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Abstract 

In this thesis, I endeavor to solve the remaining problem in Dr.Feng's paper[8], where 

Dr.Feng obtain the Large Deviation Principle of the following distribution 

+00 
ITa,,,,(dx) = Ca exp(>'8(a) Lx;)PD(a)(dx),a > O. 

i=1 

Generally speaking, the Large Deviation Principle can yield the limit distribution if 

its rate function has only one zero point. Unfortunately, however, the rate function 

in [8] involves another parameter >.. When 8(a) = -loga,>. = -k(k + l),k ~ 1, the 

rate function has exactly two zero points, thus by way of the Large Deviation Principle, 

we can hardly know its limit distribution. Therefore, I try to figure out another 

way to find it. Since P D (a) (dx) is the limit of the ordered Dirichlet distribution 

D(K'=-1"" , K'=-1) as K --t +00, then ITa,,,,(dx) is the limit of 

on D.. = {(X1,X2, .. ·)lx1 ~ X2 ~ ... ,:E~~xi = I}, as K --t +00. Hence, we could 

first try to find the limit of 

as a --t 0, then manage to deal with ITa,,,,. In this thesis , I only find the limit 

of Ca ,2exp(>'loga(xI + xD)B(a,a)(dx1), as a --t 0,>. > 0, which is the case when 

K = 2,8(a) = -loga,>. < O. The result is quite unexpected! 
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Chapter 1 

Introduction 

Unlike any other species, which once dominated the earth as dinosaurs did, we human 

beings constantly explore the origin of life, and even, once in a while, reflect on their 

own and ask who we are, where we come from and where should we go. Among various 

fantastic theories as to these questions, Charles Darwin's Evolution Theory[4] seems 

to have given us a promising path toward answer in 1859. Ever since then, evolution 

theory and natural selection were commonly accepted and studied by biologists. 

But why do organic creatures evolve in this way? Mendel, one of Darwin's 

contemporaries, came up with an idea which explains the mode of inheritance. Based 

on his famous breeding experiment with pea plants, he postulated there is an inherent 

mechanism governing inheritance, with some basic units playing a vital role. More­

over, thanks to the breakthrough in molecule biology, these basic units are proved to 

be DNA molecule with beautiful double helix structure[15]. Within cells, DNA is orga­

nized orderly in line into long structure called chromosome, they are duplicated before 

cell division, then each of these cells inherits a copy of similar chromosomes from the 

previous cell. Each chromosome consists of a DNA molecule, a RNA molecule and 

some other giant protein molecules, among which DNA actually governs the formation 
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of almost all protein molecules which are the basic components of living creatures. 

Thus, this process guarantees that off-springs always resemble their parental species in 

some way. Usually only one piece of the linear structure of a chromosome is responsible 

for the growth of a particular property, and they are the so-called genes. The locations 

where these genes are located are called locus. On each of these locus there is usually 

some alternatives called alleles. In the process of chromosome duplication, a particular 

gene may be wrongly chosen as one of its alternatives, hence mutation occurs. This 

is the original impetus of the evolution according to Charles Darwin's opinions in [4]. 

In addition, for some species, their chromosomes within each cell can be paired, or 

grouped in some fixed style, whereas, for some species, their chromosomes may be not 

capable of doing this. It is proved that these pairs or groups in a locus together are 

responsible for formation of some characters. Species with these structures are usu­

ally called diploid, polyploid, or possibly called haploid, of which, diploid is the most 

commonly found to exist on earth so far, while the others are also widely applied to 

breeding which may possibly give us new species, such as rice, wheat and corn, and 

finally it may aid the treatment of food crisis in this world. 

All these topics have been thoroughly studied by biologists. Mathematicians, 40w­

ever, especially statisticians, like Fisher, also make substantial contribution to this 

subject. Wright-Fisher Model is one of the famous genetic models originally proposed 

by Fisher implicitly in his research works, while it is Wright who explicitly constructed 

this model in his paper later on, and that's why the model is given such a name. In 

math, it is actually a discrete-time Markov chain. With the assumed gene pool, to­

tality of all possible alleles in one specific locus, becoming bigger, this Markov chain 

is also complexified. J.F.C.Kingman introduced a coalescent process [13], based on 

which we can find the most frequent gene type finally, that means there is a common 

ancestor, hence, it is, at least partially, an answer to the problem where we come from. 

In this model, each generation need to take an equal amount of time to evolve 

2 



and the number of individuals remains the same. Suppose, however, the evolving 

time is shrinking down to zero in a particular way, then this Markov chain can be 

approximated by a diffusion process in the sense of probability, please refer to [7]. 

Though the diffusion process loss some information, it is easy to handle mathematically. 

Therefore, research papers have sprung up in late 20th century. In the meantime, the 

gene pool was also assumed to be countably infinite. And the diffusion process turns 

out to be an infinite dimensional diffusion process. Please refer to [6], where the 

diffusion process was rigorously constructed by Ethier and Kurtz. To our surprise, 

the stationary distribution of this diffusion is the Poisson-Dirichlet distribution which 

will be briefly introduced in chapter 3. In fact, J.F.C.Kingman first introduced the 

distribution in [13], where he tended to find the limit distribution of ordered Dirichlet 

distribution. 

In the frame work of this infinite dimensional diffusion process with stationary 

distribution- Poisson-Dirichlet distribution, the asymptotic behaviors under various 

conditions have bccn studied thoroughly by Dr.Shui Feng, with the results (some with 

collaborators) collected in [9]. Among all these results, the large deviation results 

with small mutation rate [8] particularly captured my attention because of Dr.Feng's 

introduction. He pointed out that this result, surprisingly, has an intimate connection 

with J.F.C.Kingman's Coalescent structure. Generally speaking, if the large deviation 

principle holds and its rate function has a unique zero point, then the law of large 

numbers will be readily obtained, but there is no such luck when rate function has more 

than one zero point, this will be clarified in Chapter 2. Unfortunately, the rate function 

in Dr.Feng's paper is also determined by another variable,\, when'\ = -k(k+1), k 2: 1 

the rate function exactly has two zero points. On the contrary, for ,\ =I -k(k + 1), the 

rate function has only one zero point, hence its limit distribution is the Dirac measure 

at the zero point. One aspect of this that is not satisfactory is that it doesn't give us 

the actual limit distribution as mutation rate gradually vanishes for ,\ = -k(k + 1). 
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Therefore, this may not shed light on the evolution of the remote ancient creatures at 

the very beginning of life on earth, when the effect of mutations is likely to have been 

quite weak. 

Although I can not solve this problem completely, I was able to make some progress, 

with unexpected reslilts. In this thesis, I endeavour to find the limit distribution of a 

certain distribution associated with Wright-Fisher Model with selection. 
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Chapter 2 

Preliminaries 

In order to make this thesis friendly readable, some basic probability concept and 

biology ideas seems to be quite necessary to be introduced here. vVe only give a brief 

introduction, for more details, please refer to [5], [2], [1], and the references therein. 

2.1 Probability Space, Random Variable 

and Conditional Expectation 

2.1.1 Probability Space, Random Variable 

Let ,0 be a given set, consisting of outcomes of an experiment, we call it sample space, 

and let F be a IT-field in ,0, the elements of F are called events in the context of 

probability. Together with the probability measure P, the triple (,0, F, P) is called 

probability space. 

A map X : ,0 I-t S, where S is some topological space, is called F-measurable if 

X-l(U) = {w E ,0 : X(w) E U, U is any open set in S} E F. 
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In probability space (D, F, P), any measurable map is called random variable. We 

denote a(X) as the a-field generated by random variable X, it is the smallest a-field 

containing all the sets X-l(U), where U is open, that is 

a(X) = n{1i : 1i a - field co~taining X-l(U), U C S open}. 

2.1.2 Conditional Expectation 

If In IX(w)ldP(w) < 00, then the number 

E(X) := 1 X(w)dP(w) = is xd/-Lx(x) 

is called the expectation of X (w.r.t. P), where /-Lx(-) := P(X-1
(.)), and it is called 

the distribution of X. Furthermore, consider a sub a-field of F, say g, define P as 

P(B) = i XdP,B E g. 

Then P « P( P is absolutely continous with respect to P), by Radon-Nikodym 

theorem, ~~ exists a.e. in P, such that VB E g, 

thus, E(XIY) := ~~ is called the conditional expectation. Specifically, when we take 

X to be IB(Y), then E(h(Y)IY), denoted by P(Y E Big), is called the conditional 

probability. 

Proposition 1 (Properties of Conditional Expectation). [5} Suppose X, Yare random 

variables; a, b, c are constants; 9 is a sub a-field) and E(XIy), E(YIY) both exist. 

1. If E(aX + bY + elY) exists) then E(aX + bY + clg) = aE(XIy) + bE(YIy) + c. 

2. If X and 9 are independent) then E(XIY) = E(X). 
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3. IfY is 9 measurable, then E(YI9) = Y. 

4. If X 2: Y, then E(XI9) 2: E(YI9), especially, E(XI9) :::; E(IXI19). 

5. If <p is convex, and E(<p(X)J9) exists, then <p(E(XI9)) :::; E(<p(X)IQ). 

6. If 91, 92 C F and 91 C 92, then E(E(XI92)191) = E(E(XI91)192) = E(XI91). 

Remark 1. Proposition (1) is linearity of conditional expectation, (2) and (3) are 

both properties different from expectation} (4) and (5) are monotonicity of conditional 

expectation and Jensen Inequality respectively. (6) is a very important property which 

is widely used in Martingale and Markov Process. Actually, if 9 is finite a-field, then 

the definition in this thesis is identical with that in elementary textbook of probability 

theory. 

2.2 Markov Chain and Diffusion Process 

Markov chain and diffusion process are both Markov process, having Markovian Prop­

erty and named after it. By Markovian property, loosely speaking, that is, the current 

statistical law of the process depends only on the current state, independent of its 

history; or precisely, 

(2.1) 

Markov process is a rather widely studied probability model and is abundant in re­

search results; on the contrary, there are a few non-Markovian models which, unfortu­

nately, hardly give birth to rich research results like Markov process. 

2.2.1 Markov Chain 

Let (8, S) be a measurable space. A function p : 8 X 8 I-t lR is said to be a transition 

probability if 
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1. For each XES, A 14 p(x, A) is a probability measure on (S, S); 

2. For each A E S, X 14 p(x, A) is a measurable function. 

Xn is called Markov chain with transition probability p if 

where Fn = O"(Xk' 0 :S k :S n). 

Given a transition probability p and initial distribution f.L on (S, S), a set of finite 

dimensional distributions can be defined as follows 

If we suppose that (S, S) is nice, because of Kolmogorov's extension theorem [16], 

we can construct a probability measure PJL on sequence space (S{O,l,. .. }, S{O,l, ... }), such 

that the coordinate maps Xn(w) = Wn, and have the desired distribution Pw 

Remark 2. When f.L = ox, the Dirac measure at x, then Pox is abbreviated as Px. For 

any probability measure v, Pv(A) = J v(dx)Px(A). 

Remark 3. When S is a countable space, we only need to consider one-step transition 

probability matrix P, whose (i, j) element Pij is 

P(Xn+1 = jlXn = i). 

The two-step transition probability Pij (2) = L-kES PikPkj , according to the Chapman 

-Kolmogorov equation. Hence, two-step transition probability matrix P(2) = p2. 

Example 1. Suppose S = {O, I}, and 
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then 

Pf-L(Xn = 0) = L PiO(n)p,( {i}) = Poo(n)p,(O) + Ho(n)(l - p,(0)). 
iES 

Since 

(

1- a a)n 
P(n) = 

(3 1-(3 

1 ((3 + a(l - a - (3)n a - a(l - a - (3)n) , 

= a + (3 (3 - (3(1 - a - (3)n a + (3(1 - a - (3)n 

thus, 

Pf-L(Xn = 0) = ~(3 + (1 - a - (3)"(p,(0) - ~(3) 
a+ a+ 

and 

P (Xn = 1) = _a_ - (1- a - (3)"(p,(0) __ (3_). 
f-L a+(3 a+(3 

Letting n ----+ 00 

and 

independent of p,; moreover, put v(O) = a!f3' v(l) = a~f3' we get 

and 

which suggests that the distribution of Xn remains the same with the initial distribution, 

hence we call v the stationary distribution. 
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2.2.2 Diffusion Process 

Diffusion process , unlike Markov chain, is a Markov process with continuous sample 

paths (i.e.{Xt(w)lt ;::: 0, for w fixed}). The existence and construction of diffusion 

process produce several beautiful probability theories: firstly, stochastic integration 

was originally came up with by a Japanese mathematician Ito, who tried to solve 

Kolmogorov's equation and construct a Markov process in sample path space [12], 

ever since stochastic integration was introduced, he found a diffusion process defined 

by stochastic differential equation. Secondly, the family of transition probabilities 

determine a semigroup, which under some conditions can be uniquely generated by 

an operator; and the converse is also true. This theory was constructed by Hille 

and Yosida. The operator is often called generator or infinitesimal operator. Finally, 

Dirichlet form on a function space can also completely determine a diffusion process. 

In this thesis, we focus on the second theory [7]. {Xt, t ;::: o} is a diffusion process if it 

satisfies (2.1) and its sample paths are continuous. 

A function P(t,x,A) defined on [0,00) x 8 x B(8) is called time-homogeneous 

transition function if 

1. P(t,x,') is a probability measure on B(8), (t,x) E [0,00) x 8; 

2. P(O,x,·) = 6x O, x E 8; 

3. P(·,·,A) is a measurable function on [0,00) x 8,A E B(8); 

4. P(t+s,x,A) = J P(s,y,A)P(t,x,dy),s,t;::: O,x E 8,A E B(8),. 

Probability measure f-t given by f-t(A) = P(X(O) E A) is called the initial distribution 

of X. 

A transition function for X and the initial distribution f-t determine the finite 
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dimensional distribution of X by 

P(X(O) E Ao, X(tl) E Al ,'" , X(tn) E An) 

= r .. , r P(tn - tn-I, Yn-l, An)P(tn- l - tn- 2, Yn-2, dYn-l) JAo JAn _ 1 

Conversely, given a transition function, we can define the finite dimensional distri­

bution as above. Under some consistent conditions, we can construct a measure PJ.t 

on (ST, ST), owing to Kolmogorov's extension theorem, so that the coordinate maps 

Xt(w) = Wt, and have the desired distribution. That is, under PJ.t, Xt(w) is a Markov 

process starting with distribution f-li but the sample path properties are still unknown, 

and may be not continuous. 

Let S be a metric space, denote NI(S) as the collection of all real-valued, Borel 

measurable functions on S. Moreover, B(S) c M(S) is the Banach space consisting 

of bounded functions with norm Ilfll = SUPxES If(x)li and C(S) c B(S) is the space 

of bounded continuous function. 

Let the initial distribution f-l = Ox, XES, and denote Pox as Px' For J E B(S), we 

define 

Pd(x) = J f(y)P(t, x, dy). 

Applying (4), we have, 

Pt+sJ(x) = J f(y)P(t + s, x, dy) 

= J[J J(y)P(s,z,dy)]P(t,x,dz) 

= J psJ(z)P(t, x, dz) 

= Pt(Ps)(J)(x) 

= Pt 0 Psf(x). 
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Hence, PHs = Pt 0 Ps; then {Pt , t ;:: O} is a semigroup under composition. 

If 

lim IIPt! - fll = 0, Vf E C(S), 
t-tO _ 

then {Pt , t ;:: O} is said to be strongly continuous. If II Pt II ::; 1, Vt > 0, then {Pt , t ;:: O} 

is a contraction semigroup. If Vf E C(S), Vt > 0, and Pt! is positive whenever f(x) 

is, then {Pt , t ;:: O} is said to be positive. A semigroup with these three properties is 

is called a Feller semigroup. 

The generator of a semigroup {Pt, t ;:: O} on C(S) is the linear operator G defined 

by 
. 1 

Gf = hm -{Pt! - f}. 
t-tO t 

Remark 4. G is usually a differential operator. It is generally defined on C2 (S) or 

COO (S), called core ofG. Then the domain V(G) ofG is the closure of its core in C(S). 

Furthermore, we say G satisfies the positive maximum principle if Gf(xo) ::; 0, 

wheneversuPXESf(x) = f(xo) > O,f E V(G),xo E S. 

Theorem 1 (Hille-Yosida Theorem). [7} Let S be locally compact, the closure G of 

a linear operator G on C(S) is single-valued and generates a Feller semigroup if and 

only if 

1. V(G) is dense on C(S); 

2. G satisfies the positive maximum principle; 

3. range R().. - G) is dense in C(S) for some).. > O. 

Example 2 (Ornstein-Uhlenbeck Process). [17} The transition probability function of 

0- U process is 

P( d) 1 ( (y - xe-
t )2)d 

x, t, y = J21f(1 _ e-2t ) exp - 2(1 _ e-2t) y. 

12 



By the definition of generator, the generator of G turn out to be 

Gf(x) = /'(x) - x{(x). 

Indeed, 

1+00 1 (y - xe-t )2 
Pd(x) = -00 J21f(1 _ e-2t) exp( - 2(1 _ e-2t ) )f(y)dy 

y - xe-t 

(set z = V ) 
1 - e-2t 

1+00 1 Z2 
= ICC exp( --)f(zVl - e-2t + xe-t)dz. 

-00 v21f 2 

If f E Ct (second order continuous differentiable with compact support), by Taylor's 

expansion, we have 

f(zVl - e-2t + xe-t ) = f(xe-t ) + VI - e-tz/ (xe-t ) (2.2) 

1 t2/1 t 1 t2/1 /I t + '2(1 - e- )z f (xe- ) + '2(1 - e- )z (f (8d - f (xe- )), (2.3) 

where 81 E [xe-t , zVl - e-2t + xe-tl. Likewise, 

where 82 E [x, e-txl. Therefore if we substitute 2.3 and 2.4 into Pd, it ends up with 

Then 

IIPd(x) - f(x) - (/' (x) - x/ (x))11 
t 

:::; I e-
t 
t- 1 + llllx/ (x)11 + 11 -2:-2t 

Illl' (xe-t ) - /' (x)11 

+ 11-
2
:-

2t 
_ 1111/' (x)11 + (e-t2~ 1)2llx2/, (82)11 

+ 11-
2
:-

2t 
III/' (81) - /' (xe-t)11 

-t 0, as t -t O. 
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Thus, the generator is Gf(x) = j" (x) - xl (x). Let t ~ +00, then 

1
+00 1 Z2 

lim Ptf(x) = 1U) = !<C exp( -- )f(z)dz, 
t-t+oo -00 V 21T 2 

where 1(dx) is the standard normal distribution. Actually, put f-l = 1, then 

= 1(A). 

It suggests that the distribution of Xt will remain the same if Xt starts with 1, hence 

1 is the stationary distribution of 0-U process. In fact, f-l is the stationary distribution 

of X, if and only if J Gfdf-l = 0, f E V(G) [7]. 

2.3 Asymptotic Theory in Probability Theory 

Definition 1. Given {Xn, n ~ 1} and X J 

1. Let Fn(Y) = P(Xn S y), F(y) = P(X S Y)J if Fn(Y) converges to F(y) at the 

continuous point of F(Y)J then we say Xn converges to X in distribution. 

2. Iflimn-t+oo P(IXn - XI ~ E) = 0, 'i/E > 0, then Xn converges to X in probability. 
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X(w)) 1, then Xn converges to X almost surely, 

abbreviated as a.s .. 

Definition 2. Suppose {P,n, p, : n ~ I} is a family of probability measures. We say P,n 

converges to p, weakly, which is denoted as P,n ~ p" if 

lim r f(x)P,n(dx) = r f(x)p,(dx), Vf E C(S), 
n~+ooJs Js 

where S is metric space, C(S) is bounded continuous function space. 

Proposition 2. Suppose {P,n, p, : n ~ I} is a family of probability measure on metric 

space S, then the following statements are equivalent: 

w 
1. P,n -----7 p,. 

2. For any uniformly continuous function f(x), we have 

lim r f(x)P,n(dx) = r f(x)p,(dx). 
n~+ooJs Js 

3. For any closed set F, limsuPn~oop,n(F) ~ p,(F). 

4. For any open set G, liminfn~oo P,n(G) ~ p,(G). 

5. For any set A with p,(8A) = 0, then limn~oo P,n(A) = p,(A). 

Remark 5. (5) is equivalent to the convergence in distribution. 

Definition 3. Given {Xn,X,n ~ I}, define 

If ¢n, ¢ < 00, we call ¢n, ¢ the moment generating function of Xn and X respectively. 

Theorem 2. Let ¢n (t) , ¢( t) be the moment generating function of X n, X respectively, 

if ¢n(t), ¢(t) both exists for It I ~ h, h > 0, and 

¢n(t) -----7 ¢(t), Viti ~ h, 

then Xn converges to X in distribution. 
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Proof: please refer to [11] [3]. In probability theory, we say two events A and B 

are independent if and only if 

P(AB) = P(A)P(B). 

Inductively, n events AI,· .. ,An are independent if 

k 

P(A1 ••• A ik ) = IT P(Aij ), 2::; k ::; n. 
j=1 

A family of events {At, t E T} is said to be independent if any finite members of them 

are independent. 

Definition 4. Two O"-field F and 9 are independent if 

P(AB) = P(A)P(B), VA E F, BEg. 

Similarly, n O"-field are independent if AI,··· ,An are independent for all A1 E 

F 1,··· ,An E Fn. Therefore, two random variables X and Yare independent if O"(X) 

and O"(Y) are independent. 

Remark 6. By the definition of expectation, for two independent random variable X 

and Y the following must hold, 

EXY = EXEY. 

Furthermore, E(XIY) = EX. 

Theorem 3 (Borel Cantelli Lemma). Suppose {An,n ~ I} is a sequence of events. 

00 00 

p(n U An) = o. 
n=l k~n 
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2. If, additionally, {An' n ::::: I} are independent, then 2:~=1 P(An) = 00 can yield 

00 00 

p(n U An) = 1. 
n=l k?:.n 

In reality, when we toss a coin consecutively, those coin tosses can be regarded as 

independent events. Now, similarly, we consider a sequence of independent random 

variables X n , n ::::: 1, each of them follows Bernoulli distribution 

P(Xl = 1) = p, P(Xl = 0) = 1 - p, 0 < p < 1. 

Then Sn = l:r-lXk is the frequency of taking 1 during n times experiments. Naturally, 
n n 

we ask what does the frequency finally approach as n goes to infinity? The next 

theorem is a beautiful answer. 

Theorem 4 (The Law of Large Numbers). If {Xn,n > I} are independent with 

identical distribution and EIX11 < oo,then 

1· L:~=l X k EX Ull = 1 a.s .. 
n--->+oo n 

Proof: Please refer to [3], [11]. 

Remark 7. Thanks to the theorem stated above, limn--->oo ~ = EX1 = Pi thus, when 

we toss a coin consecutively, the frequency of appearing head would be approximately 

1 
2' 

Since limn--->oo Sn = EX1 = p a.s., then 'tiE > 0, 
n 

Or equivalently, 

lim P(U
oo 

{I
S
k

k 
- pi::::: E}) = 0, 

n--->oo 
k?:.n 
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thus limn->oo P(I ~ - pi 2: E) = O. Usually {I :n - pi 2: E} is called rare event for 

its probability of occurrence is tiny. Under some specific conditions, however, the 

estimation of its probability is quite indispensable, such as the frequency of earthquake, 

or the bankruptcy in industry. Therefore, the more accurate the more beneficial. It's. 

obviously insufficient to know only the limit of n~ - pi 2: E}. Fortunately, we can 

obtain a more accurate result. 

On one hand, by Chebyshev's inequality, Va > 0, x E (p,l], we have 

so 

Thus 

P( Sn 2: x) = P( O'.Sn 2: O'.nx) 
n 

:::; e-cmxEeQSn = e-QnXEeQL,k=lXk = e-QnX(EeQXl)n 

_ e-n[Qx-logEectX1 ] - , 

2. logP(Sn 2: x) :::; -(ax -10gEeQx1
), 0'. > o. 

n n 

= - sup( ax - log EeQX1 ). 
Q>O 

Let j(O'.) = ax -10gEeQx1 = ax -log(peQ + 1- p), then 

Solve the equation in 0'., 

vVe have 

Since j' is decreasing, then 

j '( ) peQ 0'. - X - -----
peQ + 1- p 

, peQ 
0= j (0'.) = X - ---­

peQ + 1- p 

1-p p 
0'. = log -- + log-. 

1-x x 
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• j' (a) > 0 when a < log i=~ + log~; 

• j'(a) < 0 when a > log i=~ +log~. 

Then f(a) attains its maximum at log i=~ + log~. Hence 

1 (Sn ) -logP - ;.:: x ::; -I(x), 
n n 

where 

{

X log :!e. + (1 - x) log II-x, 
I(x) = p -p 

+00, 

x E [0,1] 

otherwise 

On the other hand, 

p(Sn ;.:: x) = P(XI + ... +Xn ;':: nx) = P(Y;':: nx), 
n 

Where Y follows binomial distribution B(n,p). So 

p(Sn ;.:: x) = "" (n)pk(l_ pt-k ;.:: ( n )p[nX]+1(l_ pt-[nx]-l. 
n L,; k [nx] + 1 

k2:[nx] +1 

Owing to Stirling's formula, 

1 1 
------:-~ < 8(n) < -. 
12(n+~)- -12n 

We have 

p(Sn > x) > n! p[nx] +1 (1 _ pt-[nx]-l 
n - - (n - [nx]- l)!([nx] + I)! 

= (1:..txn ( 1- p )n(l-xn) 1 
Xn 1 - Xn 21fxn(1- xn)n' 

where Xn = [n~+1 --t x, as n --t +00. Letting n --t +00, we obtain that 

liminf ~logP(Sn ;.:: x) 
n->+oo n n 

. p 1-p. 1 
;.:: hm (xnlog - + (1- xn) log --) - hm (-10g21fxn(1- xn)n) 

n->+oo Xn 1 - Xn n->+oo 2n 

= -I(x), 
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therefore, 
1 Sn 

lim -logP(- ~ x) = -I(x). 
n->+oo n n 

Similarly, \:Ix E [O,p], consider Yk = -Xk , then 

P(Yk = -1) = p,P(Yk = 0) = 1- p. 

We have 

. 1 (Sn ) . 1 (~~-1 Yk ) Inn - log P - :::; x = hm - log P - ~ -x . 
n->+oo n n n->+oo n n 

Following the above argument, we have 

. 1 (Sn ) ( hm -log P - :::; x = -Ix). 
n->+oo n n 

Thus, on one hand 

lim sup ~ log P(I Sn - pi ~ E) 
n->+oo n n 

= lim sup ~ 10g[p(Sn ~ p + E) + p(Sn :::; p - E)] 
n->+oo n n n 

. 1 (Sn ) V . 1 (Sn ) = hm sup -log P - ~ p + E hm sup - log P - :::; p - E 
n->+oo n n n->+oo n n 

= - min(I(p + E),I(p - E)); 

on the other hand 

liminf~logP(ISn -pi ~ E) 
n->+oo n n 

. . 1 [( Sn ) (Sn )] = hm mf -log P - ~ p + E + P - :::; p - E 
n->+oo n n n 

~ liminf ~ 10gP(Sn ~ p + E) V liminf ~ log p(Sn :::; p - E) 
n->+oo n n n->+oo n n 

= - min(I(p + E), I(p - E)). 

Therefore, 

lim ~logP(ISn -pi ~E)=-min(I(p+E),I(p-E)). 
n->+oo n n 
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Then \IT} > 0, 3N > 0, such that for all n > N 

e-n (min(I(p+c),!(P-C))+lI) :::; P(I Sn _ pi :2: E) :::; e-n (min(I(p+c),I(p-C))-1)). 

n 

Compared with the law of large number, this result gives-us a more accurate estimation. 

In fact, I(x) is a nonnegative convex function, and I(x) = 0 if and only if x = p. 

Furthermore, I(x) is strictly increasing in [p,+oo), and strictly decreasing in (-oo,p], 

thus min(I(p + E), I(p - E)) > 0, and 

+00 S 
L P(I ;: - pi :2: E) < 00. 
n=l 

By theorem 3, 

That is, ~ ~ p a.s. as n ~ +00. In words, this estimation is much more powerful 

than the law of large number; because, apart from giving us the limit, it also give us 

the convergent speed, which is approximately 

exp{ -n(min(I(p + E), I(p - E)))}. 

Unfortunately, however, the limit of ~ log P(An) may not exist. We therefore need to 

consider its upper limit and lower limit, which at least give us an upper bound and a 

lower bound of its convergent speed. This is exactly what the large deviation principle 

. does. 

Definition 5 (The large deviation principle). {P,a, a > O} is said to satisfy the large 

deviation principle, if\lB E B, 

- inf I(x):::; liminfalogp,a(B):::; limsupalogp,a(B):::; - in:fI(x), 
xEBO a--tO a--tO xEB 

where I(x) is a lower semi-continuous and nonnegative convex function, called rate 

function. BO and B is the interior and closure of B respectively. 
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Remark 8. If {xII(x) ::; y} is a compact set) then we say I is a good rate function. 

By the way) following the above argument) we can obtainlhe following fact. 

Fact: If Xo is the only zero point of I(x)) then /-La ~ OXO) as a ----t 0 

... 
Indeed) by (5) of Proposition 2) VB E B) satisfying oxo(8B) = 0) 

if B does not contain Xo) then Xo tj. B) thus infxEB I(x) > O. 

So take infxEB I(x) > E> 0,:30> 0, such that VO < a < 0) we have 

Let a ----t 0) then /-La(B) ----t 0 

If B contains Xo) then Xo E BO and Xo tj. BC; since /-La(B) = l-/-La(BC), /-La (BC) ----t 0, 

then /-La(B) ----t 1. Thus) /-La ~ Oxo' 

Remark 9. If the rate function has more than one zero points) then we are pretty sure 

that its limit distribution only has support on those zero points. but we are incapable 

of knowing how the probability is distributed among them) anyway its limit distribution 

is a discrete distribution. 
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Chapter 3 

The Wright-Fisher Model, 

Diffusion Approximation, 

and the Poisson-Dirichlet 

Distribution 

In this chapter, we focus on diploid species [7], most of which are produced through 

sexual reproduction. Each individual has a large number of germ cells. They first split 

into gametes, containing one chromosome from each homologous pair in the original 

cell. When two gametes fuse, they form a zygote that has two complete sets of chro­

mosomes and therefore is called diploid. For a given locus, if the two alleles on this 

locus are the same, then it is called homozygote; otherwise, heterozygote. Here we 

assume random mating; thus, Hardy-Weinberg Principle can be applied. 

Each generation may go through complicated procedures to produce the next gen­

eration. For the sake of simplicity, we assume that each generation goes through three 

stages. Firstly, random mating is the starting point of the next generation. Then 
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a large number of zygotes are produced. Secondly, some species are better fitted to 

the environment, hence they are morc likely to survive to reproductive age. And all 

species must face natural selection and mutation as well. Finally, random sampling 

will occur, and the population remains constant in the Wright-Fisher model. In the 

following sections, I will proceed to introduce the model in detail. 

3.1 Two-allele Wright-Fisher Model 

and Diffusion Approximation 

3.1.1 Two-allele Markov Chain 

Let A, a be the two alleles at a particular locus in a population of N, and x be the 

frequency of A before random mating, and there are three genotypes: AA, Aa, aa. After 

random mating, x2,2x(1- x) and (1- X)2 are the frequencies of genotypes AA,Aa 

and aa respectively, because of Hardy-Weinberg principle. Suppose A -7 a denotes 

the event that A mutates into a, and a -7 A denotes the event that a mutates into 

A. Similarly, we have two extra events A -7 A and a -7 a. Let Ul = P(A -7 a), U2 = 

P(a -7 A). Let x' be the frequency of A after mutation, then 

x' = x(1 - f-td + (1 - X)f-t2. (3.1) 

If we assume that each allele mutates independently, the frequencies of its genotypes 

after mutation are: 

PAA = PAAP(A -7 A)P(A -7 A) + PAaP(A -7 A)P(a -7 A) 

+ PaaP(a -7 A)P(a -7 A), 

PAa = 2PAAP(A -7 A)P(A -7 a) + PAa(P(A -7 A)P(a -7 a) 

+ P(A -7 a)P(a -7 A)) + 2PaaP(a -7 A)P(a -7 a), 
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Then 

Paa = PAAP(A ---7 a)P(A ---7 a) + PAaP(A ---7 a)P(a ---7 a) 

+ PaaP(a ---7 a)P(a ---7 a). 

- , 2 
PAA = (X) , 

PAa = 2x' (1 - x'), 

Paa = (1- X')2. 

vVe then take into account selection, rewriting their frequencies as weighted mean 

p" _ WI(X')2 
AA - WI (x')2 + 2x' (1 - x') + w2(1 - X')2' 

p" _ 2x'(1- x') 
Aa - WI (x')2 + 2x' (1 - x') + w2(1 - X')2' 

p" = w2(1 - X')2 
aa WI(X')2 + 2x' (1 - x') + w2(1 - x')2' 

where WI, W2 > O. Obviously, if WI > 1, then the frequency of AA is relatively higher 

than its previous one, we say genotype AA is favored during natural selection. Let x" 

be the frequency of A after selection, then 

,1I_2NP~A+NP~a_plI ~pll _ WI(X')2+ X'(1-x') 
x - 2N - AA+ 2 Aa- WI (x')2+2x'(1-x')+W2(1-x')2· (3.2) 

Finally, the population will go through random sampling. the frequencies of AA, Aa, aa 

Let i be the frequency of A after random sampling, but 2Ni may not necessarily 

follow Binomial(2N,x") unless we assume 

- II 2 
PAA = (x ) , 

PAa = 2X" (1 - x"), 

- II 2 
Paa = (1- x ) , 
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please refer to [7] for explanation. Therefore, if we assume that the above condition is 

satisfied, then 

2Ni rv Binomial (2N, x"). 

Given-{X(n),n 2: O}, if 

P(X(n + 1) = lIX(n) = k) = C~) (x")I(l- X")2N-l, 

then we call {X(n), n 2: O} two-allele Wright-Fisher model. Here x" is obtained as 

above by (3.1) and (3.2) when we take x = 2t. 
Remark 10. The original Wright-Fisher model does not take into account mutation 

and selection, hence its transition function Pij is determined by 

(
2N) (~)j( _ ~ )2N-j 
j 2N 1 2N . 

3.1.2 Two-alleles Diffusion Approximation 

Let YN(t) = X([2Nt]) , define PN(t) = Y;JP. Since one unit of PN(t) corresponds to 

2N units of X, then take flt = 2~' during [t, t + flt], PN(t) = x is changed into x" 

because of selection and mutation. Next, we try to find the limit. 

If we find them, from the theorem 1.1 of Chapter 10 in [7], then PN(t) approaches a 

diffusion process with generator 

1 d2 d 
G = -a(x)d 2 + b(x)-d . 2 x x 

But before we do the calculation, we need to scale the mutation and selection like 
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Then on one hand, 

1 
!:::.t E(PN(t + !:::.t) - PN(t)!PN(t) = x) 

= 2NE(PN(t + !:::.t) - x") + 2N(x" - x) 

= 2N(x" - x) 

=2N[ WI(X')2+X'(1-x') 1-
WI(X' )2+2x'(1-X' )+W2(1-x' )2( x) 

w2(1 - X')2 + Xl (1 - Xl) ] 
- WI(XI)2 + 2x'(1 - Xl) + w2(1- X')2X 

(Take N to be sufficiently large, then 

2N(x' )2(1 - x) + 0"1(X' )2(1 - x) + 2Nx' (1 - x')(l - x) 
WI (XI)2 + 2X' (1 - Xl) + w2(1 - xl)2 

2Nx(1 - X')2 + 0"2(1 - xl)2x + 2Nx' (1 - XI)X 
WI(X' )2 + 2x'(1 - Xl) + w2(1- xl)2 

0"1(X' )2(1- x) - 0"2(1- XI)2X + 2N[x'(1- x) - x(l- Xl)] 
WI (xl)2 + 2X' (1 - Xl) + w2(1 - X' )2 

0"1(X' )2(1 - x) - 0"2(1 - X' )2X + (/-L2 - X(/-LI + /-L2)) 
WI (xl)2 + 2x'(1- Xl) + w2(1- X' )2 

(Since Xl = x(l- t~) + (1- X)!Jlt,Wi = 1 + -!ff;;,i = 1,2, then Xl ---t X,Wi ---t 1) 

On the other hand, 

1 
!:::.tE((PN(t + !:::.t) - PN(t))2!PN(t) = x) 

= 2NE(PN(t + !:::.t) - x" + x" - X)2 

= 2NE(PN(t + !:::.t) - X")2 + 2N(x" - X)2 

= 2N(2~)2 E(2NPN(t + !:::.t) - 2Nx")2 + 2N(x" - X)2 
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1 /I /I /I 2 
= 2N2Nx (1- x ) + 2N(x - x) 

/I /I 1 /I 2 
=X (1-x )+2N(2N(x -X)). 

Since 

/I W1(X' )2 + x' (1 - x') 
x = W1 (X' )2 + 2X' (1 - x') + w2(1 - x')2 

---t x2 + x(1 - x) = x, 

Hence, 

vVe have completed the diffusion approximation and the limit process is the diffusion 

process with generator 

Additionally, we are going to prove that it has a stationary distribution. 

Proposition 3. Suppose {Xt , t ~ O} is a diffusion process with generator stated above, 

then 

is its stationary distribution. 

Proof: It is sufficient to show that 

11 Gf(x)v(dx) = 0, \/f E C2 (JR). 
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By integration by parts formula, we have 

11 Gf(x)v(dx) 

111 /I 

= C -x(l - x)f (x)v(dx) 
o 2 

+ c 11 {-/-t1X + /-t2(1- x) + x(l- x) [X(}l - (1 - X)()2]} / (x)v(dx) 

= ~ 11 /' (x)(l - x)2/t2x21L1ealx2+a2(1-x)2 dx 

+ c 11 {-/-t1X + /-t2(1 - x) + x(l - x) [X(}l - (1 - X)()2]} / (x)v(dx) 

= c t (1 _ x)21L2x21L1ealx2+a2(1-x)2 df' (x) 
2 Jo 

+ c 11 {-/-t1X + /-t2(1 - x) + x(l- X)[X(}l - (1 - X)()2]} / (x)v(dx) 

= _ c r1 
/ (x)[2/-t2(1- x)21L2-1x21L1ealx2+a2(1-x)2 

2 Jo 
- 2/-t1(1 - x)21L2x21L1-1ealx2+a2(1-x)2 

+ (1 - x ) 21L2X21L1 (2(}l X - 2(}2(1 - x) )ealx2+a2(1-x)2]dx 

+ C 11{ -/-t1X + /-t2(1 - x) + x(l - x) [X(}l - (1 - X)()2]} / (x)v(dx) 

= -c 11 {-/-t1X + /-t2(1- x) + x(l- x) [X(}l - (1 - X)()2]}/ (x)v(dx) 

+ c 11 {-/-t1X + /-t2(1 - x) + x(l - X)[X(}l - (1 - X)()2]} / (x)v(dx) = o. 

3.2 K-allele Wright-Fisher Model 

and Diffusion Approximation 

Let A1 ,· .. , AK be all the possible alleles at a particular locus in a population of 

N, then there are K(1;+1) genotypes. Let Xij be the frequency of AiAj just before 
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reproduction, 1 :::; i :::; j :::; K, then 

_ 2Nxii + ~i=h NXij _, 1" 
Xi - 2N - Xii + 2" L..J Xij 

iij 

(3.3) 

is the frequency of the allele Ai, 1 :::; i :::; K. 

Similarly, three stages are assumed to go through before the population is totally 

replaced by the new generation. By the way, Hardy-·Weinberg principle is also assumed 

to apply here. Firstly, after random mating, the frequency of genotype AiAj, 1 :::; i :::; 

j:::; K is 

Secondly, owing to mutation, the frequency of AiAj is 

X:j = (1 -10ij) L('I.l~i'l.ttj + 'I.l~j'l.lti)(2 - Okl)XkXt, 

k"5.1 

where 'I.ltj is defined to be( 'I.lii = 0 ) 

Next, it becomes 

'I.l:j = (1 - L 'l.tik)Oij + 'I.lij· 
k 

** 'WijXtj 
Xij = 

~k"5.1 'Wkl X k1 . 

because of selection. Like we did in two-allele model, by direct computation, we have 

K 

where xt is the frequency of type A after mutation. 

Finally, the population need to go through random sampling. The frequency of 

AiAj becomes X~j' which is a random variable; and 
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Furthermore, let x~ be the frequency of A after random sampling; and let x:* be the 

frequency of A after selection and mutation. If we assume that x:; = (2 - Oij)X;*Xj* 

is still true, then following the argument in page 413 [7], we have 

Put X(n) = (X1(n),··· ,XJ(-l(n)), n 2: 0, if 

P(X1(n + 1) = j1,··· ,XJ(-l(n + 1) = jJ(-1IX1(n) = h,··· ,XJ(-l(n) = iJ(-l) 

= (2N)! (~)j1 ... ( iJ( )iI< 
j1!··· jJ(! 2N 2N' 

where iJ( = 2N - ~[:~1 il,jJ( = 2N - ~[:~1 jl, then {X(n), n 2: O} is called K-allele 

Wright-Fisher model. Then scale the mutation and selection as follows 

~.. 1 ~.. 1 
1lij = 2;" A K,Wi = [1 + 2;"] V 2,i,j = 1,··· ,K. 

Define YN(t) = X([2Nt]), p N (t) = y~;:), by direct computation as we did in two-alleles 

model, we have 

where 

and J( J( J( J( 

bi(x) = - L~ijXi + L~jiXj + xi(L O"ijXj - L O"klXkXZ). 
j=l j=l j=l k,l=l 

Hence, pN(t) approaches diffusion process PJ«(t) with generator 

(3.4) 
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Remark 11. The diffusion process PK(t) with generator (3.4) is the diffusion ap­

proximation of K-allele Wight-Fisher Model. We can choose special mutation rates 

j.tij and selection variabilities (J"ij, say (J"ij = 0, i of- j, and (J"ii < 0. It means that 

this model favors heterozygotes. Hence, as the diffusion evolves, the genotypes should 

spread out, rather than being absorbed into one species. By the way, from the construc­

tion of Wright-Fisher model, we know that PK(t) is a diffusion process on D.K = {x = 

(Xl,'" ,XK-1)12:[:~lXI:S I}. 

If the mutation rates j.tij = K'=-l' i of- j, a > 0, then the mutation is symmetric; 

if, moreover, the selection is absent, then the allele is neutral. The stationary distri­

bution of diffusion process with K neutral alleles would be the Dirichlet distribution 

D(K'=-l"" 'K'=-1),[9] with density 

r( T.(
K

1a) -.lL-1 -.lL-1 
II (d ) r - K-1 K-1 d d 

K X = r(~) ... r(~)X1 ... XK Xl'" XK-1, 
K-1 K-1 

(3.5) 

which is a multivariate generalization of the Beta distribution(K = 2). 

If the selection is added, then the stationary distribution is given by the following 

distribution 
K 

IIa(dx) = Cexp (2:= (J"ijxixj)IIK(dx1" ·dXK-1). (3.6) 
i,j=l 

If we take (J"ij = O,i of- j,and (J"ii = >'B(a) , and put HK(x) = 2:::1 X;, which is the 

so-called homozygosity 1 . Then, (3.6) becomes 

(3.7) 

IGenerally speaking, homozygosity is defined to be the probability of random sample of size r 

sharing the same allele type. That is, Hr(x) = ~{~l xf or Hr(x) = ~~l xf if the gene pool is 

infinite. 
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3.3 The Infinitely-Many-Neutral-Alleles Diffusion' 

and the Poisson-Dirichlet Distribution 

If we order D(K'=-l"" , K'=-l)' and let K ~ +00, then the ordered Dirichlet Distri­

bution D(K'=-l"" , K'=-l) has a limit PD(a)(dx), called Poisson-Dirichlet distribution 

[9]. It is originally put up by K.F.C.Kingman in the context of Poisson process, since 

K'=-l K ~ a (as K ~ +00) is in the style of Poisson limit, thus it is given such a name 

by Kingman. In the case of neutral alleles, as K ~ +00, the diffusion PK(t) goes to 

P(t) which is an infinite dimensional diffusion on 

00 

\l = {x = (Xl," . , xn ,· .. )IX1 :::::: X2 :::::: ... , L Xi = I}, 
i=l 

with generator 

(3.8) 

Its stationary distribution is the Poisson-Dirichlet distribution. 

Remark 12. (3.8) is firstly defined on its core 

00 

C = {I, <Pk(x)l<pk(X) = Lx~,k:::::: 2} 
i=l 

then extended to the closure of C. 

If the selection is added, then the diffusion becomes more complicated. For the 

sake of simplicity, we omit the introduction of redundant concepts, but if we take the 

selection as follows 

(Jij = 0, i =f. j, and (Jii = >-'8(a), 

then its stationary distribution is 

IIa,,\(dx) = C exp ( >-'8 (a)H2(x )) P D(a)(dx). (3.9) 
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Remark 13. {3.9} is the limit of 

C exp (>"B(a)H2(x) )D(K ~ 1'''' , K ~ 1)(dx1 ... dXI(-l) 

in weak sense, as K -t 00, where D(I('=-l"" , I('=-l) (dXl ... dXI(-l) is the ordered 

Dirichlet distribution and supports only on 
I( 

i::.I( = {(Xl,X2,'" ,XI(,O,"')! LXi = 1,Xl 2:: X2 2:: ... XI( 2:: O}. 
i=l 

3.4 Feng's Result 

In this section, I will briefly introduce Dr.Feng's result in [8], therefore show my re­

search motivation. Dr.Feng's result is concerned with distribution 

Cexp (>..B(a)Hr(x))PD(a)(dx). (3.10) 

However, when r = 2, it is the same with the distribution (3.9). In addition, as the 

distribution (3.9) has biological background to some extent, it is quite necessary to 

mention here. 

Theorem 5. Let {IIa,,\(dx), a > 0, >.. E lR} be a family of distribution as {3.9}, for 

fixed >.., {II"",\(dx), a> O} satisfies the large deviation principle on \l with speed >..(a) = 

- -[ 1 , and the rate function is 
aga 

S(x), 

S(x) = S(x) + >"(1 - H2(X)), 

lim",---.o B(a)>..(a) = 0, 

B(a)>..(a) = 1, >.. 2:: 0, 

S(x) + !>..!H2(x) - inf{I~1 + n - 1 : n 2:: 1}, B(a)>..(a) = 1, >.. < 0, 

where S(x) is defined by 

S(x) = 1 L ° > 2 n - , x E n, Xn > , n _ , 

+00, x tj. L. 
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And Ln = {(Xl, ... , Xn, 0, ... ) E V : I:~=l Xi = 1}, L = U::l Ln· Obviously, Ln C 

Ln+!' 

Proof: Please refer to [8]. 

Note that there is only one zero point for S(x), it is (1,0,··· ), so when B(a) and 

A(a) fail to be comparable, then S(x) = S(x), thus they share the same zero point. 

Moreover, when B(a)A(a) = 1, A> 0, since S(x) ~ 0 and 1-H2 (x) ~ 0, then S(x) = 0 

if and only if S(x) = 0 and 1 - H 2 (x) = 0, therefore, S(x) has only one zero point 

(1,0,···). Finally, when B(a)A(a) = 1, A < 0, it can be shown that S(x) might have 

more than one zero points. 

Case 1: A:S -1, 

inf{~ +n-1,n ~ 1} 
n 

= Inin{-I-AI- + [ !fDAI] - 1 IAI + [ !fDAI]} [M] VIAl , h/r>l] + 1 VIAl· 

If 

(3.11) 

then 

IAI = [M]([M] + 1). 

Therefore, only when A = -k(k + 1), k ~ 1, can (3.11) hold. Take A to be -k(k + 1), 

since k < [M] < k + 1, for fixed k, then 

inf{~ +n-1,n ~ 1} = 2k. 
n 

Suppose Po E Lz is a zero point of S(x), hence is a minimum point of S(x), then 

- 1 
0= S(Po) = S(Po) + k(k + 1)H2 (PO) - 2k = l- 1 + k(k + 1)y- 2k. 

the second equality is due to the fact that S(x) remains constant on Lz, and H 2 (x) on 

Lz attains its minimum only if Xl = X2 = '" = Xz = i. Thus the minimum of S(x) on 
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L z is 
l k(k+1) 

l- 1 + k(k + 1) l2 - 2k = l - 1 + l - 2k = 0. 

k(k+1) -Solve l - 1 + -z- - 2k = 0, we have l = k, k + 1, then S(x) has exactly two zero 

points: 0;,'" ,fe, 0" .. ) and (k!l' ... , k!l' 0",,), However, if A f. =k(k + 1), k 2: 1, 

then 

• for IAI > [JlXil(h/[Xfl + 1), we have 

~ [If'TAll - 1 > IAI [ If'TAll [JlXil + V 1/'1 [JlXil + 1 + V 1"1 . 

So S(x) = S(x) + IAIH2(x) - (~ + [JIXi]). Similarly, assume Po E Lz is the 
[ 1>"1]+1 

zero point of S (x), then 

° = S(Po) = l - 1 + IAI ~l - ( v&1 + [M]), 
[ IAIl + 1 

solving this equation, we get l = [JlXil + 1 or l = ~ . But l = ~ is not 
[ 1>"11+1 [ 1>"11+1 

a valid solution; otherwise, let k = [JlXil + 1, then IAI = kl, hence k = [JkIl + 1, 
then k - 1 = [JkIl, and 

1 
k - 1 :::; Vki < k ==} k - (2 - k) :::; l < k. 

Thus l = k -1 = [Ml, IAI = [JlXil ([ JlXil + 1), contradiction thus is produced! 

So Po = (~ , ... ,~ ,0, ... ) is the unique zero point! 
[1>"11+1 [1>"11+1 

• For IAI < [JIXi]([Ml + 1), assume Po E Lz is the zero point of S(x), then 

0= S(Po) = l- 1 + IAI~l - ( I~ + [Ml-1). (3.12) 
[viAll 

Solving the equation, we have l = [JIXi], or l = [~j' If IAI = n2
, then 

l = n = [JIXi], so l = [Ml is the unique solution of (3.12). If IAI i= n2 ,n 2: 1, 
then l = I~ is not a valid solution of (3.12); otherwise, let k = [JIXi], so 

[v 1>"1] 
IAI = kl and 

1 
k < Vki < k + 1 ==} k < l < k + 2 + k' 
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then l ;:::: k + 1 = [Jl):fl + 1, and I'>' I = kl ;:::: [Jl):f]([ Jl):fl + 1), which is a contra­

diction! Therefore, we have the unique zero point Po = ( b,"" . b, 0,··· ). 
[v 1>'11 [v 1>'11 

Case 2: -1 < .>. < 0, then 

inf{~ +n-1,n;:::: I} = 1.>.1, 
n 

so S(x) = S(x) + 1.>.IH2(x) -1.>.1 = S(x) -1.>.1(1- H2(X)). Since 0 :::; 1- H2(x) :::; 1,0< 

1'>'1 < 1, then 0 :::; 1'>'1(1 - H2(X)) < 1. If Po ELl, l ;:::: 2 is the zero point of S(x), then 

0= l- 1 -1'>'1(1 - H2 (PO)); but 

a contradiction! Hence, Po ELl, and it is the unique zero point of S(x). 

From the discussion stated above, the rate function S(x) has only one zero point 

unless 

8(a).>.(a) = 1,.>. = -k(k + 1), k ;:::: 1. 

Under this condition, S(x) has exactly two zero points rather than one. By the results 

in Remark 8, we know that large deviation principle can deduce the limit distribution 

only if the rate function has unique zero point, and the limit distribution is the Dirac 

measure at the zero point. Unfortunately, when the rate function has more than one 

zero points, we know only that the limit distribution supports on these zero points, 

but we don't know how the probability is distributed among them. Therefore, when 

8(a).>.(a) = 1,.>. = -k(k + 1), k ;:::: 1, large deviation obtained by Dr.Feng fails to give 

the exact limit distribution. That's why I try to figure out another way to find its 

limit distribution. Since ITa,>. (dx) is the limit of 

as J( --t 00, thus, we first try to find the limit of 
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as a --t 0, then we manage to deal with IIa,>,(dx). In this thesis, I only find the limit 

for K = 2, which turns out to be unexpected. Finally, A = -k(k + 1) seems to be 

very special in Dr.Feng's result, it might be because of its connection with coalescent 

process. 
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Chapter 4 

Main Results and Proof 

As we discuss at the end of last chapter, for K = 2, the distribution in question is 

where Ccx,2 is a normalized constant. It is apparently a measure on [~, 1]. In this 

chapter, we proceed to find the limit of /-Lcx(dx) as a --t O. 

Theorem 6. Suppose /-Lcx(dx) is a probability measure on [~, 1], which is defined as 

Let a --t 0, then the limit of this distribution is 

1 1 
(1 - A(A) )ol(dx) + A(A) o~(dx), 

where A(A) = +00, for A::; 2. Otherwise, A(A) = 1. 

The approach we take here is to compute the limit of Laplace transform of measure 

/-La. Before we go to the details, some useful lemmas should be mentioned here. 

Lemma 1. (18] Suppose 
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where an, bn are both positive, then 

'\"'+00 b xn 

1· L..m=O nnf - C 
1m +00 n - • 

x--->+oo '\"' a"'-
L ... m=O nn! 

Remark 14. If, however, am"bn are also function of x, say an(x),bn(x), and 

lim sup bn(x) = C, 
n--->+oo x2:0 an (x) 

then the same conclusion is also followed by the similar argument! 

Lemma 2. [10J If aj E te, lajl < 1, then the partial product rr~l (1 + lajl) satisfies 

1 N N N 

exp ("2 L lajl) :::; II(1 + lajl) :::; exp(L lajl)· 
j=l j=l j=l 

[Proof of the theorem]: 

Ii x a - 1 (1 - x )a-l e A(loga)(x2+(1-x)2)e-txdx 
Eae-tX = ~2-, __________________________ __ 

Ii x a - 1 (1 - x)a-le A(loga)(x2+(1-x)2)dx 
2 

Ii x a - 1 (1 - x)a-le A(loga)(x2+(1-x)2)e(1-x)tdx 

= e-t
-=...2 ---;c-----------------------------Ii x a - 1 (1 - x)a-1eA(loga)(x2+(1-x)2)dx 

2 

( By substitution, put u = 1 - x) 

( Cancel the common term eA10g a) 
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( Since power series can be regarded as integration with respect to counting measure, 

and both integrands are positive, by Fubini's theorem, switch the integration and 

summation) 

+00 tn d uo+n-1(1 _ U/l<-l 2:+00 (2Alog~)k u k (l - 1t)kdu = e-t ~ _Jo k=O k! 

~ n! Jo~ 1ta - 1(1 - u)a-l 2:;~ (2AI~~i)k u k(l- u)kdu 

(Similarly, apply Fubini's theorem, switch the integration and summation) 

+00 tn ",+00 (2Alog~)k d 1ta+n+k-1(1 _ u)a+k-1du 
-t ~ L.Jk=O k! Jo 

=e ~ lk 1 . 
-0 n! ",+00 (2Alog.,,)· f2 1ta+k-1(1 -1t)a+k-1du 

n- L.Jk=O k! Jo 

Put 
",+00 (2Alog~)k d Ua+n+k-1(1_ U)a+k-1d1t 

() 
L.Jk=O k! Jo 

an a = (2A 10 l)k 1 , 
",+00 g." f2 1to+k-1(1 _ u)a+k-1du 
L.Jk=O k! Jo 

n 2': 0, 

then ao(a) = 1. For n 2': 1, an(a) = 0 1 + O2 , where 

and 

Actually, 

and 

1 Jl uo<+n-l(1-u)0<-ldu 
1 

J02 uo<-1(1-u)0<-ldu 

1 + D(a) 

41 



where 

~+oo (2Aiogi-)k d Ua+n+k-l(l_ u)a+k-1du 1 
1· Dk=l k! Jo - > 1 1m 1 1 - -,n , 
a-tO ~+oo (2Alog,,)k f2 Ua+k- 1(1 _ u)a+k-1dll 2n -

Dk=l k! Jo 

(4.1) 

and 

lim 0 1 = o. 
a-tO 

1 1 ];'1 u<>+n-l(1_u)<>-le2>.log au(l-u)du 
Since Q 1 1:::; 1, Vn ::::: 1, then by Lebesgue Convergent Theo-

J02 u",-1(1_u)",-le2>.log au(l-u)du 

rem, the above limit is 

where 

Therefore, 

lim an(a) = lim 0 1 + lim O2 
a-tO a-tO a-tO 

1 1 
= A(>') 2n · 

Then by Theorem 2, we know that 
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Now it remains to show the claims and find A(A). Firstly, in order to show lim<.>-->o 0 1 = 

0, we consider the moment generating function of Beta(ex + n, ex), which is 

(4.2) 

Let ex -t 0, it approaches 1 + 2:~~ (_~)k = e-t . Hence, by Theorem 2, 

Beta(ex + n, ex) -t (>t, as ex -t O. (4.3) 

And 

hence, lim<.>-->o 0 1 = O. 

Secondly, consider the remaining claim (4.1), we have, on one hand, 

1 
f2 u<.>+k+n-1(1 - u)<.>+k-1du 1 

Jo 1 ~ (-t. 
I02 'U<.>+k-1(1 - 1L)<.>+k-1du 2 

On the other hand, 'lIE > 0, we have 

1 I02 U<.>+k+n-1(1 - U)<.>+k-1du 
1 I02 U<.>+k-1(1 - u)<.>+k-1du 

Since 

(4.4) 
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in fact, let 0 < O! < 1 

1 1 J
0
2-€ Ua+k-1(1 - 1t)a+k-1d1t < J

0
2-€ 1tk- 1(1 - U)k-1du 

1 _ 1 

J02 ua+k-l(l - U)a+k- 1d1t J02 1tk(1 - 1t)kdu 
1 J

0
2-€ Uk-1(1 - U)k-1du 2B(k, k) 

B(k, k) B(k+l,k+l) 

follow the argument in (4.2) and (4.3), we have B(k,k) ----t 61, as k ----t +00, in 
2 

distribution, then 

then (4.4) is true. Thus 

Letting E ----t 0, we have 

1 
J02 ua+k+n-l(l - 1t)a+k-1du 

lim -"--"-.,--,-------­
k->+oo J02 ua+k-l(l -u)a+k-ldu 

1 

If we apply lemma 1 and the remark(14), then the remaining claim (4.4) is verified! 

Finally, we endeavor to find A()"). Firstly, 

D(O!) = f (2)"log~)k B(O!+k,O!+k) 
k=l k! B(O!,O!) 

_ ~ (2)"log~)k B(O!+k,O!+k) _ ~ 1 
- L.; k' B() 10! agO!. 

k=2' O!, O! O! + 2 

Since r(2x)r(~) = 22x- 1r(x)r(x + ~), then for k 2: 2 

B(O! + k, O! + k) r2(0! + k) r(20!) 

B(O!, O!) r2(0!) r(2(0! + k)) 
r2(0! + k) 22a-lr(0!)r(0! + ~) 

r2(0!) 2(a+k)-lr(0! + k)r(O! + k +~) 
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1 r(a+k) r(a+~) 
4k r(a) r(a+k+~) 
1 a 1 

4k a + ~ rrk-1(1 + ~ ). 
1=1 0+1 

By lemma 2, we have 

1 k-1 1 k-1.1 1 k-1 1 

exp( 4 L a + l) :::; II (1 + a ~ Z) :::; exp ("2 L a + Z), k 2: 2; 
1=1 1=1 1=1 

but 

and 
1 k 1 1 k-1 1 1 k-1 1 

exp ("2 Ly):::; exp ("2 L a+Z):::; exp ("2 L y),k 2: 2. 
1=2 1=1 1=1 

Since limk->+ooCL:~=l t -log k) = C (Euler's Constant), then 

hence, for k 2: 2 

Therefore, 

k 
1 L y = log k + C + ak, where lim ak = 0, 

k->+oo 
1=1 

1 k 1 1 1 
exp (4 L y) = k"4 exp(4(C + ak -1)), 

1=2 
1 k-1 1 1 1 

exp (4 L T) = (k - 1)"4 exp(4(C + ak-d), 
1=1 

1 k 1 1 1 
exp ("2 L T) = k2 exp("2(C + ak - 1)), 

1=2 
1 k-1 1 1 1 

exp ("2 L T) = (k - 1)2 exp("2(C + ak-1)). 
l=l 

1 < 1 < 1 k>2 
(

1 ",k-1 1) - k-1 ! - (1 ",k 1) , - , 
exp "2 ul=l T rrl=l (1 + a~l) exp 4 ul=2 T 
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and 
1 1 1 

'Tn 1 ::; 1 ::; lVI (k) i' ' k 2: 2, 
(k - 1)2 rr~~1\1 + c<!l) 

where m,]VI are both positive constants, independent of a. Moreover, since 

D(a) = +00 (2.Alog ~)k 1 _a_ 1 

L k! 4k a + 1. rrk- 1(1 + -.L) 
2.A 

- --aloga 
a+1. 

then 

Moreover, 

and 

By lemma 1, 

for .A ::; 2, 

k=2 2 1=1 c<+l 2 

2.A 
- --a log a 

a+.!. 
2 

1 
a+1. 

2 

2.A 
- --aloga 

+ 1 ' a -
2 

+00 (log ~)k (~)k 
m l:k=2 -k-! - (k-1)~ 2.A 
-- ---aloga 
a+~ l+,,+oo(log~)k a+~ 

L.Jk=1 k! 

,,+00 (log ~)k (~)k 
]vI L.Jk=2 -k-! - (k-1)i 2.A 

< D(a) < -- - --aloga. 
- - a + 1. ,,+00 (iogk)k a + 1. 

2 1 + L.Jk=1 k! 2 

+00 (log ~)k (~)k 
. l:k=2 --k!- (k-1)~ 

lUll 1 
C<--tO ,,+00 (log,,)k 

L.Jk=2 k! 

,,+00 (log ~)k (~)k 
. L.Jk=2 --k!- (k-1)1 

= hm ------i--;---'--
C<--tO ,,+00 (log ~ )k 

L.Jk=2 k! 

,,+00 (log~)k (~)k 
. L.Jk=2 k! (k)i 

= lUll 1 
C<--tO ,,+00 (log" )k 

L.Jk=2 k! 
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for A > 2, 

Therefore, 

for A :s; 2, 

lim D(a) = 0; 
",---.0 

for A > 2, 

lim D(a) = +00, 
",---.0 

Hence A(A) = 1, for A > 2, otherwise, A(A) = +00, 

[Proof of lemma 1 J: 

Case 1: C = +00, 

\:IL > O,:3N E N+,s,t, \:In> N, bn > L, then 
an 

thus 

",+00 b xn ",N b xn ",+00 b xn 
L..m=0 n -;:J = L..m=O n -;:J + Dn=N + 1 n-;:J 

2:+00 xn 2:+00 xn 2:+00 xn a- a- a-n=O n n! n=O n n! n=O n n! 

",+00 b xn 
lim Dn=O n-;:J 

X---.+OO ",+00 a xn 
Dn=O n n! 

",N b xn ",+00 a xn 

=+00, 

> l ' Dn=O n n! + L l' Dn=N+l n n! 
1m + n 'UTI + n' 

- x---'+OO '" 00 a ~ X---.+OO '" 00 a ~ 
Dn=O n n! Dn=O n n! 

S' l' ",+00 xn th lnce UTIx---.+oo Dn=O an n! = +00, en 

",N b xn ",N b xn 

O <1' Dn=O n rtf < l' Dn=O n -;:J 0 
1m +00 n UTI = 

- x---.+oo '" a ~ - x---.+oo ",N+l a xn , 
Dn=O n n! Dn=O n n! 
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Thus, 

Hence, 

~
+oo xn a-lim n=N+1 n n! 

x->+oo ~+oo a xn 
L....-n=O nn! 

~+oo xn ~N xn a- a-
1· n=N + 1 n n! + l' n=O n n! - 1 
1m +00 n 1m +00 n - • 

x->+oo ~ a ~ x->+oo ~ a ~ 
L....-n=o 'n n! L....-n=O n n! 

+00 n 

lim Lan~, > L,'iL > O. 
x->+oo n. 

n=O 

+00 n 
. ~ x 

hm 6an-, = +00 = C. 
x->+oo n. 

n=O 

Case 2: 0 :S C < +00, 

'iE > 0, 3N E N+, s.t. 'in> N, I~: - CI < E, then 

~+oo b xn ~+oo a xn 1 bn - CI 
1 

L....-n=O nnf _ CI < L....-n=o n n! an 
~+oo xn - ~+oo xn 
L....-n=O an nf L....-n=o an n! 

~N a xn 1 bn _ CI ~+oo xn < n=O n n! an + EL....-n=N+1 annf 
- ~+oo xn ~+oo xn 

L....-n=O an n! L....-n=O an n! 
~N xn 

« bk + C) L....-n=O an-:nJ Inax -' -f-E, 
- O<k<N ak ~+oo a xn 

- - L....-n=O nn! 

then 

Letting E ---7 0+, yields 

[Proof of lemma 2]: 

On one hand, recall that lajl < 1, we have 1 + lajl :S elajl , then 

N N 

II (1 + lajl) :S exp(L lajl)· 
j=l i=l 

On the other hand, since lad l < !, then 

1 !':i.! 
1 + lajl = 1 + 2(21ajl) 2: e 2 , 
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therefore 
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Chapter 5 

Conclusion and Further Discussion 

From theorem 6, we know that the limit distribution is either 81 or 81 and is uniquely 
2 

determined by A, where A can be regarded as a selection factor. Owing to selection 

favoring heterozygotes, as A becomes bigger the species tends to spread out, until 

finally two allele types coexist in identical proportions. This makes sense because the 

mutation rate is symmetric. 

Interestingly, however, when A ::; 2 there is only one allele type in the end, and 

unexpectedly there is no intermediate state. For A = 2 we previously expected an 

intermediate state in which two configurations would coexist 

O<p<1. 

Hence, even though the species is quite weakly affected by mutation, the configura­

tion of the species fails to change until the selection factor is strong enough. Simply 

put, even though the possibility of mutating into other species is very small, whenever 

species become well accustomed to their surrounding natural environments, they may 

go through alterations and accumulate such alterations by way of inheritance. Never­

theless, it is quite unexpected that species change suddenly without any intermediate 

state as the environment varies. The only sound account in my opinion would be that 
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species is very sensitive to the environment , hence the sudden change of environment 

results in the sudden change of species. For example, great natural disasters may 

suddenly occur, with the result that most species become, like the dinosaurs, extinct, 

and only very few survive. This may be why the configuration of species undergQes 

sudden changes when the selection factor is strong enough. The frequency of great 

natural disasters is relatively low compared with the lifespan of any given organism, 

but is actually fairly high compared with the entire evolutionary history of a species. 

Hence, many unknown species may just begin their debuts and quickly exit during the 

play of natural history! 

Finally, in this thesis only the case K = 2 is considered. The associated problems 

of other cases are still unsolved. However, I think the method used in this case might 

be useful for the other cases, with possibly a little adjustment. There are, however, 

indeed some technical difficulties. For example, when K = 3, then the measure in 

question would be 

II. (dx dx) = C e)doga(xr+x~+x~)x%-lx%-lx%-l dx dx 
ra 1, 2 aI' 2 3 ' 1 2 

defined on .6.3 , where 

If we try to compute the limit of Laplace transform, we might need to reduce it to the 

case K = 2. But consider the Xl cross section 

when Xl < ~, then min(l - Xl, xd = Xl ~ X2 ~ X3 ~ 0, and 

X X X 1> _'_1_ > __ 2_ > __ 3_ > 0 
1 - Xl - 1 - Xl - 1 - Xl - , 

so (.6.3 )Xl is not .6.2 = {(Xl,X2)!X1 + X2 = 1, 1 ~ Xl ~ X2 ~ O}, hence, the reduction 

might not work here. Some adjustments are definitely needed. 
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