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Abstract 

Computer algebra systems such as Maple [2] and Mathematica [12] are good at sym­

bolic computation, while theorem proving systems such as Coq [11] and pvs [9] are 

well-developed for creating formal proofs. However, people are searching for a mecha­

nized mathematics system which can provide highly integrated symbolic computation 

and formal deduction capabilities at the same time. 

My work is to design and implement the basis for a mechanized mathematics 

system based on a formal framework, which was previously developed as part of the 

MathScheme project at McMaster University. The core idea of the framework consists 

of the notion of a biform theory, which is simultaneously an axiomatic theory and an 

algorithmic theory, providing a formal context for both deduction and computation. 

A mechanized mathematics system which utilizes biform theories to represent 

mathematics requires a logic in which biform theories can be expressed. Chiron, 

as a derivative of von-N eumann-Bernays-Godel set theory, is the logic we choose 

for our MMS development. It is intended to be a practical, general-purpose logic 

for mechanizing mathematics and has a high level of both theoretical and practical 

expressivity compared to other logics such as Zermelo-Fraenkel (ZF) set theory and 

first-order logic (FOL). 

The thesis presents the first stage of the development of the MMS. In particular, 
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the type system of the MMS has been fully established along with all necessary 

expression constructors for building typed Chiron expressions. Half of the work for 

formalizing biform theories in ChiTOn has been implemented by introducing the notion 

of name spaces, which is used for exporting the low level implementation of Chiron 

transformers. We have experimented with the Chiron representation for expressing 

the meaning formulas of Chiron transformers, in particular for boolean algebra and 

logical operators in the other half of the work. 
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M.Sc. Thesis - Hong Ni McMaster - Computing and Software 

Chapter 1 

Introduction 

As part of the MathScheme project, we need to design and implement a mechanized 

mathematics system (MMS) based a formal framework that integrates and generalizes 

symbolic computation and formal deduction. The formal framework wa..s previously 

developed as the first goal of the MathScheme project. I am working on the code 

implementation of the MMS, based on the logic called Chiron, for my graduate work 

supervised by Dr. Jacques Carette.1 

1.1 Contents 

We start with the Chapter Background which is intended to give you a quick introduc­

tion to both the MathScheme project and the logic, Chiron, used for our mechanized 

mathematics system. Then, a general introduction to the notion of a biform theory, 

which is the core idea of FFMM2, will be given. Chapter 3 will present both the de-

1 Address: Department of Computing and Software, McMaster University, 1280 Main Street West, 
Hamilton, Ontario L8S 4K1, Canada. E-mail: carette@mcmaster.ca. 

2 A Formal Framework for Managing Mathematics [6]. 
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1. Introduction 

sign goals and the implementation goals we want to achieve for the first stage of the 

development of ChiTOn. This is followed by Chapter 4, which presents an overview 

of the implementation for the current version of Chiron system, laying out a general 

idea about the overall design of the system in terms of modularizations. 

Next, chapters 6 - 11 show the details of the implementation of the system. Then, 

in Chapter 12, an interesting experiment on "Church Numerals in Chiron" will be 

presented. Lastly, a small compiler is documented in Chapter 13. Finally, the thesis 

will be concluded by the Conclusion chapter. 

1.2 Naming Convention 

Since Chiron is the core logic which is going to be used for our mechanized mathe­

matics system, it becomes the soul of the MMS; the term Chiron in italic face will 

be used for the rest of my paper to refer to the MMS we are implementing. 

1.3 Fonts 

Specail fonts used throughout the thesis are list 8.'3 the following: 

• Sans Serif & Bold - Chiron Types [such as type symbol and type formula] 

• Slanted & Bold - Module Names [such as types and constructors] 

• Italic - Concept Term Emphasized [such as meaning formula and biform theory] 

• Bold - Chapter Names [such 8.'3 Goals and Type System] 

2 
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1. Introduction 

• Typewriter - Code Related [such as a function name "add" and a name of a 

variable appears in the code "argument"] 

1.4 Contribution 

The formal specification of the logic, Chiron, was previously documented in Dr. 

William M. Farmer's paper "Chiron : A set theory with types, undefinedness, quota­

tion, and evaluation" [5], which is our main source of documentation for our imple­

mentation of the MM8. Therefore, any definition related to the logic Chiron is quoted 

directly from [5], unless otherwise stated. I use phrases such as "Chiron defines ... " , 

" ... from the Chiron paper", in my thesis to refer to the previous work done by Dr. 

Farmer in his Chiron paper [5]. 

Our contribution is the design and implementation of a well-tested program which 

realizes this specification. Furthermore, this thesis documents the non-trivial design 

choices necessary to implement Chiron safely and efficiently. 
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Chapter 2 

Background 

2.1 MathScheme 

Computer algebra systems and automated theorem proving systems are two major 

types of mechanized mathematics systems (MMSs). Computer algebra systems are 

good at symbolic computation, while theorem proving systems are well-developed for 

creating formal proofs. However, none of those mechanized mathematics systems can 

provide both highly integrated symbolic computation and formal deduction capabili­

ties. MathScheme is a project to develop a new approach to mechanized mathematics 

in which computer algebra and computer theorem proving are merged without sacri­

ficing power or soundness. The short-term goals of the MathScheme project are 

(1) Develop a formal framework that integrates symbolic computation and formal 

deduction. 

(2) Design and implement a MMS based on the formal framework. 

4 
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2. Background 

The long-range goal is to build, on top of the MMS, an interactive mathematics lab­

oratory (IML) that provides an integrated set of tools for facilitating and managing 

mathematical reasoning. The IML is intended to have the capabilities of both con­

temporary computer algebra systems and computer proving systems, and the means 

to formalize a wide range of mathematical knowledge. 

More information about the MathScheme project can be found from its homepage, 

at http://imps.mcmaster . ca/mathscheme/. 

2.2 Chiron 

Chiron [5] is a derivative of von-Neumann-Bernays-Gi::idel set theory that is intended 

to be a practical, general-purpose logic for mechanizing mathematics. A theoretically 

expressive and practIcally expressive logic is required for a practical, general-purpose 

MMS. Traditional theories, such as ZF and NBG set theories, are designed to be used 

in theory, not in practice. 

By integrating several reasoning paradigms, Chiron has a much higher level of 

practical expressivity than traditional logics. As a multi-paradigm logic, Chiron sup­

ports in an integrated manner five reasoning paradigms, namely classical, permitted 

undefinedness, set theory, type theory and formalized syntax [4]. 

A separate formal, complete presentation of the syntax and semantics of Chiron 

is given in [5]. 

5 
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2. Background 

2.3 Biform Theories 

The notion of a biform theory was first introduced as part of FFMM, a Formal Frame­

work for Managing Mathematics [6] developed as part of the MathScheme project [8] 

at McMaster University. The current principal goal of FFMM is to integrate and gen­

eralize computer algebra systems and automatic computer theorem proving systems. 

Biform theories is one of the key ideas in FFMM providing a formal context in which 

deduction and computation can be merged. 

An axiomatic theory represents mathematical knowledge declaratively as a set of 

axioms while an algorithmic theory represents mathematical knowledge operationally 

as a set of algorithms. A biform theory is simultaneously an axiomatic theory and an 

algorithmic theory. 

Briefly, a biform theory [1, Definition 2] in a general logic K is a triple T = 

(L, r, D), where L is the language of K represented by a set of symbols, D is a set 

of transformers for Land r is the set of axioms of T. 

See Chapter 11 for an example of a biform theory. 

The paper "Biform Theories in Chiron" [3] defines the notion of a biform theory, 

gives an overview of Chiron, and illustrates how biform theories can be formalized in 

Chiron. 

2.4 Programming Language Choice 

Objective Caml is the programming language we have chosen for implementing our 

MMS. It is a programming language which features strong static typing. If we use 

the language correctly, we can take advantage of static type checking to delegate the 
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2. Background 

verification of many of the invariants of the Chiron language to the programming 

language itself. 

Furthermore, other features, such &s exhaustiveness-checking for pattern-matching 

on variant types is very useful. Missing cases and redundant patterns will both 

produce a warning message to inform the program of this likely coding error. 

Note that, when attempting to hide certain parts of the implementation by using 

a private row type (a recent feature of Objective Caml) , we found that this did not 

interact very well with polymorphic variant types and sub-typing, and thus we had 

to abandon the use of this feature. Unfortunately that also meant giving up on 

completely hiding the details of our types. 

7 
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Chapter 3 

Goals 

We present both the design goals and the implementation goals we would like to 

achieve at the first stage of the development of our mechanized mathematics system. 

3.1 Design Goals 

(1) Faithful embedding 

To embed Chiron expression formation rules into the host programming lan­

guage's type system as faithfully as possible. 

(2) Abstract low-level details 

To implement an API for bridging the low level Chiron data representation and 

the high level user input at the level of data-structures. 

(3) Support for transformers and theories 

To create name spaces for theories in Chiron to collect the transformers of 

theories. 

8 
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3. Goals 

( 4) Support user-defined transformers 

To provide tools for users to create their own transformers. 

(5) Represent mathematics 

To utilize biform theories in Chiron to represent mathematics. 

(6) Support for running the Chiron transformers 

To have a built-in meta-program for reading and executing operator applications 

of Chiron. 

(7) Simplification 

To have a special transformer to support basic simplifications. 

(8) Beta reduction in Chiron 

To implement a transformer corresponding to beta reduction for the application 

of a function abstraction. 

3.2 Implementation Goals 

(1) To hide the representation of the Chiron data-structures from the end user. 

(2) To have the Chiron built-in operators pre-constructed, for the purposes of both 

code simplicity and run time efficiency. 

(3) To design and implement the data structure for biform theories (and the name 

space environments) in Chiron carefully, so that the notion of biform theories 

can be translated precisely from its semantic definition to a code implementa­

tion. 

9 
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3. Goals 

(4) To design the implementation for the notion of biform theories in a modular 

programming style. 

(5) To improve the efficiency of the transformers in Chiron at the code level without 

affecting the API of the transformers. 

(6) To support merging of name spaces, so that a large name space can be con­

structed from small name spaces. 

(7) To support module inheritance for modules of biform theories, so that a new 

biform theory can be built up from certain parent biform theories. 

(8) To create sample transformers which are built on top of the kernel theory. 

(9) To have a well-designed testing facility for the development of the MMS. 

3.3 Design Overview 

We design and implement the type system of the MMS Chiron to embed Chiron ex­

pression formation rules into the host programming language's type system as faith­

fully a.s possible (Chapter 5 : Type System). The API for bridging the low level 

Chiron data representation and the high level user input is fully implemented in the 

modules of Constructors and Builtin (Chapter 6 : Constructors). 

The system supports the creation of name space environments for theories in 

Chiron to collect the transformers of theories. Currently, Basics and Logics, are 

the two name spaces created for representing the kernel theories of Chiron (Chapter 

7: Name Spaces). 

10 
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3. Goals 

One special transformer, simplify, is built in our system to support basic simplifi­

cations (Chapter 9 : Simplify). Beta reduction is implemented as a transformer to 

utilize the transformers of the kernel theories of Chiron to represent the law of beta 

reduction in Chiron (Chapter 10: Beta Reduction). The system represents Church 

numerals in the Chiron data-structure as a comprehensive testing for the implemen-

tation of beta reduction in Chiron (Chapter 12 : Testing: Church Numerals in 

Chiron). 

A meta-tool, called run, is implemented for the system to find the transformers 

among Chiron expressions and execute them (Chapter 8 : Run) . The creation of 

user-defined transformers is supported in our MMS (Chapter 13 : User-defined 

Transformers) . 

Chiron representation of biform theories is established in our MMS with experi-

mental examples. (Chapter 11 : Biform Theories). 

3.4 Implementation Overview 

The system is designed and implemented in a modular programming style (Chapter 

4: Overview of Implementation). 

The code implementation for the type system of the MMS Chiron is hidden from 

the end user (Chapter G : Type System). The creation of Chiron expressions can be 

done through the constructor functions coded in the Constructors module. For the 

purposes of both code simplicity and run time efficiency, Chiron built-in operators 

are pre-constructed in the Builtin module (Chapter 6 : Constructors). 

For every biform theory T in Chiron, the low level code implementation for the 

11 



M.Sc. Thesis - Hong Ni McMaster - Computing and Software 

3. Goals 

transformers of T is implemented in a single module, named as Implementation Mod­

ule. Inside the implementation module, we create submodules to implement the 

transformer algorithms in two layers, so that the run time efficiency of the algorithms 

gets improved without affecting their APIs. For the purposes of bundling together the 

various routines contained in the implementation module, we create a name space for 

the named transformers which correspond to these routines in T (Chapter 7: Name 

Spaces). 

The meta-tool run is implemented by separating the traversal process for finding 

the sub expressions of Chiron transformers from the input expression, and the execu­

tion process for running the named transformers (Chapter 8 : Run). Similarly, the 

transformer simplify is implemented by separating the traversal process for finding 

the sub expressions from the input expression which may require simplifications, and 

the code implementations for various simplification algorithm functions (Chapter 9 : 

Simplify). 

The biform theory data structure in Chiron is designed in the biform module. It is 

implemented as collections of lists and hash tables (Chapter 11 : Biform Theories). 

A well-designed testing facility for the development of the MMS is included in the 

current version of Chiron. 

12 
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Chapter 4 

Overview of Implementation 

Chiron is designed in a modular programming style which is a powerful organizing 

principle for designing and implementing non-trivial programs. It breaks down the 

design of a program into individual components called modules which can be pro-

grammed and tested independently by grouping related sets of code together into a 

single module. Modular programming becomes a standard requirement for effective 

development and maintenance of programs and projects. This chapter will quickly 

go over the overall design of Chiron by introducing the modularization of the imple-

mentation for Chiron. 

The two base modules, types and keywords, build the fundamental type system 

of Chiron. Since the implementation of Chiron type system needs to be hidden from 

the rest of Chiron system and be hidden from end users, both the constructors 

module and the builtin module serve' as interfaces between the low level implemen-

tation of the Chiron type system and the user. Users can only build expressions in 

Chiron by calling the constructor functions from the la.')t two modules. 

13 
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~ ~ "l 

environment 

""'~ ",,, "" ""'" 

c ' I:)ire)f~m 

Figure 4.1: Core Modules 
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4. Overview of Implementation 

messages and printers are two modules that provide system messages and 

printer services respectively . 

• The messages module generates and collects all sorts of system related mes-

sages, such as errors and warnings, and stores them in one organized place. 

• The printers module provides standard printing service for the system, and it 

should be able to generate output in Ib-TEX form in the future to give both the 

developer and the user more readable output. 

The data structure called biform is declared for the notion of biform theories, 

which is the core idea of FFMM, a Formal Framework for Managing Mathematics [6]. 

The implementation for the representation of biform theories in Chiron takes two 

steps: 

(1) The first step is to define the transformer operators 7r in our MMS along with 

the implementation of the corresponding transformer algorithm functions 1!-. 

Again, the code implementations for the pairs of (7r, 1!-) are coded in an inde-

pendent module for each theory, such as the modules basics, logicals, nats 

and lambdacalc. In order to hide the low level implementation from the user, 

the environment data structure , named name space, acts as the interface for 

exporting the work done in those implementation level modules, so that the 

user can access the data of the transformer pair (7r,1!-) without seeing the low 

level implementation code. 

(2) The next step is to express the axioms of the language as one component of 

a biform theory. The axioms of the language are called meaning formulas in 

15 
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4. Overview of Implementation 

Figure 4.2: Special Modules 

Chiron. The modules basics_biE, logicals_bif and nats_bif are created by 

extending the work done in first step from the modules of basics, logicals and 

nats, with the addition of the corresponding meaning formulas for every pair 

of ('if, if) respectively. 

Figure 4.2 shows three special modules which deserve to be introduced separately. 

The meta-program run is implemented in the module called Run. It does the actual 

work of finding the transformers among the expressions and applying the correspond­

ing algorithms to get the instances of the transformers. A simplify gets implemented 

in the SimplifY module at a very basic level only for boolean algebra and logic sim­

plifications at this stage. Furthermore, a small compiler from the Compiler module 

is used for creating user defined transformers. 

Lastly, testing is an important part for any system development. Figure 4.3 lists 

the modules related to the testing work. All sorts of testing routines have been 

16 
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Figure 4.3: Testing Modules 

designed in the testbox module, while test_input and tesLsuitRxl are the mod-

ules used for preparing the actual testing data. Then, the test[xJ2 module calls the 

testing routines on the testing data to run the tests. A report is generated by the 

test]eport module at the end. 

IX is replaced by a natural number (x :::: 1) at the code level, such as test~uite_l and 
test~uite_2. 

2x is replaced by a natural number (x:::: 1) at the code level, such as testl and test2. 

17 
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Chapter 5 

Type System 

5.1 Values & Expressions 

As a derivative of NBG, Chiron is intended to be an enhanced version of STMM [7], 

a conservative extension from NBG under a preserving embedding. Although Chiron 

has a much richer syntax and more complex semantics than NBG, the models for 

Chiron, M cHr, contain exactly the same values as the models for NBG, MNBG. The 

formal specification of Chiron thus starts from the formulation of the fundamental 

mapping between the values in NBG set theory and the expressions in Chiron. 

Definition 5.1.1 A value can be one of the following: [5, section 2.2] 

• set: A set is a class which is also a member of a class. 

• class: A class is an element of M NBG. A class is a collection of sets; each class 

is a collection of classes in NBG set theory. A class is proper if it is not a set. 

• superclass: A superclass is a collection of classes, but need not be a class itself. 

18 
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5. Type System 

• truth value: A truth value is either T representing true or F representing false. 

• undefined value: .l is the value of undefined terms. 

• operation: A mapping over superclasses, the truth values, and the undefined 

value. 

The syntax: of Chiron expressions is organized into four kinds of expressions, and 

every expression is a tree structure whose leaves are symbols. Symbols of Chiron will 

be introduced in the next section. 

Definition 5.1.2 Operators, types, terms, and formulas are four special sorts of ex-

pressions. 

Definition 5.1.3 An expression is proper if it is one of those four special kinds of 

expressions. An expression is improper if it is not proper. 

Remark 5.1.4 Proper expressions denotes values; improper expressions do not de-

note anything. 

The mapping from Chiron expressions to values is defined by Table 5.1 [5, section 

2.3]. 

Expressions denote Values 
Operators ~ Operations 

Types ~ Superclasses 
Terms ~ Cla.'3ses [Sets, .l] 

Formulas ~ Truth values 

Table 5.1: Values & Expressions 

19 
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5.2 Expressions in Chiron 

The two formation rules defined in [5, Chap. 3] inductively define the notion of an 

expression of Chiron. 

Expr-l ( Atomic expression) 

sES 

expr[s] 

Expr-2 (Compound expression) 

where n 2': o. 

expr[el], ... ,expr[en ] 

expr[(el, ... ,en)] 

5.2.1 Data Type Choice for Chiron Expression 

The variant type in OCaml is ideal for the purpose of representing the AST1 of Chiron 

expressions. An atomic Chiron expression can be represented by a simple variant while 

a compound Chiron expression can be represented by a recursive variant. Recursive 

variant types are ideal for representing trees. Since Chiron expressions are categorized 

according to their first (leftmost) symbol, the constructor keywords defined in those 

variant type variables become the categorizing keywords for all Chiron expressions 

naturally. 

1 AST _ Abstract Syntax Tree, a finite, labeled, directed tree used in computer science. 

20 
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5. Type System 

Example 1 

For a term variable x of type 0: represented in Chiron as 

(var,x,o:) , 

we declare a variant type variable as 

variable -+ Var of symbol * typ 

where Var is the constructor keyword for the variant type variable, and the variant 

variable contains two leaves which are the name of the variable [type symbol (Table 

5.2) ] and the type of the variable [type typ (Table 5.9) ]. 

Finally, we use a technique called tying the knot for creating the Chiron types, 

as some of the types are not regular-recursive and we also wish to use polymorphic 

variants for subtyping. 

Example 2 

For a quotation term that denotes the construction that represents an expression e, 

it is represented in Chiron as 

(quote, e), 

we declare it as a subtype of the type term as 
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OCaml Code 1 Type declaration for type quote - types.ml 

type 'e preterm 
[ 

'Quote of 'e 
] 

type 'e preproper = [ 'e preterm I ...... ] 

type 'e preexpression = [ 'e preproper I ...... ] 

type sexpression = sexpression preexpression 
and proper sexpression preproper 

type term sexpression preterm 

Notice that, in the Chiron type system, since type term is a subtype of type 

proper and type proper is a subtype of type sexpression, type sex pression can only 

be declared if type proper has already been created and type proper can only be 

declared if type term has been already created. Therefore, the type declaration for 

type term appears before the type declaration for type sexpression at the code level, 

and we need to leave a "hole" for sexpression. 

Without using a free polymorphic variable 'e, type sexpression, the (eventual) 

type of the value e in a quotation term, cannot be part of the type declaration for type 

quote which is a subtype of type term since type sexpression has not been created 

yet. By leaving this open, we declare the type term as a parametric (polymorphic) 

variant type. Later we "tie the knot" by instantiating 'e to type sexpression after 

the type sexpression is created. The type declaration of type quote can just use that 

parametric value 'e to represent the type of the value e, namely type sexpression in 
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our Chiron type system (OCaml Code 1). 

5.2.2 Symbol 

Since an expression is a tree whose leaves are symbols, type symbol is the first data 

type we create as it will be used heavily in all other type declarations in the type 

system of Chiron. 

The set of symbols, S, is neither fixed nor well-ordered, but countably infinite. 

They are used to classify expressions, identify different categories of expressions, and 

name the built-in operators. The implementation of ChiTon declares type symbol 

with two constructors (Table 5.2). 

constructors values 
K keyword 
S string 

Table 5.2: type symbol 

The first constructor for type symbol requires a value of type keyword as part 

of its construction, and is used to designate particular distinguished symbols, namely 

the keywords of the language. Type keyword is another abstract type we declare in 

ChiTOn. Table 5.3 lists all the keywords that are included in the current version of 

ChiTon. This table is an extension of the table [5, table 1]. 
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op type formula op-app var 
type-app dep-fun-type fun-app fun-abs if 
exist def-des indef-des quote eval 
set class expr expr-sym expr-op 
expr-type expr-term expr-term-type expr-formula In 

type-equal term-equal formula-equal not or 

all teval feval true false 
empty_set undefined and implies definedjn 
quasi_equal uint 

Table 5.3: The keyword of Chiron. 

Type keyword is assembled in a separate module in Chiron for two reasons. 

Firstly, since all those symbols will be used heavily for constructing Chiron expres-

sions as the ba."le elements, a special pre-defined type which collects them all can 

ensure all leaves of Chiron expressions with these symbols are type safe easily, and 

then they can also be extended or modified in one place without having to find and 

change them everywhere. 

The second constructor for type symbol requires a value of a user string as part 

of its construction, so that the size of the Chiron symbols is unbounded by arbitrary 

string values. 

5.2.3 S-Expression 

Definition 5.2.1 An expression is a S-expression (with commas in places of spaces)2 

that exhibits the structure of a tree whose leaves are symbols E S. 

Since the syntax: of constructing3 a Chiron expression is extensively employed in 

2The representation of a S-expression in Lisp is written with its elements separated by whitespacej 
while an expression in Chiron paper is written with its elements separated by commas. 

3 A construction is a set that represents the syntactic structure of an expression. 
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the Lisp family of programming languages, the expression in Chiron adopts the name 

which is the name used for the expression in Lisp, namely S-expressions. Chiron S-

expressions also adopts the conversion of using prefix notation from Lisp, the leftmost 

symbol of the tree for a Chiron S-expression categorizes the type of the expression. 

We declares the type sexpression for S-expressions as an enumerated variant type 

shown in Table 5.4 : 

type 

sexpression 

subtype 
proper 
unknown 

Table 5.4: type sexpression 

i.e., an S-expression [type sexpression] is either a proper expression [type proper], or 

an improper expression [type unknown]. The following two sections introduce the no-

tion of proper expressions and improper expressions in terms of their implementation 

in Chiron. 

5.2.4 Proper S-Expression 

The set of 13 formation rules below, from [5, Chap. 3] defines the notion of a proper 

S-expression in Chiron. 

P-Expr-l (Operator) 

S E S, kind[kl],' .. ,kind[kn+l] 
operator [(op, s, k1 , ... ,kn+l)] 
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where n 2 o. 

P-Expr-2 (Operator application) 

operator [(op, s, kl , ... ,kn+1)], expr[el], ... ,expr[en ] 

p-expr[(op-app, (op, s, kl , .. · ,kn+l ), el,·· ., en) : kn+1] 

where n 2 0 and (ki = type and type[eiD, (type[ki] and term[eiD, or (ki = 

formula and formula[eiD for all i with 1 :s: i :s: n. 

P-Expr-3 (Variable) 
XES, type [a] 

term[(var, X, a) : a] 

P-Expr-4 (Type application) 

type [a] , term[a] 

type[(type-app, a, a)] 

P-Expr-5 (Dependent function type) 

term[(var, X, a)], type [,6] 
type[( dep-fun-type, (var, X, a),,6)] 

P-Expr-6 (Function application) 

term[j : a], term[a] 

term[(fun-app, j, a) : (type-app, a, a)] 

P-Expr-7 (Function abstraction) 

term[(var, X, a)], term[b : ,6] 
term[(fun-abs, (var, X, a), b) : (dep-fun-type, (var, X, a),,6)] 
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P-Expr-8 (Conditional term) 

formula[A], term[b : ,6], term[c : ')'] 

term[(if, A, b, c) : 0] 

_ {,6 if ,6 = ')' 
where 0 = 

(op-app, (op, class, type)) otherwise 

P-Expr-9 (Existential quantification) 

term[(var, x, a)], formula[B] 
formula[(exist, (var, x, a), B)] 

P-Expr-10 (Definite description) 

term[(var, x, a)], formula[B] 
term[(def-des, (var, x, a), B) : a] 

P-Expr-ll (Indefinite description) 

term[(var, x, a)], formula[B] 
term[(indef-des, (var, x, a), B) : a] 

P-Expr-12 (Quotation) 

expr[e] 
term[(quote, e) : (op-app, (op, expr, type))] 

P-Expr-13 (Evaluation) 

term[a], kind[k] 
p-expr[(eval, a, k) : k] 
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Proper expressions can be categorized into four different kinds according to the 

mapping relations shown in Table 5.1. Chiron creates four variant types [operator, 

typ, term and formula] to represent the four sorts of proper expressions [operator, 

type, term and formula] respectively. Table 5.5 extends Table 5.1 to include the 

meaning of each mapping in terms of Chiron type system. 

Expressions & Values I Chiron Type System 

Operators =} Operations A proper expression to which 
the type operator is assigned 

Types =} Superclasses A proper expression to which 
the type typ is assigned 

Terms =} Classes [Sets,.l] A proper expression to which 
the type term is assigned 

Formulas =} Truth values A proper expression to which 
the type formula is assigned 

Table 5.5: Proper Expressions in Chiron 

Proposition 1 The formation rules assign a unique expression to each proper ex-

pression. [5, proposition 3.1] 

Namely, a proper expression in Chiron will be one of types of operator, typ, term 

and formula with no exception. (Table 5.6) 

type subtype 
operator 
typ 

proper term 

formula 

Table 5.6: type proper 
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Most of the type declarations for the four base types, operator, typ, term and 

formula are created based on the formation rules straightforwardly, while some of 

them are created differently. Details will be discussed in the following three sections. 

Type Declaration - Part 1 

For a simple case, such as 

P-Expr-3 (Variable) 
xES, type [a] 

term[(var, x, a) : a] 

term[·· . : .] shows that a variable in Chiron is a subtype of type term. Hence, we 

create type TermVar a.s the subtype of type term to represent variables. [(var, x, a) : 

a] shows that a variable needs two pieces of data as its components, x and a, where 

x is a symbol for representing the name of the variable (x E S) and a is a Chiron 

typ for representing the type of the variable (type[a]). As a result, we have the type 

declaration for Chiron variables as TermVar of symbol * typo 

The above approach can be used for creating a series of Chiron types ba.sed on the set 

of 13 formation rules with the exceptions for P-Expr-l, P-Expr-2 and P-Expr-13. 

We need to introduce type kind and type kinded before creating the Chiron types 

which correspond to those three formation rules. 

Type Declaration - Part 2 

type kind 

Kinds are the expressions assigned to types, terms and formulas. A proper ex-

pression e is said to be an expression of kind k if [5, Chap. 3] 

(1) k = type and e is a type, or 
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(2) type[k] and e is a term of type k, or 

(3) k = formula and e is a formula. 

Therefore, the type declaration for type kind is composed of three constructors to 

reflect the three cases shown in the definition above. (Table 5.7) 

constructors values 
KType 

KFormula 
Kind type 

Table 5.7: type kind 

Instead of using type typ as part of the type declaration for representing an expression 

of kind type, we use a type value KType to indicate that an expression is a type in 

general. A proper expression e is said to be an expression of kind type as long as 

e is a type, the exact type of e is irrelevant. Similarly, KFormula is created for 

representing an expression of kind formula if the expression is a formula. However, if 

the expression is a term of type k, the type declaration for representing an expression 

of type[k] needs to include the exact type k as part of its declaration. We use a type 

value Kind to start the type declaration for representing kind type[k] follow by a typ 

value to include the exact type k. 

type kinded 

Type kinded is created in addition to type kind to include the expression that 

is categorized by type kind as part of its declaration. The type declaration for type 

kinded is prepared by adding one component to each type declaration shown in Table 

5.7 for storing the expression it points to. (Table 5.8) 
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constructors values 
KDType type 

KDFormula formula 
KDTerm term * typ 

Table 5.8: type kinded 

Type Declaration - Part 3 

By having both type kind and type kinded be declared, we create the Chiron types 

which correspond to the formation rule P-Expr-l, P-Expr-2 and P-Expr-13 as 

the following. 

P-Expr-l (Operator) 

where n;::: O. 

s E S, kind [k1], ... , kind [kn+l] 
operator [(op, s, k1 , ... ,kn+l)] 

An operator is composed of a symbol for representing the name of the operator 

and n + 1 kinds for representing the kind for both the inputs (n inputs) and the 

output (1 output). Since n is unknown, we use list data structure to represent the 

collection of the n + 1 kinds. Instead of using a single list to collect all the n + 1 

kinds, we declare the type operator to have one list for collecting the first n kinds 

and one single component to include the last kind. Thus, the type declaration for 

Chiron operators is Operator of symbol * kind list * kind. 
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P-Expr-2 (Operator application) 

operator [(op, s, kl , ... , kn+1)], expr[el],'" ,expr[en ] 

p-expr[( op-app, (op, s, kl, ... , kn+1) , el, ... ,en) : kn+l ] 

where n ~ 0 and (ki = type and type[ei]), (type[ki] and term[ei]), or (ki = formula 

and formula[ei]) for all i with 1 :s; i :s; n. 

Since p-expr[· .. : .] does not tell which base type an operator application should 

belong to, an expression of an operator application can be a type, a term of type a, 

or a formula. We create three Chiron types, one for each case, namely 

• TypeApplyTerm of symbol * kinded list 

• ApplyTerm of symbol * kinded list * typ 

• FApplyTerm of symbol * kinded list 

The symbol occuring in those type declarations is used for representing the name of 

the operator application. We use a list of type kinded to store the input expressions 

of the operator application, so that, not only the input expressions, but also the 

types of the input expressions can be extracted directly under such declaration. In 

particular, a typ value is needed as part of the type declaration for a term type 

operator application to represent the type of the return value. 

P-Expr-13 (Evaluation) 

term[a], kind[k] 

p-expr[(eval, a, k) : k] 

Similar to the approach used for P-Expr-2, we create three Chiron types to map 
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formation rule P-Expr-13 to the Chiron type sytem. Since the expression e involved 

in the type P-Expr-13 (Evaluation) denotes the construction that represents an 

expression, the type declaration for an evaluation takes the expression e directly as 

part of its declaration to keep the construction. 

• TEval of sexpression 

• Eval of sexpression * typ 

• FEval of sexpression 

The type declarations of those four base types, operator, typ, term and formula, 

are shown in table 5.9, table 5.10, table 5.11 and table 5.12, respectively. 

constructors values 
TypeBase symbol 

TypeApplyTerm symbol * kinded list 
TypeApp typ * term 

TypeDepFun symbol * typ * typ 
TEval sexpression 

formation rule 

P-Expr-2 (type typ Operator application) 
P-Expr-4 (Type application) 
P-Expr-5 (Dependent function type) 
P-Expr-13 (typ Evaluation) 

Table 5.9: type typ 

constructors values formation rule 
Operator symboi * kind list * kind P-Expr-l (Operator) 

Table 5.10: type operator 
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constructors values 
FBase symbol 

FApplyTerm symbol * kinded list 
FExists symbol * typ * formula 

FAll symbol * typ * formula 
FEval sexpression 

formation rule 

P-Expr-2 (type formula Operator application) 
P-Expr-9 (Existential quantification) 
P-Expr-9 (Universal quantification) extension 
P-Expr-13 (formula Evaluation) 

Table 5.11: type formula 

constructors values 
TermBase symbol 

ApplyTerm symbol * kinded list * typ 
Term Var symbol * typ 
FunApp term * term 
FunAbs symbol * typ * term 
IfTerm formula * term * term 

DefDescr symbol * typ * formula 
IndefDescr symbol * typ * formula 

Quote sexpression 
Eval sexpression * typ 

Construction unknown 

formation rule 

P-Expr-2 (type term Operator application) 
P-Expr-3 (Variable) 
P-Expr-6 (Function application) 
P-Expr-7 (Function application) 
P-Expr-8 (Conditional term) 
P-Expr-10 (Definite description) 
P-Expr-11 (Indefinite description) 
P-Expr-12 (Quotation) 
P-Expr-13 (term Evaluation) 
unknown term Construction 

Table 5.12: type term 

5.2.5 Improper S-Expression 

An expression is improper if it is NOT one of the four special kinds of expressions. We 

declare the type unknown as shown in Table 5.13 to represent improper expressions. 

constructors values 
US symbol 
UE sexpression list 

UInt int 
UUniv Universal Type 

Table 5.13: type unknown 
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There are four subtypes under the type unknown in the current version of Chiron. 

The first two are officially defined in the Chiron paper [5] for defining the notion of 

an expression of Chiron while the later two are experimental, being investigated 

currently. 

(1) US of symbol 

This is created based on the formation rule Expr-l (Atomic expression) 

defined in Chiron paper [5]. 

Expr-l ( Atomic expression) 

s E S 
expr[s] 

An atomic expression which only contains a symbol value is an improper ex-

pression of Chiron. 

(2) UE of sexpression list 

Again, this is created based on the formation rule Expr-2 (Compound ex­

pression) defined in Chiron paper [5]. 

Expr-2 (Compound expression) 

where n;::: o. 

expr[el], ... ,expr[en ] 

expr[(el, ... , en)] 

A compound expression that is a collection of Chiron expressions is an improper 

expression of Chiron. 
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(3) UInt of int 

Basically, this experimental type is used particular for representing integers in 

Chiron for the Nats library. For any integer n, the Chiron data structure of the 

form (Ulnt, n) is used in Chiron as its Chiron representation. The int library 

used in Chiron's implementation directly uses the built-in Int32 module from 

OCaml built-in libraries. 

(4) UUniv of t, where t is a universal type. 

Universal type will be supported in the future to make the type system of 

Chiron flexible and extensible. Chiron should be able to extend its built-in 

type system either by the developers who can design their own type modules 

whenever convenience for their mathematical needs, or by users who can easily 

load any particular type module any time they want from a pre-coded universal 

type library provided by the Chiron system, but not pre-loaded for a standard 

bootup of the system. 

5.2.6 quoted Term 

Type Declaration 

Type quoted, a special type for quoted terms, is defined as in Table 5.14 : 

constructors values 
Quote sexpression 

Table 5.14: type quoted 

The constructor Quote, which has one argument value of type sexpression, is also 
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one of the constructors that is used in the type declarations for the subtypes of type 

term; a S-expression of type quoted is essentially a subtype of type term. Namely, 

the coercion, (quoted :> term), is valid in ChiTOn. 

Purpose 

Type quoted is created particularly both for 

(1) Code simplicity: to avoid all kinds of inefficient code used mainly for type 

checking and coercions required all over the system for the purpose of appeasing 

the OCaml compiler. 

(2) Concept clarity: to make quoted terms stand out from all other sorts of terms. 

For fairly large amounts of code in the current version of Chiron, the implementation 

of transformer functions needs to ensure that both the inputs and the output should 

be quoted terms. Without the creation of type quoted, the signature of all the 

transformer functions appear to just take term type inputs and return term type 

output generally, and then, Chiron needs extra efforts both for the input checking to 

ensure that all the arguments are properly quoted and the output coercion to ensure 

that the output value should again be quoted strictly. For instance, 

Example 3 f is a transformer that takes one input and returns one output. 

Pseudocode 

f (input: term) = 

if (input is a term which is properly quoted) then 
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else 

do something for the expression inside the quotation, say e. 

get the instance of e, e_inst, according to the semantic of the transformer, f 

return output, which is r e_instl. 

do nothing, return as it is 

By having the existence of the special type quoted, the signature of all those 

transformer functions could specify the types for both the inputs and the output 

to be quoted terms precisely. The code shown in the previous example would be 

simplified as 

Example 4 f is a transformer that takes one input and returns one output. 

Pseudocode 

f (input: quoted) = 

do something for the expression inside the quotation, say e. 

get the instance of e, e_inst, according to the semantic of the transformer, f 

return output, which is r e_instl. 

Thanks to the type checking provided by the OCaml compiler, the type validation 

on the inputs will be checked at compilation time automatically. As long as the code 

for constructing the Chiron expressions is correct by passing through the OCaml 
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User Input expression Chiron expression 

e fe7 

Figure 5.1: Translator 

compiler without errors, we ensure the correctness on the type of the inputs for all 

those transformers for free. 

When to Quote 

When users are writing their expressions at the front end of the MMS, a translator for 

translating user inputs from the GUI to Chiron recognizable expressions, will quote all 

the arguments for any expression of an operator application automatically. Because 

of that, when Chiron runs 4 on the resulting expressions, it is able to apply properly 

the transformers which correspond to those operator applications with quoted terms 

as their arguments. 

Question: 

Why does the job of appending those quotations (r 1) need to be done during the 

translation step? Is it reasonable to do it during the run procedure instead? 

4 Run is a meta-program in the MMS for actually running the transformer which correspond to 
an operator application for Chiron expressions. See Chapter 8 : Run for details. 
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Answer: 

From Figure 5.1, we can easily see that there is no quotation around any expression, 

e, which is entered by the user from some form of GUI to be developed in the near 

future. The meaning of a quotation should definitely be understood below the end 

user level. We should not expect end users to routinely require special annotations 

for quotation around their input to indicate that the input is to be understood (by 

the system) first as a syntactic expression. 

On the other hand, all expressions which are assumed to be valid in Chiron need 

to be properly quoted. This is an assumption made by Chiron. Therefore, whenever 

Chiron detects an operator application, quotations need to be there as the prerequisite 

for all expressions involved in the operator application. 

As a result, the job of appending these quotations to the expressions at the user level 

needs to be done in between the GUI and our MMS automatically and silently; that 

is where the translator belongs. The translator finds all expressions that are parts of 

some operator application, and puts the quotations around the expressions. 

Now, it is easy to answer the second half of the question. Since run is a Chiron 

internal meta-program, it assumes that all valid expressions are properly quoted. 

Therefore, it is more useful to have the translator at the user-interface level than at 

the "run" layer. 
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Constructors 

The implementation details of the embedding of Chiron terms as OCaml terms should 

be hidden from the end user to prevent all kinds of unexpected harm to the system. 

The system should build a black box for bridging the gap from the underlying Chiron 

type system to the actual syntax representation of Chiron expressions. The module 

Constructors is created for this purpose. Whenever an arbitrary type of Chiron 

expression needs to be constructed, a corresponding function call for expression of that 

type from the Constructor module should be available to construct the expression in 

the Chiron syntax; all the necessary type checkings for every element of the resulting 

expression will be done by the constructor functions. 

6.1 Chiron Types 

Constructors for the type system of Chiron can be prepared simply by creating func-

tions of the following form : 

Suppose t is an elementary type in Chiron, defined as follows: 
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constructors values 
contLoLt1 Vll, V12, ... ,Vln 

contLoLt2 V21, V22, . .. ,V2n 

Table 6.1: type t 

Then, the set of constructor functions for type t will be coded as : 

constructors values 
contr _oLtl Vll, V12, . .. ,Vln 

contLoLt2 V21, V22,' .. ,V2n 

constructor functions 
f(Vll, V12," . ,Vln ) = contLoLt1(Vll, V12,'" ,Vln ) 

f(V21, V22," . ,V2n) = contLoLt2(V21, V22," . ,V2n) 

Table 6.2: Constructors for type t 

Next, we use the type formula as an example to show the creation of the con-

structors for Chiron types. This is declared in Chiron as the following : 

OCaml Code 2 type formula - types.ml 

type 'e formula = 
[ 'FBase of symbol 
I 'FApplyTerm of symbol * 'e prekinded list 
I 'FExists of symbol * 'e pretyp * 'e preformula 
I 'FAll of symbol * 'e pretyp * 'e preformula 
I 'FEval of 'e ] 

Therefore, the set of constructors for the type formula is given by : 

42 



M.Sc. Thesis - Hong Ni McMaster - Computing and Software 

6. Constructors 

OCaml Code 3 constructors for formula - types.ml 

let form_base (s:symbol) = 'FBase s 

let apply_f ('Operator (s,kl,k):operator) (el: sexpression list) : formula 
if k <> KFormula then 

failwith (Printf.sprintf "Applying a non-formula operator (%s) 
and expecting a formula" (to_string s)) 

else if List.length kl <> List.length el then 
failwith "Applying operator to expression with different lengths" 

else 
'FApplyTerm (s, List.map2 kinding el kl) 

let exists (x:symbol) (t:typ) (b:formula) = 'FExists (x,t,b) 

let fall (x:symbol) (t:typ) (b:formula) = 'FAll (x,t,b) 

·let eval_form (e:sexpression) = 'FEval e 

For every subtype of type formula, a constructor function is created to build the 

corresponding Chiron expression. For all the subtypes in the example of type formula 

given, except the subtype FApplyTerm, the arguments of the constructor functions 

reflect exactly the components of the type definitions. For instance, the subtype 

FAil contains three components in its type definition, namely a symbol, a typ and 

a formula. Accordingly, the constructor function for constructing the FAil Chiron 

expression takes three arguments, namely a symbol, a typ and a formula. For the 

subtype FApplyTerm, the first argument of its constructor takes an operator instead 

of a symbol, and the symbol can be extracted directly from the operator argument 

by pattern matching. 

The above programming approach used for creating constructor functions based on 

the type system of Chiron is bijective and total. On the other hand, the type system of 
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Chiron is founded on the 13 formation rules for proper expressions, which are defined 

in [5, Chap. 3], along with the addition 4 formation rules for improper expressions 

given in the previous chapter, Type System; the mapping between the Chiron type 

system and those formation rules, is bijective as well. Furthermore, by proposition 3.1 

from the Chiron paper [5], the 13 formation rules assign a unique proper expression to 

each proper expression. That is, the resulting Chiron expression, constructed through 

the Constructors module, for any unique input proper expression is unique. 

6.2 builtin Module 

The builtin module is created specially for defining 

(1) Useful constructors for constructing elementary values [..1, T, F, empty] used in 

Chiron. 

Special values such as ..1, T, F, and empty, are expected to be used everywhere in 

the Chiron system extremely often. Having them constructed as built-in Chiron 

expressions during the initialization bootup process, can reduce both the com­

pilation time and the running time of Chiron, since the low level constructions 

of those base expressions just need to be done once inside the built-in module 

during the compilation time. 

Table 6.3 lists the special values constructed in the current version of Chiron and 

the corresponding variable names [types.ml] used at the OCaml implementation 

level. 
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values variable names type 

-'- undefined term 
empty empty_set term 

truef term 
T 

sexpression true_exp 
falsef term 

F 
false_exp sexpression 

Table 6.3: Special Values 

(2) Built-in operators defined in Table 2 of [5]. 

Table 6.4 lists the corresponding variable names [types.ml] coded in Chiron for 

all those built-in operators. 

(3) Operators in addition to the 15 pre-defined built-in operators. Table 6.5 lists 

the corresponding variable names [types.ml] coded in Chiron for all these extra 

operators. 

Built-In Operator 
(op, formula-and, formula, formula, formula) 
(op, formula-implies, formula, formula, formula) 
(op, defined-in, (op-app, (op, class, type)), 

type, formula) 
(op, quasi-equal, (op-app, (op, class, type)), 

(op-app, (op, class, type)), 
type, 
formula) 

Variable Name in OCaml 

formula_implies 

quasLequal 

(op, is-empty-set,(op-app,(op, c1ass,type)),formula) is_empty_set 

Table 6.5: Additional Built-In Operators in Chiron 

45 



M.Sc. Thesis - Hong Ni McMaster - Computing and Software 

6. Constructors 

Built-In Operator Variable Name in OCaml 
(op, set, type) set 
(op, class, type) clas 
(op, expr, type) expr 
(op, expr-sym, type) expLsym 
(op, expr-op, type) expr_op 
(op, expr-type, type) expLtype 
(op, expr-term, type) expr_term 
(op, expr-term-type, expr _term_typ 

(op-app, (op, expr-type, type)), type) 
(op, expr-formula, type) expr _f ormula 
(op, in, (op-app, (op,set, type)), in_op 

(op-app, (op, class, type)), formula) 
(op, type-equal, type, type, formula) type_equal 
(op, term-equal, (op-app, (op, class, type)), term_equal 

(op-app, (op, class, type)), 
type, 
formula) 

(op, formula-equal, formula, formula, formula) formula_equal 
(op, not, formula, formula) formula-.not 
(op, or, formula, forumla, formula) formula_or 

Table 6.4: Built-In Operators in Chiron 

6.3 Constructors for Meaning Formulas 

The language L, which is one of the components in a biform theory! T = (L, r, .0), 

is a set of symbols. Each symbol is either the name of a concept of T or the name of 

a transformer of T. (.0 is the set of transformers of T.) Both the concepts and the 

transformers of T are represented as operators in Chiron. 

r is the set of axioms of T. For every operator in T, there are one or more axioms 

to specify the meaning of the operator. Those axioms are also called the meaning 

1 For a complete definition, see Chapter 11 : Biform Theories. 

46 



I 
j 

~ 

M.Sc. Thesis - Hong Ni McMaster - Computing and Software 

6. Constructors 

formulas of T. 

The meaning formulas firstly specify the type of the inputs required for the op-

erator, and then express the meaning of the operator in the form of A == B, where 

A is used to represent the expression of the operator application and B explains the 

actual meaning of the operator. 

A simple example is : 

tie: E. (is-p-expr :: E, formula)(e) == 

e 1 Eap Vel Ety Vel Ete Vel Efa . 

The meaning formula first specifies the type of the input as E, namely a Chi ron 

expression. The formula "(is-p-expr :: E, formula)(e)" on the left hand side of the 

formula equlity represents the expression of an operator application for the operator 

is-p-expr. The right hand side "e 1 Eap Vel Ety Vel Ete Vel E fa" explains the 

actual meaning of the is-p-expr operator application, namely a Chiron expression is 

a proper expression if and only if it is an operator type Chiron expression, or a typ 

type chiron expression, or a term type Chiron expression, or a formula type Chiron 

expression. 

For operators in the kernel theories of Chiron, the constructors of meaning formu-

las are prepared in the Constructors module; and for each (non-kernel) operator in 

Chiron, the meaning formula constructor is currently prepared in the same module 

where the operator is created. Examples for both cases will be shown in Chapter 7 

and Chapter 11. 
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Name Spaces 

A name space in Chiron is used for bundling together the low level implementations 

for the named transformers for each biform theory. This chapter presents the imple­

mentation details for Chiron transformers, followed by a complete introduction to the 

notion of name spaces. 

7.1 Transformers in Chiron 

Deduction and computation rules are represented in Chiron as algorithms called 

transformers, which are intended to be expressions transforming algorithms that 

preserve or modify meaning in a prescribed way. A transformer could be an evalua­

tor, a rewrite rule, a rule of inference, a decision procedure, a simplifier, a translation 

from one language to another, etc. 

In Chiron, let L be a language of Chiron. An n-ary transformer II in L is a pair 

(1f, i), where 

It 1f is an n-ary operator (8 :: E, ... , E) in L (with E occurring n + 1 times), and 
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s is a symbol used to represent the name of the operator. 

• ir is the corresponding algorithm of the transformer. 

(1) Operators 

Operators denote operations. Basically, the definition of an operator specifies 

the name of the transformer and the signature of the transformer function. An 

operator in Chiron is not meaningful for evaluation unless it is applied with 

proper inputs; an operator application can be evaluated by the meta-program 

run which will be discussed in the next chapter. 

(2) Algorithm 

An algorithm implements a (possibly partial) function f.rr En -----* E, where E is 

a set of syntactic entities, the expressions. 

As the system keeps growing, not only could the complexity of the relations be-

tween all the operators and algorithms cause difficulty, but also the size of system code 

could lower the system maintainability. To have all the transformers implemented in 

a single module is definitely a bad system design decision. Instead, we create diflerent 

modules for different theories. 

In general, there are two types of modules for storing the implementation of all 

sorts of transformers : 

• Kernel Theory Modules 

Built-in operators for Chiron, which are loaded automatically at the startup of 

the MMS. 
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• Library Modules 

Non-built-in operators, defined on top of the built-in operators from kernel 

theories. In the future, libraries can be loaded at the request of users after the 

system is booted. 

For each kernel theory module or library module, Chiron collects and organizes the 

code level implementation for the operators and the algorithm function routines of the 

transformers corresponding to the operators into a name space which is implemented 

by using a special data structure, called an environment. It acts as the interface for 

exporting the transformers, which are implemented inside the module, to the rest of 

the system in a clean and organized way. Because of that, we also call a kernel theory 

module or a library module an Implementation Module. 

7.2 Implementation Modules 

In the current version of Chiron, there are two kernel theory modules, called Basics 

and Logicals. In addition, there are two libraries. One library, called lambdacalc, 

currently contains only one transformer, which is a simple version of beta reduction; 

the other library, called Nats, is an experimental module for the theory of the natural 

numbers, implemented at a very basic level. 
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7.2.1 Module Structure 

I mpl ementation 
module 

.:1,£( ( 

transfOrmer 
formulation 

name space 
environment 

Figure 7.1: Module Structure 

The implementation structure for building a kernel theory or a library contains five 

parts: 

(1) Operator definition 

Creates the operator S-expression, E ap , based on the semantic definition of an 

operator. 

(2) Constructors for meaning formulas 

Creates the constructor function used for expressing the meaning formulas of 

the transformer. 
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(3) Transformer function 

Creates the function call for the transformer algorithm fr. 

fr firstly checks to see if all the inputs of the transformer function are in type 

quoted. i.e. as-expression e needs to be properly quoted so that it denotes 

the syntactic meaning of e and is thus always defined. If any of the input 

expressions fails the "quotation" checking, the transformer function basically 

does nothing and simply returns the input expression as its output. In the 

case of success, fr calls a proper algorithm routine written in the algorithm 

implementation submodule of the current module to generate the output of the 

x. 

(4) Algorithm implementation 

Creates the function call in a submodule of the main module for the algorithm. 

The implementation written in this submodule can concentrate mainly on the 

efficiency of the implementation code without worrying about all sorts of type 

coercions required as a regular Chiron function. 

(5) Transformer formulation 

Creates the Chiron transformer pair (x, fr) . 

Each pair of (x, fr) represents one Chiron transformer, which is one of the two 

components of a rule in a biform theory; the second component of a Chiron 

rule is a rule-less formula, called the meaning formula. The constructions of 

meaning formulas will be presented in Chapter 11. 
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7.2.2 7r in ChiTon 

Notice that there is one minor difference between the formal definition of a 1f and the 

1f here at the implementation level of a theory in Chiron. The 1f defined in the formal 

specification of Chiron is a symbol for representing the name of the operator, the 1f 

here, however, is an operator 

which in fact contains more information than just the name of the operator, since the 

symbol s is the part of the operator 0 that serves as the name of the operator. 

The reason for this modification at this level of implementation is that the name 

space environment for exporting the implementation of the theory module needs to 

include all the data information the module has. For any transformer II, clearly, the 

algorithm function 'if must be part of the information included in the environment. 

Secondly, the operator definition for the transformer algorithm 'if needs to be collected 

as well for exporting. Instead of just passing the name of the operator s, we decided 

to pass the whole definition of the operator to the environment to formalize the name 

space environment. 

This is not going to affect the original understanding of the formal specification 

of II = (1f, 'if) for the rest of system, since the name space environment eventually 

creates three different kinds of pair relations for exporting, while one of those pair 

relations reflects exactly the original meaning of II. Details will be shown in the 

N arne Space Environment section of this chapter. 
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7.2.3 Examples 

Next, we present an example that goes through these five steps. 

Conjunction 

Operator: (and_e:: E, E, E) 

Definition: 

Step 1 Operator definition 

OCaml Code 4 Operator Definition of the and_e operator - logicals.ml 

The function build creates the S-expression Eop of type operator in the form of 

(and_e :: E, E, E) according to the definition of the operator and_e. 

Step 2 : Constructors for meaning formulas 

This constructor builds the expression which is going to used for expressing the 

meaning formula for the and_e transformer as [11]fo !\ [h]fo' 
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OCaml Code 5 Constructors for meaning formulas - types.ml 

let andf (f1:formula) (f2:formula) : formula = 
apply_f Builtin.form_and (map lift [f1;f2J) 

Step 3 : 'Iransformer function 

OCaml Code 6 Transformer function for the and_e operator - logicals.ml 

let fn_and_e (el : quoted list) : quoted = 
Impl.two_args el K.And 

The transformer function fn_and_e is quite simple. It just calls the algorithm 

function two_args, which is coded in the implementation module, to perform the 

algorithm for the transformer and_e. 

Step 4 : Algorithm implementation 

OCaml Code 7 Algorithm implementation for the and_e operator - logicals.ml 

let two_args (el : quoted list) (op : K.keyword) : quoted = 
let (e1,e2) = check_length2 el in 
let res = 

match (C. unquote e1, C.unquote e2, op) with 

I ((#formula as f1), (#formula as f2), K.And) 

in C.quote (C.lift res) 

The algorithm implementation of the transformer and_e is basically to construct 

the expression of an and_e operator application with two input expressions of type 
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formula as its arguments, so that the output expression of the and_e transformer can 

be evaluated once it gets to the transformer simplify. 

Step 5 : Transformer formulation 

OCaml Code 8 Transformer formulation for the and_e operator - logicals.ml 

let 11 = [ 

(and_e, fn_and_e); 
] 

let logical create "logical" LogicalLib.11 [] 

The list 11 of the OCaml Code 8 is used to collect all the pairs of II = Crr, if) 

in the module. The pair (and_e, fn_and_e) is the one for this example. Then all those 

pairs will be added into the name space, named as logical created particular for this 

module, during the creation process of the name space environment. 

7.3 The Kernel Theory 

Section 6 of the formal specification of Chiron [5] lists and defines the fundamental 

operators of Chiron in three different categories, namely the logical operators, syntac-
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tic operators and set-theoretic operators. To form the kernel theory, we implement 

the first two categories by creating the modules Logicals and Basics, respectively. 

7.3.1 Logicals 

The module Logicals is the implementation module for the basic logical operators, 

which are defined in section 6.1 of [5]. In addition, we extend the Logicals with some 

other useful operators. 

Table C.1lists the operators currently implemented in Chiron. 

7.3.2 Basics 

We create the Basics module for holding the implementation for the syntactic oper-

ators, defined in section 6.3 of [5]. 

Table D.1lists the operators currently implemented in Chiron. 

7.4 Libraries 

7.4.1 A-Calculus 

The library, lambdacalc, currently contains only one transformer, which is a simple 

version of beta-reduction. Details will be discussed in Chapter 10. 

7.4.2 Natural Numbers 

The Nats library is an implementation for the theory of the natural numbers at a 

very basic level. 
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7.5 Name Space Environment 

7.5.1 Name Space Environment Introduction 

For any pair of II = (1r, 11-), the operator 1r and the algorithm function 11- are im­

plemented independently of each other in one module, without being connected by 

any kind of data structure. A Name Space, implemented by a special data structure 

environment, is created for the purpose of bundling together the various routines con­

tained in an implementation module. We create separate name spaces for the named 

transformers corresponding to these routines. It also provides all the fundamental 

utilities for manipulating and maintaining the underlying implementation module. 

Therefore, the name space for a kernel theory (or a library) serves as the interface for 

the implementation module by exporting the low level implementations of transform­

ers to clients. Furthermore, it can be extended to a biform theory in a way that not 

only makes the code clean syntactically at the implementation level, by implementing 

the idea of a biform theory with several different layers gradually, but also makes the 

semantic meaning of the notion of a biform theory clear to both the developer and 

the user. 
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7.5.2 Name Space Environment Components 

Figure 7.2: Name Space Environment 

There are three elementary data elements in a Chiron name space environment. 

Since a name space serves as the interface for exporting the implementation of the 

transformer il, two of these data elements are the algorithm 7f that implements 

the (possibly partial) function A : en ----+ e and the symbol s that serves as a 

name for the algorithm 7f. In addition, we include the operator type expression 

o = (op, s, k1 , ... ,kn+l), which indicates both the name and the signature of the 

transformer, as the third data element for a name space. 

Instead of putting those three data elements into three separated meaningless lists, 

we organize them into three binary relations, for the purpose of providing three sorts 

of search methods the user might want to use. 
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(1) (symbol --+ it ) 

One of those three kinds of binary relations is the one originally defined in the 

formal specification of Chiron as II = ('if, it), namely, a user can search for the 

algorithm function it by giving the name of the transformer. 

(2) (symbol --+ operator) 

Secondly, the operator, which contains not only the symbol s for representing 

the name of the transformer but also the number of typed arguments required 

by the transformer, can be retrieved by giving the name of the transformer s, 

as well. 

(3) (operator --+ it ) 

Lastly, the algorithm it can be looked up by providing the operator expression. 

These have been coded into three hash tables, as shown in OCaml Code 9, de-

fined as types in the system with the name named_algorithms, named_operators 

and op_algorithms. 

OCaml Code 9 Hashtables For Pair Relations - environment.ml 

type named_algorithms ( symbol algorithm) Hashtbl.t 
type named_operators ( symbol operator ) Hashtbl.t 
type op_algorithms ( operator, algorithm) Hashtbl.t 

7.5.3 Name Space Environment Operations 

add Add a new transformer entry to the environment 
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OCarnl Code 10 Add a new transformer entry to the environment - environment.ml 

let add (e:environment) ('Operator(sy,kl,k) as op) (tr : algorithm) : unit 
if (List.for_all (fun x -> x = B.expr_kind) (k: :kl)) then 

(Hashtbl.add e.operators sy op; 

else 

Hashtbl.add e.algorithms sy tr; 
Hashtbl.add e.trans_from_oper op tr) 

failwith IITransformer Operator should 
take and return Expressionsll 

The add function is used for adding new name space entries. It needs three pieces 

of information, namely the three data elements [operator, algorithm and symbol in 

Figure 7.2], to complete an insertion operation. Two of them, the operator expression 

and the algorithm function, are actually the input arguments of the Add function. 

The last elementary data, which is the symbol to represent the name of the operator, 

can be easily extracted from the operator expression by using the pattern matching 

feature of OCaml on the second component of an operator expression. Since the data 

structure of an environment is created with three hash tables to hold the three sorts 

of pair relations introduced in the previous section, the insertion operation can be 

done by just calling the built-in add routine provided by the hash table module of 

OCaml to insert these three pairs of data into the three hash tables accordingly. 

lookup : Lookup name space elements 

There are three sorts of lookup tools available in Chiron, one for each pair relation 

defined at the beginning of this section on page 59. 

• Given the name (type symbol) of the operator, return the algorithm ir (type 
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algorithm). 

• Given the name (type symbol) of the operator, return the operator expression 

(type operator). 

• Given the operation expression (type operator), return the algorithm if (type 

algorithm) . 

merge : Merger of two name spaces 

Name Space Mergence can be useful in the following two situations: 

• Users may want to use the merge tool to either create a larger name space on 

top of two existing name spaces, or extend an existing name space by importing 

other name spaces into the current name space. The former case needs a new 

name for the new larger name space, while in the latter case, one keeps the old 

name of the current base name space. 

• The system itself may want to create a transformer pool of a certain size at 

some point to automatically merge the related transformers from different name 

spaces into a single name space for various purposes. For instance, 

OCaml Code 11 Mergence of two name spaces - testbox.ml 

let fundamental_env = 
Environment.merge Basics.basic Logicals.logical "fundamental" 

we merge the name space environments of Basics and Logicals to a new name 

space environment called fundamental, which is the name space for the kernel 
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theory of Chiron. 
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Run 

This chapter presents one important meta-program developed for our MMS, called 

run, which is used for processing inputs of Chiron expressions with two tasks : 

(1) Check if all sub S-expressions of operator applications occuring in the input 

expression are known to the system. 

(2) Run the named transformers associated with those known operators. 

8.1 Operator Applications 

Operator applications in Chiron are defined by the formation rule P-Expr-2 (Op­

erator application) from the Chiron paper [5, chap. 3] as below, 

P-Expr-2 (Operator application) 

operator[( op, s, kl' ... ,kn+l)], expr[el], ... ,expr[en ] 

p-expr[(op-app, (op, s, kl , ... , x;'+l), el,···, en) : kn+l] 

where n ~ 0 and (ki = type and type[ei]), (type[ki] and term[ei]), or (ki = formula 
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and formula[eiD for all i with 1 :S i :S n. 

Based on the type system of Chiron, the Constructors module provides three 

different constructors for constructing expressions of operator applications, which 

are TypeApplyTerm, ApplyTerm and FApplyTerm1 , for different types of operator 

applications of type typ, type term and type formula respectively. The type of an 

operator application is decided by the type of the output, namely the kind of kn+12 

in the fomation rule P-Expr-2 (Operator application). 

However, as the kind for the output of a Chiron transformer, kn+1 is always kind 

term since all the input expressions and the output expression of Chiron transformers 

are of type quoted3 strictly, and type quoted is a subtype of type term as defined in 

the type system of Chiron. Therefore, all operator applications in the S-expressions 

that are passed to run are under the construction of ApplyTerm 4 since all the ar­

guments of those operator applications, expr [ei] , are really of type term5 , namely 

term[ei] for all i with 1 :S i :S n. 

In summary, run traverses the tree structure of S-expressions in pre-order to 

find all possible sub S-expressions of term type operator applications. Follow by 

a validation procedure for each operator application and a possible execution step if 

the validation succeeds. 

lSee section: Type Declaration - Part 3, on page 3l. 
2See section: Type Declaration - Part 2, on page 3l. 
3Page 37. 
4 ApplyTerm is the constructor used for building term type operator applications. 
5quoted :>term. 

65 



M.Sc. Thesis - Hong Ni McMaster - Computing and Software 

8. Run 

8.2 Validation 

The validation step is responsible for ensuring the existence of the transformer n in 

the name space which is passed as one argument of run. The validation process com­

prises calling the lookup tool provided by the Environment module. The lookup 

tool requires two input arguments, which are the name of the operator of the trans­

former and the name of the name space. In particular, the name space with the name 

env must be valid in our Chiron system in order to pass the OCaml type checking 

system. A name space is valid if it is pre-defined and loaded during the Chiron 

initialization process, or it was created previously by the user before the lookup call. 

Lookup searches for the pair (op, -iT) in the name space env. -iT is the algorithm 

function for the operator with the name op. Since the pair structure is implemented by 

using the hash table data structure provided by OCaml from its built-in modules, the 

lookup tool is implemented as a simple OCaml function which performs a standard 

hash table lookup operation. 

If the pair (op, -iT) exists in the name space, env. Lookup returns the corresponding 

algorithm function -iT, for the operator with the name op, i.e., the operator is defined 

in the name space; and the algorithm function for that operator is coded in the name 

space which is about to be called. Otherwise, lookup returns a special OCaml value, 

None, to inform the run that the operator with the name op is invalid in the name 

space env. 
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8.3 Execution 

The execution step runs only if the validation process is passed for the sub expression 

of an operator application. In case of success for the validation process performed 

by the lookup tool provided by the Environment module, the algorithm ft for the 

operator application is returned by the lookup function call. Since the algorithms 

are implemented as OCaml functions, run executes the sub S-expression e of that 

operator application by simply calling that algorithm function, ft, with all necessary 

arguments provided by e a.s parts of its S-expression construction. The sub expression 

e is then replaced by the expression, e', which is the return value of the algorithm 

function 1f. 

Example: 

run e, where e is an expression of a beta_reduce operator application, which can 

be expressed in lambda calculus form as (AX. f x) (y). 

Beta reduction is implemented as a transformer (beta_reduce, fn_beta_reduce) in the 

current version of the ChiTOn system in the lambda calculus theory where beta_reduce 

is the name of the operator of the transformer, and fn_beta_reduce is the name of the 

algorithm function of the transformer. (Details in Chapter 10 : Beta Reduction) 

In this example, run calls the lookup tool to search for the beta reduction 

algorithm function from the name space created for lambda calculus. The algo-

rithm implemented as an OCaml function with the name fn_betaJeduce is then re­

turned by the lookup procedure. Run calls the algorithm function fn_beta_reduce 

with the argument y which is extracted from e to perform the beta reduction. 
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Finally, the expression (f y) is returned by the algorithm function as its output. 

((Ax. f x) (y) =beta_reductian f y) i.e., the original expression e gets replaced by (f y). 

run e ====? e', where e' = f y. 
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Simplify 

This chapter presents another one of those important transformers developed during 

the first stage of the development of the MMS, called simplify (simplify :: E, E), 

which is used for simplifying S-expressions by replacing complicated formulas by 

simple logically equivalent formulas. Currently, only boolean algebra simplifications 

are supported by the system. 

9.1 Implementation Module 

Simplify traverses the tree structure of input S-expressions in pre-order to find all sub 

S-expressions which can possiblely be simplified by Chiron. Then it simplifies those 

sub S-expressions and replaces them by the simplified S-expressions. 

All simplifications are implemented in a submodule of the Simplify module called 

Impl. In this approach, we can not only make the implementation efficient, but also 

provide a better module structure for future development. 
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(1) Efficiency 

By having the implementations for all kinds of simplifications in a separate 

module, we can implement different algorithms by different routines. Since a 

complicated simplification algorithm is usually a composition of multiple simple 

simplifications, we can implement the routine for a complicated simplification 

algorithm by calling those simple simplification routines as parts of its imple-

mentation. 

(2) Development 

• Simplifications which are of different kinds in terms of semantics may seem 

to be similar in terms of their implementation. By creating simplifica-

tion functions in a separate module, we can avoid a lot of possible redun-

dant code for similar simplification implementations. We first create some 

generic functions, and then, develop the main simplification functions on 

top of these . 

• Instead of implementing the simplifications as parts of the main Simplify 

function, we can give meaningful names for all simplification algorithm 

routines by implementing them in a separate module, so that the developer 

can locate the right function as needed easily. 

Example: 

For a simple simplification of the logical operator and. 

[pseudocode] 
Simplify (e) match e with 
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9. Simplify 

(traversal) 

finds the subexpression of 
-> option 1 (in-line) 

option 2 (dispatch) 

an AND application as AND (a, b) 
return (a == true) && (b == true) 
call the routine 
written in a separately module 
to perform the AND simplification. 

Firstly, the main function of simplify finds the sub expressions of and applications 

by pattern matching on the input expression e. Once it finds one, there are two options 

for a simplification operation. Our system chooses the second option for performing 

the and simplification, by creating the and simplification routine separately. 

9.2 Boolean Algebra Simplifications 

Generally, boolean algebra simplifications are supported in all sorts of MMS by a 

simplification tool similar to the one we created for Chiron, "simplify". 

The current version of Chiron includes an experiment on representing Church 

numerals in Chiron. Various simplification tests are tested by using the Church 

numerals module, called tesLinpuLch_num. Details will be discussed and shown 

in Chapter 12. 
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Chapter 10 

Beta Reduction 

Beta reduction is implemented as a Chiron transformer betaJeduce in the theory for 

lambda calculus. In particular, the beta reduction for expressions of type term has 

been carefully implemented and tested. 

The operator is created in Chiron as: (beta_reduce:: E, E). i.e., the transformer 

beta_reduce takes a Chiron expression as its input, and returns a Chiron expression 

as its output. 

10.1 Implementation 

The algorithm function of beta reduction (only for term type expressions currently) 

is implemented in a single OCaml function. The function basically needs to meet the 

following three requirements : 

• Recursively traverse the term searching for redex. 

• Prevent infinite looping. 
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• Reduce the redex. 

The implementation achieves the first two goals by using the "pattern matching" 

feature. It matches the sub expressions of the input expression based on a correct 

understanding of the syntax of Chiron expressions. Once the redex is found, the 

third goal can be complished by applying the beta reduction rule to the redex. 

10.1.1 Expression Syntax 

Any expression e is one of the following : 

• x - a variable. 

• Ax.e - a lambda abstraction. 

• el e2 - an application. 

If El --+f3 E2 , then the reduction must be one of those cases: 

(e el) --+f3 (e e2) 
(el e) --+f3 (e2 e) 
(Ax.el) --+f3 (Ax.e2) 

Table 10.1: Patterns of El --+f3 E2 may involve a beta reduction 

Therefore, we only pattern match the expression on the above three patterns for a 

possible reduction action; for all the other patterns, the function just returns the 

original expression immediately. 
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10.1.2 Redex 

In the lambda calculus, a beta redex is a term of the form: 

(>.x.b)( a) 

where the term b mayor may not involve the variable x. 

An expression of the form ((>'x.el) e2) is called a redex (reducible expression). 

Thus, in addtion to the three cases listed in table 10.1, there is one more case needs 

to be pattern matched for applying the beta reduction rule. 

10.1.3 Infinite Looping 

For the first two cases in Table 10.1, if both the inside sub expressions cannot be 

reduced further, the expression as a whole should stop the recursive pattern matching 

process to prevent infinite looping. 

OCaml Code 12 Prevent Infinite Looping 
[pseudo code] 

reduce_term e = match e with (* Pattern Matching on the expression *) 

(e1, e2) -> (* Pattern Matching for the first 2 cases *) 

(* Try to reduce the expression inside *) 

let e1 _reduced reduce_term e1 in 
let e2_reduced = reduce_term e2 in 

if (e1 = e1_reduced) AND (e2 = e2_reduced) then 
return e (* Can not be reduced further, stop the recursive loopin 

else 
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For instance, the if condition clause in the OCaml Code 12 stops the recur-

sive looping for the recursive reduction function reduce_term when both the inside 

sub expressions e1 and e2 can not be reduced further. 

10.1.4 Reduce the Redex 

To reduce a beta redex in the form of (Ax.b)(a), we call the sub transformer defined 

in the kernel theory to do the substitution for the variable a in the expression b. 

The substitution is defined in table 10.21 to replace free occurrences (the set of free 

variables in b, denoted as FV(b), is defined in table 10.3) of x in b with a (written as 

[a/x]b). 

• [a/x]x = a 
• [a/x]y = y 
• [a/x](e1 e2) = ([a/x]e1) ([a/x]e2) 
• [a/x](Ax.b) = Ax.b 
• [a/x](Ay.b) = Ay.b, if x 1. FV(b) 
• [a/x](Ay.b) = Ay.[a/x]b, if x E FV(b), y 1. FV(a) 
• [a/x](Ay.b) = Az.[a/x][z/y]b, if x E FV(b), y E FV(a) 

Table 10.2: Substitution 

FV(b) = b 
FV(e1 e2) = FV(e1) U FV(e2) 
FV(Ax.e) = FV(e) - x 

Table 10.3: Free Variable 

1 Alpha Renaming has not been ingerated with the current version of Chiron beta reduction. 
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10.2 Tests 

As we have introduced in the Simplify Chapter, our MMS includes an experiment on 

representing Church numerals in Chiron. Church numerals are well suited for testing 

the current implementation of beta reduction for Chiron. Details will be disscused 

and shown in Chapter 12. 
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Chapter 11 

Biform Theory 

The notion of a biform theory is one of those most important creative points in 

FFMM [6] by providing a formal context in which deduction and computation can 

be merged. 

Chiron is an exceptionally well-suited logic for formalizing biform theories since it 

has a high level of both theoretical and practical expressivity. Precisely, the meaning 

formulas of rules can be directly expressed in Chiron. 

For my part of Chiron development as my graduate work, the definition of the 

notion of a biform theory has been coded on a very basic basis with three experiments 

for the three name space environments shown in the second half of Chapter 7. 

11.1 Definition 

11.1.1 Biform Theories in Chiron 

A biform theory in a general logic K is a triple T = (L, r, .a), where 
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• L is the language of K. (K is Chiron for our MMS) i.e., a set of operators. 

There are two sorts of operators in T. 

(1) transformer-less operators which are representing the concepts of T. They 

do not require to have transformers associated with. 

(2) transformer operators which specify the name of the transformer in type 

symbol and the type of expressions for both the inputs and the output of 

the transformers. 

• The members of r are the axioms of T. The axioms specify the meanings of the 

concepts and the transformers of T. Since an axiom specifies the semantic rela­

tionship between the inputs and the output of the algorithm of the transformer, 

we also name the axiom as meaning formula, M, in Chiron. 

• D is a set of transformers for L. The definition of a transformer II which is a 

pair of (Jr, fr) in T has been explained at the beginning of Chapter 7 on page 48, 

where Jr is a symbol used to represent the name of the transformer, and fr is 

the corresponding algorithm of the transformer. 

11.1.2 Rules 

A rule in L is a pair R = (II, M) where 

• II is the n-ary transformer in L. 

• M is a formula that uses Jr to relate the values of the inputs to fr to the value 

of the output of fro 
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Proposition 11.1.1 For every transformer operator with the name 7f in T, Chiron 

has exactly one corresponding transformer algorithm 1f and has n meaning formula( s), 

where n ~ 1, to specify the semantic meaning of the transformer. 

11.2 Chiron Representation 

For every theory in Chiron, the transformers of the theory have been implemented in 

a separated implementation module firstly; and the implementation of those trans-

formers then gets exported in a name space which is created on top of the imple-

mentation module. The current version of Chiron contains four name spaces . Two 

name spaces, Basics and Logicals, are created for composing the kernel theory. Two 

name spaces for the theory of the natural numbers and lambda calculus, Nats and 

lambdacalc respectively. 

In Chapter 7, Name Space, we have shown that a name space environment is 

a well-designed interface for bundling together the low level implementations for the 

named transformers for each biform theory. The transformers of each theory have 

been organized into pair relations by using the hash table data structure, and then, a 

biform theory from an existing Chiron name space can just be constructed by adding 

(1) transformer-less operators for representing the base elements of the theory, 

such as constants, types. 

(2) Formulas in L viewed as transformer-less rules. 

(3) Formulas in L viewed as the meaning formulas for the transformers of the 

theory. 
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In the next section, I create a simple biform theory of (high-order) Peano arith­

metic to show the formalization of a nontrivial biform theory in Chiron step by step. 

The example was previously sketched in words in the paper of Biform Theories in 

Chiron. [3, pg. 12] 

11.3 Biform Theory of Peano Arithmetic 

The following abbreviations have been used in this example while both the module 

Types and Environments are opened for directly inheritance. 

OCaml Code 13 Module Abbreviations 

module K Keywords 
module C Types.Constructors.Raw 
module M Types.Constructors.Main 
module B Types.Builtin 
module P Pa.PaLib 
module Bi Biform 
module U Biform_utilities 

We would firstly sketch the development of the biform theory for Peano Arithmetic 

briefly, and then, continue with the example fully . 

• Create the type nat of natural numbers (as O-ary operator). 

" Create (0 : nat) (as O-ary operator) to represent the eom;ta.nt O . 

• Create the transformer operator for the successor function by coding the trans-

former IIsuc, and then adding the meaning formulas for expressing the axioms 

related to it. 
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• Add the meaning formulas for expressing the induction axiom of Peano Arith-

metic . 

• Create the transformer operators 1, +, x for 1, the addition function, and the 

multiplication function respectively with the same approach as we do for the 

successor function. 

The development of the biform theory T of Peano arithmetic in Chiron starts with 

the base operator nat which specifies the type of the natural number. 

(1) L contains operator naLe that represents the type of natural number. 

OCaml Code 14 operator nat - pa_bif.ml 

let nat_e : operator = M . create_type II nat II 
let nat_typ : typ = B.type_from_oper nat_e 

(2) L contains operator 0 that represents the constant 0, which is a.'lsumed to be a 

natural number in P A. 

OCaml Code 15 operator zero - pa_bif.ml 

let zero e 
let zero 

operator 
term 

C.signature sym_zero [J CB.kind_from_type nat_typ) 
M.apply sym_zero P.nat_typ 

For both the operator nat_e and the operator 0, there is no transformer created 
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for any of them since they are transformer-less operators which represent the 

concepts of T. 

(3) On the other hand, r contains a series of axioms (meaning formulas) for defining 

the properties of natural numbers. 

'ix, x E nat. x = x i.e., equality is reflexive. 
'ix, y E nat. x = y ~ y = x i.e., equality is symmetric. , 

'ix, y, Z E nat. (x = y) 1\ (y = z) ~ x = Z i.e., equality is transitive. 
'ix, y. x E nat 1\ (x = y) ~ Y E nat i.e., the natural numbers are closed under equality. 

I 

Table 11.1: A Series of Axioms for Defining The Properties of Natural Numbers 

(4) L contains another important operator S which represents the successor func-

tion. By having the constant 0 3.'3 the first natural number, the natural numbers 

are assumed to be closed under the successor function. The successor operator 

is the first transformer operator in our Peano Arithmetic example which has 

the algorithm of taking one arbitrary natural number n as its input and returns 

the natural number n + 1. 

OCaml Code 16 suce operator - pa.ml 

Thp fnnr.tinn build creates the S-expression Enp of type operator in the form 

(5) By having the successor function, we are able to write more meaning formulas 

to express more axioms of natural numbers : 
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Vx, x E nat. sue (x) E nat 
Vx, x E nat. sue(x) # 0 
Vx, Y E nat. sue(x) = sue(y) ~ X = Y i.e., successor function is injective. 
If K is a set. 0 E K /\ Vx, x E nat. x E K ~ sue (x) E K, 
Then K constains every natural numbers. 

Table 11.2: More Axioms for The Natural Numbers 

(6) We introduce the operator 1 to represent the natural number 1 = 8(0) as one 

example of representing natural numbers by using the successor function. The 

OCaml Code 17 is the algorithm function used for constructing the Chiron 

expression 8(0), namely the natural number 1. 

. OCaml Code 17 natural number 1 - pa.ml 

let one () : term = 
let zero_tm = M.apply sym_zero nat_typ in 
M.apply_pa sym_suc_e zero_tm nat_typ 

(7) La.c;tly, we would like to add two basic arithmetic operators, + and x, to repre­

sent the addition function and the multiplication function respectively. 

i.e., the addition function is defined recursively as 

a+O=a 

a+8(b) = 8(a+b) 

and the multiplication is defined recursively as 

aXO=O 
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a x S(b) = a + (a x b) 

The meaning formulas of the two arithmetics are expressed as 

Vel,e2: Ete 0 el t natl\e2 t nat:J 

[(plus_e :: Ete, Ete , Ete) (el, e2)]te == (fn_plus_e :: term, term, term) ([el]te, [e2]te) 

Vel, e2 : Ete 0 el t nat 1\ e2 t nat :J 

[(muILe :: Ete , Ete , Ete) (el, e2)]te == (fn_muILe :: term, term, term)([el]te, [e2]te) 

84 



M.Sc. Thesis - Hong Ni McMaster - Computing and Software 

Chapter 12 

Testing: Church Numerals in 

Chiron 

Church numerals are representations of natural numbers using lambda notation under 

Church encoding [10, Chap 2], which is a means of embedding data and operators 

into the lambda calculus. Integers, booleans, and boolean arithmetic are mapped to 

higher-order functions under Church encoding. Because of the heavy use of lambda 

notation, the implementation of Church numerals is a very good choice to test pro-

grams involve lambda constructions. 

This chapter presents our work in two partsl : 

(1) Representing Church numerals in Chiron data structure. 

(2) Testing the implementation of beta reduction in Chiron. 

1 All related code discussed for these two parts are located in test_input_ch-Ilum.ml 
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12.1 Chiron Representation 

Natural numbers 

We first describe Church's representation of the natural numbers in the lambda cal-

culus. Zero is represented as 

o = AS.AZ. z. 

Then the natural number n (n > 0) is represented by the higher-order function which 

maps any other function f to its n-fold composition: 

1 AS.AZ. S Z 

2 AS.AZ. S (s z) 

3 AS.AZ. S (s (s z)) 

n AS.AZ. sn Z 

Hence, natural numbers are represented as a Chiron data structure as follows : 

natural number lambda term Chiron representation 
s = (var, s, class), z = (var, z, class) 

o AS.AZ. Z (fun-abs, s, (fun-abs, z, z)) 
1 AS.AZ. S Z (fun-abs, s, (fun-abs, z, (fun-app, s, z))) 
2 AS.AZ. S (s z) (fun-abs, s, (fun-abs, z, (fun-app, s, (fun-app, s, z)))) 

Table 12.1: Natural Numbers 

By looking at the first three examples of the Chiron representation of natural numbers, 

we notice that the Chiron representation of (n + 1) is constructed from the Chiron 
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representation of n simply by replacing the last occurrence of the z by (fun-app, s, z). 

Successor 

One of the foundamental functions in Church numerals is the successor function, 

SUCC == An.As.Az. S (n S z). 

Number Arithmetic 

Number arithmetic can be represented in Chiron similarly by directly translation of 

lambda terms. 

Abbreviations: s == (var, s, class), z == (var, z, class), m = (var, m, class), n = (var, n, class) 

Addition 

Addition == Am.An.As.Az. ((((m succ) n) s) z) 

Multiplication 

Multiplication == Am.An.As. (m (n s)) 

Power 

Power == Am.An. (m n) 
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Church Booleans 

Church booleans are formally defined in the lambda calculus as 

true == )"t.)"I. t 

false == )..t.)..I. f 

Boolean Arithmetic 

Common boolean functions are implemented in Chiron as 

AND 

and == )"b.)"c. ((b c) false) 

OR 

or == )"b.)"c. ((b true) c) 

NOT 

not == )"b. ((b false) true) 

Table 12.2 introduces the compact notation for the names of variables and fUllc­

tions defined in Chiron for Church Numerals which we will use for the rest of paper 

whenever it is convenient. 
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Compact Notation N ames in Code Representing 

Och 
nch 
succ 
clLgen 

Tch 
Fch 
/\ch 
Vch 

NOTch 
1Fch 

+ch 
*ch 
expch 

12.2 

ch_zero 
chjl 
chjlext 
chJX 

ch_tru 
chJ1s 
chuLand 
chuLor 
churjlot 
churjf 
ch_add 
ch....mult 
ch_power 

natural number 0 
natural number n 
successor function, (succ n) -> n + 1 
generic function for constructing 
the natural number, n. (ch_gen n) -> nch 
)..x.)..y. x 
)..x.)..y. y 
/\ 
V 

if - boolean conditional operator 
addition - number arithmetic operator 
multiplication - number arithmetic operator 
exponentiation - number arithmetic operator 

Table 12.2: Compact Notation for Church Numerals in Chiron 

Tests for Beta Reduction 

Since Church encoding is a means of embedding data and operators into the lambda 

calculus, the Church numerals, as one of those most familiar examples based on 

Church encoding, form an exceptionally well-suited data structure for testing the 

beta reduction of Chiron. 
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Example 1 : 

succ 1 =definition expansion ()..n.)..f.)..x.(j ((n J) X)) 1) 

=1/-reduction 

=f3-reduction 

=f3-reduction 

= f3-reduction 

Example 2 : 

()..n.)..f.)..x.(j ((n J) x)) ()..f.)..X. f X)) 

()..f.)..X.(j ((()..f.)..X. f X) J) X))) 

()..f.)..X.(j (()..X. f X) X))) 

()..f.)..X.(j (j X))) 

2 

Note: use ()..s.)..x.(s (s (s x)))) to represent 3 instead of ()..s.)..z.(s (s (s z)))) to 

avoid name capture, since alpha convention has not been integrated with the beta 

reduction of ChiTOn yet. 
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multch 2 3 =definition expansion ((Am.An.AZ.(m (n z)) 2) 3) 

=f3-reduction (An.Az.(2 (n z)) 3) 

=f3-reduction Az.(2 (3 z)) 

=definition expansion Az.(2 ((AS.AX.(S (S (S X)))) z)) 

=f3-reduction Az.(2 (AX.(Z (Z (Z X))))) 

=definition expansion ((AS.AX.(S (S X))) (AX.(Z (Z (Z X))))) 

=f3-reduction AZ.(AX.(AX.(Z (Z (Z X)))) ((AX.(Z (Z (Z X)))) X)) 

=f3-reduction AZ.(AX.(AX.(Z (Z (Z X)))) ((Z (Z (Z X))))) 

=f3-reduction AZ.(AX.(Z (Z (Z ((Z (Z (Z X)))))))) 

6 

All the test cases listed in Table 12.3 have been successfully tested in Chiron. 
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Testing : Church Numerals in Chiron 
Natural Numbers 

succ 0 == 1 
succ (succ (succ 0)) == 3 

chgen 0 == Och 

Church Booleans 
x 

x Y == Y 
Tch == Tch 

Fch == Fch 

Boolean Arithmetics 
Tch /\ch Tch 

Tch /\ch Fch 

Fch /\ch Fch 

Tch Vch Tch 

Tch Vch Fch 

Fch Vch Fch 

Tch 

Fch 

Fch 

Tch 

Tch 

Fch 

--'ch Tch == Fch 

--'ch Fch == Tch 

Number Arithmetics 
+ch 1ch 2ch == 3ch 

+ch 2ch 2ch == 4ch 

+ch Och Och == Och 

*ch Och Och == Och 

*ch 1ch 3ch == 3ch 

*ch 2ch 3ch == 6 ch 

*ch Och 6 ch == Och 

expch 2ch 1ch = 2ch 

eTopch 2ch 2ch == 4,." 
expch 2ch 3ch == 8ch 

eXPch 4ch 3ch == 64ch 

Table 12.3: Testing: Church Representation in Chiron 
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Chapter 13 

User-defined Transformers 

13.1 Compiler 

This small compiler is just used for creating new user defined transformers. Users can 

define their own transformer by calling the main function of the Compiler module, 

called create_tr. 

create_tr (name l : string, algorithm2 : term) unit 

Since all transformers need to be retrieved later from a name space, another func-

tion, called add_to_env, is used to complish the work of adding the new user defined 

transformer to a name space. 

IThe name of the transformer is optional, however, it should be the first argument of the 
create_tr function if it is provided by users. If the user does not name the transformer, the 
create_tr function generates a random name automatically for the new transformer by calling the 
name generator function. 

2The algorithm function, 1ruser_dejine, is required for creating a new user defined transformer. It 
should be provided by the user, written in lambda form. 
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add_to_env (name3 : string) (env4 : environment) unit 

Example : Creating the new transformer with the operator, called "union", for 

the Basics name space. 

Note: Code below is running at low implementation level of Chiron in OCaml syntax, an 

end user should able to enter all those data and the commands in a high level well-designed 

GUI in the futme. The term, useLlillion_input is math equivalent to )'x.c.()'y.C.(union :: 

c, C, C) (x, y)) 

let tm = C.apply (C.s--sym "union") 

[C.kd_term (C.variable (C.s--sym "x") class_typ) class_typ; 

C.kd_term (C.variable (C.s--sym "y") class_typ) class_typ] 

let abs_y = C.fabs (C.s--sym "y") class_typ tm in 

C.fabs (C.s--sym "x") class_typ abs_y 

create_ tr name: "union" user _lillion_input 

add_to_env Basics.basic "union" 

3The name of the transformer. 
4The name of the name space. Importantly, the name space argument provided for the add_to_env 

function needs to be valid before the add_to_env call. i.e., Chiron only allows users to add new 
transformer to an existing name space environment. 
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The term type variable, useT-union_input, represents the algorithm for the union op-

erator which is defined as 

(AxAy.union(x, y)) 

in lambda calculus form. The creation of the new union transformer, IIunion, is done by 

calling the create_tr function by providing the name of the operator, union, and the 

algorithm of the new union transformer, useT-union_input5 . In order to use it, we call 

the add_to_env function to add IIunion into the kernel theory, Basics. 

5The creation will be failed if the algorithIll does not exist in the system, and a warning message 
will be returned by the creation function to the user. 
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Chapter 14 

Conclusion 

In this thesis, we have shown the first stage of the development of a mechanized mathemat­

ics system (MMS) based on a formal framework that integrates and generalizes symbolic 

computation and formal deduction. The central idea of the framework, developed as part 

of the MathScheme project at McMaster University, consists the notion of a biform theory, 

which is simultaneously an axiomatic theory and an algorithmic theory, provides a formal 

context for both deduction and computation. In order to utilize biform theories to repre­

sent mathematics, Chiron is the logic we used for our MMS so that biform theories can be 

expressed directly. 

The development starts with the design of the base type system for the MMS. We 

designed and implemented the typed type system for ChiTOn by using the strong static 

typing programming language, OCaml. The current type system categories the type of all 

expressions into two major types, proper expressions and improper expressions. There are 

four different kinds of proper expressions, which are operators, types, terms and formulas, 

defined in ChiTOn based on the total mapping between the values in NBG set theory and 

the expressions in Chiron. On the other hand, four kinds of expressions are defined for 
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improper expressions. 

Secondly, since the type system of ChiTOn is hidden from the end user for the purpose of 

preventing all sorts of unexcepted system harmfulness, we created all necessary constructor 

functions in the Constructors module for translating user input expressions to expres-

sions constructed in Chiron data structure. The module acts as a black box for bridging 

the expressions that are input by the user and the expressions recognized by our MMS. 

Importantly, we ensure that the output expression in Chiron data structure, constructed 

through the Constructors module, is unique for any unique input expression. 

Then, we start the formalization of biform theories of Chiron in two steps. 

• Firstly, for all of the transformers in a theory, a name space is created for each theory 

as an interface for exporting the low level implementations of both the operators and 

the algorithm functions of the transformers. The name space environment organizes 

the operator and the algorithm of a transformer in pair relation and provides three 

different lookup tools for various purposes to the user for quick access. Name spaces 

can be merged into larger name spaces upon user's needs. The name spaces for kernel 

theories of Chiron have been completed while the name spaces for both the theory of 

the natural numbers and the lambda calculus are implemented at a very basic level. 

• Secondly, in order to form the biform theories in Chiron fully, we add the implemen­

tation for those non-transformable operators to represent the concepts of the theory; 

and finally, express the meaning formulas for all the concepts and the transformers 

of the theories. The four theories mentioned in the first step have all been extended 

to biform theories. 

Transformers in biform theories need to be recognized and then able to be executed 

by the MMS, the meta-tool called run is created for this purpose. It traverses the input 

expression to find all possible sub expressions of transformer operator applications. For 
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14. Conclusion 

each operator application, run first does a validation procedure used to make sure that the 

transformer has been properly defined in the system; and then replaces the sub expression 

of the operator application by the output expression returned from the algorithm function 

of the transformer. 

There are two important transformers have been implemented separately. 

• A simple version of simplify is included in our MMS for boolean algebra simplifica­

tions . 

• Beta reduction is implemented as an example of creating non-built-in transformers 

on top of the Chiron kernel theories. Beta reduction of Chiron has been tested with 

the Chiron representation of Church numerals successfully. 

Finally, all the work documented in this thesis have been fully tested by our testing 

modules. Since the amount of the testing work is expected to be large enough, we create 

different modules to prepare tests, create tests, run the tests and report statistic separately. 
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Appendix A 

Compact Notation 

Compact notation for proper expressions from [5]. The first group of definitions in table A.l 

defines the compact notation for each of the 13 proper expression categories. 

Compact Notation 
(s :: k1 , ... ,kn+1) 

(s :: k1 , ... ,kn+1)(el' ... ,en) 
(x: a) 
a(a) 
(Ax: a . fJ) 
f(a) 
(-A.x:a.b) 
if(A, b, c) 
(:3 x : (J: . B) 
((;X : a . B) 
(Ex:a.B) 
fel 
[a]k 
[a]ty 
[a]te 
[a]fo 

Official Notation 
(op,s,k1, ... ,kn+1 ) 

(op-app,(op,s,k1, ... ,kn+l),el," .,en ) 

(var, x, a) 
(type-app, a, a) 
(dep-fun-type, (var, x, a), fJ) 
(fun-app, f, a) 
(fun-abs, (var, x, a), b) 
(if, A, b, c) 
(exist, (var, x, (J:), B) 
(def-des, (var, x, a), B) 
(indef-des, (var, x, a), B) 
(quote, e) 
(eval, a, k) 
(eval, a, type) 
(eval, a, (op-app, (op, class, type))) 
(eval, a, formula) 

Table A.l: Compact Notation 
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A. Compact Notation 

The next group of definitions in table A.2 defines additional compact notation for the built­

in operators and the universal quantifier [5]. 

Compact Notation 
V 
C 
E 
Esy 

Eop 

Ety 

Ete 

Ea 
Efo 

(a E b) 
(a =ty (3) 
(a =a b) 
(a = b) 
(A= B) 
( --.A) 
(a ¢ b) 
(a i= b) 
(A v B) 
(\f x : a . A) 

Defining Expression 
(set :: type) () 
(class :: type)() 
(expr :: type) () 
(expr-sym :: type)() 
(expr-op :: type)() 
(expr-type :: type)() 
(expr-term :: type)() 
(expr-term-type :: Ety, type) (a) 
(expr-formula :: type) ( ) 
(in :: V, C, formula)(a, b) 
(type-equal :: type, type, formula)(a, (3) 
(term-equal :: C, C, type, formula)(a, b, a) 
(a =c b) 
(formula-equal :: formula, formula, formula)(A, B) 
(not :: formula, formula) (A) 
(--.(a E b)) 
(--.(a = b)) 
(or:: formula, formula, formula) (A, B) 
(--.(::1 x : a . (--.A))) 

Table A.2: Additional Compact Notation 
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Appendix B 

Chiron Types 
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B. Chiron Types 

Figure B.1: Chiron Types 
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Appendix C 

Logicals Library 

Table C.l: Logicals Library 

Operator [main]Impl. Func. 

('if, n) for the algorithm n 

(and :: formula, formula, formula) 

( and_e, fn_and_e ) two_args 

(or :: formula, formula, formula) 

( OLe, fn_oLe ) two_args 

(not :: formula, formula) 

( noLe, fn-Ilot_e ) one_arg 

(implies:: formula, formula, formula) 

( implies_e, fnJ.mplies_e ) two_args 

(type-equal :: type, type, formula) 

( type_equaLe, fn_type_equaLe ) two_args 

(term-equal :: term, term, type, formula) 
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( term_equaLe, fn_term_equaLe ) three_args 

(equal :: term, term, type, formula) 

( equaLe, fn_equaLe ) three_args 

(not-equal :: term, term, type, formula) 

( noLequaLe, fn-.llot_equaLe ) three_args 

(formula-equal :: formula, formula, formula) 

( formula_equaLe, fn-.formula_equaLe ) two_args 

(in :: term, term, formula) 

( isjn_e, fnjsjn_e ) two_args 

(not-in :: term, term, formula) 

( noUn_e, fn-.lloUn_e ) two_args 

(defined-in :: term, type, formula) 

( definedju_e, fn_definedjn_e ) two_args 
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Appendix D 

Basics Library 

Table D.l: Basics Library 

Operator [main]Impl. Func. 

err, i) for the algorithm i 

(is-p-expr :: E, formula) 

( is_p_expr, fnjs_p_expr ) is_proper 

(lst-comp :: E, E) 

( firsLcomp, fn-.:firsLcomp ) geLcomp_expr 

(is-op :: E, formula) 

( is_op, fnjs_op ) is_op 

(is-var :: E, formula)!l] 

( is_ var, fnjs_ var ) Is_var 

(is-type-eqn :: E, formula) 

( is_type_eqn, fnjs_type_eqn ) is_type_eqn 

(is-empty-set :: E, formula) 
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D. Basics Library 

( is_emptY.Bet, fnjs_emptY.Bet ) is_emptY.Bet 

(is-binder :: E, formula) 

( is_binder, fnjs_binder ) is_binder 

(binder-var :: E, E)[2J 

( bindeLvar, fn_bindeLvar ) -

(is-fun-redex :: E, formula) 

( iSJunJedex, fnjsJunJedex ) iSJunJedex 

(is-fun-type_redex :: E, formula) 

( iSJun_type_Tedex, fnjsJ:un_typeJedex ) isJun_typeJ·edex 

(is-redex :: E, formula) 

( iSJedex, fnjsJedex ) iSJedex 

(var-sim :: E, E, formula) 

( vaLsim, fn_ var .Bim ) -

(is-eva I-free :: E, formula) 

( is_evaLfree, fnjs_evaLfree ) is_evaLfree 

(free-in :: E, E, formula) 

( freejn, fnj'reejn ) freejn_expression 

(free-for :: E, E, E, formula) 

( freeJ:or, fnj'reeJ:or ) freeJ:or _expression 

(sub :: E, E, E, formula) 

( sub, fn.Bub ) sub_expression 

I 

[1]: Checkers for the other 12 proper expression categories are defined and implemented 

in a similar way: is-op-app, is-var, is-type-app, is-dep-fun-type, is-fun-app, is-fun-abs, is-if, 

is-exist, is-def-des, is-indef-des, is-quote, is-eva!. 
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D. Basics Library 

[2]: Selectors for a binder name and a binder body are defined in a similar way: 

binder-name and binder-body. 
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