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Abstract 

In this thesis we develop a new automatic method to test algorithm's numerical sta-

bility. The new method is a combination of two stability testing methods introduced 

by Higham and Kahan, and takes advantage of the both method. We first generate 

an objective function which can reveal algorithm's stability, then locate the maxi-

mum value of the objective function by an optimization method. This method can 

automatically detect the unstable points and reveal algorithms instability. 

To make our method suitable for general problems, we generate the objective 

function by measuring the difference of the test program's results computed in differ-

ent rounding modes. We choose a search method suitable for our objective function. 

To improve the accuracy of our method, the final result is obtained by combining 

the results from multiple searches. F\lTthermore, we propose three measurements to 

measure algorithm's stability. Practical examples are used to test the performance of 

our method. 
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Chapter 1 

Introduction 

Numerical stability is a important feature of a numerical algorithm. There are dif-

ferent ways to formalize the concept of stability. How to define stability depends 

on the context. Normally, numerical stability refers to how a perturbation of input 

affects the output of an algorithm. In a numerically stable algorithm, errors in the 

input lessen in significance as the algorithm executes, having little effect on the final 

output. 

Testing the numerical stability is always needed to investigate an algorithm's 

performance. However, most of the automatic numerical stability testing methods 

are designed for certain problems. For example, Langlois' [6] stability testing method 

for liberalization, Miller's [7] stability testing method for algebraic processes, Larson 

and Sameh's [4] [5] stability testing method for linearized problems. People generate 

their stability testing method based on the understanding of the specific problem, 

and those stability testing methods can not be used on other problems. 

The task of finding a generic stability testing method is attractive. Rowan [11] 
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develops a method which measures stability by the difference between the test algo-

rithm's results computed in double precision and single precision. Another method 

called CESTAC is developed by La Porte and Vignes [14]. It measures stability by 

making a random perturbation of the last bit of the result of each elementary oper-

ation. However, these generic stability testing methods need to deeply change the 

code of the test program. 

In this thesis we will present a simple generic numerical stability testing method. 

However, as Kahan said, "error-analysis can't be automated in general" [3, p. 58], 

our stability testing method does not guarantee a complete error-analysis. When the 

condition number of the problem is known, our method can detect instability. When 

the condition number of the problem is unknown, our method can give indication of 

instability. 

2 



Chapter 2 

Background 

Testing stability of a numerical program is nontrivial. Random testing is inadequate, 

since random data are usually well-behaved. For example, a random matrix is often 

well-conditioned. In this chapter, first in section 2.1 we present an automatic insta-

bility detection method due to Higham [2, p. 471]. This method requires an objective 

function and applies an optimization method to the objective function to find input 

data that reveal potential instability. Then in section 2.2 we describe Kahan's method 

[3, p. 56], which requires proper input data and uses different rounding modes to test 

stability. 

2.1 Higham's Automatic Instability Detection Method 

Higham introduced an automatic stability testing method by using direct search op-

timization [2, p. 471]. His method consists of two steps. First we define an objective 

function Y = f (x) that reflects the stability of algorithm; second, use a direct search 

method to find the maximum value of the objective function. 

3 



i 
! 

M.Sc. Thesis - Hang Zhou McMaster - Computer Science 

2.1.1 Objective Function 

The objective function 

y = f(x), f : IRn 
--7 IR (2.1) 

is a function mapping algorithm's input vector x into a stability measurement value 

y. The determination of the objective function depends on the problem. For example, 

we can use the growth factor factor for Gaussian elimination on A = [aij] E IRnxn [2, 

p. 472], 

(2.2) 

where the aij(k) are the intermediate values of the entries of A generated during 

Gaussian elimination. Since the growth factor governs the stability of Gaussian elim­

ination, so we can measure the problem's stability based 011 the si:t;e of Pn(A). 

2.1.2 Direct Search Method 

A direct search method for the problem 

(2.3) 

is a numerical method that attempts to find a maximum point of x E IRn [2, p. 

472]. It does not require derivatives of f and uses function values only so that it is 

suitable for those functions lack of smoothness or difficult to obtain derivatives when 

they exist. For problems in which f is smooth and its derivatives are available, direct 

search methods are less efficient than those optimization methods that use derivatives 

such as Newton methods [10]. 
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One of the most widely used direct search method is multi-directional search 

(MDS) method. 

The Multi-Directional Method 

Suppose the dimension of the problem's input is n (x E ]Rn). The MDS method 

requires n + 1 points at initial step. These points define a simplex {va, VI, V2} in 

]Rn, and it is assumed that f(vo) = ml;1xf(vi). One iteration in the case n = 2 is 
~ 

illustrated in Figure 2.1. 

. VI 

Figure 2.1: The possible steps in one iteration of the MDS method when n = 2 [2, p. 
475] 

In the first step the original simplex is reflected through va to give a new simplex 

{va, VI, V2}. If max f(ri) > f( vo),then the reflection step is considered to be successful 
~ 

and the following expansion step takes place. The edges from va to ri (i = 1,2) are 

5 
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doubled in length to give a new simplex {vo, el, e2}. If m?,x f(ei) > max f(ri), the 
z z 

original simplex {Vo, VI, V2} is replaced by {Vo, el, e2}, otherwise the original simplex 

is replaced by {vo, rl , r2}. 

If the reflection step is unsuccessful, the following contraction step takes place. the 

contracted simplex is given by shrinking the edges from Vo to Vi (i = 1,2) of the 

original simplex to half their lengths. The algorithm will then start the next iteration 

with the contracted simplex {vo, CI, C2}. 

So, if Vo is a local maximum point, the simplex keeps shrinking since no other points 

in those reflection simplices satisfy that f ( v) > f ( vo). When the stopping criteria is 

reached, the search stops. 

2.1.3 An Example 

Here we give an example of using direct search method to detect the stability of 

numerical algorithm for finding the roots of a cubic function[2, p. 479]. 

By dividing through the leading coefficient, a nondegenerate cubic equation can 

be presented in the form 

f(x) x 3 +ax2 +bx+c=O. 

Changing the variable 

the quadratic term is eliminated 

a 
x = y - 3' 

3 a2 2 3 ab 
y + py + q = O,p = -3 + b, q = 27 a - 3 + c. 

6 
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With the subsitution y = w - p/(3w) we get 

3 p3 
W - 27w3 + q = O. (2.7) 

Putting it in the form 

(2.8) 

we get 

(2.9) 

In this problem, the variables are the coefficients a, b, c. We take the relative error 

formula as the objective function: 

liz - zlloo/llzlloo. (2.10) 

To compute the "exact" roots z, we use MATLAB's roots function. Here we take the 

"+" square in (2.9). The optimization method used is the MDS method. Starting 

with [a b c] = [1 1 1], the vector found by the MDS method is [a b c] = 

[1.732 1 1.2704]. The computed and "exact" roots at this point are respectively 

-1.599ge + 0 

z= -6.6066e - 2 - 8.8557e - Ii 

-6.6066e - 2 + 8.8557e - Ii 

z= , 

-1.6026e + 0 

-6.6478e - 2 - 8.8798e - Ii· 

-6.6478e - 2 + 8.8798e - Ii 

The above results show that the algorithm is very unstable, the relative error is 

about 0.04. Notice that objective function requires the exact solution or an accurate 

solution, which is usually unavailable. 

7 
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2.2 Kahan's Stability Testing Method 

Kahan introduced a method for testing numerical stability [3 , p. 56]. The idea is 

to run a program in different rounding modes with the same input and check the 

differences between the results obtained by different rounding modes. 

2.2.1 Rounding Modes 

As we know, IEEE Standard 754 specifies four rounding modes for binary floating­

point arithmetic [1]. The default rounding mode is rounding to the nearest, which is 

what all the programmers use in most situations. Other three rounding modes are: 

rounding towards zero (truncate), rounding up (towards +00), and rounding down 

(towards -00). With a rounding modes setting command, we can change a program's 

entire rounding mode environment, influencing every floating-point operation in that 

program. 

We run a program in all four rounding modes and compare their results. If 

the problem is well-conditioned and the difference between the results computed in 

different rounding modes is large, then we can say that the algorithm is numerically 

unstable. 

2.2.2 An Example 

Here we give an example of the application of Kahan's stability testing method[3, p. 

59]. 

Let a, b, c be the three side-lengths of a triangle, and assume that a> b > c. 

8 
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Heron's formula Improved formula 
To nearest 12345680.0 6249012.0 

Upward 12345680.0 6249013.0 
Downward 0 6249011.0 

Toward zero 0 6249011.0 

Table 2.1: Sensitivity to rounding of two triangle area calculating algorithms 

A classical formula due to Heron is 

6 = vi s(s - a)(s - b)(s - c), s = (a + b + c)/2. (2.11) 

An improved formula of computing the area of a triangle is 

6 = (a + (b + c))(c - (a - b))(c + (a - b))(a + (b - c)) 
4 . (2.12) 

Compare both formulas on a needle-like triangle 

a = 12345679, b = 12345679, c = 1.01233995. 

Compute this problem with both formulas in four different rounding modes. The 

result is shown in Table 2.1. 

Table 2.1 shows that when applying the first formula, the results computed in 

four different rounding modes change dramatically. We can get the conclusion that 

the first formula is numerically unstable. 

Notice that in this method, the selection of input data is critical. For example, 

if we change the lengths of three sides to a = 12345, b = 1234, c = 123456, for both 

algorithms, all the results computed in four different rounding modes are 3460216.2 

- no difference is shown. 
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2.3 Summary and Discussion 

Highamn's automatic stability testing method requires a proper objective function. 

The performance of his idea largely depends on the quality of the objective function. 

The construction of a good objective function is not always an easy task. More-

over, a disadvantage of this idea is that the objective function should be constructed 

specifically for a particular problem. Of course, the relative forward error formula 

II~~J(II could be used as a simple and universal objective function. But this objective 

function requires an accurate result of the problem, which is usually unavailable. 

Kahan's stability testing method is a simple method. Unfortunately, it is not 

automatic. To show a problem's instability, it requires appropriate input data. For 

most problems, finding a appropriate input data to show instability is a challenge if 

we don't have a highly clear understanding of the problem. Is there any method to 

construct appropriate input data automatically, and make the method an automatic 

stability testing method? 

Combining Higham's and Kahan's stability testing methods, we can get a new 

automatic stability testing method. It does not require an objective function from 

the user, and can automatically find proper input data. 

10 



Chapter 3 

Basic Idea of the New Automatic 

Numerical Stability Testing 

Method 

In last chapter we discussed the disadvantages of the Higham's and Kahan's stability 

testing methods. In this chapter we describe our new stability testing method, which 

is a combination of the Higham's and Kahan's methods. In section 3.1 we describe 

the goal of our method. The main step of our method is presented in section 3.2. 

Then in section 3.3 we discuss the construction of a general objective function. In 

section 3.4 we give a discussion about the justification of our method. 

3.1 Our Goal 

Our goal is to develop an automatic numerical stability testing method with the 

following features: 

11 
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• It provides an objective function suitable for general problems. 

• The objective function is simple, easy to understand. 

• The objective function can reflect problem's stability. 

• Appropriate input data for the objective function which shows problem's insta-

bility can be found automatically. 

We propose a new automatic stability testing method with all the properties 

above. The Higham's stability method requires an objective function, and the Ka-

han's method requires appropriate input data. The objective function and the ap-

propriate input data are both hard to obtain in practice. Compared with Kahan's 

method, our method uses direct search method to find appropriate input data. Com-

pared with Higham's method, our method uses different rounding modes to construct 

an objective function. 

3.2 Main Steps of Our Method 

To make the new stability testing method an automatic method, we take Highan's 

automatic method as a framework. Like Higham's method, the new stability testing 

method contains two steps: 

• Obtain an objective function using the Kahan's method. 

• Use direct search method for a maximizer of the objective function. 

The core of the new automatic stability testing method is the objective function 

part. Tlle COllstructioll of objective fUl1ction largely affects the performance of the new 

method. Section 3.3 will present the details of how to construct objective function. 

After an objective function is constructed, there are several questions remain to be 

answered. Can the constructed objective function reveal problem's stability? How to 

12 
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measure problem's stability by the maximum value of the objective function found by 

the direct search method? We attempt to answer these questions by a combination of 

a further discussion and practical experiments. The further discussion are presented 

in section 3.4, and the practical experiments are shown in Chapter 5. 

The second step of the new method - finding the proper input which shows in­

stability seems to be easy, we just need to apply our direct search method on the 

objective function, and locate the point where the objective function reaches a max-

imum value. In practice, the situation turns out to be complicated. Since the direct 

search methods are far from being perfect, it often fails to find the most unstable 

point of algorithm. In this situation, we have to try to find those points with "large 

engough" value which can show algorithm's instability. Details about the implemen-

tation of instability searching will be presented in Chapter 4. 

3.3 Construction of the General Objective Func-

tion 

In this section we will solve two problems: why we need a general objective function 

and how to construct a general objective function. 

3.3.1 Why We Need a General Objective Function 

As mentioned before, in order to phrase the stability testing method as an optimiza-

tion problem and apply the direct search method, the objective function should be 

constructed in this form: 

y = f(x), y E JR, x E JRn
. (3.1) 

13 
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The first step of our method is like the first step of Higham's stability testing 

method, which is defining an objective function y = f(x) that reflects the stability of 

algorithm. As mentioned in section 2.3, in Higham's method the construction of the 

objective function is problem dependent. 

For example, for Strassen's matrix inversion method [2, p. 478], the stability 

measure is 

f(x) = min{IIAX - lllooJIXA - llloo} 
IIAlloollXlloo ' 

(3.2) 

where X is the inverse of the matrix A computed using Strassen's inversion method. 

The disadvantage of constructing the objective function specifically for problems 

is that we have to find a stability measure formula for the objective function for every 

single problem to be tested. Often a good measure formula is hard to obtain. 

The problem can be solved by defining a general objective function. We propose 

a general objective function which can measure every problem's numerical stability. 

In section 3.2.2 we will describe how to construct a general objective function by 

applying Kahan's stability testing method. 

3.3.2 Constructing a General Objective Function 

In section 2.2.2 a simple objective function introduced by Higham is taken as an 

example. It's the relative forward error formula 

E.,.el(X) = 
IIY-yll 

lIyll 
(0. 0.\ 
\V.VJ 

where Y is the result computed by the program and y is the exact or accurate result. 

This objective function is used to measure the numerical stability of solving a cubic 

14 
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equation. Higham took the results computed by MATLAB's roots function as the 

accurate results y. This objective function is not suitable for our general function, 

because the accurate result is usually unavailable. We can't always use MAT LAB or 

other tools to get the accurate result. Here we construct a general objective function 

which is similar to the form of formula (3.3). 

Suppose Yl and Y2 are the results of the program being tested computed in two 

different rounding modes, we propose the formula 

(3.4) 

as a form of our general objective function. Here IIYll1 + IIY211 is the scaling factor. 

Since there are four rounding modes specified by the IEEE 754 standard, which 

two rounding modes are used to compute the results Yl and Y2? In the example in 

section 2.2, the difference between the results computed in rounding up and rounding 

to the nearest is zero. If we take the results computed in rounding up and rounding 

to nearest as Yl and Y2, no instability will be revealed. The same thing happens if 

we pick the results computed in rounding down and rounding to zero as Yl and Y2, 

since their results are both 0. If we take the results computed in rounding up and 

rounding down as Yl and Y2, the measurement's value is 

Huge instability is detected. 

-:-;-'1-'-11_23_4_56_80_.°:-;------;-:-°.----'°1-'-:-;-1 = 1 
1112345680.011 + 110.011 . 

(3.5) 

This example shows the importance of picking the right rounding modes. We 

should always pick the rounding modes that can reveal the largest differences. We 

15 
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propose 

(3.6) 

where YneaTl YuP' Ydown, Yzero are the results computed in four different rounding modes, 

as our objective function. 

3.4 A Justification of the Scheme 

As described previously, our method for testing stability is based on Kahan's testing 

method. Regarding his method, Kahan commented [3, p. 58]: "Of course this scheme 

can't be foolproof since error-analysis can't be automated in general." 

Thus, in theory, our method is not a stability analysis. In practice, however, it 

often reveals stability in the following sense. Changing rounding modes can be viewed 

as introducing small perturbation into the data. By measuring the maximal difference 

between the results computed in different rounding modes, we know the sensitivity 

of the program to the perturbation of data. When the measurement (3.6) is close to 

1, the program is very sensitive to the perturbation of data, when the measurement 

(3.6) is close to 0, the program is insensitive to the perturbation of data. 

However, we must point out that the measurement (3.6) includes both the sen­

sitivity of the underlying problem and the backward stability of the algorithm. A 

program solves a problem and implements an algorithm. A program solves a problem 

and implements an algorithm. The measurement (3.6) is about the behavior of the 

program, which involves both the problem and the algorithm. The measurement (3.6) 

is close to 1 when either the problem is ill-conditioned or the algorithm is unstable 

on both. The measurement (3.6) is close to 0 when the problem is well-conditioned 

16 
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and the algorithm is stable. Thus a small value of the measurement (3.6) gives us 

confidence of the program. A large value of the measurement (3.6) gives us a warning. 

Further analysis is required. 

3.5 Summary and Discussing 

In this chapter we have described some fundamental aspects of our new numerical 

stability testing method, including the goal, the main step, why we need a general 

objective function and how to obtain it. We also gave a justification of our method. 

At the beginning of this chapter we presented the goal of our method we expect 

to reach. It contains the following features: 

• It provides an objective function suitable for general problems. 

• The objective function is simple, easy to understand. 

• The objective function can reflect problem's stability. 

• Appropriate input data for the objective function which shows problem's insta-

bility can be found automatically. 

We can say that the first two features are reached with no doubt. The third and 

forth features are worth to be discussed here. 

As mentioned in section 3.4, a precise stability analysis can't be automated in 

general, our method is no exception. However, as explained in section 3.3, our scheme 

reveals the stability behavior of the program being tested. In Chapter 5, we will 

present our experimental results to demonstrate that our method offers a practical 

way of testing the stability of a program. 

The forth feature of our goal, which is its objective function's maximizer can be 

successfully located by direct search methods, is the main topic of the next chapter. 

17 
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In the next chapter we will describe all the efforts we can do to get a better result. 

18 
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Chapter 4 

Implementation Details 

In Chapter 3 we gave a general description of our stability testing method. However, 

there are several implementation details remain to be discussed. In section 4.1 we 

discuss some details of the direct search method, like the choosing of the direct search 

method, the initial simplex and stopping criteria. In section 4.2, we present the sample 

construction details. 

4.1 Details of the Direct Search Method 

Our objective function is lack of smoothness and we can't obtain its derivative, so 

we choose the direct search methods. There are numerous direct search methods. 

Higham suggested three direct search methods for his stability testing method. The 

three direct search methods Higham suggested are the alternating directions (AD) 

method, the multi-directional search (MDS) method and the NeIder-Mead direct 

search method. AD is the simplest direct search method, its performance is worse 

than the other two methods [2, p. 475]. Since the MDS method is an improved 

19 
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method over the NeIder-Mead method, we consider to use the MDS method in our 

implementation. The MDS method is described in section 2.1. 

Although we have decided to use the MDS method as our direct search method, 

there are several details remain to be decided, such as the initial simplex and stopping 

criteria. According to years of experience with direct search methods in history, there 

is a variety of choices of these factors. Here we present our choices, which is used in 

the practical experiment in Chapter 5. 

4.1.1 The Initial Simplex 

Refer to section 2.1.2, in the first step of the MDS method, we generate an initial 

simplex from a given single starting point. The initial simplex is very important since 

it affects all the following simplexes generated in every iteration. Shape and size of 

the initial simplex is the main concern here. 

Shape 

The shape of the initial simplex should be decided first. Many people have deep 

research on the initial simplex for direct search methods, for example Spendley, Hext, 

and Himsworth [15], Kowalik and Pizzo [12] [9], There is only one requirement needs 

to be satisfied for the initial simplex generation: the generated simplex should be 

nondegenrate. Here we choose to generate a right-angled initial simplex with the 

same length of each edge. Which means, the n point other than the initial point is 

determined by formula (4.1). 

(4.1) 

20 
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where Xo is the initial guess point, a is the initial edge length, and ei is the unit basis 

vectors for each dimension. 

Figure 4.1: The right-angled initial simplex with the same length of each edge with 
dimension two 

Size 

The size of the initial simplex is another issue to be determined. Note that if the 

initial size is too small, the extension of the search process will be very slow, which 

leads to the situation that the search algorithm can only search a small local area. 

And if the initial size is too large, it takes much more time for the algorithm to shrink 

the simplex to a reasonable size [13]. In other words, the search method may spend 

too many iterations to contract the simplex before it can make any real progress. 

Since 2n function evaluations needed for contracting the simplex in each iteration, a 

large initial simplex makes the searching process costly. 

21 
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But comparing both the disadvantage of small size and large size, the disadvantage 

i of large size is less important due to the improvement of the computing speed of the 

computer by now. So we prefer to choose large size of the initial simplex in our 

implementation. 

4.1.2 The Stopping Criteria 

Here we give a discussion of how to terminate the searching process. Torczon intro-

duced three stopping criteria in her paper [13]. 

The first stopping criteria is suggested by NeIder and Mead [8]. Searching stops 

when the standard deviation of the function values in the simplex falls below a preset 

value. The stopping test is as below: 

(f(v~ _1))2 
~ ~ < c, 

n 
( 4.2) 

where vf is the function value of the ith vertex in the kth iteration, 1 is the mean of 

the function values at the n + 1 vertices, c is the preset tolerance. 

The second stopping criteria is suggested by Parkinson and Hutchinson [9]. Search-

ing stops when both the range in f and the corrections to Vi for all i fall below a 

preset value. That means the following two tests should be both satisfied: 

( 4.3) 

(4.4) 

where v~ is the vertex with the smallest function value in the simplex in the kth 
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iteration. 

This scheme is not suitable for our objective function since it uses the function 

value as one of the stopping criterion, and the function value of our general objective 

function changes dramatically in unstable areas. 

The third stopping criteria is suggested by Woods [16]. He slightly changed the 

second stopping criteria and made it to a stopping criterion measuring the relative 

size of the simplex by considering the length of the longest edge adjacent to v~: 

1 
/\ max Ilvf - v~ II :::; E, 

LJ,. 19:'Sn 
(4.5) 

where ~ = max(l, IIv~II). 

For most optimization methods, people often choose function value as the measure 

of stopping criteria. But for simplex search methods, we have another measurement, 

which is the edges' length. It's easy to notice that the measurement of the first 

stopping criteria is the function value. The measurement of the third stopping criteria 

is the edges' length. The second stopping criteria's measurement is both the function 

value and the edges' length. 

Normally, choosing function value as the stopping criteria should be the first choice 

to be considered, since this kind of stopping criteria is obvious. One disadvantage 

of choosing function value as the stopping criteria is that it may lead to premature 

termination when the simplex becomes too small relative to the curvature of the 

For our objective function, most of the points are stable points. This means that 

the values of the objective function at those stable points are small and smooth. So 

it leads to premature termination. 
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f(x) 

Unstable area 

I 

Stable a,·ea 

Figure 4.2: The general behavior of our objective function with dimension one 

Even if the searching process reaches those unstable area where the function values 

are large, the stopping criteria by checking function value still has its disadvantage. 

The function value changes dramatically due to the unstable behavior of the program 

to be tested at those unstable area. So if the preset E: is small, the searching is hard 

to converge. 

In summary, if the preset E: is large, it leads to premature termination of the search 

algorithm at those stable area. If the preset E: is small, the search algorithm is hard 

to converge due to the large differences between the values in neighborhood points at 

the unstable area. 

So the stopping criteria measure using function value is not suitable for our objec-

tive function. Since the first stopping criteria and the second stopping criteria both 

use function value as the measure, they are not suitable for our objective function. 

Therefore, we choose formula (4.5) as our stopping criteria. 

Now we have not determined the value of E: yet. The value of E: affects the number 
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of function evaluations, and we have to determine it in practical experiment. So we 

leave the decision of the value of c to Chapter 5. 

4.1.3 Other Factors 

Other than the initial simplex and stopping criteria, there are several factors remain 

to be discussed. 

The Orientation of the Initial Simplex 

The orientation of the initial sim.plex determines the search direction, which also has 

effects on the search process. But since the effects of the orientation is hard to know 

or test, we just use the default orientation here. 

The Scaling Factors 

The scaling factors include the expansion factor fl, which determines the expansion 

speed, and the shrinking factor e, which determines the shrinking speed. The effects 

of those two factors are also hard to know or test. So we just set fl = 2 and e = ~, 

which are the common choices for the direct search methods [13]. 

Maximum Function Evaluations 

To ensure the termination of the searching process, a maximum function evaluations is 

necessary for our program. We never know how many function evaluations needed to 

reach the preset stopping criteria for a specific problem before practicing. Moreover, 

due to the unpredictable behavior of the objective function in the neighborhood of 
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converging point, some times the amount of function evaluations needed is far more 

than expected. So we set a maximum function evaluations as a extra stopping criteria. 

The searching stops while the amount of function evaluations reaches the maximum 

function evaluations, or formula (4.5) is satisfied. Choosing the maximum function 

evaluations would be a personal choice, it depends on how much time the user's 

computer's calculation costs for one function call and how long the user can bear for 

a searching process. 

4.2 Sample Construction 

Can the search method guarantee to find the most unstable point in the entire range 

space? If no, how to improve our strategy to gurantee a convincing result? In 

this section we will discribe how to improve the accuracy of our method by sample 

construction. 

4.2.1 Limitations of the MDS Method 

The direct search methods have those main disadvantages below: 

• There are infinity points inside the input range. Since the direct searching can 

only cover a finite number of points, we can only say that the "maximum" point found 

by the direct search method is the maximum point among the points the searching 

tried, not the real maximum point of the function . 

• The search direction can be sensitive to the initial point and initial simplex. Even 

though two searching process start at two neighboring points, the search results, both 

the location of maximum point and the function value at the maximum point could 
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be very different . 

• Although the MDS method assures its vertices span the full space, the direct 

search method can only find a local maximum point near the initial point. That 

means the "most unstable point" found by the direct search method is usually just 

a most unstable point in a small area near the initial point, not the most unstable 

point in the full space. 

The above limitations of direct search method showes above indicate that we can't 

rely on one searching process. We have to repeat the searching process for several 

times, and get a final result by analyzing the whole sample. 

4.2.2 Details of Sample Construction 

A simple way to generate initial input data is using random data. The size of the 

sample depends on the time cost for one searching process and the whole time the 

user can bear. Due to the low converging speed for the MDS method, one searching 

process usually needs to compute the algorithm thousands of times, which is really 

costly. So large size of sample may not be suitable. 

Just using random initial data also has its disadvantage. Since we can't control 

the generation of the random initial data, sometimes most random initial data con-

centrated to a small area, and makes just few initial data in other place. This kind of 

distribution of initial data obviously fails to solve the problem of "local maximizer" , 

and makes our results less accurate. 

To avoid this disadvantage of random initial data, it's reasonable to use another 

sample construction strategy, which is dividing the full space into many small areas, 

and generate initial data in each of the small areas. This strategy can avoid the 
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Figure 4.3: Good distribution of the input random data 

disadvantage that the initial points are unevenly distributed. But this strategy also 

has its own disadvantage. Comparing to random initial data, generate initial data 

in this way makes our implementation much more complicated, especially when the 

dimension is large. 

Actually, there is a simple method to reduce the effects of "local maximizer" for 

random inputs. If we set the initial step length to a large size, the effects of the 

location of initial points could be reduced. For example, if we set the initial size to 

1/4 of the full space's size, the points could be largely span over the full space after 

one iteration. 

As mentioned before, if the initial size is too large, the searching algorithm may 
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Figure 4.4: bad distribution of the input random data 

spend more time to converge, since more iterations needed to contract the step length 

to a reasonable size. But since the time cost is not the first concern, here we consider 

using random initial data with large size of initial simplex as our strategy 111 our 

implementation. 

4.3 Summary and Discussion 

As mentioned in Chapter 3, our stability testing method contains two steps: 

• Obtain an objective function using the Kahan's method . 

• Use direct search method to find a maximizer of the objective function. 
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Figure 4.5: A improved strategy to generate input data 

In Chapter 3 we concentrated on the construction of the objective function, which 

is the first step. In this chapter we concentrated on the second step, discussed the 

details of applying the direct search method. Comparing with Chapter 3, the content 

of this chapter is more practical and complicated. 

In our implementation we have chosen the MDS method. There is no restriction 

for the choosing of the direct search method. Choosing the MDS method here is 

j1..1St because it's 011e of a Inatllre direct searcll method \vitIl 11ice performallce, alld 

it's suitable for the situation of our method. Of course, there are many good direct 

search methods to apply. In this chapter we have discussed the implementation 

details of applying the MDS method, to do our best to make the searching process 
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more accurate. 

Although the direct search methods have been developed for several decades, their 

performance are still far from being perfect. Since there is no derivative information 

we can get from our objective function, we have to choose the direct search method for 

our implementation. We can image that due to the behavior of our objective function, 

it's nearly impossible for the direct search method to find the real maximum point of 

the objective function. To guarantee the accuracy of our stability testing method, we 

have improved our strategy by combining the results from multiple searches instead 

of one searching process. The new strategy can make our method more convincing. 
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Chapter 5 

Performance 

In this chapter we test the performance of our method through some practical experi-

ments. We first present some preliminaries we need in section 5.1. These preliminaries 

include the measurement of stability, the purpose of our tests and how to choose the 

test problem. In section 5.2 we present the test results with comments. The conclu-

sian is shown in section 5.3. 

5.1 Preliminaries 

Before we start our tests, there are several topics remain to be discussed here. 

5.1.1 The Measurement of stability 

As mentioned before, the objective function value fobj is affected by both the insta-

bility of the test algorithm and the condition number of the problem. It's reasonable 
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to measure algorithm's stability with the formula 

IObj(X) 

cond(x) , 

where cond(x) is the condition number of the problem at the point of x. 

(5.1) 

The measurement IObj is not as accurate as f;':!d~~)' but it has two advantages 

which the measurement fObJd'((X)) does not have. Firstly, the measurement fObJd'((X)) is not 
con x con x 

suitable for the problem whose condition number is unavailable. In this case, we can 

only use IObj to measure stability. Secondly, we can get a quantitative impression of 

stability from the measurement lobj, since the range of lobj is [0,1]. The quantitative 

impression is unavailable from the measurement fObJd'((X)) , because there is no upper 
can x 

bound for f;~~~~). So IObj is worth to be considered as one measurement even when the 

condition number is known. When IObj is small, we can conclude that the algorithm is 

stable. But since IObj is affected by both algorithm's stability and problem's condition 

number, when IObj is large, we can't conclude the algorithm is unstable. 

Here we introduce another measurement. We can measure stability by checking 

how many well-conditioned points with large IObj can be found by the search method 

in a sample. If the search method can't find any or can only find few, it gives us 

confidence about the stability of the algorithm in well-conditioned case. 

Above all, we use three measurements in our tests to measure algorithm's stability. 

These three measurements are: 

... fobj(X). 
- cond(x)' 

This value is the best measurement of stability because it is a mixture of both the 

objective function value and the condition number of the problem. 
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Due to lacking the consideration of the condition number, this measurement is not 

as accurate as the first one. But this measurement can give an quantitative impression 

of the stability since the range of !obj is [0, 1]. 

• The number of unstable well-conditioned points detected: 

The measurement can give an impression about the algorithm's stability in well­

conditioned case. 

5.1.2 Purpose of the Tests 

We will apply our stability testing method to measure the stability of some given 

algorithms whose stability is already known. These algorithms include both numer­

ically stable algorithms and numerically unstable algorithms. The task of our tests 

is to check whether our measurements can accurately measure the given algorithm's 

stability. 

5.1.3 The Test algorithms 

We intend to choose our test algorithms with three concerns. First, the test algorithms 

should be the classic algorithms. Second, the test algorithms' numerical stability 

should be already known. Third, For a problem it's better to test more than one 

algorithms, so that we can compare their behaviors. Here we choose two sets of 

algorithms for our tests. They are: 

• Gaussian elimination 

• Cubic root finding algorithms 

Here we give a simple introduction of the test algorithms. 
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5.1.4 Gaussian Elimination 

The first set of algorithms being tested is Gaussian elimination. They are classic 

algorithms of scientific computing. We test the three kinds of algorithms: 

• Gaussian elimination without pivoting. This algorithm is the most unstable 

Gaussian elimination. 

• Gaussian elimination with partial pivoting. This algorithm is more stable than 

Gaussian elimination without pivoting. 

• Gaussian elimination with complete pivoting. This algorithm is the most stable 

algorithm among the three. 

In general, GE without pivoting is an unstable algorithm. GE with partial pivoting 

is also an unstable algorithm, but it is stable in practical. GE with complete pivoting 

is a stable algorithm. 

5.1.5 Cubic Root Finding Algorithms 

In section 2.1 we introduced one cubic root finding algorithm. To compare with 

the original algorithm, we pick a better cubic root finding algorithm [2, p. 479]. It 

modifies the formula 

(5.2) 

to 

3 q. ~2p3 W =---s2gn(q) -+-. 
2 4 27 

(5.3) 

3 

The new algorithm can avoid possible catastrophic cancellation while ~7 is much 
2 

smaller than ~. But although the second algorithm is better than the first one, both 

the two algorithms are unstable algorithms [2, p. 479]. 
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5.1.6 Set E in the Stopping Criteria 

Now we have to determine the stopping criteria c. In the last chapter we have 

decided to use the stopping criterion which measures the relative size of the simplex 

by considering the length of the longest edge adjacent to v~: 

(5.4) 

where 6. = max(l, IIv~II). 

The value of c remains to be decided. Since the value of c affects the total number 

of function evaluation, to limit the time cost for each searching process, we choose to 

find a suitable value of c which makes the number of function evaluation be less than 

1000 in most case. Because according to our previous experience, for our objective 

function, the results of the direct search method does not change too much when 

the function evaluation is more than 1000. After testing, we found that c = 10-4 is 

suitable for our choice. So we choose c = 10-4 in our tests. 

5.2 Results 

In this section we present the results of our method for each algorithm. For every 

algorithm we obtain ten points found by the search method. First we give a discussion 

for each set of algorithms separately. Then we give a conclusion by considering all 

the results for all the algorithms in the next section. 
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5.2.1 Gaussian Elimination 

In the tests, the range of the inputs is from -10000 to 10000, all the test problem is 

in dimension four, and the initial simplex's size is 5000. Since we only consider the 

condition number of the matrix A, we set the vector b to [1 1 1 IF. The program is 

computed in double precision. We expect the result will show that the GE without 

pivoting is the most unstable algorithm, while GE with complete pivoting is the most 

stable one. 

The ten points (matrix A) found by the search method for GE without pivoting 

are: 

1.43999 -9848.01 -6431.8 19.3328 1.95875 7526.61 541.21 -4792.73 

-4995.1 -8486.75 8.35652 -7.39266 -9226.96 6.45597 2680.29 1054.78 
Al= ,A2 = 

-1006.13 -1.01958 1018.65 -2342.12 395.481 -21.0101 -27.8136 9.56359 

-1.80602 297.735 -90.8728 -6815.39 -5312.92 -3567.13 -3999.7 399.727 

-9925.36 -4651.89 54.9596 -1.98713 9.08664 -1083.41 -14.6202 8473.08 

-38.1049 -17.8595 -4819.22 9987.84 7646.02 -983.76 -2829.83 -1444.81 
A3 = ,A4= 

-76.4282 9885.65 6245.47 -7499.98 -168.939 -7627.09 -17.0357 -49.3958 

-3305.77 -9566.81 -2800.58 -550.717 2595.83 -73.9318 -5674.05 -34.8452 

0.599255 -2370.55 1.42625 -2630.88 -1.47678 -7283.16 8918.5 -573.311 

-8688.97 -3688.86 13.6895 4.50765 -8752.93 217.936 -16.177 -17.8294 
A5= ,A6 = 

1.51462 -3639.33 8438.54 -45.4359 618.277 1.87534 1.17806 5960.86 

-7503.5 -91.5346 624.187 3728.13 -5030.52 115.853 1.34672 -254.801 

( -1447.5 -9997.91 -154.841 ~:::'~J ( -~~.~:~~ -3.8317 4168.19 l~~~~~J 
'"1nO"l <]0 4965.52 -5.79542 4.76832 

A, ~ l-7501." 0.)"''''.1.00 -'"00"") -l-'O.OO' -w.",,") , ,As -
-704.078 24.9819 368.644 -35.3597 -91.5908 62.1426 1922.71 -397.71 

9680.H) -3511.16 2.73312 -7938.65 5.24062 -351.442 -8367.68 1042.4 
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Point Condition Number lObj 
fobj.lX~ 
cond(x) Condition 

Al 9.266ge+007 1.44064e-005 1. 5546e-013 ill-conditioned 
A2 5.2626e+007 0.00340149 6.4635e-011 ill-conditioned 
A3 32.6749 1.17527e-007 3.596ge-009 well-conditioned 
A4 2.6293 4.62064e-007 1.7574e-007 well-conditioned 
A5 1. 1943e+007 0.000121288 1.0156e-011 ill-conditioned 
A6 1.4646e+008 0.475207 3.2446e-009 ill-conditioned 
A7 1. 7005e+007 4.78212e-007 2.8122e-014 ill-conditioned 
A8 2.6905e+008 2.83584e-006 1.0540e-014 ill-conditioned 
A9 1.1766e+007 0.000187658 1. 594ge-011 ill-conditioned 
AlO 8.7517e+009 9.56064e-006 1.0924e-015 ill-conditioned 

Table 5.1: Results for GE without pivoting 

807.423 -9929.16 -9977.92 -6222.87 3.14731 -5.39911 -9753.51 -6.30177 

-5.48785 116.375 9143.78 8949.95 -1623.4 1.99721 9170.67 20.5083 
A g = ,AlO = 

8980.77 4707.62 15.2584 5008.83 3194.33 2.92222 -6604.18 -254.229 

-7622.55 -4854.95 8081.05 3966.22 407.212 -10.2771 562.324 4906.66 

The ten points (matrix A) found by the search method for GE with partial pivoting 

are: 

-99.7053 1.51037 -146.294 -9.62291 -938.124 6570.85 -9600.72 -9994.56 

-1323.73 1793.47 9600.51 -1392.87 304.335 93.6211 -173.95 -51.1581 
Al= ,A2 = 

367.816 -10.4284 -2.53052 -5620.15 -892.087 -2.59536 -1.17608 -131.548 

-29.9225 -1.54993 -620.423 -6246.63 -145.249 308.99 7501.35 -9272.59 

4229.87 -4033.67 109.766 -2406.75 -9960.63 9998.38 8260.38 141.204 

-11.6105 -1.93314 3.55366 83.9949 1.56306 -79.0914 1.60491 -27.2871 
A3 = ,A4 = 

-114.043 123.104 -6.69624 8.62863 10.5345 1685.17 7865.32 1573.09 

6915.74 -2595.49 -583.097 -3901.81 -2032.45 1906.91 -9997.83 -1456.48 

-9619.18 1.64325 -41.5976 -2.1938 -11.1751 1.35889 -2580.63 5050.82 

-490.854 -825.496 1353.83 -5370.23 -26.2784 175.719 -1565.95 9.07643 
A5= ,A6 = 

-1247.14 20.3704 -133.936 -126.614 -2.01186 62.81 -2794.29 636.715 

-3.93872 89.1523 -204.752 422.605 19.1812 -8.93468 -3753.36 -65.5517 
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Point Condition Number IObj 
lobj x Condition cond(X) 

Al 3.6436e+008 9.50351e-005 2.6083e-013 ill-conditioned 
A2 1.4004e+009 3.01207e-007 2.150ge-016 ill-conditioned 
A3 5.6930e+008 1.62221e-007 2.8495e-016 ill-conditioned 
A4 8.7583e+007 8.43754e-009 9.6338e-017 ill-conditioned 
A5 1.0902e+008 2.4 7832e-006 2. 2734e-014 ill-conditioned 
A6 1.7771e+008 6.59396e-010 3.7105e-018 ill-conditioned 
A7 3.0708e+008 6.59396e-010 4.6648e-015 ill-conditioned 
A8 4.5766e+007 6.59396e-010 1. 1264e-014 ill-conditioned 
A9 5.1927e+008 5.45116e-007 1.0498e-015 ill-conditioned 
AlO 8.3726e+008 5.70857e-007 6.8182e-016 ill-conditioned 

Table 5.2: Results for GE with partial pivoting 

-22.5396 -142.72 -4.27564 -16.5263 -9975.67 -140.485 371.477 6253.51 

-4544.75 3185.07 -4.91253 -2.24621 -2520.69 -1005.97 -766.026 -858.549 
A7= ,As = 

-18.0614 73.1052 11.2191 3.65291 -3166.04 371.147 -538.774 149.546 

464.202 -13.728 -4815.66 1354.99 -1.43424 7541.52 -68.6056 -14.7109 

146.048 -9998.94 -8216.81 -4903.87 -2458.61 6718.19 608.335 -3.77823 

-8836.65 -2496.01 -99.7053 -644.884 2.69195 808.961 -1.41422 3.60193 
Ag = ,AlO = 

-7501.52 -863.469 943.827 -4.17821 -135.602 7225.94 17.9501 40.5813 

4532.48 699.738 -324.113 -8451.87 -4917.22 -1317.27 -7526.97 9865.12 

The ten points (matrix A) found by the search method for GE with complete 
pivoting are: 

-609.704 -5.74352 3239.54 312.3 524.725 7.05961 -23.3653 9956.76 

-244.419 -257.103 11.1124 1115.31 -8568.68 -7.56504 -527.683 -374.492 
A 1 = ,A2 = 

-3886.75 -5057.1 7.48887 -273.239 5074.01 -5588.46 -66.2184 2.57212 

-11.1062 -41.1788 1614.97 -7960.14 7.1918 -9993.97 -678.434 -2.0985 

( -9995.3 31.071 -7.97749 ~:;2:2q 1 [ ~q~~~4~ 4.67542 79.3586 -gRRR 7L1 \ 

l-897317 -510.261 3345.03 -3578.99 -1120.18 -3~;;52~j . A3 = A4-
-107.93 -72.085 -24.2077 -1.23226' - -1188.29 -117.36 37.4676 -7129.26 

99.0242 -284.162 8.48909 -51.6784 3043.61 -11.0067 -88.9021 3112.39 
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Point Condition Number IObj 
fobjJ1 
cond{x) Condition 

Al 2.4421e+007 5.46753e-008 2.238ge-015 ill-conditioned 
A2 9.8396e+007 7.49831e-008 7.6206e-016 ill-conditioned 
A3 9.0631e+008 6.0470ge-008 6.6722e-017 ill-conditioned 

J 

~ 
A4 3.3833e+008 1. 34554e-007 3.9770e-016 ill-conditioned 
A5 6.6716e+007 5.43878e-009 8.1521e-017 ill-conditioned 
A6 1.3873e+007 1.33657e-007 9.6346e-015 ill-conditioned 
A7 6.8271e+007 8.822e-010 1. 2922e-017 ill-conditioned 
A8 7.3204e+007 4.02706e-008 5.5012e-016 ill-conditioned 
A9 4.9773e+008 2.67991e-007 5.3843e-016 ill-conditioned 
AlO 3.3261e+009 3.60004e-008 1.0824e-017 ill-conditioned 

Table 5.3: Results for GE with complete pivoting 

GEWP GEPP GECP 

Average fobjJ!:l 
cond(x) 9.13303e-8 1.415445e-13 7.10985e-15 

Average lobj 0.0478945 1.0104962e-5 8.08922e-8 
Well-Conditioned Points 2 0 0 

Table 5.4: The Three Measurements For the Three GE Algorithm 

7.42736 8830.95 8.38162 -3481.45 -9996.37 9996.33 2867.5 -3.7761 

2759.43 7511.51 307.776 -9220.07 30.8274 -8306.69 -1886.31 -3097.07 
A5 = ,A6 = 

-1643.69 -76.3867 2931.15 131.252 1215.32 21.3915 24.7443 457.21 

-2.74544 -1.34747 167.614 -189.468 -2006.79 3269.52 7813.02 17.8194 

-1254.18 -3.90126 39.7459 4205.02 -8816.58 -1916.93 -75.2316 -1.13579 

-26.7554 -58.6136 -9.73171 -271.513 -2826.31 3139.84 -610.733 5136.7 
A7= ,As = 

522.37 214.17 -176.71 204.522 -2556.8 -8017.7 -443.788 4307.91 

7231.58 -28.0965 -7522.6 -926.962 371.348 -2371.27 18.8392 4.67279 

r -2181.21 
387.818 17.1703 10.9567

1 
r -41.9053 -50.7 -257.827 140067

1 -2542.3 -9979.78 -1569.55 1863.06 -7487.42 45.6664 90.8217 300.763 
Ag = ,AlO = 

2.91074 40.5584 3.15085 92.4184 -9701.46 7.31001 -35.6792 -1457.13 

\ -1.4685 -423.795 30.1589 -2987.62) ~ 914.943 -2.64544 1.45127 2.5291 ) 

Table 5.4 shows the results of the three measurements for the three kinds of Gaus-

sian eliminations. The average value of :;~~~~) for the ten points for each algorithm 
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shows that GE without pivoting has the largest :;~~~~ and GE with complete piv­

oting has the smallest. It leads to the conclusion that GE without pivoting is the 

most unstable algorithm among the three, and GE with complete pivoting is the most 

stable one. This conclusion matches the expectation. 

Like the result of :;~~~~)' the average value of fobj for the ten points for each 

algorithm also shows that the GE without pivoting is the most unstable algorithm, 

and GE with complete pivoting is the most stable one. The value of fobj for GE 

without pivoting is 0.0478945, it is very large and close to I, the upper bound of fobj' 

It means that GE without pivoting is an very unstable algorithm. On the other hand, 

the value of fobj for the other two algorithms are 1.0104962e-5 and 8.08922e-8, they 

are much lower than the value of fobj for GE without pivoting. 

The last row in table 5.4 shows how many points are well-conditioned out of the 

ten points for each algorithm. The GE without pivoting has two points which are 

well-conditioned, it means that even the input data is well-conditioned, GE without 

pivoting still has chance to be unstable. There is no well-conditioned point out of 

the ten unstable points found by the search method for the other two algorithms. It 

means that while the input data is well-conditioned, these two algorithms are unlikely 

to be unstable. 

Actually, there exist some well-conditioned points reveal unstable behaviors for 

GE with partial pivoting. For example, consider the matrix 
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1 0 0 1 

-1 1 0 1 

Anxn = -1 -1 1 1 

-1 -1 -1 1 

where aij = 1 when i = j or j = n, aij = -1 when i < j, aij = 0 when i > j and 

j =1= n. 

This is a well-conditioned matrix which made to reveal the unstable behavior of 

GE with partial pivoting [2, p. 166]. The condition number of matrix A20x20 is 8.8343 
and the value of fobj is 1.90615e-011. The condition number of matrix A 2ox20 is rather 

small and fobj is large, comparing to 10e-16 (double precision). 

5.2.2 Cubic Root Finding Algorithms 

In the tests, the range of the inputs is from -10000 to 10000. The initial simplex 

size is 5000. The program is computed in double precision. We expect the result will 

show that the improved algorithm is more stable than the original one, while both 

the two algorithms are unstable algorithms. 

The ten points found by the search method for the original algorithm are: 

( 15.7708 \ (a2 \ ( 9999.95 \ (a3 \ 

l-665.522j , lb2 j = l174.385 j , lb3j 
-9749.30 C2 0.760298 C3 

( 13.6932 \ ( n.A \ 

l-692~~~1j , l~~j -9999.85 C4 
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I Point I lObj Roots (Computed by MATLAB) Condition 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

0.0366355 [25.4442 - 27.0501 - 14.1649] well-conditioned 
1.0000000 [-9999.93 - 0.008719 - 0.008719] ill-conditioned 
0.0364738 [26.5582 - 25.4661 - 14.7853] well-conditioned 
0.0366649 [25.6540 - 27.0520 - 14.3624] well-conditioned 
0.027029 [-9.89349 0.000368 0.000368] ill-conditioned 

0.0296989 [43.3486 - 37.5949 - 6.13610] well-conditioned 
1.0000000 [-9999.64 0.0000002 0.0000002] ill-conditioned 
1.0000000 [-1.00000 0.0000035 0.0000035] ill-conditioned 
0.0369007 [25.3543 - 25.1323 - 16.1521] well-conditioned 
0.0373315 [24.4961 - 25.1323 - 16.1521] well-conditioned 

Table 5.5: Results for original cubic root finding algorithm 

9892.76 

-7291.66 

1343.56 

ag 

bg 

Cg 

0.382359 

-1664.99 

\ -9999.96 

15.5405 

-648.277 

-9852.45 

9999.64 

-3.36823 

0.000308915 

16.7882 

-605.371 

-9944.01 

as 

bs 

Cs 

9999.96 

-692.495 

11.9887 

The ten points found by the search method for the improved algorithm are: 

17.8584 a2 -6.88691 a3 -6.14627 a4 6764.23 

-549.602 b2 -9987.12 b3 -9968.88 b4 -52.0384 

-9324.17 C2 -9997.13 C3 -9889.08 C4 0.0522849 

15.4116 a6 15.5904 a7 17.9942 as -9.90136 

-544.820 bo -608.472 b7 -586.059 bs = -9996.23 

-8052.69 C6 -9251.93 C7 -9999.62 Cs 9836.97 
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I Point I !obj I Roots (Computed by MATLAB) I Condition 

1 0.0376142 [23.1871 - 24.8883 - 16.1572] well-conditioned 
2 0.0262475 [103.918 - 96.0295 - 1.00179] well-conditioned 
3 0.0262442 [103.442 - 96.3031 - 0.992700] well-conditioned 
4 0.00321615 [-6764.24 0.006504 0.001188] ill-conditioned 
5 0.0371456 [23.1495 - 24.1680 - 14.3931] well-conditioned 
6 0.0370372 [24.5485 - 25.1589 - 14.9800] well-conditioned 
7 0.0375311 [23.9381 - 25.6412 - 16.2912] well-conditioned 
8 0.0256946 [104.583 - 95.6652 0.983205] well-conditioned 
9 0.0373503 [24.4138 - 25.7199 - 15.9254] well-conditioned 
10 0.0262483 [103.322 - 95.4345 - 0.999019] well-conditioned 

Table 5.6: Results for original cubic root finding algorithm 

I Original Algorithm I Improved Algorithm I 
Average !obj 0.324073 0.02993292 

Well-Conditioned Points 6 9 

Table 5.7: The two measurements for the cubic root finding algorithms 

ag 17.2316 -6.88919 

bg -607.120 -9868.43 

Cg -9999.95 -9850.88 

In the problem of cubic function, the condition number is unavailable. The prob-

lem is ill-conditioned if the function has multiple-roots or close roots. So the mea­

surement fObJd·((X)) can't be used in this problem. 
con x 

According to table 5.7, the average value of !;~~~~) is 0.324073 for the original 

algorithm, while it is 0.02993292 for the improved algorithm. From this result we 

can get the conclusion that the improved algorithm is more stable than the original 

algorithm, which matches the expectation. Both the two values are large, it leads to 

the conclusion that both the algorithms are unstable. 

The number of unstable well-conditioned points found by the search method is 6 
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for the original algorithm, and 9 for the improved algorithm. Both the two numbers 

are very large, comparing to the number in the GE algorithms. It shows that these 

algorithms are both unstable while well-conditioned. The measurement does not show 

that the improved algorithm is more stable than the original one. One reason is that 

the stability of the two algorithms are very close. Another reason is that the sample 

is not large enough. 

5.3 Conclusion 

The goal of the tests is to show that whether our stability testing method can success-

fully reveal the stability of some algorithms which's stability is already known. Now 

we have tested two sets of algorithms, which shows that our method's performance 

have achieved the expectation. For numerically stable algorithms like GE with com-

plete pivoting and GE with partial pivoting (which is stable in practical), our method 

can indicate that they are stable. For numerically unstable algorithms like GE with-

out pivoting and the two cubic root finding algorithms, our method can indicate that 

they are unstable algorithms. 

We have developed three measurements for our method to test algorithm's stabil-

ity. Each measurement has both advantages and disadvantages. Considering all the 

three measurements together can make our method more convincing. 

The performance of the third measurement, which measures the number of un-

stable well-conditioned points found by the search method, is not as accurate as the 

first two measurements. A large size of sample can increase the accuracy of this 

measurement. So we propose to use this measurement as only a suggestion. 
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Chapter 6 

User Guide 

In this chapter we present the user guide. Section 6.1 introduces the modules, includ­

ing the module decomposition and the module hierarchy. User interface is explained 

in section 6.2. Section 6.3 gives an introduction of the important steps of the software 

for the users. 

6.1 Module Guide 

Five head files and five resource files are contained in the project. They are decom­

posed into four modules: the master control module, the search module, the objective 

function calculating module and the pipe module. 

6.1.1 Module Introduction 

A brief introduction of each module is shown below: 

• The master control module 
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Module service: This module controls the execution of input, data initial, search 

process, and output. 

Module secret: User interface. 

Files: AutoStabilityTest.h, AutoStabilityTest.cpp 

• The search module 

Module service: This module performs the direct search method. 

Module secret: The data structure and algorithms in the direct search method. 

Files: Matrix.h, SearchMethod.h, MultiDirectional.cpp, NelderMead.cpp (Ma-

trix.h declares the data structure of Matrix, which is used to apply the data of simplex 

in the direct search method) 

• The objective function module 

Module service: It calculates the value of the objective function. 

Module secret: The algorithm to calculate the value of the objective function. 

Files: Objective.h, Objective.cpp 

• The pipe module 

Module service: This module is the pipe between the software and the test prob-

lems. 

Module secret: Pipe functions to write to and read from the test problems. 

Files: Pipe.h, Pipe.cpp 

6.1.2 Hierarchy 

The relation between the four modules is quite simple. Their hierarchy is one dimen-

siOllal. Each module uses and only uses the next module. The inherency of these 

modules are shown in figure 6.1: 
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Objectiue Function Module 

Figure 6.1: The module hierachy 

6.2 User Interface 

There are two output functions, they output the results to both screen and a txt file 

called "results" in the current directory. The txt file will be automatically generated 

if no such file exists. 

The input of the project contains necessary parameters to apply the direct search 

method. Note that the stoppingStepLength is preset to 10-5 in SearchMethod.h and 
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does not need to be set by users. Users can change the size of stoppingStepLength 

through the head file. Another set of inputs is the command lines of the test problem. 

Four command lines are needed, signs to the test program in four different rounding 

modes. In Linux version the command lines are in the form of "./a.out" (for example), 

the default directory is the directory of the project. 

The inputs and outputs are listed as following: 

Inputs 

• cmdLinel/2/3/4 

Type: string 

The command lines for the test programs in four rounding modes. 

• SampleSize 

type: int 

The size of the sample. 

• Dim 

Type: int 

The dimension of the problem. 

• RetDim 

Type: int 

The dimension of the outputs of the test program. 

• MaxCalls 

Type: long int 

The maximum function evaluations, which is introduced in section 4.1.3. 
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6.2.1 Outputs 

• MaxTotal 

Type: double float 

The maximum value of fObj(X) found among the whole sample. 

• MaxTotalPt 

Type: vector ( double) 

The point x in the maximum value of fObj (x). 

• MaxEachTrial 

Type: vector ( vector ( double)) 

This vector stores the maximum fObj(X) found in each trial. 

• Avg 

Type: double float 

The average value of fObj(X) found among the whole sample. 

6.3 Introduction of the Important Steps 

Choose the Compiler 

Before the test, please make sure that your compiler supports the Cgg standard (like 

gcc, intel C++ compiler), since only the Cgg standard defines the changing rounding 

modes functions. 

Change Test Program's Rounding Mode 

Since the father process can't change the child process's rounding mode, we have 

to create four executable files as the test program. Each executable file is with one 
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rounding mode out of the four. 

The function fesetround (int rounding-IIlode) is used to set rounding modes. The 

value of "rounding_mode" could be FE_DOWNWARD, FE_TONEAREST, FE_UPWARD, 

FE_TOWARDZERO. They are the four different rounding modes - round downward, 

round to nearest, round toward zero and round upward. Four executable files need 

to be generated as the test executable files. To create the test executable files, add 

the function fesettround (FE_UPWARD)/fesetround (FE_DOWNWARD)/fesetround 

(FE_TONEAREST)/fesetround (FE_TOWARDZERO) to the top line of the test 

problem, then compile them separately to obtain four executable files. Remember 

to include the head file fenv.h. This head file declares the fesetroundO function and 

defines those rounding mode control instants. 

Modify the Interface of the Test Program 

The interface of the test program needs to be modified to match the project. Since 

the read/write pipe functions can't distinguish useful and useless inputs/outputs, 

please be sure no useless inputs/outputs are contained in the program being tested. 

For example, if the test program's outputs is "Xl = 1; X2 = 2; X3 = 3", it should be 

modified to "1 2 3". For the outputs of the test problem, the output precision needs 

to be modified to show the difference between the results with different rounding 

modes, because in most case the difference is tiny. Precision of 16 digits is suitable 

for double precision and precision of 8 digits is suitable for single precision. 
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Run the Program 

Now we can run our program to do the stability tests. Remember to type the right 

directory of program being tested in the cmdLine. Choose proper sample size and set 

maximum function evaluations considering both the time and the accuracy we want. 

If the problem's condition number is available, obtaining the condition number at 

those unstable points is strongly advised. 
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Chapter 7 

Conclusions 

Automatic stability testing method is an attractive technique in scientific computing. 

In this thesis we present a new generic stability testing method, which combines an 

automatic stability testing method introduced in Higham's literature [2, p. 479] and 

a generic stability testing method introduced by Kahan [3, p. 56], and takes both of 

their advantages. For normal stability testing, Obtaining proper input data to reveal 

stability is a tough task. One advantage of our method is that it does not require 

proper input data, since it uses optimization method to automatically detect those 

unstable points and reveal the instability there. For those automatic stability testing 

methods, objective function whose maximal value can be located by optimization 

method is created for specify problems. Our method's objective function is generic 

since the construction of our objective function does not related to the problem being 

tested. Refer to Cllapter 1, 110rmal generic autolnatic stability lilethods are qllite 

complicated to implement and use, while our method is quite simple. 

A big problem for automatic stability testing methods is that their accuracy can 

not be guaranteed. We propose to use a sample instead of one searching result to 
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measure algorithm's stability. Moreover, we present three measurements to measure 

algorithm's stability. Considering all the three measurements makes our scheme more 

accurate. 

However, although we don't have to know the information of the problem being 

tested while constructing the objective function, knowledge of the condition of the 

problem is required if we want to get a convincing conclusion. Our method still can 

test those problems which's condition number is unavailable since one of our mea­

surement does not require the information condition number, but for those problems 

the accuracy of our method can not be guaranteed. 

As error analysis cannot be automated in general, in Chapter 5 we use practical 

experiments to test the performance of our method. Although the tests shows that 

our method works well, we can not fully guarantee the accuracy for other problems. 

It's better to consider the result of our method as a beginning of error analysis, further 

analysis for the problem is strongly suggested. 
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