
A GENERIC AUTOMATIC NUMERICAL

STABILITY TESTING METHOD

A GENERIC AUTOMATIC NUMERICAL STABILITY TESTING

METHOD

BY

HANG ZHOU, B.Sc.

A THESIS

SUBMITTED TO THE DEPARTMENT OF COMPUTING AND SOFTWARE

AND THE SCHOOL OF GRADUATE STUDIES

OF MCMASTER UNIVERSITY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

© Copyright by Hang Zhou, September 2010

All Rights Reserved

Master of Science (2010)

(Computing and Software)

TITLE:

AUTHOR:

SUPERVISOR:

McMaster University

Hamilton, Ontario, Canada

A GENERIC AUTOMATIC NUMERICAL STABILITY

TESTING METHOD

Hang Zhou

B.Sc., (Electrical Engineering)

University of Science and Technology of China, Hefei,

China

Dr. Sanzheng Qiao

NUMBER OF PAGES: ix, 57

11

To my family

Abstract

In this thesis we develop a new automatic method to test algorithm's numerical sta-

bility. The new method is a combination of two stability testing methods introduced

by Higham and Kahan, and takes advantage of the both method. We first generate

an objective function which can reveal algorithm's stability, then locate the maxi-

mum value of the objective function by an optimization method. This method can

automatically detect the unstable points and reveal algorithms instability.

To make our method suitable for general problems, we generate the objective

function by measuring the difference of the test program's results computed in differ-

ent rounding modes. We choose a search method suitable for our objective function.

To improve the accuracy of our method, the final result is obtained by combining

the results from multiple searches. F\lTthermore, we propose three measurements to

measure algorithm's stability. Practical examples are used to test the performance of

our method.

IV

Acknow ledgements

I would like to express my deep and sincere gratitude to my supervisor Dr. Qiao for

his expert supervision, insightful discussions throughout the course of the work. His

patient and consistent advice is the greatest support for the thesis.

I am very grateful to offer my appreciation to my colleagues and friends for there

valuable comments and discussions. They were always there when I needed their

support and encouragement.

I also wish to acknowledge my two aunts in Toronto who helped me a lot not

only in the academic but also in my daily life in the two years. Their unconditional

support encouraged me a lot.

Finally, I would like to thank my parents for their love and support through all

my life.

v

Contents

Abstract

Acknowledgements

1 Introduction

2 Background

2.1 Higham's Automatic Instability Detection Method.

2.1.1 Objective Function ..

2.1.2 Direct Search Method

2.1.3 An Example

2.2 Kahan's Stability Testing Method

2.2.1 Rounding Modes

2.2.2 An Example . . .

2.3 Summary and Discussion.

IV

V

1

3

3

4

4

6

8

8

8

10

3 Basic Idea of the New Automatic Numerical Stability Testing Method 11

3.1 Our Goal 11

3.2 Main Steps of Our Method. 12

vi

3.3 Construction of the General Objective Function 13

3.3.1 Why We Need a General Objective Function. 13

3.3.2 Constructing a General Objective Function. 14

i 3.4 A Justification of the Scheme 16
~

3.5 Summary and Discussing . 17

4 Implementation Details 19

4.1 Details of the Direct Search Method . 19

4.1.1 The Initial Simplex. 20

4.1.2 The Stopping Criteria 22

4.1.3 Other Factors 25

4.2 Sample Construction 26

4.2.1 Limitations of the MDS Method . 26

4.2.2 Details of Sample Construction 27

4.3 Summary and Discussion . 29

5 Performance 32

5.1 Preliminaries 32

5.1.1 The Measurement of stability 32

5.1.2 Purpose of the Tests 34

5.1.3 The Test algorithms 34

5.1.4 Gaussian Elimination . 35

r:: 1 r:: Cubic Root Finding Algorithms Q~
v . .Lv uv

5.1.6 Set E in the Stopping Criteria 36

5.2 Results. .. 36

vii

5.2.1 Gaussian Elimination

5.2.2 Cubic Root Finding Algorithms

5.3 Conclusion .

6 User Guide

6.1 Module Guide

6.1.1 Module Introduction

6.1.2 Hierarchy

6.2 User Interface .

6.2.1 Outputs

6.3 Introduction of the Important Steps.

7 Conclusions

viii

37

42

45

46

46

46

47

48

50

50

53

List of Figures

2.1 The possible steps in one iteration of the MDS method when n = 2 [2,

p. 475] .. 5

4.1 The right-angled initial simplex with the same length of each edge with

dimension two. .. 21

4.2 The general behavior of our objective function with dimension one. 24

4.3 Good distribution of the input random data 28

4.4 bad distribution of the input random data .

4.5 A improved strategy to generate input data

6.1 The module hierachy

ix

29

30

48

Chapter 1

Introduction

Numerical stability is a important feature of a numerical algorithm. There are dif-

ferent ways to formalize the concept of stability. How to define stability depends

on the context. Normally, numerical stability refers to how a perturbation of input

affects the output of an algorithm. In a numerically stable algorithm, errors in the

input lessen in significance as the algorithm executes, having little effect on the final

output.

Testing the numerical stability is always needed to investigate an algorithm's

performance. However, most of the automatic numerical stability testing methods

are designed for certain problems. For example, Langlois' [6] stability testing method

for liberalization, Miller's [7] stability testing method for algebraic processes, Larson

and Sameh's [4] [5] stability testing method for linearized problems. People generate

their stability testing method based on the understanding of the specific problem,

and those stability testing methods can not be used on other problems.

The task of finding a generic stability testing method is attractive. Rowan [11]

1

1
j

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

develops a method which measures stability by the difference between the test algo-

rithm's results computed in double precision and single precision. Another method

called CESTAC is developed by La Porte and Vignes [14]. It measures stability by

making a random perturbation of the last bit of the result of each elementary oper-

ation. However, these generic stability testing methods need to deeply change the

code of the test program.

In this thesis we will present a simple generic numerical stability testing method.

However, as Kahan said, "error-analysis can't be automated in general" [3, p. 58],

our stability testing method does not guarantee a complete error-analysis. When the

condition number of the problem is known, our method can detect instability. When

the condition number of the problem is unknown, our method can give indication of

instability.

2

Chapter 2

Background

Testing stability of a numerical program is nontrivial. Random testing is inadequate,

since random data are usually well-behaved. For example, a random matrix is often

well-conditioned. In this chapter, first in section 2.1 we present an automatic insta-

bility detection method due to Higham [2, p. 471]. This method requires an objective

function and applies an optimization method to the objective function to find input

data that reveal potential instability. Then in section 2.2 we describe Kahan's method

[3, p. 56], which requires proper input data and uses different rounding modes to test

stability.

2.1 Higham's Automatic Instability Detection Method

Higham introduced an automatic stability testing method by using direct search op-

timization [2, p. 471]. His method consists of two steps. First we define an objective

function Y = f (x) that reflects the stability of algorithm; second, use a direct search

method to find the maximum value of the objective function.

3

i
!

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

2.1.1 Objective Function

The objective function

y = f(x), f : IRn
--7 IR (2.1)

is a function mapping algorithm's input vector x into a stability measurement value

y. The determination of the objective function depends on the problem. For example,

we can use the growth factor factor for Gaussian elimination on A = [aij] E IRnxn [2,

p. 472],

(2.2)

where the aij(k) are the intermediate values of the entries of A generated during

Gaussian elimination. Since the growth factor governs the stability of Gaussian elim­

ination, so we can measure the problem's stability based 011 the si:t;e of Pn(A).

2.1.2 Direct Search Method

A direct search method for the problem

(2.3)

is a numerical method that attempts to find a maximum point of x E IRn [2, p.

472]. It does not require derivatives of f and uses function values only so that it is

suitable for those functions lack of smoothness or difficult to obtain derivatives when

they exist. For problems in which f is smooth and its derivatives are available, direct

search methods are less efficient than those optimization methods that use derivatives

such as Newton methods [10].

4

,

I

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

One of the most widely used direct search method is multi-directional search

(MDS) method.

The Multi-Directional Method

Suppose the dimension of the problem's input is n (x E]Rn). The MDS method

requires n + 1 points at initial step. These points define a simplex {va, VI, V2} in

]Rn, and it is assumed that f(vo) = ml;1xf(vi). One iteration in the case n = 2 is
~

illustrated in Figure 2.1.

. VI

Figure 2.1: The possible steps in one iteration of the MDS method when n = 2 [2, p.
475]

In the first step the original simplex is reflected through va to give a new simplex

{va, VI, V2}. If max f(ri) > f(vo),then the reflection step is considered to be successful
~

and the following expansion step takes place. The edges from va to ri (i = 1,2) are

5

I
!

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

doubled in length to give a new simplex {vo, el, e2}. If m?,x f(ei) > max f(ri), the
z z

original simplex {Vo, VI, V2} is replaced by {Vo, el, e2}, otherwise the original simplex

is replaced by {vo, rl , r2}.

If the reflection step is unsuccessful, the following contraction step takes place. the

contracted simplex is given by shrinking the edges from Vo to Vi (i = 1,2) of the

original simplex to half their lengths. The algorithm will then start the next iteration

with the contracted simplex {vo, CI, C2}.

So, if Vo is a local maximum point, the simplex keeps shrinking since no other points

in those reflection simplices satisfy that f (v) > f (vo). When the stopping criteria is

reached, the search stops.

2.1.3 An Example

Here we give an example of using direct search method to detect the stability of

numerical algorithm for finding the roots of a cubic function[2, p. 479].

By dividing through the leading coefficient, a nondegenerate cubic equation can

be presented in the form

f(x) x 3 +ax2 +bx+c=O.

Changing the variable

the quadratic term is eliminated

a
x = y - 3'

3 a2 2 3 ab
y + py + q = O,p = -3 + b, q = 27 a - 3 + c.

6

(2.4)

(2.5)

(2.6)

"
j

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

With the subsitution y = w - p/(3w) we get

3 p3
W - 27w3 + q = O. (2.7)

Putting it in the form

(2.8)

we get

(2.9)

In this problem, the variables are the coefficients a, b, c. We take the relative error

formula as the objective function:

liz - zlloo/llzlloo. (2.10)

To compute the "exact" roots z, we use MATLAB's roots function. Here we take the

"+" square in (2.9). The optimization method used is the MDS method. Starting

with [a b c] = [1 1 1], the vector found by the MDS method is [a b c] =

[1.732 1 1.2704]. The computed and "exact" roots at this point are respectively

-1.599ge + 0

z= -6.6066e - 2 - 8.8557e - Ii

-6.6066e - 2 + 8.8557e - Ii

z= ,

-1.6026e + 0

-6.6478e - 2 - 8.8798e - Ii·

-6.6478e - 2 + 8.8798e - Ii

The above results show that the algorithm is very unstable, the relative error is

about 0.04. Notice that objective function requires the exact solution or an accurate

solution, which is usually unavailable.

7

.,
;

1
I

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

2.2 Kahan's Stability Testing Method

Kahan introduced a method for testing numerical stability [3 , p. 56]. The idea is

to run a program in different rounding modes with the same input and check the

differences between the results obtained by different rounding modes.

2.2.1 Rounding Modes

As we know, IEEE Standard 754 specifies four rounding modes for binary floating­

point arithmetic [1]. The default rounding mode is rounding to the nearest, which is

what all the programmers use in most situations. Other three rounding modes are:

rounding towards zero (truncate), rounding up (towards +00), and rounding down

(towards -00). With a rounding modes setting command, we can change a program's

entire rounding mode environment, influencing every floating-point operation in that

program.

We run a program in all four rounding modes and compare their results. If

the problem is well-conditioned and the difference between the results computed in

different rounding modes is large, then we can say that the algorithm is numerically

unstable.

2.2.2 An Example

Here we give an example of the application of Kahan's stability testing method[3, p.

59].

Let a, b, c be the three side-lengths of a triangle, and assume that a> b > c.

8

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

Heron's formula Improved formula
To nearest 12345680.0 6249012.0

Upward 12345680.0 6249013.0
Downward 0 6249011.0

Toward zero 0 6249011.0

Table 2.1: Sensitivity to rounding of two triangle area calculating algorithms

A classical formula due to Heron is

6 = vi s(s - a)(s - b)(s - c), s = (a + b + c)/2. (2.11)

An improved formula of computing the area of a triangle is

6 = (a + (b + c))(c - (a - b))(c + (a - b))(a + (b - c))
4 . (2.12)

Compare both formulas on a needle-like triangle

a = 12345679, b = 12345679, c = 1.01233995.

Compute this problem with both formulas in four different rounding modes. The

result is shown in Table 2.1.

Table 2.1 shows that when applying the first formula, the results computed in

four different rounding modes change dramatically. We can get the conclusion that

the first formula is numerically unstable.

Notice that in this method, the selection of input data is critical. For example,

if we change the lengths of three sides to a = 12345, b = 1234, c = 123456, for both

algorithms, all the results computed in four different rounding modes are 3460216.2

- no difference is shown.

9

i

I

j
1

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

2.3 Summary and Discussion

Highamn's automatic stability testing method requires a proper objective function.

The performance of his idea largely depends on the quality of the objective function.

The construction of a good objective function is not always an easy task. More-

over, a disadvantage of this idea is that the objective function should be constructed

specifically for a particular problem. Of course, the relative forward error formula

II~~J(II could be used as a simple and universal objective function. But this objective

function requires an accurate result of the problem, which is usually unavailable.

Kahan's stability testing method is a simple method. Unfortunately, it is not

automatic. To show a problem's instability, it requires appropriate input data. For

most problems, finding a appropriate input data to show instability is a challenge if

we don't have a highly clear understanding of the problem. Is there any method to

construct appropriate input data automatically, and make the method an automatic

stability testing method?

Combining Higham's and Kahan's stability testing methods, we can get a new

automatic stability testing method. It does not require an objective function from

the user, and can automatically find proper input data.

10

Chapter 3

Basic Idea of the New Automatic

Numerical Stability Testing

Method

In last chapter we discussed the disadvantages of the Higham's and Kahan's stability

testing methods. In this chapter we describe our new stability testing method, which

is a combination of the Higham's and Kahan's methods. In section 3.1 we describe

the goal of our method. The main step of our method is presented in section 3.2.

Then in section 3.3 we discuss the construction of a general objective function. In

section 3.4 we give a discussion about the justification of our method.

3.1 Our Goal

Our goal is to develop an automatic numerical stability testing method with the

following features:

11

i
i
!

j

I

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

• It provides an objective function suitable for general problems.

• The objective function is simple, easy to understand.

• The objective function can reflect problem's stability.

• Appropriate input data for the objective function which shows problem's insta-

bility can be found automatically.

We propose a new automatic stability testing method with all the properties

above. The Higham's stability method requires an objective function, and the Ka-

han's method requires appropriate input data. The objective function and the ap-

propriate input data are both hard to obtain in practice. Compared with Kahan's

method, our method uses direct search method to find appropriate input data. Com-

pared with Higham's method, our method uses different rounding modes to construct

an objective function.

3.2 Main Steps of Our Method

To make the new stability testing method an automatic method, we take Highan's

automatic method as a framework. Like Higham's method, the new stability testing

method contains two steps:

• Obtain an objective function using the Kahan's method.

• Use direct search method for a maximizer of the objective function.

The core of the new automatic stability testing method is the objective function

part. Tlle COllstructioll of objective fUl1ction largely affects the performance of the new

method. Section 3.3 will present the details of how to construct objective function.

After an objective function is constructed, there are several questions remain to be

answered. Can the constructed objective function reveal problem's stability? How to

12

"
;

i
1

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

measure problem's stability by the maximum value of the objective function found by

the direct search method? We attempt to answer these questions by a combination of

a further discussion and practical experiments. The further discussion are presented

in section 3.4, and the practical experiments are shown in Chapter 5.

The second step of the new method - finding the proper input which shows in­

stability seems to be easy, we just need to apply our direct search method on the

objective function, and locate the point where the objective function reaches a max-

imum value. In practice, the situation turns out to be complicated. Since the direct

search methods are far from being perfect, it often fails to find the most unstable

point of algorithm. In this situation, we have to try to find those points with "large

engough" value which can show algorithm's instability. Details about the implemen-

tation of instability searching will be presented in Chapter 4.

3.3 Construction of the General Objective Func-

tion

In this section we will solve two problems: why we need a general objective function

and how to construct a general objective function.

3.3.1 Why We Need a General Objective Function

As mentioned before, in order to phrase the stability testing method as an optimiza-

tion problem and apply the direct search method, the objective function should be

constructed in this form:

y = f(x), y E JR, x E JRn
. (3.1)

13

j
I
i

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

The first step of our method is like the first step of Higham's stability testing

method, which is defining an objective function y = f(x) that reflects the stability of

algorithm. As mentioned in section 2.3, in Higham's method the construction of the

objective function is problem dependent.

For example, for Strassen's matrix inversion method [2, p. 478], the stability

measure is

f(x) = min{IIAX - lllooJIXA - llloo}
IIAlloollXlloo '

(3.2)

where X is the inverse of the matrix A computed using Strassen's inversion method.

The disadvantage of constructing the objective function specifically for problems

is that we have to find a stability measure formula for the objective function for every

single problem to be tested. Often a good measure formula is hard to obtain.

The problem can be solved by defining a general objective function. We propose

a general objective function which can measure every problem's numerical stability.

In section 3.2.2 we will describe how to construct a general objective function by

applying Kahan's stability testing method.

3.3.2 Constructing a General Objective Function

In section 2.2.2 a simple objective function introduced by Higham is taken as an

example. It's the relative forward error formula

E.,.el(X) =
IIY-yll

lIyll
(0. 0.\
\V.VJ

where Y is the result computed by the program and y is the exact or accurate result.

This objective function is used to measure the numerical stability of solving a cubic

14

J

I

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

equation. Higham took the results computed by MATLAB's roots function as the

accurate results y. This objective function is not suitable for our general function,

because the accurate result is usually unavailable. We can't always use MAT LAB or

other tools to get the accurate result. Here we construct a general objective function

which is similar to the form of formula (3.3).

Suppose Yl and Y2 are the results of the program being tested computed in two

different rounding modes, we propose the formula

(3.4)

as a form of our general objective function. Here IIYll1 + IIY211 is the scaling factor.

Since there are four rounding modes specified by the IEEE 754 standard, which

two rounding modes are used to compute the results Yl and Y2? In the example in

section 2.2, the difference between the results computed in rounding up and rounding

to the nearest is zero. If we take the results computed in rounding up and rounding

to nearest as Yl and Y2, no instability will be revealed. The same thing happens if

we pick the results computed in rounding down and rounding to zero as Yl and Y2,

since their results are both 0. If we take the results computed in rounding up and

rounding down as Yl and Y2, the measurement's value is

Huge instability is detected.

-:-;-'1-'-11_23_4_56_80_.°:-;------;-:-°.----'°1-'-:-;-1 = 1
1112345680.011 + 110.011 .

(3.5)

This example shows the importance of picking the right rounding modes. We

should always pick the rounding modes that can reveal the largest differences. We

15

I

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

propose

(3.6)

where YneaTl YuP' Ydown, Yzero are the results computed in four different rounding modes,

as our objective function.

3.4 A Justification of the Scheme

As described previously, our method for testing stability is based on Kahan's testing

method. Regarding his method, Kahan commented [3, p. 58]: "Of course this scheme

can't be foolproof since error-analysis can't be automated in general."

Thus, in theory, our method is not a stability analysis. In practice, however, it

often reveals stability in the following sense. Changing rounding modes can be viewed

as introducing small perturbation into the data. By measuring the maximal difference

between the results computed in different rounding modes, we know the sensitivity

of the program to the perturbation of data. When the measurement (3.6) is close to

1, the program is very sensitive to the perturbation of data, when the measurement

(3.6) is close to 0, the program is insensitive to the perturbation of data.

However, we must point out that the measurement (3.6) includes both the sen­

sitivity of the underlying problem and the backward stability of the algorithm. A

program solves a problem and implements an algorithm. A program solves a problem

and implements an algorithm. The measurement (3.6) is about the behavior of the

program, which involves both the problem and the algorithm. The measurement (3.6)

is close to 1 when either the problem is ill-conditioned or the algorithm is unstable

on both. The measurement (3.6) is close to 0 when the problem is well-conditioned

16

I
i
I

j

I

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

and the algorithm is stable. Thus a small value of the measurement (3.6) gives us

confidence of the program. A large value of the measurement (3.6) gives us a warning.

Further analysis is required.

3.5 Summary and Discussing

In this chapter we have described some fundamental aspects of our new numerical

stability testing method, including the goal, the main step, why we need a general

objective function and how to obtain it. We also gave a justification of our method.

At the beginning of this chapter we presented the goal of our method we expect

to reach. It contains the following features:

• It provides an objective function suitable for general problems.

• The objective function is simple, easy to understand.

• The objective function can reflect problem's stability.

• Appropriate input data for the objective function which shows problem's insta-

bility can be found automatically.

We can say that the first two features are reached with no doubt. The third and

forth features are worth to be discussed here.

As mentioned in section 3.4, a precise stability analysis can't be automated in

general, our method is no exception. However, as explained in section 3.3, our scheme

reveals the stability behavior of the program being tested. In Chapter 5, we will

present our experimental results to demonstrate that our method offers a practical

way of testing the stability of a program.

The forth feature of our goal, which is its objective function's maximizer can be

successfully located by direct search methods, is the main topic of the next chapter.

17

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

In the next chapter we will describe all the efforts we can do to get a better result.

18

1
I

Chapter 4

Implementation Details

In Chapter 3 we gave a general description of our stability testing method. However,

there are several implementation details remain to be discussed. In section 4.1 we

discuss some details of the direct search method, like the choosing of the direct search

method, the initial simplex and stopping criteria. In section 4.2, we present the sample

construction details.

4.1 Details of the Direct Search Method

Our objective function is lack of smoothness and we can't obtain its derivative, so

we choose the direct search methods. There are numerous direct search methods.

Higham suggested three direct search methods for his stability testing method. The

three direct search methods Higham suggested are the alternating directions (AD)

method, the multi-directional search (MDS) method and the NeIder-Mead direct

search method. AD is the simplest direct search method, its performance is worse

than the other two methods [2, p. 475]. Since the MDS method is an improved

19

I
i
I

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

method over the NeIder-Mead method, we consider to use the MDS method in our

implementation. The MDS method is described in section 2.1.

Although we have decided to use the MDS method as our direct search method,

there are several details remain to be decided, such as the initial simplex and stopping

criteria. According to years of experience with direct search methods in history, there

is a variety of choices of these factors. Here we present our choices, which is used in

the practical experiment in Chapter 5.

4.1.1 The Initial Simplex

Refer to section 2.1.2, in the first step of the MDS method, we generate an initial

simplex from a given single starting point. The initial simplex is very important since

it affects all the following simplexes generated in every iteration. Shape and size of

the initial simplex is the main concern here.

Shape

The shape of the initial simplex should be decided first. Many people have deep

research on the initial simplex for direct search methods, for example Spendley, Hext,

and Himsworth [15], Kowalik and Pizzo [12] [9], There is only one requirement needs

to be satisfied for the initial simplex generation: the generated simplex should be

nondegenrate. Here we choose to generate a right-angled initial simplex with the

same length of each edge. Which means, the n point other than the initial point is

determined by formula (4.1).

(4.1)

20

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

where Xo is the initial guess point, a is the initial edge length, and ei is the unit basis

vectors for each dimension.

Figure 4.1: The right-angled initial simplex with the same length of each edge with
dimension two

Size

The size of the initial simplex is another issue to be determined. Note that if the

initial size is too small, the extension of the search process will be very slow, which

leads to the situation that the search algorithm can only search a small local area.

And if the initial size is too large, it takes much more time for the algorithm to shrink

the simplex to a reasonable size [13]. In other words, the search method may spend

too many iterations to contract the simplex before it can make any real progress.

Since 2n function evaluations needed for contracting the simplex in each iteration, a

large initial simplex makes the searching process costly.

21

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

But comparing both the disadvantage of small size and large size, the disadvantage

i of large size is less important due to the improvement of the computing speed of the

computer by now. So we prefer to choose large size of the initial simplex in our

implementation.

4.1.2 The Stopping Criteria

Here we give a discussion of how to terminate the searching process. Torczon intro-

duced three stopping criteria in her paper [13].

The first stopping criteria is suggested by NeIder and Mead [8]. Searching stops

when the standard deviation of the function values in the simplex falls below a preset

value. The stopping test is as below:

(f(v~ _1))2
~ ~ < c,

n
(4.2)

where vf is the function value of the ith vertex in the kth iteration, 1 is the mean of

the function values at the n + 1 vertices, c is the preset tolerance.

The second stopping criteria is suggested by Parkinson and Hutchinson [9]. Search-

ing stops when both the range in f and the corrections to Vi for all i fall below a

preset value. That means the following two tests should be both satisfied:

(4.3)

(4.4)

where v~ is the vertex with the smallest function value in the simplex in the kth

22

!
I

j

;
'!

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

iteration.

This scheme is not suitable for our objective function since it uses the function

value as one of the stopping criterion, and the function value of our general objective

function changes dramatically in unstable areas.

The third stopping criteria is suggested by Woods [16]. He slightly changed the

second stopping criteria and made it to a stopping criterion measuring the relative

size of the simplex by considering the length of the longest edge adjacent to v~:

1
/\ max Ilvf - v~ II :::; E,

LJ,. 19:'Sn
(4.5)

where ~ = max(l, IIv~II).

For most optimization methods, people often choose function value as the measure

of stopping criteria. But for simplex search methods, we have another measurement,

which is the edges' length. It's easy to notice that the measurement of the first

stopping criteria is the function value. The measurement of the third stopping criteria

is the edges' length. The second stopping criteria's measurement is both the function

value and the edges' length.

Normally, choosing function value as the stopping criteria should be the first choice

to be considered, since this kind of stopping criteria is obvious. One disadvantage

of choosing function value as the stopping criteria is that it may lead to premature

termination when the simplex becomes too small relative to the curvature of the

For our objective function, most of the points are stable points. This means that

the values of the objective function at those stable points are small and smooth. So

it leads to premature termination.

23

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

f(x)

Unstable area

I

Stable a,·ea

Figure 4.2: The general behavior of our objective function with dimension one

Even if the searching process reaches those unstable area where the function values

are large, the stopping criteria by checking function value still has its disadvantage.

The function value changes dramatically due to the unstable behavior of the program

to be tested at those unstable area. So if the preset E: is small, the searching is hard

to converge.

In summary, if the preset E: is large, it leads to premature termination of the search

algorithm at those stable area. If the preset E: is small, the search algorithm is hard

to converge due to the large differences between the values in neighborhood points at

the unstable area.

So the stopping criteria measure using function value is not suitable for our objec-

tive function. Since the first stopping criteria and the second stopping criteria both

use function value as the measure, they are not suitable for our objective function.

Therefore, we choose formula (4.5) as our stopping criteria.

Now we have not determined the value of E: yet. The value of E: affects the number

24

-,
;

I
I
i

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

of function evaluations, and we have to determine it in practical experiment. So we

leave the decision of the value of c to Chapter 5.

4.1.3 Other Factors

Other than the initial simplex and stopping criteria, there are several factors remain

to be discussed.

The Orientation of the Initial Simplex

The orientation of the initial sim.plex determines the search direction, which also has

effects on the search process. But since the effects of the orientation is hard to know

or test, we just use the default orientation here.

The Scaling Factors

The scaling factors include the expansion factor fl, which determines the expansion

speed, and the shrinking factor e, which determines the shrinking speed. The effects

of those two factors are also hard to know or test. So we just set fl = 2 and e = ~,

which are the common choices for the direct search methods [13].

Maximum Function Evaluations

To ensure the termination of the searching process, a maximum function evaluations is

necessary for our program. We never know how many function evaluations needed to

reach the preset stopping criteria for a specific problem before practicing. Moreover,

due to the unpredictable behavior of the objective function in the neighborhood of

25

!
i
I

j

I

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

converging point, some times the amount of function evaluations needed is far more

than expected. So we set a maximum function evaluations as a extra stopping criteria.

The searching stops while the amount of function evaluations reaches the maximum

function evaluations, or formula (4.5) is satisfied. Choosing the maximum function

evaluations would be a personal choice, it depends on how much time the user's

computer's calculation costs for one function call and how long the user can bear for

a searching process.

4.2 Sample Construction

Can the search method guarantee to find the most unstable point in the entire range

space? If no, how to improve our strategy to gurantee a convincing result? In

this section we will discribe how to improve the accuracy of our method by sample

construction.

4.2.1 Limitations of the MDS Method

The direct search methods have those main disadvantages below:

• There are infinity points inside the input range. Since the direct searching can

only cover a finite number of points, we can only say that the "maximum" point found

by the direct search method is the maximum point among the points the searching

tried, not the real maximum point of the function .

• The search direction can be sensitive to the initial point and initial simplex. Even

though two searching process start at two neighboring points, the search results, both

the location of maximum point and the function value at the maximum point could

26

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

be very different .

• Although the MDS method assures its vertices span the full space, the direct

search method can only find a local maximum point near the initial point. That

means the "most unstable point" found by the direct search method is usually just

a most unstable point in a small area near the initial point, not the most unstable

point in the full space.

The above limitations of direct search method showes above indicate that we can't

rely on one searching process. We have to repeat the searching process for several

times, and get a final result by analyzing the whole sample.

4.2.2 Details of Sample Construction

A simple way to generate initial input data is using random data. The size of the

sample depends on the time cost for one searching process and the whole time the

user can bear. Due to the low converging speed for the MDS method, one searching

process usually needs to compute the algorithm thousands of times, which is really

costly. So large size of sample may not be suitable.

Just using random initial data also has its disadvantage. Since we can't control

the generation of the random initial data, sometimes most random initial data con-

centrated to a small area, and makes just few initial data in other place. This kind of

distribution of initial data obviously fails to solve the problem of "local maximizer" ,

and makes our results less accurate.

To avoid this disadvantage of random initial data, it's reasonable to use another

sample construction strategy, which is dividing the full space into many small areas,

and generate initial data in each of the small areas. This strategy can avoid the

27

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

I

, , , , __ ~ ____ :,- ____ } ________ ~~ ____ :-w ___ ~, ____ :-__ ~_} ____ :", ____ ~ ____ :-- ____ ~ ____ :-____ ~ ____ ?-' ____ } ____ ;' ___ _

J fit It· It· I

i : ~ { ~. ~ i ~ : :
t : I tIt. I . ~ I t

·"t' "":--"'''1' 'l" "" ,....... , .. t·· .. "··:· .. ·-- .. 'I·-··· .. ·-:·,, '\ .. ·• ,. '"t''--'''

~ ~ ~ : : :-~;~ ~
I I I I f I ~ t .i
l . I _ l . J ! _ I . t _ I 1 · -----r----:-----r----:-----r----:-----r---------r---------r----,----f"----:-----r----,----r---A>-'"'

: .: : ~ ! ~ {.: ~ .! ~
~ -: ~ ~ :. ~ : ~ ~ ~.~.: ·"t··· .. •·· : ... " ...• , : "t' "j- .. " : 1; : , •• _ : "\. •• ·:· ···'r _." ... " .. ····'t'· .. •

! ! ~.! i··i ~ i ! - i
· -----}----;..----~----:_----}---;..----:._----~----}----:_----:.-----:---,,-}----!-----~----?__----}.---~3-~---

J t· l i ' ~ t· l l ' I
f t ! t f tit !"
~ l f 1 f 1 i t J
t f t J. t J t f t "r"'"'' .~.. : "'r"'''' .": ". ·"···.r '." ':"'''''. "'r' "'r ." .. '''' "':-
~ : ~ :: t:!: l·:: : ~

· #~--~~----:...--~-t..-~--~---_+---~;..----i_-w--~---'"~-~------~~.---~~-~--~-~--;,,-~--~----;...---~~----,,-
: ~ } : ; : ~ ~ ~

.. i .J- ''''. ..f ~..!."' ,t. . .:" .. " "".-~- ,,,,~. .;
I :. i ! ! i : ! ! ~. ~
t , J ~ { . J : t : J • t : J • ~ · ----~r----:v_----r---~~----r~---~----... -W __ .A-A~-r""A.A--w---r----~----r----:v_----r----~----r---~-w---
~ : : : ~ ~.~ ~.~
f lit j i J l J
lit J t f: 1 l:! T'" 'T r , . ""T i" ''''''i · .. ····""· .. T "'-'T .'"" -'."

· ~ ____ ~~ ___ ~ ____ ~ ____ ;... ____ ~_---:..-----i_--v.v.:..~.---~----~ ____ ~ ___ -;,.----~_---:,,-_~~----~----~v __ -___ -.. -
~ : .• ~ 1 ~ ! ~ ~
I l 1 1 i 1 I ~ ~
! J t j t I { J {

'V -. "T ." " .. r ". ·T·... 'T -" ·T· ";···-;- "! '"'T
t ~; { J: t : f ; 1 : ~ : { : · ~---~r----~~---r-~-~:-~--fn--~~----f--w"~A----f-~--~~-~-r~---f----f----:----'----f----rN---:------
~. ~ ~ ~ l ~. ~ . ~ . ~
J l I I: t f {: J {

..... - "''1' ·• .. 1' ... '1'" • '1" .". ..t· 'i' "'j;' • ""' ~ ." ,,-. "'i'
f t ~ i f t f t ji

~ ~ ~. I ~ ~ ~ : ~
1 . J _ ~ . I < ! . J • t " J , t . · A----r----~--~-f----f----r----~----r----f----r.---~---.Ar----r----r----~----r----r----r----~----
I . l : ji l ' i l' I " I . I
t f; I f { J { J {

'"t·· ··'1····""·:· .. "··'1' ., ". .orl ,·j" .. , .. ;· " .. t·· "'--"':1"" ·----'t' .. ·

~ ~.~ ~ ~ !'! ! ~
I _ 1 j l I. 'I t. i i

,~ ___ ~~---_~-__ -}-___ ~----~_---~_---~.--_~----~----~---_~--_-~_-_-~-__ -~ ___ -}----~----}N--~.-_~_-
i ~ i·~ i ~. ~ i' i !. i . i

• .. ·1· .. ··; • 1 .. ··.. ""'I'" 'j"' .. t···.. "'1' '''1' '''1' '''1'

~ : : ~ ~ ~ ~ ~ ~
l ! ~ 1 I ~ : ~ ~

Figure 4.3: Good distribution of the input random data

disadvantage that the initial points are unevenly distributed. But this strategy also

has its own disadvantage. Comparing to random initial data, generate initial data

in this way makes our implementation much more complicated, especially when the

dimension is large.

Actually, there is a simple method to reduce the effects of "local maximizer" for

random inputs. If we set the initial step length to a large size, the effects of the

location of initial points could be reduced. For example, if we set the initial size to

1/4 of the full space's size, the points could be largely span over the full space after

one iteration.

As mentioned before, if the initial size is too large, the searching algorithm may

28

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

, ,
!:: ~,; . J ~ 11 • ! : I _ ! : -"~~-'T-- -~f'- ---r --- -;-----:-- ---~- --T--- :-----r----·:·~~- ~f ~ -,,- :~.-- >- -1' "~_M :----f----~--- -T ---";'- .-.. -

· ! +...i.! .. + ! ·1··j , !-· .. ··y· ·, l···i .. 'T' ..
~ .-~--}=~~~~--w-;...----~->--<>~--·-_~ ___ ~'r~"~_:-~ __ ~~ ___ ~~_---}~-~-;...----~----~-~"'-~~---:;,.----i·----~----
i' ; 1 ~ - ~ : : : . ; ~ j .• ; ~

J

~
• v •• " --i ."" ... :- --.... ; .. ·-··~,-.. -·· .. i,,-·,,···:-··· "I. ;.. .; --· .. --·i····,,- .. ~··· .. -·!··· : ... · .. ·+" :· ··1··,··· .. :, i " ... ,~,

I ~ 1 I l J t I ~
I ; ; : } ; I . J : t . f : t • • :

···---r--·¥-:""~---ry·-~·-:-----f"~·---:---~--f'----7----r----:------r-----;-----r----:-----,----:-----r---AV-----

,~ = \ I 11 I t I !
I; . 1 If. t J I "
I: I 1 {~J ~ I i
I ~ , • 1 • 1 t: j : ~ : f : !

, •••• < <or'" r "' .><;- •. "<"r'" .. ·r ··"r··· -.. r'-" "·'r··'>'·><;><"·>'·'f · .. · .. ·:--····»·r···" .. ·: .. "· r- .. ··,.·:·- ->- 'i ." .. "
I ~ : ~ 1 l f I ,
I ~ ~ 1 '; I l I J I
1~~~I~i:t:) t:1 ~ - .--".'~....-w~'--':"-A'--r----:__----t~----':"---~,.----:__----F----:--~--t""----~----F----:-----f""-_--~-'A--!"'-Y-.

I ~ '! = J I ~ ! l
,~ ~ ~ t l i_I.!

• .•.•• : •.•• ~. • ~., '--.. • ••• ~.,. "1" '< :' •• : • • ·i <> ~ ••• <-.<:.> <~. .; ...
: ~ •. '.:,.;.~ ~ ~ ; ;

A _____ ~-_.v_;.-___ ~--__ ;-__ -~-_, __ ~ __ --;..--__ -----~--,~-~ ____ ~--_-_--__ ~_-_-~-_--~ __ ---____ ~----~ __ --
.. .. !': : ~ f ;

j ; , .. ;,,,.!,,. . ~ : ~ I _ "-
, ,,,! , .. ".' ",--' .. -- '," ... , 1' " r--" .. - . ""'r-" -..... ; , ': --

I : ' ,; 1 • J .! !:' ,
9 ._~=~~ __ • ~ __ ~ ~~ ____ ~~_".~~ __ "' .. ~~ •. _;.. ____ ~-_h.~}~_--:....-~ =_~_~, ... ~_ .. ~~_} ____ ~_~_~~~~ "'~~ __ ~_~~ ~_.v:" _ ~~_

· + ~..~ L ... ~! ;;. . . ··1:...., !: · .. 1:·· .. ·:,~. -- . .
! _ ; , i ~ l .. -.. --, -.~--- --------•. -.... --.-- -.~-- .----,----_ --r ----~--~--r------ --~r -.--- :-- -- -r-·<----

.......... l: ~ ~,; ~.,: •..... !:, ~,' ~;, _ ; J : t . J : I .

: 1 ~ 1 !.; :"': ·· .. i· .. ·-l-.... !·········t : .. · .. ·!··!··
A <y~ ___ ~~ .. ~~)._.,, ___ .L ... _-_.L~.~.~~-~- ... ~ __ -,L--~,-~,!-~"l~,_«_.L~y<-~t_-~~>~~ __ >v_i>~~~,-,~x~~.--~~,~~,~~~ . .

i E - ~ ? ; • , ! : ! . : . ; . '--~-!'>----~~~---~-
: i .~ ~; ~ : ~::. ~ --;-" .. '''';, ,;· .. ---···r· .. · .. ·"r" .. _· .. ; · -"-I'··· ':· .. -- ·~"' --;· .. "" .. r ''' ,." .• -r "':"'-" .. :. _ : -- ~"
l ~ , .; : ~ , . ! . i . ! • l . : .

¥ '----r-----:-----r----:-----r----;:----r----------f'----:----~r---------.---------r---------r----;_----

;~~~:~I:~:~ ~:: ..
· .. "<><.,.!,. .. , .. ".~> ... • ••• i ... -.... ,~,· .. -.... ! .. ~<>.·.~·"< '''!' .•••• ~ ... , .•• ".~ ~- ,;. , ... ·><; · ••.• i· · .. ·L ! ... ··i· .. ·-····:··· .. ·, ..

~ ~ ~ . ! ~ i . i I

; ~ J t J

Figure 4.4: bad distribution of the input random data

spend more time to converge, since more iterations needed to contract the step length

to a reasonable size. But since the time cost is not the first concern, here we consider

using random initial data with large size of initial simplex as our strategy 111 our

implementation.

4.3 Summary and Discussion

As mentioned in Chapter 3, our stability testing method contains two steps:

• Obtain an objective function using the Kahan's method .

• Use direct search method to find a maximizer of the objective function.

29

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

•

, , '

'.-

'. • • •

• • • • •
_ -~, ~ ----, ... "'

"

--

• • , .' •

Figure 4.5: A improved strategy to generate input data

In Chapter 3 we concentrated on the construction of the objective function, which

is the first step. In this chapter we concentrated on the second step, discussed the

details of applying the direct search method. Comparing with Chapter 3, the content

of this chapter is more practical and complicated.

In our implementation we have chosen the MDS method. There is no restriction

for the choosing of the direct search method. Choosing the MDS method here is

j1..1St because it's 011e of a Inatllre direct searcll method \vitIl 11ice performallce, alld

it's suitable for the situation of our method. Of course, there are many good direct

search methods to apply. In this chapter we have discussed the implementation

details of applying the MDS method, to do our best to make the searching process

30

i

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

more accurate.

Although the direct search methods have been developed for several decades, their

performance are still far from being perfect. Since there is no derivative information

we can get from our objective function, we have to choose the direct search method for

our implementation. We can image that due to the behavior of our objective function,

it's nearly impossible for the direct search method to find the real maximum point of

the objective function. To guarantee the accuracy of our stability testing method, we

have improved our strategy by combining the results from multiple searches instead

of one searching process. The new strategy can make our method more convincing.

31

Chapter 5

Performance

In this chapter we test the performance of our method through some practical experi-

ments. We first present some preliminaries we need in section 5.1. These preliminaries

include the measurement of stability, the purpose of our tests and how to choose the

test problem. In section 5.2 we present the test results with comments. The conclu-

sian is shown in section 5.3.

5.1 Preliminaries

Before we start our tests, there are several topics remain to be discussed here.

5.1.1 The Measurement of stability

As mentioned before, the objective function value fobj is affected by both the insta-

bility of the test algorithm and the condition number of the problem. It's reasonable

32

"
;

I
'j

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

to measure algorithm's stability with the formula

IObj(X)

cond(x) ,

where cond(x) is the condition number of the problem at the point of x.

(5.1)

The measurement IObj is not as accurate as f;':!d~~)' but it has two advantages

which the measurement fObJd'((X)) does not have. Firstly, the measurement fObJd'((X)) is not
con x con x

suitable for the problem whose condition number is unavailable. In this case, we can

only use IObj to measure stability. Secondly, we can get a quantitative impression of

stability from the measurement lobj, since the range of lobj is [0,1]. The quantitative

impression is unavailable from the measurement fObJd'((X)) , because there is no upper
can x

bound for f;~~~~). So IObj is worth to be considered as one measurement even when the

condition number is known. When IObj is small, we can conclude that the algorithm is

stable. But since IObj is affected by both algorithm's stability and problem's condition

number, when IObj is large, we can't conclude the algorithm is unstable.

Here we introduce another measurement. We can measure stability by checking

how many well-conditioned points with large IObj can be found by the search method

in a sample. If the search method can't find any or can only find few, it gives us

confidence about the stability of the algorithm in well-conditioned case.

Above all, we use three measurements in our tests to measure algorithm's stability.

These three measurements are:

... fobj(X).
- cond(x)'

This value is the best measurement of stability because it is a mixture of both the

objective function value and the condition number of the problem.

33

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

Due to lacking the consideration of the condition number, this measurement is not

as accurate as the first one. But this measurement can give an quantitative impression

of the stability since the range of !obj is [0, 1].

• The number of unstable well-conditioned points detected:

The measurement can give an impression about the algorithm's stability in well­

conditioned case.

5.1.2 Purpose of the Tests

We will apply our stability testing method to measure the stability of some given

algorithms whose stability is already known. These algorithms include both numer­

ically stable algorithms and numerically unstable algorithms. The task of our tests

is to check whether our measurements can accurately measure the given algorithm's

stability.

5.1.3 The Test algorithms

We intend to choose our test algorithms with three concerns. First, the test algorithms

should be the classic algorithms. Second, the test algorithms' numerical stability

should be already known. Third, For a problem it's better to test more than one

algorithms, so that we can compare their behaviors. Here we choose two sets of

algorithms for our tests. They are:

• Gaussian elimination

• Cubic root finding algorithms

Here we give a simple introduction of the test algorithms.

34

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

5.1.4 Gaussian Elimination

The first set of algorithms being tested is Gaussian elimination. They are classic

algorithms of scientific computing. We test the three kinds of algorithms:

• Gaussian elimination without pivoting. This algorithm is the most unstable

Gaussian elimination.

• Gaussian elimination with partial pivoting. This algorithm is more stable than

Gaussian elimination without pivoting.

• Gaussian elimination with complete pivoting. This algorithm is the most stable

algorithm among the three.

In general, GE without pivoting is an unstable algorithm. GE with partial pivoting

is also an unstable algorithm, but it is stable in practical. GE with complete pivoting

is a stable algorithm.

5.1.5 Cubic Root Finding Algorithms

In section 2.1 we introduced one cubic root finding algorithm. To compare with

the original algorithm, we pick a better cubic root finding algorithm [2, p. 479]. It

modifies the formula

(5.2)

to

3 q. ~2p3 W =---s2gn(q) -+-.
2 4 27

(5.3)

3

The new algorithm can avoid possible catastrophic cancellation while ~7 is much
2

smaller than ~. But although the second algorithm is better than the first one, both

the two algorithms are unstable algorithms [2, p. 479].

35

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

5.1.6 Set E in the Stopping Criteria

Now we have to determine the stopping criteria c. In the last chapter we have

decided to use the stopping criterion which measures the relative size of the simplex

by considering the length of the longest edge adjacent to v~:

(5.4)

where 6. = max(l, IIv~II).

The value of c remains to be decided. Since the value of c affects the total number

of function evaluation, to limit the time cost for each searching process, we choose to

find a suitable value of c which makes the number of function evaluation be less than

1000 in most case. Because according to our previous experience, for our objective

function, the results of the direct search method does not change too much when

the function evaluation is more than 1000. After testing, we found that c = 10-4 is

suitable for our choice. So we choose c = 10-4 in our tests.

5.2 Results

In this section we present the results of our method for each algorithm. For every

algorithm we obtain ten points found by the search method. First we give a discussion

for each set of algorithms separately. Then we give a conclusion by considering all

the results for all the algorithms in the next section.

36

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

5.2.1 Gaussian Elimination

In the tests, the range of the inputs is from -10000 to 10000, all the test problem is

in dimension four, and the initial simplex's size is 5000. Since we only consider the

condition number of the matrix A, we set the vector b to [1 1 1 IF. The program is

computed in double precision. We expect the result will show that the GE without

pivoting is the most unstable algorithm, while GE with complete pivoting is the most

stable one.

The ten points (matrix A) found by the search method for GE without pivoting

are:

1.43999 -9848.01 -6431.8 19.3328 1.95875 7526.61 541.21 -4792.73

-4995.1 -8486.75 8.35652 -7.39266 -9226.96 6.45597 2680.29 1054.78
Al= ,A2 =

-1006.13 -1.01958 1018.65 -2342.12 395.481 -21.0101 -27.8136 9.56359

-1.80602 297.735 -90.8728 -6815.39 -5312.92 -3567.13 -3999.7 399.727

-9925.36 -4651.89 54.9596 -1.98713 9.08664 -1083.41 -14.6202 8473.08

-38.1049 -17.8595 -4819.22 9987.84 7646.02 -983.76 -2829.83 -1444.81
A3 = ,A4=

-76.4282 9885.65 6245.47 -7499.98 -168.939 -7627.09 -17.0357 -49.3958

-3305.77 -9566.81 -2800.58 -550.717 2595.83 -73.9318 -5674.05 -34.8452

0.599255 -2370.55 1.42625 -2630.88 -1.47678 -7283.16 8918.5 -573.311

-8688.97 -3688.86 13.6895 4.50765 -8752.93 217.936 -16.177 -17.8294
A5= ,A6 =

1.51462 -3639.33 8438.54 -45.4359 618.277 1.87534 1.17806 5960.86

-7503.5 -91.5346 624.187 3728.13 -5030.52 115.853 1.34672 -254.801

(-1447.5 -9997.91 -154.841 ~:::'~J (-~~.~:~~ -3.8317 4168.19 l~~~~~J
'"1nO"l <]0 4965.52 -5.79542 4.76832

A, ~ l-7501." 0.)"''''.1.00 -'"00"") -l-'O.OO' -w.",,") , ,As -
-704.078 24.9819 368.644 -35.3597 -91.5908 62.1426 1922.71 -397.71

9680.H) -3511.16 2.73312 -7938.65 5.24062 -351.442 -8367.68 1042.4

37

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

Point Condition Number lObj
fobj.lX~
cond(x) Condition

Al 9.266ge+007 1.44064e-005 1. 5546e-013 ill-conditioned
A2 5.2626e+007 0.00340149 6.4635e-011 ill-conditioned
A3 32.6749 1.17527e-007 3.596ge-009 well-conditioned
A4 2.6293 4.62064e-007 1.7574e-007 well-conditioned
A5 1. 1943e+007 0.000121288 1.0156e-011 ill-conditioned
A6 1.4646e+008 0.475207 3.2446e-009 ill-conditioned
A7 1. 7005e+007 4.78212e-007 2.8122e-014 ill-conditioned
A8 2.6905e+008 2.83584e-006 1.0540e-014 ill-conditioned
A9 1.1766e+007 0.000187658 1. 594ge-011 ill-conditioned
AlO 8.7517e+009 9.56064e-006 1.0924e-015 ill-conditioned

Table 5.1: Results for GE without pivoting

807.423 -9929.16 -9977.92 -6222.87 3.14731 -5.39911 -9753.51 -6.30177

-5.48785 116.375 9143.78 8949.95 -1623.4 1.99721 9170.67 20.5083
A g = ,AlO =

8980.77 4707.62 15.2584 5008.83 3194.33 2.92222 -6604.18 -254.229

-7622.55 -4854.95 8081.05 3966.22 407.212 -10.2771 562.324 4906.66

The ten points (matrix A) found by the search method for GE with partial pivoting

are:

-99.7053 1.51037 -146.294 -9.62291 -938.124 6570.85 -9600.72 -9994.56

-1323.73 1793.47 9600.51 -1392.87 304.335 93.6211 -173.95 -51.1581
Al= ,A2 =

367.816 -10.4284 -2.53052 -5620.15 -892.087 -2.59536 -1.17608 -131.548

-29.9225 -1.54993 -620.423 -6246.63 -145.249 308.99 7501.35 -9272.59

4229.87 -4033.67 109.766 -2406.75 -9960.63 9998.38 8260.38 141.204

-11.6105 -1.93314 3.55366 83.9949 1.56306 -79.0914 1.60491 -27.2871
A3 = ,A4 =

-114.043 123.104 -6.69624 8.62863 10.5345 1685.17 7865.32 1573.09

6915.74 -2595.49 -583.097 -3901.81 -2032.45 1906.91 -9997.83 -1456.48

-9619.18 1.64325 -41.5976 -2.1938 -11.1751 1.35889 -2580.63 5050.82

-490.854 -825.496 1353.83 -5370.23 -26.2784 175.719 -1565.95 9.07643
A5= ,A6 =

-1247.14 20.3704 -133.936 -126.614 -2.01186 62.81 -2794.29 636.715

-3.93872 89.1523 -204.752 422.605 19.1812 -8.93468 -3753.36 -65.5517

38

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

Point Condition Number IObj
lobj x Condition cond(X)

Al 3.6436e+008 9.50351e-005 2.6083e-013 ill-conditioned
A2 1.4004e+009 3.01207e-007 2.150ge-016 ill-conditioned
A3 5.6930e+008 1.62221e-007 2.8495e-016 ill-conditioned
A4 8.7583e+007 8.43754e-009 9.6338e-017 ill-conditioned
A5 1.0902e+008 2.4 7832e-006 2. 2734e-014 ill-conditioned
A6 1.7771e+008 6.59396e-010 3.7105e-018 ill-conditioned
A7 3.0708e+008 6.59396e-010 4.6648e-015 ill-conditioned
A8 4.5766e+007 6.59396e-010 1. 1264e-014 ill-conditioned
A9 5.1927e+008 5.45116e-007 1.0498e-015 ill-conditioned
AlO 8.3726e+008 5.70857e-007 6.8182e-016 ill-conditioned

Table 5.2: Results for GE with partial pivoting

-22.5396 -142.72 -4.27564 -16.5263 -9975.67 -140.485 371.477 6253.51

-4544.75 3185.07 -4.91253 -2.24621 -2520.69 -1005.97 -766.026 -858.549
A7= ,As =

-18.0614 73.1052 11.2191 3.65291 -3166.04 371.147 -538.774 149.546

464.202 -13.728 -4815.66 1354.99 -1.43424 7541.52 -68.6056 -14.7109

146.048 -9998.94 -8216.81 -4903.87 -2458.61 6718.19 608.335 -3.77823

-8836.65 -2496.01 -99.7053 -644.884 2.69195 808.961 -1.41422 3.60193
Ag = ,AlO =

-7501.52 -863.469 943.827 -4.17821 -135.602 7225.94 17.9501 40.5813

4532.48 699.738 -324.113 -8451.87 -4917.22 -1317.27 -7526.97 9865.12

The ten points (matrix A) found by the search method for GE with complete
pivoting are:

-609.704 -5.74352 3239.54 312.3 524.725 7.05961 -23.3653 9956.76

-244.419 -257.103 11.1124 1115.31 -8568.68 -7.56504 -527.683 -374.492
A 1 = ,A2 =

-3886.75 -5057.1 7.48887 -273.239 5074.01 -5588.46 -66.2184 2.57212

-11.1062 -41.1788 1614.97 -7960.14 7.1918 -9993.97 -678.434 -2.0985

(-9995.3 31.071 -7.97749 ~:;2:2q 1 [~q~~~4~ 4.67542 79.3586 -gRRR 7L1 \

l-897317 -510.261 3345.03 -3578.99 -1120.18 -3~;;52~j . A3 = A4-
-107.93 -72.085 -24.2077 -1.23226' - -1188.29 -117.36 37.4676 -7129.26

99.0242 -284.162 8.48909 -51.6784 3043.61 -11.0067 -88.9021 3112.39

39

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

Point Condition Number IObj
fobjJ1
cond{x) Condition

Al 2.4421e+007 5.46753e-008 2.238ge-015 ill-conditioned
A2 9.8396e+007 7.49831e-008 7.6206e-016 ill-conditioned
A3 9.0631e+008 6.0470ge-008 6.6722e-017 ill-conditioned

J

~
A4 3.3833e+008 1. 34554e-007 3.9770e-016 ill-conditioned
A5 6.6716e+007 5.43878e-009 8.1521e-017 ill-conditioned
A6 1.3873e+007 1.33657e-007 9.6346e-015 ill-conditioned
A7 6.8271e+007 8.822e-010 1. 2922e-017 ill-conditioned
A8 7.3204e+007 4.02706e-008 5.5012e-016 ill-conditioned
A9 4.9773e+008 2.67991e-007 5.3843e-016 ill-conditioned
AlO 3.3261e+009 3.60004e-008 1.0824e-017 ill-conditioned

Table 5.3: Results for GE with complete pivoting

GEWP GEPP GECP

Average fobjJ!:l
cond(x) 9.13303e-8 1.415445e-13 7.10985e-15

Average lobj 0.0478945 1.0104962e-5 8.08922e-8
Well-Conditioned Points 2 0 0

Table 5.4: The Three Measurements For the Three GE Algorithm

7.42736 8830.95 8.38162 -3481.45 -9996.37 9996.33 2867.5 -3.7761

2759.43 7511.51 307.776 -9220.07 30.8274 -8306.69 -1886.31 -3097.07
A5 = ,A6 =

-1643.69 -76.3867 2931.15 131.252 1215.32 21.3915 24.7443 457.21

-2.74544 -1.34747 167.614 -189.468 -2006.79 3269.52 7813.02 17.8194

-1254.18 -3.90126 39.7459 4205.02 -8816.58 -1916.93 -75.2316 -1.13579

-26.7554 -58.6136 -9.73171 -271.513 -2826.31 3139.84 -610.733 5136.7
A7= ,As =

522.37 214.17 -176.71 204.522 -2556.8 -8017.7 -443.788 4307.91

7231.58 -28.0965 -7522.6 -926.962 371.348 -2371.27 18.8392 4.67279

r -2181.21
387.818 17.1703 10.9567

1
r -41.9053 -50.7 -257.827 140067

1 -2542.3 -9979.78 -1569.55 1863.06 -7487.42 45.6664 90.8217 300.763
Ag = ,AlO =

2.91074 40.5584 3.15085 92.4184 -9701.46 7.31001 -35.6792 -1457.13

\ -1.4685 -423.795 30.1589 -2987.62) ~ 914.943 -2.64544 1.45127 2.5291)

Table 5.4 shows the results of the three measurements for the three kinds of Gaus-

sian eliminations. The average value of :;~~~~) for the ten points for each algorithm

40

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

shows that GE without pivoting has the largest :;~~~~ and GE with complete piv­

oting has the smallest. It leads to the conclusion that GE without pivoting is the

most unstable algorithm among the three, and GE with complete pivoting is the most

stable one. This conclusion matches the expectation.

Like the result of :;~~~~)' the average value of fobj for the ten points for each

algorithm also shows that the GE without pivoting is the most unstable algorithm,

and GE with complete pivoting is the most stable one. The value of fobj for GE

without pivoting is 0.0478945, it is very large and close to I, the upper bound of fobj'

It means that GE without pivoting is an very unstable algorithm. On the other hand,

the value of fobj for the other two algorithms are 1.0104962e-5 and 8.08922e-8, they

are much lower than the value of fobj for GE without pivoting.

The last row in table 5.4 shows how many points are well-conditioned out of the

ten points for each algorithm. The GE without pivoting has two points which are

well-conditioned, it means that even the input data is well-conditioned, GE without

pivoting still has chance to be unstable. There is no well-conditioned point out of

the ten unstable points found by the search method for the other two algorithms. It

means that while the input data is well-conditioned, these two algorithms are unlikely

to be unstable.

Actually, there exist some well-conditioned points reveal unstable behaviors for

GE with partial pivoting. For example, consider the matrix

41

i

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

1 0 0 1

-1 1 0 1

Anxn = -1 -1 1 1

-1 -1 -1 1

where aij = 1 when i = j or j = n, aij = -1 when i < j, aij = 0 when i > j and

j =1= n.

This is a well-conditioned matrix which made to reveal the unstable behavior of

GE with partial pivoting [2, p. 166]. The condition number of matrix A20x20 is 8.8343
and the value of fobj is 1.90615e-011. The condition number of matrix A 2ox20 is rather

small and fobj is large, comparing to 10e-16 (double precision).

5.2.2 Cubic Root Finding Algorithms

In the tests, the range of the inputs is from -10000 to 10000. The initial simplex

size is 5000. The program is computed in double precision. We expect the result will

show that the improved algorithm is more stable than the original one, while both

the two algorithms are unstable algorithms.

The ten points found by the search method for the original algorithm are:

(15.7708 \ (a2 \ (9999.95 \ (a3 \

l-665.522j , lb2 j = l174.385 j , lb3j
-9749.30 C2 0.760298 C3

(13.6932 \ (n.A \

l-692~~~1j , l~~j -9999.85 C4

42

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

I Point I lObj Roots (Computed by MATLAB) Condition

1
2
3
4
5
6
7
8
9
10

0.0366355 [25.4442 - 27.0501 - 14.1649] well-conditioned
1.0000000 [-9999.93 - 0.008719 - 0.008719] ill-conditioned
0.0364738 [26.5582 - 25.4661 - 14.7853] well-conditioned
0.0366649 [25.6540 - 27.0520 - 14.3624] well-conditioned
0.027029 [-9.89349 0.000368 0.000368] ill-conditioned

0.0296989 [43.3486 - 37.5949 - 6.13610] well-conditioned
1.0000000 [-9999.64 0.0000002 0.0000002] ill-conditioned
1.0000000 [-1.00000 0.0000035 0.0000035] ill-conditioned
0.0369007 [25.3543 - 25.1323 - 16.1521] well-conditioned
0.0373315 [24.4961 - 25.1323 - 16.1521] well-conditioned

Table 5.5: Results for original cubic root finding algorithm

9892.76

-7291.66

1343.56

ag

bg

Cg

0.382359

-1664.99

\ -9999.96

15.5405

-648.277

-9852.45

9999.64

-3.36823

0.000308915

16.7882

-605.371

-9944.01

as

bs

Cs

9999.96

-692.495

11.9887

The ten points found by the search method for the improved algorithm are:

17.8584 a2 -6.88691 a3 -6.14627 a4 6764.23

-549.602 b2 -9987.12 b3 -9968.88 b4 -52.0384

-9324.17 C2 -9997.13 C3 -9889.08 C4 0.0522849

15.4116 a6 15.5904 a7 17.9942 as -9.90136

-544.820 bo -608.472 b7 -586.059 bs = -9996.23

-8052.69 C6 -9251.93 C7 -9999.62 Cs 9836.97

43

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

I Point I !obj I Roots (Computed by MATLAB) I Condition

1 0.0376142 [23.1871 - 24.8883 - 16.1572] well-conditioned
2 0.0262475 [103.918 - 96.0295 - 1.00179] well-conditioned
3 0.0262442 [103.442 - 96.3031 - 0.992700] well-conditioned
4 0.00321615 [-6764.24 0.006504 0.001188] ill-conditioned
5 0.0371456 [23.1495 - 24.1680 - 14.3931] well-conditioned
6 0.0370372 [24.5485 - 25.1589 - 14.9800] well-conditioned
7 0.0375311 [23.9381 - 25.6412 - 16.2912] well-conditioned
8 0.0256946 [104.583 - 95.6652 0.983205] well-conditioned
9 0.0373503 [24.4138 - 25.7199 - 15.9254] well-conditioned
10 0.0262483 [103.322 - 95.4345 - 0.999019] well-conditioned

Table 5.6: Results for original cubic root finding algorithm

I Original Algorithm I Improved Algorithm I
Average !obj 0.324073 0.02993292

Well-Conditioned Points 6 9

Table 5.7: The two measurements for the cubic root finding algorithms

ag 17.2316 -6.88919

bg -607.120 -9868.43

Cg -9999.95 -9850.88

In the problem of cubic function, the condition number is unavailable. The prob-

lem is ill-conditioned if the function has multiple-roots or close roots. So the mea­

surement fObJd·((X)) can't be used in this problem.
con x

According to table 5.7, the average value of !;~~~~) is 0.324073 for the original

algorithm, while it is 0.02993292 for the improved algorithm. From this result we

can get the conclusion that the improved algorithm is more stable than the original

algorithm, which matches the expectation. Both the two values are large, it leads to

the conclusion that both the algorithms are unstable.

The number of unstable well-conditioned points found by the search method is 6

44

·1
i

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

for the original algorithm, and 9 for the improved algorithm. Both the two numbers

are very large, comparing to the number in the GE algorithms. It shows that these

algorithms are both unstable while well-conditioned. The measurement does not show

that the improved algorithm is more stable than the original one. One reason is that

the stability of the two algorithms are very close. Another reason is that the sample

is not large enough.

5.3 Conclusion

The goal of the tests is to show that whether our stability testing method can success-

fully reveal the stability of some algorithms which's stability is already known. Now

we have tested two sets of algorithms, which shows that our method's performance

have achieved the expectation. For numerically stable algorithms like GE with com-

plete pivoting and GE with partial pivoting (which is stable in practical), our method

can indicate that they are stable. For numerically unstable algorithms like GE with-

out pivoting and the two cubic root finding algorithms, our method can indicate that

they are unstable algorithms.

We have developed three measurements for our method to test algorithm's stabil-

ity. Each measurement has both advantages and disadvantages. Considering all the

three measurements together can make our method more convincing.

The performance of the third measurement, which measures the number of un-

stable well-conditioned points found by the search method, is not as accurate as the

first two measurements. A large size of sample can increase the accuracy of this

measurement. So we propose to use this measurement as only a suggestion.

45

Chapter 6

User Guide

In this chapter we present the user guide. Section 6.1 introduces the modules, includ­

ing the module decomposition and the module hierarchy. User interface is explained

in section 6.2. Section 6.3 gives an introduction of the important steps of the software

for the users.

6.1 Module Guide

Five head files and five resource files are contained in the project. They are decom­

posed into four modules: the master control module, the search module, the objective

function calculating module and the pipe module.

6.1.1 Module Introduction

A brief introduction of each module is shown below:

• The master control module

46

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

Module service: This module controls the execution of input, data initial, search

process, and output.

Module secret: User interface.

Files: AutoStabilityTest.h, AutoStabilityTest.cpp

• The search module

Module service: This module performs the direct search method.

Module secret: The data structure and algorithms in the direct search method.

Files: Matrix.h, SearchMethod.h, MultiDirectional.cpp, NelderMead.cpp (Ma-

trix.h declares the data structure of Matrix, which is used to apply the data of simplex

in the direct search method)

• The objective function module

Module service: It calculates the value of the objective function.

Module secret: The algorithm to calculate the value of the objective function.

Files: Objective.h, Objective.cpp

• The pipe module

Module service: This module is the pipe between the software and the test prob-

lems.

Module secret: Pipe functions to write to and read from the test problems.

Files: Pipe.h, Pipe.cpp

6.1.2 Hierarchy

The relation between the four modules is quite simple. Their hierarchy is one dimen-

siOllal. Each module uses and only uses the next module. The inherency of these

modules are shown in figure 6.1:

47

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

Objectiue Function Module

Figure 6.1: The module hierachy

6.2 User Interface

There are two output functions, they output the results to both screen and a txt file

called "results" in the current directory. The txt file will be automatically generated

if no such file exists.

The input of the project contains necessary parameters to apply the direct search

method. Note that the stoppingStepLength is preset to 10-5 in SearchMethod.h and

48

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

does not need to be set by users. Users can change the size of stoppingStepLength

through the head file. Another set of inputs is the command lines of the test problem.

Four command lines are needed, signs to the test program in four different rounding

modes. In Linux version the command lines are in the form of "./a.out" (for example),

the default directory is the directory of the project.

The inputs and outputs are listed as following:

Inputs

• cmdLinel/2/3/4

Type: string

The command lines for the test programs in four rounding modes.

• SampleSize

type: int

The size of the sample.

• Dim

Type: int

The dimension of the problem.

• RetDim

Type: int

The dimension of the outputs of the test program.

• MaxCalls

Type: long int

The maximum function evaluations, which is introduced in section 4.1.3.

49

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

6.2.1 Outputs

• MaxTotal

Type: double float

The maximum value of fObj(X) found among the whole sample.

• MaxTotalPt

Type: vector (double)

The point x in the maximum value of fObj (x).

• MaxEachTrial

Type: vector (vector (double))

This vector stores the maximum fObj(X) found in each trial.

• Avg

Type: double float

The average value of fObj(X) found among the whole sample.

6.3 Introduction of the Important Steps

Choose the Compiler

Before the test, please make sure that your compiler supports the Cgg standard (like

gcc, intel C++ compiler), since only the Cgg standard defines the changing rounding

modes functions.

Change Test Program's Rounding Mode

Since the father process can't change the child process's rounding mode, we have

to create four executable files as the test program. Each executable file is with one

50

lVLSc. Thesis - Hang Zhou McMaster - Computer Science

rounding mode out of the four.

The function fesetround (int rounding-IIlode) is used to set rounding modes. The

value of "rounding_mode" could be FE_DOWNWARD, FE_TONEAREST, FE_UPWARD,

FE_TOWARDZERO. They are the four different rounding modes - round downward,

round to nearest, round toward zero and round upward. Four executable files need

to be generated as the test executable files. To create the test executable files, add

the function fesettround (FE_UPWARD)/fesetround (FE_DOWNWARD)/fesetround

(FE_TONEAREST)/fesetround (FE_TOWARDZERO) to the top line of the test

problem, then compile them separately to obtain four executable files. Remember

to include the head file fenv.h. This head file declares the fesetroundO function and

defines those rounding mode control instants.

Modify the Interface of the Test Program

The interface of the test program needs to be modified to match the project. Since

the read/write pipe functions can't distinguish useful and useless inputs/outputs,

please be sure no useless inputs/outputs are contained in the program being tested.

For example, if the test program's outputs is "Xl = 1; X2 = 2; X3 = 3", it should be

modified to "1 2 3". For the outputs of the test problem, the output precision needs

to be modified to show the difference between the results with different rounding

modes, because in most case the difference is tiny. Precision of 16 digits is suitable

for double precision and precision of 8 digits is suitable for single precision.

51

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

Run the Program

Now we can run our program to do the stability tests. Remember to type the right

directory of program being tested in the cmdLine. Choose proper sample size and set

maximum function evaluations considering both the time and the accuracy we want.

If the problem's condition number is available, obtaining the condition number at

those unstable points is strongly advised.

52

Chapter 7

Conclusions

Automatic stability testing method is an attractive technique in scientific computing.

In this thesis we present a new generic stability testing method, which combines an

automatic stability testing method introduced in Higham's literature [2, p. 479] and

a generic stability testing method introduced by Kahan [3, p. 56], and takes both of

their advantages. For normal stability testing, Obtaining proper input data to reveal

stability is a tough task. One advantage of our method is that it does not require

proper input data, since it uses optimization method to automatically detect those

unstable points and reveal the instability there. For those automatic stability testing

methods, objective function whose maximal value can be located by optimization

method is created for specify problems. Our method's objective function is generic

since the construction of our objective function does not related to the problem being

tested. Refer to Cllapter 1, 110rmal generic autolnatic stability lilethods are qllite

complicated to implement and use, while our method is quite simple.

A big problem for automatic stability testing methods is that their accuracy can

not be guaranteed. We propose to use a sample instead of one searching result to

53

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

measure algorithm's stability. Moreover, we present three measurements to measure

algorithm's stability. Considering all the three measurements makes our scheme more

accurate.

However, although we don't have to know the information of the problem being

tested while constructing the objective function, knowledge of the condition of the

problem is required if we want to get a convincing conclusion. Our method still can

test those problems which's condition number is unavailable since one of our mea­

surement does not require the information condition number, but for those problems

the accuracy of our method can not be guaranteed.

As error analysis cannot be automated in general, in Chapter 5 we use practical

experiments to test the performance of our method. Although the tests shows that

our method works well, we can not fully guarantee the accuracy for other problems.

It's better to consider the result of our method as a beginning of error analysis, further

analysis for the problem is strongly suggested.

54

Bibliography

[1] IEEE Standard for Binary Floating-Point Arithmetic. SIGPLAN Notices 22:2,

37:9-25, 1985.

[2] Nicholqs J. Higham. Accuracy and Stability of Numerical Algorithms, Second

Edition. SIAM, Philadelphia, 2002.

[3] W. Kahan and Joseph D. Darcy. How Java's Floating-Point Hurts Everyone Ev­

erywhere. ACM 1998 Workshop on Java for High-Performance Network Com­

puting, 1998.

[4] John 1. Larson and Ahmed h. Sameh. Efficient calculation of the effects of

roundoff errors. ACM Trans. Math. Software, pages 228-236, 1979.

[5] J olm 1. Larson and Ahmed h. Sameh. Algorithms for roundoff error analysis - A

relative error approach. Computing, pages 275-297, 1980.

[6] Philippe Langlois. Automatic linear correction of rounding errors. BIT, pages

415-539, 2001.

[7] Webb Miller. Software for roundoff analysis. ACM Trans. Math. Software, pages

108-128, 1975.

55

M.Sc. Thesis - Hang Zhou McMaster - Computer Science

[8] J. A. NeIder and R. Mead. A simplex method for function minimization. The

Computer Journal, pages 308-313, 1965.

[9] J. M. Parkinson and D. Hutchinson. An investigation into the dfficiency of

variants on the simplex method. Numerical Methods for Non-linear Optimization,

37: 115-135, 1972.

[10] M. J. D. Powell. A suirvey of numerical methods for unconstrained optimization.

SIAM Rev., 37:79-97, 1970.

[11] Thomas Harvey Rowan. Functional Stability Analysis of Numerical Algorithms.

PhD thesis) University of Texas at Austin, 1990.

[12] J. S. Kowalik S. L. S. Jacoby and J. T. Pizzo. Iterative Methods for Nonlinear

Optimization Problems. Prentice Hall) Inc.) Englewood Cliffs) New Jersey, 37,

1972.

[13] Virginia Joanne Torczon. Multi-Directional Search: A Direct Search Algorithm

for Parallel Machines. Ph.D thesis) Rice University, 1989.

[14] R. Vichnevetsky and J. Vignes. Marie-Christine Brunet and Francoise Chatelin.

CESTAC, a tool for a stochastic round-off error analysis in scientific computing.

Numerical Mathematics and Applications, pages 11-20, 1986.

[15] G. R. Hext W. Spendley and F. R. himsworth. Sequential application of simplex

designs in optimisation and evolutionary operation. Technometrics, 37:441-461,

1962.

[16] Daniel J. Woods. An Interactive Approach for Solving Multi-Objective Opti­

mization Problems. Ph.D thesis) Rice University, 1985.

56

