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Abstract 

Sensor nodes are often used in outdoor locations where they can be operated 

using solar power. When such a network is deployed, there are usually re-

strictions in the way that t..he nodes ca.11. be positioned, a..'1.d tllis results in a 

node-dependent attenuation of the usable solar energy. This effect must be 

taken into account when placing the basestations used to communicate with 

the sensor nodes. In this thesis we consider the minimum-cost placement of 

data collecting basestation nodes so that outage-free operation of the sensor 

nodes is obtained. This is done by minimizing the number of basestations 

required when taking into account the energy costs of sensor node traffic re­

laying. An optimization is first formulated which gives a lower bound on 

the number of basestations that are required. Because of the complexity of the 

problem, two algorithms are proposed which can be used to do placements for 

practical problem sizes. These algorithms use the result from an iterated local 

search as a starting point, and then use an energy aware local optimization to 

obtain feasible basestation placements. Results are presented which show that 

the algorithms perform well for a variety of network scenarios. 
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Chapter 1 

Introduction 

Increasing interest in Wireless Sensor Networks has been seen in the past years. 

Their relatively cheap price permits the deployment of hundreds of sensor 

nodes in a single network. Wireless Sensors Networks can be used for many 

purposes such as military applications, environmental and industrial moni­

toring, vehicle detection and agriculture [1, 2, 3]. A sample wireless sensor 

network that monitors a combat field is shown in Figure 1.1. In this network 

a basestation is deployed near the sensors to connect the network to remote 

command centers [4]. 

1.1 Power Management in Wireless Sensor Networks 

Wireless sensor nodes are micro-electronic devices and have a very limited 

source of power. They are commonly powered using batteries, but for ap­

plications where the system is expected to operate for a long period, energy 
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Figure 1.1: A Wireless Sensor Network for a Combat Filed Monitoring Appli­
cation. 

becomes a bottleneck. In sensor networks, normally each sensor can relay traf­

fic to other sensors using multi-hop routing algorithms until this data reaches 

its destination. 

A lot of effort has been made to efficiently use battery energy. In multihop 

sensor networks where sensors generate and route the data, power conser­

vation and power management plays an important role. Because a group of 

dysfunctional nodes changes the routing algorithm and may require network 

reorganization and retransmission of data, the design of power-aware proto­

cols and algorithms for sensor networks is vital [5]. 

4 
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1.2 Basestation Placement in Wireless Sensor N et­

works 

Basestation location has a significant impact on network lifetime performance 

for a sensor network The main job of a sensor node is to sense events, process 

gathered data, and transmit the data to an appropriate gateway. Therefore, 

power consumption consists of three parts: sensing, data processing and com­

munication. Communication consumes the maximum energy among these 

three sources [5]. 

Transmission energy consumption between two nodes depends not only 

on the data bit rate but also physical distance between them [6]. This means 

that the location of nodes and basestations in a sensor network affects network 

lifetime and performance and for this reason, optimizing network topology is 

very important. 

1.3 Solar Powered Networks 

Solar power is increasingly used to operate sensors and other mesh nodes in 

a variety of different outdoor applications [7]. In a typical scenario, sensor 

nodes communicate to the Internet through a deployment of fixed basestation 

(BS) nodes, which are usually equipped with continuous power connections. 

In this type of arrangement, some sensor nodes may be able to communicate 

directly with a basestation, whereas others may have to use multi-sensor traffic 

5 
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relaying in order to do so. Since the solar panel and node battery configura­

tion is typically done in a statistical fashion, care must be taken so that once 

deployed, there is sufficient solar insolation so that the nodes can operate con­

tinuously without outage [8]. 

A vital difference between this kind of system and battery powered ones 

is that the amount of energy that can be harvested from the environment can 

be unlimited. A harvesting network can be built by using energy-harvesting 

nodes [9]. In addition, in a battery powered sensor network, the design goal is 

to maximize the lifetime or to minimize the power consumption of the nodes. 

However, in energy-harvesting networks, the goal is to design the network 

and allocate resources (battery and panel sizes) in a way that reduces costs 

while guaranteeing outage free operation of the nodes. 

In traditional photo-voltaic systems, solar panels are positioned so that 

they can collect the maximum possible solar energy. This is done by orienting 

the panel directly south (in the northern hemisphere) and sloped to an angle 

slightly less than the node's geographic latitude, so that solar absorption is 

maximized during winter months. Unfortunately this requirement places se­

vere restrictions on the location and the flexibility with which the nodes may 

be placed. This type of restriction is unreasonable in many sensor applica­

tions, since the positioning and orientation of the nodes is usually constrained 

by other factors [7]. A simple example is the case where a sensor node must 

be installed on the side of a building, and due to its non-optimum orientation, 

may suffer orientation and shadowing losses from the direct components of 

solar insolation, compared with an optimally-positioned node. In this case the 

6 
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shadowing components may also be time varying, and dependent upon the 

orientation of the building wall. These effects lead to a wide variation in the 

efficiencies with which the sensor nodes can collect solar energy. 

The above problem is exacerbated by the fact that to exploit economies of 

scale, the sensor nodes are often equipped with a standard battery and solar 

panel configuration, so that the costs of the nodes are minimized. This places 

an onus on the deployment of the basestations so that their number and loca­

tion is sufficient to ensure outage-free operation of the sensor nodes regardless 

of their individual placements. 

1.4 Optimization Theory 

In this thesis, optimization theory is used to do basestation placement. Op­

timization theory has included significant advances in the last two decades. 

Solvers using methods such as interior-point method, conic optimization and 

branch-and-bound are getting faster and better. The standard form of an opti­

mization problem can be written as [10], 

minimize fa (x) 

subject to fi(x) ~ 0, i = 1 ... m 

hi(x) =0, i=1. .. p 

(1.1) 

x is the optimization variable and fa is the objective function. The inequalities 

fi(x) ~ 0 are called inequality constraints and the equations hi(x) = 0 are 

called the equality constraints. The problem (1.1) is said to be feasible if there 

7 
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exists at least one feasible point, and infeasible otherwise. 

1.4.1 Convex Optimization Problem 

In convex optimization, objective function and constraints are convex. A con­

vex optimization problem is of the form 

minimize fa (x) 

subject to fi(x):::::; 0, i = 1 ... m (1.2) 

aT x = bi, i = 1 ... p 

where fa, ... , f m are convex functions. The importance of convex optimization 

is that any local optimum is also globally optimal. Convex optimization is 

widely accepted as a method for designing of communication systems [11]. 

1.4.2 Linear Programming 

In an optimization problem, when the objective and constraint functions are all 

affine, the problem is called a linear program (LP). A general linear program 

has the form 

minimize cT x 

subject to Gx:::::; h 

Ax= b 

(1.3) 

where G E R mx ll and A E RPXll. Linear programs are convex optimization 

problems. 
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1.4.3 Mixed-Integer Programming 

A mixed-integer optimization problem is an optimization problem in which 

some of the optimization variables are integer-valued, while the rest are real­

valued. Mixed-integer optimization problems are usually difficult to solve. In 

particular, they cannot be solved within polynomial time. In fact, the com­

plexity of integer and mixed-integer optimization problems is NP-hard [12]. 

That is, finding the optimal solution may require examining all the feasible 

points using exhaustive search. There are several commercial packages that 

can solve these kinds of problems (e.g., CPLEX [13] or GUROBI [14]), which is 

commonly done using the branch and bound method. 

1.4.4 Feasibility problems 

If the objective function is zero, the optimal value is either zero (if the feasible 

set is nonempty) or inf (if the feasible set is empty). This type of problem is 

called feasibility problem. It also can be written as 

find x 

subject to fi(X) < 0, i = 1 ... m 

hi (x) < 0, i = 1 " . p 

(1.4) 

Thus the problem is if the constraints are consistent, find a point that satisfies 

them. 

9 
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1.5 Contribution 

In this thesis the placement of basestations from a renewable energy point of 

view is considered. To accommodate the solar power assumption, the network 

design must be done using historical solar insolation sample functions for the 

region where the network is to be deployed. In our results we use data for 

Toronto, Canada, since it is typical of a temperate continental climate. The 

objective is to find the best basestation deployment so that when the system 

is subject to the design bandwidth usage profile and solar insolation sample 

functions, the network survives outage-free. This is a unique aspect of the 

problem which must take into account the energy input/ output recursion at 

each sensor node. 

The basestation nodes are placed so that outage-free operation of the sen­

sors is ensured. This is accomplished by minimizing the number of bases­

tations that are needed when taking into account the energy needed for the 

sensor nodes to perform traffic relaying. The problem is first formulated as a 

discrete optimization, which gives a lower bound on the number of basesta­

tions that are needed. Due to the complexity of the problem, an algorithm is 

proposed which can be used to do placements for practical problem sizes. The 

algorithm uses an iterated local search to find a starting point, and then uses 

an energy aware local optimization to obtain feasible basestation placements. 

Results are presented which show that the proposed algorithm performs well 

for a variety of network scenarios. 

The rest of the thesis is organized as follows. In Chapter 2 we review lat­

est researches on battery powered hardware design and power management 

10 



M.A.Sc. Thesis - Sayed-Ali Shariatmadari McMaster - Electrical Engineering 

methods in wireless sensor networks. In Chapter 3 we briefly review solar 

powered sensor and mesh networks. In Chapter 4 we formulate our problem 

and then discuss its complexity and then propose algorithms with reasonable 

running time. Chapter 5 has the performance results of proposed algorithms 

and comparison with optimal solutions. Chapter 6 summarizes our work and 

proposes some future research topics. Preliminary work of this thesis is pub­

lished as a conference paper in IEEE Wireless Communications and Networking 

Conference, Sydney, Australia, April 2010 [15]. 

11 



Chapter 2 

Power Management in Wireless 

Sensor N etwurks 

Wireless sensor networks are an effective way of monitoring environments. 

However, one of the major challenges in designing these networks is the lim­

ited energy available to sensor nodes. For this reason, a large fraction of stud­

ies in wireless sensor networks are focused on the problem of energy efficiency. 

They use the fact that data transmission and radio communication by orders 

of magnitude are more expensive than computation. This trade-off has a large 

impact on the design of hardware, algorithms and network platforms in sensor 

networks. 

2.1 Hardware Design and Deployment 

New developments in wireless communications have resulted in smaller, low­

power and low-cost sensors. The Mica platform, designed by researchers at 
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Figure 2.1: Mica Hardware Platform: The Mica Sensor Node (left) with the 
Mica Weather Board Developed for Environmental Monitoring Applications 

the University of California, Berkeley, introduced a new approach in wireless­

system design of low cost embedded devices. It is suitable for a self-configuring 

multihop (mesh) network platform for remote monitoring [16]. The Mica plat­

form, pictured in Figure 2.1, uses an operating system called TinyOS that is 

specifically designed for deeply embedded systems with minimal hardware. 

An architecture of a habitat monitoring network using Mica devices, com­

monly known as "motes", is shown in Figure 2.2. System design requirements 

are reviewed in Reference [17]. This architecture is implemented as a 32 node 

network using a tiered architecture. The first level are sensor nodes that gather 

data. Then this data is transmitted to the network gateway. The gateway is 

responsible for transmitting data through a local network to the remote bases­

tation. The basestation is connected to database servers across the internet. 

This data is logged in those servers and is displayed through a user interface. 

Mobile devices can also interact with the network. 

13 
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Figure 2.2: System Architecture for Habitat Monitoring 

An intelligent wireless sensor node using a programmable system on a chip 

is introduced in Reference [18]. This work uses a low-power programmable 

system on chip to reduce energy consumption of sensors. These sensors are 

used in a heart disease monitoring system. Having the capability of process­

ing heavy computation and complex functions rapidly helps to process the 

gathered data at the sensor itself instead of sending it to a base station. This 

approach reduces the amount of transmitted data and saves energy at nodes 

and increases the node lifetime. 

Reference [19] is focused on the storage needs of sensor networks. Local 

storage is used in many sensor networks for either saving gathered data or 

for memory. This works uses the recent gains in energy efficiency of new­

generation NAND flash storage. It is argued that current solutions for data 

storage in sensor networks which only provide a simple file system are not 

competent enough. Instead a new object storage abstraction named Capsule 

14 



M.A.Sc. Thesis - Sayed-Ali Shariatmadari McMaster - Electrical Engineering 

is introduced. Capsule provides stream, file, array, queue and index storage 

objects. It also supports checkpoints and rollback of objects. It is argued that 

Capsule provides better energy efficiency than current storage solutions. 

One way to deploy a large number of sensor nodes is to deploy them in 

clusters. But in this method, the location of a particular sensor cannot be guar­

anteed. This increases the number of nodes that are needed to completely 

cover the monitored area. In Reference [20] a heuristic is discussed that selects 

mutually exclusive sets of sensor nodes where each set can completely cover 

the area. Activating only one set is enough and this helps saving node energy. 

2.2 Simulation Framework 

Sensor nodes are tiny sensing and computing devices with limited energy, 

computational and communicational resources. In addition, sensor networks 

are often deployed in outdoor environments which are uncontrolled. These 

networks exploit distributed algorithms for efficient data processing. Algo­

rithms cannot be implemented without considering real world impact and de­

bugging these algorithms is very difficult. For example, a breakpoint can inval­

idate the gathered data. Therefore new tools are needed to aid programmers in 

developing applications for sensor networks. To ease developing algorithms 

for sensor networks, an event-driven simulation environment for TinyOS ap­

plications, TOSSIM, was developed [21]. Also an extension to TOSSIM to ad­

dress the aspect of power consumption was developed in Reference [22]. This 

extension, PowerTOSSIM, tries to consider low-level energy requirements of 

the CPU, radio, sensors and other peripherals. This is done by estimating the 

15 
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number of CPU cycles executed by each node. It also has a model of energy 

consumption base on Mica2 sensor node platform. 

2.3 Communication 

Advances in radio technology enable small and cheap nodes that minimize 

energy consumption of data transmission. The modulation and transmission 

strategy playa vital role in this when applications must satisfy given through­

put and delay requirements. In Reference [23] the authors show that when 

total energy consumption WhicrL includes both transmission energy and cir-

cuit energy is considered, the traditional belief that multi-input-multi-output 

(MIMO) systems are more efficient that single-input-single-output (SISO) sys­

tems are not always correct. In short range applications with fixed modulation 

and data rate SISO systems may outperform a MIMO system. 

A phenomenon that impacts communication performance in wireless sen­

sor networks is radio irregularity. Variance in RF sending power and different 

path losses are some factors that cause these irregularities. In Reference [24] 

first a radio simulation model called Radio Irregularity Model (RIM), is estab­

lished. This model is based on data gathered from the MICA2 platform and 

is used to analyze the impact of radio irregularity on MAC and routing proto­

cols. It was shown that radio irregularity has large impact on routing protocols 

but a small impact on MAC protocols. To deal with radio irregularity, some so­

lutions are proposed and evaluated. 

Reference [4] considers an energy-aware approach for the management of 

sensor networks that maximizes the lifetime of the sensors. This approach 

16 
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dynamically sets routes and chooses media access to minimize energy con­

sumption. It divides the network into clusters and then assigns a node that 

is less energy constrained as cluster manager. A time-based MAC protocol is 

also described and discussed. 

Two data gathering and aggregation protocols are proposed in Reference [25]. 

It tries to be a near optimal spanning tree routing protocol. These protocols 

performed well in networks where the basestation is far away and where it is 

in the center of the field. PEDAP (Power Efficient Data gathering and Aggre­

gation Protocol) shows a good improvement over other similar protocols. 

Reference [26] studies a power management protocol that is distributed 

and on demand. It provides routing information to nodes and also shuts them 

down when they are not active, to help reducing up to 83% of node power 

consumption. 

A data gathering protocol named Dozer that is designed for an environ­

mental monitoring network is discussed in Reference [27]. An environmen­

tal monitoring network is supposed to operate continuously for several years. 

Minimizing communication cost helps achieving this goal. Dozer uses MAC 

layer, topology control, and routing all coordinated to minimize energy con­

sumption of the sensor nodes. The network is structured as a tree and packets 

are transferred reliably. This application does not try to reduce the latency of 

data transfer. This is the price that is paid for reduction of the duty cycles of 

nodes. Therefore this architecture is not suitable for delay critical applications. 

An approach for using a cluster based routing algorithm is proposed in 

Reference [28]. A network is divided into clusters and then a centralized node 

17 
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Figure 2.3: Multi-Gateway Clustered Sensor Network 

is selected based on energy constraints. This allows the system to handle addi­

tionalload and cover a large area. A multi-gateway clustered sensor network 

is shown in Figure 2.3. This node acts as a network manager, and routes for 

transferring data are chosen based on energy usage of the nodes and changes 

in the environment. 

2.4 Basestation Placement 

Base station location has a significant impact on network lifetime performance 

for a sensor network. This comes from the fact that data transmission and 

radio communication by orders of magnitude are more expensive than com­

putation. It also has a big impact in design goals of a sensor network such as 

data latency and data integrity. In Reference [29] a survey is done which dis­

cusses static and dynamic strategies for node positioning. In References [30] 

and [31], mobile basestations and basestation repositioning is considered. 

18 
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Figure 2.4: Reference Architecture for a Two-Tiered Wireless Sensor Network. 

The study in Reference [32] considers the joint problem of energy provi­

sioning for a two-tiered wireless sensor network. The two-tiered wireless sen­

sor network architecture as shown in Figure 2.4 is described and power con­

sumption and power control in this architecture is reviewed. The problem of 

deploying relay nodes, given a set of existing nodes, is studied. The reference 

shows for a given network with initial energy, how additional energy should 

be allocated to either existing or new locations. 

An attempt to maximize network lifetime by arranging basestations and 

relay nodes positions in a two-tiered Wireless Sensor Network is done in Ref­

erence [33]. In this architecture sensors are in the lower tier of the network. 

They are deployed as clusters and capture, encode and transmit data to an 

application node. The application node then processes the data and creates 

a comprehensive local-view and forwards it to a basestation. Both applica­

tion node and basestation are in the higher tier of the network. They are also 

battery-powered and energy-constrained. The optimal location is only deter­

mined for the simple case where only single-hop routing is allowed. The more 
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Figure 2.5: The disk is divided into 16 subareas for the 3-node example. 

difficult problem involving multi-hop routing is not addressed. 

Placing basestations so that the network flow is proportionally maximized 

subject to link capacity is studied in [34]. It is showen even though it is possible 

to find optimal solutions for a special network topology (e.g., grid); the base 

station placement problem for an arbitrary network is NP-complete. 

A (1 - €) optimal approximation algorithm to the basestation placement 

problem is proposed in Reference [35]. This is done by constructing a finite 

search space of physical points. 

A network model for basestation placement in a battery powered network 

problem is presented in [6]. This work includes an approximation algorithm 

20 
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that can guarantee (1 - e) optimal network lifetime performance for base sta­

tion placement problem with any desired error bound e > O. The algorithm 

first finds the smallest disk that contains all of the nodes. For each node lower 

and upper cost bound is computed and based on these bounds a sequence of 

costs is defined. Then sequences of circles are drawn centered at each node 

with increasing radius corresponding to cost series defined for that node. The 

intersection of these circles creates subareas in the disk that contains all of the 

nodes. Then an optimization problem that is linear is solved to find the best 

subarea for the basestation that maximizes network lifetime. The basestation 

can be placed anywhere in the selected subarea. A sample of a disk divided 

into subareas is shown in Figure 2.5. The performance of proposed algorithm 

is better than the one proposed in Reference [35]. It is also proved that the pro­

posed base station placement algorithm is (1 - e) optimal. But the assumption 

is that there is no bound on the transmit power. This work is extended in [36]. 

The first extension is the case where the transmit power at each sensor node 

is upper bounded. It is showed that the proposed algorithm can be extended 

without much difficulty. The second extension is to show that how the pro­

posed algorithm can be extended for multiple basestations. This is done by 

narrowing down the search space for each basestation location into a finite 

search space while the performance of the algorithm is guaranteed. 
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Chapter 3 

Solar Powered Networks 

3.1 Introduction 

Having a battery powered wireless embedded system (such as sensor nodes) 

operate in an energy sustainable fashion is a key challenge and a lot of re­

search effort has been devoted to energy optimization of such systems. Energy 

harvesting from the environment, in particular solar power based, has increas­

ingly been used as a practical technique to supplement battery supplies. In this 

chapter we survey different methods and hardware designed to make harvest­

ing of the energy from the environment more efficient. 
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3.2 Solar Radiation Data 

Theoretically, it is impossible to know in advance how much solar energy 

would be received at the solar panel of a sensor. The motion of the earth cre­

ates daily and yearly cyclic behavior in solar insolation, which are determinis­

tic, but weather conditions such as air humidity and clouds add randomness 

to the amount of harvested energy and are mainly modeled using stochastic 

processes. However, it can be assumed that weather conditions have a cyclo­

stationary property and past solar irradiation data can be used. For this pur­

pose, we can use public meteorological data and depending on the site specific 

sihmtion some conversion of meteorological data are required [37]. 

3.3 Hardware Design of Solar Sensors 

Several technologies have been developed to extract different types of energy 

from the environment. Also several solar energy-harvesting sensors have been 

developed. In Reference [38] an upper bound for conversion of solar energy 

is investigated. Important factors such as components, design choices, trade­

offs that are involved in designing of solar powered sensors are discussed in 

Reference [39]. An implementation by means of super capacitors and lithium 

rechargeable batteries is introduced in [40]. Several important aspects of de­

sign and architecture of micro-solar power system sensors are investigated 

in [41]. In [42] a method to harvest energy from other nodes is studied by 

building a network that consists of fixed and mobile nodes. Mobile nodes 

always move and search for energy, recharge themselves and bring energy 
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to non-movable nodes. Design principles for a long duration solar powered 

wireless sensor network is discussed in [43] and data from an actual imple­

mentation is presented. It uses a DC-DC converter and simple NiMH battery 

technology. 

3.4 Energy Aware Design Challenges 

The design goal in a network that is powered with batteries is to minimize 

the power consumption of network nodes [44] or to maximize the network 

liferllue [45]. An ener~y-harvesting node is defined as a system which gets 

some or all of its energy from the environment. A vital difference between this 

kind of energy and that from a battery is that the amount of energy that can be 

harvested from the environment can be unlimited. A harvesting network can 

be built by using energy-harvesting nodes [9]. 

At first glance it seems that this is also true for energy harvesting networks 

and tasks must be allocated to nodes with higher residual battery, because 

these nodes have harvested more energy than others. But it has been shown in 

References [46], [47] and [39] that making power consumption decisions that 

are based on environment conditions have better results than otherwise. There 

are two main reasons. The first is that the workload of a node with recharging 

opportunity may not match the pattern that the node harvests energy from the 

environment. If more work is assigned to nodes with higher battery size, over 

time this may reduce the battery reserves of those nodes. The second reason 

is that to be able to decide how much energy can be consumed and saved, the 
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Figure 3.1: Interactions Between Various EEHF Algorithms 

environmental energy must be known. For example in a wireless sensor net-

work, nodes with more available solar energy must use more transrnit power 

than other nodes and even relay traffic for them. Therefore energy harvesting 

networks must utilize energy based on environmental energy, not the residual 

battery content of the nodes. 

In [46] the spatiotemporal property of the available energy in a network, 

i.e., the harvesting problem, is discussed. A distributed framework referred 

to as. environmental energy harvesting framework (EEHF) is the first part of 

the solution that is provided to solve the problem. This framework is used for 

adaptively learning the energy properties of the environment and the renewal 

opportunity at each node and to make this information available for use in 

other tasks. The EEHF block diagram is presented in Figure 3.1. 

Power management in energy harvesting networks is discussed in Refer­

ence [9]. The paper discusses the conditions for energy-neutral operation in 

detail and models the variation of energy sources and energy consumption. 

Energy-Neutral operation is achieved by consuming energy such that the en­

ergy used is always less than the energy harvested. Both the spatiotemporal 
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profile of the available energy and the way of usage of that energy is very 

important to guarantee the maximum performance of the network. 

In Reference [9] some practical methods are developed which an energy 

harvesting system can use to predict the expected energy that can be har­

vested. The model is motivated by leaky-bucket Internet traffic models. How­

ever, there is a difference between this model and the leaky-bucket model. In 

Internet traffic policing a limit is only needed on the maximum traffic bursts. 

But in harvesting energy, bounding both the maximum and minimum energy 

outputs is required. In [48] different solar energy prediction algorithms are 

compared. These algorithms give estimates of available energy over future 

time intervals. 

An algorithm called Uniform Sensing Protocol is proposed in [49], which 

uses ANSWER (AutoNomouS netWorked sEnsoR system) [50] as its structure. 

In ANSWER, nodes possess certain mathematical capabilities and a clustering 

system is used to organize the micro-sensors. Uniform Sensing Protocol uses 

this structure to determine routing. Each sensor node must first calculate its 

energy budget at the beginning of each day and night cycle. 

In the Uniform Sensing Protocol, the sensor nodes first calculate their en­

ergy budget at the beginning of each day and night cycle and based on that, 

the active time for the sensor is calculated. The protocol uses a Gaussian dis­

tribution function to calculate the probabilities of possible needed activities. If 

any activity is requested the node increases the active time period, otherwise 

active time remains unchanged. 
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3.5 Solar Based Routing Algorithms 

Routing in wireless sensor networks has to take into account the very limited 

resources of the nodes. We will review some of the solar aware proposed pro­

tocols. These protocols follow the idea that as far as it is possible, tasks should 

be carried out using the nodes that have ability to harvest environment en­

ergy rather than consuming energy from node batteries which do not have 

any recharging opportunity. Two protocols that perform solar aware routing 

decisions are proposed and evaluated in [47]. These protocols are based on 

directed diffusion. 

In direct diffusion the node that is interested in data is called sink and is 

looking for a sensor that has that data. Interests for data are attribute-value 

pairs. The source is the sensor that can deliver that data and potential sources 

are called gradients. Events, which are the source data, are sent to the sink via 

gradients. The simplest form of the protocol is sending information to the sink 

via broadcasting the data. Then the sink sends another interest message and 

this time by using the responses from the first stage, the best path is chosen. 

This path is chosen based on some factors like earliest response or lowest loss 

rate, and the data will only send to one neighbor. In direct diffusion at least 

adjacent nodes are required to be distinguished by identifiers. 

The first solar aware protocol is based on local interaction with neighboring 

nodes. It is a simplified version of the direct diffusion protocol. In this protocol 

gradients also contain solar state of the neighbors. The nodes with solar power 

use the option to send to a solar powered neighbor. When a node changes its 

solar status, it should inform the upstream nodes. The second protocol extends 
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standard directed diffusion by adding several fields to the standard directed 

diffusion headers protocol. The original directed diffusion scheme does not 

prevent loops to occur but detects and removes them. But this protocol has 

a scheme that prevents loops in the first place. The result shows that first 

protocol works better with smaller networks and the second one for the larger 

network. Both of the protocols have significant energy saving effects. 

A QoS-aware geographic routing algorithm that is based on a solar energy 

is proposed in [51]. The proposed algorithm tries to determine the topological 

knowledge range (KR) and select an appropriate route. The larger the knowl­

edge range is the more likely to produce a near optimal path. On the other 

hand, gathering and maintaining more topological information requires more 

energy. An algorithm named Adaptive toPOLogical KR aLgOrithm (APOLLO) 

is proposed. By exploiting an estimation of harvested energy in a period of 

time, it periodically and locally determines the topological knowledge range 

of each node. The second algorithm named PrIority-based path Selection Algo­

rithm (PISA) runs on each node to find a route by using the knowledge range of 

the node, while it tries to meet different objectives such as path delay, energy 

consumption and reliability. 

3.6 IEEE 802.11 Mesh Networks 

WLAN mesh networks are currently being deployed for outdoor wireless cov­

erage in many areas to create Wi-Fi coverage zones. Providing continuous 

electrical power for all of these nodes is a major challenge in these mesh net­

works. Using solar or wind power as an energy source for some of these nodes 
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Figure 3.2: Best-effort mesh AP power saving with movable boundary. 

is an alternative to a fixed power connection. The SolarMESH network is an 

example that uses this approach in an operational testbed [52]. 

A resource allocation problem in solar powered WLAN mesh nodes is stud­

ied in Reference [8]. It is shown that the use of power saving methods in mesh 

nodes significant reduces the node cost. Some outage control strategies are also 

presented that can prevent outage of a mesh node. Legacy IEEE 802.11 only 

provides power saving modes for nodes and does not have any mechanism 

for placing access points into a power saving mode. IEEE 802.11e has a power 

saving mechanism that includes both contention and polling based options. 

Two variations of IEEE 802.11 that support power saving access points are pro­

posed in References [53] and [54]. Adaptive modification of access point sleep­

ing schedules based on current load conditions is proposed in Reference [53] 

and the method proposed in Reference [54] is a power saving WLAN mesh 

architecture based on the IEEE 802.11e. 

In Reference [54] a power saving AP broadcasts a network allocation map 

(NAM) in its beacon, which includes the information of periods of time within 

the superframe that the AP is unavailable. An example of this type of activity 

for a single inter-beacon period is shown in Figure 3.2. The upper timeline 
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Figure 3.3: Forced mesh AP power saving (FPS) with 50% offered capacity. 

shows the activity of the channel and the lower timeline shows the NAMs. It 

is also possible to force a maximum level of activity for an AP. This is referred 

to as Forced Power Saving (FPS). Figure 3.3 shows an example of an AP that 

is using FPS. In this example the AP advertises a NAM restricting its activity 

to a maximum of 50% of the inter-beacon interval. One of the most important 

uses of this capability is the ability to develop outage control algorithms [8]. 

A simplified version of a solar powered WLAN mesh node is shown in 

Figure 3.4. The solar panel and battery are connected to the AP through a 

charge controller which performs functions such as battery over/undercharge 

protection. We can define an energy flow model for this configuration [7]. In 

each time epoch t, Ei(t) is the available energy for Node i and t ranges over the 

entire set of solar irradiation samples and the energy stored at each sensor's 

battery must satisfy the following recursion 

In this equation, Ei(t) is the maximum solar insolation available at Node i dur­

ing the current time epoch. This equation is an energy recursion that computes 
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Figure 3.4: Solar Powered WLAN Mesh Node 

at each time epoch, the amount of energy that a sensor node obtains as Ei(t) 

and the amount of energy that is utilized as Li (t). The amount of energy stored 

in the battery cannot exceed Bmax(i) and also cannot be less than Boutage. 

The problem of cost-optimal placement of the energy sustainable nodes in 

these types of WLAN mesh networks is studied in Reference [55]. At first a cost 

model is introduced that considers the provisioning required to operate the so­

lar or wind powered nodes with a known outage criterion. Then this problem 

is formulated as Mixed Integer Quadratic Problem and a branch and bound 

method is used to find the solutions for node positioning. A methodology for 

the provisioning of energy sustainable mesh nodes was given in [56]. This was 

applied to IEEE 802.11 mesh networks operating using solar power, and is the 

methodology used for resource provisioning in this thesis. Over-provision of 

nodes when using energy aware routing is discussed in Reference [57]. In this 
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work energy aware routing is also incorporated in resource assignment and a 

genetic algorithm (GA) has been developed for this purpose. 
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Chapter 4 

Problem Definition 

4.1 Introduction 

In this chapter we define and formulate the problem. Consider a wireless net­

work of sensor nodes where the nodes are powered by solar energy. Each 

node communicates with the wired network through one or more sensor node 

air hops to an appropriate basestation. We assume a tiered system where all 

the basestations have infrastructure connectivity, and hence a given sensor 

node is free to communicate using any choice of basestation. In this thesis, 

we use basestation placement in order to optimize the sustainable energy per­

formance of the sensor nodes. The objective of the problem is therefore to locate 

and minimize the number of deployed basestations needed to support the sensor nodes 

so that they are energy sustainable, i.e., outage-free. 

We assume that the candidate basestation locations are known in advance. 

To obtain an efficient basestation placement, basestation density must in gen­

eral be higher in regions where there are sensor nodes with low energy renewal 
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Figure 4.1: Basestations and Solar Powered Sensor Nodes. Region I has a lower 
solar factor than Region II. The deployed basestation density is lower in Re­
gion II. 

rates and/ or high node utilizations. This is needed to reduce the level of mul­

tihop communication that is needed to maintain full connectivity. Otherwise 

sensor nodes in those regions may suffer outage due to insufficient solar en­

ergy reserves. In this model, the communication range of the sensor nodes is 

bounded by defining a limit on transmission power, which induces a graph 

where the edges are potential links between sensor nodes. 

The problem formulation also considers the effects of the spatial distribu­

tion of solar insolation. This is a consideration that is often neglected, but is 

an important issue in practical solar powered mesh nodes [7]. Although the 

methodology in this thesis applies to generalized per unit area solar insolation 
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renewal rates, for each Node i, we define a solar factor, (ti (t) E (0,1), which 

gives the fraction of available solar energy due to shadowing and positional 

restrictions compared with an optimally positioned panel at that location. We 

assume that these insolation factors are known to the basestation deployment 

algorithm based on information collected during a site survey when the sensor 

nodes are placed. 

Figure 4.1 shows an illustrative example. The two shaded areas repre­

sent regions with different solar insolation factors. Deployed basestations are 

shown as black squares and sensor nodes are shown as circles. The dotted 

arrows show the wireless hops used for routing. In the figure, Region I has a 

lower solar insolation factor than in Region II. For this reason, sensor nodes 

in Region II can support levels of multi-hop relaying that lead to a decreased 

basestation deployment density in that region. When this is the case, this can 

have a strong effect on the optimum number and locations of the basestations 

needed to support energy sustainable node operation. 

4.2 Problem Formulation and Lower Bound 

Each sensor node is represented by an integer in the set N = {1, 2, ... , N}, 

and each potential basestation location is indexed by an integer in the set 

B = {N + 1, N + 2, ... ,N + B}. Since sensor traffic can be routed through 

any basestation, the flows between a sensor node and the infrastructure can 

be represented by a single value. Accordingly, F is defined as the set of all 

nodes in N plus one additional node representing the basestations. Thus the 

cardinality of F is equal to N + 1. Table 4.1 lists all notations used in this thesis. 
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T 
N 
B 
N 
B 
S 
F 
A 

G(S,A) 
gsd(t) 

"(il(t) 
Pt,ij , Pr,i 

Pidle 
Li(t) 
Bi(t) 

Bmax(i) 
Boutage 

Ei(t) 
(Xi (t) 

Cij 

Rij 
dij 

{3r, (32, m 

Number of time epochs 
Number of sensor nodes 
Number of placement for basestations 
Set of sensors = {I, 2, ... , N} 
Set of placement for basestations = {N + I, N + 2, ... , N + B} 
Set of all nodes in N and base stations in B 
Set of sources and destination of flows = {I, 2, ... , N + 1 } 
Set of all links that exist in network 
Network topology graph 
Flow volume that is generated in node s at each time epoch and is 
destined to d 
Part of the flow gsd(t) that goes from node i to node j 
Power consumption factors for transmitting and receiving data 
Energy consumption when sensor is in idle mode 
Total Load of a sensor i at each time slot 
Residual battery energy of sensor i at time t 
Maximum Battery capacity 
Maximum allowed depth of battery discharge 
Solar insolation at node i at time t 
Solar insolation attenuation coefficient in node i at time t 
Capacity of link between i to j 
Relaying table 
Distance between node i and node j 
Power consumption and path loss coefficients for receiver and 
transmitter 
Weight assigned to each criteria of the objective 

Table 4.1: Notations 

We define Ai to be a binary decision variable that determines whether a 

basestation is placed at a given location in B. The network is modeled as a 

graph G(S,A) where S consists of all of the nodes in B and N, and A is 

the set of all links (i, j) where i, j E S. eij is also defined to remove the links 

between nodes that do not have any mutual connection, which are known in 
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advance and are defined as follows. 

eij = {1 
o 

(i,j)EA 
(4.1) 

ow. 

We now consider the bandwidth flow and sensor node power consump­

tion. To accotmt for traffic flow continuity, we assume that s is the source and 

d is the destination of a flow with volume gsd(t). Therefore, sand d are in F 

and part of that flow that is passed from Node i to j can be written as 1if(t). 

The flow continuity for any node i E N can be written as, 

gsd(t) i = s 

L (eij1if(t) - ejoJt(t)) + L Aj (eij1if (t) - ejoJt(t)) = -gsd(t) i = d 
jEN jEB 

o ow. 

(4.2) 

The first term on the left hand side of Equation (4.2) is the fraction of the flow 

that a sensor node sends to others for relaying. The second term is that sent 

from a sensor to a basestation. The third is the flow that is received by the 

sensor from other sensors and the fourth is that received by the sensor from 

a basestation. Aoif(t) means that traffic passes through Basestation i, if that 

basestation location is used. The left hand side is positive and equal to gsd (t) if 

this node is the source of traffic and is equal to -gsd(t) if it is the destination, 

otherwise it must be zero because of flow continuity. Because the basestation 

flows are modeled as a single node, flow continuity for all basestations must 
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be written as one equation that is similar to Equation (4.2), i.e., 

S E B 

o ow. 

For each Basestation i, the first term m Equation (4.3) is the traffic that the 

basestation sends to sensor nodes, and the second term is the traffic that is 

received from sensor nodes. We also mclude a link capacity constramt that is 

written as 

o :5: r>ij1i! (t) :5: Cij (4.4) 
s,d 

The result of the summation is the total traffic from all of the flows that pass 

through Node i to Node j. By usmg the above defmitions, the total load at each 

node i EN is 

Li(t) = L L (eijPt,ij1i!(t) +ejiPr,(Yjt(t)) + Pidle L (eijlij(t) +eji1ji(t)) 
s,d jEN,B jEN,B 

(4.5) 
c. -" rysd(t) Idt) = I] '-'s,d I ij 

] C· 
I] 

(4.6) 

This equation is similar to the traffic flow equation. The first part of Equa­

tion (4.5) is the total energy that is consumed for transmittmg between nodes 

and basestations. The second part is the power consumption of the sensor 

when it is idle. The normalization of link utilization that gives the fraction of 

time that links are idle is written m Equation (4.6). The Pt,ij and Pl',i coefficients 

respectively, describe the amount of energy that a sensor uses for transmittmg 
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or receiving one unit of traffic. Pr,i is considered constant and Pt,ij is given by 

(4.7) 

where f31 is a distance independent term and f32 is a distance dependent one, 

m is the path loss coefficient, with 2 ~ m ~ 4. dij is the distance between 

two nodes [6]. Note that although we assume an exponential path loss, any 

propagation model can be incorporated into the computation. 

Solar powered systems are modeled in discrete time, and hence the life­

time of the network is divided into time epochs, which are usually i-hour in 

duration [7]. In each time epoch t, Ei(t) is the available energy for Sensor i and 

t ranges over the entire set of solar irradiation samples. The target network 

lifetime is specified in advance, and the energy stored at each sensor's battery 

must satisfy the following recursion [7], 

In this equation, Ei(t) is the maximum solar insolation available at Node i 

during the current time epoch. lXi(t) is the solar factor which discounts this 

value as discussed previously, and may be time-varying. This equation is an 

energy recursion that computes at each time epoch, the amount of energy that 

a sensor node obtains is lXi(t)Ei(t) and the amount of energy that is utilized is 

Li(t). The amount of energy stored in the battery can not exceed Bmax(i) and 

also cannot be less than Boutage [7]. 

Equations (4.2) and (4.3) are non-linear, i.e., Ak is a binary variable that 
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is multiplied by another, 'Yil(t). This term is linearized by defining a new 

variable Vif,k with the following conditions [58]. 

o < V~~k < 'V~~ (t) - IJ, - IIJ ' 

'Yil(t) - Cij(l- Ak) ::; Vif,k ::; AkCij' 

(4.9) 

(4.10) 

Now when Ak = 0, then 0 ::; Vif,k ::; 0 and Vif,k is forced to be zero and when 

Ak = 1 then 'Yil (t) ::; Vif,k ::; 'Yil (t) and Vif,k is forced to be equal to 'Yil (t). 

Index (ij, k) means that the link is between i and j and k is a basestation. 

In Equation (4.8), the mir..L"tllliL"tll of Bi(t) is Boutage and its maxhrLturL is 

Bmax(i). In some situations however, the load is more than the harvested en­

ergy plus energy stored in battery. Another possible situation happens when 

the harvested energy overfills the capacity of the battery. To linearize this equa­

tion, a new slack variable, fi(t), is defined such that, 

Boutage ::; Bi (t) ::; Bmax (i) 

Bi(t) + fi(t) = Bi(t -1) + (Xi(t)Ei(t) - Li(t) 

fi(t) ~ 0 (4.11) 

fi(t) must be minimized in order that this formulation be true. Therefore it is 

added to the problem as a new term in the objective function. In addition, fi (t) 

must be positive, to constrain the sensor node to never go into outage. 

Another concern in the formulation of the problem is dealing with routing 

loops, which is common in energy harvesting problems. For example consider 

a sensor network with 10 nodes that is supposed to work for 10 hours. Assume 
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that 3 basestations are enough for non-interruptible service. It is possible in 

some time epochs that some nodes have extra energy stored in their batteries. 

If there is flow that passes through these nodes, they can form a routing loop. 

This happens because these loops do not contradict the flow continuity (Eq. 

(4.2) and (4.3)) and energy flow model (Eq. (4.8)). Therefore the final data 

routing result may contain incorrect results. These loops can be eliminated 

from routings by minimizing the sum of total routing of data over all time 

epochs. 

The above definitions result in a multi-criterion linear mixed-integer opti­

mization problem that can be used to find a lower bound on the number of 

deployed basestations. It is worth mentioning that nature of this specific prob­

lem automatically minimized the slack variable rt(i). The slack variable stores 

the amount of solar energy that is harvested by a node, but is wasted because 

battery is fully charged and it must be minimized. But when the problem is 

minimizing the number of basestations in the network, this variable is mini­

mized automatically. This happens because a higher value of slack variable 

means less energy is stored in the battery of the nodes, therefore less energy 

is available for data transmission and this means placing more basestations 

which contradicts the main objective of the problem. Thus in this specific sit­

uation minimizing slack variable can be removed from the objective function. 

This is not always true, for example the algorithms that will be discussed later 

in this chapter do not follow this exception. 

The problem can be formulated by assigning different weights (Wi, w2 and 

W3) to different criteria, resulting in the following final formulation, 
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minimize WI L Ai + W2 I>i(t) + w3 L 'Yif(t) (4.12) 
iEB iEN s,dEF 

tE{I,2, ... ,T} (i,j)EA 
tE{I,2,. .. ,T} 

subject to 

Ai E {Of I} 

o ~ L eij'Yif (t) ~ Cij 
s,d 

gsd(t) i = s 

L (eij'Yif(t) - eji'Yjf(t)) + L Aj(eij'Yif(t) - eji'Yjf(t)) = -gsd(t) i = d 
jEN jEB 

o ow. 

gsd(t) S E B 

L L Ai(eij'Yif(t) - eji'Yjf(t)) = -gsd(t) dEB 
iEBjEN 

o ow. 

Bi(t) + fi(t) = Bi(t -1) + lXi(t)Ei(t) - Li(t) 

fi(t) ~ 0 
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4.3 Energy Aware Basestation Placement 

The optimization bound formulated in Equation (4.12) is a linear mixed-integer 

problem. It is proved that this is NP-hard, and can only be solved for small 

problem sizes [12]. In addition, the bound does not in general result in a causal 

basestation deployment solution, since it uses knowledge of the full solar inso­

lation trace in its computation. For these reasons we propose a simple and ef­

ficient practical algorithm. The algorithm is first described, and then a method 

for generating an initial solution is discussed based on an Iterated Local Search 

(ILS) procedure [59]. 

The proposed algorithm is shown in Algorithm 4.1. The algorithm starts 

with an initial solution and then solves the problem for each time epoch us­

ing the solar insolation inputs from the previous step (Line 4). The algorithm 

stores and updates a table that tracks the frequency with which the node relays 

traffic on behalf of other nodes. If a node runs into outage during this process, 

it uses this information to determine new basestation activations (Line 9 and 

Line 10). By activating a basestation that these specific nodes require for re­

laying, the transit traffic that passes through the failed node can be decreased 

significantly. 

As mentioned above, the objective of the Lower Bound problem is 

minimize WI I>'-i + W2 I:>i(t) + 'W3 L I'if(t) (4.13) 
iEB iEN s,dEF 

tE{I,2, ... ,T} (i,j)EA 
tE{I,2, ... ,T} 

The problem is solved for each time epoch separately, t for fi(t) and I'if(t) 
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Algorithm 4.1 Energy Aware (EA) Algorithm, Minimum Load 

1: Import B as initial placement of basestations from the ILS Algorithm. 
2: Rij +- 0 V(i,j) E A 
3: for t = 1 to T do 
4: solve with B as placement of base stations for time epoch t. 
5: if any node went outage then 
6: if card(B) = B then 
7: Problem is infeasible. Stop. 
8: end if 
9: Using R, find those nodes that relay through the failed node. 

10: Add the nearest basestation to these nodes to B. 
11: t +- 1. 
12: end if 
13: V(i,j) E A update Rij-
14: end for 
15: set B is the final answer 

accepts only a single value. To accommodate the above procedure, the opti­

mization objective must be changed. Since activated basestations are known 

in advance at each time epoch, LiEB Ai is replaced by a linear equation that is 

energy aware. These changes make the problem a linear program (LP) that is 

solved very quickly. 

Minimum Load 

By replacing LiEB Ai in Equation (4.13) by LiEN Li(t) the problem becomes a 

minimum load problem and for a known t the objective becomes, 

minimize 'WI L Li(t) + 'W2 L ri(t) + 'W3 L 'Yif(t) (4.14) 
iEN iEN s,dEF 

(i,j)EA 
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This objective acts like a shortest path problem but finds a path with minimum 

consumption of energy used for transmission. This behavior prevents using 

multipath routing of data and all the data of a flow travels through the same 

path. This behavior affects the quality of the solution found by this algorithm 

as will be shown in Chapter 5. 

Minimum Battery Usage 

Battery usage is defined as the sum of remaining capacity of batteries of all 

nodes at the current time epoch. By minimizing the battery usage slack vari­

able, fi(t), and the data rate variable, 'Yif(t), are also minimized. Thus there 

is more need in minimizing them and problem will have only one objective 

to minimize. In contrast with the minimum Load approach, minimizing of 

battery usage lets a flow to take different path through the destination and 

therefore is one of the advantages of this algorithm. 

4.3.1 Initial Placement of Basestations 

The proposed algorithm must start with an initial solution. In order to ensure 

that we can accommodate large problems, we obtain this using an iterated 

local search procedure as shown in Algorithm 4.2. The algorithm starts by 

solving the actual problem when all of the basestations are placed, which is 

a linear program, and then deactivates unnecessary base stations one by one. 

For each basestation we are only interested in that particular basestation and 

therefore the status (placed or not) of all others is not changed. 
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The quality of the result depends on the order that basestations are pro­

cessed and that is why in Line 3 basestations are first sorted based on the 

number of links that each one has to all of the sensor nodes. This changes 

the type of the optimization from MlLP into a LP feasibility problem, which 

is even solved much faster than a standard LP problem. Our results for large 

networks show that this algorithm gives good results and in the cases where 

we have been able to compute the bound exactly, the algorithm generally per­

forms very well. 

Algorithm 4.2 Iterative Local Search (to initiate EA Algorithm) 

1: Add all basestations to set 13 and solve. 
2: For each basestation i E B calculate k = LjEN eij 

3: Sort B based on k ascending order 
4: for all i E B do 
5: Remove i from B and solve 
6: if Problem is not feasible then 
7: Add ito B 
8: end if 
9: end for 

10: set B is the answer 

4.3.2 Complexity of EA Algorithms 

Our algorithm consists of two parts, first a search for an initial placement us­

ing Algorithm 4.2 and then Algorithm 4.1 solves the problem using that initial 

placement, in a causal way. Algorithm 4.1 solves a LP for each time epoch, 

which is solvable in polynomial time or in other words is of order O(nk) for 

some constant k. But every time that a node fails with a preselected set of 

basestations, the loop starts from the beginning. The worst case scenario, only 
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one basestation is placed at the start of the algorithm and then every time at 

the latest time epoch a node fails until all of the basestations are placed. There­

fore running time of Algorithm 4.1, for constant B, T and le, is upper bounded 

by B x T x O(nk), which is polynomial. Algorithm 4.2 also solves a LP in each 

iteration and the total number of iterations is exactly equal to the number of 

placement for basestations which is constant. This means running time of Al­

gorithm 4.2 is upper bounded by B x 0 (nk) for constant Band le, which is also 

polynomial. This concludes that the total solve time of both EA algorithms is 

polynomial. 
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Chapter 5 

Performance Results 

5.1 Introduction 

In this chapter we present some representative sample results using the pro­

posed algorithms. Our experiments use solar irradiation data over a 50 day 

time period based on historical measurements taken in Toronto, Canada. This 

data was obtained from the Meteorological Service of Canada. 

5.2 Design Example 

We consider a network with 12 sensor nodes using a topology that is shown 

in Figure 5.1a. Links between nodes and basestations are also shown in Fig­

ure S.lb. Any flow that originates from each node has a normalized value of 

0.5 and destined for a basestation. Basestations send a flow with volume of 

0.05 unit of traffic to all of the sensor nodes. All of the initial parameters are 

listed in Table 5.1. 
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(a) Nodes (circles) and Basestation Candi- (b) Links Between Nodes and Basestations 
date Locations (squares) 

Figure 5.1: Design Example. 

The first step for solving this problem is assigning values to wl, W2 and 

W3. With the initial parameters that are mentioned in Table 5.1, the number of 

placed basestations is 3 out of the 12 possible positions. The number of placed 

basestations changes with parameters such as the solar attenuation factor, link 

capacity and battery capacity, which are discussed in the following sections. 

5.2.1 The Size of Battery and Solar Panel 

Since sensor nodes that are deployed in a given area usually use the same 

hardware, our design uses a homogenous battery size and panel size among 

all nodes. Table 5.2 shows the effect of increasing battery size and panel size 

on number of basestation. In each case, with a predetermined battery and 

solar panel, the volume of flows in the network is increased until no optimal 

solution could be found and then the problem is solved again with having 
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Candidates for Base Stations 12 
Network Lifetime 1200 hour 

Transmission Energy Limit 0.15 
Pt,ij 0.01 + O.Oldt 
Pr,i 0.01 

Panel Size 4 
Boutage 0.1 

Bmax(i) 10 
Cij 1 

Table 5.1: Modeling Parameters 

Flow Volume 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 
Battery=2, Panel=l 4 4 5 - - - - - -
Battery=5, Panel=l 3 3 4 4 4 5 6 - -
tlattery=10,l'anel=1 2 3 3 3 4 4 4 5 5 

1.4 1.5 1.6 
- - -
- - -
6 6 8 

Table 5.2: The Number of Placed Basestation vs The Volume of Traffic that is 
Generated by Nodes. 

the size of battery or solar panel increased. Table 5.2 clearly shows that the 

number of basestations are increased when more flow is transmitted through 

the network. For example, consider the case that B = 2 and P = 1 and it can be 

seen that maximum flow that network can handle is 0.7 unit and 5 basestations 

out of 12 possible positions are placed. By increasing battery size, B = 5, 

maximum flow the network can handle is increased to 1.1 and 6 basestations 

are placed. 

In another example, Table 5.3 shows that in some cases only increasing the 

size of the battery is not enough and panel size must also be considered in 

designing the network. By considering P = 1 and comparing two cases when 

B = 10 and B = 20, one can understand that increasing the size of the battery 

has a negligible effect on the amount of flow the network can handle and the 
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Flow Volume 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 
Battery=10, Panel=l 4 4 5 5 6 6 8 - - - -
Battery=20, Panel=l 4 4 5 5 5 6 7 8 - - -
Battery=20, Panel=3 4 4 4 5 5 5 6 6 7 7 7 

Table 5.3: The Number of Placed Basestation vs The Volume of Traffic that is 
Generated by Nodes. 

number of placed basestations. But when the size of the panel is increased 

and P = 3 not only flow with the volume of 2 unit instead of 1.7 unit can be 

handled but also the number of basestations needed is decreased from 8 to 7. 

5.2.2 Heterogeneous Solar Factor 

Figure 5.2a shows a network that all of the sensor nodes are harvesting the 

same amount of solar energy. In other words, the solar factor, lXi(f), is homo­

geneous and has a same value for all nodes i E N. Figure 5.2a also shows that 

3 basestations are enough that the network works for the entire time. In prac­

tice, all of the sensor nodes do not harvest the same amount of solar energy at 

the same time and this affects the number of placed basestations. Figure 5.2b 

shows the same network as in Figure 5.2a but the shaded part receives less 

solar energy. This change increases the number of placed basestations from 3 

to 4 and concentrated more basestations in the shaded area. 

5.2.3 Performance of EA Algorithms 

The results show that decreasing link capacity will increase the number of 

basestations, which would clearly be expected. For example, by looking at 

Table 5.4a which shows the Lower Bound, when the solar attenuation factor 
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(a) A Network with Homogeneous Solar(b) A Network with Heterogeneous Solar 
Factor Factor 

Figure 5.2: Comparing Node Placement in a Homogeneous Solar Energy net­
work vs a Heterogeneous one 

is 1, decreasing the link capacity from 1 to 0.3 increases the number of placed 

basestations from 3 to 6. This also happens when the battery capacity of the 

nodes is decreased. Table 5.6a shows that decreasing the battery capacity from 

15 to 3, when the solar attenuation factor is 1, increases the number of basesta­

tions from 3 to 4. Table 5.4 shows the variation of required basestations when 

the link capacity and solar attenuation factors change, and Table 5.6 shows the 

results when the battery capacity and solar attenuation factors are changed. 

These results were obtained by solving the optimization problem in Equa­

tion (4.12) and therefore are lower bounds. 

Results are also shown for solutions obtained using the proposed algo­

rithms. Table 5.5a and Table 5.7a show the results obtained using the Min­

imum Load algorithm and Table 5.5b and Table 5.7b show results obtained 

using the Minimum Battery Usage algorithm. Table 5.5a shows that when the 
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Link Capacity 
Solar Factor 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.4 7 5 4 4 4 4 4 4 
0.5 7 5 4 4 4 4 4 4 
0.6 7 5 4 4 4 4 4 4 
0.7 7 5 4 4 4 4 4 4 
0.8 7 5 4 4 4 3 3 3 
0.9 6 5 4 4 3 3 3 3 
1.0 6 5 4 4 3 3 3 3 

(a) Bound 

Line Capacity 
Solar Factor 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.4 7 5 4 4 4 4 4 4 
0.5 7 5 4 4 4 4 4 4 
0.6 7 5 4 4 4 4 4 4 
0.7 7 5 4 4 4 4 4 4 
0.8 7 5 4 4 4 3 3 3 
0.9 7 5 4 4 3 3 3 3 
1.0 7 5 4 4 3 3 3 3 

(b) 1L5 Algorithm (input to EA) 

Table 5.4: Number of Basestations: Link Capacity vs. Solar Factor. Results of 
Lower Bound and Local Search Algorithms. 

link capacity is 0.4 or 0.5, the Minimum Load algorithm cannot find a solution. 

This also happens with low link capacities (i.e., 0.3) or low battery capacities 

(i.e., 3 or 5). This happens because we have set a very stringent maximum 

number of basestations and there may very well be no causal solution to the 

problem in some cases. Table 5.5b and Table 5.7b also show that the quality 

of results obtained using the Minimum Battery Usage algorithm is better. For 

example, in Table 5.5b, when the link capacity is 0.3, the Minimum Battery Us­

age algorithm is able find more answers than the Minimum Load algorithm 

and on average number of placed basestations are lower. 
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Link Capacity 
Solar Factor 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.4 - - - - - - - -
0.5 - - - - - - - -

0.6 - 6 5 5 5 5 5 5 
0.7 - 6 4 4 4 4 4 4 
0.8 - 5 4 4 4 4 4 4 
0.9 7 5 4 4 4 4 4 4 
1.0 7 5 4 4 4 4 4 4 

(a) EA Algorithm, Minimum Load 

Link Capacity 
Solar Factor 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

0.4 - - - - - - - -

0.5 - - - - - - 8 8 
0.6 7 6 5 5 5 5 5 5 
0.7 7 5 4 4 4 4 4 4 
0.8 7 5 4 4 4 4 4 4 
0.9 7 5 4 4 4 4 3 3 
1.0 7 5 4 4 4 4 3 3 

(b) EA Algorithm, Minimum Battery Usage 

Table 5.5: Number of Basestations: Link Capacity vs. Solar Factor. Results of 
Minimum Load and Minimum Battery Usage Algorithms. 

For the same reason, in some of the cases, the output of the EA algorithms 

slightly exceeds the computed bound. For example, in Table 5.5a, when both 

link capacity and solar attenuation factors are 1, the algorithm places 4 bases­

tations while the optimal solution is 3. However, in general for this and other 

experiments that have been run, the performance of the EA algorithms tends 

to be very close to the bound, which is very encouraging. This is achieved by 

using the Local Serach Algorithm input (Algorithm 4.2) which is very close to 

the lower bound and yet is computationally tractable. 
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Battery Capacity 
Solar Factor 3 5 7 9 11 13 15 

0.4 - 4 4 4 4 4 4 
0.5 5 4 4 4 4 3 3 
0.6 4 4 4 4 3 3 3 
0.7 4 4 4 4 3 3 3 
0.8 4 4 4 3 3 3 3 
0.9 4 4 4 3 3 3 3 
1 4 4 4 3 3 3 3 

(a) Bound 

Battery Capacity 
Solar Factor 3 5 7 9 11 13 15 

0.4 - 5 4 4 4 4 4 
0.5 5 4 4 4 4 3 3 
0.6 5 4 4 4 4 3 3 
0.7 4 4 4 4 3 3 3 
0.8 4 4 4 3 3 3 3 
0.9 4 4 4 3 3 3 3 
1 4 4 4 3 3 3 3 

(b) ILS Algorithm (input to EA) 

Table 5.6: Number of Basestations: Battery Capacity vs. Solar Factor. Results 
of Lower Bound and Local Search Algorithms. 

5.3 Larger Networks 

In this section the performance of proposed EA algorithms is studied by chang­

ing the number of nodes, the amount of traffic they generate and their ge­

ographical distribution. Here two distributions are used for positioning the 

nodes, a uniform distribution and normal distribution, and each distribution 

is set to generate two volumes of traffic, 1 unit and 0.5 unit, which makes 4 

possible networks. In each design the number of nodes is increased from 10 
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Battery Capacity 
Solar Factor 3 5 7 9 11 13 15 

0.4 - - - - - - -
0.5 - - - - 5 5 5 
0.6 - - 5 5 5 5 5 
0.7 - - 5 4 4 4 4 
0.8 - 5 4 4 4 4 4 
0.9 - 5 4 4 4 4 4 
1 - 5 4 4 4 4 4 

(a) EA Algorithm, Minimum Load 

Battery Capacity 
Solar Factor 3 5 7 9 11 13 15 

0.4 - - - - - 8 7 
0.5 - - - 7 5 5 5 
0.6 - 5 5 5 5 5 5 
0.7 - 5 5 4 4 4 4 
0.8 - 5 4 4 4 3 3 
0.9 7 5 4 4 3 3 3 
1 7 5 4 4 3 3 3 

(b) EA Algorithm, Minimum Battery Usage 

Table 5.7: Number of Basestations: Battery Capacity vs. Solar Factor. Results 
of Minimum Load and Minimum Battery Usage Algorithms. 

to 70. Each data point that is plotted, is the average of 10 different node po­

sitions, for example, when the flow is supposed to be 1 unit, the number of 

nodes are 70 and the distribution of nodes are uniform, 10 different uniformly 

distributed positioned are selected, solved and then their results are averaged. 

5.3.1 Geographical Distribution of Sensor Nodes 

Figure 5.3 shows two distributions that are studied, Uniform distribution and 

Normal distribution. Nodes with the normal distribution are first generated 

56 



M.A.Sc. Thesis - Sayed-Ali Shariatmadari McMaster - Electrical Engineering 

.-

'~,----~----~----~----~ '~,----~----~----~~--~ 

(a) Uniform Distribution (b) Normal Distribution 

Figure 5.3: Different Network Topologies 

using P = 0.5 and ()' = 0.2 and then scaled to the size of the field. Figure 5.3 

shows that when the distribution of nodes is normal fewer numbers of bases­

tations are placed, on the other hand, on average more time is spend solving 

the problem. This happens because in a normally distributed network, nodes 

are near each other and the cost of communication and the relaying of data is 

much less than a uniformly distributed network, which has a higher average 

distance between nodes. Relying more on data relaying also makes solving the 

problem for the normally distributed network harder, therefore it takes more 

time for the solver to find the optimal solution. 

5.3.2 Solving Time 

As mentioned before, the problem is a Mixed Integer Linear Programming 

problem, which is NP-Hard. Figure 5.4 makes comparing the solving time of 
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Figure 5.4: Problem Solve Time of Different Topologies and Flow Volume 

Lower Bound and Local Search algorithms easy. It can be seen that the solve 

time of the Lower bound problem is increased exponentially compared to the 

solve time of the Local Search algorithm that is very reasonable. Adding this 

to the near optimal results of the Local Search algorithm makes this algorithm 

a very good replacement for the Lower Bound algorithm. 

Another advantage of the Local Search algorithm is that the solve time of 

different network positions with same number of nodes is about the same. 

Table 5.8 shows the coefficient of variation of solve time for different numbers 

of nodes and topologies. It shows that the solving time of the Lower Bound 

algorithm varies a lot, sometimes even two times the average. On the other 

hand, the solving time of the Local Search algorithm varies much less and this 
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Number of nodes 10 20 25 30 40 50 70 
Uniform,Lower Bound 0.62 1.11 1.25 - - 0.89 -
N ormal,Lower Bound 0.63 0.90 0.84 - - 0.63 -
Uniform,Local Search 0.17 0.08 0.09 0.14 0.20 0.32 0.36 
Normal,Local Search 0.15 0.10 0.08 0.18 0.25 0.17 0.15 

Table 5.8: The Coefficient of Variation of Solving Time 

is persistent for different number of nodes and different distribution of nodes 

positions. 

5.3.3 Results 

Figure 5.5 shows the average number of placed basestations using the Lower 

Bound, Local Search, Minimum Load and Minimum Battery Usage algorithms 

when nodes are distributed uniformly and flow volume is 1 unit of traffic. As 

mentioned earlier, each data point is the average of 10 problems with differ­

ent node positions. This setup needed the highest number of basestations on 

average compared to the other network setups, because first of all, a network, 

where nodes are distributed uniformly, needs more basestations on average 

than a network with Normal node distribution and secondly, a uniformly dis­

tributed network that is supposed to handle 1 unit of traffic is the most difficult 

case for EA algorithms, studied here. Figure 5.5 also approves the quality of 

results that the Local Search algorithm generates. It also can be noticed that 

compared to the Lower Bound algorithm, both EA algorithms place a higher 

number of basest at ions in this setup, with a slight advantage to the Minimum 

Battery Usage algorithm. 

The main advantage of the Minimum Battery Usage algorithm here can be 
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Figure 5.5: Results for a Uniform Distribution when Flow Volume is 1 unit 

Number of nodes 10 20 25 30 40 50 70 
Minimum Load 100% 80% 80% 70% 40% 50% 30% 

Minimum Battery Usage 100% 90% 80% 80% 60% 60% 40% 

Table 5.9: Degree of competence of two EA algorithms 

seen in Table 5.9, which shows a number of cases that EA algorithms were 

successful in finding an answer to the problem. On smaller networks both al­

gorithms do a very good job in finding a solution and these solutions, as seen 

on Figure 5.5, are near optimal. But as can be seen, on larger networks between 

two EA algorithms, the Minimum Battery Usage algorithm does a better job 

than the Minimum Load algorithm. On a network with 40 nodes, Minimum 

Load was able to find solutions for the 40% of cases modeled, in contrast to 
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Figure 5.6: Results for a Uniform Distribution when Flow Volume is 0.5 unit 

the Minimum Battery Usage algorithm that found solutions for the 60% of the 

cases. This comes from the fact that the outcome of Minimum Battery Usage 

algorithm is better and the average number of basestations placed by the Min­

imum Battery Usage algorithm is less than the average number of basest at ions 

placed by the Minimum Load algorithm. 

Figure 5.6 shows the number of placed basestations for a network where 

nodes are distributed uniformly and the amount of generated flow is 0.5 unit. 

By comparing these results to the previous case, Figure 5.5, one can under­

stand that fewer numbers of basestations are placed, which makes sense. Fig­

ure 5.6 also shows that by increasing the number of nodes in the network 

beyond a threshold, the number of basestations placed by the Lower Bound 
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Figure 5.7: Results for a Normal Distribution when Flow Volume is 1 unit 

algorithm is decreased. This phenomena happens because with more nodes, 

there is more opportunity for the existence of a node with enough energy to 

relay data and this helps the Lower Bound algorithm to use nodes to relay data 

instead of placing a new basestation. Even though this wasn't happening on 

a network with 1 unit of traffic, Figure 5.5, because in the network with the 

higher volume of flows, nodes eventually spend more energy to transmit data 

and this higher cost of data transmission is more than the amount of energy 

that each node harvests and stores in its battery. This reduces the oppertu­

nity for each node to realy traffic for other nodes and finally it leads to higher 

number of basestations. 

It also can be seen that the Local Search algorithm follows the lower bound 
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Figure 5.8: Results for a Normal Distribution when Flow Volume is 0.5 unit 

and places fewer basestations, which helps EA algorithms to be able to find 

solutions for all of the case studies. The Minimum Battery Usage algorithm 

showed better performance in larger networks, even though both by increas­

ing the number of nodes distance between the lower bound and the results 

of EA algorithms increases. This happens because in large networks, optimal 

results rely heavily on relaying of data by nodes, instead of placing a new 

basestation and this makes finding a causal solution without having the data 

of future energy harvesting very hard. 

Figure 5.7 shows placed basestations for networks that nodes are posi­

tioned by the Normal distribution and generate 1 unit of traffic. Compare to 

the uniformly distributed networks, Figure 5.5, normally distributed networks 
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need fewer basestations. The proposed algorithms also were able to fmd so­

lutions for all of the case studies and the quality of results is reasonably good. 

The better performance of Minimum Battery Usage algorithm is also repeated 

m this network type either. 

Figure 5.8 shows the same networks when flow generated by nodes are 0.5 

unit. As can be seen from the figure, on average, both EA algorithms place 

fewer basestations and the quality of their result are about the same. This is 

because, on average, a normally distributed network with flow volume of 0.5 

unit needs the least number of basestations among the cases studied here. 

These results suggest that usmg only energy aware shortest path routmg, 

i.e. Mffiimizmg Load, is not always the best solution for such a network. Incor­

poratmg a smart routmg algorithm that has the ability to model and estimate 

the mput energy of the nodes can improve the performance. 
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Chapter 6 

Conclusion and Future Works 

In this thesis we have considered the minimum-cost placement of data col­

lecting basestation nodes so that outage-free operation of solar powered sen­

sor nodes is obtained. This was accomplished by minimizing the number of 

basestations required when taking into account the energy renewal rates and 

costs of sensor node traffic relaying. An optimization was formulated which 

gives a lower bound on the number of basestations that are needed. Because 

of the complexity of the problem, the bound can only be found for fairly small 

problem sizes. To deal with the complexity issue, an algorithm was proposed 

which can be used to do placements for practical problems. The algorithm uses 

the result from an iterated local search algorithm as a starting point, and then 

uses an energy aware local optimization to obtain feasible basestation place­

ments. Results were presented which show that the algorithm performs well 

for different network scenarios and parameter values. 

For Future work, one can make the basestations battery or solar powered 

instead of considering them having unlimited power. These basestations will 
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need battery and panel size design which defines new problems, such as pro­

visioning. Another idea is to improve the performance of the heuristic algo­

rithms proposed here by exploiting an estimation of future solar energy. This 

can be done by modeling the environmental energy mathematically and using 

statistical information to estimate it. 
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