 

L x, v, Vx =l/Vx +"2v +"2v + /LV, (2.17b) 

10 
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where ,\ and f-l are Lagrange multipliers associated to the restrictions 

111 - v2dx = Eo 
2 0 

(2.18a) 

11 vdx = 0, (2.18b) 

corresponding to the enstrophy constraint and the zero mean condition, re
spectively. Lu Lu finds the solution to be: 

v(xl = (f3, - f33lsn' ( J f3, ~f33 x) + f33, 

where sn is the elliptic function of the first kind defined as: 

sn(z) = sin(e) 

z(e) = fO dt , 
J 0 J 1 - rn sin 2 t 

and the constants {31, {32 and {33 are given by: 

(31 = 32vK(rn)E(rn) 

(32 = 32vK(rn) (E(rn) - (1 - rn)K(rn)) 

(33 = 32vK(rn) (E(rn) - K(rn)) . 

(2.19) 

(2.20a) 

(2.20b) 

(2.21a) 

(2.21b) 

(2.21c) 

The functions K(rn) and E(rn) in equation (2.21) are the complete elliptic 
integrals of the first and second kind, respectively. They are defined as: 

(2.22a) 

(2.22b) 

and the parameter rn is obtained by numerically solving the equation: 

102
3
4v

2 
K3 [(2 + rn)K - 2(1 + rn)E] - 1024v2 K2 (K - E)2 = 2Eo, (2.23) 

where the dependence of K and E on rn has been omitted, but is implicit. 
A plot of the analytic solution of problem 1 obtained by integrating equation 

11 
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0.8 

//\ 0.6 

u / \ 
0.2 / 

~ 0 / 

-0.2\ / 
\ / 

-<l.4 \ / 

-<l.6 \ / 

-0.8 ~ 

-10!:-0-:-:c.1 ----::.O.2,----;C0.3;:---:0'-:-.. -'0-;-0-.5 ----;:-;'0.6---:::0.7:;---;;0.::-8 ---;0-:0:-.9 ~, 
x 

(a) 

-2.5 . 
o u u u U U M U U ~ 1 

x 

(b) 

Figure 2.1: Maximizing solutions of problem 1 with v = 0.01, corresponding 
to Eo = 10 for (a), and Eo = 100 for (b). 

(2.19) is shown in figure 2.1. The values of viscosity and enstrophy are v = 0.01 
and Eo = 10 for part (a) and Eo = 100 for part (b). 

Once the optimizing solution is found, it is possible to evaluate the maximal 
rate of growth dE / dt and provide estimates as Eo ---+ 00. In this case, Lu Lu 
shows that the maximal rate of growth scales with the same power law as the 
estimate given by inequality (2.13), that is: 

dE rv 0.2476 E5/3 
dt V 1/ 3 0 , 

(2.24) 

meaning that, at least for large values of enstrophy, there are solutions to 
equation (2.1) that saturate inequality (2.13). At this point, it is worth to dis
cuss an important aspect from the previous result: inequality (2.13) is instan
taneous in nature, so solutions that actually saturate it at a particular instant 
of time, may be driven away from the saturation condition as the solution 
evolves in time. To validate this idea, consider Viscous Burgers Equation with 
initial data given by the solution of problem 1, whose plot is shown in figure 
2.1 for different values of enstrophy. We keep track of the evolution of the 
enstrophy as a function of time, and this quantity is shown if figure 2.2, for 
different values of initial enstrophy Eo E [101, 103]. The plot shows that the 
enstrophy increases in time up to a maximum value and then decays to zero, 
for all values of initial enstrophy. Moreover, as shown in figure 2.3, where 
Ema:x = maXt>o E(t) is plotted as a function of the initial enstrophy Eo, we can 

12 
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T 

Figure 2.2: Enstrophy as a function of time, for different initial enstrophy. 

see it scales as a power law with respect to £0' Using least squares fitting we 
find that the exponent associated to the power law is a ~ 1. Therefore, as can 
be seen from the comparison between the exponents aa = 5/3 from equation 
(2.24) and a ~ 1 from the previous discussion, functions that saturate the 
instantaneous rate of growth of enstrophy are driven away from the satura
tion condition, when the dynamics imposed by the time evolution problem are 
taken into account. 

2.3 Finite Time Bound for Enstrophy Growth 

Another type of bound, one that considers the possibility of build up of en
strophy within a finite time interval, can be derived using inequality (2.13) 
and equation (2.14). Integrating in time equation (2.14) we find that: 

1 it - [Ka - K(t)] = £(s)ds. 
2v a 

(2.25) 

where Ka = K(O). Since K(t) > 0 \f t, we get: 

i
t 1 
£ (s )ds ::; -Ka. 

a 2v 
(2.26) 

13 
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Figure 2.3: Power law with respect to £0' £max 
exponent a = 1.048. 

McMaster - Mathematics 

maxt>O £(t) scales with 

Rewriting the right hand side of inequality (2.13) as 0 1££2/3, we obtain: 

3~£1/3 < 0 £. 
dt - 1 

(2.27) 

Integration in time leads to: 

£1/3(t) _ £1/3 < 0 1 t £(s)ds < 0 1/C 
o - 3 Jo - 6v 0 

(2.28a) 

0 1 
::;-24 2 £0, 

1fV 
(2.28b) 

where the fact that solutions with zero mean are being used allows us to use 
Poincare's inequality /Co ::; 4;2 £0 in the last expression. Finally we obtain: 

( ) [ 
1/3 Cl ] 3 £ t ::; £0 + 24;2V£0 . (2.29) 

We summarize this result in the following theorem: 

Theorem 1 Let ¢ E H1 be the initial condition to Burgers equation (2.1). 
Then its solution uC t) E HI 'lit. 

14 
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Proof: Follows directly from inequality (2.15) and inequality (2.29). A gen
eralized version if this theorem can be found in [8], where a similar result is 
shown for Hj, j 2 2. 

So far we have seen that for every value of enstrophy, there exist a unique 
function that saturates the instantaneous rate of growth of the enstrophy 
dE / dt, and this quantity scales with the enstrophy level as E5

/
3

, as described in 
section 2.2. However, if we let this function evolve according to the dynamics 
imposed by VBE, then Emax = maXt>o E(t) scales with respect to Eo as Eo for 
a~l. 

On the other hand, if inequality (2.29) is sharp, then for large values of 
initial enstrophy, Emax should scale as E6. However, the class of functions 
that saturate the analytic estimate of the instantaneous rate of growth of E(t) 
fails to saturate the analytic estimates for finite time. An explanation for this 
failure is the fact that maximizers of the instantaneous estimate need not to 
be maximizers of the finite time estimate. In that sense, we should properly 
state the question of maximum enstrophy growth in finite time. 

Having said this, we would like to investigate the existence of functions that 
saturate the analytic estimate for the maximal enstrophy given as Emax rv E6 
for large Eo. However, we will look for these functions as the maximizers of 
the total growth of enstrophy in finite time, for different time intervals. The 
proper definition of the problem will be stated in chapter 3. 

15 
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Chapter 3 

Saturation of Enstrophy Estimates 
as an Optimization Problem 

Continuing with the discussion from chapter 2, we want to set up the problem 
of saturation of the estimate Emax rv E;5 as an optimization problem in the 
following way: what should be the initial condition u(x, 0) with fixed enstrophy 
Eo such that, if we let it evolve according to Burgers equation, will allow for 
the largest increment in enstrophy after some time T > 07 Note that in the 
context of the Clay problem, this formulation would give some insight to the 
regularity problem since, as mentioned in chapter 1, it is controlled by the 
boundedness of the enstrophy. In that sense, we would like to find the worst 
case scenario for the finite time growth of enstrophy, and we would like to see 
if it is possible for the enstrophy to blow up in finite time. As explained in 
chapter 2, we do not expect this to happen in the case of Burgers equation, 
but still is a good exercise to test the accuracy of the analytic estimate. 

In this chapter we will cover some issues regarding optimization problems 
in general, and we will provide an algorithm based on iterative optimization 
methods to calculate the desired initial condition. 

17 
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3.1 Statement of Optimization Problem 

Optimization and control problems have the following main elements (see [7] 
for more details): 

• Control variables and an associated control space. 

• State variables and state space. 

• An objective (or cost) functional. 

• Constraints that state and control variables must satisfy. 

With these four elements, the optimization problem consists in finding the 
control and state variables that maximize (or minimize) the cost functional, 
given that both the control variables and the state variables satisfy the imposed 
constraints. 

Regarding the problem we are concerned about, we want to find the initial 
condition ¢* with some prescribed enstrophy Eo that, evolving in time accord
ing to equation (2.1), maximizes the enstrophy at time t = T, for fixed T. 
The total change in the enstrophy during the time interval [0, T] is simply the 
difference between the enstrophy at time t = T and its value at time t = O. 
The objective functional is given by: 

(3.1) 

Notice that in the context of optimization theory, the control variable is 
the initial condition u(x, 0) = ¢(x), while the state variable is the solution to 
Burgers equation. Also notice that we can represent the restriction imposed by 
Burgers equation as G(¢, u) = O. Assuming only local existence and unique
ness of solutions, for any initial condition ¢ there is a unique solution u(x, t) so 
we can express u = g(¢), where 9 : X -+ U is the solution operator of Burgers 
equation, X is the control space and U is the state space. Since we want the 
control variable ¢ to have finite enstrophy, a natural choice is X = HI. We 
can now consider the reduced cost functional 

J(¢) =j(¢,u(¢;T)), (3.2) 

18 



1 

I 

M.Sc. Thesis - D. Ayala McMaster - Mathematics 

where T is the final time in the definition of j(cp, u) in equation (3.1). The 
following is the formal definition of the problem we are interested in solving: 

Problem 2 Given Eo and T J find the function cp* E X such that 

cp* = argmaxJ(cp) 
<pEX 

for J(cp) defined as in equation (3.2). 

subject to ~llcp;m = Eo 

As usual in constrained optimization problems, we define the augmented cost 
functional J>.. (cp) as: 

J>..(CP) = J(cp) + A (~llcp;ll~ - Eo) , (3.3) 

where A is the Lagrange multiplier associated to the enstrophy constrain. We 
say that cp* is a global maximizer if cp* E X and: 

J(cp) ~ J(cp*) 'If cP E X. (3.4) 

A necessary condition for optimality is: 

J~(cp*; cp') = 0 V cP' E X, (3.5) 

where J~ ( cp*; cp') . is the Gateaux derivative of the augmented cost functional, 
defined as: 

(3.6) 

A sufficient condition for cp* to be a maximizing solution is that the Hes
sian associated to the cost functional is a negative definite bilinear form [2]. 
However, we will not verify this condition, and we will rather use a graphical 
approach to verify that indeed our method is converging to a maximal solution. 

3.2 Iterative Ovtirnization Algorithrns 

There are two main approaches to solve any optimization problem: the so 
called One-Shot methods, which are based on the Lagrange multipliers method, 
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Method Direction of ascent Notes 
Steepest ascent dn = VJn 

Fletcher-Reeves dn = V In - f3:;Rdn- 1 (3FR _ "\7,rll~ 
n - 11\7.7n lll~ 

dn = V In - f3:;Rdn - 1 
(\7.:rn,\7 .7n _\7.7n - 1 ) 

Polak-Ribiere (3PR - x 
n - 11\7.7n lll~ 

Table 3.1: Summary of different iterative optimizations methods. 

and iterative optimization methods. Since it is very difficult for most problems 
to find One-shot solutions (see [7]), we will focus on the later. 

In a general iterative optimization algorithm, we need to find some direction 
of increase (or decrease if we are interested in minimization problems) of the 
objective function J(¢). Once we have found this direction, we can start up 
the iterative process which will lead us to a solution, given that we started 
close (in some sense) to the optimizing solution. Well known optimization 
algorithms are steepest ascent (descent, in the case of minimization problems), 
the Fletcher-Reeves method and the Polak-Ribiere method [12]. Despite some 
subtle differences between them, all three are based in the following steps: 

• Set n = 0, define a tolerance tal and start with an initial guess ¢n. 

• Do 

1. Obtain a direction dn of increase of the objective function. 

2. Set ¢n+1 = ¢n + Tndn, where Tn = argmaxT J(¢n + Tdn). 

3. Evaluatel:!,.J = (J(¢n+1) - J(¢n))jJ(¢n). 

4. n f----7 n + 1. 

• while l:!,.J > tal 

Different optimization algorithms can be obtained by properly choosing the 
direction of increase dn . Table 3.1 shows the values of dn for the algorithms 
mentioned above. All cases involve the concept of the gradient V J of the cost 
functional, which will be explained in section 3.3. In this work, Polak-Ribiere 
method is used in the solution of problem 2. 
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3.3 Gradient Extraction 

To extract information about the gradient, we will use the cost functional 
J ( ¢) instead of the augmented cost functional J>.. ( ¢), and we will enforce the 
enstrophy constrain by a procedure that will be explained later in this chapter. 
Using the definition of the Gateaux derivative, given by equation (3.6), of the 
cost functional J(¢) defined in equation (3.2) we find that J'(¢; ¢') is given 
by: 

J'(¢; ¢') = L 8x u(x, T)8xu'(x, T)dx - L 8x ¢(x)8x ¢'(x)dx, (3.7) 

where u'(x, t) is the solution of the perturbed system (the leading order term 
in the definition of J') given by: 

8t u' + 8x (uu') - v8;u' = 0 in S1 x [0, T] 

u'(x,O) = ¢'(x) 

Periodic B.C. 

(3.8a) 

(3.8b) 

(3.8c) 

Recognizing J' (¢; ¢') as a linear bounded functional for ¢' E HI, by Riesz 
Representation Theorem [16] there exist g E HI such that J'(¢') = (g, ¢')Hl. 
We identify g as the gradient V H1 J, and we now look for this gradient. 

Integrating equation (3.7) by parts and considering periodic boundary con
ditions we get: 

J'(¢; ¢') = - L 8;u(x, T)u'(x, T)dx + L 8;¢(x)¢'(x)dx. (3.9) 

Multiplying equation (3.8) by the adjoint variable u*(x, t) and integrating in 
both space and time we obtain: 

o = iT L (8tu' + 8x (uu') - v8;u') u*dxdt 

LiT 8tu'u*dtdx + iT L 8x (uu')u*dxdt - iT L v8;u'u*dxdt 

L u*u'l~ - iT L (8tu* + u8x u* + v8;u*) u'dxdt, 
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where integration by parts has been used to pass the differential operators 
from u' to u*. Setting Otu* + uOxu* + vo;u* = 0 in the last equation we get: 

1 ¢'(x)u*(x, O)dx = 1 u'(x, T)u*(x, T)dx. (3.10) 

Setting u*(x, T) = -o;u(x, T) and substituting in equation (3.9) we get: 

:J'(¢; ¢') = 1 [u*(x, 0) + o;¢(x)] ¢'(x)dx = (\1:J, ¢')p. (3.11) 

The bracketed expression in the last equation refers to the usual inner 
product in L2. Up to this point, we have the functional :J'(¢') represented as 
the inner product in L2 between some function \1:J and ¢'. Therefore, the L2 
gradient of the cost functional is given by: 

(3.12) 

However, ¢ E L2 does not guarantee the required smoothness of the initial 
condition and, in particular, that its enstrophy will be finite. Since we must 
satisfy a restriction on the L2 norm of ¢x, we look for a gradient being in a 
more regular space, i.e. HI as mentioned before. In the following section we 
explain this issue in more detail. 

3.4 Gradients in Different Control Spaces 

There are two reasons for which we may want to obtain gradients in more 
regular spaces. The first one, as described at the end of the previous section, 
refers to the regularity of the functions and the restrictions imposed on certain 
norms. The second one, is based on the idea that we can accelerate the con
vergence of the optimization algorithm by choosing the gradient in a suitable 
function space. This procedure is known as operator preconditioning [15]. In 
general, we can express the first variation of the cost functional as an inner 
product in some Hilbert space V. That is: 

(3.13) 
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Let V = HI(D,) with the usual inner product 

r 2 818g U) g) HI = J Q 1 9 +).. 8x 8x dx) (3.14) 

where ).. is a length factor that ensures the correct dimensionality of the in
tegral. Taking 1 = V HI J (that is) the gradient in the more regular space 
HI(D,))) 9 = ¢/ (the associated perturbation) and using integration by parts 
on the second term we get: 

('\IH':1, </1') wl ( '\111':1 - A2a2~:":1) </1'dx 

= \ V
L2 

J) cp') L2 

(3.15) 

(3.16) 

Therefore the HI gradient is related to the L2 gradient via the following 
equation: 

Periodic B.C. 

3.5 The Optimization Algorithm 

(3.17a) 

(3.17b) 

As stated in sections 3.2 and 3.3 we need to find) at each iteration of the opti
mization process) the direction of the gradient associated to the first variation 
of the cost functional. Using equation (3.12) we notice that we need to solve 
the following two problems: 

8tu + u8x u - v8;u = 0 in D, x [0) T] 

u(x) 0) = cp(x) 

Periodic B.C. 

8tu* + u8x u* + v8;u* = 0 in D, x [0) T] 

u*(x) T) = -8;u(x) T) 

Periodic B.C. 

23 

(3.18a) 

(3.18b) 

(3.18c) 

(3.19a) 

(3.19b) 

(3.19c) 



M.Sc. Thesis - D. Ayala McMaster - Mathematics 

Equation (3.18) will be referred as the direct problem, and equation (3.19) 
is known as the adjoint problem. Notice that although the adjoint problem 
seems to be ill-posed because of the sign on the second spatial derivative, in 
fact it is well posed, since we are interested in the solution u*(x, 0). Therefore, 
in this case we deal with a heat type equation in reverse time. The solution 
to both the direct and adjoint problems is obtained using the pseudo-spectral 
method described in appendix A. Recalling section 3.3, the L2 gradient is 
given by: 

V L2
:J = u*(x, 0) + a;¢(x) (3.20) 

whereas the HI gradient can be found solving equation (3.17). 

Once the direction of increase dn = V H l:J has been decided, the updated 
control variable is given by: 

(3.21) 

where the direction step Tn is given by: 

Tn = argmax {:J(T) = :J(¢n + Tdn)}. (3.22) 
7>0 

To find Tn we use Brent's method, an iterative algorithm based on parabolic 
interpolation to find extrema of functions that requires evaluation of the func
tion itself only, and not of its gradient (see [2] and [14] for details about its 
implementation) . 

Moreover, we need to comply with the restriction imposed on the enstrophy 
of the control variable, which states that it should be equal to a given value 
Eo. To do this, at every iteration of Brent's method, instead of evaluating the 
cost functional at 'ljJ(T) = ¢n + Tdn, we evaluate at the normalized quantity: 

(3.23) 

which represents the projection of 'ljJ ( T) on the set V = {¢ E HI : II ¢x II L2 = 

Eo}. This ensures that the control variable has enstrophy Eo at every iteration 
of the optimization algorithm. This can be seen as an arc optimization over 
the set V, rather than simply a line optimization along the direction dn . Figure 
3.1 shows a graphical representation of this idea. 

A summary of the algorithm is presented in the following lines: 
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d
n 

cpn+! 

v = {IICPxlh = Eo} 

Figure 3.1: Graphical representation of arc optimization. The optimization is 
performed over the set V = {¢ E Hl : li¢xllL2 = Eo}. The thin line represents 
the direction of the projection. 

1. Set n = 0, define a tolerance tol. 

2. Set initial guess of control variable ¢o. 

3. Do 

• Solve the direct problem given by equation (3.18). 

• Solve the adjoint problem given by equation (3.19). 

• Calculate the L2 gradient with equation (3.12). 

• Calculate the Hl gradient with equation (3.17). 

• Set dn = \l In - f3::R dn-l, f3::R as given in table 3.1. 

• Find Tn by performing arc optimization. 

• Set ¢n+l = ¢n + Tndn. 

• Evaluate!:lJ = (J(¢n+l) - J(¢n))/J(¢n) . 

• nf----+n+1. 

4. while !:lJ > tol. 
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Chapter 4 

Validation and Results 

We provide numerical results to validate the algorithm presented in this work. 
First, we test the validity of the gradient extraction method described in sec
tion 3.3 by performing what is called the K,-test. Then, convergence analysis is 
performed between solutions to Problem 2 defined in chapter 3 and solutions 
to Problem 1 defined in chapter 2 (i.e. taking the time interval T -+ a in 
Problem 2). Finally, we present evidence of power laws relating the maximum 
of enstrophy within a time interval to the value of enstrophy at the beginning 
of the interval. In all calculations, the numerical solution to both the direct 
and adjoint problems (as defined in section 3.5) is obtained with the numerical 
scheme described in appendix A. The tolerance in the optimization algorithm 
is set to be 10-12 . The viscosity in all computations is 10-3 , unless otherwise 
stated. 

4.1 Validation of the Gradient 

The Gateaux derivative of any given functional depends on the direction of 
the perturbation taken into account. Computationally speaking, we are in
terested in comparing the Gateaux derivative as the limit given by equation 
(3.6) with its representation as an inner product between the gradient and the 
perturbation, once we have used the Riesz Representation Theorem. In other 
words, we want to be sure that for a wide range of values of E, the following is 
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satisfied: 
J(¢ + uti) - J(¢) = (\7 J, ¢')HI + O(E). 

E 

To compare these two quantities, we plot the quotient 

~(E) = J(¢ + E¢') - J(¢) 
E (\7 J, ¢') HI 

(4.1) 

(4.2) 

in a log-log axis and observe its behaviour for different values of E. We perform 
this ~-test for perturbations with different frequency and the results are shown 
in figure 4.1. In all cases, the control variable is given by ¢ = sin(2'ifx - 'if), 
whereas the m-th perturbation is set to be ¢' = sin(21f771x - 'if). Notice that 
for m = 1, we have ~(E) = 1 for E E [1 O-ll ,10-3], meaning that we have a 
good approximation of the gradient. For perturbations of higher frequencies 
(m = 2,3 and 4), the range of E for which ~(E) ~ 1 is reduced to be [10-9,10-5] 
and ~(E) slightly deviates from 1. This might be due to the non linear nature 
of the problem, as well as the use of a discrete version of it, that makes some 
directions difficult to be followed by the gradient. The large deviation from 1 
observed in all cases for too large or too small values of E is due to different 
causes: for large values of E, truncation is the most important source of error, 
since we are "linearizing" a functional over a subset on which it is non linear. 
For small values of E, we are faced with round-off errors, due to the finiteness 
in the precision of the computer used to perform the calculation. 

4.2 Arc Optimization and the Cost Functional 

Figure 4.2 shows J (T) = J (¢n + Tdn) for the first iteration in the optimization 
algorithm, for different directions dn . Notice that line optimization along the 
direction of the gradient allows for larger values of the cost functional, due to 
the fact that the enstrophy constraint is not being enforced, in contrast with 
arc optimization, as described in section 3.5. Also, arc optimization gives a 
smaller value for Tn = argmaxT>o J(T). The ens trophy level is E = 10 and 
the time interval is T = 0.1. 

Let ¢* be the optimizing solution of problem 2. Figure 4.3 shows the 
difference between the maximized cost functional J ( ¢*) and the cost functional 
at every iteration, normalized with respect to J ( ¢*), as a function of the 
iteration for an enstrophy level of Eo = 100 and different time intervals. The 
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Figure 4.1: The quantity ~(E) for perturbations with different wavenumbers 
m: (a) m = 1, (b) m = 2, (c) m = 3 and (d) m = 4. 
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Figure 4.2: Comparison between line optimization along the direction of the 
gradient (solid line) and arc optimization (dashed thick line). Positive and 
negative values of T are shown. 

plot is showed in logarithmic scale for the y axis. Notice that the convergence 
to the optimal value of :r is faster for larger values of the time interval. 

4.3 Solution in the Limit T ----+ 0 

Referring to the definition of problem 2 in chapter 3, one can expect that as 
the time interval T tends to 0, solutions to this problem should converge to 
solutions of problem 1. In other words, if ¢*(- ; T) is the solution to problem 
(2), and 1/J is the solution to problem 1 (see equation (2.19)), we would expect 
that: 

(4.3) 

for some norm p. Figure 4.4 shows the square of the L2 norm of the error 
between ¢* and 1/J as a function of the time interval T, normalized with respect 
to 111/Jllp. The enstrophy level is Eo = 10 and the viscosity is v = 0.01. This 
particularly large value of viscosity (compared to the value we used for the rest 
of the calculations) was chosen due to the difficulty to numerically evaluate 
the elliptic integrals and solve, again numerically, equation (2.23) involved in 
the calculation of 1/J. We considered T E {Tnn~o with Tn evenly distributed 
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Figure 4.3: The cost functional as a function of the iteration. The cases 
correspond to: (squares) T = 10-3 , (circles) T = 10-2 , (x) T = 10-1.5, (+) 
T = 10-1 and (diamonds) T = 100. 

in a logarithmic scale between 10-6 and 100. Let ¢~ be the initial guess used 
to obtain ¢* (Tn). We test three different cases: 

¢~(x) = sin(27rx - 7r) V Tn 

¢~(x) =¢*(x; Tn+!) 
¢~(x) ='t/J(x). 

(4.4a) 

(4.4b) 

(4.4c) 

Notice from figure 4.4 that the first and second case reach a plateau for T ~ 
10-2

. This may be the effect of having a time interval too short, which does 
not allows for the algorithm to properly catch the dynamics imposed by the 
PDE. However, for the third case we observe a monotone decrease on the error 
as T ---7 O. If we consider problem 2 as a perturbed version of problem 1, where 
T, the length of the time interval, is the perturbation parameter, we see that 
the perturbed solutions ¢*(T) converge to the unperturbed solution 't/J, as long 
as our initial guess is close enough from 't/J. 
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Time interval T 

Figure 4.4: Convergence in the L2 norm of ¢*(-; T) to 'ljJ, as T -----+ O. The 
curves correspond to: ( circle) equation (4.4a), ( square) equation (4.4b) and 
(star) equation (4.4c). 

4.4 Enstrophy Growth in Finite Time 

We are interested in testing the existence of a power law that relates the max
imum value of enstrophy given by Emax = rnaxt>oE(t) with Eo. To provide 
numerical evidence of the existence of such power law, we solve the optimiza
tion problem 2 for values of time interval T E [10-3 , 1] and values of initial 
enstrophy Eo E [10-3 ,103] and obtain E(T), the enstrophy at the end of the 
interval [0, TJ, for every combination of T and Eo. Since the result of the opti
mization problem may be influenced by the initial guess used in the algorithm, 
we test different initial guesses, corresponding to different wavenumbers. That 
is, we use as the initial guess: 

(4.5) 

where the amplitude Am is chosen to enforce the enstrophy restriction, and 
rn E N. For this particular form of ¢o, the initial enstrophy is given by 

(4.6) 

and for a given value of Eo we can calculate the corresponding Am, for every 
rn. 
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Figure 4.5: Optimal LC. for m = 1. (a) Fixed enstrophy Eo = 103 and different 
time intervals: T = 10-3 in solid thick line, T = 10-2 in solid thin line, 
T = 10-1.5 in dashed thin line, T = 10-1 in dotted thin line and T = 100 in 
dotted thick line. (b) Fixed time interval T = 10-1.5 and different enstrophy: 
Eo = 10-3 for the solid thin line, Eo = 10-1.5 for the dashed thin line, Eo = 100 

for the solid thick line, Eo = 101.5 for the dashed thiclc line and Eo = 103 for 
the dotted thick line. 

4.4.1 Initial Guess with m = 1 

We take m = 1 in equation (4.5). Solutions to the optimization problem are 
shown in figure 4.5 for (a) fixed enstrophy E = 103 , different time intervals and 
(b) fixed time interval T = 10-1.5, different enstrophy. The amplitude of the 
optimal initial condition (L C.) ¢* showed in part (b) is normalized with respect 
to the amplitude of the initial guess in the optimization algorithm. Notice in 
part (a) the change in the shape of ¢* as the time interval becomes larger, 
ranging from solutions shaped like a "shock" wave for small T, to solutions 
shaped like a "rarefaction" wave for larger T. From part (b) we observe that 
for small values of initial enstrophy, the optimal LC. ¢* maintains both the 
shape and the amplitude of the initial guess. 

Figure 4.6 shows E(T) and Emax = maxtE[O,T] E(t) as functions of T in a 
log-log scale, for different values of initial enstrophy, with Eo increasing from 
bottom to top. In this definition Emax depends on the value of the time interval 
T. It is worth to point out that Emax is not far from E(T) for small values of T, 
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Figure 4.6: m = 1. (a) Final enstrophy £(T) as a function of time interval 
for different initial enstrophy. (b) £max as a function of the time interval, for 
different initial enstrophy. 

even for larger values of £0, meaning that for every choice of T, £max is attained 
at (or close to) the end of the interval [0, T]. The plot also indicates that for 
large time intervals and higher values of initial enstrophy, the maximum of the 
enstrophy is considerably larger than the enstrophy at the end of the interval, 
so £(T) «: £max. 

Figure 4.7 shows £ (T) and £max now as a function of the initial enstrophy 
in a log-log scale, for different values of T. Notice the formation of an envelope 
given by: 

E = max { £max} . 
T 

(4.7) 

It can be appreciated a linear scaling of the envelope E with respect to large 
values of £0, in the log-log plot. This indicates that the envelope may obey a 
power law of the form: 

(4.8) 

As shown in figure 4.6, for large values of £0 there is a time interval ~nax such 
that £ (~nax) = maxT £max. As can be seen in figure 4.8 part (b), ~nax = 
arg maXT £max also follows a power law of the form: 

( 4.9) 

Figure 4.8 shows E and ~nax as functions of £0. The figure also shows the 
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Figure 4.7: m = 1. (a) Final enstrophy E(T) as a function of initial enstrophy 
for different time intervals. (b) Emax as a function of the initial enstrophy, for 
different time intervals. 

power fit (linear in the logarithmic scale) obtained by least squares. The 
corresponding exponents are ex ~ 1.5 and f3 ~ -0.5. 

4.4.2 Initial Guess with Higher Wavenumber 

We would like to be sure that the optimization algorithm described in section 
3.5 gives a global optimizer. To do this, we take different wavenumbers m 
in the initial guess of the algorithm. Here are shown the results for m = 2 
in equation 4.5. The solutions to the optimization problem for different time 
intervals and fixed Eo are shown in figure 4.9. These optimal I.e. seem to be 
rescaled copies of the corresponding solutions for m = 1, and there is strong 
evidence that shows that in fact, they are. As shown in appendix B, if ¢1 
and ¢2 are used as initial conditions in Burgers equation, and they are scaled 
versions of each other, then there exists a rescaling of the variables (x, t) such 
that the corresponding solutions will satisfy the same scaling as ¢1 and ¢2' 
In this context, if we define L = m2/m1 with m1 and m2 the corresponding 
dominant wavenumbers of ¢1 and ¢2, then the enstrophy level and the time 
interval scale as E2 = L4E1 and T2 = Td L2, respectively. 

Figure 4.10 shows the optimal initial conditions for wavenumbers m1 = 1 
and m2 = 2. The enstrophy level and time interval are E1 = 100 and T = 0.1 
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Figure 4.8: m = 1. (a) t and fitted power law as function of initial enstrophy. 
The exponent in the power law is a = 1.525. (b) ~nax and fitted power law as 
function of initial enstrophy. The exponent in the power law is f3 = -0.5109. 

for mI, and, by the scaling mentioned above, E2 = 1600 and T = 0.025 for m2. 
It can be noticed that the solutions to the optimization problem agree with 
each other once the rescaling is applied. Hence, we will focus only on solutions 
with dominant wavenumber m = 1. 

4.4.3 Initial Guess Combining Different Wavenumbers 

So far we have started the optimization problem with an initial guess of a 
single wavenumber. To include more general functions, we consider an initial 
guess of the form: 

(4.10) 

where AmI and Am2 are chosen so ¢P satisfies the enstrophy constraint, once 
mI and m2 have been defined. For this choice of cPo, the initial enstrophy is 
given by 

(4.11) 

so for a given value of Eo we can choose AmI and AmI and enforce the enstrophy 
constraint. 

For simplicity, we choose mI = 1 and m2 = 2. On a first calculation we 
define Al and A2 to satisfy Al + A2 = 1, i.e. the initial guess is a convex 
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Figure 4.9: Optimal I.e. for m = 2, for different time intervals: T = 10-3 in 
solid thick line, T = 10-2 in solid thin line, T = 10-1.5 in dashed thin line, 
T = 10-1 in dotted thin line and T = 10° in dotted thick line. 
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Figure 4.10: (a) Optimal initial conditions for wavenumbers ml = 1 (dashed) 
and m2 = 2 ( solid). (b) Rescaling of the two functions in the interval [0, 1]. 
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E 
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Figure 4.11: E(T) for a convex linear combination of sine waves with different 
wavenumber, as the initial guess (dotted line). The solid line corresponds to 
E(T) for ¢O(x) = A2 sin(41fx -1f) and the dashed line corresponds to ¢O(x) = 
Al sin(21fx -1f). 

combination of sin(21fx) and sin(41fx). Figure 4.11 shows the final enstrophy 
E(T) as a function of the time interval T, with Eo = 100. As can be seen for 
this particular initial guess, E (T) seems to be on either the curve corresponding 
to the case m = 2 for small values of T or on the curve corresponding to m = 1 
for large values of T. 

In general we should not expect any special relation between Al and A2 , 

except for them to ensure the enstrophy constraint, so we performed the calcu
lation for different combinations of Al and A2 within some range. The results 
are shown in figure 4.12, for initial enstrophy Eo = 100. In this case, the curve 
associated to each combination seems to be closer to the curve corresponding 
to A2 = O. This result, and the discussion related to figure 4.11 seem to indi
cate that to consider initial guesses with two or more wavenumbers, it might 
be enough to focus on the single wavenumber cases. However, this should be 
carefully tested in future simulations. 
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Figure 4.12: £(T) for a linear combination of sine waves with different 
wavenumber. The values of the amplitudes are the following: Al = 0.0 
and A2 = 1.5915 (dashed thick line); Al = 0.7958 and A2 = 1.541 (cir
cles), Al = 1.5915 and A2 = 1.3783 (squares), Al = 2.3873 and A2 = 1.0527 
(diamonds), Al = 3.1831 and A2 = 0 (solid thick line). 
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Chapter 5 

Discussion, Conclusions and 
Future Work 

Having at hand the numerical evidence presented in chapter 4, we return to 
the question: is the finite time analytic estimate for the enstrophy accurate? 
To give an answer to it, consider the following quantities: 

~nax = argn1.ax {maxE(t)} 
t t>O 

El11ax = E (~nax). 

(5.1a) 

(5.1b) 

Notice that, by definition, E(t) ::; El11ax V t > 0, so it is enough to verify if 
El11ax saturates inequality (2.29). As discussed in chapter 4, t = El11ax satisfies 
a power law for large values of Eo. From this power laws we can conclude that 
inequality (2.29) is far from being sharp. Indeed, notice that for large values 
of initial enstrophy, the power law from inequality (2.29) scales as Eg, whereas 
El11ax scales as Eg for a ~ 1.5. 

In other words, the finite time analytic estimate indicates that El11ax should 
scale as Eg, and as shown in chapter 2, if we use the functions that saturate 
the instantaneous estimate as the initial condition in VBE we obtain a scaling 
of El11ax as Egl for a1 ~ 1. Moreover, by solving problem 2 we found solutions 
for which El11ax scales as Eg2 for a2 ~ 1.5. However, this scaling is still far from 
saturate the analytic estimate. Figure 5.1 shows the different power laws just 
discussed. 
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Figure 5.1: Power laws for £max considering different situations: the ana
lytic estimate with exponent a = 3 (dots); I.C. given by the optimizer of the 
instantaneous estimate with exponent a1 = 1.048 (stars) and I.C. given by the 
optimizer of the finite time estimate with exponent a2 = 1.525 (circles). 

At this point, we are in position to discuss the difference in the analytic 
estimate and the one obtained numerically. Notice that in the derivation of 
estimate (2.29), we used an intermediate inequality to obtain an upper bound 
for the term involving the integral of the enstrophy. Referring to section 2.3, 
we used: 

i
t 1 
£(s)ds:S; -/Co· 

o 2v 
If we use the exact value of the integral of the enstrophy instead, i.e. 
(2.25), we would end up with: 

£1/3(t) _ £t /3 :s; 0 1 t £(s)ds = 0 1 [/Co - /C(t)]. 
3 io 6v 

(5.2) 

equation 

(5.3) 

The main difference between this last inequality and the already discussed 
bound for the enstrophy is that we do not know, a priori, how the difference 
in the energy levels scales with the initial enstrophy. If we knew that 

/Co - /C(t) rv £J (5.4) 

for some 0 < '"Y < 1, we could obtain a better estimate for inequality (2.29) 
depending on the value of '"Y. Notice that the analytic estimate assumes the 
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Figure 5.2: Difference in energy levels Ko - K(Tmax) as a function of Eo. The 
exponents of the power laws are 1'1 = 0.4422 for the optimizers of instantaneous 
estimate as I.C. (stars) and 1'2 = 0.5982 for solutions to finite time optimization 
problem as I.C. (circles). 

value I' = 1. Figure 5.2 shows Ko - K(T;nax) as a function of the initial 
enstrophy Eo, where T;nax as defined in equation (5.1). Using least squares 
fitting, we find that I' ~ 0.6, which gives a more accurate a posteriori estimate 
for the difference in energy levels, hence a better approximation for the integral 
of the enstrophy over the time interval. This is, in our opinion, where the 
analytic estimate ceases to be sharp and overestimates the enstrophy growth. 
For comparison purposes, the figure also includes Ko - K(Tmax) for the case 
where the initial condition is the function obtained by Lu as the solution of 
problem 1. 

Figure 5.3 shows the energy of the solutions of problems 1 (instantaneous 
estimate) and 2 (finite time estimate) as a function of the enstrophy, for two 
different instants of time: time t = 0 in part (a), and time t = T;nax in part 
(b). Notice that the solutions associated to the finite time estimate problem 
are closer to satisfy Poincare inequality K(t) :::; CE(t), compared to solutions 
associated to the instantaneous estimate problem. This can be observed from 
the value of the exponent of the power law for each case: TJ1, 81 ~ 0.7 for 
solutions to problem 1, and TJ2, 82 ~ 1 for solutions to the finite time estimate 
problem. 
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Figure 5.3: Energy as a function of enstrophy. (a) JC(O) vs Eo. The expo
nents of the power laws are TJ1 = 0.6774 for solutions to the instantaneous 
optimization problem (stars) and TJ2 = 0.9683 for solutions to finite time op
timization problem (circles). (b) JC(T max) vs Eo: the corresponding exponents 
are 01 = 0.6944 and O2 = 0.9907. 

Finally, table 5.1 summarizes all the power laws we have presented so far. 
For solutions to both the instantaneous and finite time estimate optimization 

• aj (3j () 7Jj ( ) problems we have obtamed Emax rv Eo , ~nax rv Eo , JC 0 rv Eo , JC ~nax rv 

Egj and JC(O) - JC(~nax) rv Ecij , where the index j in the exponent of the power 
law corresponds to the instantaneous (j = 1) or the finite time (j = 2) cases. 

From the information in this table, we can conclude that: 

1. Functions that saturate the instantaneous estimate of the enstrophy 
growth do not saturate the analytic finite time estimate. 

2. By setting up the right optimization problem, i.e. including time evolu
tion, we find functions for which we obtain a larger enstrophy growth, 
but still the analytic finite time estimate is far from being saturated. 

3. A posteriori calculations show that the analytic bound on enstrophy 
growth may be overestimating the decrease in the energy, and that might 
be the reason for solutions of the finite time optimization problem of 
being far from saturating the analytic estimate. 

4. Solutions to the finite time optimization problem are closer to saturate 
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Instantaneous Finite time 
optimization optimization 

problem problem 

Emax a1 ~ 1 a2 ~ 1.5 
~nax f31 ~ -0.6 f32 ~ -0.5 
lC(O) rJ1~0.7 rJ2 ~ 1 

lC(Tmax) e1 ~ 0.7 e2 ~ 1 
lC(O) - lC(Tmax) ')'1 ~ 0.45 ')'2 ~ 0.6 

Table 5.1: Summary of power laws for the two problems: instantaneous esti
mate and finite time estimate. 

Poincare inequality than solutions to the instantaneous optimization pro
blem. 

Regarding further work along the lines exposed in this thesis, we want to 
study the more general setting of Navier-Stokes equation, where we would 
try to establish the same type of power laws and investigate if any of the 
inequalities presented in the introduction is saturated or not. This could, in 
turn, provide some insight to the existence and uniqueness problem that has 
been so elusive for so many years. 
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I Appendix A 

Pseudo-Spectral Method 

The solutions to the direct and adjoint problems given by equations (3.18) and 
(3.19) respectively, are obtained numerically using a pseudo-spectral approach 
(see [3] and [17] for more details). For consistency purposes, both equation 
are stated one more time. The direct problem refers to the solution of Burgers 
equation, given by: 

8tu + u8xu - v8;u =0 (x, t) E [0,1] x [0, T] 

u(x, 0) =¢(x) 

Periodic B.C., 

(A.la) 

(A.lb) 

(A.lc) 

while the adjoint problem is the following linear (in the adjoint variable u*) 
equation: 

8tu* + u8x u* + v8;u* =0 (x, t) E [0,1] x [0, T] 
u*(x, T) = - 8;u(x, T) 

Periodic B.C. 

(A.2a) 

(A.2b) 

(A.2c) 

The periodic boundary conditions suggest that we should use complex 
exponentials as our fundamental basis. To begin with, we state the direct 
problem in terms of Fourier components. If u(x, t) is a solution, then we 
decompose it as: 

u(x, t) = L uk(t)e27fikx 

kE'lL, 
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Substituting this expression in Burgers Equation, we get for every mode in 
the Fourier expansion: 

(AA) 

To solve the problem numerically, we consider only a finite number of 
Fourier modes. In our case, N = 1024 modes were considered, and k E 

[-N/2 + l,N/2]. Notice that, after discretizing, we end up with a system of 
N ordinary differential equations that can be written as: 

y' = Ay + r(y) (A.5) 

where A is a linear diagonal operator and r : jRN -----+ jRN is a nonlinear map. 
It is worth to mention that the non linear term in this equation will not be 
treated completely in the spectral space. Instead, all products of functions are 
performed in real space (thUS avoiding the calculation of convolutions) and 
then transformed to the spectral space. This gives the method its "pseudo
spectral" character. In the calculation of products in real space, the "3/2" 
dealiasing rule described in [13] is used. The parabolic nature of the equation 
calls for the use of an implicit time marching scheme, to avoid the need of using 
time steps restrictively small. However, fully implicit methods are difficult to 
implement on non-linear problems, so we use a semi-implicit scheme. The 
integration in time is performed using a combined Runge-Kutta (explicit for 
the nonlinear part) and Crank-Nicolson (implicit for the linear part) method 
given by: 

(1 - 4~t A) 1 = (1 4~t A) n 8~tr( n) 
15 y + 15 Y + 15 Y (A.6a) 

( ~t) 2 ( ~t) 1 5~t 1 17 ~t n 1 - -A y = 1 + -A y + -r(y ) - --r(y ) 
15 15 12 60 

(A.6b) 

(1 ~tA) n+1 _ (1 ~tA) 2 l~t (2) 17~t ( 1) - - Y - + - y + -r y - --r y 
6 15 6 60 

(A.6c) 

where yn+1 and yn are the solutions at time step n+ 1 and n respectively. It is 
worth to mention that, although the restriction imposed by the diffusive term 
on the size of the time step has been eliminated by the use of the implicit part 
of the numerical scheme, we still have a strong restriction for ~t due to the 
presence of the convective term UUX ' In order for the numerical method to be 
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Figure A.l: Solution to direct problem using RK3-CN method. The plot shows 
both the initial condition (dashed line) and the solution for t=T (solid line). 

stable, it should satisfy the CFL condition U ~! ::; 1, for U = maxxEO u(x, 0), 
thus imposing an upper bound for the time step [3]. For more details on the 
derivation of method (A.6) see [1]. We will refer to this method as RK3-CN. 

The numerical solution of equation (A.2) is obtained following the same 
idea of discretizing in Fourier space. The associated ODE is given by: 

------d(u*) (t) -----------
d: = v(27rk?(u*)k - (uu;)k k E [-N/2 + 1, N/2] (A.7) 

and it is integrated in time using the RK3-CN algorithm described before, -----where the term (uu;) is treated as the nonlinear term in equation (A.6). Notice 
that even though is a linear term, its evaluation requires, V t E [0, T], the 
storage of the velocity field u obtained as the solution of the direct problem. 
For large time intervals, this becomes a very expensive expression in terms of 
computer memory. 

Solutions of the two systems are shown in figures A.l and A.2. The enstro
phy of the initial condition is Eo = 100 and the time window is T = 0.1. The 
initial condition used in the direct problem is the optimizing solution for these 
particular values of entrophy and time window. The viscosity is v = 0.01. 

To test the accuracy of the pseudo-spectral method, we compare the nu
merical solution with the exact solution obtained using the Hopf-Cole transfor-
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Figure A.2: Solution to the adjoint problem using RK3-CN method. The plot 
shows both the initial (t=T) condition (dashed line) and the solution for t=O 
(solid line). 

mation, as described in chapter 2, equation (2.2). To use this transformation, 
we proceed as follows: given u(x, 0) = ¢(x) as the initial condition for Burgers 
equation, we obtain 'IjJ(x, 0) as: 

'IjJ(x,O) = exp { - 211/ lx 
¢(~)d~ } , (A.8) 

and we let it evolve in time according to the heat equation. Using Fourier 
decomposition we let 'IjJ(x, t) = l:kEZ -¢k(t)e27fikx. Then the Fourier coefficients 

-¢k (t) are given by: 
(A.9) 

where -¢k(O) corresponds to the Fourier coefficients of the initial data 'IjJ(x, 0). 
Hence, we can evaluate 'IjJ(x, t) and obtain u(x, t) using equation (2.2). Figure 
A.3 shows the square of the L2 norm of the relative error of the numerical 
solution with respect to the exact solution, for different spatial step size h. 
The initial condition is u(x, 0) = sin(27fx). In theory, the order of accuracy 
should be 0 (,6.t2 + eo:h ) where the exponential term refers to spectral accuracy. 
However, since the method must satisfy a Courant-type condition of the form 
i:lt :s; h/U, U as described before, we have i:lt rv h. Therefore, the order of 
accuracy ends up being O(h2), as can be appreciated in figure A.3. 
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Figure A.3: The order of accuracy of the RK3-CN method is O(h2). 
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Appendix B 

Rescaling in Burgers Equation 

Recall from the discussion in section 4.4.2, we would like to be sure that the 
optimization algorithm converges to a global optimizer. To verify this, we 
initialize it with functions of different wavenumber and compare the corre
sponding optimal initial condition. We would like to demonstrate that if we 
solve Viscous Burgers Equation with two different initial data, one being the 
scaled version of the other, then the solutions to VBE will preserve the spatial 
scaling, provided we enforce the correct time scaling. 

To begin with, consider two different domains n1 = [0,1] and [h = [0,1/ L]. 
Let x E n1 and f;, E n2 · Then x = Lf;,. Let also v(f;" T) = Lu (x (f;,) , t(T)) for 
T = t / L2. Then the following holds: 

OV LOU ot _ L30U 
(B.1) 

OT ot OT - at' 
OV LOU ox _ L20U 

(B.2) -

of;, ox of;, - ox' 
02V 

L3
02U 

(B.3) 
oe ox2· 

If u(x, t) is a solution of Viscous Burgers Equation, then: 

2 1 ( 2 ) 0= OtU + uOxu - vOxu = L3 OTV + vOt;,v - vOt;,v . (B.4) 

meaning that v(f;" T) is also a solution of VBE. The enstrophy associated to 
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Figure B.l: (a) Solutions of VBE in the domains 0 1 = [0,1] (dotted) and (the 
extension of) O2 = [0,1/2] (solid). (b) The two solutions in 0 1 , after rescaling. 

solution u is given by: 

(B.5) 

whereas the enstrophy associated to the extension of v into domain 0 1 is: 

Ev(T) (B.6) 

(B.7) 

(B.8) 

Figure B.1 shows the functions u(x, t) and v(~, T) for L = 2 and t = 0.05. 
The enstrophy of the initial condition associated to u is Eu(O) = 100, which 
sets the enstrophy of the initial data associated to v to Ev(O) = 1600, by the 
rescaling explained before. The solutions agree perfectly in the domain 0 1 

after the rescaling is applied, as shown in part (b). 
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