
GPU-ACCELERATED PARTICLE FILTERING

FOR MODEL-BASED TRACKING

GPU-ACCELERATED PARTICLE FILTERI G FOR 3D

MODEL-BASED VISUAL TRACKING

BY

J. ANTHONY BROvVN, B.SC.ENG.

A THESIS

SUBM ITTBD TO THB DBPARTMBNT OF BLBCTRICAL & COMPUTBR BNG INBBRI NG

AND THE SCHOOL OF G RAD UATE STU DIBS

OF IvlCMASTER UN IVBRSITY

IN PART IAL FULFILMB T OF T HE REQUIRE1\lIBNTS

FOR THE DEGREE OF

MASTBR OF ApPLIBD SCIBNCB

© Copyright by J. Anthony Brown , September 2010

All Rights Reserved

l\/Iaster of Applied Science (2010)

(Electrical & Computer Engineering)

McMaster University

Hamilton , Ontario, Canada

TITLE:

AUTHOR:

GPU-Accelerated Particle Filtering for 3D Model-Based

Visual Tracking

J. Anthony Brown

B.Sc.Eng. (Computer Engineering)

University of New Brunswick, Fredericton, Canada

SUPERVISOR: Dr. David Capson

NUMBER OF PAGES: xxi, 125

IV

For my family

VI

Abstract

Model-based approaches to 3D object tracking and pose estimation that employ a
particle filter are effect ive and robust , but computational complexity limits their
effi cacy in real-time scenarios. This t hesis describes a novel fr amework for accelera
tion of particle filtering approaches to 3D model-based, markerless visual tracking in
monocular video using a graphics processing unit (GPU). Specifically, NVIDIA com
pute unified device archi tecture (CUDA) and Direct3D are employed to harness the
single-instruction multiple- thread (SHvIT) programming model used by the GPU's
massively parallel streaming multiprocessors (SMs) for simulation (3D model ren
dering) and evaluation (segmentation, feature extraction, and weight calculation) of
hundreds of particles at high speeds. The proposed fr amev,'ork addresses the compu
tational intensity that is int rinsic to all part icle fi lter approaches, including those with
modifications and extensions that strive to reduce the number of required particles
while maintaining tracking quali ty.

The sampling importance resampling (SIR) part icle filter and its utility in 3D
model-based t racking is reviewed and a detailed overview of relevant GPU-programming
concepts is presented. The proposed framework is formulated as a series of intercon
nected steps and the functionality and implementation of each is described in de
tail. Rigid and art iculated tracking examples are presented in t he context of human
computer interact ion (HCI) and augmented rea lity (AR) applications, with a fo cus on
bare hand tracking. Performance and tracking quality results demonstrate marker
less , model-based visual t racking on consumer-grade hardware with pixel-level accu
racy up to 95 percent at 30+ frames per second. The framework accelerates particle
evaluation up to 25 t imes over a comparable CP -only implementation. providing an
increased particle count while maintaining real-time frame rates.

V11

vm

Acknow ledgments

r would like to express my sincere gratitude to everyone who has supported me over
the past two years. First and foremost , to Dr. David Capson, who has not only
offered support and encouragement throughout my tenure at McMaster, but is largely
responsible for bringing me to the school in the first place. Somehow, even though
he was const antly juggling count less demands on his t ime, Dr. Capson was always
available for a meeting or demo and never failed to insight motivation and pride in
my work. He has been a t rue inspiration and a constant reminder of what an engineer
from New Brunswick can go on to achieve.

r would also like to thank }/Iike Kinsner and Peter K uchnio for welcoming me
to the Computer Vision lab and introducing me to CUDA programming, which has
been a major fo cus of my research. Thanks goes out to the other members of the lab
as well , for alwC:l.ys lllakiug me feel welcome even when I was only coming in once or
twice a month and for coming with me to get my "fan cy coffee," even though it was
a li ttle farther away. Thanks also to the faculty and staff of the ECE department
for your help and guidance, part icularly Dr. Kiruba, Dr. Doyle, Cheryl Gies , Alexa
Huang, Terry Greenlay, and Cosmin Coroiu.

r would not be where r am today without the constant support of my family and
fr iends. Thanks especially to my grandmother , Dena Brown, for her love, encour
agement , and lemon squares , and to my grandfather , Jim Brown, who t aught me
everything r know, including the importance of bringing your own pencil to a test.
Thanks also to Amanda Dyer , for so much support when I needed it the most and
for somehow tolerating my completely unnatural sleeping pat tern. Last , but most
defini tely not least , thanks to my incredible mother , Renee Brown, whose love and
pride has driven me to succeed more than anything else. Her phone calls and visits
over the past two years meant more than she can possibly know.

r would also like to thank NSERC Canada and T\ ld vlaster University for financially
supporting this research.

IX

x

Notation and Acronyms

General Notation
x
x
X
In
Ixl

ycx:x
y ;:::::;x

y rv j (x)
PT(Y = x)
N({L , 2:,)
U[a, b]

<5(-)
N

AU B
An B

Scalar
Vector
I\/Iatrix
Identi ty Matrix of dimension n x n
Absolute value of x
Y is proport ional to x
y is approximately equal to x
y distributed according to f(x)
Probabili ty y is equal to x
Normal distribution with mean {L and covariance 2:,

Uniform distribution between a and b
Dirac delta function
Set of natural numbers {O, 1, 2, ... }
Union of A and B
Intersection of A and B

Bayesian Estimation Notation
p(xl z) Probability of x given z

p(XtIXt- d Prior PDF
p(ZtlXd Likelihood PDF

p(Xtl zu) Posterior PDF

Particle Filter Notation
X t

Zt

X t

N

{ -i }N x t i= l

{ i}N w t i = l

q (X t I X~ _ I ' Zt)

System state at t ime t
Observation at t ime t
Estimate of x at t ime t
Number of part icles
Set of N particles at t ime t
Set of N part icle weights at t ime t
Proposal/ Importance PDF

Xl

Acronyms
API
AR

CDF
CPU

CUDA
DIP
DOF

FLOPS
FN
FP
fps

GPGPU
GPU
HCI

HLSL
HPC
i.i.d.
IP

jVIAE
MP

NVCC
PCI-E
PDF
PIP
SDK
SIMD
SI lIT
SIR
SIS
SM

SjVIC
SP
TN!
T N
TP

TPC

Application programming interface
Augmented reality
Cumulative density function
Central processing unit
Compute unified device architecture
Distal interphalangeal
Degree of freedom
Floating point operations per second
False negative
False posit ive
Frames per second
General purpose computing on graphics processing uni ts
Graphics processing unit
Human-computer interaction
High-level shading language
High-performance com pu t ing
Independent and identically distributed
Interphalangeal
f\!lean absolute error
MeLacarpophalangeal
NVIDIA C compiler
Peripheral component interconnect express
Probability density function
Proximal interphalangeal
Software developer 's kit
Single-instruction multiple-data
Single-instruction multi ple-thread
Sampling importance resampling
Sequential importance sampling
Streaming multiprocessor
Sequential Monte Carlo
Streaming processor
Trapeziometacarpal
True negative
True positive
Texture processing cluster

Xll

Contents

Abstract

Acknow ledgments

Notation and Acronyms

1 Introduction
1.1 3D jVIodel-Based Tracking
1.2 The Particle Filter
1.3 GPU Computing and NVIDIA 's CUDA .
1.4 Problem Statement .
1.5 Thesis Organization

2 Particle Filters and 3D Model-Based Tracking
2.1 Formulation of t he Tracking Problem
2.2 Bayesian State Estimat ion
2.3 The Particle Filter ...

2.3 .1 State Estimation .
2.3.2 The SIS Filter ...
2.3.3 Particle Degeneracy and Resampling
2.3.4 The SIR Filter

2.4 P article Filter Variations and Alternatives
2.4. 1 Opt imal Estima t ion Algorithms . .
2.4.2 Subopt imal Estimation Algorithms
2.4.3 Variations of t he Particles Filter ..

2.5 ?vIodel-Based Tracking Vlith a P ar t icle Filter.
2.5.1 Choosing a ~Iotion Dynamics ~ I odel

2.5.2
2.5.3

2.5.4

Particle Image Evaluation
Challenges of the Approach
Case Study: ~Iodel-Based Hand Tracking .

Xlll

Vll

IX

xi

1
2
2
3
3
4

5

5
6
7
8
9

12
13
14
15
16
17
18
19
19
22
23

3 GPU Computing
3.1 Introduction to GPU Computing
3.2 Similar Applications and Literature Review
3.3 The GT200 GPU

3.3.1 Hardware Architecture
3.3.2 Scheduling Paradigm

3.4 NVIDIA CUDA .
3.4.1 Overview
3.4.2 Execution },/Iodel
3.4.3 Memory Model
3.4.4 Optimization Concerns

3.5 Microsoft Direct3D
3.5. 1 Resources and Rendering .
3.5.2 The Geometry Pipeline .
3.5.3 3D Models .
3.5.4 Lights, Materials, and Shading.
3.5.5 Direct3D jCUDA Interoperability

3.6 GPU Comput ing in 3D Model-Based Tracking

27
27
30
31
31
33
34
34
36
40
45
48
48
49
51
52
52
53

4 GPU-Accelerated Particle Filtering for 3D Model-Based Tracking 55
4.1 System Overview 56
4.2 Configuration and Initialization 57

4.2. 1 Direct3D 58
4.2.2 CUDA........ . . 58
4.2.3 Additional Details ...

4.3 Resampling and Particle Propagation
4.4 Frame Acquisition.
4.5 Model Rendering and Tiling
4.6 Mapping Direct3D Resources to CUDA .
4.7 Image Segmentation
4.8 Feature Extraction
4.9 Particle Weight Computation .. .
4.10 State Estimation and Visualization

5 Results and Analysis
5.1 Methodology

5.1.1 Tracking Targets
5. 1.2 Experimental Parameters and Metrics
5.1.3 Test Bench ...

5.2 Tracking Quality Results ...

XIV

59
59
60
60
61
61
62
65
67

69
69
69
70
74
75

5. 2.1 Rigid Vland Tracking - Real Video '"
5.2.2 Rigid Hand Tracking - Real Video
5.2.3 Articulated Hand Tracking - Real Video
5.2.4 Rigid Wand Tracking - Synthetic Video .
5.2.5 Articulated Hand Tracking - Synthetic Video.

5.3 Performance Results .
5.3.1 \~Tand Tracking
5.3.2 Hand Tracking

5.4 Summary

6 Conclusion

A SIS Particle Filter Derivation

B Additional Results:
Comparison of Feature Detectors

C Additional Results:
Comparison of Motion Models

xv

75
79
82
86
89
93
93
96
97

101

103

105

111

XVI

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
4.1
4.2
4.3
4.4
4.5
4.6

Dynamic state space model as a first-order Markov chain 6
Posterior PDF approximated by uniformly distributed particles 8
Posterior PDF approximated by particles drawn from the posterior PDF 10
Posterior PDF approximated by particles drawn from the proposal PDF 10
Particle propagation demonstra tion 11
Sampling importance resampling demonstration . . 15
Orientation ambiguity due to silhouette extraction. 21
A 27-DOF skeletal hand model 24
\Vrist and index finger as a kinematic chain
Graphics pipeline
GT200 processing element hierarchy
Streaming processor and streaming multiprocessor .
Texture processing cluster
GT200-series GPU .. .
CUDA software stack .. .
GT200 thread hierarchy .
CUDA automatic scalability
Blocking and non-blocking GPU function calls
Asynchronous kernel launching
CUDA memory model
An effective global memory access pattern
An effective shared memory access pattern
An effective constant memory access pattern
An effect ive texture memory access pattern.
Geometry pipeline
GPU-accelerated model-based tracking: system overview
GPU-accelerated model-based tracking: data flow
GPU-accelerated model-based tracking: kernel part itioning
Particle resampling and propagation
Frame acquisit ion
l\ Iodel rendering and tiling ..

XVll

25
28
31
32
32
33
35
36
38
39
39
40
41
42
44
44
49
56
57
58
59
60
60

4.7
4.8
4. 9
4.10
4.11
4. 12
4. 13
4.14
5. 1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5. 10
5. 11
5. 12
5.13
5.14
5. 15
5. 16
5. 17
5. 18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
B. 1
B.2
B.3
B.4

Image segmentation .
Feature extraction
Shared memory and flag registers during feature extraction
Particle grid G PU mapping
Part icle weight computation
\l\Teight calculation
Parallel reduction algorit hm to sum pixel weights .
State estimation and visualization .
3D tracking target models
Hand model creation with Blender
6-DOF rigid wand tracking demonstration
4 x 12 sample of the wand part icle grid ..
6-DOF rigid wand tracking quali ty results
6-DOF rigid wand tracking at optimal settings
6-DOF rigid hand tracking demonstration .
4 x 12 sample of the rigid hand part icle grid .
6-DOF rigid hand tracking quality result s
6-DOF rigid hand t racking at optimal settings
10-DOF articulated hand tracking demonstration
4 x 12 sample of the articulated hand particle grid .
10-DOF art iculated hand tracking quality results .
10-DOF articulated hand t racking at optimal settings
6-DOF synthetic wand tracking quality results ..
6-DOF synthetic "vand tracking demonstration
6-DOF synthet ic wand tracking at optimal setting ..
6-DOF synthetic wand tracking (324 Particles, 64 x 48 resolut ion)
6-DOF synthetic wand tracking (2 ,304 Particles , 160 x 120 resolution)
8-DOF synthetic articulated hand tracking demonstration
8-DOF synthetic articulated hand tracking quality results .. .
8-DOF synthetic articulated hand tracking at optimal settings
\l\Tand tracking performance results
vVand t racking speedup results. . .
Hand tracking performance results
Hand tracking speedup results ...
Summary of real-video experiments
Summary of synthetic video experiments
Feature extraction comparison: demonstration
Feature extraction comparison: performance results
Feature extraction comparison: speedup results
Feature extraction comparison: quali ty results

XVlll

61
62
64
65
65
66
67
67
70
71
76
76
77
78
80
80
81
82
84
84
85
86
87
88
88
89
90
90
91
92
94
94
90
96
98
98

106
106
106
109

B.5 Feature extraction comparison: summary .
C.l Motion model comparison: quali ty results
C .2 Motion model comparison: summary ...
C.3 Motion model comparison: summary details

XIX

110
11 2
113
113

xx

List of Tables

3.1 Summary of the GT200 memory model. 40
5.1 NVIDA GTX295 Graphics Card Hardware Specification 74
5.2 Wand tracking performance analysis (576 part icles, 96 x 72) 95
5.3 \t\Tand t racking performance analysis (900 part icles, 96 x 72) 95
5.4 Hand t racking performance analysis (324 part icles, 96 x 72) 97
5.5 Hand tracking performance analysis (1,296 part icles, 128 x 96) 97
B.1 Hand tracking performance analysis (no feature extraction) . 108
B. 2 Hand t racking performance analysis (Sobel edge detection) . 108
B.3 Hand t racking performance analysis (Canny edge detection) 108

XXI

Chapter 1

Introduction

Estimating the position and orientation of a rigid or articulated 3D object as it moves
through a video sequence is a central problem in computer vision, with applications
including visual servoing, surveillance, human-computer interaction (HCI), telecon
ferencing, performance-driven animation, medical imaging, and augmented reality
(AR). For example, visual servoing involves estimation of the posit ion and configu
ration of a device, such as a robotic arm, for input to the control system governing
its movement. AR involves overlaying a real scene with computer-generated images,
often "attaching" a virtual object to a real object that is moving through the scene.
Vision-based HCI aims to provide a user with a more natural or intuitive platform
for interacting with a computer , without the use of a mouse, keyboard, joystick, or
other t raditional input device.

Approaches to these applications are often simplified by relying on range sensors
(e .g., ultrasonic, infrared, magnetic) , point or planar fiducial markers (e.g., LEDs,
reflectors) , posit ion encoders, (e .g., rotary encoders, optical encoders, data gloves
in hand tracking applications) , or mult iple-camera rigs. However, in many applica
tions , these engineered solutions prove intrusive, unreliable. expensive. cumbersome.
or impractical and a purely vision-based method is preferred .

vVhile practical, visual approaches to 3D object tracking are challenging (Lepet it
and Fua, 2005). Six degrees of freedom (DOFs) are needed to describe an object 's
location with respect to a camera and each internal joint in the object can add
one to three more. T hese DOFs must be continuously estimated based solely on a
video sequence 's pixel data. Because the pixel data represents a single camera's 2D
projection of a 3D object . there can be a great deal of ambiguity. Other challenges
include motion blur from fast movements , variations in lighting, shading, shadows
and texture, and tota l or partial occlusion of the object.

1

f\/LA.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering

1.1 3D Model-Based Tracking

Visual tracking techniques can be coarsely divided into appearance-based and model
based categories. Appearance-based methods , also known as view-based or single
frame approaches, use cues from the video sequence (colour, contours, etc.) whereas
model-based methods proj ect a 3D model of a tracking target with known geometry
onto a 2D surface (plane) for comparison with the vid 0 sequence. In either case,
the goa.! is to estimate the set of parameters that best describes the object's pose.
Model-based approaches, sometimes referred to as analysis-by-synthesis or generative
m ethods, often generate superior results and are algorithmically simpler because the
parameters being estimated are the same DOFs being manipulated to control the
model. Unfortunately, such approaches require many 3D renderings of the object
to be produced and compared to each video frame, making them computationally
intensive and consequentially less popular than appearance-based techniques.

A brute force approach to model-based tracking would involve configuring a 3D
model in every possible pose, projecting each configuration onto a plane, and com
paring each plane to the current video frame to identify the configuration that best
represents the true pose of the tracking target. This would involve a massive search
space that grows exponentially larger with each additional DOF that needs to be
estimated. To limit the search space, and consequently the computational intensity,
statistical estimation is often employed to ensure that only model configurations with
a high likelihood of accurately representing the true pose of the tracking target are
considered.

1.2 The Particle Filter

Model-based tracking can be framed as a Bayesian state estimation problem, facilitat
ing the application of Bayesian filters, such as the Kalman filter , grid-based methods,
and the particle filter (Candy, 2009) to identify statistically likely model configura
tions. The paTticle filt eT is a particularly attractive option, as it is a simulation
based sequential Monte GaTZo (SMG) technique capable of estimating the evolution
of non-linear , non-Gaussian stochastic processes (Ristic et al., 2004), such as the un
constrained motion of a tracking target. \\There most state estima.tion techniques
attempt to find an ideal solution with an approximate model , the particle filter aims
for an approximate solution using an ideal model.

Particle fil ters have been applied to a wide variety of applications, including fi
nance theory, audio recognition, robot localization, and numerous tracking appli
cations. Also known as the bootstrapping filter (Gordon et al. , 1993), survival-of
the-fi ttest (Kanazavva et al. , 1995), and the CO N DEN SATI 0 N algorithm (Isard and
Blake, 1998) , the particle filter has proven particularly applicable to 3D model-based

2

M.A.Sc. T hesis - J. Anthony Brown McMaster - Electrical Engineering

tracking applications, such as face, hand , and vehicle tracking (Zhou et al., 2004).
Unfortunately, even with the reduced search space provided by t he particle fil ter ,
hundreds or t housands of model configurations are still required for robust and ac
curate tracking. Since each configuration must be rendered , projected and evaluated
against each video frame , usually at 30 frames per second (fps) or faster , real- t ime
performance is rarely achieved , particularly when tracking articulated objects.

1.3 GPU Computing and NVIDIA's CUDA

In recent years , the graphics processing unit (GP U) has emerged as a powerful , afford
able, and adaptable parallel computing platform suitable for many high-performance
computing (HPC) tasks. Programming models, such as ATI Stream, Brook+, and
NVIDIA compute unified device architecture (CUDA), allow programmers to exploit
t he GPU 's massively parallel streaming multiprocessors (SMs) for general purpose
computing instead of the 3D graphics processing for which t hey were originally de
signed. Serving as a coprocessor to the central processing unit (CPU), t he GPU has
been reported to accelerate suitable applications (Hwu et al., 2009; Cout inho et al.,
2009) 10 to 1000 times over CPU-only implementations (Tan et al., 2009; Pock et al. ,
2008).

Introduced in 2006 to provide GPU computing on modern NVIDIA GeForce,
Quadro, and Tesla products , millions of which are already deployed in PCs and work
stations around the world (Halfhill , 2008) , CUDA represents a large , collaborative
online community, an ever-expanding number of university courses and textbooks
(Kirk and mei vv. Hwu, 2010), and a massive user-base. With a fo cus on scalabil
ity, a properly-wri tten CUDA application will maximally utilize all available SMs
as efficiently as possible, with minimal effort from the programmer. Because mod
ern GPUs offer significantly more floating point operations per second (FLOPS) and
a much higher memory bandwidth than similarly-priced CPUs, t hey are an ideal
solution to arithmetically intense applications, such as image processing, computer
vision, and video encoding. Computer vision, which involves the analysis of images ,
can be considered the inverse of computer graphics (Fung and Mann, 2008) , which
involves t he synthesis of images , making GPU hardware particularly amenable to 3D
model-based tracking and similar tasks that involve analysis of pixel data.

1.4 Problem Statement

This t hesis demonstrates how NVIDIA's CUDA was used in conjunction 'with ?vIi
crosoft Direct3D, an application programming interface (API) for optimized 3D graph
ics rendering on the GPU, to significantly accelerate particle filtering approaches

3

M.A.Sc. Thesis - J. Anthony Brown Md/Iaster - Electrical Engineering

to 3D model-based visual tracking of rigid and art iculated objects. Specifically, a
fr amework for partitioning anrl mR.pping a particle fil ter 's computationally intensive
weight-update stage to a GPU is presented. This para.llelizes the task of rendering
and evaluating model configurations, facili tating significant ly higher frame rates . The
fr amework can be adapted to support whichever variation of the particle fil ter and
evaluation methodology are best-suited to a particular application. Using rigid ob
ject tracking (6-DOF) and art iculated bare hand tracking (10-DOF) examples in AR
and HCI applications, robust and accurate , markerless, visual tracking with pixel
level likelihood at 30+ fps on consumer-grade hardware is achieved through GPU
acceleration of tradi tional particle filter approaches.

1.5 Thesis Organization

This thesis is based on research conducted between September 2008 and July 2010 at
the Department of Electrical and Computer Engineering, Computer Vision Labora
tory at iVIcMaster University. Significant portions of the research have been submitted
for publication in the IEEE Transactions on Visualization and Computer Graphics
in July, 2010 under the tit le A framework for 3D model-based visual t1"acking using
a GP U-accelerated particle filt er. Addit ionally, early results were presented at the
High Performance Computing Symposium (HPCS2010) in Toronto, Ontario , and will
appear in the Journal of Physics: Conference Series, published by lOP Publishing,
under the title GP U-accelerated 3-D model-based t1"acking.

The remainder of this thesis is organized as follows. Chapter 2 contains a descrip
tion of Bayesian state estimation , the details of the sequent ial importance sampling
(SIS) and sampling importance resampling (SIR) particle filters (supplemented by a
derivation of the SIS filter in Appendix A), an overview of alternatives and extensions
to the particle fil ter , and a description of the particle filter 's utility in 3D model-based
t racking. Chapter 3 describes the NVIDIA GT200 GPU architecture, with a focus
on memory and threading models, and how it can be exploited with CUDA and Di
rect3D for 3D model rendering and evaluation. This section also provides a li terature
review of relevan t GPU-comput ing research. The functionality and implementation
of the proposed G PU-accelerated 3D model based tracking framework is detailed in
Chapter 4. Section 5 describes how the fr amework was tested and presents results for
five separate tracking experiments , with supplemental results included in Appendix
B and Appendix C. Finally, Chapter 6 concludes the thesis with a discussion and
summary of fu ture work.

4

Chapter 2

Particle Filters and 3D
Model-Based Tracking

3D model-based t racking can be fr amed as a Bayesian state estimation problem t o
facilitate the application of Bayesian filters. This chapter begins by formalizing the
tracking problem in Section 2. 1, then describes how the problem can be solved from
a Bayesian state estimat ion perspective in Section 2.2 . The SIR part icle filter is
described in Section 2.3 and the variations and alternat ives to the particle fi lter are
presented in Section 2.4. Finally, Section 2.5 describes how the particle filter is used
in 3D model-based tracking applicat ions, with a fo cus on articulated hand tracking.
Note that this chapter is based on material presented in (Brown and Capson, 2010a) .

2.1 Formulation of the Tracking Problem

The pose of a non-rigid obj ect as it moves through a video sequence can be described
by the evolution of a state sequence {XL, t EN} comprised of six global parameters
and m local (i. e., joint) parameters

(2 .1)

where (t x, t y , t z) are the coordinates of the obj ect 's origin (global translation), (Tx , Ty , Tz)

are the global rotations around the X- , y-, and z-axis, respectively, and (jo, .. . , jm- l)
are the angles of m joints relat ive to the global object pose, configured as one or more
kinematic chains. The obj ect can be tracked by estimating the parameters of Xt at
discrete t ime points (e .g .. once per fr ame in a video sequence) as the sequence evolves
according to a system lynamics model

(2.2)

5

M.A.Sc. Thesis - J. Anthony Brown f\ilcf\Iaster - Electrical Engineering

where it is a (possibly nonlinear) funct ion of t he previous state that varies with t ime
and describes the evolu tion of the state sequence, and V t-l is an i.i .d. noise sequence.
It is not generally possibly to observe Xl directly ; t herefore , measurements are taken
from a noisy observation model

(2. 3)

where ht is a (possibly nonlinear) function of the current system state and n t is
another i.i.d. noise sequence. Equation (2.2) and equation (2.3) constitute a dynamic
state space model for the system where estimates of Xt are based on all available
observations Z l:t up to t ime t.

2.2 Bayesian State Estimation

, ... ":

~ p(x2Ixl) p(x3Ix2) P(XdXi_l) ~
~~~ ~ 
..................................................................................................................................... 

................................ .............................. . ................................................................. . . . 

L?.~.~.~.~~.~~~~~ ..... ~.I ............................. ~.~ ............................ ~.~ ............................ ~: .... .l 
Figure 2.1: Dynamic state space model as a first-order Markov chain 

To frame object tracking as a stochastic state estimation problem, the dynamic 
system is represented by a first-order Markov chain (Fig. 2.1) where equation (2.2) 
is described by a state t ransit ion probability density function (PDF) p(XtIXt- l) , also 
called the prior, and equation (2.3) is described by a likelihood PDF p(ztI Xt). The 
probability of belief t hat the system is currently in state X t, given a series of inde
pendent observations Z l:t up to time t , can then be represented by a posterior PDF 
p(XtI Zl:t) , assuming the initial posterior p(xol zo) ::::::: p(x o) is known. From a Bayesian 
perspective, knowledge of the posterior constit utes an optimal solution to the estima
t ion problem (Arulampalam et al., 2002) . 

Recursive filt ering is a popular approach to estimating the posterior of a dynamic 
system, as it produces a new estimate with t he arrival of each measurement , while 
considering all previous measurements without the need to reprocess them. This is 
generally facili tated through two stages: 

1. Prediction: The prior PDF (based on the system dynamics defined by equation 
(2.2)) is used to propagate the posterior from the previous t ime step to the 

6 



M.A.Sc. Thesis - J. Anthony Brown Md l/laster - Electrical Engineering 

current t ime t according to 

(2.4) 

2. Update: The likelihood PDF (based on the observation model defined by equa
tion (2. 3)) is used to modify the posterior in (2.4) based on a new measurement 
according to 

(2.5) 

Note that (2.4) uses the Chapman-Kolmogorov equation (Papoulis, 1984), and (2.5) 
uses Bayes rule and contains a normalization PDF p(ZtIZU- l) defined as 

(2. 6) 

' I\lhile (2.4) and (2.5) concept ually represent the optimal Bayesian filtering solu
t ion, their integrals are computationally intractable and an analytic solut ion is not 
generally available. If the dynamic state space is linear and Gaussian , a tractable so
lut ion can be obtained using the Kalman fil ter. Similarly, if the state space is discrete 
and fin ite, grid-based methods can provide an optimal estimate. Unfortunately, these 
conditions rarely hold in the application of visual tracking and a sub-optimal solut ion 
is sought using alternative methods, such as the extended Kalman filter , unscented 
Kalman filter , approximate grid-based methods, or the particle filt er (Doucet et al. , 
2000). 

2.3 The Particle Filter 

An optimal Bayesian estimate is intractable because it is not possible to evaluate all 
potential parameter values of Xt in the state space. Particle filtering is an SiVIC tech
nique (Doucet et al. , 2001 ) that implements the recursive Bayesian filtering approach 
described above, but circumvents the intractable integrals by selecting only a statisti
cally relevant subset of possible state values for predict ion and updating. Specifically, 
the posterior at time t is approximated by a set of N discrete random samples {XD~l 
and their corresponding weights {WD ;~ l (Fig. 2.2) where each sample-weight pair is 
referred to as a particle and the weight is a measure of quality that has been normal
ized such that L:~l wr = 1. Formally. the posterior is approximated by point masses 
according to 

N 

P(XtI Zll ) ~ L 'W~6(xt - x1) (2 .7) 
i = 1 

7 



~/I.A .Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

where 6(-) is the Dirac delta function and as N -+ 00 the right side of (2 .7) approaches 
the left side. In other words , the higher the number of particles in the set , the clo~er 
the approximation of the true posterior . 

.. , 

.. ' 

'. ' . 
....... 

. 0:-•• -~) p(x,lz J:J 
'. 

'. " . 
.' .' 

. .... 

Figure 2.2: Posterior PDF approximated by uniformly distributed particles 

The particle filter is applicable to a variety of dynamic state space models defined 
by equation (2.2) and equation (2.3) , including those with nonlinear system dynamics 
models it and non-Gaussian noise V t - 1 , as well as a nonlinear observation model ht , 

which can also contain non-Gaussian noise nt . A key advantage of the par ticle fi lter 
over other estimation techniques is its ability to simulate and track multiple state 
hypotheses and generates intelligent estimates of Xt based on t he particle weights . 

The remainder of this section is presented as follows. First , the various methods 
through which the particle set and weights can be used to generate an estimate for 
the state of a system are outlined. Next , the sequential importance sampling particle 
fil ter, which forms the basis for most SMC estimation techniques, is introduced . Fi
nally, the concept of resampling is used to derive the sampling importance resampling 
particle filter , which is used in this work. 

2.3.1 State Estimation 

The particle ~eL {XDt~l and weights {Wn~l can be used to generate an estimate of 
the current system state Xt using a number of methods. For example, the state of 
the highest-weighted particle 

(2.8) 

the average of the M highest-weighted particles 

J\J 

Xt = 1\1 - 1 L X~, (2 .9) 
i= l 

8 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

or , the weighted average of the M highest-weighted particles 

Xt = L w~x~, (2.10) 
i= l 

where JVI ::; N and the particles have been sorted from highest-weighted to lowest
weighted and weights have been normalized. This work exclusively uses equat ion 
(2. 10) for state estimation. Once part icles and weights are available, state estimat ion 
is trivial The challenge, however , is determining the ideal location of the particles 
in the state space and the optimal approach to generating their weights, as described 
below. 

2.3.2 The SIS Filter 

In the example shown in Fig. 2.2, the particles are distributed evenly across the 
state space. vVhile this would certainly yield the most complete approximation of 
the posterior , significant computational resources would be wasted in simulation and 
measurement of many particles with extremely low weights (and consequently low 
probabili ty of accurately estimating the system state) . A more efficient approach is 
to concentrate particles in statisticaUy likely areas of the state space , as shown in Fig. 
2.3, sacrificing some robustness for accuracy and speed. To achieve this, t he part icle 
set must be periodically propagated such that the concentration of particles in the 
state space is proportional to the posterior. 

Ideally, t he particles would be drawn (i.e., selected) directly from the posterior : 

(2. 11) 

Unfortunately, the posterior is t he PDF being estimated and therefore cannot be 
sampled from. Instead, an alternative, easily-sampled function q(XtIXt-l ' Zt) called 
the proposal or importance PDF provides an approximation of the true posterior: 

(2. 12) 

This is demonstrated in Fig. 2.4, where the particles are distributed in the state space 
according to the proposal PDF. but are still used to approximate the posterior. 

The sequential importance sampling (SIS) part icle fi lter is so named because of its 
abili ty to utilize the importance function to sequentially (i. e., recursively) propagate 
the particle set and weights with the arrival of each new measurement. The SIS 
weight-update equation is derived in Appendix A. and describes how particles sampled 

9 



~ I.A .Sc. Thesis - J. Anthony Brown ~/IcMaster - Electrical Engineering 

.. " . 
..... 

,..-;-.... ---7) p( X liz I:t) 

......... 
.... 

Figure 2.3: Posterior PDF approximated by particles drawn from the posterior PDF 

. ' 

'-,--~) q(x, I x;_"z,) 
~ 

" ..... . 

' 11' 
Particle Set {x;L=1 

......•........ 

. ... 

Figure 2.4: Posterior PDF approximated by particles drawn from the proposal PDF 

from q (.) are recursively updated: 

(2.13) 

Note that equation (2. 13) relies solely on the current observation and previous state, 
meaning prior weights, observations, and states do not need to be stored or processed , 
and the memory and computational requirements of the SIS particle fi lter do not 
increase with time. Additionally, (2.13) can be directly used with equation (2.7) to 
approximat e the posterior and yield an est imate for the current system state. One 
iteration of the SIS particle filter algorithm is shown below. 

The choice of proposal function q (XtI X~_ l ' Zt) significant ly affects the efficacy of 
the particle fil ter and many have been proposed in the literature. For example, 
Doucet (1998) states that the opt imal importance function minimizes the variance of 
the part icle weights and can be shown to be qopt(x tl x Ll ' Zt) = p(xtlxLl' Zt) . This 
proposal, however , is difficult to sample and leads to generally int ractable integrals 
during the weight-update stage. As a result , the optimal importance function must 

10 



M.A.Sc. Thesis - J. Anthony Brown lVlcMaster - Electrical Engineering 

SIS Particle Filter Algorithm 

procedure [Xt, {xl, Wni~ I J = SIS( {xL), wL I }~l> Zt) 
for i = 1 : N do 

• Propagate particle: x~ rv q(xtIXL1 ' Zt) 
. . ' . p(z rl x i)p( x il x i ) 

• SImulate and measure weIght: w t ex: w t 
t . t t - J 

t t- I q(x~l x~_l .z tl 

end for 
• Estimate state Xt using (2.8) , (2.9), or (2.10) 

end procedure 

/ / Prediction 

/ / Update 

/ / Estimation 

be approximated (van der lVIerwe et al. , 2001 ) or an alternative, easy-to-sample func
t ion is employed. For example, mot ion features are introduced to the proposal by 
Odobez et al. (2006), and Rui and Chen (2001 ) describe an unscented particle fi lt er 
(UPF), which integrates the unscented Kalman filter (UKF) into the proposal PDF. 
An appearance-guided particle fil ter (AGPF) is presented by Chang et al. (2008), 
which introduces several attractors into the state space to au gment the proposal den
sity with current visual cues and minimize particle drift. 

6 

5 

4 

3 

2 

o 

-1 
o 2 3 4 5 6 7 8 

Figure 2.5: Particle propagation demonstration 
As an object moves from left to right in a zigzag pattern , t he part icle set (shown at 

10-frame intervals) propagates by clustering around predicted object locations. 

11 



II.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

The most common and convenient choice of importance function is the prior PDF 
q(XtIX~_ l ' Zt) = p(XtIXL l) ' which is easy to sample, provides a reasonable approxi
mation of the posterior if it accurately reflects the system dynamics, and simplifies 
(2.13) to 

(2. 14) 

Although it does not incorporate the most recent observation, this choice of proposal 
can be effective for visual tracking and is used throughout the remainder of this work. 
Particle propagation using the prior is demonstrated in Fig. 2.5 , 'which shows the 
displacement of a particle set as it tracks an object with two DOFs using a model
based approach. As the tracking target moves through the state space, particles 
cluster around the object 's path, with higher concentrations of particles overlapping 
with the most likely object locations according to the system dynamics. 

2.3.3 Particle Degeneracy and Resampling 

The SIS particle filter is prone to a phenomenon called paTticle degenem cy, wherein 
poorly-weighted particles become efFectively useless as their weights approach zero 
after a few filter iterations (i. e. , the variance of particle weights increases with time). 
This effect was quanLified by Liu and Chen (1998) by introducing a measure of effective 
sample size N ej j that is proport ional to the variance of the particle weights and can 
be approximated according to 

(2. 15) 

Because each particle represents a possible system state t hat is going to be simulated 
and measured, if N ej j becomes too small, significant computational resources would 
be wasted and t he robustness of tracking would be impacted. Instead of a brute force 
approach that simply increases the particle count , a technique called Tesampling is 
employed to counteract particle degeneracy. 

Conceptually, resampling discards poorly weighted particles and duplicates highly 
weighted part,ides while maintaining a fixed particle count. Formally, resampling 
generates a new set of particles {Xr } i~ l by resampling (with replacement) N times 
from the existing particle set {xD t~ 1 such that PT (xt = xD = w~. This effectively 
results in an i.i.d . sample from the approximation of the posterior PDF defined 
by equation (2.7). Each time the part icle set is resampled , all particle weights are 
reset so that w~ = l i N . A number of resampling methodologies have been proposed , 
including stratified sampling, residual sampling (Liu and Chen, 1998) , and systematic 
Tesampling (Kitagawa, 1996), which is used in this work and can be implemented for 
O(N) t ime complexity (Arulampalam et al., 2002; Ripley, 1987) . 

12 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

Systematic resampling begins by constructing a cumulative density function (CDF) 
from the normalized particle weights { wDt~1 then picking an random init ial start ing 
point UI f'J U [O, lV- I] where U [a, b] is a uniform distribution between a and b. The 
algorithm then steps through the CDF. start ing from UI , in steps of size 1/ lV. The 
corresponding part icle associated with each selected point on the CDF is added to 
the new part icle set {xt } i~ l. \ iVith this approach, highly-weighted particles can be 
selected mult iple t imes whereas low-weighted part icles may not be selected at all. As
suming the part icle weights consistently represent the posterior PDF of t he system, 
the end result is a part icle set t hat probabilist ic ally propagates over time such that 
the majority of part icles fall around the peaks of the posterior and few computational 
resources are wasted on the simulation of unlikely hypotheses. 

2.3.4 The SIR Filter 

This work ut ilizes the sampling importance resampling (SIR) part icle filter introduced 
by Gordon et al. (1993), which applies systematic resampling on every fil ter iteration 
and uses the prior p(XtIX~_I) as the proposal PDF. Resampling is performed after the 
prediction, update, and Xt estimat ion stages. Additionally, since a new set of particles 
is generated at each time point, there is no need to consider previous weights WLI 
and equation (2 .14) simplifies to 

(2.16) 

The SIR part icle fil ter is demonstrated visually in Fig. 2.6 and described algorith
mically below with the four stages (prediction , update, estimation, and systematic 
resampling) indicated as comments. 

Although the SIR part icle fil ter has been shown to be a robust and effective 
approach to dynamic state estimation , it suffers from some shortcomings. Sample 
impoverishment, a condition wherein many part icles converge to represent t he same 
location in the state space , can occur when (2.2) contains very li ttle noise. F\lrther
more, as described above, the SIR fil ter does not include the most recent observation 
when propagating particles during the prediction step , meaning the proposal PDF 
may not accurately reflect the t rue posterior and state estimation can be sensit ive 
to outliers. Fina lly, when dealing with state estimation of systems described by a 
kinematic chain, an incorrectly estimated parameter at the root of the chain can 
propagate and perturb all dependent parameter estimates; a problem that is often 
circumvented through the use of mult iple or hierarchical part icle fil ters (Brandao 
et al. , 2006; Stenger et al. , 2006; Qu and Schonfeld , 2007). 

l\lany of these problems can be avoided altogether by ut ilizing a sufficiently large 
par t icle set. However , this exposes the primary drawback of particle fil tering ap
proaches: the computational complexity associated with simulating and weighing 

13 



IVI.A.Sc. Thesis - J. Anthony Brown MciVlaster - Electrical Engineering 

SIR Particle Filter Algorithm 

procedure [Xt, {xD i~ l ] = SIR( {XL l} t:, l ' Zt) 
for i = 1 : N do 

• Propagate particle: x~ rv p(xtlxL l ) 
• Simulate and measure weight : w~ = p(Zt IXD 

end for 
• Estimate st ate Xt using (2.8) , (2.9) , or (2.10) 
• Normalize weights such that L~~ l w~ = 1 
• Init ialize new particle set: {XtH~ l 
• Initialize CDF: Cl = 0 
for i = 2: N do 

• Build CDF: Ci = Ci- l + wl 
end for 
• Choose random point Ul rv UfO, N- 1

] 

for j = 1 : N do 
• Initialize CDF index: i = 0 
• Select point on CDF: Uj = Ul + N - 1(j - 1) 
while U j > Ci do 

• Find corresponding particle: i = i + 1 
end while 
• Add particle to new set: xi'" = x~ 

end for 
• Replace old part icle set: {XD ;~l = {Xi"' }~~ l 

end procedure 

/ / PTediction 
/ / Update 

/ / Estimation 

/ / Resampling 

mult iple hypotheses - a task that becomes exponentially more demanding as the di
mensionality of the state vector increases. Existing solutions aim to lower the dimen
siona.lity of the problem (Wu et al. , 2001 ) or reduce the part icle count (Bray et al., 
2007) while maintaining tracking quality, but the computational demands remain. 
This fr amework addresses the inherent computational complexity by parallelizing 
particle simulation and measurement on a GPU. 

2.4 Particle Filter Variations and Alternatives 

Entire books have been 'writ ten on Bayesian tracking and estimation techniques 
(Candy, 2009 ; Rist ic et al. , 2004) and extensive research has been done toward modifi
cation and opt imization of the particle fil ter . Here, a brief introduction of particularly 
popular approaches is provided with the goal of highlighting the st rengths and weak
nesses of the SIR fil ter , used in this work. 

14 



M.A.Sc. Thesis - J. Anthony Brown Mcl\lIaster - Electrical Engineering 

(a) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
I I I I I I 

I I I I --~--~-
I .. (b) t , t + + ¢o¢ t 

I I I I I I I I 
- - - - --,- -1- _ 1- - ' - - 1- -r- -- - - - t-- - +-- -.,.... - ~ - --

¢ ? § ~ $, ~\ ~ ~ 19 
I , 11\ I \ I \ \ I I \ I I 

--------~~-~-r~-L------~------ -

66~66 6ci)66 

I 

t 
I .. 

(c) 

(d) 

I 
I 
I 
I I 

I 6tdj) ' I I I 
I I I I I I I I I I I .. t t .. t CD t .. (e) 

Figure 2.6: Sampling importance resampling demonstration 
Single-parameter-state particle resampling with N = 15, i = 1 .. . N, size of part icle 

indicates weight . (a) {xl- I}' {WI-I = N- I
}: particles uniform across the state 

space. (b) {xL I} ' {wL I = p(Zt- I lxL I)}: part icle weights measured. (c) {xL I} ' 
{WI-I = N- l}: particles resampled to better represent t he state space. (d) {xD. 

{WI-l = N-1}: part icles propagated based on p (x~lxLl) to predict current posterior. 
(e) {xD, { w~ = p( Z t IxD}: particle weights updated based on new measurements . 

2.4.1 Optimal Estimation Algorithms 

The class of optimal algorithms are so named due to their ability to generate an 
optimal solution to a Bayesian estimation problem (i. e. , an exact representation of 
the posterior PDF) under cert ain restrictive condit ions. Two popular examples , t he 
Kalman fi lter and grid-based methods, are introduced below. 

Kalman Filter 

The recursive Kalman fil ter (Ho and Lee, 1964) provides an opt imal solution in cases 
where a lineaT Gaussian assumpt ion applies to the dynamic state space model. In 
other words. ht and it in equations (2.2) and (2.3), respectively. must be known linear 

15 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

functions, and noise parameters V t - l and n t must be Gaussian distributions with 
known parameters. These assumpt ions imply that the posterior is always Gaussian 
(and is therefore parameterized by a mean and covariance) , which is often not the 
case in high-dimensional model-based tracking applications. Nonetheless , for linear 
Gaussian dynamic state spaces , no algorithm can produced superior results to the 
Kalman filter (Arulampalam et al. , 2002) , making them a popular target for research. 

Grid-Based Methods 

Grid-based methods formulate the Bayesian tracking problem in a manner similar to 
the particle filt er , but are applicable only when the state space is discrete and has a 
fini te number of states (Arulampalam et al. , 2002). Like the Kalman fil ter , as long 
as these conditions hold and the prior and likelihood PDFs are known, grid-based 
methods provide an optimal solution to the tracking problem; however, most visual 
tracking applications deal with a continuous state space, thus limiting the utili ty of 
these approaches. 

2.4.2 Suboptimal Estimation Algorithms 

Suboptima.l a.lgorithms, such as the part icle filter, are employed when dealing with 
applications that do not adhere to the restrictive optimal assumpt ions above. Here, 
two alternatives to the particle filter are presented, based on the Kalman fi lter and 
grid-based methods, respectively. 

Extended Kalman Filter 

The extended Kalman filter (EKF) applies the principle of the Kalman filter to non
linear functions through local linearization; specifically, by expressing a nonlinear 
function as one or more terms of its Taylor expansion. The result approximates the 
posterior PDF as Gaussian, which can be effective in cases where nonlinearit ies are 
weak, but in cases of bi-modal or highly skewed distribut ions, the fi lter can diverge, 
and a particle fil ter generally provides a superior estimate. 

Approximate Grid-Based Methods 

Approximate grid-based methods apply standard grid-based techniques to continuous, 
infinite dynamic state spaces by truncating and discretizing the space into "cells." If 
a sufficiently dense grid is utilized, and the continuous state space is properly approxi
mated , this approach can lead to accurate estimations of the posterior. Unfor tunately, 
unless the nature of the state space is known in advance, the entire space must be 
evenly partitioned and significant computational resources can be wasted (i. e., it is 

16 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

not possible to increase grid resolution for likely areas of the state space) , unlike the 
particle fil ter which dynamically assigns particles to high-probability regions of Lhe 
posterior PDF. 

2.4.3 Variations of the Particles Filter 

The particle filter has been adapted to fi t a wide array of applications through a 
variety of modifications and augmentations that aim to increase efficiency, accuracy, or 
robustness. In most cases, variations of the particle filter can be derived from the SIS 
filter by specifying a particular importance function and resampling technique. Chen 
(2003) describes many such modifications, such as the auxiliary, rejection, regularized, 
Rao-Blackwellization, lV1CIV1C, and mixture particle filters. Below, the auxiliary and 
regularized particle filters are introduced, follovved by a description of the classes of 
adaptive and hierarchical particle filters that can be well-suited to high-dimensional 
tracking. 

Auxiliary Particle Filter 

Particle filters that use the prior PDF as an importance function , such as the SIR 
particle filter , do not incorporate the most recent observation during the prediction 
stage, which can lead to poor sampling of the posterior. The auxiliary particle filter , 
introduced by Pitt and Shephard (1999), circumvents this deficiency by introducing 
an auxiliaTY vaTiable that increases the dimensionality of the filter , but can be used 
to aid in simula tion by acting as an index for particles. The auxiliary variable is 
integrated into the proposal PDF and facilitates simulation of likely particles based 
on the current measurement , meaning particles are more likely to approximate the 
current posterior. The auxiliary particle filter has been shown to perform better 
than the SIR fil ter when process noise is small , but can degrade accuracy when 
noise is large. Furthermore, the additional complexity of the auxiliary filter makes it 
computationally slower than the SIR filter. 

Regularized Particle Filter 

Another dravvback of the SIR filter outlined above is the possibili ty of sample im
poverishment , wherein all particles in the set converge to a single location in st ate 
space in processes with li ttle noise. This loss of diversity occurs because particles are 
resampled from the existing, discrete part icle set . as opposed to a continuous distribu
tion. The regularized part icle filter , proposed by 1\1usso et al. (2001 ), uses a modified 
resampling stage to avoid impoverishment by resampling from a continuous distribu
tion based on the discrete particle set and a variable symmetric PDF. Although the 

17 



}/l.A.Sc. Thesis - J . Anthony Brown McMaster - Electrical Engineering 

regularized particle filter performs with similar computational complexity to the SIR 
filt er , it is only practical in scenarios with extensive sample impoverishment . 

Adaptive Particle Filters 

The broad class of adaptive particle filters describes algorithms that utilize dynamic 
particle allocation or state space distributions to achieve superior results . For exam
ple, Fox (2003) and Ben and Jiantong (2010) vary the size of the particle set based on 
uncertainty, thus decreasing sample size and limiting the computational complexity 
during times when tracking is satisfactorily reliable. Junxia et al. (2008) use a fixed 
number of particles in a full body pose tracking application, but adaptively allocate 
particles to various body parts as needed. In (\ I\Tang et al. , 2009; Huang and Llach, 
2008; Park et al. , 2008) , an autoregressive system dynamics model is used that can 
automatically select an appropriate model order and covariance for optimal track
ing. Of course, filters that adaptively change the size of the particle set are prone 
to inconsistent computation time, which is not suitable in many applications. Al
gorithms with intelligently adaptive prior or likelihood distributions, however , can 
provide increased tracking quality at minimal computational cost. 

Hierarchical Particle Filters 

Hierarchical particle filters are often employed for high-dimensional tracking tasks , 
where there are dependencies between the parameters being estimated, such as body 
or hand tracking. In general, hierarchical fi lters partition the tracking task into two 
or more stages to exploit natural correlations in the tracking target 's architecture 
and increase the quality of tracking. For example, Brandao et al. (2006) partition 
the parameter space into a tree of subspaces based on the nature of the tracking 
target and estimate the states of the resulting groups separately, whereas Dong and 
DeSouza (2009) use a two-level hierarchy of particle filters to distinguish between 
coarse and fine grained tracking tasks. \l\1hile hierarchical filters require multiple 
iterations for state estimation, they can lower the number of part icles required for 
applicable tracking tasks. 

2.5 Model-Based Tracking With a Particle Filter 

There are particular requirements and challenges associated with the use of a particle 
fil ter in the application of 3D model-based tracking, specifically in the weight-update 
stage. \rVith the state of the tracking target represented by (2 .1 ), simulating a particle 
set {xnf~:' l involves configuring a 3D model of the tracking target in the pose described 
by each of the N particles and projecting the configurations onto planes referred to 

18 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

as particle images. Measuring part icle weights requires a quantifiable comparison 
between each of the part icle images and the current fram e of the video sequence, 
referred to as evaluation. In the context of 3D model-based tracking , model simulation 
and evaluation comprise the weight update stage of the part icle filter. 

2.5.1 Choosing a Motion Dynamics Model 

In a tracking application, the prior (system dynamics) PDF p ( X tI X t - d describes the 
motion of an object . In other words , it is a model of the obj ect 's motion that can 
predict the current pose of a tracking target based on its previous pose and movement. 
In the SIR particle filter , the prior is used to propagate the part icle set {XLl }~ l to 
{Xnt~ I ' with the goal of making each particle a realistic estimate of the t racking 
target's next position. 

The choice of motion model (2 .2) therefore has significant influence on tracking 
quality. In t his work , t hree motion models with the form X t = X i - I + V t are considered: 

• a random walk model with V t rv N(O , ~t- I ); 
• a first-order motion model with Vt rv N(6.Xt- I , ~t- I); or, 
• a second-order motion model with Vt rv N(6.Xt-1 + ~(6.Xt- 1 - 6.Xt- 2), ~t-d 

where N(/-t , ~) is a normal distribution with mean f.-i and covariance ~, and 6.Xi = 
Xi - Xi- I ' The application of a first- or second-order motion model to the particle set 
is sometimes referred to particle drift and diffusion, where drift refers to displacement 
of the particle according to the mean of the distribution (deterministic component 
based on motion), and diffusion refers to the scattering of part icles according to 
the covariance of the distribution (random component to account for uncertainty 
in predicted mot ion). In all motion models, ~t- I can be adj usted so that all state 
parameters have a common transition variance or so that each parameter has a unique 
transit ion variance. Additionally, all parameters need not use the same motion model; 
for example, if t racking an object that is expected to move linearly and rarely change 
its internal joint flexions, it may be desirable to use a second-order motion model 
with a large variance for global state parameters and a random walk model with low 
variance for local parameters. 

2.5.2 Particle hnage Evaluation 

If particle images accurately reflect the color . text ure, lighting. and shading of the 
actual tracking target , a direct pixel- to-pixel comparison is feasible; however, t his 
is not generally the case and a number of other approaches have been proposed 
in the li terature. For example, i\tlaggio et al. (2007) extract color and orient ation 
histograms and Wang et al. (2007) use a similarity measure based on a spatial-color 

19 



M.A.Sc. Thesis - J. Anthony Brown IvIcMaster - Electrical Engineering 

mixture of Gaussians (SMOG) appearance model that considers the spatial layout of 
colors, augmented by a shape similarity measurement . In most cases, some degree of 
image processing is performed to extract features (edges, corners, silhouettes, etc .) 
from the particle images and current fr ame, which can be compared to generate a 
more meaningful weight than raw pixel data. Although this comes with the price 
of additional computational complexity, these types of image processing tasks are 
ideal candidates for parallel processing on a GPU. The type of feature extraction 
performed varies depending on the nature of the t racking application. In this work , 
image segmentat ion , silhouette detection, and edge detection are employed and are 
fur ther described below. 

Image Segmentation 

Image segmentation involves partit ioning an image into two or more regions, generally 
to facilitate further processing (Shapiro et al. , 2001 ). In the context of model-based 
tracking, segmentation is used to partition a video frame into foreground and back
ground components, where the foreground contains only the t racking target and the 
background is suppressed , providing a more meaningful comparison with the parti
cle images. Segmentation generally involves identifying regions using colour , texture, 
edge, contour , or motion information. 

This work fo cuses solely on tracking obj ects moving in front of a stationary camera 
with a static background; therefore, the tracking target can be segmented from the 
background using a simple background subtraction technique. The frame background 
is init ially "learned" by observing one or more frames of unobstructed background 
and recording the range of colour intensities that each pixel location achieves . During 
tracking, each pixel is compared to the corresponding intensity ran ges in the learned 
background. Pixels that closely resemble the learned background are suppressed, 
whereas all other pixels are preserved, effectively segment ing the tracking target. 
Formally, 

{

t' p(7,j ) , 
seg _ in 

P (i, j ) - P (i,j) , 

0, 

in bh igh rn 
P (i .j ) > (i,j ) + 1 seg 

p t(·n .) < bl(ow) - T seg 
t .] t ,] 

otherwise 

where p(:~j) is the input pixel from the video sequence at location (i , j) , b~~~;;t is the 
upper bound of the range of colour intensities for the corresponding pixel location in 
the learned background, bt~,j) is the lower bound , T seg is a threshold, and p(:';) is the 
resulting segmented pixel. 

20 



NI.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

Silhouette Detection 

Directly comparing the pixels of a segmented t racking target to particle images is 
only effective if the colour , light ing, shading, and texture of both are very. imilar. 
This is often not the case, requiring these features to be suppressed while preserving 
the geometry of the object. This can be done by reducing all par ticle images and the 
segmented tracking target to their silhouettes. Using the same notation as above: 

{ 
S seg --I- 0 

sil ' P (i .j ) T 
P (i ,j) = . 

0, otherwIse 

where pn~j ) is a pixel in the resulting silhouette map and S is an arbi trary silhouette 
colour intensity. 

Edge Detection 

Reducing the proj ection of an object to its silhouette can discard valuable informa
tion about its orientation, particularly when the object is prone to self-occlusion or 
has discontinuit ies in depth , such as the object shown in Fig. 2.7. To preserve as 
much orientation information as possible, edge detection is applied to the segmented 
tracking target a.nd particle images, a.nd resultant edges are overlaid on the silhouette. 

/ , 

/ / 
~ 
0{, 

/ /' 

• 
Figure 2.7: Orient ation ambiguity due to silhouette extraction 

The orientat ion of the obj ect at three different rota tions is indiscernible due to the 
loss of edge information 

l'd any approaches to edge detection have been proposed over the years, most of 
which involve the convolution of a filteT or mask with pixel data, such as the Prewitt 
detector. the Robert s detector. or the So bel detectoT. The Sobel detector (Gonzalez 

21 



:M.A.Sc. Thesis - J. Anthony Brown lvIcMaster - Electrical Engineering 

and \ i\loods, 1992) , used in this work, involves the convolut ion of two separate filters 

Sx = [ =~ ~ ~1 
- 1 0 1 

that generate a response from edges in the x- and y-direction, respectively. Formally, 
the edge response in the x-direction s x(· . . ) and y-direction sY( " .) can be expressed as : 

1.) t .) 

x _ seg seg 2 seg 2 seg seg seg (2 17) 
S (i, j ) - -P(i- l. j - l ) + P (i+ l ,j - l ) - . P (i - l ,j ) + . P (H l.j ) - P (i - l.j+l) + P (i+ l,j+ l ) . 

sY = seg 2 . seg seg _ seg _ 2. seg _ seg (2 18) 
(i ,j) P (i - l.j - l ) + P (i ,j- l ) + P (i+ l ,j-l ) P (i - l ,j+ l ) P (i, j+l) P (i+ l. j+ l ) . 

An edge pixel is then identified if the sum of the absolute values of the x and y 
edge responses exceeds a threshold. Edge pixels are overlaid on the silhouette map 
according to: 

out ' 

{

E 
P (i,j) = sil 

P (i,j) , 

I S (i. j) I + I sti,j) I > Tedge 

otherwise 
(2. 19) 

where P(i~~ ) is 8, pixel in the resulting edge and silhouette map and E is an arbitrary 
edge colour intensity. 

Supplemental results, presented in Appendix B, ut ilize the more computat ionally 
demanding Canny edge detectoT (Canny , 1986), which involves the convolution of a 
Gaussian smoothing kernel, followed by the Sobel detector , non-maximum suppression 
based on the direction of the Sobel response, double thresholding to classify edges as 
weak or stTOng, and a hysteresis approach to identify which weak edges should remain 
in the final edge map. 

2.5.3 Challenges of the Approach 

Beyond the general shortcomings of the SIR particle filter discussed above, this ap
proach to 3D model-based tracking has a number of challenges. Complete paralleliza
t ion of the technique is restricted by the particle res amp ling step , which requires all 
weights to be available, thus introducing a bottleneck. The issue of parallelizing the 
particle filter has been addressed by Sankaranarayanan et al. (2008); Medeiros et al. 
(2008); Gumpp et al. (2006). In the GPU-accelerated tracking system described in 
this work , only the weight-update stage , by far the most computationally intensive 
aspect of the technique, is parallelized. The particle filter sacrifices some accuracy for 
robustness , and is prone to a j itteT effect due to the constant propagation of particles , 
even when the t racking target is not moving. This can be addressed by smoothing 
(i. e .. averaging) estimates. 

22 



M.A.Sc. Thesis - J. Anthony Brown IVIcMaster - Electrical Engineering 

Accurate evaluation of the particle images is dependent on a number of factors. 
Consistent lighting is essential for successful background extraction , and self-occlusion 
should be avoided, part icularly for art iculated obj ects. Self-occlusion is a challenge 
in any art iculated model-based t racking task and is often addressed by relying on 
multiple-camera integration (Sundaresan and Chellappa, 2009). Although the pro
posed GPU-accelerated approach could be adapted to include additional vie"ws, t his 
work fo cuses solely on monocular tracking. 

Of course, model-based t racking is only viable when a 3D model of the t racking 
target is available, which may not always be the case. Furthermore, t he model must 
accurately reflect the obj ect 's geometry and the motion model must adequately rep
resent its motion. Finally, the pixel-by-pixel approach to weight calculation is most 
responsive when small changes in particle state parameters lead to significant changes 
in part icle images ; for example, rotation or translation in the same plane as the im
age. Out-of-plane rotation and translation can cause almost insignificant changes to 
result ing particle images , meaning more ambiguity in estimation. 

Perhaps the most significant drawback of part icle filtering approaches to 3D 
model-based tracking is its computational complexity. Each particle in the set re
quires a 3D model of the tracking target to be rendered to a particle image, feature 
extraction must be performed on that image, and the result ing feature map must be 
compared , pixel by pixel, to the feature map of the current frame to generate a weight. 
Furthermore, the accuracy of tracking increases with the particle count , meaning a 
large particle set is highly desirable. Overcoming this computational burden through 
parallelization of particle evaluation is the key tenet of this work. 

2.5.4 Case Study: Model-Based Hand '!racking 

Articulated hand tracking is used as an example application in Chapter 5 and is 
therefore introduced here as a case study in 3D model-based tracking. There are 
countless applications for hand tracking, primarily in the domains of HCI or gesture 
recognit ion. For example, vision-based sign language recognit ion could greatly im
prove accessibili ty for the deaf. Accurate hand pose estimation can provide a natural 
interface to interact wit h a virtual 3D objects, perhaps in a computer-aided design 
(CAD) application, or give an operator direct control over a robotic arm, for example, 
in a remote surgery application. An excellent summary of hand t racking applications 
and approaches is provided by \ i\Tu and Huang (2001 ). 

i\/Iost models of the human hand (Fig. 2.8) utilize 27 DOFs (Albrecht et al .. 2003 ): 
six in the wrist (global rotation and t ranslation). two in the t rapeziometacarpal (Ti\I ) 
joint at t he base of the thumb, one in the interphalangeal (IP) joint at the top of the 
thumb , two in the metacarpophalangeal (MP) joints at the base of each finger and 
middle of the thumb, one in each of the proximal interphalangeal (PIP ) joints in the 

23 



M.A.Sc. Thesis - J. Anthony Brown McNlaster - Electrical Engineering 

Index 
Middle 

Ring 

Thumb 

.... ----------. 
I. 1 DOF I 
I I 

10 2DOF I 
I I 

Wrist 
106DOF l 
!.. __________ J 

Figure 2.8: A 27-DOF skeletal hand model 

middle of each finger and one in each of the distal interpha1angeal (DIP) joints at the 
top of each finger. 

The natural angular range for each joint can be integrated into the model to reduce 
the search space during estimation, for example, 0° :::; eMP :::; 90°. Additionally, 
dependencies between angles can be used to reduce the dimensionality of the problem. 
For example, it is a natural constraint of human hand motion that eDfP ~ ~ePIp, 
meaning only the angle of the PIP needs to be estimated. The joints are connected 
by finger segments called phalanxes , forming a kinematic chain, as shown in Fig. 2.9 . 
In other words , each joint angle is measured relative to the orientat ion of its parent 
phalanx, not relative to a global reference. Skin is attached to phalanxes and defined 
by geomet.ri c primitives, such as splines, cylinders, or polygon meshes. 

The challenge of model-based hand tracking or pose estimation is finding an ac
curate and computationally efficient method to "fit" the model to images in a video 
sequence, while dealing with issues such as severe self-occlusion, depth ambiguity, 
and complex textures and shading. A wide variety of approaches have been proposed 
in the literature, most of which involve off-line generation of a 3D model and on-line 
tracking that aims to find the set of state parameters that minimizes the matching 
error between model features and extracted features from images in a video sequence 
(Erol et al., 2005). A common single-hypothesis approach is to define an objective 

24 



M.A.Sc. Thesis - J. Anthony Brown i\/IcMaster - Electrical Engineering 

!8wrist 

i 
Figure 2.9: "Vrist and index finger as a kinematic chain 

function that can be minimized to estimate the hand pose using opt imization tech
niques (de La Gorce et al. , 2008; Bray et al., 2007; Heap and Hogg, 1996). A wide 
variety of multiple hypothesis approaches have been proposed as well, often involv
ing the application of a Bayesian fil ter (Stenger et al. , 2006), such as the unscented 
Kalman filter (Stenger et al. , 2001 ), and the part icle filter (Bretzner et al. , 2002; 
Gumpp et al. , 2006; Brandao et al. , 2006; Cui and Sun, 2004; Viu et al., 2001 ; Chang 
et al. , 2008; Weng et al., 2008) . In some cases, the dimensionality of the problem is 
reduced using principle component analysis (PCA) (Kato et al. , 2006) or nonparamet
ric belief propagation (NBP) (Sudderth et al. , 2004). Additionally, depth ambiguity 
can be resolved by integrating two or more cameras (Delamarre and Fau geras, 1998; 
Veda et al. , 2003) during tracking. 

25 



lVI. A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

26 



Chapter 3 

G PU Computing 

As the CPU has evolved from a fixed-function graphics processor into a fully pro
grammable, highly-parallel, manycore device, its popularity as a general-purpose plat
form for computationally intensive tasks has escalated considerably. A complete 
overview of the broad field of CPU computing is beyond the scope of this thesis; 
instead, the fo cus is limited primarily to material that will clarify and justify the 
proposed approach to model-based visual tracking described in Chapter 4. Specifi
cally, the hardware architecture of the TVIDIA CT200-series CPU and how it can 
be exploited for high-performance parallel computing using NVIDIA CUDA and Mi
crosoft Direct3D is detailed. Note that portions of this chapter appear in (Brown and 
Capson, 2010b). 

The chapter is organized as follovved. An introduction and brief history of C PC PU 
and its evolution to modern CPU computing is given in Section 3.1, followed by a 
review of similar applications in Section 3. 2. The NVIDIA CT200 CPU architecture is 
described in Section 3.3 and the fundamentals of CPU programming with CUDA are 
introduced in Section 3.4. Section 3.5 presents Direct3D concepts and terminology, 
and Section 3.6 describes how these topics are relevant to 3D model-based tracking. 

3.1 Introduction to GPU Computing 

Traditionally, the microprocessor industry has improved performance by increasing 
clock frequencies and consequently raising power consumption with each archi tecture 
generation. \ t\Ti thin the last decade, however , the industry has acknowledg d the 
existence of a poweT wall, meaning fur ther increase in power consumpt ion is providing 
diminishing returns. This. among other factors. has triggered a paradigm shift and 
moved the industry in a new direction: parallel processors. Nowhere is this more 
evident than the architecture of modern manycore CPUs (generally 128 to 480 cores) , 
which have ou tpaced multicore CPUs (generally two to six cores) in terms of peak 

27 



M.A.Sc. Thesis - J. Anthony Brown },/IcMaster - Electrical Engineering 

FLOPS and memory bandwidth. For example, NVIDIA's current flagship consumer
level GPU, the GTX 480, has 480 parallel processor cores, theoretical single-precision 
peak performance of 1.3 TFLOPS and memory bandwidth of 177.4 Gbyte/s, whereas 
the Intel Core i7-960 (similarly priced at the t ime of writing) , offers four cores, 51.2 
GFLOPS, and a memory bandwidth of 25.6 Gbyte/s. 

This performance differential is largely due to a difference in fundamental design 
principles of the GPU and CPU . The majority of a GPU 's transistors are dedicated to 
optimizing multi-threaded performance, with an emphasis on arithmetically intense, 
high-throughput numerical computation, whereas the strength of a mult icore CPU 
lies in optimization of single-thread performance, through branch prediction , flow 
control, caching, and other mechanisms. Driven by the rapidly increasing demands of 
the video gaming market, the majority of GPUs forgo double-precision floating point 
accuracy and low-latency instruction execution to provide superior single-precision, 
high-throughput computation. The GPU is therefore best-suited to serve as a co
processor to the CPU, utilized only when needed for parallelizable, computationally 
demanding portions of an applicat ion. 

Current GPUs are the culmination of more than a decade of hardv,'are and software 
evolution. Early GPUs, which started to emerge around 1996 at the consumer level, 
were fixed-function pipelines (Fig. 3.1) , designed solely to convert geometric primi
tives (vertex data) into pixels in a frame buffer through a series of steps , including 
vertex processing, rasterization, and fragment processing (Owens et al. , 2008). Each 
st age of the pipeline could be done in parallel, providing a level of task parallelism, and 
multiple processor cores at each stage provided an additional level of data parallelism. 
Originally, the stages could be configured (e.g., the location and intensity of a light 
source could be configured during shading) but their function remained fixed (e.g. , 
the manner in which a light source affected a vertex could not be modified), greatly 
limit ing their ut ility in non-graphics applications. Additionally, because each stage 
was executed by dedicated hardware, load-balancing was a challenge in applications 
that were dominated by a single stage. 

Vertex 
Data 

Figure 3. 1: Graphics pipeline 

Frame 
Buffer 

As the pipeline architecture evolved , the stages became increasingly programmable. 
Minor programming capabilities in the vertex stage in 2001 matured into fully pro
grammable vertex and shader processors by 2002. By 2006, a unified shader model 

28 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

had emerged that provided a common instruction set for all st ages of the pipeline. 
The benefi t is programmable hardware, able to part ition resources beLween all stages 
of the graphics pipeline and avoid becoming overburdened by a single stage. Further
more, within the last four years, this programmability has matured to a point where it 
can be harnessed by application developers for tasks far beyond the capabilit ies of the 
earlier pipeline, while preserving the data- and task-parallelism that is fundamental 
to a CPU 's operation. This paradigm is often described as single-program multiple
data (SPMD), as each programmable unit executes the same program simultaneously 
on multiple pieces of data . 

Developing effective parallel hardware is fu tile without software that is able to 
exploit it. This is becoming increasingly evident as t he vast majority of legacy code, 
written for sequent ial execut ion on a single-core CPU, is no longer scaling with new 
iterations of CPU architectures that introduce additional cores instead of accelerating 
clock speeds. In the early days of CPU programming (Owens et al. , 2007), a great deal 
of creativity was required as programmers were forced to frame their algorithms as 
graphics applications (using elements such as vertices, shading operations and pixels) 
to achieve gen eral pUTpose comp1liation on the CPU (CPCPU). For example, in the 
very early days of desktop graphics processors, Lengyel et al. (1990) used standard 
graphics hardware for robot motion planning by packaging data as bitmaps that 
could be fed directly to a graphics processor 's frame buffer for parallel rasterization. 
In (Hopf and Ertl, 1999), wavelet transformat ions are implemented on the fixed
function graphics pipeline using OpenCL's texture scaling and filtering operations. 

As the programmability of graphics hardware increased , its potent ial for non
graphics applications becam e more apparent. vVith the release of Microsoft 's Pixel 
Shader 1.0 as part of Direct3D 8.0 in 2001 , the CPU became much easier to exploit us
ing shading languages, such as Cg, high-level shading language (HLSL), and OpenGL 
shading lan guage. The CPU soon became a target for a variety of computation
ally demanding applications, including matrix mult iplication (Larsen and McAllister , 
2001 ), physics simulations (Harris et al. , 2003), data mining (Sun et al., 2003), and 
numerous image processing (Rumpf and Strzodka, 2001 ) and computer vision tasks 
(Fung et al. , 2002) . Once the graphics pipeline stages were unified in 2006 by Pixel 
Shader 4.0 in Direct3D 10.0 and single-precision floating point arithmetic was in
troduced on the CPU, NVIDIA CUDA and similar platforms emerged as a solut ion 
beyond GPCPU . providing complete programmabili ty of the ent ire graphics pipeline. 
This new era has become known as CP U computing, represent ing the CPU's matu
ration into a fully-programmable, general purpose, massively parallel computational 
resource capable of competing with tradition HPC platforms, such as CPU clusters, 
supercomputers, and field-programmable gate arrays (FPGAs) Cope et al. (2010 ). 

29 



}'/I.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

3.2 Similar Applications and Literature Review 

CUDA and CPU comput ing is well-established in the scientific community, having 
been successfully applied to an incredibly broad range of applications including optical 
flow (Kuchnio and Capson, 2009; Pauwels and Van Hulle , 2008) , image processing 
(Yang et al. , 2008), video encoding (Datla and Cidijala, 2009), motion estimation 
(Colic et al., 2010; Yu and lVledioni, 2008), feature detection (Kinsner et al. , 2008), 
face recognition (Poli et al. , 2008) , graph cuts (Bhusnurmath and Taylor, 2008) , 
biomedical image analysis (Hartley et al., 2008), object detection (Mussi et al. , 2009; 
Xu et al. , 2009), molecular dynamics simulation (Yang et al. , 2009) , and financial 
engineering (Caikwad and Toke, 2010). 

CUDA has been a popular platform for object tracking and pose estimation appli
cations, specifically face , body, and hand tracking (Breitenstein et al. , 2008; Lehment 
et al., 2010; Lenz et al., 2008). For example, Schoenemann and Cremers (2010) 
achieved real-time results with a CPU-accelerated template-matching approach that 
fits contours to images for object segmentation and tracking. Breitenstein et al. 
(2008) use CPUs to compare range images to prerendered pose hypotheses at 55 fps 
for robust face pose estimation. Lee et al. (2009) demonstrated a speedup up to six 
times over the CPU in an augmented reality application that involved tracking vi
sually attended objects in virtual environments using both preattentive features and 
contextual information. Because many Bayesian tracking techniques involve the sim
ulation of multiple hypotheses, and each hypothesis produces independent , localized 
data, they are ideal candidates for parallel implementation on the CPU; for example, 
Ferreira et al. (2010) describe a single-CPU implementation of a multi-modal percep
tion system that utilizes a Bayesian volumetric map (BVM) for robotic exploration. 

Model-based tracking using a particle filter is particularly well-suited to CPU
acceleration, yet there is relatively little literature available describing the integration 
of the two. Real-time, appearance-based part icle filtering approaches to face tracking 
are described by Lozano and Otsuka (2008) and Liu et al. (2009) , with the former 
using a sparse template matching algorithm and the latter integrating several visual 
cues, such as colour and edges. Both report speedups of at least 10 times over CPU 
implementations. A hybrid model-based and appearance-based tracker is described 
Cabido et al. (2009) for 2D articulated object pose estimation using the CPU for seg
mentation, rendering and particle weighting. CPU filtering, proj ection and weighting 
are also used by Pezzementi et al. (2009) for a divide-and-conquer , machine learning 
approach to 3D model-based tracking of articulated objects in a surgical setting with 
both mono and stereo image sequences. Finally, Lenz et al. (2008) describe a rigid 
object tracker that utilizes silhouettes to evaluate particles , achieving a speedup up 
to 10 t imes over a CPU implementation in face and hand tracking experiments. 

30 



lVI.A .Sc. Thesis - J. Anthony Brown McMaster - Electrical Engin ering 

3.3 The GT200 GPU 

A fundamental goal of NVIDIA CUDA is to provide a level of abstraction between a 
software developer and the GPU hardware to eliminate the historical prerequisite for 
an expertise in GPU architecture when writing applications for the GPU. Nonetheless, 
at this stage in the GPU 's evolut ion, an elementary understanding of its architecture 
still proves valuable. For example, the justification for several of the opt imization 
concerns discussed in Section 3.4.4 is rooted in the GPU architecture, part icularly 
in the domain of thread scheduling. Therefore, this section presents an overview of 
the hardware and functionali ty of NVIDIA GT200-series GPUs, the architecture on 
which this research was developed and tested . 

3.3.1 Hardware Architecture 

Figure 3.2: GT200 processing element hierarchy 
A GT200 GPU has 10 TPCs, each containing three SIv1s, that contain eight SPs 

Released in 2008, the GT200-series built on NVIDIA 's previous G80j G92 archi
tecture in several ways; for example, more streaming mult iprocessors (SlV1s) , addi
tional texture cache memory, twice as many registers, increased memory bandwidth , 
support for the peripheral component interconnect express (PCI-E) 2.0 bus, and lim
ited double precision fioating point calculation cap abilit ies. In a sense, the GT200 
serves a precursor for NVIDIA 's most recent GFI00 architecture (N VIDIA Corpo
ration , 2009b), also known as Fermi , which primarily targeted the GPU comput ing 
community by adding fu ll double-precision fioating point support. cache coherency, 
more cores per S1\I , and many other features. The trend is clearly toward more 
programmability and generali ty, rather than focusing exclusively on the addition of 
computational resources with each new generation. 

The GT200 is structured as a hierarchy (Fig. 3.2) (Kanter , 2008) . At the lowest 
level is the stTeaming pTOceSSOT (SP) (Fig. 3.3 ). a processing element that contains 

31 



t--/I.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

two arit hmetic logic units (ALUs) , an instruction pointer , and a 2 Kbyte port ion 
of a 32-bit-wide register file, but no logic for fetching or scheduling instructions. It 
therefore lacks the functionality of a true processor core, although it is often referred 
to as one. 

At the second level of the hierarchy, the S II (Fig. 3.3) resembles a traditional 
mult iprocessor , such as a multicore CPU . It is able to fetch and schedule instructions 
with dedicated scheduling hardware and execute them in parallel on an array of eight 
SPs, which can be thought of as an 8-element vector processor. An SM also has two 
special function units (SFUs) for advanced operations, such as sine, cosine, and square 
root , an 8 Kbyte read-only cache for constant memory and 16 Kbyte of 32-bit-wide 
shared memory. Shared memory is unique in that it is the only on-chip, read/ write 
memory that is accessible to multiple SPs, providing a low-latency communication 
channel between them. 

Streaming Processor (SP) Streaming Multiprocessor (SM) 

~~0 [ill [ill [ill [ill [ill [ill [ill [ill I SFU I 
I Registers I I Scheduler II Shared Mem II Canst Mem Cache I ~ 

(a) (b) 

Figure 3.3: Streaming processor and streaming multiprocessor 
( a) An SP contains two AL U s, an IP, and registers. (b) An SM contains eight SPs 

SMs are organized in groups of three called text1.lre processing clusters (TPCs) at 
the third level of the hierarchy. Each TPC contains a 24 Kbyte read-only L1 texture 
cache in addition to some control logic (Fig. 3.4). The division of srvIs into TPCs 
is not relevan t for CUDA programming, but is an important factor in how the GPU 
part itions graphics rendering tasks. 

Texture Processing Cluster (TPC) 

~ ~ ~ 1 Ll Texture Cache I r-I C-'o-n-t~-'O-l L-o-g-ic-', 

Figure 3.4: Texture processing cluster 
A TPC contains three SlVIs 

At the top of the hierarchy (Fig. 3.5) , a GT200-series GPU consists of up to ten 
TPCs, a 256-Kbyte read-only L2 texture cache, a P CI-E 2. 0 x16 bus to communicate 
with the CPU with a theoretical bandwidth of 8 Gbyte/ s in each direction, another 

32 



M.A.Sc. Thesis - J. Anthony Brown Md/laster - Electrica.l Engineering 

GT200-Series GPU 

@£J@£J@£J@£J@£J@£J@£J@£J@£J@£J 
I L2 Texture Cache II DRAM II Scheduler II PCI-E Interface I 

Figure 3.5: GT200-series GPU 
A GT200-series GPU contains up to 10 TPCs 

level of scheduling logic, and up to 2 Gbyte of GDDR3 DRANI device memory. DRANI 
contains a variety of GPU memory spaces, including constant , global, local, and tex
ture memory, which are further discussed in Section 3.4.3. To understand the scale 
and capability of the GT200 series , consider that high-end consumer-grade GPUs 
built on this architecture are comprised of approximately 1.4 billion tran sistors, man
ufactured using a 65 or 55 nm process, are designed to consume up to 234 watts, have 
a memory bandwidth up to 159 Gbyte/s, and are theoretically capable of executing 
over one trillion parallel 32-bit FLOPS on 240 SPs. 

3.3.2 Scheduling Paradigm 

This degree of parallel computationa.l power can only be exploited by highly par
allel tasks; in fact, thousands of concurrent threads are recommended to maximize 
hardware ut ilization in most applications. Unlike multicore CPU threads, a GPU 
thread is extremely lightweight and can be created , scheduled , and launched almost 
instantly. Threads are dynamically par titioned by an SM 's scheduler into groups of 
32 called waTps, a paradigm referred to as single-instTuction multiple- thTead (SIMT), 
a variation on the single-instruction multiple-data (SINID) class of parallel computers. 

Both SIMD and SIMT utilize parallel processing elements to simultaneously exe
cute a common instruction on a vector of data; however , SIMD requires all threads 
to take the same execut ion path, whereas SIl\fT relaxes this constraint by allowing 
threads within a warp to diverge. WaTp diveT,!} ence forces all threads in a warp to 
execute every inst ruction branch taken by any thread in the warp , but unnecessary 
branches are suppressed. As a result , computation t ime increases for highly-divergent 
code and is minimized when all t hreads in a warp agree on a common path. Addi
tionally, SIMD threads have access to all vector elements whereas each SIMT thread 
maintains its own registers and relies on shared memory (Section 3.4.3) to share data. 

Depending on resource utilization, up to 32 warps (l.024 threads) can be active on 
each SM, totalling 30.720 threads on a GPU. ·With so many active threads, a new warp 
can be swapped in by the SM's scheduler while another is wait ing on a high-latency 
instruct ion, such as a memory transfer. Because warp packaging and scheduling is 

33 



IvLA.Sc. Thesis - J. Anthony Brown t-/IcMaster - Electrical Engineering 

handled by low-level hardware, the programmer could choose to completely ignore 
the concept ; however , significant performance gains can be realized if problems, such 
as warp divergence and other considerations (Section 3.4.4) , are respected. 

3.4 NVIDIA CUDA 

The following section presents the fundamental concepts of NVIDIA CUDA, but is by 
no means a comprehensive guide. For a more detailed look, the reader is directed to 
the CUDA programming guide (NVIDIA Corporation, 2010b) or one of the recently 
released textbooks on the topic (Kirk and mei VI. Hwu, 2010; Sanders and Kandrot , 
2010). It is important to note that all material in this section refers exclusively to 
the GT200 architecture and may not apply to G80 or GF100 GPUs. 

3.4.1 Overview 

CUDA can be described in terms of the architecture it offers to developers to aide in 
the creation of GPU-based applications, or in terms of its ability to exploit the GPU 
in a variety of ways. Here, both perspectives are presented. 

CUDA Architecture 

At its core, CUDA is a driver that exposes the GPU as a parallel processor to ap
plication developers through a number of APIs, including OpenCL, DirectCompute, 
the low-level CUDA driver API , and the higher-level CUDA runtime API (NVIDIA 
Corporation , 2009a), which was used in this work and is the focus of the remainder 
of the discussion. The runtime API allows standard C functions to execute on the 
GPU through a simple set of extensions to the C language called C JOT CUDA (Fig. 
3.6) . These extensions can be integrated directly into standard C program s and com
piled with the included NVIDIA C compiler (NVCC) , using standard development 
environments, such as Microsoft Visual Studio. This simple , low-overhead approach 
has been a major factor in CUDA's adoption by developers. 

In addit ion to the driver, API , and compiler , CUDA comes with a variety of useful 
tools and libraries to facilitate GPU software development. For example: 

• A debugging environment for simultaneous CPU and GPU debugging. 
• Libraries for fast-Fourier transforms (FFT) and basic linear algebra subpro

grams (BLAS) on the GPU 
• An occupancy calculator and visual profiler for program optimization 
• An extensive SDK with a variety of code samples exemplifying a broad spec

trum of GPU computing applications 

34 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

CPU 
,. ~ 

CforCUDA CUDA , 
CUDA f7 GPU 

Application 
Runtime ~ 

Driver 
CUDA 

~ Libraries ~ API r-f7 

Figure 3.6: CUDA software stack 
A CUDA application runs on the CPU driver , the runtime API , and/ or libraries 

These factors, combined with a massive installation base of over 100 million 
CUDA-capable CPUs already deployed around the world , has made CUDA the promi
nent solu tion for mass-market , massively parallel processing. 

CUDA Capabilit ies 

CUDA programs execute serial code on a host (CPU) and can asynchronously launch 
functions called kernels to be executed in parallel as threads on a device (CPU). 
This allows the CPU to serve as a coprocessor for data-intensive, parallelizable code 
(NVIDIA Corporation , 2010a). Scalabili ty is a key tenet of CUDA, and is achieved 
primarily through a hierarchical execution model with two levels of barrier synchro
nization (Section 3.4.2) and high-speed shared memory (Section 3.4.3) for inter- thread 
communication. Beyond these key features, CUDA exposes a variety of additional 
CPU cap abilities that can be extremely valuable in certain applications: 

• Access to other GPU memory spaces , (global, texture, constant , etc.) 
• Concurrent execution of host and device code 
• Graphics interoperability with a variety of Direct3D and OpenCL resources 
• Support for multiple GPUs 
• Single or double-precision floating point calculations 
• High-speed . lower-precision math libraries (sine, exponent. etc) 
• Access to G PU timers for accurat benchmarking 

There are, however, limitations to CUDA's uti lity. As discussed in Section 3.3.2. 
the CPU is best-suited for computation with minimal branching (i. e. , conditional and 
looping structures) , making it a poor choice for many user-driven programs, such as 
word processors. Addit ionally, parallel computation on the CPU is optimal when 
dealing with array- like data structures with a static size , and localized data. Ideally. 
memory accesses should always be consistent and coalesced , not scattered . Recursion 

35 



M.A.Sc. Thesis - J. Anthony Brown t-,/IcMaster - Electrical Engineering 

is not possible with CUDA, meaning many data structures , such as linked lists , are 
not viable options. Furthermore, unlike other parallel processing solutions, such as 
OpenCL (Tsuchiyama et at. , 2010) , which targets a variety of CPUs and CPUs from 
different manufacturers, CUDA applications can execute solely on lVIDIA CPUs, 
limit ing their portability. Finally, it is important to note that the significant speedups 
of several orders of magnitude that are sometimes reported in the literature can be 
misleading, as they compare hardware-optimized CPU implementations to unopti
mized CPU implementations Lee et al. (2010). 

Floating point precision has been a major limiting factor for many HPC tasks 
that could benefit from CPU-acceleration but demand extreme accuracy in large-scale 
calculations. Prior to the CT200 architecture, double-precision ari thmetic was un
available on CPUs, and, although The CT200 architecture supports double-precision 
operations , it is not fully IEEE-compliant and performance is comparable to modern 
CPUs. The CFIOO architecture introduced fast , IEEE-compliant double precision 
arithmetic on professional-grade CPUs, but consumer-grade performance is scaled 
back. Nonetheless , many applications are unaffected by this limitation and can real
ize significant performance increases with virtually no decrease in functionality. 

3.4.2 Execution Model 

"""" Block (0,1) 
" ,-' 

Grid Thread (0,0) Thread (0,1) Thread (0,2) 
... - ......... --

fVV\N'J\.. fVV\N'J\.. fVV\N'J\.. 
Block Block 
(0,0) (0,1) Thread(1,O) Thread(1,1 ) Thread(1,2) 

.................. 
fVV\N'J\.. fVV\N'J\.. fVV\N'J\.. 

Block Block 
(1,0) (1,1) Thread(2,0) Thread(2, 1) Thread(2,2) 

'''''''' fVV\N'J\.. fVV\N'J\.. fVV\N'J\.. 
'"'''' , 

Figure 3.7: CT200 thread hierarchy 
The hierarchy consists of a grid of blocks containing threads. 

The CUDA execution model is a hierarchical , scalable paradigm able to dynami
cally part ition and execute appropriate algorithms across thousands of CPU threads 
with great efficiency. The following describes the nature of the thread hierarchy, how 
it scales to maximally utilize available hardware, and how threads are launched and 
coordinated. 

36 



lVl.A.Sc. Thesis - J. Anthony Brown iVId/Iaster - Electrical Engineering 

Thread Hierarchy 

The kernel code is executed by fine-grained parallel t hreads, which are grouped into 
1D, 2D , or 3D blocks of dimension (Bx, By , Bz). Blocks are further arranged in a 
1D or 2D gTid of dimension (Ox , Oy) providing second, coarser level of parallelism. 
The thread hierarchy is illustrated in Fig. 3.7. Grid and block dimensions can be 
determined at runtime or compile t ime according to the application requirements. On 
GT200-series GPUs, there can be no more than 512 threads in a block; however , t here 
can be up to 65,535 blocks in a grid. Additionally, the total number of threads in a 
block should always be a multiple of 32 on GT200 GPUs to ensure even partitioning 
into warps. A unique identifier for each thread can be calculated within a kernel 
according to 

(3. 1) 

where (bi , bj , bk ) are the x, y, and z thread indices, respectively. A similar approach 
can be taken to derive a unique block identifier within the grid . This identifier is 
often used as an index for a data structure, ensuring each thread accesses a unique 
piece of data. 

Blocks and grids exhibit different levels of parallelism. \iVhen a kernel is launched, 
individual blocks within the grid are assigned to a single SM by the GPU 's schedul
ing hardware. Although multiple blocks can be active on an SM at once (depending 
on number of threads in t he block and resource utilization) , there is no guarantee 
that there will be enough Sro/Is available for all blocks. Therefore, while blocks may 
execute concurrent ly, some blocks will often be serialized , with larger grid sizes ex
hibi t ing more serialization. The disadvantage is t hat no inter-block coordination, 
synchronization, or data sharing is possible since there is no guarantee of concur
rency. If an application requires global synchronization of all blocks in a grid , a new 
kernel must be launched. The benefit of having mult iple blocks per St-,;I is that the 
scheduling hardvvare is able to swap out a block that is wait ing on a high-latency 
instruction and replace it with a block that contains threads ready to execute . 

Threads within a block, however , are guaranteed to reside on a single S1\ I si
multaneously. Threads are packed into warps, as described in Section 3.3.2. and 
executed concurrently on an SlV1's array of streaming processors. ·While there is no 
predictability to the exact order that threads within a block will be scheduled , t he 
guarantee of concurrency facili tates intra-block baTTieT synchTOnization and commu
nication through shared memory (Section 3.4.3). Furthermore, t he second level of 
scheduling provides increased efficiency through fine-grained warp swapping. 

\ iVhen determining block and grid dimensions, many factors must b considered , 
most of which are discussed in Section 3.4.4. In general , a thread block should be 
considered a fixed-size unit of work to be executed by a cooperative set of threads . 
whereas a grid 's size should be dynamic and reflect the size of the overall data set. 

37 



M.A.Sc. Thesis - J. Anthony Brown MclVlaster - Electrical Engineering 

divided into completely independent units of work. At this point , it may seem ben
eficial to always utilize the largest block dimensions possible; however , this is rarely 
the case, as described in Section 3.4.3 and Sect ion 3.4.4. 

Scalable Comput ation 

GPU 1: 2 SMs 

SM 1 

Block 0 

Block 2 

Block 4 

Block 6 

Block 8 

SM2 

Block 1 

Block 3 

Block 5 

Block 7 

Block 9 

SM 1 

1 Block 0 1 

I Block 5 1 

GPU2: 5 SMs 

SM2 

I Block 1 1 

1 Block 61 

SM3 

I Block 21 
I Block 71 

SM4 SM5 

I Block 3 1 

I Block 81 
I Block 41 
I Block 91 

Figure 3.8: CUDA automat ic scalabili ty 
CUDA blocks will automatically be scheduled to efficient ly use oJl available SiVIs 

A benefit of the thread hierarchy is automatic scalability ; as long as a t ask can 
be parti tioned into computationally independent sub-problems that do not need to 
communicate wit h each other , that task can be efficiently scheduled across all SMs 
of any capable NVIDIA GPU. This means a well-writ ten CUDA application is able 
to scale to maximally utilize a suitable GP U, whether that GPU is, for example, the 
GeForce 210 with two Slvls (16 SPs) or the GeForce GTX 285, which has 30 SNls 
(240 SPs). T his is very appealing to programmers who wish to target as broad an 
audience as possible without having to generate mult iple versions of an application. 
Fig. 3.8 demonstrates how a grid of 10 blocks \vould scale to utilize GPUs with two 
or five S1VIs. 

K ernels and M emory Transfer s 

Although the device (GPU) and host (CPU) code may share the same C file, their 
execution an d memory spaces are completely decoupled , requiring explicit memory 
copies to transfer dat a across the PCI-E bus for data exchange. A tradit ional CUDA 
application (Fig. 3.9) is roughly structured as follows: 

1. Allocate memory on the host and device 
2. Prepare data in the host memory space 

38 



M.A.Sc. T hesis - J. Anthony Brown TVIcMaster - Electrical Engineering 

3. Transfer data from t he host to device with a synchronous memory copy function 
4. Asynchronously launch a kernel on the G PU 
5. Continue execution of serial code on the CPU concurrently with the GPU kernel 
6. Transfer results from device to the host with a synchronous memory copy. This 

causes CPU execut ion to be blocked until the kernel has finished executing 
7. Continue execution of serial code on the CP U 

CPU Serial Host to Launch Serial Device to Host Serial 
Code Device Copy Kernel Code Copy Code ... 

GPU Host to 
Kernel A 

Device to 
Device Copy Host Copy 

Time 

Figure 3.9: Blocking and non-blocking GPU function calls 
Kernels can be launched asynchronously, but memory transfers cannot 

CPU Serial Code 
Launch 

I Serial Code I 
LaWlch 

I Serial Code ... 
Kernel A KernelB 

GPU Kernel A Kernel B . . . 

Time 

Figure 3.10: Asynchronous kernel launching 

) 

I 

) 

The GPU and CP can execute code concurrently. but only one kernel can be 
active on the GPU 

It is import ant to note is that concurrent execution of GPU and CPU code is 
possible, further exemplify ing the GP as a coprocessor. \ iVhile some programs may 
deviate from this structure. the concept is almost always the same. A limitation of 
the GT200 architecture that has been elimillateu ill t he GF100-series is that only one 
kernel can be active of a GPU at any given time. Attempts to launch multiple kernels 
'will simply serialize the kernels' execut ion. as demonstrated in Fig. 3.10. 

39 



~/I.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

3.4.3 Memory Model 

Device 
(Grid-Level) Thread-Level Block-Level 

Host I+-~ 
--f~:.I Thread IE--------I~ 

Figure 3.11 : CUDA memory model 

The G PU has several unique memory spaces that are exposed by CUDA for use 
in a variety of scenarios. Each is described below and summarized in Table 3.l. 
Additionally, Fig. 3.11 shows how the different memory spaces interact with the host 
and the thread hierarchy on the device. 

Table 3.1: Summary of t he GT200 memory model 

Memory II Access Scope I Cached I Latency 

Global R/ Vv 
Shared R/ 'vV 

Register R/ 'vV 
Local R/ 'vV 

Constant R 
Texture R 

1 Assuming no bank conflicts 
2Cached reads only 

G 10 bal memory 

Grid+host No High 
Block No Low1 

Thread No Low 
T hread No High 

Grid+host Yes Low2 

Grid+host Yes Low2 

As the largest memory space available on the GPU, global memory acts as t he primary 
data transfer channel between the host and device in most applications; however , it is 

40 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

also the highest-latency memory (400 to 800 clock cycles) because it is found off-chip 
(i. e., separate from the S:tv1s in DRAM ). The host and all t hreads in the grid can read 
and wri te anywhere in global memory, but it is not cached and should therefore be 
accessed sparingly to avoid the latencies. The manner in which consecutive kernel 
threads (i.e., t hreads in a warp) access global memory can great ly impact throughput. 
Specifically, by properly aligning thread indices with segments in global memory, 
mult iple memory reads and writes can be grouped into a single t ransaction (Fig. 
3.1 2). Because global memory is not used extensively in this work, the details of 
the access patterns will not be discussed here, but can be found in the CUDA Best
Practices G1tide (NVIDIA Corporation, 201 0a). An in depth analysis of memory 
access patterns can also be found in (Ha et al. , 2010) . Finally, note that global 
memory persists across kernel launches, meaning data will have the lifetime of the 
application , unless overwritten or freed. 

Memory 

Threads 

Figure 3. 12: An efFect ive global memory access pattern 
Accesses are coalesced and aligned with memory segments 

Page Locked Memory A small amount of page- locked or pinned memory can be 
allocated in the host memory space to provide higher-bandwidth memory transfers. 
Addit ionally, a block of page-locked host memory can be mapped into the device 's 
global memory space to facili tate memory transfers that are concurrent with kernel 
execution. This increases bandwidth fur ther and eliminates the need to explicit ly 
allocate and copy dat a in device memory space, but requires manual synchronization 
to avoid potent ial data hazards. 

Shared Memory 

Shared memory is a unique and powerful resource in CUDA programming that can 
be thought of as a user-managed cache. Because it is located on-chip , it has very 
low latency (approximately 100 times lower than global memory). Shared memory 
is declared at t he star t of a kernel by specifying the amount required for a block (at 
runtime or compile-time). This is an important parameter , as there is a fini te amount 
of shared memory available in each ST\l1 that must be shared amongst all active blocks. 

41 



iVI.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

Therefore, excessive shared memory usage can limit the number of active blocks on 
an S]\lI and potentially degrade performance. The coalescing requirements of global 
memory do not apply to shared memory ; however, if multiple threads of the sam e 
half-warp access the same 32-bit shared memory bank simultaneously, a bank conflict 
will occur and accesses will be serialized. In other words, shared memory utilization 
is optimal when 16 consecutive threads access different memory banks (Fig. 3.13). 

Memory 

Threads 

Figure 3. 13: An effective shared memory access pattern 
Each thread accesses a unique bank 

Accessible to all threads within a block , but never the host, shared memory does 
not persist across kernel calls and has the lifetime of its thread block. The two main 
funct ions of shared memory are: 

• to provide an intermediate storage area to avoid unnecessary global memory 
usage; and, 

• to facili tate low-latency inter-thread data sharing. 

Consider an application that involves the convolution of a 3 x 3 filter with image 
data, such as an edge detector. Assume that the task has been partitioned such that 
each thread applies the filter to a single pixel in the image. This would require each 
thread to load nine pixels from global memory to fully cover the image (ignoring 
issues of edge padding). Additionally, the data loaded by each thread is not mutually 
exclusive; in fact , each pixel would be accessed nine times. This scenario is an ideal 
candidate for shared memory. Consider the adoption of the fo llowing strategy for 
each thread block: 

1. Each thread loads a single pixel from global memory into shared memory 
2. Synchronization ensures all thread s in the block have completed their loads 
3. Each thread applies the fil ter to a single pixel in shared memory, reading the 

eight other required pixels from shared memory as well 
4. Each thread writes a single result pixel back to global memory 

sing this approach, each pixel is read from global memory just once, and the total 
number of global memory reads is reduced by a factor of nine , while accomplishing the 

42 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

same operation. This illustrates the utility of shared memory, both as an int ermediate 
storage area and all illter-thread communication channel. 

There is an important t rade-off that must be considered when part itioning (or 
ti ling ) a task: making the ti les too big can consume too much shared memory and 
reduce the number of active blocks on each SM , but making t iles too small gener
ates a great deal of overhead and fails to fully exploit the CPU resources. These 
considerations are discussed further in Section 3.4.4. 

Registers 

Registers are a fast , low-latency (typically zero clock cycles) , on-chip resource but , 
unlike shared memory, are only visible to their resident threads and have a lifetime 
limited to that of the thread. Most variables declared within a kernel are stored 
in registers, making t hem a common intermediate storage area. Similar to shared 
memory, registers are a limited commodity on an SlVI and are shared between all 
active blocks. Consequently, t hey can also affect the number of blocks simultaneously 
active on an SM. 

Local Memory 

Local memory behaves similarly to registers, with the same lifetime and visibility, 
but resides in an area of global memory and is therefore subject to extremely high 
latencies. Local memory can generally be considered an overflow memory space that 
is only ut ilized if t here are insufficient registers available for all active warps. The 
except ion is an array declaration inside a kernel, which automatically places data in 
local memory instead of registers. 

Constant Memory 

Constant ?\ifemory also resides in global memory but is cached on-chip to reduce la
tency when multiple threads in a block access the same location (Fig. 3.14) . Constant 
memory has the lifetime of the application and is ideal for storing constants, such as 
filt er parameters, or values that would normally be passed to a kernel as a function 
parameter. Normally, constant memory is wri t ten to once by the host during appli
cation init ialization and accessed by kernels throughout execution ; however , because 
it is such a small space. it may be necessary for the host to periodically overwrite 
dat a in constant memory for k rnels to fully utilize its low-latency cache. 

43 



NI.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

Memory 

Threads 

Figure 3.14: An effective constant memory access pattern 
All threads access the same value simultaneously 

Texture Memory 

Texture Memory is another cached , read-only space that resides in global memory; 
however, unlike constant memory, it can span aU of global memory (with some limi
tations) and has a less-restrictive access pattern. Texture memory requires an area of 
device memory (linear region or region allocated as a CUDA array) to be bound to a 
texture reference and can be accessed from kernels through texture f etches. Texture 
fetches are optimized for 2D spatial locality within the memory space (Fig. 3.15) , pro
viding a powerful alternative to global memory access patterns in some applications. 
Additiona.lly, texture fetches use dedicated hardware for addressing calculations, re
moving the burden from kernels. Textures also provide a variety of addressing, filter
ing and clamping options that can be useful in specific applications (usually involving 
image processing) . Finally, texture memory provides the easiest way to access data 
within graphics resources, such as Direct3D surfaces when using CUDA's Direct3D 
interoperabili ty (Section 3. 5.5). 

Memory 

Threads 

Figure 3.15: An effective texture memory access pattern 
Threads access data with spatial locality 

44 



M.A.Sc. Thesis - J. Anthony Brown l\/IcMaster - Electrical Engineering 

3.4.4 Optimization Concerns 

It can be qui te straightforward to directly port CPU code to the GPU; however, 
achieving a tangible speedup requires the programmer to adhere to a variety of of ten
confiicting optimization strategies and iteratively tune their application to the optimal 
configuration. Some prominent issues that should be considered are discussed below. 

Multiprocessor Occupancy 

The ratio of the number of active warps on an SM to the SM 's total warp capacity 
is termed multiprocessor occupancy, and should be kept above 50 percent to ensure 
effi cient warp-level scheduling. Recalling that each SM on a GT200 GPU can support 
a total of 32 warps, this translates to a recommended 16 active warps. Occupancy is 
affected by three factors: 

• number of registers used by each thread; 
• amount of shared memory used by each block; and, 
• number of threads per block. 

Register and shared memory usage affect multiprocessor occupancy in similar ways. 
Recall from Section 3.3 that each SM has just 16 Kbyte of shared memory and a 
16 Kbyte register file, and these resources are shared by all active warps on an SM. 
Therefore, if each of the desired 16 warps consume more than one sixteenth of an 
available resource, the multiprocessor occupancy will be lowered to compensate. 

For example, consider a kernel that uses a block size of 128 threads and requires 
each thread to utilize 32 registers. Dividing the 16 Kbyte register file (registers per 
SM) by 32 (register per thread) yields 512 threads per SM, which is equivalent to 
16 'warps and achieves the desired 50 percent mult iprocessor occupancy. If, however, 
each thread required 33 registers, the same calculation would yield approximately 
496 threads per SM. This number is then reduced to the lowest multiple of the block 
size, which is 384 (128 x 3) in this case. The addition of a single register in the 
kernel code therefore reduced the number of active warps on each SM from 16 to 12, 
lowering the multiprocessor occupancy from 50 percent to 38 percent. This would 
likely cause performance degradation in the application, as there may not be enough 
warps available for swapping to satisfactorily hide access latencies . 

A similar argument can be made for shared memory. which is allocated at the 
block level instead of the thread level. Once again considering a block size of 128. 
assume a kernel requires each block to ut ilize 4 Kbyte of shared memory. \ iVith a 
total of 16 Kbytes available on each SM , this means there is enough available for four 
blocks to be active at once. Four blocks is equivalent to 512 threads or 16 warps, and 
adheres to the 50 percent occupancy guideline. If, however. a single additional byte 

45 



M.A.Sc. Thesis - J. Anthony Brown McNIaster - Electrical Engineering 

of shared memory was required by each block, there would only be enough resources 
available for three at once and the occupancy would again decrease to 38 percent. 

The occupancy guideline can also be used gauge how many threads an application 
would require to fu lly utilize the CPU hardware. If each Sr-./I is to maintain 512 active 
threads (16 warps) and there are 30 S lIs on a CT200 CPU , t his implies that a grid 
should contain a minimum of 15,360 threads to maximally utilize all available re
sources. This gives a sense of the scale of the massively parallel computation afforded 
by the CPU. 

T he preceding discussion has focused on warp-level scheduling, but not block-level 
scheduling, which must also be considered. Ideally, an SM should have at least two 
thread blocks active for efficient scheduling , allowing a new block to be swapped in 
if another is waiting on a barrier synchronization or other high-latency operation. 
Consider once again a block size of 128 with 32 registers per thread. As discussed 
above, this would lead to occupancy of 50 percent, with four active thread blocks. If, 
however, a block size of 512 was used instead, the same occupancy would be achieved 
with only a single active block on each SM. "While this would not impact fine-grained 
warp-level scheduling, coarse-grained block-level scheduling would be affected. 

The common theme of these examples is that the manner in which a task is 
partitioned can significantly affect performance. If blocks are too large, there may 
not be enough to keep all available SMs busy and they may consume too many 
registers or too much shared memory; however, if they are too small , blocks will 
be unnecessarily serialized and there is less opportunity for inter-thread cooperation. 
This is one of the many trade-offs that must be considered when writ ing effective code 
for the CPU. NVIDIA provides an occupancy calculator as part of the CUDA toolkit 
to aide developers in assessing occupancy, but , in all but the most straightforward 
applications, iterative experimentation is the only way to identify ideal operating 
parameters. 

There are addit ional considerations that can influence how a task is partitioned as 
well. As mentioned above, block sizes should always a multiple of 32 as this ensures 
even partitioning into warps and also makes global and shared memory access patterns 
easier to adhere too. It is also recommended that the block size be at least 192 to 
fu lly hide register latencies. 

Memory Bandwidth 

iVIaximizing memory band"width is crit ical in the data-centric applications that are 
most often implemented on the CPU. As a general guideline, access to global memory 
from within a kernel should be avoided whenever possible, through creative usage 
of texture, constant , and shared memory spaces. Shared memory is perhaps most 
valuable in this endeavour , as it can reduce the total number of accesses required 

46 



IvLA.Sc. Thesis - J. Anthony Brown f.-IcM aster - Electrical Engineering 

through data sharing and also provides a low-latency intermediate data storage space. 
Although they will not be reiterated here, adherence to the memory access patterns 
discussed in Section 3.4.3 is paramount in accomplishing this and can affect bandwidth 
by an order of magnitude. 

Bandwidth between DRAM and the device is up to 159 Gbyte/s on GT200 GPUs 
(with significant access latencies) , but the bandwidth of transfers between the host 
and device is limited by the PCI-E 2.0 bus at 8 Gbyte/s. Therefore, it is critical 
that transfers be minimized and packaged into a single batch transfer whenever pos
sible. Additional bandwidth can also be realized using page-locked, mapped memory. 
In many situations, it can actually be more efficient to recalculate a piece of data 
and avoid a memory transfer altogether. It should be noted that memory-intensive 
applications can still perform very well on the G PU, as long as there is sufficient 
computation within a kernel to hide the latencies. 

Instruction Throughput and Precision 

The GT200 architecture does support double-precision floating point calculations ; 
however, their performance is a fraction of single-precision performance and they 
should be avoided unless absolutely required by an application. Additionally, CUDA 
comes with a math library that contains a variety of int rinsic single- and double
precision functions (e.g., sin , exp , 10g2 , 10gI0), t hat offer higher t hroughput while 
sacrificing some precision. Finally, operations such as integer division and modulo 
have a very high latency on the GPU and should also be avoided if possible. 

vVarp divergence, discussed in Section 3.3 , also affects instruction throughput as 
it serializes the execution of branches in code when threads in a warp do not agree 
on a common path. In many cases a task can be partitioned in a different way that 
avoids 'warp divergence with minimal effort. Barrier synchronizations should also be 
used sparingly as t hey introduce an addi tional constraint to a.n SM 's scheduler that 
can cause warps to idle while waiting for other ' to finish executing. The ratio of 
ari t hmetic instructions to memory instructions in a kernel is known as aTithmetic 
intensity and should be kept as high as possible to maximize throughput. In some 
cases. when arithmetic intensity is low. manually prefetching data in a kernel can 
hide the memory access latencies. 

Other considerations 

It should be clear that. there are many constraints and t rade-offs to consider when 
opt imizing a C DA application. This can be seen explicit ly when attempting to 
identify the ideal th1'ead gmnulaTity for a task ; in other words, 'when deciding whether 
it is beneficial to put more work into each thread and use less threa.ds. For example, it 
may be tempting to place a loop inside a kernel and have each thread service multiple 

47 



f-..!l.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

pieces of data, but this introduces warp divergence and lowers the number of blocks 
in a grid . If each iteration of the loop is arithmetically intense and there are st ill 
enough blocks to occupy all SMs, this strategy could realize a significant performa.nce 
gain; however , other scenarios may see degradation in performance. It is very difficult 
to assess which optimization goals should take precedence without experimentation. 

The most important optimization goal when porting an application to the CPU is 
the hardest to quantify: the task must be para.llelized as much as possible. Increasing 
bandwidth or ari thmetic intensity will prove fut ile if the task cannot be framed in a 
highly-parallel manner and mapped to the CPU appropriately. This is an area that 
requires both logic and creativity from the programmer , and should take precedence 
over all else. 

3.5 Microsoft Direct3D 

Direct3D, an API available as part of Microsoft 's DirectX SDK, facili tates optimized 
3D graphics rendering on the CPU and is used primarily in video game development. 
There have been several iterations of Direct3D since its inception in 1995, leading to 
Direct3D 11 , which was recently released with Windows 7. This work uses Direct3D 
9.0c, which was selected for its interoperability with CUDA, ease of use, and support 
for a variety of Microsoft operating systems. The remainder of this section focuses 
exclusively on Direct3D 9. 

Direct3D provides an interface to the CPU driver for rendering realistic 3D scenes 
using the CPU's graphics pipeline (3. 1), by exposing vertex buffers, surfaces, lights , 
textures, viewports, meshes, and numerous other resources and effects . A very small 
subset of Direct3D's capabilit ies are exploited in this work to efficiently render 3D 
models with realistic lighting, shading, and skinning. For a detailed look at program
ming with Direct3D 9, the reader is directed to the programming guide ( IIicrosoft 

Corporation , 2003) or one of the many textbooks (Sherrod , 2006; Luna, 2003) or on
line tutorials on the topic. Here, the small subset of its features and terminology that 
are critical to understanding the proceeding chapter are introduced. 

3.5.1 Resources and Rendering 

Rendering an object with Direct3D involves transforming object geometry data into 
pixel data using the CPU 's graphics pipeline (Fig. 3.1 ). The object's geometry is 
represented as a list of 3D coordinates (with respect to a local origin) called veTtices 
that are stored in a veTtex buffeT in device memory. Vertex data is processed by 
vertex shaders to apply light ing and shading effects , then assembled into primit ives 
(triangles, lines , or points) according to a list of indices in an index buffer that 
define the object 's geometry. The processed vertices then enter a geometry pipeline 

48 



M.A.Sc. Thesis - J. Anthony Brown MciVlaster - Electrical Engineering 

(Section 3.5.2) and are msterized. In other words, a series of transforms are applied 
to manipulate the object 's posit ion and orientation in virtual space then create a 2D 
proj ection of the object according to the location and proj ective propert ies of a virtual 
camera. The resulting image is processed by pixel shaders (or fragment shaders) to 
apply colours, textures and other effects. 

The result is an array of pixel data in device memory in the form of a Direct3D 
smjace, which can be swapped into the video card 's back buffer for display on a screen. 
Surfaces are a useful Direct3D resource that can be customized with a desired size 
(resolut ion), pixel format (32-bit ARGB in this work), and memory space (host or 
device) . They also have a number of useful features , such as the ability to be locked 
by the host to access and modify individual pixels and efficient resizing and stretching 
options. Textures have similar features to surfaces , but can be applied to geometry 
during fragment shading and cannot reside in host memory space. Rendering an 
image to a texture then applying it to a small quad (square made of two t riangle 
primitives) , while using a large surface as a render target , is an efficient way of 
obtaining a modular 2D projection of an obj ect on a large surface. 

3.5.2 The Geometry Pipeline 

UntransfOlmed 
Vertices 

Figure 3. 16: Geometry pipeline 

Transfonned 
Vertices 

The geometry pipeline (Fig. 3.16) effectively determines how a set of vertices that 
define an object 's geometry are oriented and proj cted onto a 2D surface. In other 
words, it provides a mapping between a model's local 3D coordinate system to the 
surface 's 2D coordinate system. This is accomplished through the application of three 
transforms: the world tmnsjorm, the view tmnsjorm, and the projection tmnsjorm. 
Each transform can be expressed as one or more 4 x 4 matrices and applied to a 
vertex (expressed in homogeneous coordinates) by multiplying tha t vertex with each 
of the matrices. 

In general, transforms can be decomposed into translation (tx, ty, tz), rotation 
(rx. T y , T z). and scaling (sx. Sy , sz) factors. Five geometric transformation matrices 
are used to express these factors: a t ranslation matrix T , a scaling matrix S . and x-, 

49 



l\!I.A.Sc. Thesis - J. Anthony Brown lId/laster - Electrical Engineering 

y- , and z-rotation matrices , R x, Ry , and R z, respectively: 

1 0 0 0 Sx 0 0 0 1 0 0 0 

0 1 0 0 0 Sy 0 0 0 COS(Tx) sin(Tx) 0 
T = s= R x = 

0 0 1 0 0 0 Sz 0 0 -sin(Tx) COS(Tx) 0 

tx ty tz 1 0 0 0 1 0 0 0 1 

COS(Ty) 0 -sin(Ty) 0 COS(Tz) sin(Tz) 0 0 

0 1 0 0 -sin(Tz) COS(Tz) 0 0 
R y = 

sin(Ty) 0 cos( T y) 0 
R z = 

0 0 1 0 

0 0 0 1 0 0 0 1 

World Transform Untransformed vertices are described "vith respect to the origin 
of an object 's local coordinate system. The world transform moves vertices from 
model coordinates (or model space) to world coordinates (world space) , effectively 
placing and orienting t he obj ect at a specific point within the virtual world. A vertex 
in model coordinates Pm = (xm , Ym , zm) can be transformed into world coordinates 
P w = (xw, Yw, zw) according to 

Pw = Pm . R x . R y . R z . S . T (3 .2) 

It should be noted that t he scaling factor S is not used in this work and is t herefore 
equal to t he 4 x 4 ident ity matrix r4. Objects do , however , scale according to their 
location with respect to the virtual camera.. 

View Transform The view transform orients the world with respect to a virtual 
camera, effectively setting a point-of-view. In other words, it transforms vertices 
from world coordinates to camera coordinates. A vertex in world coordinates Pw = 
(xw , Yw, zw) can be transformed into camera coordinates Pc = (xc , Yc, zc) according to 

Pc = Pw ' T · R x ' R y ' R z (3 .3) 

The location of the virtual camera does not change in t he proposed framework. 

Projection Transform The proj ection tran sform scales the world according to 
distance from the camera to create the illusion of depth. In other words , it transforms 
vertices from camera coordinates to proj ection coordinates (according to t he specified 
clipping planes, field of view, and aspect ratio) to simulate t he lens of a real camera. 
The proj ection t ransform involves a scaling and perspective t ransform , meaning it 

50 



M.A.Sc. Thesis - J. Anthony Brown Md/laster - Electrical Engineering 

cannot be expressed using geometric transformat ion matrices . Since the proj ective 
t ransform remains fixed in this work , it is not critical to understanding the operation 
of the proposed fr amework and will not be discussed in detail. 

Once in projection space, the visible t ransformed vertices are converted to screen 
(or surface) coordinates through rasterization. The overall result mimics the eff ct of 
a real camera capturing images . 

3.5.3 3D Models 

Direct3D models are stored as X files, a common format that most 3D modeling pack
ages, such as Autodesk Maya (Autodesk },/Iaya Press, 2009) or Blender (Roosendaal 
and Selleri , 2009), are able to produce. An X file is imported into Direct3D as a hi
erarchy of bones (or fmm es), arranged as a kinematic chain that stems from a single 
root fram e. Collectively, t he fr ames define the art iculation of an object . Each bone 
has a corresponding geometric transformation matrix called a fmme matrix t hat de
scribes the bone's pose (in bone space) relative to its parent bone, in the same way 
the world t ransform describes an object 's pose relative to the origin in world space 
(Section 3.5.2). In a sense, each fram e can be considered a completely separate object, 
capable of rotation, translation and scaling; however , when dealing with tradit ional 
"skeleton-like" models, movement of child frames is constrained by joints, so their 
t ransformation matrix would be used exclusively to describe rotation caused by joint 
flexion (j~ , j ;, j~), where k is t he index of a joint . As a result, when the root frame is 
posit ioned using the world transform , all other frames in the hierarchy will be moved 
as well. Additionally, a flexion near the top of the hierarchy will propagate down and 
posit ion all dependent bones and joints accordingly. 

The other major component of an X file is a m esh that defines the geometry of 
the model. A mesh is a collection of vertex and index data that Direct3D can import 
into vertex and index buffers, respectively, to render the model. Each vertex in a 
mesh is associated "vith one or more frames that determine the vertex's location in 
model space. In other words, changes to a bone's frame matrix will affect all vert ices 
associated with that bone. The mesh can therefore be considered "skin" surrounding 
the bones. "\Then vertices in a mesh are influenced by more than one bone (e.g., skin 
around a joint) , a technique called skinning must be applied to determine their final 
location in model space. Skinning can be computationally demanding, but is required 
for realistic art iculated models. In t his work , the CPU 's vertex shaders are exploited 
using HLSL to perform skinning. 

An imported model is rendered to the screen as described in Section 3.5.1 , with a 
few addit ional steps: 

1. The frame hierarchy is traversed (starting at the root) and each bone's frame 
matrix is updated according to its parent bone's frame matrix and the flexion 

51 



l\lI.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

(j;, j~, j~) of its corresponding joint 
2. The frame hierarchy is traversed again and each frame matrix is applied to any 

associated vertices on the mesh 
3. Skinning is performed on any vertices that are influenced by multiple bones 

3.5.4 Lights , Materials , and Shading 

Direct3D provides a variety of light ing and material options to produce realistic shad
ing and shadow effects on rendered objects. One or more light sources with a con
figurable colour and type of light (diffuse, ambient and/or spectml) can be added 
to a scene as ambient , directional, point , or spot lights. In the case of point and 
spot lights , the light source has a fixed posit ion in world space, whereas ambient and 
directional lights do not emanate from any specific location. Additionally, directional 
and spot lights are configured to point in a specific direction. The result realistically 
imitates light in the real world. 

Every vertex has an associated material (optionally included in the X file of a 
model) that defines how light will affect it. In other words, a material determines 
what colour and type of lighL a vertex will reflect . For example, a material that 
reflects a great deal of spectral light would appear shiny while a material that only 
reflects ambient and diffuse light would appear dull. Additionally, a white surface 
would reflect all colours of light, whereas a purely red surface would appear black 
under a green or blue light, and a black surface reflects no light. 

The effects of lights and surfaces are computed during vertex shading stage of 
the graphics pipeline. Adding additional lights to a scene increases rendering time; 
however , they are critical when an application requires a rendered model to accurately 
reflect the appearance of an object in the real world. 

3.5.5 Direct3D /CUDA Interoperability 

A number of Direct3D resources, such as vertex buffers , index buffers, textures and 
surfaces, can be accessed in CUDA's address space for reading and writing data within 
kernels. This is done by registering a resource with CUDA when it is first initialized 
in the device's memory. Once registered, a resource can effi ciently be mapped and 
unmapped to CUDA 's memory space at any point , as long the host does not attempt 
to access the resource while it is mapped. In this work , surfaces are mapped to 
CUDA's address space, where they are treated as CUDA arrays , bound to texture 
references , and accessed via texture fetches (Section 3.4.3). 

52 



M.A.Sc. Thesis - J. Anthony Brown l\/IcMaster - Electrical Engineering 

3.6 GPU Computing in 3D Model-Based Tracking 

As a prelude to the next chapter , which describes in detail how the GP is exploited 
for model-based visual tracking, this section highlights the key features of CUDA and 
Direct3D that playa significant role in this work. 

Rendering a Tracking Target Model The crux of 3D model-based tracking 
techniques is a realistic representation of the tracking target, which is precisely what 
the GPU 's graphics pipeline is designed to provide. By configuring Direct3D 's virtual 
camera and lights to accurately simulate the tracking environment and camera lens, 
rasterized projections of the model will closely reflect real images of the tracking 
target captured by the cam era. In the terminology of the particle filter (Section 2.5), 
t his means the particle images will be close approximations of the current frame and 
a comparison of extracted features will produce meaningful weights. Furthermore, 
because the performance of Direct3D has been driven by the video gaming market , 
which often demands frame rates of 60 fps or higher , model rendering will be extremely 
efficient - critical for real-t ime tracking. 

Interfacing with a Tracking Target 's State Vector An advantage of model
based tracking approaches is that the state vector being estimated (position, rotation, 
and joint flexions) represents the same parameters that control the 3D model of the 
tracking target. In other words, no mapping is needed between tracking target space 
and virtual world space. Direct3D's geometry pipeline makes this extremely intuit ive , 
as the state vector used to configure part icles can interface directly with a model's 
world t ransform matrices and fr ame matrices. 

Accessing Particle Image Pixel Data The particle images produced by Di
rect3D would be useless if their pixel data could not be accessed efficient ly by CUDA 
for parallel processing. Because Direct3D surfaces are interoperable with CUDA, they 
can be mapped into CUDA's memory space for feature extraction and weight calcu
lation. T he critical advantage is that the particle images are rendered directly to the 
G PU , meaning there is virtually no overhead from transferring data from the host to 
device, which is the primary limiting factor in most CUDA applications . ~I apping 

the particle images to CUDA involves determining th address of the part icle image 
data and simply passing that address to a CUDA kernel. 

Extracting Features As discussed in the previous chapter, the type of feature 
extraction used in this work is silhouette and edge detect ion. Both these tasks are 
ideal candidates for implementation on CUDA, as they exhibit a great deal of data 
locality (ideal for shared memory utilization). do not require significant conditional 

53 



rvI. A.Sc. Thesis - J. Anthony Brown ~IIcMaster - Electrical Engineering 

logic (avoiding warp divergence) , and consist primarily of floating point calculations 
(high ari thmetic intensity). TvIost important ly, t his type of feature extraction is highly 
parallelizable and can be partitioned into modular , independent sub-tasks that can be 
solved using cooperative threads; opt imal conditions for compatibili ty with CUDA's 
execution hierarchy. Many other feature extraction techniques exhibit similar char
acteristics and would benefi t greatly from CUDA acceleration. 

Computing Weights Computing the weight of a part icle from its par t icle image 
involves the reduction of thousands of individual pixel weights to a single value. 
Although reduction operations are intrinsically difficult to parallelize , t hey can still 
be accelerated significant ly by CUDA. It should also be noted that since weights are 
relative values, single-precision floating point accuracy can be ut ilized with negligible 
consequence. 

54 



Chapter 4 

GPU-Accelerated Particle Filtering 
for 3D Model-Based Tracking 

This chapter presents a novel framework that uses a CPU-accelerated particle filter for 
high-speed, rigid or art iculated, 3D model-based obj ect tracking in monocular video. 
The framework estimates the pose of a 3D obj ect by framing the t ask as a Bayesian 
state estimation problem and applying the SIR part icle filter algorithm from Chapter 
2 to each frame of a video sequence. In other words, the tracking target 's pose at t ime 
t is represented by a state vector Xt , and an estimate of that state Xt is produced using 
a set of particles {xD i~ l and their corresponding weights {WD~l. For each frame of 
video, the particle set is propagated according to a mot ion model, updated by a new 
observation (i. e., frame data), Xt is estimated , and t he part icle set is resampled. This 
is shown graphically in Fig. 4.1 with the update stage expanded to include the details 
of how weights are calculated through particle simulation and evaluation on the CPU. 
Additionally, Fig. 4.2 shows the data flow for one iteration of the system and Fig. 4.3 
shows how the image segmentation, feature extraction, and weight calculat ion stages 
are partitioned between kernels and how CUDA's various memory channels are used 
to exchange data between the stages. It is important to note that the illustrative 
division of system stages used in Fig. 4. 1 does not correspond directly to the actual 
task partitioning in kernels, which is designed for optimal performance (primarily by 
avoiding global memory accesses). 

The goal of the chapter is to describe the functional and implementation details of 
t he framework ; however , justification for the design decisions \-vill not be discussed , as 
this material has already been covered in Chapters 2 and 3. Additionally, a discussion 
of the performance and accuracy of the framework is reserved for Chapter 5. The 
system is described in terms of modular components (or stages) with defined inputs 
and outputs that reside on either the CPU or CPU. Section 4.1 presents an overview 
of the fr amework and each subsequent section describes an individual component . 

55 



M.A.Sc. Thesis - J. Anthony Brown IVldvlaster - Electrical Engineering 

.------------------ -------
Initialize 10 GPU 0 CPU 

1 

- , 
1 
1 
1 
1 . 

~--------------------------

-------- ----------------------- r------------------------------------------------------------------
~, Prediction 

Propagate 
Particles 

~~ 
,--------- ------------------------.. 
1 , -------- ----------------------~ 

1 
I 
I 
I , , 
1 
1 , 
1 
1 

Resample 
Particles 

.n 

, 
Resampling I , 

1 
1 
1 
1 , , 
1 
1 

... Acq uire .... 
Frame 

" 
Render 

~ lParticle Images 

1- -------- _______________________ J L ____________________ , 

-------- --------------------------------------------, 
Estimation 

, , 
1 

r 

1 
1 

Visualize Estimate 1 

~ ...... I 

Estimate State 
...... , , , 

1 
1 ______________________________________________________ J 

Update 

lMap Resources 
to CUDA 

.n 

~, 

Tile Segment 
Particle Images Background 

" 
Calculate Extract +--Weights Features 

Figure 4.1: GP U-accelerated model-based tracking: system overview 

4.1 System Overview 

-, , 
1 
1 , , , 
1 
1 , , 
1 , 
1 
1 , 

The system is initialized by importing a 3D model of the tracking target , generating 
an initial particle set, and learning the frame background. vVith the arrival of each 
new video frame at time t , the particle set from t ime t - 1 is propagated according 
to the system dynamics. The model is configured to reflect the state defined by each 
particle and a 2D proj ection of each configuration is rendered to a texture (part icle 
image). The particle images are t iled on a single surface referred to as the particle 
grid, which is mapped to GPU texture memory along with a surface containing the 
current frame from the camera. A kernel is launched to segment the t racking target 
from the background and perform feature extraction on the frame. A second kernel is 
launched to perform feature extraction on the particle grid , then obtain a quality-of-fit 
value bet-ween each pixel in the feature map of the frame and the corresponding pixels 
in the feature map of the particle grid. The quality-of-fit values associated with each 
particle are summed to yield the particles ' weights . These weights are transferred 
back to the CP U where they are used to estimate and visualize the current state of 
the tracking target . Finally, the weights a.re used to res am pIe the particle set for the 
next frame. 

56 



iVLA.Sc. Thesis - J. Anthony Brown ~IcMaster - Electrical Engineering 

. N 

{W:-1}i=lh 
Old Weights P. Fi lter { i} l! Rendering),,~, Tiling _1-1. 1 

Xl 1= 1 -----+7 ~ ---~7 

{xi } N New Particles 
f-I 1=1 

Old Particles 

Image Feature 

Particle Images Particle Grid 

IF. Ext. 

S . ~ E t t ' Weight Calc. ~ egmentatlOn x rae Ion.. • 
~ ----.... , ---..... , III ~ ~ 

Frame 1 Particle Grid Frame Segmented Image 

Feature Map Feature Map 

Ial Visualization 
~ ( 

" Estimation i } N Xf ( {W, i=I 

Output to Screen Estimate Particle Weights 

Figure 4.2: CPU-accelerated model-based tracking: data flow 

4.2 Configuration and Initialization 

The framework was designed to be highly customizable with a number of configurable 
options including: 

• choice of t racking target; 
• number of tracking target DOFs; 
• number of particles N (must be a perfect square); 
• particle image resolution (width must be a multiple of 32 , height must maintain 

aspect rat io of video); 
• system dynamics properties (i. e .. choice of prior); 
• feature extraction algorithm (e.g., Sobel, Canny, none); 
• state estimation technique (e.g. , average, weighted average); 
• number of frames to buffer ; and, 
• amount of smoothing to apply to output. 

The remainder of this sect ion describes the processes involved in initializing the sys
tem according to these configuration options. 

57 



M.A.Sc. Thesis - J. Anthony Brown iVIciVlaster - Electrical Engineering 

------------------------
CJ Data / Current / / C / / Particle / F onstants G . d 

CJ Process rame n 

--+ Memory Channel Texture Constant Texture 
------------------------

Kernell Kernel 2 

/ MaxIMin / Image 
Particle Grid 

Pixel Maps Segmentation Global Feat. Extraction 
Shared 

Shared ~ 

Frame Feat. 
~ 

.... Pixel-Level 
Extraction 

Weight Calc. Global 

Mapped Kernel 3 Shared 

To Page-Locked Particle-Level Global Block-Level 

Host Weight Calc. Weight Calc. 

Figure 4.3: GPU-accelerated model-based t racking: kernel partitioning 
Three kernels interact through a variety of CUDA memory spaces 

4.2.1 Direct3D 

Direct3D is configured to use a 32-bit ARGB pixel format and set to ignore the 
monitor 's refresh rate (i. e., present frames as quickly as possible) . Ambient and 
diffuse white light sources are placed in the scene, to approximate the light of an 
indoor environment , and generic view and proj ection matrices are created for use 
in all rendering operations. Vertex buffers, index buffers, surfaces, and textures are 
allocated in GPU memory, with their resolut ions set to reflect the number of particles 
and particle image resolut ions select ed. An X fi le containing a 3D model of a rigid or 
ar t iculated tracking target is imported, and vertex, index, and material buffers are 
filled with the model 's data. It should be noted that render time increases with t he 
number of vertices in a model. To prepare the model for rendering, its bone hierarchy 
is traversed and its frame matrices are configured to their default state. Finally, t he 
generic HLSL vertex shader program used for skinning is loaded. 

4.2.2 CUDA 

CUDA is ini t ialized on t he same GPU as Direct3D and surfaces allocated for the 
current video frame and particle grid are registered for subsequent mapping to texture 

58 



NI.A.Sc. Thesis - J. Anthony Brown NIcNlaster - Electrical Engineering 

memory. Addit ionally, the area in host memory used for particle weights is page
locked and mapped into device memory space . The edge detector filter parameters are 
t ransferred to constant memory, along with several values that can be precalculated to 
avoid unnecessary, high latency arithmetic (e .g., integer division) in kernels. Finally, 
t he background of the tracking area is identified and transferred into global memory 
as described in Section 4.7. 

4.2.3 Additional Details 

An initial part icle set is produced by seeding the 1'250 unifo1'm mndom numbe1' gen
emto1' (Kirkpatrick and Stoll , 1981) and scattering part icles near the center of the 
fr ame. All particle weights are set to 1/ N. Additionally, to prepare the camera for 
high-speed streaming, an area in host memory is allocated for the camera's fr ame 
buffer (according to the configured size) and the buffer is filled . 

4.3 Resampling and Particle Propagation 

Weights 

; N 
{Wt _ l } ;=1 

. N 
{X' } . 

t-1 1=1 

Old Paliicles 

-

-

Resampling Prediction 

-f+ Build r-+ SelectN .. Propagate 
CDF Particles 

... 
with prior 

Figure 4.4: Particle resampling and propagation 

.. 
N ew Patiicles 

The particle resampling stage probabilistically selects a new set of particles from 
the existing set based on a CDF constructed from the existing part icles ' weights. 
The particle propagation stage displaces the new particle set using a motion model 
(random walle first -order , or second-order with configurable covariance) in an attempt 
to predict the pose of t he tracking target in the next frame. The details of these 
st ages were described in detail in Chapter 2, including the sp cific SIR particle fil ter 
algorithm used in the tracking framework. This information will not be reiterated 
here to conserve space, but is summari zed in Fig. 4.4. 

59 



M.A.Sc. Thesis - J. Anthony Brown McNIaster - Electrical Engineering 

4.4 Frame Acquisition 

Grab Capture Down-
Frame Frame sample 

To camera Current Frame 

Figure 4.5: Frame acquisition 

The frame acquisit ion stage produces a Direct3D surface (with the same resolution as 
a particle image) that contains current pixel dat a from the camera (Fig. 4.5). Each 
frame can be considered an observation (or measurement) in the terminology of the 
particle fi lter. The frame is pulled from a wrapping frame buffer (with a configurable 
size) in host memory and copied to a temporary, locked surface in CPU memory. 
Once the copy is complete, the surface is unlocked and an asynchronous instruction is 
given to the camera to acquire a new frame at the current location in the buffer. This 
allows the camera to capture frames concurrently with program execution, ensuring 
the system never has to idle while waiting for a new frame. To downsample the frame 
from the camera 's resolution to the particle image resolution, the pixel data is copied 
from the temporary surface to a surface that has been registered with CUDA (with 
the resolution of a particle image) using an efficient Direct3D stretch operation. 

4.5 Model Rendering and Tiling 

Configure 
Matrices 

'N 
{X~} i=1 

Particles 

Render Tile 

Particle Images 

Figure 4.6: Model rendering and t iling 

Particle Grid 

The goal of model rendering and tiling is to generate a particle grid containing N 
particle images that correspond to the states of particles {XDt~l (Fig. 4.6). For each 
particle in the set , the model 's world transform matrix is updated to reflect the global 

60 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

state parameters of that particle. The model's bone hierarchy is then recursively t ra
versed and its fr ame matrices are updated according to the local (joint) parameters of 
the particle. Once all matrices are updated , the bone hierarchy is recursively traversed 
a second time and the mesh corresponding to each bone is rendered to a texture with 
a white background, producing the particle image. The virtual lights, materials, and 
proj ective matrix parameters set during initialization ensure that particle images rep
resent realistically shaded projections of the actual t racking target. Once all particle 
images are rendered, the textures are applied to quads that are t iled evenly across 
the particle grid surface, which was registered with CUDA during initialization. The 
result is a single, large surface that contains pixel data for N particle images and can 
be mapped into CUDA's texture memory as a single CUDA array. 

4.6 Mapping Direct3D Resources to CUDA 

The Direct3D surface containing the part icle grid and current frame are registered 
with CUDA and can therefore be mapped to CUDA's texture memory and accessed 
by kernels using texture fetches. This is done by mapping each surface to a CUDA 
array and passing the address of that array to the kernels. The CUDA arrays are 
bound to textures when a kernel launches and unbound once the kernel has completed 
execution. The amount of time consumed by mapping and binding is small, but scales 
with the number of surfaces. This demonstrates the advantage of packaging particle 
images into a single particle grid , which requires just one mapping instead of hundreds. 

4.7 Image Segmentation 

Current Frame 

Fetch 
Pixels 

Compare 
to limits 

Background Data 

Figure 4.7: Image segmentation 

Segmented 
Image 

A thresholding approach to background subt raction is applied to each frame in the 
video sequence to segment the tracking target from the background (Fig. 4.7). During 

61 



l\lI.A.Sc. Thesis - J. Anthony Brown lVIcMaster - Electrical Engineering 

init ialization, a 1 second training video sequence, which contains only the frame 
background, is captured and loaued into memory. Corresponding pixels in each frame 
are compared to identify t he maximum and minimum value that each pixel location 
achieves. From this, maximum and minimum pixel value maps are generated and 
transferred into global memory. By observing pixel values over a period t ime, noise 
in the video sequence is accounted for. 

During image segmentation, the CUDA array containing the current frame is 
bound to a texture reference and a kernel (kernel 1 in Fig. 4.3) uses texture fetches to 
load pixels into registers as floating point data (red , green and blue pixel components 
are summed to produce a single value) . Each pixel is compared to corresponding 
limits in the maximum and minimum pixel maps in global memory. If a pixel falls 
within a configurable threshold of the corresponding limits, it is assumed that the 
pixel represents image background and it is suppressed (set to white) ; otherwise, it is 
assumed the pixel is part of the tracking target and its value is preserved. Although 
this approach requires a static camera position be maintained, t his is not a significant 
restriction in many applications. 

The image segmentation operation is parallelized using a 256 (32 x 8) thread 
block that tiles the frame. The result ing floating point data represents the segmented 
image and is written to shared memory for subsequent feature extraction (by the same 
kernel). Warp divergence is a concern during image segmentation, specifically around 
the edges of the obj ect where neighbouring threads will branch; however , because t he 
frame data is very small with respect to the particle grid , there is minimal effect on 
overall processing t ime. 

4.8 Feature Extraction 

Particle Grid 

Segmented Image 

Extract 
Silhouette 

Extract 
Silhouette 

P. G. Feature Map 

Frame Feature Map 

Extract 
Edges 

Extract 
Edges 

Figure 4.8: Feature extraction 

P. G. Feature Map 

Frame Feature Map 

The goal of feature extraction is to isolate comparable aspects of the current frame 
and particle images, while suppressing factors that will detract from the quality of the 

62 



M.A.Sc. Thesis - J. Anthony Brown McNIaster - Electrical Engineering 

comparison (Fig. 4.8) . \iVhile there are many possible approaches to this, the frame
work was tested using silhouette and edge features, which highlight the shape and 
orientation of objects, while suppressing textures, colours, and some shading (con
trasting shading can contribute to edge features) . The framework can be configured 
to ignore feat ure extraction entirely; ho"vever , this is reasonable only when the model 
geometry, virtual light , material, and camera lens configurat ions accurately reflect 
the true nature of a t racking target and environment. 

Feature extraction is performed separately on the segmented image and the par
t icle grid by kernel 1 and kernel 2, respectively (Fig. 4.2 and Fig. 4.3). K ernel 1 
executes first , operating on the segmented image floating point data in shared mem
ory and stores the result ing feature map in global memory. K ernel 2 operates on the 
part icle grid , which resides in texture memory, and leaves the result ing feature map 
in shared memory for subsequent weight calculation. Because the feature extraction 
process is effect ively identical for both kernels, t he algorithm is described exclusively 
for the particle grid . 

Silhouette detection is t rivial but can still benefi t from a parallel implementation; 
white pixels of the particle grid are considered part of the background and result 
in a black pixel on the feature map, whereas non-white pixels are considered part 
of the tracking target and are set to gray. To perform edge detect ion, the system 
can be configured to apply the Sobel or Canny edge detector algorithms. The trade
off is computational complexity versus quali ty of edge response. The Sobel detector 
involves two convolution operat ions, whereas the Canny detector involves three con
volut ions and additional steps for clamping, thresholding, and classification of edges. 
Because the Canny algorithm necessitates a great deal of branching (and consequently 
warp divergence) and includes an arctan operation to identify edge direction, it is not 
nearly as well-suited to a GPU implementation as the Sobel approach. Nonetheless, 
the quality of edge detection afforded by the Canny algorithm could be worth the 
additional complexity in certain tracking scenarios. In either case, pixels identified 
as edges are set to white on the feature map. 

Feature detection is executed by a kernel with heavy reliance on shared memory 
and barrier synchronization, as shown in Fig. 4.9. Adjacent pixels are loaded into ad
jacent shared memory banks by adj acent threads using texture fetches. This adheres 
to the access patterns for both memory types. Each pixel is classified as a member of 
the image background or t racking target by setting a silhouette flag in a register. Con
volution requires the edges of the image to be "padded" by extending the outermost 
pixels in each direction. To facilitate this. a barrier synchronization is issued and a 
subset of threads copy values around the perimeter of shared memory. Aft er padding, 
another barrier . ynchroniza tion is issued and the selected edge detector is executed. 
In the case of the Sobel detector , this means reading fil ter parameters from constant 
memory and using them to calculate the edge response of a pixel, accessing other 

63 



NI.A.Sc. Thesis - J. Anthony Brown },/IcNIaster - Electrical Engineering 

Texture Fetch Silhouette Detection Edge Padding 
"--- 1' --,-- -T __ A,. - --1'- --,---T __ A,. - --1'-- -, ,.- --1'---' -- --r - -- r - --1'-- - ,-- --r---,.--- Y---' 
I I I I , I I , , I' "I I , I I , I I I 
I I I I I I I I I I I I I I I I I I I I I I L___ _ __ I L.___ _ __ I 

I I I : 
~: ___ ---':' ___ ~ 1':' ___ I • 

---l--~~ 

c~~ ~~~j t~:: ~~~ j ~ !~--~+-+---

I EdgeReg. I 

Final Feature Map Feature Map Generation 

~--- ~~-- ,~--I74-t+-

True True 

Figure 4.9: Shared memory and flag registers during feature extraction 
Each grid represents pixel data in shared memory. Dashed lines indicated extended 
edges (top, left and right only) . Barrier synchronizations are shown as dotted lines 

intersecting arrows. 

pixels from adjacent shared memory banks as necessary, and setting an edge flag in 
a register if the result exceeds a configurable threshold. Another barrier synchroniza
t ion is issued , ensuring that all threads in the block are finished with the image data 
in shared memory before it is overwritten by the feature map. Each shared memory 
bank is set to black (background) or gray (silhouette) according to the silhouette 
fl ag set earlier and valid edge pixels are overlaid in white according to the register 
flag, completing the feature map. The Canny detector follows a similar pattern , but 
vvith additional barrier synchronizations and shared memory writes required for each 
additional step involved in the algorithm. 

An efficient CUDA implementation requires tasks be partitioned in a way that 
maximizes utilization of G PU resources. Here, a 32 x 8 thread block is used , regardless 
of part icle image resolution or number of particles; the number of blocks in the grid , 
however , varies with these parameters. To ensure blocks evenly t ile the particle grid , 
the width of particle images must be a multiple of 32 and the height must preserve the 
aspect ratio. To minimize the number of texture fetches, it is desirable for each block 
to load as much data into shared memory as possible , without excessively impacting 
multiprocessor occupancy. Using the occupancy calculator , it was determined that 
each thread can safely load three 32-bit pixels into shared memory while maintaining 
an SM occupancy of 50 percent (Fig. 4.10). This pixel access pattern fu ll exploits 
shared memory, while adhering to all memory access patterns, maintaining occupancy 
of 50 percent , and minimizing register usage. 

64 



?-/LA.Sc. Thesis - J. Anthony Brown MciVlaster - Electrical Engineering 

1 

24 

48 
1 

24 

48 

1 

.' 

. ' 

32 641 32/ / 64 .. ' .............. 

I 

bo 2 : b o 3 b o 0 : b o 1 
- - -' - -'- - - ~ - ___ ~_l ___ ' __ 

I I 

I······· .. bl ,o 
I 

bl , l b l ,2 
I b l 3 I I 

I I , 

b 2 0 
I 

b 2,1 b 2,2 
I 

b 23 
I I 
I I , 
I I 

, 
- - - - - 1- - - - - ----- T- ----
b 3 0 

I 

b3 I b3,2 : b 3,3 I··· .... · ....... I 
, I , 

32 

to,o 

~,o 

to 0 , 

~,o 

to.o 

p articl~ Image Bl~ck · ......... ~,o 

Thread 

64 

... t o,31 

... t7,3 1 

... t o,31 

... t 7,3 1 

... to.31 

.. . t731 , 

Figure 4.10: Particle grid GPU mapping 

1 

8 

9 

16 

17 

24 

Partit ioning of a 2 x 2 particle grid with particle image resolut ion of 64 x 48, block 
size of 32 x 8, each thread fetching 3 pixels along the y-direction. Pixel indices 
shown outside boxes, block IDs and thread IDs shown inside the left and right 

boxes , respectively. 

4.9 Particle Weight Computation 

P. G. Feature Map 

Frame Feature Map 

Calc. Pixel 
Weights 

Calc. Particle 
Weights 

Figure 4.11: Part icle weight computation 

' N 
{w; L=J 
Weights 

The goal of weight calculation is to compare the feature map of the current frame , 
which is in global memory, to the featu re map of each particle image in the particle 
grid , which is partitioned across shared memory (Fig. 4. 11 ). The result is a weight 
for each particle with pixel-level accuracy. A divide-and-conquer approach is used to 

65 



fvl.A .Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

first generate a weight for each pixel in the particle grid , then sum pixel weights to 
generate a weight for each thread block, and finally sum block vveighLs of all blocks 
that t ile a given particle image to generate a weight for that particle (Fig. 4.12). 

Pixel Weights Block Weights 

Wp1 ,1 
I 

W p1 ,2 W p1 ,3 
I 

W p1 ,4 I I 
I I Wb1 ,1 W b12 , 

------i'------ -------1-------
Wp2,1 

I 

W p2,2 W p2,3 
I 

W p2,4 I I 
I I 

W b21 W b22 , , - I I 

W p3,1 I W p3 ,2 wp3,3 I W p3,4 I I +~ ______ .L ______ 

-------'-------I I 

W p4,1 I W p4,2 W p4,3 I Wp4,4 I I 
I I 

Particle I::il 
Weight ~ 

Figure 4.1 2: \i\Teight calculation 
Pixel weights are summed to produce block weights , which are summed to produce 

a particle weight . 

Since shared memory does not persist across kernel launches, and it would require 
substantial global memory accesses to launch a new kernel, weight calculation is done 
by the same kernel that performs feature extraction on the particle grid (kernel 2 
in Fig. 4.3). Each thread loads three registers with the frame pixels corresponding 
to the previously fetched particle grid pixels and pixel weights Wpixel are calculated 
according to 

Wpixel = Emax - Ip j7'CLme - Ppm·tide 1 ( 4. 1) 

where P jmme is the floating point value of a frame pixel, Ppa7'tide is a particle pixel, 
and Emax is the maximum possible error (i. e., residual) the pixels can achieve, which 
varies according to the feature extraction configuration. Additionally, weights of 
edge pixels are multiplied by a configurable scaling factor , giving higher priority to 
edge alignment than silhouette alignment. Pixel weights are written back to shared 
memory. 

The most computationally complex aspect of weight calculation is the summation 
of pixel weights. This step is performed by a parallel reduction algorithm similar to 
(Harris , 2007). To begin , each row of a thread block reduces its corresponding shared 
memory row to a single value. This done in five iterations, the first three of which are 
partially shown in Fig. 4. 13. In the first iteration, 16 adjacent threads each sum two 
adj acent shared memory cells and store the results in shared memory, overwriting the 
first operand. The next iteration uses eight threads to sum the results of the previous 
iteration, and so on. This algorithm is applied to three shared memory rows by each 
row of the thread block, yielding a single column of 24 weights for the block, without 
any bank conflicts. Finally, a single thread serially adds the values in this column to 

66 



M.A.Sc. Thesis - J. Anthony Brown McIvlaster - Electrical Engineering 

4 

8 

15 

16 

23 

4 

2 

9 

TIU'ead IDs Thread IDs Thread IDs 

Block 
Weight 

Shared Mem. Shared Mem. Shared Mem. Shared Mem. 

Figure 4.13: Parallel reduction algorithm to sum pixel weights. 

produce a single weight for the entire block and stores it in global memory. 
The weights of all blocks that tile each particle image are then summed by a single 

thread block in kernel 3. Launching a new kernel ensures that all previous threads in 
the grid have completed execution , acting as a global synchronization barrier. The 
resulting particle weights {Wni!l are writ ten to page-locked host memory for a high
bandwidth transfer across the PCI-E bus to the CPU. 

The primary drawback to CPU comput ing is the latency associated with data 
transfers between the CPU and CPU. The described approach circumvents excessive 
data t ransfers by performing model rendering, proj ection, feature extraction , and 
part icle image evaluation entirely on the CPU, requiring only one floating point value 
per particle be t ransferred to the host. 

4 .10 

{W:} : J 
Weights 

State Estimation and Visualization 

Sort Particles 
Estimate 

State 

' N 
{X; L=J 
Particles 

" X, 
Estimate 

Visualize 
Estimate 

Figure 4.14: State estimation and visualiza tion 

67 

Visuali zation 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

The system estimates the state of a tracking target Xt on the CPU using the 
weights obtained from the GPU (Fig. 4.1 4). This can ue done by selecting the single 
highest weighted particle (2.8), or by comput ing the average (2.9) or weighted average 
(2. 10) of the !VI highest weighted particles. The quick-sort algorithm is used to sort 
the particles by their weights and an estimate is calculated based on the states of 
applicable particles in the set {xU i:l ' This estimate is added to a history of previous 
estimates, which is used when calculating velocity and acceleration values for the 
motion model used in part icle propagation. 

The estimate is also used to render a visualization of the object pose to the screen, 
both as a wire frame overlay on the video sequence and as a fully shaded projection. To 
compensate for t he jitter effect of the particle filter, the framework can be configured 
to average the current estimate with one or more previous estimates before displaying 
the model. This can make the system seem less responsive at lower frame rates, but 
has no actual effect on tracking, as the smoothed estimates are not stored. When 
tracking is successful , the end result is a 3D model of the tracking target that follows 
the true tracking target as it moves through the video sequence, with a one-to-one 
mapping in every degree of freedom. 

68 



Chapter 5 

Results and Analysis 

The GPU-accelerated model-based tracking framework described in Chapter 4 was 
tested with the goal of determining how many particles are required to accurately 
and robustly t rack an object moving in a video sequence and to determine the frame 
rate at which the required particles can be simulated and evaluated. This chapter 
presents the methodology, results, and analysis of a variety of experiments conducted 
on the system , using various settings and tracking targets. 

5.1 Methodology 

The framework was tested using five unique 600-frame sequences, each of which shows 
one of two tracking targets moving in real or synthetic video with 6, 8, or 10 DOFs. 
This section will describe the nature of the experiments conducted , the metrics used 
to assess the results, and the hardware and software with which the tests were run. 

5.1.1 '!racking Targets 

To demonstrate the generali ty of the fr amework, two unique tracking targets (Fig. 
5.1) and applications are considered: 

• a rigid "wand" with 6 DOFs for AR applications; and , 
• an art iculated hand with a flexible wrist and index finger (6 to 10 DOFs) for 

HCI applications. 

The tracking vvand was designed to have a unique proj ection when viewed from 
any angle, meaning there is no ambigui ty when observing its edge and silhouette 
features. The 3D model of the wand was created with the open-source 3D creation 
sui te Blender (Roosendaa1 and Selleri , 2009) and is comprised of 36 vertices (68 

69 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

Figure 5. 1: 3D tracking target models 
Rigid wand and articulated hand 

edges, 34 faces). The wand is used as a tracking target in real and synthetic video 
experiments to demonstrate the ut ility of the system when tracking an ideal target 
object . The wand could also be useful in AR applications, which often require virtual 
objects to be "attached" to real objects in video with great accuracy. 

An articulated 3D hand model with six global DOFs, two DOFs in the wrist joint , 
one DOF in the index finger MP joint , and one DOF for index finger PIP and DIP 
joints was also created with Blender (Fig. 5.2) and is comprised of 355 vertices (742 
edges, 389 faces) attached to a skeleton of nine bones and seven joints. It is possible 
to "lock" one or more joints to reduce the dimensionality of the estimation problem, 
depending on the requirements of the tracking application. In its default posit ion, 
the hand has a fully extended finger and thumb, with all other fingers flexed against 
the palm. Hand tracking has many applications, specifically in the domain of HeI, 
where natural hand motion is used as an alternative to the mouse and keyboard. 

5.1.2 Experimental Parameters and Metrics 

In each experiment , the system was assessed in terms of tracking quality (i.e., ac
curacy and robustness) and performance (i .e. , frame rate) as the number of parti
cles varies between 36 and 3,600 and the particle image resolution varies between 
32 x 24 and 160 x 120; however , the overall resolution of the particle grid is limited by 
the CPU, constraining the particle count at the highest resolution to approximately 
2,300. Additionally, in each experiment , the optimal operating parameters are identi
fied , qualitatively defined as the system settings wherein an increase in either particle 
image resolution or particle count would yield negligible gains in tracking quality and 
needlessly lower the frame rate. Tracking quality and performance results are exam
ined in detail for the optimal system settings of each experiment. In the presentation 
of all results, this thesis adopts the convention of labeling axes on only the bottom
or left-most graph(s) of each figure to avoid redundancy. Finally, when observing 

70 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

Figure 5.2: Hand model creation with Blender 

quality results, it is important to remember that tracking with a particle filter is an 
intrinsically random operation, meaning anomalies can occur during testing; no tests 
were repeated in response to such anomalies to preserve the integrity of data. 

The system was evaluated using both Sobel and Canny edge detectors for feature 
extraction; however, the Canny detector demonstrated negligible gains in tracking 
quality and impeded performance, therefore, results are shown exclusively for exper
iments that used silhouette and Sobel detection. The difference in performance and 
quality of the two detectors is discussed in Appendix B. Additionally, Appendix C 
discusses the impact that the system dynamics model has on tracking quality. 

To quantify tracking quality in synthetic tests , an estimate Xt is directly compared 
to a well-defined ground truth Xt , providing a measure of tracking error. Specifically, 
the average error of a state vector parameter d during a sequence is calculated as the 
mean absolute error (MAE) between the ground truth and estimate of that parameter: 

600 A 

Error = _1_ L Idt - dtl 
600 t=l dmax - dm in 

71 

(5. 1 ) 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

where dt is the estimate of a DOF at t ime t , dt is the ground truth , and dm ax and 
dmin are, respectively, the maximum and minimum values that parameter d achieves 
during the sequence. This metric will be used in all synthetic tests to quantify quality 
in terms of translation, rotation, and joint flexion error in each DOF. 

For real video, there is no ground truth available and alternative measures of qual
ity must be used based solely on information available in the test sequence. Specif
ically, seven separate metrics are employed that each compare the silhouette of the 
segmented t racking target to the silhouette of a 3D model visualizing the target in 
the estimated pose (Smith et al. , 2005; Agarwal et al., 2004): 

• Precision 
• Recall 
• F-measure 
• Accuracy 
• Bounding box percentage error 
• Centroid percentage error 
• Ratio of areas 

Each metric is used to quantify the quality of tracking in each frame of a test sequence, 
and the results are averaged across all frames, producing seven measures of tracking 
quality for a test , each offering a different perspective on the evaluation. These seven 
metrics are used in all experiments involving real video. 

The first four metrics fr ame t racking as a classification task , where each pixel can 
be classified as either part of the tracking target or part of the background (within 
a bounding box containing both 0 b j ects). Each classification can be characterized as 
one of the following: 

• True positive (TP) : Pixel correctly classified as part of the tracking target. 
• True negative (TN) : Pixel correctly classified as part of the background. 
• False positive (FP) : Pixel incorrectly classified as part of the tracking target. 
• False negative (FN) : Pixel incorrectly classified as part of the background. 

The metrics are formulated as follo'ws (van Rijsbergen, 1979): 

1 600 T P. 
P" '" t reC2szon = 600 L T P. F P. 

t = l t + t 

(5.2) 

600 

Recall = _1_ ~ T Pt 

600 L TPt + FNt t = l 

(5 .3) 

1 600 2T P
t 

FJV!esaure = -6 L TP. FT\,T FP. 00 2 t + J t + t 
t = l 

(5 .4) 

72 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

1 600 T Pt + T Nt 
A CCUTac y = - '" ----------

600 L TPt + T Nt + FPt + F Nt t= l 

(5 .5) 

where T Pt is the number of pixels classified as true positives at t ime i , and similar 
notation is used for the other three classes . In other words, precision is the ratio 
of pixels correctly classified as part of the tracking target to the total number of 
pixels classified as part of the t racking target . Recall is the ratio of pixels correctly 
classified as part of the tracking target to the total number of pixels in the actual 
tracking target . F-measure is a single metric that combines precision and recall 
(their harmonic mean), and accuracy is an overall ratio of number of pixels correctly 
classified to the number of pixels in the bounding box containing both silhouettes. 

The average bounding box percentage error for a sequence (across all frames i ) is 
expressed in terms of the geometric distance between the coordinates of the centre of 
the bounding box (bJ, bY) containing the tracking target and the coordinates of the 
centre of the bounding box (bJ, bY) containing the visualization of the estimate: 

1 600 J (bf - bf)2 + (bi - bY)2 
B oundingBoxError = - L (5 .6) 

600 t= l J(bx ,max - bx,min)2 + (by ,max - by,min)2 

where bx,min and bx,max are, respectively, the minimum and maximum values the 
center of the bounding box containing the tracking target achieves in the x-direction 
during the sequence, and similar notation is used for the y-direction. This formulation 
expresses the percentage error for each frame as the ratio of the linear distance (in 
pixels) between t he two bounding box centres to the total distance traveled by the 
centre of the tracking target's bounding box. Using the same notation , the average 
centroid percentage error for a sequence is defined as: 

1 600 J( AX _ X)2 + (AY _ Y)2 
'" Ct Ct Ct Ct C eniTOidET'TOr = - L 

600 t=l J(Cx.max - Cx,min)2 + (cy.max - cy,min)2 
(5 .7) 

The ratio of areas metric provides a measure of quality based on silhouette overlap: 

1 600 I~ n E I 
RaiioO f Areas = - L I~t Et I 

600 t U t 
t=l 

(5 .8) 

where Tt is the set of pixels in the tracking target at t ime i , E t is the set of pixels in 
the visualization of the estimate at time i , and 1· 1 denotes the cardinali ty (i. e., number 
of pixels) of the set. This notation provides an alternative (equivalent ) formulation 

73 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

for precision and recall as well: 

. . 1 600 ITt n Etl 
Prec1,swn = - L IE I 600 t 

t= l 

(5 .9) 

600 

R all = _1 ~ ITt n Et I 
ec 600 8 ITtl (5. 10) 

Performance results quantify the speed at which the system operates and are 
expressed in fr ames per second. Additionally, performance is compared to a similar 
CPU-based implementation of the system in terms of overall speedup and speedup 
of particle evaluation, which is the target GPU-acceleration. All performance results 
were obtained using CUDA's GPU t imers, which are accurate within 0.5 fJ, S, but 
benchmark the overall system t ime, and can therefore be suscept ible to variations in 
performance caused by background applications running on the system. 

5.1.3 Test Bench 

Tests were conducted on an Intel Core2 Duo E8400 3.0-GHz PC with 4 Gbyte of 1,333 
lVIHz DDR3 RAlVI, running Windows 7, CUDA 3.1 , and DirectX 9. 0c. An NVIDIA 
GeForce GTX295 graphics card (hardware specification shown in Table 5.1) was used 
for GPU-acceleration ; however, only one of the two available GPUs was ut ilized due to 
restrictions wi thin Direct3D. The 600-frame (approximately 5 second) video sequences 
were captured by an Allied Vision Technology GC660C 119-fps 659 x 493 GigE CCD 
camera (Allied Vision Technologies, 2010) at a resolution of 320 x 240. 

Table 5. 1: NVIDA GTX295 Graphics Card Hardware Specification 

SMs 60 (2 x 30) 

SPs 480 (2 x 240) 

Shader Clock 1,242 MHz 

Core Clock 576 MHz 

Memory Clock 999 MHz 

~/Iemory Size 1,792 MB GDDR3 (2 x 896 MB) 

Memory Bandwidth 223 .8 GB/s 

Power Consumpt ion 289 ivV 

Driver Version 197.45 

74 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

5.2 Tracking Quality Results 

This section describes the tracking quality resul ts for five separate experiments using 
metrics (5. 1) to (5 .8) . Experimental results using real video are presented first, begin
ning with 6-DOF rigid wand t racking in Section 5.2. 1, followed by 6-DOF rigid hand 
tracking in Section 5.2.2 and 10-DOF articulated hand t racking in Section 5.2.3. Syn
t1letic video results follow for 6-DOF rigid wand tracking in Section 5.2.4 and 8-DOF 
articulated hand tracking in Section 5.2.5 . 

5.2.1 Rigid Wand Tracking - Real Video 

Rigid wand tracking (6-DOF) is framed as an AR application, wherein the tracked 
pose parameters of the wand are applied to a virtual Omah a teapot, which is overlaid 
on the scene background. The user is intended to experience a one-to-one mapping 
between movement of the wand and the teapot. 

In the sequence, the wand is shown moving quickly through all DOFs with several 
instances of simultaneous translation and rotation , including a 360 degree rotation 
along the x-axis. The wand was tracked using a second-order motion model OIl each 
DOF and a weighted average of the 25 highest-weighted particles was used to compute 
the estimate. A wand tracking demonstration is shown in Fig. 5.3 , a sample of the 
particle grid is shown in Fig. 5.4, and tracking quality results are shown in Fig. 5.5. 

Fig. 5.3 shows a column of six unique (non-consecut ive) video frames, each con
taining the tracking target in a different pose. For each frame, five perspectives on the 
functionality of the tracking system are presented in a row. In the left-most column, 
the unprocessed input video frame is shown. The second column shows the results 
of image segmentation and feature extraction; the background is shown in black , the 
silhouette is gray, and edges are overlaid in white . The third column presents an 
error map, which offers three comparisons between an image of the the silhouette 
of the segmented tracking target and an image of the silhouette of the 3D model of 
the tracking target configured in the estimated pose; the residual bet'vveen the two 
images is shown in black, the bounding box of the the tracking target is shown in blue 
and the bounding box of the estimate is shown in green, the centroid of the tracking 
target is shown as a cluster of blue pixels and the centroid of the estimate is shown 
as a cluster of red pixels. The fourth column shows the input video frame with the 
estimate rendered as a wire frame overlay. Finally, the fifth column shows a fully 
shaded 3D model rendered in the estimated pose, replacing the tracking target in the 
scene. The object in this screen could be a 3D model of the tracking target, or an 
alterna.tive object relevant to the applicat ion, such as the teapot used in Fig. 5.3. 

75 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

Figure 5.3: 6-DOF rigid wand tracking demonstration 
From left to right: input video, feature map, error map (centroids, bounding boxes, 

and residual) , wire frame overlay, estimated teapot pose 

Figure 5.4: 4 x 12 sample of the wand particle grid 

76 



},;LA.Sc. Thesis - J. Anthony Brown Mc !laster - Electrical Engineering 

0.99 0.93 

0.91 
I:::: 0.97 
0 ....... 

0.89 -.- "@ -

·13 0.95 u 
(!) 

0.87 (!) p::: 
I-< 

0... 0.93 

~ • • • • 0.85 . .-.---. • • ~ 
..... 

0.91 0.83 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 

0.97 ----- 0.97 

0.95 -- 0.95 
(!) 

>-. ~ 0.93 t;j g 0.93 -t 
rfJ 
ro I-< 
(!) 

0.91 
;:::l 

0.9 1 j 

::8 u -- - -
U 

I <t: ~ 0.89 -t- 0.89 r ., · • • • ..... r-. • • • • .... 
0.87 0.87 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 
,.-... 

~ 5.3 " '-... ~ '-" 3.7 • • • • .... 
I-< • • ,.-... • 0 • • .. ~ 
t: 0 

4.3 -k-- '-" 
~ I-< 2.9 

0 
:>< t: 0 3.3 ~ 2.1 ~ 
OJ) "0 

·0 I:::: 2.3 I 1.3 ;.a I-< ..... 
I:::: I:::: 
;:::l (!) 

0 1.3 U 0.5 
~ 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 

0.93 

rfJ 
0.89 * 160x1 20 ro - ---

(!) 

+ 128x96 I-< 

<t: 
4-< 0.85 ~96x72 
0 
0 "'64x48 .- 0.8 1 ..... 

+ 32x24 ro p::: r+- • • • .. 
0.77 I 

0 1000 2000 3000 4000 

Number of Particles (N) 

Figure 5.5: 6-DOF rigid wand tracking quality results 

77 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

,..-.,. 180 
en 

~ 150 .8. 
'-" 
I=: 120 
.9 ...... 
~ 90 
o 

.....:l 60 

,..-.,. 

.$ 160 
Q) 

~ 

5120 
I=: o 
.~ 80 
u 
o 

.....:l 40 

o 

o 

Bounding Box Center - X Bounding Box Center - Y 

150 300 

Centroid - X 

150 300 
Frame 

450 600 

450 600 

,..-.,. 190 
en 

~ 165 .8. 
'-" 
I=: 140 
o ...... 
~ 115 u 
o 

.....:l 90 

,..-.,. 
en 

Q) 170 
~ 

8 150 I=: o 
.~ 130 
u 
o 

.....:l11O 

o 

o 

150 300 

Centroid - Y 

150 300 
Frame 

Figure 5.6: 6-DOF rigid wand tracking at optimal settings 
576 particles , 96 x 72 particle image resolution 

450 

450 

600 

600 

The sample of the particle grid shown in Fig. 5.4 represents a small subset of the 
overall grid , which contains between 36 and 3,600 particle images depending on the 
system configuration. Each particle image shows the 3D model of the tracking target 
in a slightly different pose, according to the state parameters produced by the particle 
filter. Note that figures similar to Fig. 5.3 and Fig. 5.4 are provided for all subsequent 
real-video experiments , but are not described in detail to avoid redundancy. 

Fig. 5.5 demonstrates that tracking quality increases with both particle image 
resolut ion and particle count; however, for a resolution of 96 x 72 and a particle 
count of approximately 600, increasing either parameter provides diminishing returns. 
These settings are therefore considered optimal for this experiment , providing an 
average precision, F-measure, and accuracy greater than 95 percent , recall and ratio 
of areas greater than 90 percent , bounding box error less than 2 percent , and centroid 
error less t han 1 percent. A qualitative assessment agrees with the quantitative 
findings. A user experiences the sensation of holding the virtual teapot and tracking 
integrity is maintained even when the wand is moved sporadically. 

Fig. 5.6 shows the location of the tracking target 's centroid and bounding box 

78 



iVI.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

during t he 600-frame sequence with an overlay of the estimated locations when the 
object is tracked using the optimal settings described above. With the exception of a 
few frames at the start of t he sequence (before an init ial "lock" is obtained) , minimal 
divergence between the ground truth and estimate can be seen. The most notable 
error occurs around frame 320, where the object quickly changes trajectory along the 
y-direction. Here, the particle fil ter 's prediction stage can be seen propagating the 
particle set (and estimate) based on previous velocity and acceleration , t hen quickly 
recovering with the arrival of few new observations (i.e., frames) . 

5.2.2 Rigid Hand Tracking - Real Video 

Rigid hand tracking (6-DOF) is framed as an He I application, wherein the user has 
control over a virtual hand with an extended index finger and thumb. In the sequence, 
a hand is shown moving quickly through all DOFs with a focus on translation. The 
hand was t racked using a second-order motion model on each DOF and a weighted 
average of the 36 highest-weighted particles was used to compute the estimate. A 
demonstration of rigid hand tracking is shown in Fig. 5.7, a sample of the particle 
grid is shown in Fig. 5.S , and tracking quality results are shown in Fig. 5.9. 

Results are similar to wand tracking, demonstrating an increase in tracking quality 
with both particle image resolut ion and part icle count. In this case, all metrics 
saturate once approximately 300 particles are used with a particle image resolution 
of 96 x 72 or higher. These settings are therefore considered optimal for the sequence; 
t he hand is tracked with an average precision, F-measure , and accuracy greater than 
94 percent , recall and ratio of areas greater than 90 percent, bounding box error less 
than 4 percent , and centroid error less than 2 percent. 

T hough similar to wand tracking, results indicate that rigid hand t racking per
forms with slight ly lower quality. This can be attributed to two factors. First, unlike 
the wand, the projection of a hand does not offer a unique silhouette at any angle, 
meaning feature maps for various orient ations can appear identical, except for edge 
features. Second , a realistic, anatomically correct 3D model of the human hand is 
much more challenging to create than the simple geometry of the tracking wand; as a 
result , even ideal tracking condit ions will not generate ideal results according to the 
metrics , since a "perfect fi t" is impossible. 

Bounding box and centroid tracking results (for the optimal configuration) shown 
in Fig. 5. 10 are similar to the wand results , but with a slight divergence (approx
imately 15 pixels) between the ground truth and estimate around frame 160. This 
call oe attributed to a change in the tracking target 's t humb flexion, which the rigid 
hand model is not designed to handle. However. when movement is limited to the 6 
DOFs being tracked, bounding box and centroid movement are accurately estimated. 

79 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

Figure 5.7: 6-DOF rigid hand tracking demonstration 
From left to right: input video, feature map , error map (centroids, bounding boxes, 

and residual), wire frame overlay, estimated virtual hand pose 

Figure 5.8: 4 x 12 sample of the rigid hand particle grid 

80 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

0.98 
0.93 

0.96 -
0.91 

!=: 0.94 ......... 0 ......... 0.89 .- ro rf:J (,) .-(,) 0.92 Q) 
0.87 Q) ~ t .... 

p.., 
0.9 - 0.85 

0.88 0.83 
0 1000 2000 3000 4000 0 1000 2000 3000 4000 

0.96 
0.95 

0.94 
Q) >-. 0.93 I .... 
;:::l 0.92 (,) 
rf:J ro 
ro .... t-Q) 

0.9 
;:::l 0.91 

~ 
---- (,) 

(,) 
I -< ~ 

.. 0.89 0.88 

.~ 0.86 0.87 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 
,.--. 

~ 6.2 
'-" 4.4 .... ,.--. 
0 ~ 
t:: '-" 3.6 
~ 5.2 .... 

0 
:>< t:: 2.8 0 

~ ~ 
01) 4.2 T 

'ij 2 .-!=: 0 
. - .... 
'ij ...... 1.2 
!=: !=: 
;:::l Q) 

0 3.2 I U 0.4 
~ 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 
0.92 -

rf:J 0.88 * 160x1 20 ro 
Q) 

+ 128x96 .... 
-< 0.84 -~ 

4-< * 96x72 
0 
0 "'64x48 .- 0.8 ...... + 32x24 ro 
~ 

0.76 
0 1000 2000 3000 4000 

Number of Particles (N) 

Figure 5. 9: 6-DOF rigid hand t racking quality results 

81 



M.A.Sc. T hesis - J. Anthony Brown McMaster - Electrical Engineering 

'V;' 165 
.-

Q) 

. ~ 140 
0.. 
'-" 
~ 115 
0 ...... ...... ro 90 u 
0 
~ 

65 
0 

-,$ 140 
Q) 

~ 
'0. 115 
'-" 
~ 90 0 ...... ...... ro 
u 
0 
~ 40 -

0 

Bounding Box Center - X Bounding Box Center - Y -~ 170 -+ -

~ 

:§ 140 
~ 110 0 . ..... 
~ 
u 80 j 

0 
~ 50 

150 300 450 600 0 150 300 

Centroid - X 
_200 Centroid - Y 
rn .-
Q) 

.~ 160 
0.. 
'-" 
~ 
0 

120 
'.g 

80 u 
0 
~ -, -- 40 

150 300 450 600 0 150 300 
Frame Frame 

Figure 5.10: 6-DOF rigid hand tracking at optimal settings 
324 particles , 96 x 72 particle image resolution 

-

450 

450 

5.2.3 Articulated Hand Tracking - Real Video 

600 

600 

Art iculated bare hand tracking (10-DOF) was tested with six global DOFs, two DOFs 
in the wrist , and two DOFs in the index finger joints. The thumb is locked in a fully 
extended position and all other fingers are flexed against the palm (Fig. 5.1 ). This 
arrangement could be used to provide natural He I in certain applications, such as a 
virtual point-and-click interface , and is demonstrated here by giving a user control 
over a virtual hand. 

In the sequence, a hand is shown moving quickly through a variety of mot ions, 
including four wrist flexions, three full finger flexions, and a variety of translations 
and rotations, with several instances of both at once. The hand does not leave the 
frame and does not rotate in a manner that completely occludes the finger. The 
hand was tracked using a second-order motion model for the global parameters, a 
first-order motion model for the local parameters, and a weighted average of the 25 
highest-weighted particles for the state estimate. A demonstration of 10-DOF hand 
tracking is shown in Fig. 5.11 , a sample of the particle grid is shown in Fig. 5.1 2, 

82 



M.A.Sc. Thesis - J. Anthony Bwwn McMaster - Electrical Engineering 

and tracking quality results are shown in Fig. 5.13. 

Quantitative results are similar to the first two experiments, with all metrics 
scaling well with increasing particle count and resolution; however, when dealing with 
a higher-dimensional problem, more particles are required before tracking becomes 
robust and accurate. Specifically, a particle image resolut ion of 128 x 96 and a particle 
count of approximately 1,300 are needed to yield an average precision, F-measure, 
and accuracy of 95 percent , recall and ratio of areas greater than 90 percent, bounding 
box error less than 4 percent , and centroid error less than 1 percent . These settings 
are considered optimal for the 10-DOF tracking experiment . 

Qualitatively, 10-DOF hand tracking performs well in the estimation of trans
lation parameters, but rotation tracking is less accurate due to the ambiguity of 
proj ections. Although finger joint estimation is robust, it is not as responsive, occa
sionally demonstrating a small lag since the joints are at the end of the kinematic 
chain. These problems could potentially be remedied with a hierarchical part icle fil ter 
or an alternative feature extractor that is more responsive to the slight change of the 
projected pixels caused by finger flexion. Nonetheless, the majority of hand poses 
are estimated accurately, giving a user the sensation of being in direct control of the 
virtual hand. 

Fig. 5.14 shows the centroid and bounding box of the art iculated hand being 
accurately tracked at the optimal settings. The most significant deviations occur in 
the x-direction of the bounding box around frames 280 and 350. These anomalies can 
be attributed to slight errors in finger joint estimation, as the size of the bounding 
box is a function of finger t ip location. However , beyond these bounding box offsets, 
the optimal settings demonstrate effective tracking according to both metrics. 

T his task is inherently more challenging than the first two experiments for several 
reasons. Projections of a hand are not necessarily unique, leaving room for ambigu
ity; for example, if the edge of the screen intersects the hand at the wrist, it is not 
possible to know if a rotation is due to global rotation (i. e., moving the arm) or wrist 
flexion. Additionally, th hand can be rotated such that the index finger is completely 
occluded, meaning observations do not contribute to the estimation of its joint param
eters. Furthermore, the pixel-by-pixel weight calculation algorithm provides optimal 
results when small movements produce significant changes in projected pixels, which 
is not always the case in hand tracking; for example, flexion in the PIP or DIP of the 
index finger displaces few pixels compared to flexion in the wrist. Finally, because the 
joints in the hand are arranged as a kinematic chain, an estimation error at the root 
of the chain can easily propagate and perturb other parameter estimates . It should 
also be noted that the complexit ies of a human hand are significant ly more difficult 
to model than the simple wand described above, meaning even an ideal track will not 
lead to ideal results according to the metrics used . 

83 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

Figure 5.11: 10-DOF articulat ed hand tracking demonstration 
From left to right: input video, feature map , error map (centroids, bounding boxes, 

and residual) , wire frame overlay, estimated virtual hand pose 

Figure 5.1 2: 4 x 12 sample of the articulated hand particle grid 

84 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

0.98 0.93 

0.96 0.91 

s:: - 0.89 0 
'en 0.94 ~ 

u '(3 0) 0.87 
0) ~ I-< 

0... 0.92 

~ 
0.85 t . -. • 

/ 0.9 0.83 
0 1000 2000 3000 4000 0 1000 2000 3000 4000 

0.95 0.95 

0) 0.93 ~ >-. 0.93 t5 u 
en C\l 
C\l I-< 
0) 0.91 ;:l 0.91 

:::E u 
U 

I <t: ~ 0.89 ~ 0.89 ' ---

~-0.87 ~ ~ 0.87 t 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 
-----~ 7.3 4.7 '-" 
I-< -----0 ~ 
!:: 0 3.9 6.3 . '-" 
~ I-< 

0 x !:: 3.1 0 5.3 ~ o::l 
bJ) "0 2.3 
s:: 4.3 

'0 
:.a I-< ..... 1.5 I: s:: 
;:l 

0) 

0 3.3 U 0.7 
o::l 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 

0.89 en 
C\l * 160x120 
0) 

+ 128x96 ~ 0.85 
4-t ..... 96x72 
0 
0 "'64x48 

'.p 0.81 
+ 32x24 C\l • ~ ._t r t t 

0.77 
0 1000 2000 3000 4000 

Number of Particles (N) 

Figure 5.13: 10-DOF art iculated hand t racking quality results 

85 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

Bounding Box Center - X 
150 - - --

r--. 
r/) 

] 125 
'5, 
'-' 

$:1 100 . 
o 
'.g 
(,) 75 
o 
~ 

50 

~ 130 ...-
Q) 

. ~ 110 
8 

$:1 90 o 
'.g 70 
(,) 

o 150 300 450 

Centroid - X 

600 

,-., 
r/) 

Bounding Box Center - Y 

Q) 180 -------Ji-.'t-----
x 
§ 150 --f-

§ 120 ....... ....... 

~ 90 o 
~ 60 

~200 ...-
Q) 

.~ 170 
0.. 
'-' 

$:1 140 o 
'.g 
(,) 110 
o 

o 150 300 

Centroid - Y 

450 600 

o 
~ 50 ~ 80 +------.---.------

o 150 300 
Frame 

450 600 o 150 300 
Frame 

450 

Figure 5.14: 10-DOF articulated hand tracking at optimal settings 
1,296 particles, 128 x 96 particle image resolution 

5.2.4 Rigid Wand Tracking - Synthetic Video 

600 

A synthetic rigid wand experiment was conducted to reinforce the results of Section 
5.2.1 by quantifying tracking quality against a well-defined ground truth. In the first 
half of the 600-frame sequence, the 3D wand model is shown moving very quickly 
through each of its six DOFs individually. During the second half of the sequence, 
the wand is in constant motion in all DOFs simultaneously, with several instances 
of sharp velocity changes. Addit ionally, to make tracking more challenging, a small 
amount of random noise is introduced to each parameter. The wand was tracked 
using a second-order motion model on each DOF and a weighted average of the 36 
highest-weighted particles used to compute the estimate. Though not theoretically 
necessary, silhouette and Sobel edge detection was used to make results comparable to 
real-video experiments. Fig. 5.15 show the quality oftracking in each DOF according 
to metric (5 .1 ) and a brief tracking demonstration is shown in Fig. 5.16. 

86 



tI.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

5 

: t r-.. r-.. 
~ 4 ~ 
'-' '-' 
I-; I-; 
0 0 
t:: t:: 
~ ~ 4 
v5 2 ...... 
~ 0 
C\l ~ 2 
~ >< 
>< 0 0 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 
3 8 

r-.. r-.. 

~ 2.4 ~ 
6 '-' '-' 

I-; I-; 

0 l.8 0 
t:: t:: 
~ ~ 4 
v5 1.2 f ...... 
~ 0 
C\l ~ 2 c 

~ 0.6 :>-< 
:>-< 0 0 -----, 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 
15 1.2 -----

r-.. 

~ 12 
...-- 1 
~ '-' 0 

I-; '--' 

0 ... 0.8 
9 0 

t:: t: 
~ U-:l 0.6 
v5 6 ....; 

0 0.4 ~ ~ C\l 

~ 3 ----- N 0.2 
N 

0 T 0 --,--

0 1000 2000 3000 4000 0 1000 2000 3000 4000 

Number of Particles (N) Number of Particles (N) 

f--*-1-60~-i20---+-i28~-96-··:;96~72··.·64~48··1 
1 ______ -- ---------- --- - -------------- --- --- --------- -- _____ _ _ _ _____ • 

Figure 5.15: 6-DOF synthetic wand tracking quality results 

Synthetic results agree with real video results, showing an increase in quality as 
particle count and particle image resolut ion increase. Percentage error in each degree 
of freedom converges at or below 1.5 percent , with the exception of translation in 
the z-direction, which converges to approximately 5 percent. This can be attributed 
to the fact that the z-direction is representative to the object 's distance from the 
camera (i.e. , depth) and is estimated solely based on the relative size of the object 

87 



M.A.Sc. Thesis - J. Anthony Brown 1cMaster - Electrical Engineering 

Figure 5. 16: 6-DOF synthetic wand tracking demonstration 
Estimate shown as wire frame overlay 

in the frame. The depth of an object becomes increasingly difficult to estimate as 
it moves away from the camera and fewer pixels appear in its projection. Obtaining 
accurate depth information using a single camera is a widely studied task in computer 
vision, and an average error of 5 percent is acceptable in many applications. 

,-.. 5 X Y 
-12 

Z 
VJ 

3 <l) ..... 
~ ~ 

-: j 
-20 

0 . _ 
'';::~ -28 ~ 0 
VJ 0 -1 -36 ~ u 

e" f-<;:: -3 -44 
0 

-7 l'i--,-~ -----, -5 -52 - "1 ~ 
'-' 

0 150 300 450 600 0 150 300 450 600 0 150 300 450 

X Rotation 
';;' 210 4 

Y Rotation Z Rotation 

~ 170 
I-< 
OJ) 

~ 130 
'-' 
Q) 90 
~ 50 -s:: 
~ 

10 I 

0 

210 190 
150 
110 
70 
30 

10 -l- ,- -10 I 

150 300 450 600 0 150 300 450 600 0 150 300 
Frame Frame Frame 

i----=G~;~~~i"T~-th -- --;~~ -E~ti-;;;~t~ -- - i 
,--------- - --- - ------------- ------- -- ---- ------------- --------~ 

Figure 5.17: 6-DOF synthetic wand tracking at optimal setting 
900 Particles, 96 x 72 resolution 

450 

600 

600 

Synthetic results demonstrate approximately 1,000 particles and a resolut ion of 
at least 96 x 72 are required before quality begins to saturate, indicating a slightly 
higher optimal configuration than the 600 particles identified in the real-video wand 
tracking experiment. At these settings, the wand is tracked with an average error 
of approximately 1.5 percent for x- and y- t ranslation, 6 percent for z-translation, 1 
percent for x-rotation, 2.5 percent for y-rotation, and 0.5 percent for z-rotation. Note 
that these results, based on a well-defined ground truth, are comparable to those 

88 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

o 

---- 210 [J'J 
C]) 

~ 170 ~ 

~ 130 -j 

~ 90 "'" 

x 

150 300 450 600 

X Rotation 

3 

-I 

-3 

-5 

210 

o 

y 

150 300 450 600 

Y Rotation 

•• 
'" . 

~ 50 J 
10 +--,--

110 ~ 

60 

10 

o 150 300 450 600 
Frame 

o 150 300 450 600 
Frame 

r - --=G~~~~~i'T~-th ---~~~-E~ti~~t~- -- i 
,- ----------------- -- - - --- --------- - ---- - --- -- -- -------- - ----- .! 

-12 

-20 

-28 ~ 

-36 
-44 
-52 

o 

190 

150 ~ 

110 ~ 

70 j 
30 -

z 

150 300 450 600 

Z Rotation 

-10 -t-=-=

o 150 300 450 600 
Frame 

Figure 5.18: 6-DOF synthetic wand tracking (324 Part icles, 64 x 48 resolution) 

presented in Section 5.2 .1 , which are based on approximate metrics. 
Fig. 5.17 shows the ground truth and estimate for each DOF being tracked at 

the optimal configuration. J ote that rotation parameters are expressed in degrees 
and translation parameters are expressed in Direct3D 's native world coordinate sys
tem. Tracking proves to be highly accurate, with the except ion of the z-translation 
parameter , for reasons described above. The minor anomaly that occurs in the x
and y-translation parameters around frame 100 is also of interest ; as both parameters 
come to an abrupt stop from a sust ained period of high velocity, the system dynamics 
model predicts cont inued motion and "overshoots" the estimate, but quickly recovers 
within a few frames. For the purposes of comparison, Fig. 5.18 and Fig. 5.19 show 
the same sequence being tracked using very low (324 part icles, 64 x 48 part icle im
age resolut ion) and very high (2,304 particles , 160 x 120 particle image resolut ion) 
settings, respectively. Jote the variations in quality, part icularly in the z-translation 
parameter. 

5.2.5 Articulated Hand Tracking - Synthetic Video 

A synthetic video sequence showing the 3D hand model moving wit h eight DOFs (six 
global and two index finger joints) was used to evaluate tracking quality with reference 
to a known ground truth. The sequence is challenging, with nearly constant motion 

89 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

---- S - X Y 
-12 

Z 
en 

3 Q) ..... 
Q ~ -20 4 
0._ I ~ °a "'E -28 l ~ 0 
en 0 -I -36 ~ Q <.) -3 ~ e-o f-<-.::: -3 

0 
~ -7 --- -S -S2 ~ '-" 

0 ISO 300 4S0 600 0 ISO 300 4S0 600 0 ISO 300 4S0 600 

X Rotation Y Rotation Z Rotation 
~ 210 - 210 190 

(1) 

~ 170 ~ 
160 ISO 

OJ) 

~ 130 -, 
110 -I 

110 ~ 
'-" 

90 (1) I 70 1 bn 
~ 

SO ~ 60 30 
10 +- -,------- 10 -10 -t -, 

0 ISO 300 4S0 600 0 ISO 300 4S0 600 0 ISO 300 4S0 600 
Frame Frame Frame 

r· ··=G~~~~d·T~·th···~~· ~· i~~ti~:;;~t~-- -j 
, -------------------------------- --- ------ ---- -------- --- -----~ 

Figure 5. 19: 6-DOF synthetic wand tracking (2,304 Particles, 160 x 120 resolution) 

in multiple DOFs simultaneously, slight random noise added to each DOF, sharp 
changes in velocity, and some partial occlusion of the index finger. Although synthetic 
tracking benefits from the 3D model perfectly matching the shape, color , and shading 
of the tracking target , Sobel edge detection was still used and all other articulated 
tracking challenges discussed in Section 5.2.3 remain. The hand was tracked using 
a second-order motion model for the global parameters, a first-order motion model 
for the local parameters, and a weighted average of the 36 highest-weighted particles 
for the state estimate. Fig. 5.20 presents a demonstration of synthetic hand tracking 
and the MAE for translation, rotation, and joint flexion is shown in Fig. 5.21. 

Figure 5.20: 8-DOF synthetic articulated hand tracking demonstration 
Estimate shown as wire frame overlay 

90 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

14 
---- ----~ ':::? 
'-'" 0 

'-'" 
I-< I-< 
0 0 
t: t: 
~ 2 ~ 
en ...; 
§ 0 4 
~ 

I ~ ~ 

~ 
~ 2 

o - 0 
0 1000 2000 3000 4000 0 1000 2000 3000 4000 

---- --- ----':::? ~ 15 -t-
0 
'-'" '-'" 
I-< I-< 
0 0 
t: I-< 10 I-< 
~ ~ 
en ...; 
c 0 5 ro 2 ~ 
~ >< 
>< 0 0 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 
12 

----~ ,......, 10 
'-'" ~ 
I-< '-'" .... 8 0 0 t: .... .... 
~ P-l 6 
en ~ 4 c ro 
~ N 2 
N 

2 
0 0 ------

0 1000 2000 3000 4000 0 1000 2000 3000 4000 
30 

---- 25 ----~ ':::? 25 0 

'-'" 20 '-'" 
t I-< 20 I-< 

0 0 
t: 15 t: 
~ ~ 15 
...... ...... 
= .S 10 '0 0 ....., 

5 
....., 

I 
~ ~ 5 
::E 

........ 

0 ~ 0 
0 1000 2000 3000 4000 0 1000 2000 3000 4000 

Number of Particles (N) Number of Particles (N) 

[~~~}~~~~~~(~~~~i~~~~;~?~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ] 

Figure 5.21: 8-DOF synthetic ar ticulated hand t racking quality results 

91 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

x 

o 150 300 450 600 

X Rotation 

';;;' 140 ~ 
(1) 
(1) 

50 110 ~ 
(1) 

"0 
~ 80 
en 
~ 50 1 

20 

,..-... 
Vl 
(1) 
(1) ..... 
OIl 
(1) 

"0 
'--' 

(1) 

en 
~ 

25 

0 

o 150 300 450 600 

MPJoint 

o 150 300 450 600 
Frame 

y 

3 

-I 

-3 

-5 

o 150 300 450 600 

Y Rotation 

o 150 300 450 600 

PIP Joint 

85 l 
55 

25 J 

o 150 300 450 600 
Frame 

z 
-12 -1 

-20 ~ 
-28 -1 

-36 

-44 

140 

0 150 300 450 600 

Z Rotation 

o 150 300 450 600 
Frame 

~--- --- - -------------- --- ----------

! - Ground Truth 

! ••• Estimate 
'.---------------------------------

Figure 5.22: 8-DOF synthetic articulated hand tracking at optimal settings 
1,296 Particles, 128 x 96 resolution 

Synthetic tracking quality results agree with the real-video results, indicating op
t imal tracking with a particle image resolut ion of 128 x 96 and particle count of 
approximately 1,200. At these settings, the hand is tracked with average translation 
error of 1.1 percent, rotation error of 2.5 percent (approximately 3 degrees) , and joint 
error of 7.7 percent (approximately 7 degrees). Fig. 5.22 shows the ground truth and 
estimated value of each DOF at the optimal tracking configuration. 

Higher errors in joint tracking are expected because large changes in finger joint 
angles displace few pixels in the projected image relative to changes in global rotation 
or translation. Fig. 5.22 demonstrates that the PIP joint was tracked least-accurately, 

92 



M.A.Sc. Thesis - J. Anthony Brown MclVlaster - Electrical Engineering 

as would be expected as it is at t he end of the model's kinematic chain. This can 
be seen explicitly around frame 350, where an overestimation of the MP joint angle 
propagates down the kinematic chain and causes an underestimation of the PIP joint 
angle to compensate. Around frame 450, t racking of the x-rotation and z-rotation 
parameters momentarily deviates from the ground truth (due to simultaneous changes 
of velocity in seven DOFs); however , the robustness of the part icle filter can be seen 
as it recovers within 20 to 30 frames. 

5.3 Performance Results 

This section discusses the performance of the 3D model-based tracking framework 
in terms of its frame rate and speedup when compared to an equivalent CPU-based 
implementation (using the same test bench). It should be noted that the CPU im
plementation still uses the GPU to render and t ile the particle images, as this is not 
a reasonable task for the CPU to execute. All performance results describe tracking 
with live video, which takes slight ly longer than prerecorded sequences that do not 
require frame acquisition. Although the difference in performance is minor , results 
are presented for both wand and hand tracking experiments (rendering time is longer 
for the 3D hand model as it has more polygons). 

5.3.1 Wand Tracking 

The frame rates at which the wand can be tracked for a variety of particle counts and 
particle image resolut ions are shown in Fig. 5.23 for both the GPU- and CPU-based 
implementations. The GPU-accelerated performance exceeds CPU performance in 
all tests , demonstrating a gradual decline in performance with increasing particle 
count , whereas the CPU implementation's performance quickly drops to under 10 
fps for more than a few hundred particles. This is especially true for particle image 
resolutions of 96 x 72 or higher , which are of particular interest according to the 
quality results presented above. 

Fig. 5.24 shows the speedup of particle evaluation (i.e. , the target of GPU
acceleration in this framework), as well as overall speedup of the system over the 
CPU-based implementation. Particle evaluation speedup varies between 2.5 t imes and 
25 times depending on part icle count and particle image resolut ion, with speedups of 
at least 20 times for configurations of interest. Overall speedup results range between 
1.2 t imes and 15 times , with speedups of 5 to 10 times for configurations of interest . 

Table 5.2 and Table 5.3 contain a detailed breakdown of the t ime taken by each 
step of the tracking system on both the CP U and GPU for the optimal system config
urations identified in real (Section 5.2.1 ) and synthetic (Section 5.2.4) wand tracking 
experiments , respectively. lote that the TendeT paTticle images stage is executed on 

93 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

125 
(1) ..... 
CIl 100 ~ 
(1) 

75 S~ 
~c.& 50 ~'-" 

~ 25 0..... 
0 

0 

s:: 25 o 
.~ 20 
;::I 0.. 
~.g 15 
> (1) 

~ (1) 10 
(1) 0.. 

(jC/) 

.€ 
~ 0 

125 
(1) ..... 
CIl 100 ~ 
(1) 

75 S~ 
CIlc.& 
~'-" 50 
~ 25 0..... 
U 

o -L 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 
Number of Particles (N) Number of Particles (N) 

[: : :~:~~ :~9::fP~:::: :~:~:~Q~~~:Q::::~X?~:~?:~ ::::~?:~~:i.?::::~:~~:~~:f:~~:?~j~:::i 

Figure 5.23: Wand tracking performance results 

16 
0.. 
;::I 

'"C:I 12 
(1) 
(1) 

0.. 
C/) 8 --CIl 
I-< 4 (1) 

> 
0 o ~ 

o 1000 2000 3000 4000 0 1000 2000 3000 4000 
Number of Particles (N) Number of Particles (N) 

r · ··*·i ·60~· i·io·· ·+·i28·~9·6 ···~·96;.72"··.6·4~48"·+32~2'4"1 
~ ...... -------------------------------------- --------- --- ------------ -- ---------------- ---------- ------------, 

Figure 5.24: Wand tracking speedup results 

the CPU in both implementations, and the acquire fram e, particle filter and other 
stages are executed on the CPU in both implementations. According to both tables, 
CPU-accelerated performance significantly exceeds CPU-only performance, speeding 
up particle evaluation by a factor of approximately 21 t imes. Using 30 fps as a bench
mark for real-time performance, both real and synthetic wand tracking tasks prove 
to be possible in real time using CPU acceleration, while neither are realistic on the 
CPU implementation. 

The results in these tables can also be used to demonstrate Amdahl 's law (Amdahl, 
1967) , which provides a relationship between the speedup of a parallelizable portion 
of a program and the overall application speedup: 

1 
TotalSpeedup = ( ) / 

1 - P + P s 
(5.11) 

94 



~/I.A .Sc. Thesis - J. Anthony Brown Mc~ Iaster - Electrical Engineering 

Table 5.2: \Nand tracking performance analysis (576 particles, 96 x 72) 

Step II GPU (ms) CPU (ms) I Speedup 

Render Particle Images 2.49 2.38 0.96x 
Acquire Frame 4.92 4.61 0.94x 
Map Resources 1.87 2.55 1.36x 

Feat. Det. & Weight Calc. 3.99 86.24 21.59x 
Particle Filter 0.59 0.58 0.99x 

Other 1.53 1.74 1.14x 

Total 15.40 (64.9 fps) 98.12 (10.2 fps) 6.37x 

Table 5.3: \Nand tracking performance analysis (900 particles, 96 x 72) 

Step II GPU (ms) CPU (ms) I Speedup 

Render Particle Images 3.42 3.56 1.04x 
Acquire Frame 4.68 4.71 1.01x 
Map Resources 2.64 2.47 0.94x 

Feat. Det. & Weight Calc. 6.06 132.17 21.82x 
Particle Filter 0.84 0. 85 1.01x 

Other 1.44 1.80 1. 25x 

Total 19.08 (52.4 fps) 145.56 (6.9 fps) 7.63x 

where p is the percentage of an algorithm's execution time that can be para.llelized 
and s is the factor by which this portion can be sped up. For example, in Table 
5.2, the feature detection and weight calculation stage is the target of parallelization. 
This step takes 86 .24 ms of the 98. 12 ms total taken for one iteration of the tracking 
algorithm. meaning p = 86.24/ 98.1 2 = 0.88. Setting s = 21.59 (the factor by which 
feature extraction and weight calculation can be sped up through parallelization) , 
Amdahl's law yields a theoretical overall speedup of 6.18 t imes, which is similar to 
the 6.37 times observed. A similar relationship can be observed in all other results. 

Amdahl's law explains the appearance of the overall speedup graph in Fig. 5.24, 
where increasing particle image resolutions yields significantly greater speedups at 
high particle counts , despite the particle evaluation stage being sped up by factor of 
approximately 25 at any resolution. Higher particle image resolutions increase the 
amount of time taken by feature extraction and weight calculation, meaning this step 
accounts for a larger percentage of the overall algori thm. This increases p in Amdahl's 
law, consequent ly increasing the total speedup. 

95 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

125 
do) 

Cd 100 ~ 
do) 

75 S'V;' 
~c.& 
~ '--' 

~ 25 0..... 
0 

o ' 
0 

$::I 
0 .-...... 20 CI:l 
;:l 0.. ......... ;:l 15 CI:l"O > do) 
~ do) 10 do) 0.. 
(JC/J .- 5 1:: 

CI:l 
0 0..... 

0 

1000 2000 3000 4000 
Number of Particles (N) 

do) ...... 
CI:l 
~ 

do) 

S'V;' 
CI:l<fr 
~'--' 
~ 
0..... 
U 

125 

100 

75 

50 

25 

0 
0 1000 2000 3000 

Number of Particles (N) 

[:::~:~~ :~9::§?'~:: :~:i:~Q~~:~:9.::::~X~~:~~:~ ::::~~:~~:?~: : : :~:~~:~~~::::~~:~~j~: ::! 

Figure 5. 25: Hand tracking performance results 

16 
0.. 
;:l 

"0 12 
do) 
do) 

0.. 
C/J 8 
......... ......... 

CI:l 
I-< 4 do) 

> 
-~-- - -, 0 

0 

4000 

1000 2000 3000 4000 0 1000 2000 3000 4000 
Number of Particles (N) Number of Particles (N) 

i- ---*T60~-i-20---.-i-2-8-~9-6 ---~-96_;:72----.6-4~48---+32~24--1 
'- ...... .. .. ......... __ .. _-------- ---- - ----------- --- ----------- --- .------- --- - -------- ---- --- --- - -- -- -- -- --_ ! 

Figure 5.26: Hand tracking speedup results 

5.3.2 Hand Tracking 

Hand t racking performance results are essentially identical to wand tracking; how
ever , since they demonstrate slightly slower frame rates as the higher polygon count 
of the hand model increases rendering t ime, they are included for completeness. Fig. 
5. 25 shows GPU and CPU frame rate results, Fig. 5.26 shows speedup results, and 
Tables 5.4 and 5.5 present detailed performance information for the optimal system 
settings identified for rigid (Section 5.2.2) and articulated (Section 5.2.3) hand track
ing experiments, respectively. The analysis of this data is effectively ident ical to that 
presented for wand t racking and will not be reiterated here. 

96 



M.A.Sc. Thesis - J. Anthony Brown MclVlaster - Electrical Engineering 

Table 5.4: Hand tracking performance analysis (324 particles, 96 x 72) 

Step II GPU (ms) CPU (ms) I Speedup 

Render Particle Images 3.53 3.00 0.85x 
Acquire Frame 2.52 2.72 1.08 
Map Resources 1.89 2. 00 1.06x 

Feat. Det. & Weight Calc . 2.80 51.96 18.58x 
Particle Filter 0.71 0. 55 0.78x 

Other 1.72 1.74 1.01x 

Total 13.16 (76. 0 fps) 61. 98 (16.1 fps) 4.71x 

Table 5.5: Hand tracking performance analysis (1 ,296 part icles, 128 x 96) 

Step II GPU (ms) CPU (ms) I Speedup 

Render Particle Images 10.31 9.89 0.96x 
Acquire Frame 5.50 5.16 0.94x 
Map Resources 2.04 2.35 1.15x 

Feat. Det. & Weight Calc. 13.36 339.93 25.45x 
Particle Filter 1.93 1.89 0.98x 

Other 1.49 1.80 1. 21x 

Total 34.62 (28.9 fps) 361.03 (2.8 fps) 10.43x 

5.4 Summary 

The performance and quality results of the three real-video experiments are integrated 
and presented in Fig. 5.27, directly showing the trade-off between frame rate and 
quality. Here, quality is measured as an average of F-measure (5 .4) , accuracy (5.5) , 
bounding box error (5.6) , centroid error (5.7), and ratio of areas (5 .8) , where bounding 
box and centroid error have been reformulated to be compatible with the other metrics 
(i. e., expressed on a scale where zero is low quali ty and one is high quality) . In nearly 
all cases, a particle image resolution of 128 x 96 provides the optimal quality at a 
given frame rate , followed by a resolut ion of 160 x 120 and 96 x 72. These plots 
also demonstrate the computational demands of tracking in more than six DOFs, as 
the quality of the two rigid tracking experiments saturates around 70 fps , whereas 
saturation occurs at 30 fps for the articulated hand tracking experiment . 

97 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

0.97 

0.96 
~ ...... .- 0.95 -cIj 

~ 
0 0.94 

0.93 -

0.92 ,--

10 

0.98 

.f' - 0.96 
cIj 

~ 0.94 0 
0.92 

0.9 

10 

Rigid Wand (6-DOF) 

~ 

0.97 

0.96 

:E 0.95 
cIj 

& 0.94 

0.93 

0.92 

Rigid Hand (6-DOF) 

30 50 70 90 110 10 30 50 70 90 110 

Articulated Hand (IO-DOF) 
0.97 

0.96 ~~ --

o 
'.-4 0.95 
~ 
~ o 0.94 

0.93 

0.92 T 

10 30 50 70 90 110 

Frame Rate (fps) 

* 160x120 

+ 128x96 

* 96x72 

il-64x48 

Figure 5.27: Summary of real-video experiments 

Rigid Wand (6-DOF) Articulated Hand (8-DOF) 

0.98 

.f' 0.96 -cIj 

& 0.94 

0.92 

0.9 

30 50 70 90 10 30 50 70 

Frame Rate (fps) Frame Rate (fps) 

!·· ·*"i ·60~·i"20···.i28·~96 · · ·~·96~·72···.64~4·8 ···! 
!. -- -------------- - - --- ---------------- - ---------------- --- ----------------- -- -----------~ 

Figure 5.28: Summary of synthetic video experiments 

90 

An integrated summary of tracking quality versus frame rate for the two synthetic 
experiments is provided in Fig. 5. 28. Here, quality is defined as the average of 

98 



T\ I. A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

the MAE values measured for each DOF. Results are similar to the real tracking 
experiments , showing quality saturating around 70 [ps [or rigid olJject tracking and 
approximately 30 fps for articulated object tracking; however , unlike t he real-video 
experiments , t he synthetic tests often favour a particle image resolution of 96 x 72 as 
the setting for optimal quality at a given frame rate. 

Limitations on t he performance of t he GPU implementation are primarily conse
quences of warp divergence necessitated by aspects of the edge detection algorithm, 
such as t he padding of memory structures prior to fi lter convolution. Addit ionally, 
summing all pixel weights to produce a single particle weight is inherently difficult 
to parallelize. Nonetheless , t he GPU is exploited in an effective manner : using the 
settings of Table 5.5, t he GPU generates , processes and reduces approximately 1. 3 
Gbyte of pixel data to 146 Kbyte of part icle weight data each second . The primary 
drawback of most GPU applications are the excessive memory transfer latencies; how
ever, these are largely avoided in this framework as t he GPU is both t he source and 
consumer of image data, requiring only particle weights be transferred to t he CPU. 

99 



:r-./I.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

100 



Chapter 6 

Conclusion 

This thesis presented a novel framework for high-speed 3D model-based visual track
ing using a GPU-accelerated particle filter. Specifically, markerless 6+ DOF tracking 
in monocular video was fr amed as a Bayesian state estimation problem , facili tating 
the application of Bayesian filters , such as the particle filter. The particle filter 's com
putationally demanding weight update stage , which consists of 3D model simulation 
and evaluation in this context , was efficiently mapped to a GPU 's massively parallel 
SMs, where it is executed by thousands of concurrent threads. 

The GPU implementation efficiently uses Direct3D and NVIDIA CUDA to ex
ploit a variety of GPU features, such as thread cooperation through shared memory 
and barrier synchronization, CUDA/ Direct3D interoperability, and cached memory 
accesses using constant and texture memory. Furthermore , the tracking algorithm 
is effectively partitioned to maximize GPU occupancy while also ensuring there is 
enough arithmetic intensity within each thread. The performance of most GPU-based 
applications is limited by excessive memory transfer and access latencies. These are 
largely avoided in this work , as both particle simulation and evaluation execute on 
the GPU , making it t he source and consumer of image data. For each 45 Mbyte 
particle grid that is generated and processed by the GPU with each iteration of the 
tracking algorithm, only 5 Kbyte is transferred to the CPU through high-bandwidth, 
page-locked memory. 

Five separate tracking experiments were conducted , demonstrating tracking with 
6, 8, and 10 DOFs in real or synthetic video, using either a fabricated rigid wand 
or an articulated hand as a tracking target. Experimental results indicate tracking 
quali ty up to 96 percent in real video tests and up to 98 percent in synthetic tests. 
Performance results demonstrate accurate and robust t racking with speeds up to 60 
fps for rigid object tracking tasks and 29 fps for articulated tracking. Bot h quali ty 
and performance are dependent on the number of particles being simulated and eval
uated. as well as the resolution of the particle images. Rigid object tracking demands 

101 



f\/LA.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

anywhere betv\Teen 300 and 1,000 particles and a particle image resolution of 96 x 72 
depending on the tracking task, whereas articulated hand tracking demonstrated a 
need for a minimum of 1,000 particles and a particle image resolut ion of 128 x 96. 

The GPU-accelerated framework outperformed a similar CPU-based implemen
tation in all tests. Particle evaluation (the target of GPU-acceleration) executed be
tween 2.5 and 25 times faster than the CPU, resulting in overall algorithm speedups 
between 1.2 t imes and 16 t imes, depending on part icle count and particle image res
olut ion. Using 30 fps as an approximate benchmark for real t ime performance, the 
GPU-accelerated system successfully tracked objects in real t ime for all five experi
ments, whereas the CP U implementation operated between 3 and 16 fps, unable to 
achieve real-time performance. These results indicate that modern consumer-level 
GPUs are a suitable platform for 30+ fps 3D-model-based visual tracking using a 
particle filter. 

The framework was presented using the SIR part icle fil ter for state estimation; 
however , tracking quali ty could presumably be improved by int roducing one of the 
many proposed variations of the part icle fil ter , such as a hierarchical particle fil ter , 
auxiliary particle fil ter , or appearance-augmented fil ter. Nonetheless, the goal of this 
work was not to modify the tradit ional particle filter , but rather to demonstrate that 
this approach, 'which is often regarded as too computationally intensive for real- time 
model-based tracking, is a viable opt ion with GPU acceleration. Furthermore, the 
modular natural of t he framework makes it trivial to replace the SIR filter with a 
more appropriate simulation-based estimation technique for a particular application. 

This adaptability extends to the choice of an alternative feature extractor. \iVhile 
silhouette and Sobel edge detection were used as examples here, as long as the se
lection is parallelizable and does not demand excessive conditional logic that would 
lead to warp divergence in CUDA kernels, any application-specific technique could 
be ut ilized instead. 

Using a rigid wand and bare hand tracking targets, AR and HCI using a were pre
sented as potential applications; however, the framework could be customized to sup
port a variety of tracking tasks. Because the choice of tracking target and number of 
DOFs is variable, applications such as visual servoing, performance-driven animation, 
and medical imaging could also realize significant speedup through GPU-acceleration 
of 3D model-based tracking approaches. With the recent release of NVIDIA's Fermi 
architecture, designed primarily with the GPU-computing community in mind, the 
utility of GPU-acceleration in high-performance computing tasks, such as model
based tracking and countless other applications, will certainly continue to grow. 

102 



Appendix A 

SIS Particle Filter Derivation 

This appendix presents a derivation of the recursive weight-update equation 

(A.l ) 

that is fundamental to t he operation of t he SIS part icle filter. 

To begin, recall t he goal of the SIS particle fil ter is to recursively approximate t he 
posterior PDF p(Xtlzu) of a dynamic state space model using a series of point masses 
(part icles) {xnt~ l ' drawn from an importance (or proposal ) PDF q(xtI XL 1' Zt ), and 
their corresponding normalized weights {WD~l according to 

N 

p(Xtl zu) ~ I: w~b(xt - x~) , (A.2) 
i.= l 

where w~ is defined by (A.l ). To derive t his recursive relationship , fi rst consider t he 
sequent ial (i. e., non-recursive) approximation: 

N 

p(xo:tl zl:t) ~ I: w;b(x ot - X~t), (A.3) 
i = l 

which considers t he entire path of Xt since t = O. The normalized weight of a part icle 
w~ can then be defined as 

(A.4) 

where p( .) is a posterior PDF that can be evaluated up to proportionality but not 
sampled from, and q(-) is an importance PDF that samples can be easily drawn from. 

To draw a sample from q(xbtl zu) in its general form would require N samples of 

103 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

XO:t, meaning the computational complexity of t he task would increase with time. To 
circumvent t his, q(-) is chosen specifically to be of the form 

(A.5) 

This formulation allows N particles to be drawn according to x~ rv q ( X t IX O:t-l , Zl:t) , i = 
1, ... , N and used to augment existing samples {xbt-dt' for each new observation Z t. 

In other words, as long as q(.) can be factored as shown in (A.5) , t he computational 
complexity of sampling particles does not increase over t ime; instead, new observa
tions are used to recursively update previous samples. 

T he final stage t herefore involves the derivation of a recursive weight-update re
lationship . By expressing p(xo:tI Zl:t) as 

(A.6) 

and substit ut ing (A.5 ) and (A.6) into (A.l) , w~ can be expressed as: 

Rearranging and simplifying (A.7) yields 

(A.8) 

which gives a recursive relationship between a part icle 's weight at t ime t and t ime 
t - 1. Because weights are normalized , the factor p(ZtI Zl:t-d can be considered an 
irrelevant constant , and (A. 8) simplifies to 

(A.9) 

Finally, by noting that only the fil tered estimate of the posterior p(Xtl zu) , is required 
at each iteration , t he particle path history x Ot- 1 and observation history Zl:t- l can 
be t hrown away, further simplifying (A. g) to 

(A .I0) 

which was to be shown. 

104 



Appendix B 

Additional Results: 
Comparison of Feature Detectors 

The results presented in Chapter 5 focused exclusively on tracking experiments that 
used silhouette and Sobel edge detection for feature extraction. T his appendix con
tains addit ional accuracy and performance results for the 6-DOF rigid hand tracking 
experiment from Section 5.2.2, using two alternative feature extraction configurations: 

• Canny edge detection and silhouette detection 
• Feature extraction disabled (i.e., direct pixel- to-pixel comparison between par

t icle images and segmented fram e) 

The methodology, metrics, test bench , system configuration, and video sequence 
remain the same as Section 5.2 .2, but tests were conducted only at optimal resolutions 
(96 x 72 and 128 x 96), with each graph showing a comparison between Sobel, Canny, 
and no feature extraction. A demonstration of t he three possible feature extraction 
techniques is shown in Fig. B.1. Performance results are presented in Fig. B.2, 
followed by speedup results in F ig. B.3 , and a breakdown of performance details at 
opt imal system settings (1296 particles , 128 x 96 particle image resolut ion) is shown 
in Table B.1 , Table B.2, and Table B.3 , in t he same manner as Section 5.3.2. Quali ty 
results are presented in Fig. B.4 for each of t he seven metrics described in Section 
5. 1.2. Finally, a summary of performan ce and quality results is shown in Fig. B. 5, 
similar to those presented in Section 5.4. A brief discussion of t hese supplementary 
results follows. 

105 



!l.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

Feature Detection Off 

Figure B.1: Feature extraction comparison: demonstration 

(\) (\) ..... 75 ..... 
Cd Cd 
~ ~ 
(\) (\) 

S~ 50 S~ 
~e,fr Cde,fr 

(..I.., "-' -----------------_. ~"-' 
;:J 25 ;:J 
~ 

~ 
~ 

0 U 
0 

0 1000 2000 3000 4000 o 1000 2000 3000 4000 
Number of PaIticles (N) Number of PaIticles (N) 

r--~~~j-6-fp~------------ -----------='ii8~-96~ .. C~;;.;;-y ...... *-96;:7i-: -c~~y------- -+'i'28-~9(CS-~b~T .. -! 
! ___ ~_~~'!_}~) __ ~.<?_~~l_ .. ______ .. _:!:p~'!__~~) __ ~~_~~_ .... _ .. ~_?§_~7}1 _N_~~_e_ .. _________ .. _____________ .. _ .. _ .. __________ .. j 

Figure B.2: Feature extraction comparison: performance results 

c:: 30 
P.. 

20 
0 

':g 25 -
;:::l 

16 "'0 
;:::l P.. (\) 

- ;:::l 20 -
(\) 

12 Cd "'0 P.. 
;> (\) rI) 
~ (\) 15 - - 8 (\) P.. -Cd 'Uri) I-; 

10 (\) 4 .~ ;> 

5 
0 o -~ -, 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 
Number of Particles (N) Number of Particles (N) 

i----- .. ~-i -28~-96-: -C~~y----- .. ---- .. -*96-~7i: -c~~~y------ .... -- .. --- :;.-i'i-8-~9-6:-S~b-~i - --- .. --: 
! ________ ~?_6_~7}1_~_~~_~L ____ .. _____ .. ___ :!_ ~_~_?_~2.~?_ !:'J_~!?_~_ .. _ .. _____ .. __ .. ~?~'!_}~? __ ~<?_tl~ ___ .. ___ .. _! 

Figure B.3: Feature extraction comparison: speedup results 

106 



ILA.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

T he functional differences between the three feature extraction techniques can be 
seen in Fig. B.1. V\l hen disabled, a direct pixel- to-pixel comparison is performed be
tween the segmented frame and the particle images. Sobel and Canny edge detection 
both work in conjunction with silhouette detection to produce a hybrid edge-silhouette 
map; however, t he Sobel detector is more of a brute force approach , result ing in wider, 
rougher edges. 

The finer edges come at the cost of additional computational complexity, as shown 
in F ig. B.2. The tracking frame rate on t he CPU increases gradually with increas
ing particle count for all feature extractors and resolutions; however, Canny edge 
detection operates approximately 10 fps slower than Sobel detection. This can be 
attributed to the additional stages involved in Canny edge detection, described in 
Section 2.5 .2. Addit ionally, disabling feature extraction entirely yields an increase of 
2 to 5 fps over Sobel edge detection. Canny detection performs extremely poorly on 
t he CPU, dropping below 30 fps for just 100 particles. The CPU performs slightly 
better when feature extraction is disabled entirely, but still drops below 30 fps at a 
particle count of 350, even at the lower resolution of 96 x 72. 

Speedup results, shown in Fig. B.3, demonstrate t hat t he gains of t he CPU im
plementation are least significant "vhen feature extraction is disabled (5 to 20 times 
particle evaluation speedup, and 2 to 8 t imes overall speedup), while speedups are 
most significant for the more computationally demanding Canny edge detector (9 to 
30 t imes particle evaluation speedup, and 2 to 20 times overall speedup), with the ex
ception of a few anomalies during CPU testing. The performance breakdowns shown 
in Table B.1 , Table B.2, and Table B.3 reinforce t his analysis, showing how speedups 
achieved through a CPU implementation scale according to t he computational com
plexity of an algorithm. 

In terms of quality (Fig. B. 4), it is interesting to note t hat Sobel edge detection 
actually outperformed Canny detection in all metrics except for precision. T his can 
be attributed to t he difference in geometry between the hand tracking target and the 
representative 3D model. Since the edges do not align perfectly, even if tracking is 
optimal, t he wider edges of Sobel detection prove to be valuable in t his particular 
tracking task; however , this is not necessarily the case in all scenarios. For all reso
lutions and particle counts , quality was lowest when feature extraction was disabled 
entirely. Fig. B.5 summarizes t he performance and quali ty results, demonstrating 
Sobel edge detection at a resolution of 128 x 96 provides t he highest quality at any 
frame rate , justifying its use for the majority of test ing in this t hesis. 

107 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

Table B.1: Hand tracking performance analysis (no feAture extraction) 
1,296 particles, 128 x 96 

Step II GPU (ms) CPU (ms) I Speedup 

Render Particle Images 13.56 9.83 0.72x 
Acquire Frame 5.26 5.34 l.Olx 
t-/lap Resources 2.06 2.13 1.04x 

Feat. Det. & Weight Calc. 7.30 144.57 19.81x 
Particle Filter l.98 l. 86 0.94x 

Other l. 56 l.70 l.07x 

Total 3l.73 (3 l.5 fps) 165.42 (6.0 fp s) 5.21x 

Table B.2: Hand tracking performance analysis (Sobel edge detection) 
1,296 particles, 128 x 96 

Step II GPU (ms) CPU (ms) I Speedup 

Render Particle Images 10.31 9.89 0.96x 
Acquire Frame 5.50 5.16 0.94x 
IVlap Resources 2.04 2.35 l.15x 

Feat. Det. & Weight Calc. 13.36 339.93 25.45x 
Part icle Filter l.93 l.89 0.98x 

Other l.49 l. 80 l.21x 

Total 34.62 (28.9 fps) 36l.03 (2.8 fps) 10.43x 

Table B.3 : Hand tracking performance analysis (Canny edge detection) 
1,296 particles, 128 x 96 

Step II GPU (ms) CPU (ms) I Speedup 

Render Particle Images 10.66 10.02 0.94x 
Acquire Frame 5.58 2.65 0.49x 
lvlap Resources 2. 08 3.88 l.87x 

Feat. Det. & Weight Calc. 33.31 944.08 28.34x 
Particle Filter l.91 l.91 1.00x 

Other l.60 l.95 l. 22x 

Total 54.94 (18.2 fps) 964.49 (l.0 fp s) 17.56x 

108 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

0.99 - 0.94 

= 0.98 0.92 
0 ......... 

'en ~ ...... c..> 
c..> ~ 
~ p:: 0.9 I-< 

0.. 

0.96 0.88 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 

0.96 0.96 

~ 
0.95 

I-< >.. 0.95 ~ 
;::::l c..> 
C/) e<:l 
e<:l 0.94 I-< 
~ ;::::l 

:::E c..> 
c..> 0.94 I <:t: ~ 0.93 

0.92 0.93 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 
,-., 

~ 5.5 
'-" 1.3 I-< 

,-., 
0 ~ t: '-" 
~ I-< l.l -

4.5 0 
:>< t: 0 

o:l ~ 0.9 
bJ.) 

4 "0 

= '0 ...... 
3.5 I-< 0.7 "0 <-' 

= = ;::::l ~ 

0 3 U 0.5 
o:l 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 
0.92 -- r------------------------ - ---- ------- --

+ 128x96, Canny 
C/) * 96x72, Canny e<:l 0.9 ~ 
I-< + 128x96, Sobel <:t: 

4-< 
+ 96x72, Sobel 0 

.9 0.88 
<-' "'128x96, None 
e<:l p:: 

+ 96x72, None 
0.86 '._-- -- --------------------- --- - ------- --

0 1000 2000 3000 4000 

Number of Particles (N) 

Figure B.4: Feature extraction comparison: quality results 

109 



M.A.Sc. Thesis - J. Anthony Brown McMast er - Electrical Engineering 

0.96 

.c 0.95 
. ~ 

~ 
~ o 

0.94 

0.93 

o 20 40 60 

Frame Rate (fps) 

80 100 120 

+ 128x96, Canny 

* 96x72, Canny 

+ 128x96, Sobel 

..... 96x72, Sobel 

"' 128x96, None 

+ 96x72, None 

Figure B.5: Feature extraction comparison: summary 

110 



Appendix C 

Additional Results: 
Comparison of Motion Models 

All experiments in Chapter 5 used a second-order (acceleration) system dynamics 
model for prediction of global state vector parameters (i. e., translation and rotation). 
This appendix compares t he effect of ut ilizing a first-order (velocity) or random walk 
motion model instead (Section 2.5. 1), in the context of the wand tracking experiment 
described in Section 5.2.1. The methodology, metrics , test bench, system configura
tion , and video sequence remain the same as Section 5.2. 1, but tests were conducted 
only at optimal resolut ions (96 x 72 and 128 x 96) , with each graph showing a com
parison between the t hree motion models. Quali ty results are presented in Fig. C.1 
for each of t he seven metrics described in Section 5.1. 2 and a summary of q uali ty 
results is shown in Fig. C.2 , using the definition of quality from Section 5.4. Finally, 
because the wide range of results makes it difficult to distinguish betvveen velocity 
and acceleration model results, Fig. C.3 examines four part icular particle counts of 
interest in greater detail. A brief discussion of these supplementary results follows. 

All metrics shown in Fig. C.1 clearly indicate significant ly improved performance 
using a velocity or acceleration model over a random walk model. Specifically, results 
demonstrate a 20 to 35 percent increase for all classification-based metrics , approxi
mately 30 percent increase in t he ratio of areas metric, a 10 to 20 percent decrease in 
bounding box error , and a 2 to 10 percent decrease in centroid error . The difference 
in quali ty between the velocity and acceleration metrics, however , is effectively indis
cernible. The amalgamated quali ty results in Fig. C.2 confirm t hese findings , with 
an approximate 15 to 20 percent increase in overall quality from the random walk 
system dynamics model to the higher-order models. 

III 



M.A.Sc. Thesis - J. Anthony Brown NIcMaster - Electrical Engineering 

0.95 

0.85 
~ 0.88 ......... 0 .- "@ 0.75 Vl u ·0 <l) 
<l) 

0.78 ~ I-< 
p... 0.65 

0.68 0.55 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 

0.95 

0.9 
<l) G 0.85 I-< + ;:::l 
Vl ro 
ro I-< 
<l) ;:::l 

:E u 
u 0.75 I 0.7 <r: ~ 

0.6 0.65 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 
,-.... 

~ 25 12 
'-" 
I-< ,-.... 

10 0 20 ~ !:: '-" 
~ I-< 8 ---

0 
~ !:: 0 6 -

CO ~ 
10 "d 00 .- 4 

~ 0 
;a I-< ...... 

2 ~ ~ 
;:::l <l) 

0 0 U 0 
CO 

0 1000 2000 3000 4000 0 1000 2000 3000 4000 

r-- -------------- ------------------ ----- ------------- ------------------
0.9 + 128x96 Acceleration Model 

Vl * 96x72 Acceleration Model ro 
<l) 
I-< 

+ 128x96 Velocity Model <r: 
4-< 0.7 0 + 96x72 Velocity Model 
0 .- 0.6 + 128x96 Random Walk ...... 
ro 
~ 

+ 96x72 Random Walk 
0.5 ----------------------------------- ---------- -------- ---- ---------------

0 1000 2000 3000 4000 

Number of Particles (N) 

Figure C. l: l\!lotion model comparison: quality results 

112 



M.A.Sc. Thesis - J. Anthony Brown McMast er - Electrical Engineering 

0.95 

/ 

.f' 0.85 "-

-(\j 
::l 
0' 

0.75 

0.65 

o 

0.778 0.754 

Random Walk 
Model 

Random Walk 
Model 

-r 128x96 Acceleration Model 

* 96x72 Acceleration Model 

+ 128x96 Velocity Model 

..... 96x72 Velocity Model 

"'128x96 Random Walk 

+ 96x72 Random Walk 

1000 2000 3000 4000 

Number of Particles (N) 

Figure C.2: Mot ion model comparison: summary 

324 Particles 
0.951 0.958 0.946 0.956 

Velocity 
Model 

900 Particles 

Acceleration 
Model 

0.956 0.956 0.956 0.96 

Velocity 
Model 

Acceleration 
Model 

Random Walk 
Model 

Random Walk 
Model 

::::~:~~~:?:?:::::::i:?:~~~~::) 

576 Particles 
0.955 0.959 0.956 0.959 

Velocity 
Model 

1296 Particles 

Acceleration 
Model 

0.954 0.957 0.958 0.963 

Velocity 
Model 

Acceleration 
Model 

Figure C.3: Motion model comparison: summary details 

113 



l\II.A.Sc. Thesis - J. Anthony Brown Mcl\lIaster - Electrical Engineering 

Fig. C.3 gives a more det ailed look at four part icle counts in the range of optimal 
system settings ident ified in Chapter 5. Here, the minute increase in quality afforded 
by the use of an acceleration mot ion model over a velocity model can be seen (in the 
three highest particle counts) . \iVhile this increase is effectively negligible, because 
the choice of motion model does not have an appreciable effect on the frame rate 
of t racking, the second-order acceleration system dynamics model is considered the 
optimal choice for this particular t racking task. 

114 



Bibliography 

Agarwal, S. , Awan, A., and Roth , D. (2004). Learning to detect objects in images via 
a sparse, part-based representat ion. IEEE Transactions on Pattem Analysis and 
Machine Intelligence, 26 (11 ), 1475- 1490. 

Albrecht , 1. , Haber , J ., and Seidel, H. P. (2003). Construction and animat ion of 
anatomically based human hand models. In SCA '03: Proceedings of the 2003 
ACM SIGGRAPH/ Eurographics symposium on Computer animation, pages 98-
109, Aire-la-Ville, Switzerland, Switzerland. Eurographics Association. 

Allied Vision Technologies (2010). Gc660c [online: htt p://www.alliedvisiontec.com/ 
us/products/ cameras/ gigabit-ethernet/ prosilica-gc-series/ gc660.html]. 

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large 
scale computing capabilities. In AFIPS '67 (Spring) : Proceedings of the April 
18-20, 1967, spring joint computer conference, pages 483- 485 . 

Arulampalam, M. S. , Maskell , S. , Gordon, N., and Clapp , T. (2002) . A tutorial on 
part icle filters for online nonlinear/ non-gaussian bayesian t racking. IEEE Trans
actions on Signal PTOcessing, 50(2), 174- 188. 

Autodesk JVlaya Press (2009). Leaming Autodesk Maya 2010. Autodesk, Inc. , San 
Rafael, CA. 

Ben , M. and Jiantong, 'vV. (2010). An adapt ive particle filter for mems based sins 
nonlinear initial alignment. In Information and A1domation (ICIA ) , 2010 IEEE 
Intemational Conference on, pages 1504- 1509. 

Bhusnurmath , A. and Taylor , C. (2008) . Graph cuts via £1 norm minimization. IEEE 
Transactions on Pattem Analysis and Machine Intelligence, 30(10), 1866- 1871. 

Brandao, B. , 'vVainer , J ., and Goldenstein , S. (2006). Subspace hierarchical particle 
fi lter. In Computer Graphics and Image Processing, 2006. SIBGRAPI '06. 19th 
Brazilian Symposium on, pages 194- 204. 

115 



J\l.A.Sc. Thesis - J . Anthony Brown McMaster - Electrical Engineering 

Bray, M. , Koller-Meier , E. , and Van Gool , L. (2007) . Smart particle filtering for 
high-dimensional t racking. Computer Vision and Image Understanding, 106 (1), 
116- 129. 

Breitenstein, M., Kuettel, D., \i\Teise, T. , Van Gool , L., and Pfister , H. (2008). Real
time face pose estimation from single range images . In CVP R '08: IEEE Conference 
on Computer Vision and Pattern Recognition, pages 1- 8. 

Bretzner, L. , Laptev, I. , and Lindeberg, T. (2002) . Hand gesture recognit ion using 
multi-scale colour features , hierarchical models and particle filtering. In FGR '02: 
PTOceedings of the Fifth IEEE Intemational Conference on Automatic Face and 
Gesture Recognition, page 423 , \i\Tashington , DC, USA. IEEE Computer Society. 

Brown, J. A. and Capson , D. \ i\T . (2010b). Gpu-accelerated 3-d model-based tracking. 
In J01.Lrnal of Physics: Conference Series. PTOceedings of the High Pe1jOTmanCe 
Comp'uting Symposium (HPCS2010) , June 6-9, 2010, Toronto, Ontario, Canad a. 

Brown, J . A. and Capson, D. "V. (submitted for publication, 2010a) . A framework 
for 3d model-based visual tracking using a gpu-accelerated part icle fil ter. IEEE 
Tmnsactions in Visualization and Computer Gmphics. 

Cabido, R. , Concha, D. , Pantrigo, J . J. , and Montemayor , A. S. (2009). High speed 
articulated obj ect tracking using gpus: A particle fil ter approach. In ISPA N 'Og: 
PTOceedings of the 2009 10th Intemational Symposium on Pervasive Systems, AL
gorithms, and Networks, pages 757- 762, Washington, DC, USA. IEEE Computer 
Society. 

Candy, J. V. (2009). B ayesia'n Signal Processing: Classical, Modem and Particle 
Filtering Methods. "Viley-Interscience , New York , NY, USA. 

Canny, J . (1986). A computational approach to edge detection. IEEE Tmnsactions 
on Pattem Analysis and Machine Intelligence, 8(6) , 679- 698. 

Chang, \i\T._Y. , Chen, c.-S. , and Jian, Y.-D. (2008). Visual tracking in high
dimensional state space by appearance-guided particle filtering. IEEE Tmnsactions 
on Image PTOcessing, 17(7) , 1154- 1167. 

Chen, Z. (2003). Bayesian filtering: From kalman filters to particle fi lters , and beyond. 
Technical report , McMaster University. 

Colic, A. , Kalva, H., and Furht , B. (2010). Exploring nvidia-cuda for video coding. In 
MMSys '10: PTOceedings of the first annual ACM SIGMM conference on Multimedia 
systems, pages 13- 22, New York, NY. ACM. 

116 



M.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

Cope, B. , Cheung, P. Y , Luk, 'N. , and Howes, L. (2010). Performance comparison 
of graphics processors to reconfigurable logic: A case study. IEEE Transactions on 
Computers, 59 , 433- 448. 

Coutinho , B. R , Teodoro, G. 1. M. , Oliveira , R S. , Neto , D. O. G. , and Ferreira, R 
A. C. (2009). Profiling general purpose gpu applications. Computer Architecture 
and High Pe1jormance Computing, Symposium on, pages 11- 18. 

Cui , J. and Sun , Z. (2004). Visual hand motion capture for guiding a dexterous 
hand. In Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE 
Intemational Conference on, pages 729- 734. 

Datla , S. and Gidij ala , N. S. (2009). Parallelizing motion jpeg 2000 with cuda. In 
2009 Second Intemational Conference on Computer and Electrical Engineering, 
volume 1, pages 630- 634. 

de La Gorce, j\lI. , Paragios, N., and Fleet , D. (2008) . Model-based hand tracking with 
texture, shading and self-o cclusions. In Computer Vision and Pattem Recognition, 
2008. CVP R 2008. IEEE Conference on, pages 1- 8. 

Delamarre, Q. and Faugeras, O. (1998) . Finding pose of hand in video images: A 
stereo-based approach . In In IEEE Proc. of the third International Conference on 
Automatic Face and Gest'ure Recognition, pages 585- 590. IEEE Computer Society. 

Dong, Y. and DeSouza, G. (2009). A new hierarchical particle filtering for markerless 
human motion capture. In Computational Intelligence for 1!isual Intelligence, 2009. 
CIVI '09. IEEE Workshop on, pages 14- 2l. 

Doucet , A. (1998) . On sequential monte carlo sampling methods for bayesian filter
ing. Technical report , University of Cambridge, Department of Engineering, Signal 
Processing Group , England. 

Doucet , A. , Godsill, S. , and Andrieu, C. (2000). On sequential monte carlo sampling 
methods for bayesian filtering. Statistics and Computing, 10, 197- 208. 

Doucet , A. , De Freitas, N., and Gordon, N., editors (2001 ). Sequential Monte CaTZo 
m ethods in practice. Springer. 

Erol, A. , Bebis, G. , Nicolescu , M. , Boyle, R D. , and Twombly, X. (2005) . A review on 
vision-based fu ll dof hand motion estimation. In CVP R '05: Pmceedings of the 2005 
IEEE Comp'uter Society Conference on Computer Vision and Pattern Recognition 
(C VPR '05) - Workshops, page 75 , ·Washington , DC, USA. IEEE Computer Society. 

117 



M.A.Sc. Thesis - J. Anthony Brown IVlclVlaster - Electrical Engineering 

Ferreira, J., Lobo, J., and Dias , J. (2010). Bayesian real- t ime perception algorithms 
on gpu . Journal of Real-Time Image Processing, pages 1- 16. 

Fox, D. (2003). Adapting the sample size in particle filters through kId-sampling. 
International Journal of Robotics Research, 22, 2003. 

Fung, J. and Mann , S. (2008). Using graphics devices in reverse: Gpu-based image 
processing and computer vision. In Multimedia and Expo, 2008 IEEE International 
Conference on, pages 9- 12. 

Fung, J. , Tang, F ., and Mann, S. (2002). _ !lediated reali ty using computer graphics 
hardware for computer vision. In ISWC '02: Proceedings of the 6th IEEE Interna
tional Symposium on Wearable Computers, pages 83- 90. 

Gaikvvad , A. and Toke, 1. M. (2010). Parallel iterative linear solvers on gpu: A finan
cial engineering case. In 2010 18th Euromicro Conference on Parallel, Distributed 
and Network-based Processing, pages 607- 614. 

Gonzalez, R C. and 'Woods, R E. (1992). Digital Image Processing. Addison-vVesley 
Longman Publishing, Boston , IvlA. 

Gordon, N., Salmond, D. , and Smith, A. (1993). Novel approach to nonlinear/ non
gaussian bayesian state estimation. Radar and Signal Processing, l EE Proceedings 
F, 140(2), 107- 113. 

Gumpp, T. , Azad, P. , 'Welke, K. , Oztop, E. , Dillmann, R , and Cheng, G. (2006). 
Unconstrained real-time markel'less hand tracking for humanoid interaction. In 
Humanoid Robots, 2006 6th IEEE-RAS International Conference on, pages 88- 93. 

Ha, P. H. , T sigas, P., and Anshus , O. (2010). The synchronization power of coalesced 
memory accesses. IEEE Transactions on Parallel and Distributed Systems, 21 (7) , 
939- 953. 

Halfhill, T. R (2008). Parallel processing with cuda. Microprocessor Report. 

Harris, Iv1. (2007). Optimizing parallel reduction in cuda. Technical report , NVIDIA 
Corporation. 

Harris, 1\ 1. J. , Baxter, ' N. V. , Scheuermann, T. , and Lastra, A. (2003). Simulation 
of cloud dynamics on graphics hardware. In HWWS '03: Proceedings of the A CM 
SI GGRAPH/ EUROGRAPHICS conference on Graphics hardware, pages 92- 101. 

118 



M.A.Sc. Thesis - J. Anthony Brown McNlaster - Electrical Engineering 

Hartley, T. D. , Cata.lyurek, D., Ruiz, A., Igual, F. , Mayo, R. , and Dj aldon , NI. (2008) . 
Biomedical image analysis on a cooperative cluster of gpus and mult icores . In I CS 
'OB: Proceedings of the 22nd annual international conference on Supercomputing, 
pages 15- 25. 

Heap , T. and Hogg, D. (1996). Towards 3d hand t racking using a deformable model. 
In In Face and Gesture Recognition, pages 140- 145. 

Ho, Y. and Lee, R. (1964) . A bayesian approach to problems in stochastic estimation 
and cont rol. IEEE Transactions on Automatic Control, 9 (4) , 333- 339. 

Hopf, M. and Ert l, T . (1999). Hardware based wavelet t ransformations. In Vision, 
Modeling, and Visualization '99, pages 31 7- 328. 

Huang, Y. and Llach , J. (2008) . Tracking the small object through clutter with 
adapt ive part icle fil ter. In A udio, Language and Image Processing, 200B. I CALIP 
200B. International Conf erence on, pages 357- 362. 

Hwu, V\!. M. , Rodrigues , c. , Ryoo, S. , and Stratton , J. (2009) . Compute unified 
device architecture application suitability. Computing in Science and Engg. , 11 (3), 
16-26. 

Isard , M. and Blake, A. (1998). CONDENSATION - conditiona.l density propagation 
for visual tracking. Inter. Journal of Comp o Vis., 29 , 5-28. 

Junxia, G. , Xiaoqing, D. , Shengjin, W. , and Youshou, "\TV . (2008) . Adaptive pa.rti
cle fil ter wit h body part segmentation for full body tracking. In Automatic Face 
Gesture Recognition, 200B. FG 'OB. Bth IEEE International Conference on, pages 
1- 6. 

Kanazawa, K. , Koller , D. , and Russell , S. (1995) . Stochastic simulation algori thms for 
dynamic probabilistic networks. In Proceedings of the Eleventh Conference A nnual 
Conference on Uncertainty in A rtifi cial Intelligence (U AI-95) , pages 346- 35, San 
Francisco, CA. IVlorgan Kaufmann. 

Kanter , D. (2008) . NVIDIA 's GT200: Inside a parallel processor [online: 
http: //www.rea.lworldtech .com/ page.cfm? Art icleID = R\TVT090808195242] . 

Kato, M., Chen , Y. "\TV ., and Xu, G. (2006). Art iculated hand t racking by pca
ica approach . In FGR '06: Proceedings of the 7th International Conf erence on 
Auto1Tw tic Face and Gesture Recognition, pages 329- 334, "\TVashington, DC, USA. 
IEEE Computer Society. 

119 



JV1.A.Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

Kinsner , 1V1. , Capson, D. , and Spence, A. (2008) . Scale-space ridge detection with 
GPU accelerat ion. In ElectTical and ComputeT EngineeTing, 2008. CCECE 2008. 
Canadian ConfeTence on, pages 1527- 1530. 

Kirk , D. B. and mei Vol . Hwu, VV. (2010). Fmgm mming Massively Pam llel Pm cessoTs: 
A Hands-on AppToach. Morgan Kaufmann Publishers, Burlington, MA. 

Kirkpatrick, S. and Stoll , E. P. (1981). A very fast shift-register sequence random 
number generator. loumal of Computational Physics, 40(2), 517- 526. 

Ki tagawa, G. (1996). r-donte carlo fil ter and smoother for non-gaussian nonlinear 
state space models. loumal of Computational and Gmphical Statistics, 5(1), 1- 25. 

Kuchnio, P. and Capson, D. \Ai. (2009). A parallel mapping of optical flow to compute 
unified device architecture for motion-based image segmentation. In ICIF '09: 2009 
IEEE InteTnational ConfeTence on Image Pmcessing, pages 2325- 2328. 

Larsen, E. S. and McAllister , D. (2001 ). Fast matrix multiplies using graphics hard
ware. In Pmceedings of the A CM/ IEEE confeTence on SupeTcomputing, pages 55-
61. 

Lee, S., Kim, G. J. , and Choi, S. (2009). Real-time tracking of visually attended 
objects in virtual environments and its application to lod. IEEE Tmnsactions on 
Visualization and ComputeT Gmphics, 15(1 ), 6- 19. 

Lee, V. \V., Kim, C. , Chhugani , J., Deisher , Iv1. , Kim, D. , Nguyen, A. D. , Satish , 
N. , Smelyanskiy, M. , Chennupaty, S. , Hammarlund, P. , Singhal , R. , and Dubey, 
P. (2010). Debunking the lOOx gpu vs. cpu myth: an evaluation of throughput 
computing on cpu and gpu. SIGAR CH Comput. ATchit. News, 38 (3), 451- 460. 

Lehment , N. H., Arsic, D., Kaiser , M. , and Rigoll , G. (2010). Automated pose estima
t ion in 3d point clouds applying annealing particle fil ters and inverse kinematics on 
a gpu. In ComputeT Vision and Pattem Recognition WOTkshops (C VPRW), 2010 
IEEE ComputeT Society ConfeTence on, pages 87- 92. 

Lengyel, J. , Reichert , M. , Donald, B. R. , and Greenberg, D. P. (1990). Real-time 
robot motion planning using rasterizing computer graphics hardware. In In Pmc. 
SIGGRAPH, pages 327- 335. 

Lenz. C., Panin. G. , and Knoll , A. (2008) . A gpu-accelerated particle fil ter with 
pixel-level likelihood. In VM V'08: InteTnational WOTkshop on Vision, Modeling 
and Visualization. 

120 



M.A.Sc. Thesis - J. Anthony Brown lVIcMaster - Electrical Engineering 

Lepetit , V. and Fua, P. (2005). Monocular model-based 3d tracking of rigid objects: 
A survey. In Foundations and Trends in Computer Graphics and Vision, pages 
1- 89. 

Liu, J. S. and Chen , R. (1998). Sequential monte carlo methods for dynamic systems. 
Jo'urnal of the American Statistical Association, 93, 1032- 1044. 

Liu, K.-Y. , Tang, 1. , Li, S.-Q., Wang, 1. , and Liu, VV. (2009). Parallel particle filter 
algorithm in face tracking. In ICME'09: Proceedings of the 2009 IEEE international 
conference on Multimedia and Expo , pages 1813- 1816. 

Lozano, O. and Otsuka, K. (2008) . Simultaneous and fast 3d tracking of multiple 
faces in video by gpu-based stream processing. In ICASSP '08: IEEE International 
Conference on Acoustics, Speech and Signal Processing, pages 713- 716. 

Luna, F . (2003). Introduction to 3D Game Programming with DirectX 9.0. \i\1ordware 
Publishing, Plano, TX. 

Maggio, E. , Smerladi , F. , and Cavallaro , A. (2007). Adaptive multifeature tracking 
in a particle filtering framework. IEEE Transactions on Circuits and Systems for 
Video Technology, 17(10) , 1348- 1359. 

f\/Iedeiros, H. , Gao, X., Kleihorst, R. , Park, J. , and Kak, A. (2008) . A parallel 
implementation of the color-based particle filter for object tracking. In A CM SenSys 
Workshop on Applications, Systems, and Algorithms for Image Sensing. 

Microsoft Corporation (2003). Microsoft DirectX 9.0c SDK Documentation. 

Mussi , L. , Cagnoni, S. , and Daolio, F. (2009). Gpu-based road sign detection using 
particle swarm optimization. In ISDA , pages 152- 157. 

Musso, C. , Oudjane. N. , and Legland , F. (2001 ). Improving regularized particle 
fil ters. In A. Doucet , N. de Freitas, and N. Gordon , editors , Sequential Monte 
Carlo Methods in Practice. New York, number 12, pages 247- 271. Statistics for 
Engineering and Information Science. 

NVIDIA Corporation (2009a). NVIDIA CUDA Architecture. Santa Clara, CA. 

NVIDIA Corporation (2009b). NVIDIAs Next Generation CUDA Compute Archi
tecture: Fermi. Technical report , NVIDIA Corporation. 

NVIDIA Corporation (2010a) . CUDA B est Practices Guide. Santa Clara , CA, 3.1 
edition. 

121 



IvI.A .Sc. Thesis - J. Anthony Brown McMaster - Electrical Engineering 

NVIDIA Corporation (2010b). CUDA Programming Guide. Santa Clara, CA, 3.1 
edit ion. 

Odobez, J.-M. , Gatica-Perez, D. , and Ba, S. O. (2006). Embedding motion in model
based stochastic tracking. IEEE Transactions on Image Processing, 15(11), 3515-
3531. 

O'wens, John, D., Luebke, David, Govindaraju, Naga, Harris, Mark , Kruger, Jens, 
Lefohn , Aaron, E. , Purcell , and Timothy, J . (2007). A survey of general-purpose 
computation on graphics hardware. Computer Graphics Forum, 26 (1), 80- 113. 

Owens, J. D. , Houston, M., Luebke, D. , Green, S. , Stone, J. E., and Phillips, J . C. 
(2008) . Gpu comput ing. Proceedings of the IEEE, 96 (5), 879- 899. 

Papoulis, A. (1984) . Probability, R andom Variables, and Stochastic Processes . . Mc
Graw Hill. 

Park , S.-H. , Kim, Y-J. , Lee, H.-c., and Lim, M.-T. (2008) . Improved adapt ive par
ticle filter using adjusted variance and gradient data. In Multisensor Fusion and 
Integration for Intelligent Systems, 200B. MFI 200B. IEEE International Confer
ence on. 

Pauwels, K. and Van Hulle, IVI. (2008). Realt ime phase-based optical flow on the gpu. 
In CVGPU'OB: Comp'Ld. Vis. Pattern Recognit. Workshop, pages 1- 8. 

Pezzement i, Z. , Voros , S. , and Hager , G. D. (2009). Articulated object tracking by 
rendering consistent appearance parts . In ICRA '09: Proceedings of the 2009 IEEE 
international conference on Robotics and Automation, pages 1225- 1232, Piscat
away, N J , USA. IEEE Press. 

Pitt , f\il . K. and Shephard , N. (1999). Filtering via simulation: Auxiliary particle 
fil ters . Journal of the American Statistical Association, 94(446) , 590- 599. 

Pock, T ., Unger , M. , Cremers, D. , and Bischof, H. (2008). Fast and exact solution 
of total variation models on the gpu. In Comp'Lder Vision and Pattern Recognition 
Wo rkshops, 200B. CVPRW 'OB. IEEE Computer Society Conference on, pages 1- 8. 

Poli , G. , Saito , J. H. , Mari, Jo, a. F. , and Zorzan, II. R. (2008). Processing neocogni
tron of face recognit ion on high performance environment based on gpu with euda 
architecture. In SEAC-PAD 'OB: Proceedings of the 200B 20th International Sym
posium on Computer Architecture and High Performance Computing, pages 81- 88, 
Washington, DC, USA. IEEE Computer Society. 

122 



IVI.A.Sc. Thesis - J . Anthony Brown ~/I c i\lI aster - Electrical Engineering 

Qu , W. and Schonfeld, D. (2007). Real- t ime decentralized articulated motion analysis 
and object tracking from videos. IEEE Transactions on Image Processing, 16(8) , 
2129- 2138. 

Ripley, B. D. (1987). Stochastic simulation. John \i\Tiley & Sons, Inc. , New York, NY, 
USA. 

Ristic, B. , Arulampalam, S. , and Cordon, N. (2004). B eyond the Kalman Filter: 
Particle Filters for Tracking Applications. Artech House. 

Roosendaal, T. and Selleri , S. (2009). The Official Blender 2.3 Guide. Springer
Verlag/\ iVien, Austria. 

Rui , Y. and Chen, Y. (2001 ). Better proposal distributions: Object tracking using 
unscented part icle filter. In CVPR01 II, pages 786- 793. 

Rumpf, M. and Strzodka , R. (2001 ). Level set segmentation in graphics hardware. In 
Pmceedings. 2001 International Conference on Image Pmcessing, pages 1103- 1106. 

Sanders, J . and Kandrot , E. (2010). CUDA by Example: An Introduction to General
Purpose G P U Programming. Addison-\i\Tesley Professional, Toronto, Canada. 

Sankaranarayanan, A. c. , Srivastava, A. , and Chellappa, R. (2008) . Algorithmic and 
architectural optimizations for computationally efficient particle fi ltering. IEEE 
Transactions on Image Pmcessing, 17(5) , 737- 748. 

Schoenemann, T. and Cremers, D. (2010). A combinatorial solut ion for model-based 
image segmentation and real- time tracking. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, 32 (7), 1153- 1164. 

Shapiro, 1. C. , Stockman, C. C. , Shapiro , L. C. , and Stockman, C. (2001 ). Computer 
Vision. Prentice Hall. 

Sherrod. A. (2006). Ultimate Game Pmgramming With DirectX. Charles River ~Iedia . 

Boston , ~IA. 

Smith, K. , Catica Perez, D .. Odobez. J.-~I. , and Ba, S. (2005) . Evaluating multi
object tracking. In CVPR 'OS: Pmceedings of the 2005 IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition (CVP R '05) - Workshops , 
page 36. 

Stenger. B .. ~Iendonca . P .. and Cipolla, R. (2001 ). ~Iodel-based 3d tracking of an 
art iculated hand. In Computer 1!ision and Pattern Recognition, 2001. CVPR 2001. 
Proceedings of the 2001 IEEE Computer Society Conference on, volume 2. pages 
II- 310 - II- 315 vo1.2. 

123 



M.A.Sc. Thesis - J. Anthony Brown Mcl\lIaster - Electrical Engineering 

Stenger, B. , Thayananthan, A., Torr , P. H. , and Cipolla, R (2006). Model-based 
hand tracking using a hierarchical bayesian filter. IEEE Tmnsactions on Pattern 
Analysis and Machine Intelligence, 28 (9) , 1372- 1384. 

Sudderth , E. B. , M, M. 1. , Freeman, \1'/. T. , and vVillsky, A. S. (2004) . Visual hand 
tracking using nonparametric belief propagation. In Propagation, IEEE Workshop 
on Genemtive Model Based Vision, page 189. 

Sun, C. , Agrawal, D. , and El Abbadi, A. (2003). Hardware acceleration for spatial 
selections and joins. In SIGMOD '03: Proceedings of the 2003 ACM SI GMOD 
international conference on Management of data, pages 455- 466 . 

Sundaresan, A. and Chellappa, R (2009). Mult icamera tracking of articulated human 
motion using shape and motion cues. IEEE Tmnsactions on Image Processing, 
18(9) , 2114- 2126. 

Tan, G. , Guo, Z. , Chen, rvI. , and Meng, D. (2009). Single-particle 3d reconstruction 
from cryo-electron microscopy images on gpu. In ICS JOg: Proceedings of the 23rd 
international conference on Supercomputing, pages 380- 389. 

Tsuchiyama, R , Iakamura, T. , Iizuka, T. , Asahara, A. , and Miki , S. (2010). The 
OpenCL Progmmming Book. Fixstars Corporation, Tokyo, J apan. 

Ueda, E. , Matsumoto, Y , Imai, lVI. , and Ogasawara, T. (2003). A hand-pose estima
tion for vision-based human interfaces. IEEE Tmnsactions on Industrial ElectTOn
ics, 50(4), 676- 684. 

van der Merwe, R , de Freitas, N., Doucet , A. , and \iVan , E. (2001 ). The unscented 
particle filter. In Advances in Neumlinformation Processing Systems 13. 

van Rij sbergen, C. J . (1979). Information Retrieval. Butterworths, London. 

\iVang, H., Suter , D., Schindler , K. , and Shen, C. (2007). Adaptive object tracking 
based on an effective appearance filter. IEEE Tmnsactions on Pattern Analysis 
and Machine Intelligence, 29(9) , 1661- 1667. 

\iVang, T. , \iVang, J. , Li , c. , vVang, H., and Liu, J . (2009). Target tracking based 
on adaptive particle filter. In Industrial and Information Systems, 2009. lIS J09. 
International Conference on, pages 297- 300. 

vVeng, c. , Tseng, C. , Ho, M. , and Huang, C. (2008). A vision-based hand motion 
parameter capturing for hci. In A1..Ldio, Language and Image PTOcessing, 2008. 
ICALIP 2008. International Conference on, pages 1219- 1224. 

124 



1\1.A.Sc. Thesis - J. Anthony Brown lvIcl'vIaster - Electrical Engineering 

vVu, Y and Huang, T. (2001 ). Hand modeling, analysis and recognition. Signal 
PTOcessing Magazine, IEEE, 18(3), 51- 60. 

vVu , Y , Lin, J. Y , and Huang, T. S. (2001 ). Capturing natural hand articulation. 
In In ICC 11, volume 2, pages 426- 432. 

Xu, T. , \ i\Tu , H. , Zhang, T. , IGihnlenz , K. , and Buss, 1\1. (2009). Environment adapted 
active multi-focal vision system for object detection. In ICRA '09: Proceedings of 
the 2009 IEEE intemational conference on Robotics and Automation, pages 1102-
1107. 

Yang, c., vVu, Q. , Chen , J ., and Ge, Z. (2009). Gpu acceleration of high-speed collision 
molecular dynamics simulation. In 2009 Ninth IEEE Intemational Conference on 
Computer and Information Technology, pages 254- 259. 

Yang, Z. , Zhu , Y , and Pu , Y (2008). Parallel image processing based on cuda. In 
CSSE '08: PTOceedings of the 2008 International Conference on Computer Science 
and Software Engineering, pages 198- 201 , Washington, DC, USA. IEEE Computer 
Society. 

Yu, Q. and Medioni, G. (2008). A gpu-based implementation of motion detection 
from a moving platform. In ClIGPU'08: IEEE Computer lIision and Pattern 
Recognition Workshop , pages 1- 6. 

Zhou, S. 1<. , Chellappa, R. , and fVloghaddam, B. (2004). Visual tracking and recog
nition using appearance-adaptive models in particle filters. IEEE Transactions on 
Image PTOcessing, 13(11 ), 1491- 1506. 

125 



'j 2 " l._ 
I 


