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Abstract 

Target classification has received significant attention in tracking literature. Algo­

rit hms for joint tracking and classification that are capable of improving tracking 

performance by exploit ing t he inter-dependency between target class and target kine­

matic behavior have already been proposed. However , in previous \\lorks the possible 

types of classes were assumed to be known a prior and the problem of class identifi­

cation itself was not considered. In pract ice, the prior class information may not be 

always available. In this t hesis, motivated by a people tracking problem, a joint class 

identification and target classification algorithm that can simultaneously build class 

types on the basis of target kinematic and feature measurements and classify targets 

according to t he ident ified classes even when there is switching among classes is pro­

posed. In addition, a new concept called "class quality" is introduced to improve 

the class identification and target classification accuracy. Accordingly, a modified 

performance evaluation metric for multiple obj ect estimation, called Quality-based 

Optimal Subpattern Assignment (Q-OSPA), is proposed to quantify t he class iden­

t ification performance of t he proposed algorithm. This metric provides more intu­

it ively appealing results t han t he original OSPA metric when t he quality of estimates 

is available. This new metric is also applicable in standard tracking problems where 

classification or class ident ification is not carried out , but a t rack quali ty measure 

IV 



is availabl e 3 S in the case of the Mnltiple Hypothesis Tracking (?\/IHT ) or the Joint 

Integrated Probabilistic Data Association (JIPDA) algorithm. Besides t heoretical 

derivations, extensive simulations are presented to verify the effectiveness of the pro­

posed algorit hm. 
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Chapter 1 

INTRODUCTION 

The problem of mult itarget classification has received much attent ion in tracking 

literature because classification information can be utilized to improve tracking per­

formance. For example, track purity and t rack continuity can be improved by inte­

grating t he target classification information in data association (Bar-Sha10m et at. , 

2005) . The t racking performance with low observable t argets can be significant ly 

improved by using class-dependent signal amplit ude information (Kirubarajan and 

Bar-Shalom, 2002). In (Davey et al. , 2002), an extended probability mult iple hy­

pothesis t racking approach, which can incorporate noisy classification measurements, 

was proposed to improve data association. In addit ion, classification information 

can facilitate t he assessment of target recognit ion and identification (Layne, 1998) . 

lVIoreover , classification information based on advanced target features , such as target 

contour , size or image, can enhance occlusion detection in vehicle t racking (Rad and 

J amzad, 2005). 

Generally, target classification is based on a set of feature measurements that dis­

t inguish t argets according to their characteristics such as shape, color or kinematic 
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behavior. Usually, two different types of feature measurements are used in target clas­

sification problems. Features recorded by Electronic Support },/Ieasure (ESM) sensor , 

Inverse Synthetic Aperture Radar (ISAR) or high resolution radar are called "real" 

feature measurements . The features extracted from target kinematic behavior using 

only kinematic measurements or track estimates from a tracker like the Mult iple Hy­

pothesis Tracking (MHT) algorithm are called kinematic feature measurements. Both 

real features and kinematic features can be used to classify targets . The algorithms 

presented in (Challa and Pulford, 2002), (Mei et al. , 2007), (Sutharsan et al. , 2008) 

rely on both kinematic and real feature measurements "vith the assumption t hat t hese 

two types of features are independent. Under t his assumption, t he overall likelihood 

of features is computed as the product of the likelihood of real feature measurements 

and that of kinematic feature measurements. The algorit hm proposed in (Angelova 

and Mihaylova, 2006) uses only t he kinematic feature measurement to solve t he tar­

get classification problem. In addition , Doppler information, which is a kinematic 

measurement, is used to classify targets in (Bilik and Tabrikian , 2008) . Target image 

data, which is a real feature generated by a high resolution radar , is proven to be 

effective for target classification in (Seo et al. , 2004), (Tait , 2007). 

In previous works, several target classification methods have been proposed. For 

example, in (Challa and Pulford, 2002), (Maskell , 2004) an algorithm called joint tar­

get tracking and classification (JTC) is presented for treating target tracking and tar­

get classification joint ly using both kinematic features and real features. In addit ion, 

a new description of the JTC algorithm called Simultaneous Tracking and Classifica­

tion (STC), is introduced in (Mei et al. , 2007). In (Gordon et al., 2002) and (Maskell , 

2004) , a particle filter implementation of t he JTC algorithm was adopted to classify 
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maneuvermg targets according to their dynamic behavior based on a semi-Markov 

model. Also, in (Sutharsan et al. , 2008) the target classification problem was solved by 

exploit ing t he inter-dependency between target st ate and the target class using both 

aspect-dependent Radar Cross Section (RCS) and kinematic information. In (Lan­

caster and Blackman, 2006), a Dempster-Shafer approach , which relies on the a prior 

information of target behavior-to- type relationship , was applied in multisensor clas­

sification problems. However , t he definition of class is inconsistent in (Cha.lla and 

Pulford, 2002) , (Lanterman , 1999), (Lancaster and Blackman , 2006), (Mei et al. , 

2007) , (Maskell, 2004), (Sutharsan et al. , 2008) - for kinematic feature measure­

ments , the class is defined as a set of kinematic motion models , but for real feature 

measurements it is defined as a probabili ty density function. It is more int uit ive to 

define a class as a probability density function of target feature value than a set of 

target kinematic motion models since a class is a collection of targets whose feature 

values follow certain statistical characteristics. Based on t his idea, a target classifi­

cation algorithm that ensures t hat every class is represented by a probability density 

function of target speed vvas proposed in (Angelova and Mihaylova, 2006). Similarly, 

t he distribution of target acceleration span is used to represent a class in (Ristic et al. , 

2004) and air targets of different maneuvering capabilit ies are ident ified according to 

the predefined class. Although (Angelova and Mihaylova, 2006) and (Ristic et al. , 

2004) define the target class as a probability density function in feature space, which 

is a consistent definition for both kinematic and real feature measurements, the prob­

ability density function of each class is assumed to be known a prior . The problem of 

obtaining t he probability density function, i. e. , t he class identification problem, is not 

considered in these works even t hough class identification and target classification are 
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fundamentally linked. In practice , obtaining such a prior information is not always 

feasible in some tracking applications such as t racking people on the ground (e.g., 

dismounted combatants) with possibly unknown mot ion modes. 

In this thesis , an algorithm for joint class identification and target classification, 

which is capable of simultaneously estimating the probability density function of 

a class based target feature measurements and classifying targets according to the 

ident ified class , is proposed. It is assumed that both t he number of classes and the 

probability density functions of classes are unknown and that target class switching 

is possible. However , if some prior information on classes is available, e.g., prior mean 

and prior covariance, it can be included in the proposed algorithm. The proposed 

algorithm adopts a merging procedure to group targets with similar feature measure­

ments into clusters. Each cluster corresponds to a class and the feature measuren'lents 

of targets in that cluster are samples of that class. In order to estimate t he proba­

bility density function of each class based on t he feature measurements, a -weighted 

maximum a posteriori (MAP) estimator is derived. The weight of each sample in the 

MAP estimator is computed according to the posterior probability of target-to-class 

association. In addit ion, in (lVIusicki et al., 2002) , (Musicki and Evans, 2004) , track 

quality, which measures t he existence probability of estimated t racks , is proposed to 

improve t rack-to-measurement data association and, thus, t he t racking performance. 

In order to quantify the accuracy of class estimation, an effective performance 

evaluation metric for mult iple object estimation is required. In the literature, sev­

eral performance evaluation metrics for multiple object estimation, such as Hausdorff 

metric (Baddeley, 1992) and Optimal Mass Transfer (OMAT) metric (Hoffman and 
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t\/Iahler , 2004), have been proposed. Recently, another consistent metric called Op­

t imal Subpattern Assignment (OSPA) , which presents a more int uitively appealing 

performance evaluation than the OMAT, was proposed in (Schuhmacher et al. , 2008) 

for multitarget tracking problem. However , one limitation of the original OSPA met­

ric is that it does not consider the track quality, which contains useful information 

about the estimation results. Ignoring the track quality in t he original OSPA metric 

wastes useful information from the tracker and thus generates incorrect performance 

metrics in certain scenarios. In this thesis, a Quali ty-based OSPA (Q-OSPA) metric , 

which not only retains all the advantages of t he original OSPA but also is capable of 

incorporating estimation quality, is proposed to evaluate t he accuracy of estimates . 

Simulations will show that the proposed Q-OSPA metric yields a more accurate quan­

t ification of performance than t he original OSPA metric. In addit ion, t he Q-OSPA 

metric can be directly applied to the general multitarget tracking algorit hms (i .e. , 

without class estimation) to evaluate the multitarget tracking performance by replac­

ing t he class quality with track quality. \!\Then the class quality or track quality is not 

available, all t racks would be assigned wit h t he same quality and the Q-OSPA metric 

reduces to t he original OSPA metric. 

T his t hesis is organized as follows. Chapter 2 presents system background and 

then formulates the joint class identification and target classification problem. A 

new target-to-class association algorithm is proposed in Chapter 3. A new class 

identification algorithm is proposed in Chapter 4. Chapter 5 presents the complete 

joint class identification and target classification algorithm. T he new Q-OSPA metric 

is proposed in Chapter 6 to take into account estimated quali ty information in defining 

an accurate performance metric. Chapter 7 illustrates hmv t he classification results 
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can be used to improve tracking performance. Simulations are presented in Chapter 

8. 
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Chapter 2 

PROBLEM FORMULATION 

2.0.1 Class Model 

In this t hesis, it is assumed that each class c is a random variable uniquely character­

ized by a probability density function, i.e. , t he likelihood function, of target feature 

value. To make the class estimation problem mathematically tractable, it is assumed 

that t he likelihood function of each class is a Gaussian distribution , which is suffi­

ciently characterized by its mean /-L and covariance (j 2. However , other distribut ions 

can be handled in this "vork using higher order moments or Gaussian mixtures. The 

i-t h class is defined as 

(2 .1 ) 

where i is the index of a class. The likelihood function of each class has to be 

computed based on t he feature measurements of all t he targets within t hat class . 

One the other hand, t he class estimation has to be accomplished by simultaneously 
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considering all the target feature lTleaSUrements since it is meaningless to estimate the 

class by considering each target separately. For example, assume that there are Nt 

targets with different feature values { Zq } ~~l' Consider two targets with feature values 

Zi and Zj where Zi =I Zj . By considering separately, it is hard to determine whether 

these two targets belong to one or two classes. If the feature values of t he rest of t he 

targets are uniformly distributed from Zi to Zj , then it maybe reasonable to conclude 

that t here is only one class, but if t he feature values of some of t he remaining targets 

are around Zi while the rest are with features value around Zj , t hen concluding two 

class maybe more reasonable. Therefore, the class estimation algorit hm has to build 

t he class by considering the feature measurements of all t he targets jointly rather 

than independently. 

2.0.2 Statistical Model for Class Estimation 

The statistical model for t he estimation problem of each class is a two-level normal 

distribution (Gelman , 2006), (Thirion et al. , 2007) 

(2.2) 

(2.3) 

where {ic and a~ represent t he mean and covariance of the class , respectively. In the 

above, z; denotes the true target feature value, Zi is t he feature measurement input 

to t he classifier and the feature measurement noise is with covariance a'f:. Equation 

(2.2) models the relationship between the value of target feature and the target class 

8 
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where every target feature is considered as a sample (or instance) of t he associated 

class. Equation (2 .3) models t he statistics of measuring t he feature from the target. 

In addit ion, each feature measurement Zi is assigned with a weight Wi . The weight , 

which is to be presented in Chapter 3 in detail , is computed according to (3 .1 ) . The 

goal is to estimate Me and (J~ based on the set of all t he weighted samples { Zi' Wi } t~ l 

being associated with the class where N is the number of all the weighted samples 

in the class. In t his thesis, a Gaussian model is considered for analytical tractability, 

but other distributions can be handled equally well. 

2.0.3 Feature Measurements 

As discussed in Chapter 1, two kinds of feature measurements are involved in classi­

fication problems: 1) Real feature measurement zh) such as signal amplitude, target 

size and target color; 2) Kinematic feature measurement z{n, ) , which is the static 

mapping z{n, ) = g(X) of target state estimates X from state estimations like t he 

Kalman Filter (KF) or Extended Kalman Filter (EKF). For example, denote by X = 

[x , '15.1: , i) , vY ' w]' the target state estimate. If t he kinematic feature for target classifi­

cation is target speed , then the mapping function is z{ n, ) = g(X) = V'15.1: 2 + Vy 
2

. If t he 

kinematic feature is angular speed , then the mapping function is z {n,) = g(X) = w. 

Figure 2.1 shows the block diagram of t he joint tracking and classification system. 

The real feature measurement zh) , which is provided by the attribute sensor , 1S a 

random variable whose mean equals t he true value of target real feature Z * ,T and 

covariance (J; (r) depends on the accuracy of t he attribute sensor. Similarly, t he kine­

matic feature measurement z{n,) is also a random variable 'whose mean equals the true 

value of target kinematic feature Z *,K = g(X) where X is the t rue target state. The 
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Radar 
measurement 

Real target 
feahlre 

Feedback 

Tracker 

Target state 
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Mapping 

Kinematic fea hlre Z(K) 

measurement , 
Real feature 

~ Attribute sensor 
measurement Genera l feahlre 

~ measurement 

Classifier 

z 

~ Identified class and 
Target-to-class association 

Figure 2. 1: System block diagram. 

covariance of z(K:) depends on the accuracy of the estimates and the mapping function 

gU· 
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Chapter 3 

Soft Target-to-Class Association 

Before estimating t he class, all feature measurements have to be grouped into clusters 

and the clustering procedure is in fact a target-to-class association procedure. The 

ult imate class estimation accuracy relies on the correct target-to-class association be­

cause t he probability density function of each class is estimated on the basis of all t he 

feature measurements associated with the class. The well-known clustering methods 

such as K-Mean Clustering (Hartigan and "Vong, 1979) and ~/Iean-Shift Clustering 

(Comaniciu and Meer , 2002) cannot be applied here to find the correct target-to-class 

association because these methods assume that t he target-to-class association is fixed , 

i. e., t here is no target class switching. However , in most t rack classification problems, 

t his assumption does not hold. 

Although the hard decision of selecting t he most likely target-to-class association 

according to t he likelihood is simple, it call induce bias in t he class estimation. In 

this thesis, a soft target-to-class association, which can handle the possible target 

class switching, is proposed. In this approach , a weight (or a probability of correct 
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association) W E [O , IJ is assigned to each feature measurement from a target de-

pending on t he target- to-class association. Denoted by wi,j (k + 1) is the weight of 

associating the feature measurement from the i-th target to t he j-th class at scan 

k + 1, by Z (k) are all t he available feature measurements till scan k, by Zi (k + 1) is 

t he feature measurement from the i- t h target at current scan (k + 1), by Cj (k + 11 k) is 

the prediction of the j -th identified class at scan (k + 1), and by ¢i,j (k) is denotes the 

event of associating t he i-th target to t he j-th identified class at scan k. Based on the 

predicted target- to-class association probability P ( ¢i,j (k + 1) I Z (k )) and the likelihood 

function l(Zi(k + 1)lcj( k + 11k)) , wi,j(k + 1) is given by the following equation 

W· ·(k + 1) ~ ,J l(Zi(k + 1)lcj(k + 11k)) . p(¢i,j(k + 1)IZ (k)) 

1 
~p(¢i,j( k + 1)IZ(k + 1)) (3.1 ) 

'where p(¢i,j( k + 1)IZ(k + 1)) is the posterior probability of t he event that the i-th 

target is associated with the j- t h class at scan k + 1 and ~ is a normalization constant . 

The feature measurement Zi (k + 1) is assigned to class Cj as a sample with weight 

Wi,j (k + 1) and the total weight for Zi (k + 1) over all the class is normalized to 1. In 

addit ion, the class weight of the j-th ident ified class Wj is defined as the total weight 

of all the feature measurements associated with it . 

12 
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Sample I Sample 2 

Cd 11 = 0.8 

Class 1 Class 2 

Figure 3.1: Soft target- to-class association 
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Chapter 4 

Class Estimation 

Each target forms a sub-class by itself because there are no two targets that can have 

exactly identical features , alt hough t he features may be similar or even the same on 

average. In t his sense, a class is set of sub-classes t hat share similar features. There­

fore, class estimation depends on the similarity or t he maximum distance between 

two sub-classes wit hin a class. Given t he maximum distance, t he class ident ification 

process is equivalent to merging similar sub-classes . In t his chapter, the merging of 

similar classes (or sub-classes) is presented. In addi t ion, a weighted MAP estimator 

is applied to estimate the mean and the covariance of each class based on all the 

weighted feature measurements that belong to this class. 

4.0.4 Merging Similar Classes 

In t he merging stage, similar classes are clustered into a new class. The first issue 

is to find a suitable measure to evaluate the similarity between classes. In addition , 

the similarity measure has to satisfy t he symmetry property. For example, if class 

14 
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Ci is similar to class Cj , then class Cj is similar to class Ci . In t his consideration, the 

well known Kullback-Leibler (KL) divergence (Kullback and Leibler , 1951) cannot be 

used to measure the class similarity because it is an asymmetric distance. In this 

thesis, t he Hellinger distance (Cramer , 1999), (Ibragimov et al., 1981), (Zolotarev, 

1979), which is symmetric, is used to quantify the similarity between two classes. 

The Hellinger distance between two probabili ty density functions f (x) and g(x) is 

given by 

(4 .1 ) 

and the Hellinger distance H (P, Q) between two normal distribut ions P rv N(~L l ' (Ji) 

and Q rv N(~2 ' (J~) is given by 

H (P, Q) (4.2) 

One important property of the Hellinger distance is t hat the value of H (P, Q) for 

any distribution P and Q is always in the range of [0 , 1] . As a consequence, a fixed 

constant (3 , which indicates the maximum distance between two similar classes , can 

be used as the merging threshold. 

A greedy-type algorithm is used in this thesis to cluster similar classes among the 

set of all the currently estimated classes. This merging procedure is similar to merging 

similar Gaussian components in Gaussian Mixture Probability Hypothesis Density 

(GM-PHD ) filt er (Vo and Ma, 2006) . In (Vo and Ma , 2006), only the parameters of 

similar Gaussian components are merged . However, in this thesis, class weights and 

the possible class priors are also merged in addit ion to the class mean and covariance. 

15 
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The merging process is as follows: 

• given a set of classes C = {~/'i' a} , Vlld ~;;ik- l ) , where 1V1 is t he total sample 

weight of class i; t he set of weighted samples of class i is { z~ , W~ } ;2 1 and VIIi = 

I:w~; a merging threshold /3; set l = o. 
q 

• while C i= 0 

- l = l + 1 

- j = arg max1Vi 
tEe 

Vllt = I: 1Vi 
iES 

prior 1 prior 
Ml = W * I: Vlli ~/'i 

liES 

- C = C\ S 

• end 

4.0.5 Weighted MAP Estimator 

In t his subsection, the l\lIAP estimators t hat can incorporate possible prior infor-

mation of t he class parameters are derived for both class mean Me and covariance 

(J~ . Assume that t he prior for class parameter e = [Me, (J~l are ~/'e rv N (Mo , (J~J and 

16 
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a~ r-.J N (0"6 , a;) . In practice, if there is no prior information available, t hen am ----7 +00 

and av ----7 +00 and the MAP estimator reduce to a Maximum Likelihood (ML) esti-

mator. The MAP estimator of the class parameter is given as 

B arg max 1\( ZI B)g( B) 
e 

(4 .3) 

where 1\( Z IB ) is t he likelihood function of getting a set of weight feature measurements 

Z = {zdi!1 with corresponding weights {wdi!1 and measurement covariances {ani! 1 

given class parameter e = [ ~te , a~l. Based on t he Gaussian prior assumpt ion t he prior 

distribution of class parameter g( B) is 

(4.4) 

The expectation of t he posterior function is 

(4.5) 

(4 .6) 

Taking t he partial derivative respectively w.r .t. P c and ae of t he above posterior 

function 

oE{ln 1\} 

OPe 
(4.7) 
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(4 .8) 

Since t he j\iIAP estimator is t he zero gradient point for t he above equations, with 

variance (J~ fixed , the estimate of the mean is 

/10 L w"z· 
a;n + . a~~~2 

~ , 
( 4.9) 

\ iVit h mean Me fixed , the est imate of the variance sat isfies 

(4. 10) 

A closed-form solution for t he above two equations does not exist in general. T here-

fore, numerical methods have to be used to provide a numerical solution for both 

/ie and variance (J~ . In this work , t he Newton 's method (Stili and Mayers, 2003) is 

adopted. 

4.0.6 Class Quality 

In some tracking problems, track quality is defined for each track to improve t racking 

performance (NIusicki et al. , 2002) , (Musicki and Evans, 2004). In this thesis, a similar 

concept called "class quali ty", which demonstrates the class existence probability, is 

proposed. However , the one-to-one assumption between measurements and targets 

in general tracking problems does not hold in class estimation problems because the 

association of feature measurements to classes is generally many-to-one. Therefore, 

t he definit ion of track quali ty in (Musicki et al. , 2002) , (~/Iusicki and Evans, 2004) 

cannot be applied to t he classification problem. An int uit ively appealing defin it ion 
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of the class quality (or class existence probability) for a cer tain class is t he minimum 

effor t that has to be made to remove the class from the set of ident ified classes . Here 

"remove" is meant to merge a class with its nearest neighbor. In addition , the class 

quality has to satisfy the following intuit ive requirements: 1) Any class that is far 

away from all the other classes in terms of Hellinger distance is assigned with a high 

class quality; 2) If any two classes are close to one another , the class with larger 

weight would be assigned a larger class quality because it contains a higher sample 

weight. Based on the above, t he class quality for each class is proposed as follows: 

1. 'II Ci E C, find its nearest neighbor CE; (i ) E C in terms of Hellinger distance. 

2. Compute the merged class of Ci and CE; (i ) and denote as Cm(i ) with mean 

and covariance 

2 
CJm (i ) liV

i 
+ \ VE;( i) {M/i ( CJt + (~Li - Pm (i) )( ~Li - ~Lm (i) )T) 

+ MI E; (i) (CJl(i) + ( ~LE; (i ) - P m (i) )(~LE; (i) - ~Lm(i ) f )} 

(4.11) 

(4.12) 

3. Define the class quality of Ci as the Hellinger distance between CE; (i) and Cm(i) 

(4 .13) 
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Chapter 5 

J oint Class Estimation and Target 

Classification 

In this chapter, the proposed j oint class identification and target classification is 

presented in detail. 

5.0.7 Initialization of the Joint Class Identification and Tar-

get Classification Algorithm 

Denoted by Z( l ) = {zl (l ), z2( 1), ... Zi (1), .. . } are the initial set of feature measure­

ments. Every feature measurement is used to initialize a new class Ci with mean 

Zi (1), covariance 0"5 and weight 1. Here, 0"5 , which is a design parameter depending 

on t he user 's requirement and the a priori knowledge of the tracking scenario , denotes 

the standard deviation of new class. In simulations, it was found that the final class 

estimation and target classification results are not sensitive to this design parameter. 

After initia1ization, t he classes are clustered by t he merging procedure presented in 
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Chapter 4 based on the Hellinger distance. Denoted by C( l ) = {cl( l ), c2( 1), ... , CNc (1 ) (I )} 

is the set of identified classes after merging where Nc (1) is the current number of iden­

t ified classes . 

Denoted by cPu is the event t hat the i-th target is associated with the j-th iden­

t ified class. According to (3. 1) , the probability of associating t he i-th target with t he 

j-th class after merging is given by 

where ~j is a normalization constant and Pi( 111 ) is t he covariance of t he i-th feature 

measurement. 

5.0.8 Update of the Joint Class Identification and Target 

Classification Algorithm 

In t he class update procedure, it is assumed that t he true class is assumed to be stable 

and invariant over t ime, i.e. , the predicted function of class is identical, which means 

that the predict class C (k I k - 1) is assumed to be t he same as t he last identified class 

C(k - 11k - 1). However , note that a target can switch from one class to another. 

Denoted by Z(k) = { zl(k) , z2( k), .. . zi (k) , ... } is t he feature measurement at scan k, 

and ~/'j (k - 1) and J] (k - 1) are t he mean and covariance of the j- th identified class 

at scan k - 1, respectively. The likelihood that the i-th target is associated with t he 
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j-th class cj(klk - 1) E C(klk - 1) is 

N (Zi (k) ; {tj (k - 1), J C7J (k - 1) + C7;i (k) ) x Q j (k - 1) 

(5.2) 

where C7;i (k) is the covariance of feature measurement zi (k) and Qj(k - 1) is the 

class quality of class cj(k lk - 1) . The Markov chain transition matrix for each target 

switching among all the identified class is approximated by a matrix whose diagonal 

elements are a. The off-diagonal elements are 1- J\~d~- 1 ) to guarantee that the ww sum 

of t he Markov chain transition matrix is one. The target-to-class association result 

is not sensitive to the value a. Assume t hat the f.,/Iarkov chain matrix at scan k - 1 

is denoted by I1 (k - 1) = [7fi,1'(k - 1)], then the predicted probability of associating 

t he i-th target to the j-th class is given as 

Nc( k - 1) 

p( rPi ,j(k)IZ(k - 1)) L p( rPi ,j(k - l )IZ(k - l) )7fj,1'(k - 1) (5 .3) 
1'= 1 

If the i-th measurement is generated by a new target i , t he predicted target-to-class 

association probability p( rPi,j (k) I Z (k - 1)) is the same for all j. According to Baye 's 

formula , t he posterior probability of the event rPU (k) is given by 

p( rPi,j (k) I Z (k)) 
1 N c (k - 1) 

~j E l (Zi(k)l rPi.j)P( rPi ,j(k - l )IZ(k - l ))7fj,1'(k - 1) 

;j p* (rPu (k) IZ(k)) (5.4) 

where Nc(k- 1) is t he number of classes in set C(klk- 1), ~j is a normalization constant 

and p* (rPu (k) I Z (k)) denotes the unnormalized posterior probability of event rPU (k) . 
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Each feature measurement comes from either an existing class Cj E C or 

a new class, which depends on t he value of unnormalized posterior probability 

P*(cPi.j(k)IZ(k)) . If, for alII ::; j ::; Nc(k - 1), P*(cPi.j(k)IZ(k)) is less t han a threshold 

tUt , which is a design parameter, t hen a new class is ini t ialized with mean zi(k) and 

covariance 0"5 with weight l. Otherwise, zi(k) is associated to every class Cj E C with 

a probabili ty that equals t he normalized posterior probabili ty p(cPi.j( k)I Z(k)), i. e., t he 

sample weight . After assigning all t he weighted feature measurements to the class, t he 

weighted MAP estimators of class mean and covariance are computed for each class 

based on all available feature measurements t ill the current scan. Then, the merging 

procedure is applied to cluster similar classes . Moreover , if any two classes Cm and Cn 

are merged into a new class , then t he posterior probability for all t he targets has to 

be recomputed as 

(5 .5) 

where T is the index for the merged class . If the user requires a hard decision output 

of the classification result of the i-th target , then it can be given as 

C arg maxp( cPi.j(k) I Z(k)) 
J 

(5.6) 

In summary, the joint class identification and target classification algorithm is 

presented as follows: 

l. Initialization: 

(a) Init ialize every feature measurement as a new class. 

23 



M.A.Sc. Thesis - He, Xiaofan McNlaster - Electrical Engineering 

(b) fo.-ilerge similar classes . 

( c) Find the init ial target- to-class association based on the set of merged class 

C(111) . 

2. Update: 

(a) Predict the class estimates and target- to-class association for the surviving 

targets. 

(b) Update the class estimates. 

1. For each Zi (k) , compute the unnormalized posterior probability 

p* (cPi,j (k) I Z (k)). 

• if p* ( cPU (k ) I Z (k )) is less than the threshold Eth, a new class will 

be constructed as C = [zi( k) , 0'5] . 

• else , zi( k) is associated to every class Cj E C with a prob­

ability which equals to the normalized posterior probability 

p(cPu (k)IZ(k)) . 

11. end 

iii . Use the weighted MAP estimator to recompute the class parameters 

based on all currently available weighted feature measurements. 

lV . Merge the current set of class and denotes the output as C(klk ). 

(c) Update the target-to-class association based on the merged set C(klk) 

according to (5.5). 
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Chapter 6 

ANew Performance Metric 

Similar to the multitarget tracking problem, the class estimation problem is also a 

mult iple obj ect estimation problem. Therefore, an effective multiple object estimation 

metric is required to quantify the performance of the proposed class estimator. 

6.0.9 OSPA Metric 

In the literature, several metrics for multiple object estimation problems have been 

proposed to evaluate the performance of multitarget trackers such as the f-/IHT t racker 

(Reid, 2002) , t he Joint Integrated Probabilistic Data Association (JIPDA) tracker 

(i\ Iusicki and Evans, 2004), Multi-Frame Assignment (MFA) t racker (Deb et al. , 2002) 

and the Probability Hypothesis Density (PHD ) tracker (Mahler , 2004) . In (Schuh­

macher et al. , 2008) , a consistent performance metric, called the Optimal Subpattern 

Assignment (OSPA) metric, for evaluating multitarget t racking performance is pro­

posed. The OSPA metric provides more intui t ive result s t han previoll sly cl eveloped 
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metrics such as Hausdorff metric and Opt imal Mass Transfer (OrvIAT) metric (Hoff-

man and Mahler , 2004) . The expression of OSPA metric of order p with cut-off Co is 

given as (Schuhmacher et al. , 2008) 

(2. (min f Cl(cO) (Xi , Y7r (i) )P + cg(17, _ m))) lip 
17, 7r E TI"i= l 

(177, S 17,) 

(6 .1 ) 

Also, Cl;CO) (X , Y ) = Cl;co)(Y, X) if m > 17, for 1 S p S 00 . In t he above , Cl;CO) (x , y) = 

min(co, d( x , y) ) denotes t he distan ce between X , y E 1111 cut off at Co > 0 and ilk 

denotes t he set of permutations on {I , 2, ... , k}. Note that X = {Xl , X2, .. . , xm} and 

Y = {Yl , Y2, ... , Yn} are subsets of vll with m , 17, E No = {O, 1, 2, ... }, and that d(x , y) 

can be any well-defined distance such as Euclidean distance or the Hellinger distance. 

6.0.10 Proposed Q-OSPA Metric 

In tracking problems, most trackers eit her provide track quality or categorize t he 

estimated tracks as tentative tracks or confirmed tracks. However , t he OSPA metric 

does not take into consideration this useful information when computing the distance 

between t ruth and estimates. For example, assume that t here is only one target and 

the tracker gives two estimates with one of t hem being close to t he target and the other 

far away from the target. Consider two different trackers. In t he first tracker , the 

closer estimate has track quality 1 while t he other has track quality 0.1; in t he second 

tracker , both estimates have track quality 1. Int uit ively, t he first tracker gives better 

estimates because it gives a much lower track quality to the false t rack. However , 

the original OSPA metric is the same for both trackers as shown in Figure 6. 1 ( a) and 
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Figure 6.1: Comparison of OSPA and Q-OSPA metric with parameter ]J 

C = 10. 

F igure 6.1 (b). 

100 

2 and 

In order to resolve the above problem in the original OSPA metric, a new quality 

based OSPA metric (Q- OSPA) is proposed here. Denote the quality of X by W X = 

{ XX X} d I l ' f Y b ll!Y - {Y Y Y} Tl " 1 l' . W l 'W2" " 'Wm an tle qua It y o y I - Wl,W2 " " ,Wn ' letraC< qualtles 

are in the range [0, 1]. If m < n , append dummy value x* E IIJ) to set X such that 

X and Yare of the same dimension with the corresponding quali ty for each dummy 

value being 1. In addit ion, for all x* E IIJ) and all j = 0, 1, ... , n , d(x*, Yj) > Co and 

the distance between any two different dummy values xi, xi E IIJ) is great er t han c. A 

similar approach is applied when n < m. Furthermore, a penalty C(Xi, Yj ) is defined 

as 

Co, 

(6 .2) 

0, Xi E IIJ) and Yj E IIJ) 

where the optimal value of ex is 2 under t he triangular inequality constraint of general 
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metric (see Appendix A.I ). Then the Q-OSPA metric is given as 

(6.3) 

where 17, = max{IX I, IY I}. Here X and Y denote the sets after appending the dummy 

values. In (Schuhmacher et al. , 2008) , it has been shown that the original OSPA 

metric can be written as 

(6.4) 

and (J,~co) (X , Y) is proven to be a metric by using t he Minkowski 's inequality as long 

as (J,(co)(x, y) is a dist ance and (J,(co)(x, y )::; Co. In Appendix A.2 , J,(co)(x, y) has been 

proven to be a distance and it is a1ways less than or equal to Co. Therefore, J,~co) (X , Y) 

is also a metric. 
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Chapter 7 

Improve Tracking Performance by 

Classification Results 

The class information and target-class association could help to make a better pre­

diction of the target state and exclude unlikely predicted state because targets within 

the same class behave similarly. For example, if any t arget is associated to the low 

maneuver class, i.e. , a class of t argets with low maximum angular speed , then the 

predicted position of t rue target at next scan must be somewhere straight ahead. 

However , without such class information, t he t racker can not exclude the possibility 

that the target will make a U turn at next scan. An example, which is given in an 

companion thesis (He et at., 2010), that takes advantage of the classification infor­

mation to improve t racking performance is presented. Consider a scenario in which 

a target is moving with either constant velocity (CV) model or constant t urn rat e 
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(CVR) model with t he following state transit ion functions 

1 sinDT 0 l-cosDT 0 ~ D 
1 T 0 0 

0 cos nT 0 - sinnT 0 
0 1 0 0 

f cvU = and f CTR(-) = 0 l -cos DT 1 sin DT 0 D -0-

0 0 1 T 
0 sin nT 0 cosnT 0 

0 0 0 1 
0 0 0 0 1 

where the t rue t urn 0, rate is unknown to t he tracker. For CV model, t he target 

state is [x, X, y , y] and the covariance matrix is pEc~. For CRT model , the target state 

is [x, X, y , y, 0,] and the covaria.nce matrix is P5s..~R. Compared with state of t he CT 

model, state of CTR model has an addit ional term n . Now, consider t he case when 

the target model switches from CT to CTR. The reasonable init ial estimate of the 

angular speed 0, is zero if no prior information is available. Also, t he init ial estimate 

of the angular speed variance O'A has to be attached to pE'~ in order to make p cv a. 

matrix with the same size as p CTR. That is 

( 

p Cv 0) 
p CTR = 0 O'A 

The difference between the init ial angular speed and its true value is on = 0, - 0 = 

n. O'A should satisfy on <= 30'0 , i. e., the difference has to be within t he 99 percent 

confidence interval. Otherwise, t he tracker is likely to lose t he target. T herefore, a 

reasonable value for O'A is 0,2. In common IMlVI fil ter , the t rue value of 0, is unknown 

and ala.rge value has to be assigned to (To in order to guarantee on <= 30'0. However , 

if t he value is too large, t he estimated trajectory will follow the measurement and 
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thus degrade the t racking accuracy. The t racking results of a manoeuvering target 

with different value of (Tn is depicted in Figure 7.1. It can be found that t he t racker 

follows t he measurement if (Tn is large and the t racker loses t he target if (Tn is small. 

A feasible solution to t he above problem is to feedback the classification informat ion 

60~---,-----.----~--~~==~====~=====c==~ 
-- True trajectory 

55 - • - Tracking with reasonable variance 
- + - Tracking with large variance 
- e - Tracking with small variance 

* Measurements 
50 

45 

30 

25 .. --

20 

15 

10 L---~----~----~-----L-----L----~----~--~ 

o 10 20 30 40 
X(m) 

50 60 70 

Figure 7.1: Tracking v"it h difference variance (TA. 

80 

because all t he targets t hat belong to t he same class will have similar kinematic 

behavior and the class information provides some prediction to t he target kinematic 

parameters. In t his problem, t he feature measurement is t he angular speed of target 

and targets are classified based on t heir angular speed. Target t hat belongs to class 

C = [J-L , (T2] is very likely to have an angular speed lower t han (J-L + 3(T ) which is the 

maximum speed in 99 percent confidence interval. T herefore, a reasonable value of 

(Tn of t he targets in t his class is approximated by (Tn = ~ (J-L + 3(T ). 
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Chapter 8 

Simulations 

8.0.11 Class Estimation and Target Classification 

Three scenarios are considered in t his subsection. The first scenario verifies the class 

estimation effectiveness of the proposed algorithm by showing the evolution of iden­

t ified classes and the corresponding performance evaluation by t he Q-OSPA metric. 

In the second scenario , the target-to-class association of a target that switches be­

tween classes, which demonstrates t he capability of the proposed algorithm for target 

classification and target class switching detection, is presented. The third scenario is 

simulated to present an example of improving tracking performance by the classifica­

t ion information based on pure kinematic feature measurements. 

In the first scenario , feature data consisting of target speed estimates are collected 

over 200 scans by a multitarget tracker. The targets are randomly generated from two 

different true classes. Class one is with mean speed 10 m/s and standard deviation 

2 m/s and class two is with mean speed 20 m/s and standard deviation 3 mis, which 

are unknown to the classifier. The merging threshold {3 is 0.2 and the threshold for 
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ini t ialization of a new class fth is 0.001. At t he beginning, 10 targets for each class 

are generated randomly, t hen 5 newborn targets are randomly generated from each 

class every 20 scans. Over t ime, t he number of targets being tracked increases and 

t he corresponding evolution of the identified classes is shown in Figures 8.1- 8.3 with 

different values of Pd and PIa' 

The class estimation starts at time t = lOs . To simplify t he figure, all identi­

fied classes "vith class quality below 0.2 are removed. As shown in Figures 8.1- 8.3 , 

the proposed class estimation algorit hm identifies t he correct number of classes when 

10';<'1 quality classes are removed from t he identified class set . In addition, the class 

estimation algorithm provides accurate estimates for the true class even wh n t he 

number of available targets is limited as shown in Figure 8. 1(a) , Figure 8.2(a) and 

Figure 8.3(a). From the evolutions of t he identified classes shown in Figure 8. 1(a)­

(d), Figure 8.2(a)- (d) and Figure 8.3(a)- (d), it can be concluded t hat the identified 

classes converge to the truth as t he number of available targets increases. This con­

vergence property is due to the utilization of t he weighted MAP estimator t hat always 

converges to the trut h when enough samples are available. 

To verify the convergence property further , the error in the class est imation 111 

terms of Hellinger distance over the 200 scan s corresponding to Figures 8.1- 8.3 (wit h­

out removing the low quality estimated classes) is shown in Figure 8.4, from which 

it can be observed t hat t he convergence speed of class estimation increases as Pd 

increases and PIa decreases. The reasons for this are: 1) more correct feature mea­

surements are collected from the targets when Pd increases; 2) fewer false feature 

measurements , which are generated by false tracks , is given to t he classifier when PIa 

decreases. 
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Figure 8.1: Class estimate evolution over 200 scans (Pd = 1 and PIa = 0). 

In addition, in order to demonstrate that class estimation performance can be 

improved by introducing the class quality, 1000 Monte Carlo runs have been used 

with Pd = 1 and PIa = O. The class estimation errors with and without using class 

quality are compared in Figure 8.5 in terms of Hellinger distance. The order of the 

Q-OSPA metric p is 2 and the penalty constant Co is 0.5 in this simulation. From 

Figure 8.5 , it can be seen that the error of class estimation with using class quality 

is lower. 

In the second scenarIO , t he feature used to classify target is t he target speed . 
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Figure 8.2: Class estimate evolut ion over 200 scans (Pd = 0.9 and Pta = 1 X 10- 6m- 2 ). 

Mult iple targets are randomly generated from two t rue classes. Class one is with 

mean 15 mls and standard deviation 3 mls and class two is with mean 25 mls and 

standard deviation 2 m/s. Some targets switch between the two classes while the 

rest of the targets have a fixed target class. To demonstrate the effectiveness of the 

proposed target classification algorithm in classifying targets and detecting target 

class switching, a target that switches from class one to class two at time t = 70s , 

is used. T he probability of association between this target and class one and class 

two are shown in Figure 8.6(a) and Figure 8.6(b) , respectively. Since the true class 

35 



lVI.A.Sc. Thesis - He, Xiaofan 

0 .35----~--r· ·==:· E;;=sc:'tim~a=o'te==:d=:;Pc:'D::'F ==:of==:c==:las~s=:lll 

03

1 0.25' 

- Estimated PDF of class 2 
.. ·True PDF of class 1 

True PDF of class 2 

.t 0.
15

1 ! / \ .... . 1
02

1 / :\ .. YJ 
0.1 !./ \, \, .'" .................. \..... J 

00:1,---",_.:....'// \\>~:.... ----::---
o 5 10 15 20 25 30 

Target Speed (m/s) 

(a) Scan 15 

... \ 

.f '\ 
.I \, 

0.1 / \ 

0.05

0l 

...... .-:) / ····· .... ,.;.:.:,~~ ". 
.--~="---"'-•. --"'.--~ .. : :. .. :..':.;: .. ~ . ..:. --.:.:::=.-.. 

o 5 10 15 20 25 30 
Target Speed (m/s) 

(c) Scan llO 

lVIc:Master - Electrical Engineering 

0 .35,-------~--r==:~===:'==:=:;===:==:~~1 
"'Estimated PDF of class 1 

0.3. I- Estimated PDF of class 2f 
. ·True PDF of class 1 . 

0.25f 
I ... ·· True PDF of class 2 

~ 0.2 
//. ~"'\ .D 

'" .D .t 015 

0.1 

0.05 _j/\~M 
5 10 15 20 

Target Speed (m/s) 

(b) Scan 50 

25 30 

0.35,-------~--r==:~==c=======e===j] 
"'Estimated PDF of class 1 

0.1 

0.05 

- Estimated PDF of class 2 
.. ·True PDF of class 1 
..... True PDF of class 2 

(d) Scan 200 

Figure 8.3: Class estimate evolution over 200 scans (Pd = 0.6 and Pta = 2 X 10-6m-2 ). 

is unknown to the classifier , two best matching estimated classes are selected when 

depicting the target-to-class association probability in Figure 8.6(a) and Figure 8.6(b) . 

Although there is a delay about 2 to 5 scans, the proposed algorithm can correctly 

classify the target as shown in Figure 8.6(a) and Figure 8.6(b). 

The third scenario shows that the classification results based on kinematic feature 

measurement can also be used to improve the tracking performance. The feature 

used to classify target is the target angular speed in this scenario. The true target 

class is of mean Me = 20 deg/s and standard deviation a e = 3 deg/s. The target is 
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Figure 8.4: Error of class estimation with different tracking condition. 

moving with either constant velocity model or a constant turn rate model and there 

is a possible motion model switch every 20 scans. In the first case, the classification 

information is not available to the tracker . In the second case, it is assumed that 

the class estimation and target classificat ion have been done for this target and the 

classification information is fed back to the tracker. To verify the performance im-

provements , 5000 Monte Carlo runs are used . The position Root Mean Squared Error 

(RMSE) of the target state estimate is shown in Figure 8.7, from which , it can be 

concluded that the tracker gives better RMSE performance when the classification 

information is available. 
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Figure 8.5: Comparison of t he error of class estimation with and without class quality. 

8.0.12 Application of Q-OSPA Metric in Evaluating Multi-

target Trackers 

As mentioned in Chapter 6, the proposed Q-OSPA metric is capable of measuring the 

performance of general multitarget trackers by replacing the class quality by track 

quality. In this subsection, examples of utilizing the proposed Q-OSPA metric to 

evaluate the performance of JIPDA tracker , MHT tracker and Multiframe Assignment 

(MFA) tracker are shown in Figure 8.8, Figure 8.11 and Figure 8.13 , respectively, and 

the performance evaluations given by the original OSPA metric are also provided for 

comparison. Several simulated targets are moving in a 2000m x 2000m surveillance 

region. The probability of detection and the density of false alarm of the sensor are 

Pd = 0.99 and PIa = 1 x 10- 6m- 2 and the measurement variance of the sensor in both 
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Figure 8.6: Detection of target class switching. 

X and Y direction is 0.9m2
. For both the original OSPA metric and the proposed 

Q-OSPA metric, the parameters are given as p = 2 and Co = 3m. The track quality 

for the MHT tracker and the MFA tracker is computed according to the equations in 

(Sinha et al. , 2006) . 
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In Figure 8.9 (a) , the t rack quali t ies of the three estimated tracks are 0.961 2, 

0.5604 and 0.6485 at t ime t = 6s. T he original OSPA metric does not consider t hat 

t rack quality and treats all t he estimated t racks with quality l. Thus, t he original 

OSPA metric gives a lower error value t han the Q-OSPA metric. In Figure 8.9 (b), the 

quali t ies of the three estimated t racks increase to 0.9967, 0.9838 and 0.9988 at t ime 

t = lOs, respectively. The error value given by original OSPA metric and the proposed 

Q-OSPA metric are almost t he same as shown in Figure 8.9 (a) , which implies t hat 

t he Q-OSPA metric provides the same value as the OSPA metric when quality of 

t he estimated t rack approaches l. From Figure 8.9(a) , it can be observed that t he 

original OSPA metric gives almost t he same value at time t = 6s and t = lOs. This is 

intuit ively incorrect because the improvement in track quality of the estimated t rack 

cannot be seen from the original OSPA metric. However , t he error value given by the 

proposed Q-OSPA metric decreases as the quality of the estimated t rack increases, 

which is more intuit ively appealing. In addit ion, as shown in Figure 8.10( a) , t he 

JIPDA t racker gives a false track at t ime t = 82s with t rack quality 0.01 2. The 

proposed Q-OSPA metric considers t he fact t hat t he quality of the false t rack is low 

and thus gives a lower and intuitive better error value than the original OSPA metric. 

In Figure 8. 12(a) , t he track qualit ies of the t hree estimated t racks given by MHT 

tracker are 0.8434, 0.2265 and 0.1842 at t ime t = 4s. In addit ion, as shown in 

Figure 8. 12(b), t he NIHT tracker gives a false t rack at t ime t = 18s with track quality 

0.0392. The proposed Q-OSPA metric considers the fact that the quality of t he false 

t rack is low and thus gives a lower error value t han the original OSPA metric. 

In Figure 8.14(a) , the track qualities of the t hree estimated t racks given by MFA 

tracker are 0.9456, 0. 7632 and 0.1440 at t ime t = 7s. In addit ion, as shown in 
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Figure 8. 14(b), t he MFA tracker gives a false t rack at t ime t = 42s with t rack quali ty 

0.0392. The proposed Q-OSPA metric consider the fact that the quali ty of the false 

track is low and thus gives a lower error value than the original OSPA metric. 
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Chapter 9 

Conclusions 

In t his thesis, a joint class ident ification and target classification algorithm for mul­

t itarget t racking was proposed . The proposed algorit hm is not only capable of iden­

t ifying the class based on target feature measurements, but also of providing correct 

target-to-class association even in the case of target class switching. In t he class 

identification part of the proposed algorithm, a weighted i'vIAP estimator , which was 

followed by a merging procedure to cluster similar classes, was adopted to estimate 

the probability density function of a class. In the target classification part , a soft 

target-to-class association approach was applied on the basis of the ident ified classes . 

r·/Ioreover , a new concept called class quality was int roduced to improve class identi­

fication and target classification accuracy. Extensive simulations were presented and 

the results verified t he efficiency and effectiveness of the proposed algorithm. 

In addit ion, a new metric called the Q-OSPA for evaluating the performance of 

mult iple object tracking algorithms was proposed. The proposed Q-OSPA metric 

considers the quality of t he estimates and thus provides more intuitively appealing 

results t han the original OSPA metric when the quality of estimates is available. 
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Moreover, if the quality of the estimate is not available, the Q-OSPA metric reduces 

to the original OSPA metric. The proposed Q-OSPA metric is not only able to 

effectively evaluate the class identification results as shown through simulations, but 

also to quantify the more general multitarget tracking performance by replacing the 

class quality vvith track quality. As a result , the proposed Q-OSPA has applications in 

quantifying the performance of multitarget trackers like the MHT, JIPDA and f.,/IFA. 
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Appendix A 

Appendix 

A .I The optimal value of a 

Consider t he penalty for a false estimate x wit h quality w X and a dummy truth y with 

qualityw Y = 1. Int uit ively, t he estimation error is wXwY(l(CO) (x, y) =wXw }"co =wxco 

because y E 1Dl, i. e., the error for this false estimate is 0 when W X = O. Accord­

ing to (6.3) and (6.2), t he error given by the Q- OSPA metric equals d(CO) (x , y) = 

wX(l(co) (x , y) + (1 - wX)co/ a.. Therefore, d(co) (x, y) approaches the opt imal result 

w X Co as a. increases. 

However , d(co) (x, y) has to satisfy t he triangular inequality. Consider a case such 

that x E lDl, y, z ¢:. 1Dl, (l(co)( y, z) = Co and wY ---7 0, wZ ---7 O. In t his case, it can be 

verified t hat t he t riangular inequali ty d(co) (x, y) + d(co) (x, z ) 2': d(co)( y , z) is equivalent 

to a. ::; 2. Therefore , the optimal value for a. is computed as follows: 

0.* arg n~n Id(co) (x , y) - w X w Y Co I 

s.t. a.::; 2 (A. l ) 
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Then, it is trivial to find that the optimal solution is a* = 2. 

A.2 Proof That d (co) (X, y) Is A Distance 

For fixed p E [1 ,00] and c > 0, it is trivial to prove that cl(eo)(x , y) 2: 0 and t hat cl(eo) 

satisfies t he identity and symmetry properties. Therefore, only the proof of triangular 

inequality is presented here. The following inequality is worth mentioning before the 

formal proof of triangular inequality. For all a, b E [0, 1]' the following inequali ty 

holds: 

1 - a - b + ab (1 - a)(1- b) 

> 0 (A.2) 

The triangular inequality is proven in t he following cases separately: 

Case A : x , y , z ¢: 1Dl 

In t his case, the triangular inequality is equivalent to 

wXwY(1(eo) (x , y) + (1 - wXwY)co + wXw Z(1 (eo\x, z ) + (1 - wXwZ)co (A.3) 

2: w ZwY(1 (eo)(z, y) + (1 - wZwY)co 

Since (1(eo)(x , y) + (1(eo)(x ,z) 2: (1(eo)(y ,z), t he above inequality holds if t he following 

inequality holds: 

X Y v Z - (co) X Z v Z - (co) 
(w w - w ' w)d (x, y) + (w w - w ' w)d (x, z) + 

(A.4) 
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According to the symmetric property, it can be assumed t hat w Z 2: w }/ . 

1) If w Y :::; wZ :::; wx 

-(col - (col x y x Z y Z 
Left side of (A.4) > 0 x d (x, y) + 0 x d (x, z ) + (1 - w w - w w + w wu)co 

Left side of (A.4) 

> 0 

+ (1 - w
y 

wZ)co 

> 0 + 0 + (1 - w y wZ) Co 

> 0 
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Left side of (A.4) wY (w z - wX)(co - eto ) (x , y)) + wZ (wY - wX)(co - d(co) (x, z )) 

+ (1 - wY wZ)co 

> 0 + (1 - wY wZ)co - wZ(WX - w);)(co - d(co) (x, z )) 

> 0 + (1 - w
y 

wZ)co - wZ (w X - wY)co 

> (1 - wXwZ)co 

> 0 

Case B: x E ][J), y , z ¢. ][J) 

In this case, t he triangular inequality reduces to 

Since y, z ¢. ][J), then d(co) (y , z ) ~ Co . Then the above inequality holds. 

Case C: X, y E ][J),z ¢.][J) or x,z E ][J), y ¢. ][J) 

In t he case of x, y E ][J), z ¢. ][J) , the t riangular inequali ty reduces to 

(A.7) 

(A. 8) 

(A.9) 

Obviously, t he shove inequality holds. By the symmetry property, it can be verified 

that the triangular inequality holds when x, z E ][J), y ¢. ][J) . 

Case D: x, y , z E ][J) 
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In this case, t he triangular inequality reduces to 

Co+Co > Co (A. 10) 

which obviously holds. 

Case E: y ,z E ]]J),x t/:.]]J) 

In this case, the triangular inequality reduces to 

x 1 x x 1 x 
w Co + 2 (1 - w ) Co + w Co + 2 (1 - w ) Co > Co (A.ll) 

which obviously holds. 

Case F: z E ]]J),x, y t/:.]]J) or y E ]]J),x,z t/:.]]J) 

In the case of z E ]]J), x, y t/:. ]]J), the triangular inequality reduces to 

)( y -(col 1 x )( 1 x y 1 Y 
wf 

W d (x, y ) + 2(1 - w )co + wf 

Co + 2(1 - w )co ~ w Co + 2(1 - w )co 

(A.12) 

which is equivalent to 

x y - (col 1 x y 1 )( 1 y 
w w d (x , y)+2(1 -w w )co+

2
(1 +w f )co-

2
(1 +w )co > 0 

(A.13) 
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Then 

Left side of (A.13) 

~Ic~Iaster - Electrical Engineering 

> 0 + (1 - wxw }/)co + ~(wx - wY)co 
2 

1 x )/ 1 y )( 
"2 (1 - w w )co + "2 (1 - w ) (1 + w" )co 

> 0 (A. 14) 

By the symmetry property, it can be verified that the triangular inequality holds 

when y E ]]J), x , z tt ]]J) . 
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