
CHIRON: MECHANIZING MATHEMATICS IN OCAML

CHIRON : MECHANIZING
MATHEMATICS IN OCAML

By

HONG NI, B.SCIENCE

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements for the Degree of

Master of Science
Department of Computing and Software

McMaster University

© Copyright by HONG NI, August 26, 2009

MASTER OF COMPUTER SCIENCE (2009)
(Department of Computing and Software)

McMaster University
Hamilton, Ontario

TITLE: CHIRON: MECHANIZING MATHEMATICS IN OCAML

AUTHOR: HONG NI, B.Science(University of Toronto, ON, Canada)

SUPERVISOR: Dr. Jacques Carette

NUMBER OF PAGES: xii, 108

11

Abstract

Computer algebra systems such as Maple [2] and Mathematica [12] are good at sym­

bolic computation, while theorem proving systems such as Coq [11] and pvs [9] are

well-developed for creating formal proofs. However, people are searching for a mecha­

nized mathematics system which can provide highly integrated symbolic computation

and formal deduction capabilities at the same time.

My work is to design and implement the basis for a mechanized mathematics

system based on a formal framework, which was previously developed as part of the

MathScheme project at McMaster University. The core idea of the framework consists

of the notion of a biform theory, which is simultaneously an axiomatic theory and an

algorithmic theory, providing a formal context for both deduction and computation.

A mechanized mathematics system which utilizes biform theories to represent

mathematics requires a logic in which biform theories can be expressed. Chiron,

as a derivative of von-N eumann-Bernays-Godel set theory, is the logic we choose

for our MMS development. It is intended to be a practical, general-purpose logic

for mechanizing mathematics and has a high level of both theoretical and practical

expressivity compared to other logics such as Zermelo-Fraenkel (ZF) set theory and

first-order logic (FOL).

The thesis presents the first stage of the development of the MMS. In particular,

III

the type system of the MMS has been fully established along with all necessary

expression constructors for building typed Chiron expressions. Half of the work for

formalizing biform theories in ChiTOn has been implemented by introducing the notion

of name spaces, which is used for exporting the low level implementation of Chiron

transformers. We have experimented with the Chiron representation for expressing

the meaning formulas of Chiron transformers, in particular for boolean algebra and

logical operators in the other half of the work.

IV

Acknowledgements

I would like to first and foremost express my sincere thanks and appreciation to

my supervisor, Dr. Jacques Carette, for his invaluable guidance and insightful

comments. Without his expertise and intellectual support, the development of the

MMS would not have been possible. I truly appreciated all the time and advice he

gave me throughout my graduate studies at McMaster University.

I would also like to thank Dr. William M. Farmer who helped me understand

Chiron and the notion of biform theories throughout the process of developing the

MMS.

My deepest gratitude and thanks go to my family, my beloved father Chunxin

Ni and mother Jianpin Pang, for their endless love, constant support and continuous

encouragements.

Finally, a very special thanks goes out to my lovely and wonderful wife Jie Gao

for her great understanding and patient love. I am thankful for her unconditional

selfless support that allowed me to devote all my time to my professional work over

years.

v

Contents

Abstract

Acknowledgements

1 Introduction

1.1 Contents.

1.2 Naming Convention.

1.3 Fonts

1.4 Contribution.

2 Background

2.1 MathScheme.

2.2 Chiron

2.3 Biform Theories .

2.4 Programming Language Choice

3 Goals

3.1 Design Goals

3.2 Implementation Goals

VI

iii

v

1

1

2

2

3

4

4

5

6

6

8

8

9

CONTENTS

3.3 Design Overview

3.4 Implementation Overview

4 Overview of Implementation

5 Type System

5.1 Values & Expressions.

5.2 Expressions in Chiron

5.2.1 Data Type Choice for Chiron Expression

5.2.2 Symbol

5.2.3 S-Expression.

5.2.4 Proper S-Expression

5.2.5 Improper S-Expression

5.2.6 quoted Term

6 Constructors

6.1 Chiron Types

6.2 builtin Module

6.3 Constructors for Meaning Formulas

7 N arne Spaces

7.1 Transformers in Chiron .

7.2 Implementation Modules

7.2.1 Module Structure

7.2.2 'if in Chiron

7.2.3 Examples .

Vll

10

11

13

18

18

20

20

23

24

25

34

36

41

41

44

46

48

48

50

51

53

54

CONTENTS

7.3 The Kernel Theory

7.3.1 Logicals

7.3.2 Basics

7.4 Libraries ...

7.4.1 A-Calculus .

7.4.2 Natural Numbers

7.5 N arne Space Environment

7.5.1 Name Space Environment Introduction

7.5.2 Name Space Environment Components

7.5.3 Name Space Environment Operations.

8 Run

8.1 Operator Applications

8.2 Validation

8.3 Execution

9 Simplify

9.1 Implementation Module

9.2 Boolean Algebra Simplifications

10 Beta Reduction

10.1 Implementation

10.1.1 Expression Syntax

10.1.2 Redex

10.1.3 Infinite Looping.

10.1.4 Reduce the Redex .

viii

56

57

57

57

57

57

58

58

59

60

64

64

66

67

69

69

71

72

72

73

74

74

75

CONTENTS

10.2 Tests

11 Biform Theory

11.1 Definition .

11.1.1 Biform Theories in Chiron

11.1.2 Rules

11.2 Chiron Representation

11.3 Biform Theory of Peano Arithmetic.

12 Testing : Church Numerals in Chiron

12.1 Chiron Representation ..

12.2 Tests for Beta Reduction.

13 User-defined Transformers

13.1 Compiler.

14 Conclusion

A Compact Notation

B Chiron Types

C Logicals Library

T\ Basics Library .IJ

Bibliography

IX

76

77

77

77

78

79

80

85

86

89

93

93

96

99

101

103

101'::
.LV,",

108

List of Figures

4.1 Core Modules . .

4.2 Special Modules.

1.3 Testing Modules.

5.1 Translator

7.1 Module Structure

7.2 Name Space Environment

B.1 Chiron Types

x

14

16

17

39

51

59

102

List of Tables

5.1 Values & Expressions.

5.2 type symbol

5.3 The keyword of Chiron.

5.4 type sexpression

5.5 Proper Expressions in Chiron

5.6 type proper

5.7 type kind

5.8 type kinded

5.9 type typ ..

5.10 type operator

5.11 type formula

5.12 type term ..

5.13 type unknown.

5.14 type quoted

6.1 type t

6.2 Constructors for type t

6.3 Special Values

xi

19

23

24

25

28

28

30

31

33

33

34

34

34

36

42

42

45

LIST OF TABLES

6.5 Additional Built-In Operators in Chiron

6.4 Built-In Operators in Chiron

10.1 Patterns of El ----*fi E2 may involve a beta reduction

10.2 Substitution .

10.3 Free Variable

11.1 A Series of Axioms for Defining The Properties of Natural Numbers

11.2 More Axioms for The Natural Numbers.

12.1 Natural Numbers

12.2 Compact Notation for Church Numerals in Chiron .

12.3 Testing: Church Representation in Chiron

A.1 Compact Notation

A.2 Additional Compact Notation

C.1 Logicals Library

D.1 Basics Library .

Xll

45

46

73

75

75

82

83

86

89

92

99

100

103

105

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Chapter 1

Introduction

As part of the MathScheme project, we need to design and implement a mechanized

mathematics system (MMS) based a formal framework that integrates and generalizes

symbolic computation and formal deduction. The formal framework wa..s previously

developed as the first goal of the MathScheme project. I am working on the code

implementation of the MMS, based on the logic called Chiron, for my graduate work

supervised by Dr. Jacques Carette.1

1.1 Contents

We start with the Chapter Background which is intended to give you a quick introduc­

tion to both the MathScheme project and the logic, Chiron, used for our mechanized

mathematics system. Then, a general introduction to the notion of a biform theory,

which is the core idea of FFMM2, will be given. Chapter 3 will present both the de-

1 Address: Department of Computing and Software, McMaster University, 1280 Main Street West,
Hamilton, Ontario L8S 4K1, Canada. E-mail: carette@mcmaster.ca.

2 A Formal Framework for Managing Mathematics [6].

1

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

1. Introduction

sign goals and the implementation goals we want to achieve for the first stage of the

development of ChiTOn. This is followed by Chapter 4, which presents an overview

of the implementation for the current version of Chiron system, laying out a general

idea about the overall design of the system in terms of modularizations.

Next, chapters 6 - 11 show the details of the implementation of the system. Then,

in Chapter 12, an interesting experiment on "Church Numerals in Chiron" will be

presented. Lastly, a small compiler is documented in Chapter 13. Finally, the thesis

will be concluded by the Conclusion chapter.

1.2 Naming Convention

Since Chiron is the core logic which is going to be used for our mechanized mathe­

matics system, it becomes the soul of the MMS; the term Chiron in italic face will

be used for the rest of my paper to refer to the MMS we are implementing.

1.3 Fonts

Specail fonts used throughout the thesis are list 8.'3 the following:

• Sans Serif & Bold - Chiron Types [such as type symbol and type formula]

• Slanted & Bold - Module Names [such as types and constructors]

• Italic - Concept Term Emphasized [such as meaning formula and biform theory]

• Bold - Chapter Names [such 8.'3 Goals and Type System]

2

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

1. Introduction

• Typewriter - Code Related [such as a function name "add" and a name of a

variable appears in the code "argument"]

1.4 Contribution

The formal specification of the logic, Chiron, was previously documented in Dr.

William M. Farmer's paper "Chiron : A set theory with types, undefinedness, quota­

tion, and evaluation" [5], which is our main source of documentation for our imple­

mentation of the MM8. Therefore, any definition related to the logic Chiron is quoted

directly from [5], unless otherwise stated. I use phrases such as "Chiron defines ... " ,

" ... from the Chiron paper", in my thesis to refer to the previous work done by Dr.

Farmer in his Chiron paper [5].

Our contribution is the design and implementation of a well-tested program which

realizes this specification. Furthermore, this thesis documents the non-trivial design

choices necessary to implement Chiron safely and efficiently.

3

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Chapter 2

Background

2.1 MathScheme

Computer algebra systems and automated theorem proving systems are two major

types of mechanized mathematics systems (MMSs). Computer algebra systems are

good at symbolic computation, while theorem proving systems are well-developed for

creating formal proofs. However, none of those mechanized mathematics systems can

provide both highly integrated symbolic computation and formal deduction capabili­

ties. MathScheme is a project to develop a new approach to mechanized mathematics

in which computer algebra and computer theorem proving are merged without sacri­

ficing power or soundness. The short-term goals of the MathScheme project are

(1) Develop a formal framework that integrates symbolic computation and formal

deduction.

(2) Design and implement a MMS based on the formal framework.

4

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

2. Background

The long-range goal is to build, on top of the MMS, an interactive mathematics lab­

oratory (IML) that provides an integrated set of tools for facilitating and managing

mathematical reasoning. The IML is intended to have the capabilities of both con­

temporary computer algebra systems and computer proving systems, and the means

to formalize a wide range of mathematical knowledge.

More information about the MathScheme project can be found from its homepage,

at http://imps.mcmaster . ca/mathscheme/.

2.2 Chiron

Chiron [5] is a derivative of von-Neumann-Bernays-Gi::idel set theory that is intended

to be a practical, general-purpose logic for mechanizing mathematics. A theoretically

expressive and practIcally expressive logic is required for a practical, general-purpose

MMS. Traditional theories, such as ZF and NBG set theories, are designed to be used

in theory, not in practice.

By integrating several reasoning paradigms, Chiron has a much higher level of

practical expressivity than traditional logics. As a multi-paradigm logic, Chiron sup­

ports in an integrated manner five reasoning paradigms, namely classical, permitted

undefinedness, set theory, type theory and formalized syntax [4].

A separate formal, complete presentation of the syntax and semantics of Chiron

is given in [5].

5

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

2. Background

2.3 Biform Theories

The notion of a biform theory was first introduced as part of FFMM, a Formal Frame­

work for Managing Mathematics [6] developed as part of the MathScheme project [8]

at McMaster University. The current principal goal of FFMM is to integrate and gen­

eralize computer algebra systems and automatic computer theorem proving systems.

Biform theories is one of the key ideas in FFMM providing a formal context in which

deduction and computation can be merged.

An axiomatic theory represents mathematical knowledge declaratively as a set of

axioms while an algorithmic theory represents mathematical knowledge operationally

as a set of algorithms. A biform theory is simultaneously an axiomatic theory and an

algorithmic theory.

Briefly, a biform theory [1, Definition 2] in a general logic K is a triple T =

(L, r, D), where L is the language of K represented by a set of symbols, D is a set

of transformers for Land r is the set of axioms of T.

See Chapter 11 for an example of a biform theory.

The paper "Biform Theories in Chiron" [3] defines the notion of a biform theory,

gives an overview of Chiron, and illustrates how biform theories can be formalized in

Chiron.

2.4 Programming Language Choice

Objective Caml is the programming language we have chosen for implementing our

MMS. It is a programming language which features strong static typing. If we use

the language correctly, we can take advantage of static type checking to delegate the

6

j
8
~i
!-j

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

2. Background

verification of many of the invariants of the Chiron language to the programming

language itself.

Furthermore, other features, such &s exhaustiveness-checking for pattern-matching

on variant types is very useful. Missing cases and redundant patterns will both

produce a warning message to inform the program of this likely coding error.

Note that, when attempting to hide certain parts of the implementation by using

a private row type (a recent feature of Objective Caml) , we found that this did not

interact very well with polymorphic variant types and sub-typing, and thus we had

to abandon the use of this feature. Unfortunately that also meant giving up on

completely hiding the details of our types.

7

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Chapter 3

Goals

We present both the design goals and the implementation goals we would like to

achieve at the first stage of the development of our mechanized mathematics system.

3.1 Design Goals

(1) Faithful embedding

To embed Chiron expression formation rules into the host programming lan­

guage's type system as faithfully as possible.

(2) Abstract low-level details

To implement an API for bridging the low level Chiron data representation and

the high level user input at the level of data-structures.

(3) Support for transformers and theories

To create name spaces for theories in Chiron to collect the transformers of

theories.

8

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

3. Goals

(4) Support user-defined transformers

To provide tools for users to create their own transformers.

(5) Represent mathematics

To utilize biform theories in Chiron to represent mathematics.

(6) Support for running the Chiron transformers

To have a built-in meta-program for reading and executing operator applications

of Chiron.

(7) Simplification

To have a special transformer to support basic simplifications.

(8) Beta reduction in Chiron

To implement a transformer corresponding to beta reduction for the application

of a function abstraction.

3.2 Implementation Goals

(1) To hide the representation of the Chiron data-structures from the end user.

(2) To have the Chiron built-in operators pre-constructed, for the purposes of both

code simplicity and run time efficiency.

(3) To design and implement the data structure for biform theories (and the name

space environments) in Chiron carefully, so that the notion of biform theories

can be translated precisely from its semantic definition to a code implementa­

tion.

9

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

3. Goals

(4) To design the implementation for the notion of biform theories in a modular

programming style.

(5) To improve the efficiency of the transformers in Chiron at the code level without

affecting the API of the transformers.

(6) To support merging of name spaces, so that a large name space can be con­

structed from small name spaces.

(7) To support module inheritance for modules of biform theories, so that a new

biform theory can be built up from certain parent biform theories.

(8) To create sample transformers which are built on top of the kernel theory.

(9) To have a well-designed testing facility for the development of the MMS.

3.3 Design Overview

We design and implement the type system of the MMS Chiron to embed Chiron ex­

pression formation rules into the host programming language's type system as faith­

fully a.s possible (Chapter 5 : Type System). The API for bridging the low level

Chiron data representation and the high level user input is fully implemented in the

modules of Constructors and Builtin (Chapter 6 : Constructors).

The system supports the creation of name space environments for theories in

Chiron to collect the transformers of theories. Currently, Basics and Logics, are

the two name spaces created for representing the kernel theories of Chiron (Chapter

7: Name Spaces).

10

!
j
!

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

3. Goals

One special transformer, simplify, is built in our system to support basic simplifi­

cations (Chapter 9 : Simplify). Beta reduction is implemented as a transformer to

utilize the transformers of the kernel theories of Chiron to represent the law of beta

reduction in Chiron (Chapter 10: Beta Reduction). The system represents Church

numerals in the Chiron data-structure as a comprehensive testing for the implemen-

tation of beta reduction in Chiron (Chapter 12 : Testing: Church Numerals in

Chiron).

A meta-tool, called run, is implemented for the system to find the transformers

among Chiron expressions and execute them (Chapter 8 : Run) . The creation of

user-defined transformers is supported in our MMS (Chapter 13 : User-defined

Transformers) .

Chiron representation of biform theories is established in our MMS with experi-

mental examples. (Chapter 11 : Biform Theories).

3.4 Implementation Overview

The system is designed and implemented in a modular programming style (Chapter

4: Overview of Implementation).

The code implementation for the type system of the MMS Chiron is hidden from

the end user (Chapter G : Type System). The creation of Chiron expressions can be

done through the constructor functions coded in the Constructors module. For the

purposes of both code simplicity and run time efficiency, Chiron built-in operators

are pre-constructed in the Builtin module (Chapter 6 : Constructors).

For every biform theory T in Chiron, the low level code implementation for the

11

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

3. Goals

transformers of T is implemented in a single module, named as Implementation Mod­

ule. Inside the implementation module, we create submodules to implement the

transformer algorithms in two layers, so that the run time efficiency of the algorithms

gets improved without affecting their APIs. For the purposes of bundling together the

various routines contained in the implementation module, we create a name space for

the named transformers which correspond to these routines in T (Chapter 7: Name

Spaces).

The meta-tool run is implemented by separating the traversal process for finding

the sub expressions of Chiron transformers from the input expression, and the execu­

tion process for running the named transformers (Chapter 8 : Run). Similarly, the

transformer simplify is implemented by separating the traversal process for finding

the sub expressions from the input expression which may require simplifications, and

the code implementations for various simplification algorithm functions (Chapter 9 :

Simplify).

The biform theory data structure in Chiron is designed in the biform module. It is

implemented as collections of lists and hash tables (Chapter 11 : Biform Theories).

A well-designed testing facility for the development of the MMS is included in the

current version of Chiron.

12

-I
-j

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Chapter 4

Overview of Implementation

Chiron is designed in a modular programming style which is a powerful organizing

principle for designing and implementing non-trivial programs. It breaks down the

design of a program into individual components called modules which can be pro-

grammed and tested independently by grouping related sets of code together into a

single module. Modular programming becomes a standard requirement for effective

development and maintenance of programs and projects. This chapter will quickly

go over the overall design of Chiron by introducing the modularization of the imple-

mentation for Chiron.

The two base modules, types and keywords, build the fundamental type system

of Chiron. Since the implementation of Chiron type system needs to be hidden from

the rest of Chiron system and be hidden from end users, both the constructors

module and the builtin module serve' as interfaces between the low level implemen-

tation of the Chiron type system and the user. Users can only build expressions in

Chiron by calling the constructor functions from the la.')t two modules.

13

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

4. Overview of Implementation

~ ~ "l

environment

""'~ ",,, "" ""'"

c ' I:)ire)f~m

Figure 4.1: Core Modules

14

I
I

-1
l

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

4. Overview of Implementation

messages and printers are two modules that provide system messages and

printer services respectively .

• The messages module generates and collects all sorts of system related mes-

sages, such as errors and warnings, and stores them in one organized place.

• The printers module provides standard printing service for the system, and it

should be able to generate output in Ib-TEX form in the future to give both the

developer and the user more readable output.

The data structure called biform is declared for the notion of biform theories,

which is the core idea of FFMM, a Formal Framework for Managing Mathematics [6].

The implementation for the representation of biform theories in Chiron takes two

steps:

(1) The first step is to define the transformer operators 7r in our MMS along with

the implementation of the corresponding transformer algorithm functions 1!-.

Again, the code implementations for the pairs of (7r, 1!-) are coded in an inde-

pendent module for each theory, such as the modules basics, logicals, nats

and lambdacalc. In order to hide the low level implementation from the user,

the environment data structure , named name space, acts as the interface for

exporting the work done in those implementation level modules, so that the

user can access the data of the transformer pair (7r,1!-) without seeing the low

level implementation code.

(2) The next step is to express the axioms of the language as one component of

a biform theory. The axioms of the language are called meaning formulas in

15

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

4. Overview of Implementation

Figure 4.2: Special Modules

Chiron. The modules basics_biE, logicals_bif and nats_bif are created by

extending the work done in first step from the modules of basics, logicals and

nats, with the addition of the corresponding meaning formulas for every pair

of ('if, if) respectively.

Figure 4.2 shows three special modules which deserve to be introduced separately.

The meta-program run is implemented in the module called Run. It does the actual

work of finding the transformers among the expressions and applying the correspond­

ing algorithms to get the instances of the transformers. A simplify gets implemented

in the SimplifY module at a very basic level only for boolean algebra and logic sim­

plifications at this stage. Furthermore, a small compiler from the Compiler module

is used for creating user defined transformers.

Lastly, testing is an important part for any system development. Figure 4.3 lists

the modules related to the testing work. All sorts of testing routines have been

16

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

4. Overview of Implementation

Figure 4.3: Testing Modules

designed in the testbox module, while test_input and tesLsuitRxl are the mod-

ules used for preparing the actual testing data. Then, the test[xJ2 module calls the

testing routines on the testing data to run the tests. A report is generated by the

test]eport module at the end.

IX is replaced by a natural number (x :::: 1) at the code level, such as test~uite_l and
test~uite_2.

2x is replaced by a natural number (x:::: 1) at the code level, such as testl and test2.

17

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Chapter 5

Type System

5.1 Values & Expressions

As a derivative of NBG, Chiron is intended to be an enhanced version of STMM [7],

a conservative extension from NBG under a preserving embedding. Although Chiron

has a much richer syntax and more complex semantics than NBG, the models for

Chiron, M cHr, contain exactly the same values as the models for NBG, MNBG. The

formal specification of Chiron thus starts from the formulation of the fundamental

mapping between the values in NBG set theory and the expressions in Chiron.

Definition 5.1.1 A value can be one of the following: [5, section 2.2]

• set: A set is a class which is also a member of a class.

• class: A class is an element of M NBG. A class is a collection of sets; each class

is a collection of classes in NBG set theory. A class is proper if it is not a set.

• superclass: A superclass is a collection of classes, but need not be a class itself.

18

I
1
I ,

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

• truth value: A truth value is either T representing true or F representing false.

• undefined value: .l is the value of undefined terms.

• operation: A mapping over superclasses, the truth values, and the undefined

value.

The syntax: of Chiron expressions is organized into four kinds of expressions, and

every expression is a tree structure whose leaves are symbols. Symbols of Chiron will

be introduced in the next section.

Definition 5.1.2 Operators, types, terms, and formulas are four special sorts of ex-

pressions.

Definition 5.1.3 An expression is proper if it is one of those four special kinds of

expressions. An expression is improper if it is not proper.

Remark 5.1.4 Proper expressions denotes values; improper expressions do not de-

note anything.

The mapping from Chiron expressions to values is defined by Table 5.1 [5, section

2.3].

Expressions denote Values
Operators ~ Operations

Types ~ Superclasses
Terms ~ Cla.'3ses [Sets, .l]

Formulas ~ Truth values

Table 5.1: Values & Expressions

19

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

5.2 Expressions in Chiron

The two formation rules defined in [5, Chap. 3] inductively define the notion of an

expression of Chiron.

Expr-l (Atomic expression)

sES

expr[s]

Expr-2 (Compound expression)

where n 2': o.

expr[el], ... ,expr[en]

expr[(el, ... ,en)]

5.2.1 Data Type Choice for Chiron Expression

The variant type in OCaml is ideal for the purpose of representing the AST1 of Chiron

expressions. An atomic Chiron expression can be represented by a simple variant while

a compound Chiron expression can be represented by a recursive variant. Recursive

variant types are ideal for representing trees. Since Chiron expressions are categorized

according to their first (leftmost) symbol, the constructor keywords defined in those

variant type variables become the categorizing keywords for all Chiron expressions

naturally.

1 AST _ Abstract Syntax Tree, a finite, labeled, directed tree used in computer science.

20

I
-I
I

~
I

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

Example 1

For a term variable x of type 0: represented in Chiron as

(var,x,o:) ,

we declare a variant type variable as

variable -+ Var of symbol * typ

where Var is the constructor keyword for the variant type variable, and the variant

variable contains two leaves which are the name of the variable [type symbol (Table

5.2)] and the type of the variable [type typ (Table 5.9)].

Finally, we use a technique called tying the knot for creating the Chiron types,

as some of the types are not regular-recursive and we also wish to use polymorphic

variants for subtyping.

Example 2

For a quotation term that denotes the construction that represents an expression e,

it is represented in Chiron as

(quote, e),

we declare it as a subtype of the type term as

21

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

OCaml Code 1 Type declaration for type quote - types.ml

type 'e preterm
[

'Quote of 'e
]

type 'e preproper = ['e preterm I]

type 'e preexpression = ['e preproper I]

type sexpression = sexpression preexpression
and proper sexpression preproper

type term sexpression preterm

Notice that, in the Chiron type system, since type term is a subtype of type

proper and type proper is a subtype of type sexpression, type sex pression can only

be declared if type proper has already been created and type proper can only be

declared if type term has been already created. Therefore, the type declaration for

type term appears before the type declaration for type sexpression at the code level,

and we need to leave a "hole" for sexpression.

Without using a free polymorphic variable 'e, type sexpression, the (eventual)

type of the value e in a quotation term, cannot be part of the type declaration for type

quote which is a subtype of type term since type sexpression has not been created

yet. By leaving this open, we declare the type term as a parametric (polymorphic)

variant type. Later we "tie the knot" by instantiating 'e to type sexpression after

the type sexpression is created. The type declaration of type quote can just use that

parametric value 'e to represent the type of the value e, namely type sexpression in

22

I

I

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

our Chiron type system (OCaml Code 1).

5.2.2 Symbol

Since an expression is a tree whose leaves are symbols, type symbol is the first data

type we create as it will be used heavily in all other type declarations in the type

system of Chiron.

The set of symbols, S, is neither fixed nor well-ordered, but countably infinite.

They are used to classify expressions, identify different categories of expressions, and

name the built-in operators. The implementation of ChiTon declares type symbol

with two constructors (Table 5.2).

constructors values
K keyword
S string

Table 5.2: type symbol

The first constructor for type symbol requires a value of type keyword as part

of its construction, and is used to designate particular distinguished symbols, namely

the keywords of the language. Type keyword is another abstract type we declare in

ChiTOn. Table 5.3 lists all the keywords that are included in the current version of

ChiTon. This table is an extension of the table [5, table 1].

23

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

op type formula op-app var
type-app dep-fun-type fun-app fun-abs if
exist def-des indef-des quote eval
set class expr expr-sym expr-op
expr-type expr-term expr-term-type expr-formula In

type-equal term-equal formula-equal not or

all teval feval true false
empty_set undefined and implies definedjn
quasi_equal uint

Table 5.3: The keyword of Chiron.

Type keyword is assembled in a separate module in Chiron for two reasons.

Firstly, since all those symbols will be used heavily for constructing Chiron expres-

sions as the ba."le elements, a special pre-defined type which collects them all can

ensure all leaves of Chiron expressions with these symbols are type safe easily, and

then they can also be extended or modified in one place without having to find and

change them everywhere.

The second constructor for type symbol requires a value of a user string as part

of its construction, so that the size of the Chiron symbols is unbounded by arbitrary

string values.

5.2.3 S-Expression

Definition 5.2.1 An expression is a S-expression (with commas in places of spaces)2

that exhibits the structure of a tree whose leaves are symbols E S.

Since the syntax: of constructing3 a Chiron expression is extensively employed in

2The representation of a S-expression in Lisp is written with its elements separated by whitespacej
while an expression in Chiron paper is written with its elements separated by commas.

3 A construction is a set that represents the syntactic structure of an expression.

24

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

the Lisp family of programming languages, the expression in Chiron adopts the name

which is the name used for the expression in Lisp, namely S-expressions. Chiron S-

expressions also adopts the conversion of using prefix notation from Lisp, the leftmost

symbol of the tree for a Chiron S-expression categorizes the type of the expression.

We declares the type sexpression for S-expressions as an enumerated variant type

shown in Table 5.4 :

type

sexpression

subtype
proper
unknown

Table 5.4: type sexpression

i.e., an S-expression [type sexpression] is either a proper expression [type proper], or

an improper expression [type unknown]. The following two sections introduce the no-

tion of proper expressions and improper expressions in terms of their implementation

in Chiron.

5.2.4 Proper S-Expression

The set of 13 formation rules below, from [5, Chap. 3] defines the notion of a proper

S-expression in Chiron.

P-Expr-l (Operator)

S E S, kind[kl],' .. ,kind[kn+l]
operator [(op, s, k1 , ... ,kn+l)]

25

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

where n 2 o.

P-Expr-2 (Operator application)

operator [(op, s, kl , ... ,kn+1)], expr[el], ... ,expr[en]

p-expr[(op-app, (op, s, kl , .. · ,kn+l), el,·· ., en) : kn+1]

where n 2 0 and (ki = type and type[eiD, (type[ki] and term[eiD, or (ki =

formula and formula[eiD for all i with 1 :s: i :s: n.

P-Expr-3 (Variable)
XES, type [a]

term[(var, X, a) : a]

P-Expr-4 (Type application)

type [a] , term[a]

type[(type-app, a, a)]

P-Expr-5 (Dependent function type)

term[(var, X, a)], type [,6]
type[(dep-fun-type, (var, X, a),,6)]

P-Expr-6 (Function application)

term[j : a], term[a]

term[(fun-app, j, a) : (type-app, a, a)]

P-Expr-7 (Function abstraction)

term[(var, X, a)], term[b : ,6]
term[(fun-abs, (var, X, a), b) : (dep-fun-type, (var, X, a),,6)]

26

I

1

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

P-Expr-8 (Conditional term)

formula[A], term[b : ,6], term[c : ')']

term[(if, A, b, c) : 0]

_ {,6 if ,6 = ')'
where 0 =

(op-app, (op, class, type)) otherwise

P-Expr-9 (Existential quantification)

term[(var, x, a)], formula[B]
formula[(exist, (var, x, a), B)]

P-Expr-10 (Definite description)

term[(var, x, a)], formula[B]
term[(def-des, (var, x, a), B) : a]

P-Expr-ll (Indefinite description)

term[(var, x, a)], formula[B]
term[(indef-des, (var, x, a), B) : a]

P-Expr-12 (Quotation)

expr[e]
term[(quote, e) : (op-app, (op, expr, type))]

P-Expr-13 (Evaluation)

term[a], kind[k]
p-expr[(eval, a, k) : k]

27

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

Proper expressions can be categorized into four different kinds according to the

mapping relations shown in Table 5.1. Chiron creates four variant types [operator,

typ, term and formula] to represent the four sorts of proper expressions [operator,

type, term and formula] respectively. Table 5.5 extends Table 5.1 to include the

meaning of each mapping in terms of Chiron type system.

Expressions & Values I Chiron Type System

Operators =} Operations A proper expression to which
the type operator is assigned

Types =} Superclasses A proper expression to which
the type typ is assigned

Terms =} Classes [Sets,.l] A proper expression to which
the type term is assigned

Formulas =} Truth values A proper expression to which
the type formula is assigned

Table 5.5: Proper Expressions in Chiron

Proposition 1 The formation rules assign a unique expression to each proper ex-

pression. [5, proposition 3.1]

Namely, a proper expression in Chiron will be one of types of operator, typ, term

and formula with no exception. (Table 5.6)

type subtype
operator
typ

proper term

formula

Table 5.6: type proper

28

I

1

j

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

Most of the type declarations for the four base types, operator, typ, term and

formula are created based on the formation rules straightforwardly, while some of

them are created differently. Details will be discussed in the following three sections.

Type Declaration - Part 1

For a simple case, such as

P-Expr-3 (Variable)
xES, type [a]

term[(var, x, a) : a]

term[·· . : .] shows that a variable in Chiron is a subtype of type term. Hence, we

create type TermVar a.s the subtype of type term to represent variables. [(var, x, a) :

a] shows that a variable needs two pieces of data as its components, x and a, where

x is a symbol for representing the name of the variable (x E S) and a is a Chiron

typ for representing the type of the variable (type[a]). As a result, we have the type

declaration for Chiron variables as TermVar of symbol * typo

The above approach can be used for creating a series of Chiron types ba.sed on the set

of 13 formation rules with the exceptions for P-Expr-l, P-Expr-2 and P-Expr-13.

We need to introduce type kind and type kinded before creating the Chiron types

which correspond to those three formation rules.

Type Declaration - Part 2

type kind

Kinds are the expressions assigned to types, terms and formulas. A proper ex-

pression e is said to be an expression of kind k if [5, Chap. 3]

(1) k = type and e is a type, or

29

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

(2) type[k] and e is a term of type k, or

(3) k = formula and e is a formula.

Therefore, the type declaration for type kind is composed of three constructors to

reflect the three cases shown in the definition above. (Table 5.7)

constructors values
KType

KFormula
Kind type

Table 5.7: type kind

Instead of using type typ as part of the type declaration for representing an expression

of kind type, we use a type value KType to indicate that an expression is a type in

general. A proper expression e is said to be an expression of kind type as long as

e is a type, the exact type of e is irrelevant. Similarly, KFormula is created for

representing an expression of kind formula if the expression is a formula. However, if

the expression is a term of type k, the type declaration for representing an expression

of type[k] needs to include the exact type k as part of its declaration. We use a type

value Kind to start the type declaration for representing kind type[k] follow by a typ

value to include the exact type k.

type kinded

Type kinded is created in addition to type kind to include the expression that

is categorized by type kind as part of its declaration. The type declaration for type

kinded is prepared by adding one component to each type declaration shown in Table

5.7 for storing the expression it points to. (Table 5.8)

30

I
I

j

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

constructors values
KDType type

KDFormula formula
KDTerm term * typ

Table 5.8: type kinded

Type Declaration - Part 3

By having both type kind and type kinded be declared, we create the Chiron types

which correspond to the formation rule P-Expr-l, P-Expr-2 and P-Expr-13 as

the following.

P-Expr-l (Operator)

where n;::: O.

s E S, kind [k1], ... , kind [kn+l]
operator [(op, s, k1 , ... ,kn+l)]

An operator is composed of a symbol for representing the name of the operator

and n + 1 kinds for representing the kind for both the inputs (n inputs) and the

output (1 output). Since n is unknown, we use list data structure to represent the

collection of the n + 1 kinds. Instead of using a single list to collect all the n + 1

kinds, we declare the type operator to have one list for collecting the first n kinds

and one single component to include the last kind. Thus, the type declaration for

Chiron operators is Operator of symbol * kind list * kind.

31

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

P-Expr-2 (Operator application)

operator [(op, s, kl , ... , kn+1)], expr[el],'" ,expr[en]

p-expr[(op-app, (op, s, kl, ... , kn+1) , el, ... ,en) : kn+l]

where n ~ 0 and (ki = type and type[ei]), (type[ki] and term[ei]), or (ki = formula

and formula[ei]) for all i with 1 :s; i :s; n.

Since p-expr[· .. : .] does not tell which base type an operator application should

belong to, an expression of an operator application can be a type, a term of type a,

or a formula. We create three Chiron types, one for each case, namely

• TypeApplyTerm of symbol * kinded list

• ApplyTerm of symbol * kinded list * typ

• FApplyTerm of symbol * kinded list

The symbol occuring in those type declarations is used for representing the name of

the operator application. We use a list of type kinded to store the input expressions

of the operator application, so that, not only the input expressions, but also the

types of the input expressions can be extracted directly under such declaration. In

particular, a typ value is needed as part of the type declaration for a term type

operator application to represent the type of the return value.

P-Expr-13 (Evaluation)

term[a], kind[k]

p-expr[(eval, a, k) : k]

Similar to the approach used for P-Expr-2, we create three Chiron types to map

32

I

I
I
I

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

formation rule P-Expr-13 to the Chiron type sytem. Since the expression e involved

in the type P-Expr-13 (Evaluation) denotes the construction that represents an

expression, the type declaration for an evaluation takes the expression e directly as

part of its declaration to keep the construction.

• TEval of sexpression

• Eval of sexpression * typ

• FEval of sexpression

The type declarations of those four base types, operator, typ, term and formula,

are shown in table 5.9, table 5.10, table 5.11 and table 5.12, respectively.

constructors values
TypeBase symbol

TypeApplyTerm symbol * kinded list
TypeApp typ * term

TypeDepFun symbol * typ * typ
TEval sexpression

formation rule

P-Expr-2 (type typ Operator application)
P-Expr-4 (Type application)
P-Expr-5 (Dependent function type)
P-Expr-13 (typ Evaluation)

Table 5.9: type typ

constructors values formation rule
Operator symboi * kind list * kind P-Expr-l (Operator)

Table 5.10: type operator

33

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

constructors values
FBase symbol

FApplyTerm symbol * kinded list
FExists symbol * typ * formula

FAll symbol * typ * formula
FEval sexpression

formation rule

P-Expr-2 (type formula Operator application)
P-Expr-9 (Existential quantification)
P-Expr-9 (Universal quantification) extension
P-Expr-13 (formula Evaluation)

Table 5.11: type formula

constructors values
TermBase symbol

ApplyTerm symbol * kinded list * typ
Term Var symbol * typ
FunApp term * term
FunAbs symbol * typ * term
IfTerm formula * term * term

DefDescr symbol * typ * formula
IndefDescr symbol * typ * formula

Quote sexpression
Eval sexpression * typ

Construction unknown

formation rule

P-Expr-2 (type term Operator application)
P-Expr-3 (Variable)
P-Expr-6 (Function application)
P-Expr-7 (Function application)
P-Expr-8 (Conditional term)
P-Expr-10 (Definite description)
P-Expr-11 (Indefinite description)
P-Expr-12 (Quotation)
P-Expr-13 (term Evaluation)
unknown term Construction

Table 5.12: type term

5.2.5 Improper S-Expression

An expression is improper if it is NOT one of the four special kinds of expressions. We

declare the type unknown as shown in Table 5.13 to represent improper expressions.

constructors values
US symbol
UE sexpression list

UInt int
UUniv Universal Type

Table 5.13: type unknown

34

I
I
j

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

There are four subtypes under the type unknown in the current version of Chiron.

The first two are officially defined in the Chiron paper [5] for defining the notion of

an expression of Chiron while the later two are experimental, being investigated

currently.

(1) US of symbol

This is created based on the formation rule Expr-l (Atomic expression)

defined in Chiron paper [5].

Expr-l (Atomic expression)

s E S
expr[s]

An atomic expression which only contains a symbol value is an improper ex-

pression of Chiron.

(2) UE of sexpression list

Again, this is created based on the formation rule Expr-2 (Compound ex­

pression) defined in Chiron paper [5].

Expr-2 (Compound expression)

where n;::: o.

expr[el], ... ,expr[en]

expr[(el, ... , en)]

A compound expression that is a collection of Chiron expressions is an improper

expression of Chiron.

35

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

(3) UInt of int

Basically, this experimental type is used particular for representing integers in

Chiron for the Nats library. For any integer n, the Chiron data structure of the

form (Ulnt, n) is used in Chiron as its Chiron representation. The int library

used in Chiron's implementation directly uses the built-in Int32 module from

OCaml built-in libraries.

(4) UUniv of t, where t is a universal type.

Universal type will be supported in the future to make the type system of

Chiron flexible and extensible. Chiron should be able to extend its built-in

type system either by the developers who can design their own type modules

whenever convenience for their mathematical needs, or by users who can easily

load any particular type module any time they want from a pre-coded universal

type library provided by the Chiron system, but not pre-loaded for a standard

bootup of the system.

5.2.6 quoted Term

Type Declaration

Type quoted, a special type for quoted terms, is defined as in Table 5.14 :

constructors values
Quote sexpression

Table 5.14: type quoted

The constructor Quote, which has one argument value of type sexpression, is also

36

I

j
j

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

one of the constructors that is used in the type declarations for the subtypes of type

term; a S-expression of type quoted is essentially a subtype of type term. Namely,

the coercion, (quoted :> term), is valid in ChiTOn.

Purpose

Type quoted is created particularly both for

(1) Code simplicity: to avoid all kinds of inefficient code used mainly for type

checking and coercions required all over the system for the purpose of appeasing

the OCaml compiler.

(2) Concept clarity: to make quoted terms stand out from all other sorts of terms.

For fairly large amounts of code in the current version of Chiron, the implementation

of transformer functions needs to ensure that both the inputs and the output should

be quoted terms. Without the creation of type quoted, the signature of all the

transformer functions appear to just take term type inputs and return term type

output generally, and then, Chiron needs extra efforts both for the input checking to

ensure that all the arguments are properly quoted and the output coercion to ensure

that the output value should again be quoted strictly. For instance,

Example 3 f is a transformer that takes one input and returns one output.

Pseudocode

f (input: term) =

if (input is a term which is properly quoted) then

37

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

else

do something for the expression inside the quotation, say e.

get the instance of e, e_inst, according to the semantic of the transformer, f

return output, which is r e_instl.

do nothing, return as it is

By having the existence of the special type quoted, the signature of all those

transformer functions could specify the types for both the inputs and the output

to be quoted terms precisely. The code shown in the previous example would be

simplified as

Example 4 f is a transformer that takes one input and returns one output.

Pseudocode

f (input: quoted) =

do something for the expression inside the quotation, say e.

get the instance of e, e_inst, according to the semantic of the transformer, f

return output, which is r e_instl.

Thanks to the type checking provided by the OCaml compiler, the type validation

on the inputs will be checked at compilation time automatically. As long as the code

for constructing the Chiron expressions is correct by passing through the OCaml

38

I

I
-j

~
I

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

User Input expression Chiron expression

e fe7

Figure 5.1: Translator

compiler without errors, we ensure the correctness on the type of the inputs for all

those transformers for free.

When to Quote

When users are writing their expressions at the front end of the MMS, a translator for

translating user inputs from the GUI to Chiron recognizable expressions, will quote all

the arguments for any expression of an operator application automatically. Because

of that, when Chiron runs 4 on the resulting expressions, it is able to apply properly

the transformers which correspond to those operator applications with quoted terms

as their arguments.

Question:

Why does the job of appending those quotations (r 1) need to be done during the

translation step? Is it reasonable to do it during the run procedure instead?

4 Run is a meta-program in the MMS for actually running the transformer which correspond to
an operator application for Chiron expressions. See Chapter 8 : Run for details.

39

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

5. Type System

Answer:

From Figure 5.1, we can easily see that there is no quotation around any expression,

e, which is entered by the user from some form of GUI to be developed in the near

future. The meaning of a quotation should definitely be understood below the end

user level. We should not expect end users to routinely require special annotations

for quotation around their input to indicate that the input is to be understood (by

the system) first as a syntactic expression.

On the other hand, all expressions which are assumed to be valid in Chiron need

to be properly quoted. This is an assumption made by Chiron. Therefore, whenever

Chiron detects an operator application, quotations need to be there as the prerequisite

for all expressions involved in the operator application.

As a result, the job of appending these quotations to the expressions at the user level

needs to be done in between the GUI and our MMS automatically and silently; that

is where the translator belongs. The translator finds all expressions that are parts of

some operator application, and puts the quotations around the expressions.

Now, it is easy to answer the second half of the question. Since run is a Chiron

internal meta-program, it assumes that all valid expressions are properly quoted.

Therefore, it is more useful to have the translator at the user-interface level than at

the "run" layer.

40

-1 -j

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Chapter 6

Constructors

The implementation details of the embedding of Chiron terms as OCaml terms should

be hidden from the end user to prevent all kinds of unexpected harm to the system.

The system should build a black box for bridging the gap from the underlying Chiron

type system to the actual syntax representation of Chiron expressions. The module

Constructors is created for this purpose. Whenever an arbitrary type of Chiron

expression needs to be constructed, a corresponding function call for expression of that

type from the Constructor module should be available to construct the expression in

the Chiron syntax; all the necessary type checkings for every element of the resulting

expression will be done by the constructor functions.

6.1 Chiron Types

Constructors for the type system of Chiron can be prepared simply by creating func-

tions of the following form :

Suppose t is an elementary type in Chiron, defined as follows:

41

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

6. Constructors

constructors values
contLoLt1 Vll, V12, ... ,Vln

contLoLt2 V21, V22, . .. ,V2n

Table 6.1: type t

Then, the set of constructor functions for type t will be coded as :

constructors values
contr _oLtl Vll, V12, . .. ,Vln

contLoLt2 V21, V22,' .. ,V2n

constructor functions
f(Vll, V12," . ,Vln) = contLoLt1(Vll, V12,'" ,Vln)

f(V21, V22," . ,V2n) = contLoLt2(V21, V22," . ,V2n)

Table 6.2: Constructors for type t

Next, we use the type formula as an example to show the creation of the con-

structors for Chiron types. This is declared in Chiron as the following :

OCaml Code 2 type formula - types.ml

type 'e formula =
['FBase of symbol
I 'FApplyTerm of symbol * 'e prekinded list
I 'FExists of symbol * 'e pretyp * 'e preformula
I 'FAll of symbol * 'e pretyp * 'e preformula
I 'FEval of 'e]

Therefore, the set of constructors for the type formula is given by :

42

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

6. Constructors

OCaml Code 3 constructors for formula - types.ml

let form_base (s:symbol) = 'FBase s

let apply_f ('Operator (s,kl,k):operator) (el: sexpression list) : formula
if k <> KFormula then

failwith (Printf.sprintf "Applying a non-formula operator (%s)
and expecting a formula" (to_string s))

else if List.length kl <> List.length el then
failwith "Applying operator to expression with different lengths"

else
'FApplyTerm (s, List.map2 kinding el kl)

let exists (x:symbol) (t:typ) (b:formula) = 'FExists (x,t,b)

let fall (x:symbol) (t:typ) (b:formula) = 'FAll (x,t,b)

·let eval_form (e:sexpression) = 'FEval e

For every subtype of type formula, a constructor function is created to build the

corresponding Chiron expression. For all the subtypes in the example of type formula

given, except the subtype FApplyTerm, the arguments of the constructor functions

reflect exactly the components of the type definitions. For instance, the subtype

FAil contains three components in its type definition, namely a symbol, a typ and

a formula. Accordingly, the constructor function for constructing the FAil Chiron

expression takes three arguments, namely a symbol, a typ and a formula. For the

subtype FApplyTerm, the first argument of its constructor takes an operator instead

of a symbol, and the symbol can be extracted directly from the operator argument

by pattern matching.

The above programming approach used for creating constructor functions based on

the type system of Chiron is bijective and total. On the other hand, the type system of

43

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

6. Constructors

Chiron is founded on the 13 formation rules for proper expressions, which are defined

in [5, Chap. 3], along with the addition 4 formation rules for improper expressions

given in the previous chapter, Type System; the mapping between the Chiron type

system and those formation rules, is bijective as well. Furthermore, by proposition 3.1

from the Chiron paper [5], the 13 formation rules assign a unique proper expression to

each proper expression. That is, the resulting Chiron expression, constructed through

the Constructors module, for any unique input proper expression is unique.

6.2 builtin Module

The builtin module is created specially for defining

(1) Useful constructors for constructing elementary values [..1, T, F, empty] used in

Chiron.

Special values such as ..1, T, F, and empty, are expected to be used everywhere in

the Chiron system extremely often. Having them constructed as built-in Chiron

expressions during the initialization bootup process, can reduce both the com­

pilation time and the running time of Chiron, since the low level constructions

of those base expressions just need to be done once inside the built-in module

during the compilation time.

Table 6.3 lists the special values constructed in the current version of Chiron and

the corresponding variable names [types.ml] used at the OCaml implementation

level.

44

I

I

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

6. Constructors

values variable names type

-'- undefined term
empty empty_set term

truef term
T

sexpression true_exp
falsef term

F
false_exp sexpression

Table 6.3: Special Values

(2) Built-in operators defined in Table 2 of [5].

Table 6.4 lists the corresponding variable names [types.ml] coded in Chiron for

all those built-in operators.

(3) Operators in addition to the 15 pre-defined built-in operators. Table 6.5 lists

the corresponding variable names [types.ml] coded in Chiron for all these extra

operators.

Built-In Operator
(op, formula-and, formula, formula, formula)
(op, formula-implies, formula, formula, formula)
(op, defined-in, (op-app, (op, class, type)),

type, formula)
(op, quasi-equal, (op-app, (op, class, type)),

(op-app, (op, class, type)),
type,
formula)

Variable Name in OCaml

formula_implies

quasLequal

(op, is-empty-set,(op-app,(op, c1ass,type)),formula) is_empty_set

Table 6.5: Additional Built-In Operators in Chiron

45

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

6. Constructors

Built-In Operator Variable Name in OCaml
(op, set, type) set
(op, class, type) clas
(op, expr, type) expr
(op, expr-sym, type) expLsym
(op, expr-op, type) expr_op
(op, expr-type, type) expLtype
(op, expr-term, type) expr_term
(op, expr-term-type, expr _term_typ

(op-app, (op, expr-type, type)), type)
(op, expr-formula, type) expr _f ormula
(op, in, (op-app, (op,set, type)), in_op

(op-app, (op, class, type)), formula)
(op, type-equal, type, type, formula) type_equal
(op, term-equal, (op-app, (op, class, type)), term_equal

(op-app, (op, class, type)),
type,
formula)

(op, formula-equal, formula, formula, formula) formula_equal
(op, not, formula, formula) formula-.not
(op, or, formula, forumla, formula) formula_or

Table 6.4: Built-In Operators in Chiron

6.3 Constructors for Meaning Formulas

The language L, which is one of the components in a biform theory! T = (L, r, .0),

is a set of symbols. Each symbol is either the name of a concept of T or the name of

a transformer of T. (.0 is the set of transformers of T.) Both the concepts and the

transformers of T are represented as operators in Chiron.

r is the set of axioms of T. For every operator in T, there are one or more axioms

to specify the meaning of the operator. Those axioms are also called the meaning

1 For a complete definition, see Chapter 11 : Biform Theories.

46

I
j

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

6. Constructors

formulas of T.

The meaning formulas firstly specify the type of the inputs required for the op-

erator, and then express the meaning of the operator in the form of A == B, where

A is used to represent the expression of the operator application and B explains the

actual meaning of the operator.

A simple example is :

tie: E. (is-p-expr :: E, formula)(e) ==

e 1 Eap Vel Ety Vel Ete Vel Efa .

The meaning formula first specifies the type of the input as E, namely a Chi ron

expression. The formula "(is-p-expr :: E, formula)(e)" on the left hand side of the

formula equlity represents the expression of an operator application for the operator

is-p-expr. The right hand side "e 1 Eap Vel Ety Vel Ete Vel E fa" explains the

actual meaning of the is-p-expr operator application, namely a Chiron expression is

a proper expression if and only if it is an operator type Chiron expression, or a typ

type chiron expression, or a term type Chiron expression, or a formula type Chiron

expression.

For operators in the kernel theories of Chiron, the constructors of meaning formu-

las are prepared in the Constructors module; and for each (non-kernel) operator in

Chiron, the meaning formula constructor is currently prepared in the same module

where the operator is created. Examples for both cases will be shown in Chapter 7

and Chapter 11.

47

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Chapter 7

Name Spaces

A name space in Chiron is used for bundling together the low level implementations

for the named transformers for each biform theory. This chapter presents the imple­

mentation details for Chiron transformers, followed by a complete introduction to the

notion of name spaces.

7.1 Transformers in Chiron

Deduction and computation rules are represented in Chiron as algorithms called

transformers, which are intended to be expressions transforming algorithms that

preserve or modify meaning in a prescribed way. A transformer could be an evalua­

tor, a rewrite rule, a rule of inference, a decision procedure, a simplifier, a translation

from one language to another, etc.

In Chiron, let L be a language of Chiron. An n-ary transformer II in L is a pair

(1f, i), where

It 1f is an n-ary operator (8 :: E, ... , E) in L (with E occurring n + 1 times), and

48

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. Name Spaces

s is a symbol used to represent the name of the operator.

• ir is the corresponding algorithm of the transformer.

(1) Operators

Operators denote operations. Basically, the definition of an operator specifies

the name of the transformer and the signature of the transformer function. An

operator in Chiron is not meaningful for evaluation unless it is applied with

proper inputs; an operator application can be evaluated by the meta-program

run which will be discussed in the next chapter.

(2) Algorithm

An algorithm implements a (possibly partial) function f.rr En -----* E, where E is

a set of syntactic entities, the expressions.

As the system keeps growing, not only could the complexity of the relations be-

tween all the operators and algorithms cause difficulty, but also the size of system code

could lower the system maintainability. To have all the transformers implemented in

a single module is definitely a bad system design decision. Instead, we create diflerent

modules for different theories.

In general, there are two types of modules for storing the implementation of all

sorts of transformers :

• Kernel Theory Modules

Built-in operators for Chiron, which are loaded automatically at the startup of

the MMS.

49

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. Name Spaces

• Library Modules

Non-built-in operators, defined on top of the built-in operators from kernel

theories. In the future, libraries can be loaded at the request of users after the

system is booted.

For each kernel theory module or library module, Chiron collects and organizes the

code level implementation for the operators and the algorithm function routines of the

transformers corresponding to the operators into a name space which is implemented

by using a special data structure, called an environment. It acts as the interface for

exporting the transformers, which are implemented inside the module, to the rest of

the system in a clean and organized way. Because of that, we also call a kernel theory

module or a library module an Implementation Module.

7.2 Implementation Modules

In the current version of Chiron, there are two kernel theory modules, called Basics

and Logicals. In addition, there are two libraries. One library, called lambdacalc,

currently contains only one transformer, which is a simple version of beta reduction;

the other library, called Nats, is an experimental module for the theory of the natural

numbers, implemented at a very basic level.

50

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. Name Spaces

7.2.1 Module Structure

I mpl ementation
module

.:1,£((

transfOrmer
formulation

name space
environment

Figure 7.1: Module Structure

The implementation structure for building a kernel theory or a library contains five

parts:

(1) Operator definition

Creates the operator S-expression, E ap , based on the semantic definition of an

operator.

(2) Constructors for meaning formulas

Creates the constructor function used for expressing the meaning formulas of

the transformer.

51

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. Name Spaces

(3) Transformer function

Creates the function call for the transformer algorithm fr.

fr firstly checks to see if all the inputs of the transformer function are in type

quoted. i.e. as-expression e needs to be properly quoted so that it denotes

the syntactic meaning of e and is thus always defined. If any of the input

expressions fails the "quotation" checking, the transformer function basically

does nothing and simply returns the input expression as its output. In the

case of success, fr calls a proper algorithm routine written in the algorithm

implementation submodule of the current module to generate the output of the

x.

(4) Algorithm implementation

Creates the function call in a submodule of the main module for the algorithm.

The implementation written in this submodule can concentrate mainly on the

efficiency of the implementation code without worrying about all sorts of type

coercions required as a regular Chiron function.

(5) Transformer formulation

Creates the Chiron transformer pair (x, fr) .

Each pair of (x, fr) represents one Chiron transformer, which is one of the two

components of a rule in a biform theory; the second component of a Chiron

rule is a rule-less formula, called the meaning formula. The constructions of

meaning formulas will be presented in Chapter 11.

52

I
=1

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. Name Spaces

7.2.2 7r in ChiTon

Notice that there is one minor difference between the formal definition of a 1f and the

1f here at the implementation level of a theory in Chiron. The 1f defined in the formal

specification of Chiron is a symbol for representing the name of the operator, the 1f

here, however, is an operator

which in fact contains more information than just the name of the operator, since the

symbol s is the part of the operator 0 that serves as the name of the operator.

The reason for this modification at this level of implementation is that the name

space environment for exporting the implementation of the theory module needs to

include all the data information the module has. For any transformer II, clearly, the

algorithm function 'if must be part of the information included in the environment.

Secondly, the operator definition for the transformer algorithm 'if needs to be collected

as well for exporting. Instead of just passing the name of the operator s, we decided

to pass the whole definition of the operator to the environment to formalize the name

space environment.

This is not going to affect the original understanding of the formal specification

of II = (1f, 'if) for the rest of system, since the name space environment eventually

creates three different kinds of pair relations for exporting, while one of those pair

relations reflects exactly the original meaning of II. Details will be shown in the

N arne Space Environment section of this chapter.

53

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. Name Spaces

7.2.3 Examples

Next, we present an example that goes through these five steps.

Conjunction

Operator: (and_e:: E, E, E)

Definition:

Step 1 Operator definition

OCaml Code 4 Operator Definition of the and_e operator - logicals.ml

The function build creates the S-expression Eop of type operator in the form of

(and_e :: E, E, E) according to the definition of the operator and_e.

Step 2 : Constructors for meaning formulas

This constructor builds the expression which is going to used for expressing the

meaning formula for the and_e transformer as [11]fo !\ [h]fo'

54

I

-I
I

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. Name Spaces

OCaml Code 5 Constructors for meaning formulas - types.ml

let andf (f1:formula) (f2:formula) : formula =
apply_f Builtin.form_and (map lift [f1;f2J)

Step 3 : 'Iransformer function

OCaml Code 6 Transformer function for the and_e operator - logicals.ml

let fn_and_e (el : quoted list) : quoted =
Impl.two_args el K.And

The transformer function fn_and_e is quite simple. It just calls the algorithm

function two_args, which is coded in the implementation module, to perform the

algorithm for the transformer and_e.

Step 4 : Algorithm implementation

OCaml Code 7 Algorithm implementation for the and_e operator - logicals.ml

let two_args (el : quoted list) (op : K.keyword) : quoted =
let (e1,e2) = check_length2 el in
let res =

match (C. unquote e1, C.unquote e2, op) with

I ((#formula as f1), (#formula as f2), K.And)

in C.quote (C.lift res)

The algorithm implementation of the transformer and_e is basically to construct

the expression of an and_e operator application with two input expressions of type

55

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. Name Spaces

formula as its arguments, so that the output expression of the and_e transformer can

be evaluated once it gets to the transformer simplify.

Step 5 : Transformer formulation

OCaml Code 8 Transformer formulation for the and_e operator - logicals.ml

let 11 = [

(and_e, fn_and_e);
]

let logical create "logical" LogicalLib.11 []

The list 11 of the OCaml Code 8 is used to collect all the pairs of II = Crr, if)

in the module. The pair (and_e, fn_and_e) is the one for this example. Then all those

pairs will be added into the name space, named as logical created particular for this

module, during the creation process of the name space environment.

7.3 The Kernel Theory

Section 6 of the formal specification of Chiron [5] lists and defines the fundamental

operators of Chiron in three different categories, namely the logical operators, syntac-

56

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. Name Spaces

tic operators and set-theoretic operators. To form the kernel theory, we implement

the first two categories by creating the modules Logicals and Basics, respectively.

7.3.1 Logicals

The module Logicals is the implementation module for the basic logical operators,

which are defined in section 6.1 of [5]. In addition, we extend the Logicals with some

other useful operators.

Table C.1lists the operators currently implemented in Chiron.

7.3.2 Basics

We create the Basics module for holding the implementation for the syntactic oper-

ators, defined in section 6.3 of [5].

Table D.1lists the operators currently implemented in Chiron.

7.4 Libraries

7.4.1 A-Calculus

The library, lambdacalc, currently contains only one transformer, which is a simple

version of beta-reduction. Details will be discussed in Chapter 10.

7.4.2 Natural Numbers

The Nats library is an implementation for the theory of the natural numbers at a

very basic level.

57

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. Name Spaces

7.5 Name Space Environment

7.5.1 Name Space Environment Introduction

For any pair of II = (1r, 11-), the operator 1r and the algorithm function 11- are im­

plemented independently of each other in one module, without being connected by

any kind of data structure. A Name Space, implemented by a special data structure

environment, is created for the purpose of bundling together the various routines con­

tained in an implementation module. We create separate name spaces for the named

transformers corresponding to these routines. It also provides all the fundamental

utilities for manipulating and maintaining the underlying implementation module.

Therefore, the name space for a kernel theory (or a library) serves as the interface for

the implementation module by exporting the low level implementations of transform­

ers to clients. Furthermore, it can be extended to a biform theory in a way that not

only makes the code clean syntactically at the implementation level, by implementing

the idea of a biform theory with several different layers gradually, but also makes the

semantic meaning of the notion of a biform theory clear to both the developer and

the user.

58

I
1

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. Name Spaces

7.5.2 Name Space Environment Components

Figure 7.2: Name Space Environment

There are three elementary data elements in a Chiron name space environment.

Since a name space serves as the interface for exporting the implementation of the

transformer il, two of these data elements are the algorithm 7f that implements

the (possibly partial) function A : en ----+ e and the symbol s that serves as a

name for the algorithm 7f. In addition, we include the operator type expression

o = (op, s, k1 , ... ,kn+l), which indicates both the name and the signature of the

transformer, as the third data element for a name space.

Instead of putting those three data elements into three separated meaningless lists,

we organize them into three binary relations, for the purpose of providing three sorts

of search methods the user might want to use.

59

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. Name Spaces

(1) (symbol --+ it)

One of those three kinds of binary relations is the one originally defined in the

formal specification of Chiron as II = ('if, it), namely, a user can search for the

algorithm function it by giving the name of the transformer.

(2) (symbol --+ operator)

Secondly, the operator, which contains not only the symbol s for representing

the name of the transformer but also the number of typed arguments required

by the transformer, can be retrieved by giving the name of the transformer s,

as well.

(3) (operator --+ it)

Lastly, the algorithm it can be looked up by providing the operator expression.

These have been coded into three hash tables, as shown in OCaml Code 9, de-

fined as types in the system with the name named_algorithms, named_operators

and op_algorithms.

OCaml Code 9 Hashtables For Pair Relations - environment.ml

type named_algorithms (symbol algorithm) Hashtbl.t
type named_operators (symbol operator) Hashtbl.t
type op_algorithms (operator, algorithm) Hashtbl.t

7.5.3 Name Space Environment Operations

add Add a new transformer entry to the environment

60

I
I
I

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. N arne Spaces

OCarnl Code 10 Add a new transformer entry to the environment - environment.ml

let add (e:environment) ('Operator(sy,kl,k) as op) (tr : algorithm) : unit
if (List.for_all (fun x -> x = B.expr_kind) (k: :kl)) then

(Hashtbl.add e.operators sy op;

else

Hashtbl.add e.algorithms sy tr;
Hashtbl.add e.trans_from_oper op tr)

failwith IITransformer Operator should
take and return Expressionsll

The add function is used for adding new name space entries. It needs three pieces

of information, namely the three data elements [operator, algorithm and symbol in

Figure 7.2], to complete an insertion operation. Two of them, the operator expression

and the algorithm function, are actually the input arguments of the Add function.

The last elementary data, which is the symbol to represent the name of the operator,

can be easily extracted from the operator expression by using the pattern matching

feature of OCaml on the second component of an operator expression. Since the data

structure of an environment is created with three hash tables to hold the three sorts

of pair relations introduced in the previous section, the insertion operation can be

done by just calling the built-in add routine provided by the hash table module of

OCaml to insert these three pairs of data into the three hash tables accordingly.

lookup : Lookup name space elements

There are three sorts of lookup tools available in Chiron, one for each pair relation

defined at the beginning of this section on page 59.

• Given the name (type symbol) of the operator, return the algorithm ir (type

61

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. Name Spaces

algorithm).

• Given the name (type symbol) of the operator, return the operator expression

(type operator).

• Given the operation expression (type operator), return the algorithm if (type

algorithm) .

merge : Merger of two name spaces

Name Space Mergence can be useful in the following two situations:

• Users may want to use the merge tool to either create a larger name space on

top of two existing name spaces, or extend an existing name space by importing

other name spaces into the current name space. The former case needs a new

name for the new larger name space, while in the latter case, one keeps the old

name of the current base name space.

• The system itself may want to create a transformer pool of a certain size at

some point to automatically merge the related transformers from different name

spaces into a single name space for various purposes. For instance,

OCaml Code 11 Mergence of two name spaces - testbox.ml

let fundamental_env =
Environment.merge Basics.basic Logicals.logical "fundamental"

we merge the name space environments of Basics and Logicals to a new name

space environment called fundamental, which is the name space for the kernel

62

I
I

-1
I

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

7. N arne Spaces

theory of Chiron.

63

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Chapter 8

Run

This chapter presents one important meta-program developed for our MMS, called

run, which is used for processing inputs of Chiron expressions with two tasks :

(1) Check if all sub S-expressions of operator applications occuring in the input

expression are known to the system.

(2) Run the named transformers associated with those known operators.

8.1 Operator Applications

Operator applications in Chiron are defined by the formation rule P-Expr-2 (Op­

erator application) from the Chiron paper [5, chap. 3] as below,

P-Expr-2 (Operator application)

operator[(op, s, kl' ... ,kn+l)], expr[el], ... ,expr[en]

p-expr[(op-app, (op, s, kl , ... , x;'+l), el,···, en) : kn+l]

where n ~ 0 and (ki = type and type[ei]), (type[ki] and term[ei]), or (ki = formula

64

I

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

8. Run

and formula[eiD for all i with 1 :S i :S n.

Based on the type system of Chiron, the Constructors module provides three

different constructors for constructing expressions of operator applications, which

are TypeApplyTerm, ApplyTerm and FApplyTerm1 , for different types of operator

applications of type typ, type term and type formula respectively. The type of an

operator application is decided by the type of the output, namely the kind of kn+12

in the fomation rule P-Expr-2 (Operator application).

However, as the kind for the output of a Chiron transformer, kn+1 is always kind

term since all the input expressions and the output expression of Chiron transformers

are of type quoted3 strictly, and type quoted is a subtype of type term as defined in

the type system of Chiron. Therefore, all operator applications in the S-expressions

that are passed to run are under the construction of ApplyTerm 4 since all the ar­

guments of those operator applications, expr [ei] , are really of type term5 , namely

term[ei] for all i with 1 :S i :S n.

In summary, run traverses the tree structure of S-expressions in pre-order to

find all possible sub S-expressions of term type operator applications. Follow by

a validation procedure for each operator application and a possible execution step if

the validation succeeds.

lSee section: Type Declaration - Part 3, on page 3l.
2See section: Type Declaration - Part 2, on page 3l.
3Page 37.
4 ApplyTerm is the constructor used for building term type operator applications.
5quoted :>term.

65

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

8. Run

8.2 Validation

The validation step is responsible for ensuring the existence of the transformer n in

the name space which is passed as one argument of run. The validation process com­

prises calling the lookup tool provided by the Environment module. The lookup

tool requires two input arguments, which are the name of the operator of the trans­

former and the name of the name space. In particular, the name space with the name

env must be valid in our Chiron system in order to pass the OCaml type checking

system. A name space is valid if it is pre-defined and loaded during the Chiron

initialization process, or it was created previously by the user before the lookup call.

Lookup searches for the pair (op, -iT) in the name space env. -iT is the algorithm

function for the operator with the name op. Since the pair structure is implemented by

using the hash table data structure provided by OCaml from its built-in modules, the

lookup tool is implemented as a simple OCaml function which performs a standard

hash table lookup operation.

If the pair (op, -iT) exists in the name space, env. Lookup returns the corresponding

algorithm function -iT, for the operator with the name op, i.e., the operator is defined

in the name space; and the algorithm function for that operator is coded in the name

space which is about to be called. Otherwise, lookup returns a special OCaml value,

None, to inform the run that the operator with the name op is invalid in the name

space env.

66

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

8. Run

8.3 Execution

The execution step runs only if the validation process is passed for the sub expression

of an operator application. In case of success for the validation process performed

by the lookup tool provided by the Environment module, the algorithm ft for the

operator application is returned by the lookup function call. Since the algorithms

are implemented as OCaml functions, run executes the sub S-expression e of that

operator application by simply calling that algorithm function, ft, with all necessary

arguments provided by e a.s parts of its S-expression construction. The sub expression

e is then replaced by the expression, e', which is the return value of the algorithm

function 1f.

Example:

run e, where e is an expression of a beta_reduce operator application, which can

be expressed in lambda calculus form as (AX. f x) (y).

Beta reduction is implemented as a transformer (beta_reduce, fn_beta_reduce) in the

current version of the ChiTOn system in the lambda calculus theory where beta_reduce

is the name of the operator of the transformer, and fn_beta_reduce is the name of the

algorithm function of the transformer. (Details in Chapter 10 : Beta Reduction)

In this example, run calls the lookup tool to search for the beta reduction

algorithm function from the name space created for lambda calculus. The algo-

rithm implemented as an OCaml function with the name fn_betaJeduce is then re­

turned by the lookup procedure. Run calls the algorithm function fn_beta_reduce

with the argument y which is extracted from e to perform the beta reduction.

67

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

8. Run

Finally, the expression (f y) is returned by the algorithm function as its output.

((Ax. f x) (y) =beta_reductian f y) i.e., the original expression e gets replaced by (f y).

run e ====? e', where e' = f y.

68

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Chapter 9

Simplify

This chapter presents another one of those important transformers developed during

the first stage of the development of the MMS, called simplify (simplify :: E, E),

which is used for simplifying S-expressions by replacing complicated formulas by

simple logically equivalent formulas. Currently, only boolean algebra simplifications

are supported by the system.

9.1 Implementation Module

Simplify traverses the tree structure of input S-expressions in pre-order to find all sub

S-expressions which can possiblely be simplified by Chiron. Then it simplifies those

sub S-expressions and replaces them by the simplified S-expressions.

All simplifications are implemented in a submodule of the Simplify module called

Impl. In this approach, we can not only make the implementation efficient, but also

provide a better module structure for future development.

69

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

9. Simplify

(1) Efficiency

By having the implementations for all kinds of simplifications in a separate

module, we can implement different algorithms by different routines. Since a

complicated simplification algorithm is usually a composition of multiple simple

simplifications, we can implement the routine for a complicated simplification

algorithm by calling those simple simplification routines as parts of its imple-

mentation.

(2) Development

• Simplifications which are of different kinds in terms of semantics may seem

to be similar in terms of their implementation. By creating simplifica-

tion functions in a separate module, we can avoid a lot of possible redun-

dant code for similar simplification implementations. We first create some

generic functions, and then, develop the main simplification functions on

top of these .

• Instead of implementing the simplifications as parts of the main Simplify

function, we can give meaningful names for all simplification algorithm

routines by implementing them in a separate module, so that the developer

can locate the right function as needed easily.

Example:

For a simple simplification of the logical operator and.

[pseudocode]
Simplify (e) match e with

70

I

~
~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

9. Simplify

(traversal)

finds the subexpression of
-> option 1 (in-line)

option 2 (dispatch)

an AND application as AND (a, b)
return (a == true) && (b == true)
call the routine
written in a separately module
to perform the AND simplification.

Firstly, the main function of simplify finds the sub expressions of and applications

by pattern matching on the input expression e. Once it finds one, there are two options

for a simplification operation. Our system chooses the second option for performing

the and simplification, by creating the and simplification routine separately.

9.2 Boolean Algebra Simplifications

Generally, boolean algebra simplifications are supported in all sorts of MMS by a

simplification tool similar to the one we created for Chiron, "simplify".

The current version of Chiron includes an experiment on representing Church

numerals in Chiron. Various simplification tests are tested by using the Church

numerals module, called tesLinpuLch_num. Details will be discussed and shown

in Chapter 12.

71

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Chapter 10

Beta Reduction

Beta reduction is implemented as a Chiron transformer betaJeduce in the theory for

lambda calculus. In particular, the beta reduction for expressions of type term has

been carefully implemented and tested.

The operator is created in Chiron as: (beta_reduce:: E, E). i.e., the transformer

beta_reduce takes a Chiron expression as its input, and returns a Chiron expression

as its output.

10.1 Implementation

The algorithm function of beta reduction (only for term type expressions currently)

is implemented in a single OCaml function. The function basically needs to meet the

following three requirements :

• Recursively traverse the term searching for redex.

• Prevent infinite looping.

72

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

10. Beta Reduction

• Reduce the redex.

The implementation achieves the first two goals by using the "pattern matching"

feature. It matches the sub expressions of the input expression based on a correct

understanding of the syntax of Chiron expressions. Once the redex is found, the

third goal can be complished by applying the beta reduction rule to the redex.

10.1.1 Expression Syntax

Any expression e is one of the following :

• x - a variable.

• Ax.e - a lambda abstraction.

• el e2 - an application.

If El --+f3 E2 , then the reduction must be one of those cases:

(e el) --+f3 (e e2)
(el e) --+f3 (e2 e)
(Ax.el) --+f3 (Ax.e2)

Table 10.1: Patterns of El --+f3 E2 may involve a beta reduction

Therefore, we only pattern match the expression on the above three patterns for a

possible reduction action; for all the other patterns, the function just returns the

original expression immediately.

73

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

10. Beta Reduction

10.1.2 Redex

In the lambda calculus, a beta redex is a term of the form:

(>.x.b)(a)

where the term b mayor may not involve the variable x.

An expression of the form ((>'x.el) e2) is called a redex (reducible expression).

Thus, in addtion to the three cases listed in table 10.1, there is one more case needs

to be pattern matched for applying the beta reduction rule.

10.1.3 Infinite Looping

For the first two cases in Table 10.1, if both the inside sub expressions cannot be

reduced further, the expression as a whole should stop the recursive pattern matching

process to prevent infinite looping.

OCaml Code 12 Prevent Infinite Looping
[pseudo code]

reduce_term e = match e with (* Pattern Matching on the expression *)

(e1, e2) -> (* Pattern Matching for the first 2 cases *)

(* Try to reduce the expression inside *)

let e1 _reduced reduce_term e1 in
let e2_reduced = reduce_term e2 in

if (e1 = e1_reduced) AND (e2 = e2_reduced) then
return e (* Can not be reduced further, stop the recursive loopin

else

74

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

10. Beta Reduction

For instance, the if condition clause in the OCaml Code 12 stops the recur-

sive looping for the recursive reduction function reduce_term when both the inside

sub expressions e1 and e2 can not be reduced further.

10.1.4 Reduce the Redex

To reduce a beta redex in the form of (Ax.b)(a), we call the sub transformer defined

in the kernel theory to do the substitution for the variable a in the expression b.

The substitution is defined in table 10.21 to replace free occurrences (the set of free

variables in b, denoted as FV(b), is defined in table 10.3) of x in b with a (written as

[a/x]b).

• [a/x]x = a
• [a/x]y = y
• [a/x](e1 e2) = ([a/x]e1) ([a/x]e2)
• [a/x](Ax.b) = Ax.b
• [a/x](Ay.b) = Ay.b, if x 1. FV(b)
• [a/x](Ay.b) = Ay.[a/x]b, if x E FV(b), y 1. FV(a)
• [a/x](Ay.b) = Az.[a/x][z/y]b, if x E FV(b), y E FV(a)

Table 10.2: Substitution

FV(b) = b
FV(e1 e2) = FV(e1) U FV(e2)
FV(Ax.e) = FV(e) - x

Table 10.3: Free Variable

1 Alpha Renaming has not been ingerated with the current version of Chiron beta reduction.

75

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

10. Beta Reduction

10.2 Tests

As we have introduced in the Simplify Chapter, our MMS includes an experiment on

representing Church numerals in Chiron. Church numerals are well suited for testing

the current implementation of beta reduction for Chiron. Details will be disscused

and shown in Chapter 12.

76

I
I

1

~
M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Chapter 11

Biform Theory

The notion of a biform theory is one of those most important creative points in

FFMM [6] by providing a formal context in which deduction and computation can

be merged.

Chiron is an exceptionally well-suited logic for formalizing biform theories since it

has a high level of both theoretical and practical expressivity. Precisely, the meaning

formulas of rules can be directly expressed in Chiron.

For my part of Chiron development as my graduate work, the definition of the

notion of a biform theory has been coded on a very basic basis with three experiments

for the three name space environments shown in the second half of Chapter 7.

11.1 Definition

11.1.1 Biform Theories in Chiron

A biform theory in a general logic K is a triple T = (L, r, .a), where

77

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

11. Biform Theory

• L is the language of K. (K is Chiron for our MMS) i.e., a set of operators.

There are two sorts of operators in T.

(1) transformer-less operators which are representing the concepts of T. They

do not require to have transformers associated with.

(2) transformer operators which specify the name of the transformer in type

symbol and the type of expressions for both the inputs and the output of

the transformers.

• The members of r are the axioms of T. The axioms specify the meanings of the

concepts and the transformers of T. Since an axiom specifies the semantic rela­

tionship between the inputs and the output of the algorithm of the transformer,

we also name the axiom as meaning formula, M, in Chiron.

• D is a set of transformers for L. The definition of a transformer II which is a

pair of (Jr, fr) in T has been explained at the beginning of Chapter 7 on page 48,

where Jr is a symbol used to represent the name of the transformer, and fr is

the corresponding algorithm of the transformer.

11.1.2 Rules

A rule in L is a pair R = (II, M) where

• II is the n-ary transformer in L.

• M is a formula that uses Jr to relate the values of the inputs to fr to the value

of the output of fro

78

I

I

I
I

~
M.Sc. Thesis - Hong Ni McMaster - Computing and Software

11. Biform Theory

Proposition 11.1.1 For every transformer operator with the name 7f in T, Chiron

has exactly one corresponding transformer algorithm 1f and has n meaning formula(s),

where n ~ 1, to specify the semantic meaning of the transformer.

11.2 Chiron Representation

For every theory in Chiron, the transformers of the theory have been implemented in

a separated implementation module firstly; and the implementation of those trans-

formers then gets exported in a name space which is created on top of the imple-

mentation module. The current version of Chiron contains four name spaces . Two

name spaces, Basics and Logicals, are created for composing the kernel theory. Two

name spaces for the theory of the natural numbers and lambda calculus, Nats and

lambdacalc respectively.

In Chapter 7, Name Space, we have shown that a name space environment is

a well-designed interface for bundling together the low level implementations for the

named transformers for each biform theory. The transformers of each theory have

been organized into pair relations by using the hash table data structure, and then, a

biform theory from an existing Chiron name space can just be constructed by adding

(1) transformer-less operators for representing the base elements of the theory,

such as constants, types.

(2) Formulas in L viewed as transformer-less rules.

(3) Formulas in L viewed as the meaning formulas for the transformers of the

theory.

79

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

11. Biform Theory

In the next section, I create a simple biform theory of (high-order) Peano arith­

metic to show the formalization of a nontrivial biform theory in Chiron step by step.

The example was previously sketched in words in the paper of Biform Theories in

Chiron. [3, pg. 12]

11.3 Biform Theory of Peano Arithmetic

The following abbreviations have been used in this example while both the module

Types and Environments are opened for directly inheritance.

OCaml Code 13 Module Abbreviations

module K Keywords
module C Types.Constructors.Raw
module M Types.Constructors.Main
module B Types.Builtin
module P Pa.PaLib
module Bi Biform
module U Biform_utilities

We would firstly sketch the development of the biform theory for Peano Arithmetic

briefly, and then, continue with the example fully .

• Create the type nat of natural numbers (as O-ary operator).

" Create (0 : nat) (as O-ary operator) to represent the eom;ta.nt O .

• Create the transformer operator for the successor function by coding the trans-

former IIsuc, and then adding the meaning formulas for expressing the axioms

related to it.

80

!
I

I
-I
I

!

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

11. Biform Theory

• Add the meaning formulas for expressing the induction axiom of Peano Arith-

metic .

• Create the transformer operators 1, +, x for 1, the addition function, and the

multiplication function respectively with the same approach as we do for the

successor function.

The development of the biform theory T of Peano arithmetic in Chiron starts with

the base operator nat which specifies the type of the natural number.

(1) L contains operator naLe that represents the type of natural number.

OCaml Code 14 operator nat - pa_bif.ml

let nat_e : operator = M . create_type II nat II
let nat_typ : typ = B.type_from_oper nat_e

(2) L contains operator 0 that represents the constant 0, which is a.'lsumed to be a

natural number in P A.

OCaml Code 15 operator zero - pa_bif.ml

let zero e
let zero

operator
term

C.signature sym_zero [J CB.kind_from_type nat_typ)
M.apply sym_zero P.nat_typ

For both the operator nat_e and the operator 0, there is no transformer created

81

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

11. Biform Theory

for any of them since they are transformer-less operators which represent the

concepts of T.

(3) On the other hand, r contains a series of axioms (meaning formulas) for defining

the properties of natural numbers.

'ix, x E nat. x = x i.e., equality is reflexive.
'ix, y E nat. x = y ~ y = x i.e., equality is symmetric. ,

'ix, y, Z E nat. (x = y) 1\ (y = z) ~ x = Z i.e., equality is transitive.
'ix, y. x E nat 1\ (x = y) ~ Y E nat i.e., the natural numbers are closed under equality.

I

Table 11.1: A Series of Axioms for Defining The Properties of Natural Numbers

(4) L contains another important operator S which represents the successor func-

tion. By having the constant 0 3.'3 the first natural number, the natural numbers

are assumed to be closed under the successor function. The successor operator

is the first transformer operator in our Peano Arithmetic example which has

the algorithm of taking one arbitrary natural number n as its input and returns

the natural number n + 1.

OCaml Code 16 suce operator - pa.ml

Thp fnnr.tinn build creates the S-expression Enp of type operator in the form

(5) By having the successor function, we are able to write more meaning formulas

to express more axioms of natural numbers :

82

I
-1

~
M.Sc. Thesis - Hong Ni McMaster - Computing and Software

11. Biform Theory

Vx, x E nat. sue (x) E nat
Vx, x E nat. sue(x) # 0
Vx, Y E nat. sue(x) = sue(y) ~ X = Y i.e., successor function is injective.
If K is a set. 0 E K /\ Vx, x E nat. x E K ~ sue (x) E K,
Then K constains every natural numbers.

Table 11.2: More Axioms for The Natural Numbers

(6) We introduce the operator 1 to represent the natural number 1 = 8(0) as one

example of representing natural numbers by using the successor function. The

OCaml Code 17 is the algorithm function used for constructing the Chiron

expression 8(0), namely the natural number 1.

. OCaml Code 17 natural number 1 - pa.ml

let one () : term =
let zero_tm = M.apply sym_zero nat_typ in
M.apply_pa sym_suc_e zero_tm nat_typ

(7) La.c;tly, we would like to add two basic arithmetic operators, + and x, to repre­

sent the addition function and the multiplication function respectively.

i.e., the addition function is defined recursively as

a+O=a

a+8(b) = 8(a+b)

and the multiplication is defined recursively as

aXO=O

83

MoSco Thesis - Hong Ni McMaster - Computing and Software

11. Biform Theory

a x S(b) = a + (a x b)

The meaning formulas of the two arithmetics are expressed as

Vel,e2: Ete 0 el t natl\e2 t nat:J

[(plus_e :: Ete, Ete , Ete) (el, e2)]te == (fn_plus_e :: term, term, term) ([el]te, [e2]te)

Vel, e2 : Ete 0 el t nat 1\ e2 t nat :J

[(muILe :: Ete , Ete , Ete) (el, e2)]te == (fn_muILe :: term, term, term)([el]te, [e2]te)

84

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Chapter 12

Testing: Church Numerals in

Chiron

Church numerals are representations of natural numbers using lambda notation under

Church encoding [10, Chap 2], which is a means of embedding data and operators

into the lambda calculus. Integers, booleans, and boolean arithmetic are mapped to

higher-order functions under Church encoding. Because of the heavy use of lambda

notation, the implementation of Church numerals is a very good choice to test pro-

grams involve lambda constructions.

This chapter presents our work in two partsl :

(1) Representing Church numerals in Chiron data structure.

(2) Testing the implementation of beta reduction in Chiron.

1 All related code discussed for these two parts are located in test_input_ch-Ilum.ml

85

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

12. Testing: Church Numerals in Chiron

12.1 Chiron Representation

Natural numbers

We first describe Church's representation of the natural numbers in the lambda cal-

culus. Zero is represented as

o = AS.AZ. z.

Then the natural number n (n > 0) is represented by the higher-order function which

maps any other function f to its n-fold composition:

1 AS.AZ. S Z

2 AS.AZ. S (s z)

3 AS.AZ. S (s (s z))

n AS.AZ. sn Z

Hence, natural numbers are represented as a Chiron data structure as follows :

natural number lambda term Chiron representation
s = (var, s, class), z = (var, z, class)

o AS.AZ. Z (fun-abs, s, (fun-abs, z, z))
1 AS.AZ. S Z (fun-abs, s, (fun-abs, z, (fun-app, s, z)))
2 AS.AZ. S (s z) (fun-abs, s, (fun-abs, z, (fun-app, s, (fun-app, s, z))))

Table 12.1: Natural Numbers

By looking at the first three examples of the Chiron representation of natural numbers,

we notice that the Chiron representation of (n + 1) is constructed from the Chiron

86

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

12. Testing: Church Numerals in Chiron

representation of n simply by replacing the last occurrence of the z by (fun-app, s, z).

Successor

One of the foundamental functions in Church numerals is the successor function,

SUCC == An.As.Az. S (n S z).

Number Arithmetic

Number arithmetic can be represented in Chiron similarly by directly translation of

lambda terms.

Abbreviations: s == (var, s, class), z == (var, z, class), m = (var, m, class), n = (var, n, class)

Addition

Addition == Am.An.As.Az. ((((m succ) n) s) z)

Multiplication

Multiplication == Am.An.As. (m (n s))

Power

Power == Am.An. (m n)

87

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

12. Testing : Church Numerals in Chiron

Church Booleans

Church booleans are formally defined in the lambda calculus as

true ==)"t.)"I. t

false ==)..t.)..I. f

Boolean Arithmetic

Common boolean functions are implemented in Chiron as

AND

and ==)"b.)"c. ((b c) false)

OR

or ==)"b.)"c. ((b true) c)

NOT

not ==)"b. ((b false) true)

Table 12.2 introduces the compact notation for the names of variables and fUllc­

tions defined in Chiron for Church Numerals which we will use for the rest of paper

whenever it is convenient.

88

I

I
j

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

12. Testing: Church Numerals in Chiron

Compact Notation N ames in Code Representing

Och
nch
succ
clLgen

Tch
Fch
/\ch
Vch

NOTch
1Fch

+ch
*ch
expch

12.2

ch_zero
chjl
chjlext
chJX

ch_tru
chJ1s
chuLand
chuLor
churjlot
churjf
ch_add
ch....mult
ch_power

natural number 0
natural number n
successor function, (succ n) -> n + 1
generic function for constructing
the natural number, n. (ch_gen n) -> nch
)..x.)..y. x
)..x.)..y. y
/\
V

if - boolean conditional operator
addition - number arithmetic operator
multiplication - number arithmetic operator
exponentiation - number arithmetic operator

Table 12.2: Compact Notation for Church Numerals in Chiron

Tests for Beta Reduction

Since Church encoding is a means of embedding data and operators into the lambda

calculus, the Church numerals, as one of those most familiar examples based on

Church encoding, form an exceptionally well-suited data structure for testing the

beta reduction of Chiron.

89

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

12. Testing: Church Numerals in Chiron

Example 1 :

succ 1 =definition expansion ()..n.)..f.)..x.(j ((n J) X)) 1)

=1/-reduction

=f3-reduction

=f3-reduction

= f3-reduction

Example 2 :

()..n.)..f.)..x.(j ((n J) x)) ()..f.)..X. f X))

()..f.)..X.(j ((()..f.)..X. f X) J) X)))

()..f.)..X.(j (()..X. f X) X)))

()..f.)..X.(j (j X)))

2

Note: use ()..s.)..x.(s (s (s x)))) to represent 3 instead of ()..s.)..z.(s (s (s z)))) to

avoid name capture, since alpha convention has not been integrated with the beta

reduction of ChiTOn yet.

90

I
-I

~
M.Sc. Thesis - Hong Ni McMaster - Computing and Software

12. Testing: Church Numerals in Chiron

multch 2 3 =definition expansion ((Am.An.AZ.(m (n z)) 2) 3)

=f3-reduction (An.Az.(2 (n z)) 3)

=f3-reduction Az.(2 (3 z))

=definition expansion Az.(2 ((AS.AX.(S (S (S X)))) z))

=f3-reduction Az.(2 (AX.(Z (Z (Z X)))))

=definition expansion ((AS.AX.(S (S X))) (AX.(Z (Z (Z X)))))

=f3-reduction AZ.(AX.(AX.(Z (Z (Z X)))) ((AX.(Z (Z (Z X)))) X))

=f3-reduction AZ.(AX.(AX.(Z (Z (Z X)))) ((Z (Z (Z X)))))

=f3-reduction AZ.(AX.(Z (Z (Z ((Z (Z (Z X))))))))

6

All the test cases listed in Table 12.3 have been successfully tested in Chiron.

91

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

12. Testing: Church Numerals in Chiron

Testing : Church Numerals in Chiron
Natural Numbers

succ 0 == 1
succ (succ (succ 0)) == 3

chgen 0 == Och

Church Booleans
x

x Y == Y
Tch == Tch

Fch == Fch

Boolean Arithmetics
Tch /\ch Tch

Tch /\ch Fch

Fch /\ch Fch

Tch Vch Tch

Tch Vch Fch

Fch Vch Fch

Tch

Fch

Fch

Tch

Tch

Fch

--'ch Tch == Fch

--'ch Fch == Tch

Number Arithmetics
+ch 1ch 2ch == 3ch

+ch 2ch 2ch == 4ch

+ch Och Och == Och

*ch Och Och == Och

*ch 1ch 3ch == 3ch

*ch 2ch 3ch == 6 ch

*ch Och 6 ch == Och

expch 2ch 1ch = 2ch

eTopch 2ch 2ch == 4,."
expch 2ch 3ch == 8ch

eXPch 4ch 3ch == 64ch

Table 12.3: Testing: Church Representation in Chiron

92

\

I
-I

~
M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Chapter 13

User-defined Transformers

13.1 Compiler

This small compiler is just used for creating new user defined transformers. Users can

define their own transformer by calling the main function of the Compiler module,

called create_tr.

create_tr (name l : string, algorithm2 : term) unit

Since all transformers need to be retrieved later from a name space, another func-

tion, called add_to_env, is used to complish the work of adding the new user defined

transformer to a name space.

IThe name of the transformer is optional, however, it should be the first argument of the
create_tr function if it is provided by users. If the user does not name the transformer, the
create_tr function generates a random name automatically for the new transformer by calling the
name generator function.

2The algorithm function, 1ruser_dejine, is required for creating a new user defined transformer. It
should be provided by the user, written in lambda form.

93

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

13. User-defined Transformers

add_to_env (name3 : string) (env4 : environment) unit

Example : Creating the new transformer with the operator, called "union", for

the Basics name space.

Note: Code below is running at low implementation level of Chiron in OCaml syntax, an

end user should able to enter all those data and the commands in a high level well-designed

GUI in the futme. The term, useLlillion_input is math equivalent to)'x.c.()'y.C.(union ::

c, C, C) (x, y))

let tm = C.apply (C.s--sym "union")

[C.kd_term (C.variable (C.s--sym "x") class_typ) class_typ;

C.kd_term (C.variable (C.s--sym "y") class_typ) class_typ]

let abs_y = C.fabs (C.s--sym "y") class_typ tm in

C.fabs (C.s--sym "x") class_typ abs_y

create_ tr name: "union" user _lillion_input

add_to_env Basics.basic "union"

3The name of the transformer.
4The name of the name space. Importantly, the name space argument provided for the add_to_env

function needs to be valid before the add_to_env call. i.e., Chiron only allows users to add new
transformer to an existing name space environment.

94

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

13. User-defined Transformers

The term type variable, useT-union_input, represents the algorithm for the union op-

erator which is defined as

(AxAy.union(x, y))

in lambda calculus form. The creation of the new union transformer, IIunion, is done by

calling the create_tr function by providing the name of the operator, union, and the

algorithm of the new union transformer, useT-union_input5 . In order to use it, we call

the add_to_env function to add IIunion into the kernel theory, Basics.

5The creation will be failed if the algorithIll does not exist in the system, and a warning message
will be returned by the creation function to the user.

95

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Chapter 14

Conclusion

In this thesis, we have shown the first stage of the development of a mechanized mathemat­

ics system (MMS) based on a formal framework that integrates and generalizes symbolic

computation and formal deduction. The central idea of the framework, developed as part

of the MathScheme project at McMaster University, consists the notion of a biform theory,

which is simultaneously an axiomatic theory and an algorithmic theory, provides a formal

context for both deduction and computation. In order to utilize biform theories to repre­

sent mathematics, Chiron is the logic we used for our MMS so that biform theories can be

expressed directly.

The development starts with the design of the base type system for the MMS. We

designed and implemented the typed type system for ChiTOn by using the strong static

typing programming language, OCaml. The current type system categories the type of all

expressions into two major types, proper expressions and improper expressions. There are

four different kinds of proper expressions, which are operators, types, terms and formulas,

defined in ChiTOn based on the total mapping between the values in NBG set theory and

the expressions in Chiron. On the other hand, four kinds of expressions are defined for

96

I
j

~
M.Sc. Thesis - Hong Ni McMaster - Computing and Software

14. Conclusion

improper expressions.

Secondly, since the type system of ChiTOn is hidden from the end user for the purpose of

preventing all sorts of unexcepted system harmfulness, we created all necessary constructor

functions in the Constructors module for translating user input expressions to expres-

sions constructed in Chiron data structure. The module acts as a black box for bridging

the expressions that are input by the user and the expressions recognized by our MMS.

Importantly, we ensure that the output expression in Chiron data structure, constructed

through the Constructors module, is unique for any unique input expression.

Then, we start the formalization of biform theories of Chiron in two steps.

• Firstly, for all of the transformers in a theory, a name space is created for each theory

as an interface for exporting the low level implementations of both the operators and

the algorithm functions of the transformers. The name space environment organizes

the operator and the algorithm of a transformer in pair relation and provides three

different lookup tools for various purposes to the user for quick access. Name spaces

can be merged into larger name spaces upon user's needs. The name spaces for kernel

theories of Chiron have been completed while the name spaces for both the theory of

the natural numbers and the lambda calculus are implemented at a very basic level.

• Secondly, in order to form the biform theories in Chiron fully, we add the implemen­

tation for those non-transformable operators to represent the concepts of the theory;

and finally, express the meaning formulas for all the concepts and the transformers

of the theories. The four theories mentioned in the first step have all been extended

to biform theories.

Transformers in biform theories need to be recognized and then able to be executed

by the MMS, the meta-tool called run is created for this purpose. It traverses the input

expression to find all possible sub expressions of transformer operator applications. For

97

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

14. Conclusion

each operator application, run first does a validation procedure used to make sure that the

transformer has been properly defined in the system; and then replaces the sub expression

of the operator application by the output expression returned from the algorithm function

of the transformer.

There are two important transformers have been implemented separately.

• A simple version of simplify is included in our MMS for boolean algebra simplifica­

tions .

• Beta reduction is implemented as an example of creating non-built-in transformers

on top of the Chiron kernel theories. Beta reduction of Chiron has been tested with

the Chiron representation of Church numerals successfully.

Finally, all the work documented in this thesis have been fully tested by our testing

modules. Since the amount of the testing work is expected to be large enough, we create

different modules to prepare tests, create tests, run the tests and report statistic separately.

98

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Appendix A

Compact Notation

Compact notation for proper expressions from [5]. The first group of definitions in table A.l

defines the compact notation for each of the 13 proper expression categories.

Compact Notation
(s :: k1 , ... ,kn+1)

(s :: k1 , ... ,kn+1)(el' ... ,en)
(x: a)
a(a)
(Ax: a . fJ)
f(a)
(-A.x:a.b)
if(A, b, c)
(:3 x : (J: . B)
((;X : a . B)
(Ex:a.B)
fel
[a]k
[a]ty
[a]te
[a]fo

Official Notation
(op,s,k1, ... ,kn+1)

(op-app,(op,s,k1, ... ,kn+l),el," .,en)

(var, x, a)
(type-app, a, a)
(dep-fun-type, (var, x, a), fJ)
(fun-app, f, a)
(fun-abs, (var, x, a), b)
(if, A, b, c)
(exist, (var, x, (J:), B)
(def-des, (var, x, a), B)
(indef-des, (var, x, a), B)
(quote, e)
(eval, a, k)
(eval, a, type)
(eval, a, (op-app, (op, class, type)))
(eval, a, formula)

Table A.l: Compact Notation

99

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

A. Compact Notation

The next group of definitions in table A.2 defines additional compact notation for the built­

in operators and the universal quantifier [5].

Compact Notation
V
C
E
Esy

Eop

Ety

Ete

Ea
Efo

(a E b)
(a =ty (3)
(a =a b)
(a = b)
(A= B)
(--.A)
(a ¢ b)
(a i= b)
(A v B)
(\f x : a . A)

Defining Expression
(set :: type) ()
(class :: type)()
(expr :: type) ()
(expr-sym :: type)()
(expr-op :: type)()
(expr-type :: type)()
(expr-term :: type)()
(expr-term-type :: Ety, type) (a)
(expr-formula :: type) ()
(in :: V, C, formula)(a, b)
(type-equal :: type, type, formula)(a, (3)
(term-equal :: C, C, type, formula)(a, b, a)
(a =c b)
(formula-equal :: formula, formula, formula)(A, B)
(not :: formula, formula) (A)
(--.(a E b))
(--.(a = b))
(or:: formula, formula, formula) (A, B)
(--.(::1 x : a . (--.A)))

Table A.2: Additional Compact Notation

100

I
M.Sc. Thesis - Hong Ni McMaster - Computing and Software

j

~

Appendix B

Chiron Types

101

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

B. Chiron Types

Figure B.1: Chiron Types

102

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Appendix C

Logicals Library

Table C.l: Logicals Library

Operator [main]Impl. Func.

('if, n) for the algorithm n

(and :: formula, formula, formula)

(and_e, fn_and_e) two_args

(or :: formula, formula, formula)

(OLe, fn_oLe) two_args

(not :: formula, formula)

(noLe, fn-Ilot_e) one_arg

(implies:: formula, formula, formula)

(implies_e, fnJ.mplies_e) two_args

(type-equal :: type, type, formula)

(type_equaLe, fn_type_equaLe) two_args

(term-equal :: term, term, type, formula)

103

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

C. Logicals Library

(term_equaLe, fn_term_equaLe) three_args

(equal :: term, term, type, formula)

(equaLe, fn_equaLe) three_args

(not-equal :: term, term, type, formula)

(noLequaLe, fn-.llot_equaLe) three_args

(formula-equal :: formula, formula, formula)

(formula_equaLe, fn-.formula_equaLe) two_args

(in :: term, term, formula)

(isjn_e, fnjsjn_e) two_args

(not-in :: term, term, formula)

(noUn_e, fn-.lloUn_e) two_args

(defined-in :: term, type, formula)

(definedju_e, fn_definedjn_e) two_args

104

I

I
-I
!
!
~

~

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Appendix D

Basics Library

Table D.l: Basics Library

Operator [main]Impl. Func.

err, i) for the algorithm i

(is-p-expr :: E, formula)

(is_p_expr, fnjs_p_expr) is_proper

(lst-comp :: E, E)

(firsLcomp, fn-.:firsLcomp) geLcomp_expr

(is-op :: E, formula)

(is_op, fnjs_op) is_op

(is-var :: E, formula)!l]

(is_ var, fnjs_ var) Is_var

(is-type-eqn :: E, formula)

(is_type_eqn, fnjs_type_eqn) is_type_eqn

(is-empty-set :: E, formula)

105

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

D. Basics Library

(is_emptY.Bet, fnjs_emptY.Bet) is_emptY.Bet

(is-binder :: E, formula)

(is_binder, fnjs_binder) is_binder

(binder-var :: E, E)[2J

(bindeLvar, fn_bindeLvar) -

(is-fun-redex :: E, formula)

(iSJunJedex, fnjsJunJedex) iSJunJedex

(is-fun-type_redex :: E, formula)

(iSJun_type_Tedex, fnjsJ:un_typeJedex) isJun_typeJ·edex

(is-redex :: E, formula)

(iSJedex, fnjsJedex) iSJedex

(var-sim :: E, E, formula)

(vaLsim, fn_ var .Bim) -

(is-eva I-free :: E, formula)

(is_evaLfree, fnjs_evaLfree) is_evaLfree

(free-in :: E, E, formula)

(freejn, fnj'reejn) freejn_expression

(free-for :: E, E, E, formula)

(freeJ:or, fnj'reeJ:or) freeJ:or _expression

(sub :: E, E, E, formula)

(sub, fn.Bub) sub_expression

I

[1]: Checkers for the other 12 proper expression categories are defined and implemented

in a similar way: is-op-app, is-var, is-type-app, is-dep-fun-type, is-fun-app, is-fun-abs, is-if,

is-exist, is-def-des, is-indef-des, is-quote, is-eva!.

106

,

J

j
!

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

D. Basics Library

[2]: Selectors for a binder name and a binder body are defined in a similar way:

binder-name and binder-body.

107

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

Bibliography

[1] Jacques Carette and William M. Farmer. High-level theories. Calculemus,2008.

[2] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and

S. M. Watt. Maple v language reference manual. Spring- Verlag, 1991.

[3] W. M. Farmer. Biform theories in Chiron. In M. Kauers, M. Kerber, R. R. Miner,

and W. Windsteiger, editors, Towards Mechanized Mathematical Assistants, vol­

ume 4573 of Lecture Notes in Computer Science, pages 66-79. Springer-Verlag,

2007.

[4] W. M. Farmer. Chiron: A multi-paradigm logic. In R. Matuszewski and A. Za­

lewska, editors, From Insight to Proof: Festschrift in Honour of Andrzej Try­

bulec, volume 10(23) of Studies in Logic, Grammar and Rhetoric, pages 1-19.

University of Bialystok, 2007.

[5] W. M. Farmer. Chiron: A set theory with types, undefinedness, quotation, and

evaluation. SQRL Report No. 38, McMaster University, 2007. Revised 2008.

[6] W. M. Farmer and M. von Mohrenschildt. An overview of a formal framework

for managing mathematics. Annals of Mathematics and Artificial Intelligence,

38:165-191,2003.

108

i

1
i

I

M.Sc. Thesis - Hong Ni McMaster - Computing and Software

BIBLIOGRAPHY

[7] William M. Farmer. Stmm: A set theory for mechanized mathematics. Journal

of Automated Reasoning 26, pages 269-289, 2001.

[8] MathScheme: An Integrated Framework for Computer Algebra and Com­

puter Theorem Proving. Home page at http://imps.mcmaster.ca/mathscheme/.

[9] S. Owre, S. Raj an, J. M. Rushby, N. Shankar, and M. Srivas. Computer aided

verification: 8th international conference. Addison- Wesley, 1102:411-414, 1996.

[10] Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002.

[11] Coq Development Team. The Coq Proof Assistant Reference Manual, Version

8.0, 2006. Available at http://coq.inria.fr/doc.

[12] S. Wolfram. Mathematica: A system for doing mathematics by computer.

Addison- Wesley, 1991.

109

