ON-LINE SYSTEM IDENTIFICATION IN REAL TIME

USING A MINICOMPUTER

¥

ON-LINE SYSTEM IDENTIFICATION IN REAL TIME USING A MINICOMPUTER

By

M. Y. TANG, B. Eng.

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfilment of the Requirements

. for the Degree

Master of Engineering

McMaster University

April 1975

C M.Y. TANG 1977

 MASTER OF ENGINEERING (1975)
 McMASTER UNIVERSITY Hamilton, Ontario.

 TITLE:
 On-Line System Identification in Real Time Using Minicomputer

AUTHOR: M. Y. Tang, B. Eng. (McMaster University)

SUPERVISOR: N. K. Sinha, B.Sc. Eng. (Banaras)

Ph.D. (University of Manchester)

٤

NUMBER OF vii: 109. PAGES:

SCOPE AND CONTENTS: By making use of measurements of the input and output of an unknown system, the characterizing parameters are found by using matrix pseudoinverse method. For noise-corrupted measurements, least squares estimation of the parameters are obtained.

Stochastic approximation is employed to improve the estimation.

Both methods are tested on-line in real time using the PDP-11/45 minicomputer while the system is simulated on the TR-20 analog computer.

(ii)

ACKNOWLEDGEMENTS

I would like to thank Dr. N.K. Sinha for his encouragement and assistance during the course of this work and in the preparation of this thesis.

I would also like to thank my colleagues especially Mr. A. Sen for many valuable discussions. A special gratitude is due to Mr. H. de Bruin who designed the interface panel used in the experiments.

Awards from National Research Council in the form of a bursary and a scholarship are much appreciated. Financial assistance from McMaster University in the form of a scholarship and teaching assistantship is also gratefully acknowledged.

Finally, I would like to thank Miss W. Lee for typing this thesis.

TABLE OF CONTENTS

.

		<u>1</u>	Page
CHAPTER	ONE:	INTRODUCTION	1
CHAPTER	TWO:	SYSTEM IDENTIFICATION	4
	2.1	Definition of System Identification	4,
	2.2	Classification of Identification Methods	5
	2.3	Formulation of an Identification Problem	6
CHAPTER	THREE:	PSEUDOINVERSE APPLIED TO SYSTEM IDENTIFICATION	13 .
	3.1	Definition of Pseudoinverse	13
	3.2	Properties of the Pseudoinverse	16
	3.3.	Application to the Solution of a System of Linear Equations	17
	3.4	Recursive Identification Algorithm	19
•	3.5	Determination of the Order of the System	22
CHAPTER	FOUR:	STOCHASTIC APPROXIMATION FOR THE REMOVAL OF BIAS	27
	4.1	Effect of Measurement Noise on the Estimation	27
	4.2	Removal of Bias by Filtering	29
	4.3	Stochastic Approximation	30
	4.4	Formulation of Noise Model	33
	4.5	Application of Stochastic Approximation	37
CHAPTER	FIVE:	ANALOG SIMULATION AND HARDWARE DESCRIPTION	39
	5,1	Introduction	39

٠

,

1

•

.

,

		·	Page
	5.2	Interface Hardware	42
	5.3	Operating Sequence	47
	5.4	Pseudorandom Input Signal	50
	5.5	Analog Simulation	53
	5.6	Error Analysis	55
CHAPTER	SIX:	SOFTWARE AND RESULTS	57
	6.1	Introduction	57
	6.2	Organization of the Program	58
	6.3	Results	64
CHAPTER	SEVEN:	CONCLUSIONS	73
APPENDIX:		Program Listing	75
REFERENCES			107

۰.,

Figure	LIST OF FIGURES	Page
2.1	Error in Estimation	12
3.1	Error Function V versus Estimated Order \hat{N}	26
5.1	General Schematic of Experiment	41
5.2a	Circuit Diagram of Interface Panel	44
5.2b	Circuit Diagram of Control Logic	45
5.2c	Circuit Diagram of Clock Pulse Generator	.46
5.3	Special Registers	49
5.4	Timing Diagram	49
5.5	Spectral Density of Y	52
5.6	Equivalent Impulse Functions	52
5.7	Analog Simulation	54
6.1	Flowchart of Program	59
6.2	Sample Print-out of the Results	61
6.3	Table of Subroutines	62
6.4	Table of Estimates of Parameters and Normalised Errors	, ,
6.5	Plots for Pseudoinverse Algorithm (5% and 100% noise)	69
6.6a	Plot for Combined Pseudoinverse and Stochastic Approximation (5% noise)	70
6.6b	Plot for Combined Pseudoinverse and Stochastic Approximation (25% noise)	70

(vi)

ļ

	,	Page
6.7 a	Plot for Step Responses (25% noise)	71
6 .7b	Plot for Impulse Responses (25% noise)	71
6.8	Table of Mean Square Errors in Responses	72

١

۰.

CHAPTER ONE

INTRODUCTION

The terms system identification and process parameter estimation have been used interchangeably by many people. It is the process of obtaining the characteristic parameters of a system by artificially exciting the system with some specially selected signals. Depending on the situation and the need, a great variety of techniques have been developed.

The rapid development in the area of system identification can be attributed to many roots. Prominent among them is that there is a real need to plan and devise better process control. In order to do so, there is the inevitable prerequisite of a good knowledge of the process at hand. Due to the different conditions under which the process will operate, an accurate calculation beforehand is very difficult or sometimes impossible. To complicate the problem further, in the real world environment, we always have random disturbances generally called noise in the system. This naturally makes the characterization of the system even more difficult.

The techniques of system identification lend themselves to a host of applications. The study of the dynamics of many high performance systems such as space vehicles is another example. However, aside from the fact that there exists a need to utilize these techniques in various situations, the availability of the necessary tools is also an important factor. On

the theorectical side, we see tremendous advances in control theory. Also of vital importance is the phenomenal development of computer hardware technology and software. Nowadays, computers are fast enough to accommodate complex calculations in relatively complicated algorithms in much less time than a decade ago. Yet, they are cheap enough to be considered for implementation in many industrial processes. Parallel developments are also found in pheripheral devices for data acquisition, interfacing and data transmission. The dramatic reduction in size and weight further facilitate their usage in many more situations.

The present study represents an attempt tending to the goal of utilising the modern computer technology in system identification in a noisy environment.

In the remaining parts of this thesis, the various aspects of implementing two on-line system identification algorithms based on matrix pseudoinverse will be presented. Chapter two is primarily concerned with the definition and classification of different methods of system identification. Ways of constructing a convenient model are also discussed. Chapter three reviews the basics of matrix pseudoinverse together with its application to develop an on-line identification algorithm. Before leaving for the discussion of a second algorithm, we will study methods for the determination of the order of the model of the system. Chapter four begins with an investigation of the effects of measurement noise on estimation and thon proposes a method using stochastic approximation to improve the ostimation. All the practical aspects of the experiments are presented in chapter five. Results of the experiments with tables and plots are pre-

 \bigcirc

ø

.

sented in the next chapter. Chapter seven is the final conclusion of the whole work with an appendix giving the program listing.

ø

CHAPTER TWO

SYSTEM IDENTIFICATION

2.1 Definition of System Identification

While there is not yet a unique definition for system identification agreed upon by everybody, we shall adopt the one suggested by Zadeh [1]:

> "Identification is the determination, on the basis of input and output, of a system within a specified class of systems, to which the system under test is equivalent"

Before we proceed, clarification of some of the terms used in the above definition is in order. Systems here refer to the mathematical models of physical systems. It is the first step in the formulation of an identification problem and indeed of any analysis. Modelling of a system generally refers to its representation by a pulse transfer function or by the state variables. Identification, therefore, is the determination of the coefficients in either representation. The meaning of equivalence can be better understood by referring to another concept called identifiability. Astrom and Bohlin [2] suggested that a system is identifiable if the estimates of its parameters are consistent. A necessary condition is that the information matrix be positive definite. When two models are identifiable and result in the same consistent estimates, they are said to be equivalent.

2.2 Classification of Identification Methods

The problem of parameter identification can be viewed as an optimization problem. The solution to this problem consists of finding the extremum of a certain specified loss function as a function of the parameters to be identified.

Computationally, identification methods can be divided into two categories, namely on-line methods and off-line methods.

Off-line method is a one-shot technique where the loss function is an explicit mathematical relation between the measurements and the estimates of interest. It is also known as the open loop method. The solution is available after a fixed finite number of elementary operations. But processing of the data can only start after all measurements are completed. In general, algorithms belonging to this category require considerable computer memory for the processing and storage of the data. Many methods making use of auto- and cross-correlation [3] belong to this category.

On-line methods, on the other hand, are closed loop methods. An iterative scheme whereby the estimation of parameters are being continuously updated as new measurements are made. These intermediate estimates are approximate solutions only. The final solution is approached asymptotically and is therefore, in principle, available only after an infinite number of elementary operations. The objective function in this case is an implicit function of the parameters and some form of model-adjustment strategy is cmployed to search for the extremum of the objective function. For example, the matrix pseudoinverse method being investigated in the present study adopts the squares of the residual errors of the system dynamic equation as the objective function. This function is being minimized through an iterative scheme.

The stochastic approximation method can also be formulated in an iterative form for on-line application. This method is being used to identify the noise model in the present study. Both methods will be described in greater detail later.

The on-line methods have the obvious advantage over the off-line methods in that intermediate results are available for use during the identification process if desired. This type of estimation will also be able to respond to a change in the system dynamics. When applied in real time, however, they pose more problems in their implementation. A useful on-line method must have the important property that it be computationally efficient. The reason is obvious because we have to complete all necessary calculations in updating the estimates before the next set of new measurements can be made. An inefficient algorithm will impose severe constraints on the choice of sampling frequencies. Moreover, in an industrial setting, identification is only part of the control loop. The computer is likely to be used for other purposes as well. Thus, the ease of implementation, and hence the feasibility for realistic application, depends heavily on the computational simplicity.

2.3 Formulation of an Identification Problem

The formulation of an identification problem begins with the model-

ling of the system. Preferably, the model chosen should have the following properties:-

- (a) It is based on the input-output measurements and does not depend on other measurements that might be difficult or impossible to be made directly;
- (b) It must assume a simple form with the smallest possible number of parameters to be identified and can readily be used for controller design;
- (c) It should be able to accommodate the stochastic behaviour of the system due to random disturbances.

Several basic assumptions are also made in the modelling which would greatly reduce the amount of work without severely limiting the usefulness. We shall assume that the system is linear or can be adequately approximated by a linearised model. Further the system is assumed to be time-invariant. If the system is only slowly time-varying, the changes can be reflected on the estimates obtained by on-line algorithms. Finally, the physical system is assumed to be of finite order.

There are two convenient types of models available, namely the state-variable, model and the pulse transfer function model.

The state-variable model of a linear, finite dimensional and timeinvariant discrete time system is given by

$$x(k+1) = Ax(k) + Bu(k)$$
 (2.1)

The parameters are the elements in matrices A, B and C. Gupta [4] has investigated this type of model in detail applied to system identification.

The transfer function counterpart of equations (2.1) and (2.2) are as follows:-

$$H(z^{-1}) = \frac{C(z^{-1})}{R(z^{-1})}$$

$$= \frac{a_0 + a_1 z^{-1} + \dots + a_m z^{-m}}{1 + b_1 z^{-1} + \dots + b_n z^{-n}}$$
(2.3)

where $C(z^{-1})$ is a polynomial for the output of order m $R(z^{-1})$ is a polynomial for the input of order n

The parameter vector for identification can be defined as

$$\phi_{1}^{T} = \begin{bmatrix} a_{0}a_{1} & \dots & a_{m}b_{1}b_{2} & \dots & b_{n} \end{bmatrix}$$
(2.4)

where superscript T denotes matrix transpose.

where

The transfer function model is more suitable for the equationorror approach since it is a direct relation between the input and output. For this reason, it is chosen for the present study.

In discrete time, equation (2.3) can be written as

$$c_{i} = \sum_{j=0}^{m} a_{j} r_{i-j} - \sum_{j=1}^{n} b_{j} c_{i-j}$$
 (2.5)

 $c_i * C(iT)$, output of system at t = iT where $r_i = r(iT)$, input of system at t = iTT = sampling period i = integer - 1

In matrix notation, letting i range from 1 to same integer k, we can again rewrite (2.5) as

 $A_k \phi = c_k$ $A_{k}^{*} = \begin{bmatrix} r_{0} & r_{-1} & \cdots & r_{1-m} & -c_{-1} & -c_{-2} & \cdots & -c_{1-n} \\ r_{1} & r_{0} & \cdots & r_{2-m} & -c_{0} & -c_{-1} & \cdots & -c_{2-n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ r_{k-1} & r_{k-2} & \cdots & r_{k-m} & -c_{k-2} & -c_{k-3} & \cdots & -c_{k-n} \end{bmatrix}$ where (2.7)

> $c_{\lambda}^{T} = [c_1 c_2 \dots c_k]$ (2.8)

and

9

(2.6)

Equation (2.6) can be solved analytically if m+n+1 pairs of r_i and c_i are known exactly, assuming known initial conditions, or twice as many pairs of measurements if initial conditions are unknown.

However, the measurements are usually contaminated with noise and # we have the input-output measurements as follows:

$$\mathbf{u}_{i} = \mathbf{r}_{i} + \mathbf{w}_{i} \tag{2.9}$$

$$\mathbf{y}_{i} = \mathbf{c}_{i} + \mathbf{v}_{i} \tag{2.10}$$

where $\{w_i\}$ and $\{v_i\}$ are noise sequences for input and output respectively.

Therefore, equations (2.6), (2.7) and (2.8) will be replaced by

$$A_{k} \phi = y_{k}$$
(2.11)

٦

where

$$y_k^T = [y_1 y_2 \dots y_k]$$
 (2.13)

and the parameter vector

Г

$$\hat{\phi}^{T} = [\hat{a}_{0}\hat{a}_{1} \dots \hat{a}_{m}\hat{b}_{1}\hat{b}_{2} \dots \hat{b}_{n}]$$
 (2.14)

In subsequent chapters, an algorithm will be developed to solve $\hat{\chi}$ in an iterative manner suitable for on-line application based on the noise-corrupted input-output measurements. The error of estimation E_R is defined as the difference between the estimated vector $\hat{\chi}$ and the true parameter vector $\hat{\chi}$

$$\mathcal{E}_{\mathbf{R}} = \hat{\chi} - \hat{\hat{\chi}}$$
 (2.15)

Very often, it is convenient to express the error as a scalar quantity which can be normalised for easy comparison. Thus, we define the normalised error of the estimated parameter vector as

$$e_{R} = \frac{||\varrho - \hat{\varrho}||^{2}}{||\varrho||^{2}}$$
(2.16)

where || || denotes the norm.

Pictorially, the error due to an incorrect estimation of the parameter vector can be depicted in figure 2.1.

•

ć

•

i

CHAPTER THREE

PSEUDOINVERSE APPLIED TO SYSTEM IDENTIFICATION

3.1 Definition of Pseudoinverse

In solving the system of linear equations

 $\chi = A^{-1}\chi$

we have

W

8

where
$$A^{-1}$$
 is called the inverse matrix of matrix A
such that A must be a square non-singular matrix
with the property that
 $AA^{-1} = A^{-1}A = I$

Penrose [5] generalized the idea of matrix inverse to include cases where A is rectangular and gave it the name generalized inverse or pseudoinverse of a matrix. Greville [6] and others also have investigated its properties and applications. One way of defining [6] the pseudoinverse is as follows:

Let A be a matrix of dimension mxn with rank equal to r. It can be factorized into two matrices B and C such that

$$A = BC \tag{3.1}$$

B is a mxr matrix of rank r

where

C is a rxn matrix of rank r $r \leq m$, n integers

The factorization can be found by first selecting B such that its columns are the linearly independent columns of A. Since A is of rank r, the dimension of B must be mxr. Then C is chosen such that it will satisfy equation (3.1).

The pseudoinverse of A is then given by

$$A^{+} = C^{T} [CC^{T}]^{-1} [B^{T}B]^{-1} B^{T} \text{ if } A \neq 0$$

$$= A^{T} \text{ if } A=0$$
(3.2)

It can be proved [7] that there always exists a unique pseudoinverse A^+ as defined above for any matrix A.

In the special case when n=r, (3.1) reduces to

A = BI

and (3.2) is simplified to

$$A_{L}^{+} = [B^{T}B]^{-1} B^{T}$$

$$= [A^{T}A]^{-1} A^{T}$$
(3.3)

where A_L^T is called the left pseudoinverse of A with the rows in the row space of A^T such that $A_L^+ A = I$

Example:
Let
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \\ 2 & 1 \end{bmatrix}$$

Here
$$M=3$$
, $n=r=2$
Using (3.3) $A_{L}^{+} = [A^{T}A]^{-1}A^{T}$
 $= \frac{1}{21} \begin{bmatrix} 5 & -4 & 8\\ -2 & 10 & 1 \end{bmatrix}$
 $A_{L}^{+}A = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = 1$

Similarly, when m=r, (3.1) reduces to

A = IC

and (3.2) becomes

$$A_{R}^{+} = c^{T} [cc^{T}]^{-1}$$

= $A^{T} [AA^{T}]^{-1}$ (3.4)

where A_R^* is called the right pseudoinverse of A with the columns in the column space of A^T such that $AA_R^T = I$

Example:

à,

Let
$$A = \begin{bmatrix} 1 & 2 \end{bmatrix}$$

Here $m=r=1$, $n=2$
Using (3.4) $A_R^T = \begin{bmatrix} A^T A \end{bmatrix}^{-1} A^T$
 $= \frac{1}{5} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
 $AA_R^+ = 1 = I$

Comparing equations (3.2), (3.3) and (3.4), we can deduce that

$$A^{+} = A_{L}^{+} A_{R}^{+}$$
 (3.5)

-

¥

3.2 Properties of the Pseudoinverse

Before going on to consider the use of pseudoinverse for system identification, we have to look more closely into its properties. Many of these properties will be used in the derivation of the identification algorithm

For every real man matrix A, there exists a unique real pseudo inverse A^* as defined earlier which will satisfy the following identities

$$A^{*} A A^{*} = A^{*}$$

$$A A^{*} A = A$$

$$[AA^{*}]^{T} = AA^{*}$$

$$[A^{*}A]^{T} = A^{*}A$$
(3.6)

where the superscript T denotes transpose of a matrix.

ų,

In fact, the above identities are used by Penrose [4] to define pseudoinverse in his original paper. They form a set of necessary and sufficient conditions to prove the existence and uniqueness of the pseudoinverse.

Other properties are summarized below [8]:-

1.
$$A^{++} = A$$

2. $A^{T+} = A^{+T}$
3. $A^{+} = A^{-1}$ if A is square and nonsingular
4. $[\lambda A]^{+} = \lambda^{+}A^{+}$, λ scalar

and $\lambda^{+} = \frac{1}{\lambda}$ for $\lambda \neq 0$ $\lambda^{+} = 0$ for $\lambda = 0$ 5. $[A^{T}A^{+}] = A^{+} A^{T+}$ $[AA^{T}]^{+} = A^{+T} A^{+}$ in general $[AB]^{+} \neq B^{+} A^{+}$ 6. The ranks of λ , $A^{T}A$, A, $\lambda^{+}A$ are all equal to the trace of $A^{+}A$

3.3 Application to the Solution of A System of Linear Equations

In this section, we shall prove an important theorem which serves to illustrate the crucial value of matrix pseudoinverse in the solution of a system of linear equations. This in turn plays an important role in the development of the algorithm for system identification.

> Recall the definition of the pseudoinverse given in section 3.1 that if A = BC (3.1) then $A^+ = C^T [CC^T]^{-1} [B^TB]^{-1} B^T$ (3.2)

Theorem [9]:

With the pseudoinverse A^+ of matrix A defined as in equations (3.1) and (3.2), the solution of the system of linear equations

$$\chi = A \chi \tag{3.7}$$

which will minimize

(a) the sum of squares of the residuals $g^T g$

where
$$\rho = \chi - A\chi$$
 (3.8)

(b) the sum of squares of the unknown $\chi^T \chi$ is given by

$$\chi = \Lambda^{+} \chi \qquad (3.9)$$

Proof: Let S = $(\chi - A\chi)^T$ $(\chi - A\chi)$ = $\chi^T \chi - \chi^T A^T \chi - \chi^T A\chi + \chi^T A^T A\chi$

minimizing S

$$\frac{\partial S}{\partial x_j} = 0$$
, $j = 1, 2, 3...n$

we have $A^{T}A\chi = A^{T}\chi$ (3.10)

Now, substitute equation (3.1) into (3.10), we have

$$C^{T} [B^{T}B] C_{\chi} = C^{T} B^{T} \chi \qquad (3.11)$$

Multiply both sides by $[B^{T}B]^{-1}$ [CC^T] and rearranging, we get

$$x = C^{T}[CC^{T}]^{-1} [B^{T}B]^{-1} B^{T} \chi$$

= A⁺ y (3.12)

by applying equation (3.2). Hence the assertions (a) and (b) follow.

In other words, the solution given by $\chi = A^+ \chi$ has the important consequence that it is also the optimal solution in the sense that the square of the residual error is minimized. The identification algorithm developed according to this same principle will likewise yield optimal estimates in the same sense. Rocall that we have formulated the parameter estimation problem in section 2.3 as

$$A_{k} \hat{\phi}_{k} = y_{k}$$
 (2.11)

Applying what we have just developed in the preceding section, we have at the kth iteration

$$\hat{\phi}_{k} = A_{k}^{\dagger} y_{k} \qquad (3.13)$$

with $\hat{\phi}_k$ as the optimal estimation of ϕ_k .

If $\hat{\phi}_k$ has p=m+n+1 elements as defined in section 2.3, we may form the following special cases:

$$\hat{\phi}_{k} = A_{k}^{T} \left[A_{k}^{T} A_{k}^{T} \right]^{-1} y_{k}$$
(3.14)

where $A_k^T [A_k A_k^T]$ is the right pseudoinverse of A_k . It gives the so called minimum norm solution of $\hat{\phi}_k$.

(b) For
$$k > p$$

$$\hat{\boldsymbol{y}}_{k} = [\boldsymbol{A}_{k}^{T} \boldsymbol{A}_{k}]^{-1} \boldsymbol{A}_{k}^{T} \boldsymbol{y}_{k} \qquad (3.15)$$

where $[A_k^T A_k]^{-1} A_k^T$ is the left pseudoinverse of A_k . It gives the least squares solution of $\hat{\phi}_k$.

In both cases, A_k is assumed to have full rank. This condition can be guaranteed -if one of the following conditions [10] is imposed on the input sequence r(iT):-

- 1. r(iT) is a sequence composed of n discrete Fourier components and all natural modes are present in the output sequence C_{i} .
- 2. $r_i = 0$ for k < n

= 1 for $k \ge n$

3. r(iT) is a random signal.

More will be said about the input signal for the experiments in chapter five.

The transformation of equation (3.13) into an iterative formula has been considered by Wells [11] and Sinha and Pille [12]. The information matrix A_{k+1} is considered to be formed in the following manner:

$$\mathbf{A}_{k+1}^{-} \stackrel{\Delta}{=} \begin{bmatrix} \mathbf{A}_{k} \\ \mathbf{T}_{k+1} \\ \mathbf{R}_{k+1}^{T} \end{bmatrix}$$
(3.16)

where

$$a_{k+1}^{T} = [u_{k+1} \ u_{k} \ \dots \ u_{k-m} \ y_{k} \ y_{k-1} \ \dots \ y_{k-n}]$$
(3.17)

a row vector containing the latest set of measurements.

Similarly, the output vector χ_{k+1} is of the form

$$\chi_{k+1} = \begin{bmatrix} \chi_k \\ y_{k+1} \end{bmatrix}$$
(3.18)

where y_{k+1} is the latest measurement of the output of the system at the

(k+1)th instant corresponding to the input u_{k+1} . The result is that, when a new pair of input-output measurements is made, a new row is added to the information matrix A_{k+1} and a new element is added to the output vector χ_{k+1} .

With these arrangements, we are now in a position to derive the iterative algorithm [12]. The major results for th kth iteration are summarized below:

Let p be the dimension of vector $\boldsymbol{\xi}_k$

For $k \leq p$ (minimum norm solution)

$$\hat{k}_{k+1} = \hat{k}_k + \frac{Q_{k+1} \hat{k}_{k+1}}{\hat{k}_{k+1} Q_k \hat{k}_{k+1}} (y_{k+1} - \hat{k}_{k+1} \hat{k}_k)$$
 (3.19)

where

$$Q_{k+1} = Q_k - \frac{[Q_k \hat{z}_{k+1}]^T [Q_k \hat{z}_{k+1}]^T}{\tilde{z}_{k+1} Q_k \hat{z}_{k+1}}$$
 (3.20)

and

$$P_{k+1} = P_{k} + \frac{\left[Q_{k} \ \hat{g}_{k+1}\right] \left[Q_{k} \ \hat{g}_{k+1}\right]^{T} \left[1 + g_{k}^{T} + P_{k} \ \hat{g}_{k+1}\right]}{\left[g_{k+1}^{T} \ Q_{k} \ \hat{g}_{k+1}\right]^{2}} - \frac{\left[P_{k} \ \hat{g}_{k+1}\right] \left[Q_{k} \ \hat{g}_{k+1}\right]^{T} + \left[Q_{k} \ \hat{g}_{k+1}\right] \left[P_{k} \ \hat{g}_{k+1}\right]^{T}}{g_{k+1}^{T} \ Q_{k} \ \hat{g}_{k+1}}$$
(3.21)

withe the initial conditions

$$Q_0 = I$$
, $P_0 = 0$ and $\hat{\psi}_0 = 0$ (3.22)

For k > P (least squares estimation)

$$\hat{k}_{k+1} = \hat{k}_{k} + \frac{\left[P_{\hat{k}_{k+1}}\right] \left[y_{k+1} - \hat{k}_{k+1}^{T} \hat{k}_{k}\right]}{1 + \hat{k}_{k+1}^{T} P_{k} \hat{k}_{k+1}}$$
(3.23)

where
$$P_{k+1} = P_k - \frac{\left[P_k \, \hat{k}_{k+1}\right] \left[P_k \, \hat{k}_{k+1}\right]^T}{1 + \hat{k}_{k+1}^T P_k \, \hat{k}_{k+1}}$$
 (3.24)

The matrices P_k and Q_k are defined as

$$P_k = A_k^+ A_k^{+T}$$
 (3.25)

$$Q_k = I - A_k^+ A_k$$
 (3.26)

Thus they are both symmetric. The dimensions of matrices P_k and Q_k are both pxp while that of the vectors $\hat{\phi}_k$ and a_k are both p. The storage requirement is minimal. Further, only a total of

$$N = 3p^2 + 4p$$

multiplications are required to calculate equations (3.23) and (3.24) so that this algorithm is regarded as computationally efficient.

The results of the experiments applying this algorithm to the identification of a second order system will be described in greater details in chapter six. Meanwhile, making use of some of the definitions just presented, we shall discuss methods to determine the order of the model.

3.5 Determination of the order of the System

The algorithm discussed in the previous section assumes that we know the value of

$$p = m+n+1$$
 (3.27)

where m and n are the number of coefficients in the numerator and denominator of equation (2.3) respectively. Naturally, the values of m and n depend on the order of the model used for identification.

One method to determine the order of the model is to assume certain low values for m and n in equation (3.27) and proceed with the estimation of $\hat{\phi}$. Then, increase m and n by one and repeat the estimation procedures. The step responses of the last two trials are compared. If they are the same or sufficiently close, the latter model is of unnecessary high order. Otherwise, the trial process is carried on until we meet such a requirement. This is admittedly a very crude trial and error approach. We might have problems if the noise level is high.

The following method is a much more systematic approach proposed by Sinha and Pille [12]. It is based on the following theorem.

Theorem:

Consider a system transfer function

$$H(z) = \frac{P(z^{-1})}{Q(z^{-1})}$$
(3.28)

where $P(z^{-1})$ and $Q(z^{-1})$ are polynomials of order m and n respectively.

Assume that, in the model, the order of both the numerator and denominator is N which may be chosen arbitrary large. Let

$$q = tr Q_{\mu} \qquad (3.29)$$

where

$$Q_k = I - A_k^+ A_k$$
 (3.30)

which can be obtained iteratively from equation (3.20). If k is incremented from 1 to M (M \leq 2N) until q becomes a constant, the true order of the system is given by

$$n = N - q$$
 (3.31)

Proof:

Rank
$$A_k = tr(A_k + A_k)$$

= 2N - tr Q_k (3.32)
= 2N - q

The maximum rank of A_k is N+n, since A_k has 2n + (N-n) degrees of freedom. Thus, when A_k has attained a maximum rank, q becomes a constant, and

In the event when the order m < n, the algorithm should yield zero for the estimates of \hat{a}_{m+1} , \hat{a}_{m+2} , . . . \hat{a}_n etc. in equation (2.14) and the order of the system is apparent.

However, the above derivation assumed the effect of noise to be insignificant so that q would approach a constant value. When the noise level is high, we might have difficulty in applying this method.

A third method to the same end takes the presence of noise into account. It is worthwhile to note that, in a noisy environment, several independent methods are sometimes necessary since each method has its own limitations due to the assumptions made in each of them. If they all give , the same result, we can be confident that it is the correct value. The system dynamic equation defined in section 2.3 is

$$\chi_{k} = A_{k} \hat{\phi}_{k} \phi \qquad (2.11)$$

where

 χ_k = output measurement vector with noise A_k = information matrix with noisy measurements $\hat{\chi}_k$ = estimation vector at the kth instant

=
$$[\hat{a}_0 \ \hat{a}_1 \ \dots \ \hat{a}_m \ \hat{b}_1 \ \hat{b}_2 \ \dots \ \hat{b}_n]^T$$
 (2.14)

Let the error function be defined as

$$\mathbf{v} = \frac{1}{k} \boldsymbol{g}^{\mathrm{T}} \boldsymbol{g} \tag{3.33}$$

According to Van den Boom and Van den Enden [13], assume the noise is white and taking the probability limit of v, we have

Let \hat{N} be an estimation of the true order N of the system, this leads to the following consideration by taking into account the asymptotic properties of the estimates $\hat{\varphi}_k$.

$$\begin{array}{c} \begin{array}{c} f a_{i} & \text{if } \hat{N} < N & \text{due to trunction effect} \\ = a_{i} & \text{if } \hat{N} = N \\ = a_{i'} & \text{i } \leq N \\ = 0 & i > N \end{array} \end{array}$$
 if $\hat{N} > N$ (3.35)

These conditions result in

$$\operatorname{plim}\left[\frac{1}{k} \, e^{\mathrm{T}} \, e\right] \left\{ \begin{array}{c} >0 \quad \text{for} \quad \widehat{\mathrm{N}} < \mathrm{N} \\ =0 \quad \text{for} \quad \widehat{\mathrm{N}} \ge \mathrm{N} \end{array} \right. \tag{3.37}$$

An important consequence is apparent in that there is a marked change in the behaviour of the error function v when $\hat{N} = N$. Pictorially, its behavious is shown in figure 3.1.

Figure 3.1 Error Function V versus Estimated Order N

CHAPTER FOUR

STOCHASTIC APPROXIMATION FOR THE REMOVAL OF BIAS

4.1 Effect of Measurement Noise on the Estimation

Again refer to the basic dynamic equation

$$A_k \hat{x}_k = \chi_k \tag{2.11}$$

where the solution is given by

$$\hat{\hat{\boldsymbol{x}}}_{k} = \boldsymbol{A}_{k}^{\dagger} \boldsymbol{\chi}_{k} \tag{3.13}$$

Matrix A_k is the information matrix containing the input-output measurements. As noted earlier, these measurements are contaminated with noise. We shall analyze the effect of noise on the final estimates.

Let matrix A_k be decomposed into two component matrices as follows (dropping the subscript k):

$$A = B + N \tag{4.1}$$

where B is the noise-free component of A and N is the noise matrix.

Similarly, the output can be decomposed to

$$\chi = \varsigma + \chi \tag{4.2}$$

where g_i is the true output and χ is the output noise.

- 27 -

As shown in the previous chapter, for least squares estimation, the pseudoinverse A^+ is given by

$$A^{+} = [A^{T} A]^{-1} A^{T}$$

Substituting equation (4.1)

$$A^{+} = [(B+N)^{T} (B+N)]^{-1} [B+N]^{T}$$

= [B^{+}B + B^{T}N + N^{T}B + N^{T}N]^{-1} [B+N]^{T} (4.3)

If the noise is white and hence uncorrelated with the input and output, we have

$$B^{T}N + 0 \qquad N^{T}B + 0$$

Then, equation (4.3) becomes

$$A^{+} = [B^{T}B + N^{T}N]^{-1} [B+N]^{T}$$
(4.4)

Using the identity [14]

$$[B^{T}B + N^{T}N]^{-1} = [B^{T}B]^{-1} [I + (N^{T}N)^{-1} (B^{T}B)]^{-1} [B+N]^{T}$$
(4.5)

equation (4.4) becomes

$$A^{+} = [I-Z] B^{+} + [I-Z] [B^{T}B]^{-1} N^{T}$$
(4.6)

$$z \stackrel{\Delta}{=} [I + (N^{T}N)^{-1} (B^{T}B)]^{-1}$$

= $[N^{T}N + B^{T}B]^{-1} [N^{T}N]$ (4.7)

where

Substituting (4.6) and (4.7) into (4.1), we get.
$$= [I-Z] B^{+} \xi + [I-Z] [B^{T}B]^{-1} N^{T} \xi$$
$$= [I-Z] B^{+} \chi + [I-Z] [B^{T}B]^{-1} N^{T} \chi \qquad (4.8)$$

For uncorrelated white noise

Ŕ

 $N^{T} \xi \neq 0$ $B^{+} \chi \neq 0$ $N^{+} \chi \neq 0$ Hence, equation (4.8) becomes 1 $\hat{\xi} = [I-Z] B^{+} \xi$

Since
$$\chi = B^{T} \chi$$

Thus $\chi = \hat{\chi} = [N^{T}N + B^{T}B]^{-1} [B^{T}N]$ (4.11)
 $\neq 0$ if $N \neq 0$

The difference given by equation (4.11) is called the bias of the estimation due to the presence of measurement noise.

4.2 Removal of Bias by Filtering

.

The result in the previous section holds true only for white uncorrelated additive noise. In practice, the noise is coloured. Coloured noise can be modelled as the output resulting from passing white noise through a finite order transfer function. Recognizing this fact, we can devise a method to find out this noise model. From this model, we can find its inverse

0

Ç.

with which a filter is constructed. With this filter, we can remove the noise component from the measurements by passing them through this filter.

This approach is not unlike the Wiener-Hopf filtering method. In order to achieve this, we have to first identify the noise model and secondly develop a filtering mechanism. All these have to be integrated with the pseudoinverse algorithm we have just discussed. Further it must be an iterative algorithm so that it can be applied on-line. Finally, the amount of extra computation involved should be as little as possible in order to end up with a still efficient algorithm.

Sen and Sinha [14] have proposed a scheme by applying stochastic approximation to find the noise filter working in parallel with the pseudoinverse algorithm. The derivation of this algorithm will be given in a later section while we pause to introduce the basic_principles of stochastic approximation.

4.3 Stochastic Approximation

Stochastic approximation may be regarded as a scheme for successive approximation of a sought quantity when the observations involve random errors due to the stochastic nature of the problem. It has the following advantages:

- (a) Only a small interval of data needs processing.
- (b) Only simple computations are required.
- (c) A priori knowledge of the process statistics is not required, nor is the functional relationship between the desired para-

meters and the observed data. The only requirements are that it satisfies certain regularity conditions and that a unique solution exists.

Many major contributions are made to the area by various people. A comprehensive survey paper by Sakrison [15] gives a good general picture of various aspects of the subject.

First, let us look at the Robbins-Monro approach [16] which is the statistical analogue of the simple gradient method for finding the root of the equation

$$h(x) = 0$$
 (4.12)

which is $x_{i+1} = x_i - K_i h(x_i)$ (4.13)

where $\{K_i\}$ is a sequence of real numbers which must satisfy certain conditions to ensure that the algorithm will converge.

When there is additive random noise, h(x) becomes

$$Z(x_{i}) = h(x_{i}) + v_{i}$$
 (4.14)

where $\{v_i\}$ is a zero mean noise sequence.

Making use of the fact that the expectation of $Z(x_i)$ is $h(x_i)$, equation (4.13) may be modified to

$$x_{i+1} = x_i - K_i Z(x_i)$$
 (4.15)

۹,

Robbins and Monro showed that equation (4.15) will converge if the following conditions are met:

$$\lim_{i \to \infty} K_{i} = 0 , \qquad (4.16)$$
and
$$\sum_{i=1}^{\infty} K_{i}^{2} < \infty$$

A simple sequence which meets these requirements is

$$K_{i} = \frac{\alpha}{\beta + i}$$
(4.17)

where α and β are positive constants. Also, it is required that h(x) be bounded on either side of a true solution by straight lines, such that it is not possible to overshoot the solution x which cannot be corrected by a K_i satisfying equation (4.17).

Kiefer and Wolfowitz [17] extended the method to find the extremum of an unknown unimodal regression function $\theta(u)$. This approach is the exact analogue of the gradient approach in the deterministic optimization procedure which yields

$$\mathbf{U}_{i+1} = \mathbf{U}_{i} - \mathbf{K}_{i} \frac{\mathbf{d} \, \boldsymbol{\theta}(\mathbf{U}_{i})}{\mathbf{d} \, \mathbf{U}_{i}} \tag{4.18}$$

The stochastic counterpart is

$$U_{i+1} = U_i - K_i \frac{d n(U_i)}{d U_i}$$
 (4.19)

where $n(u) = \theta(u) + \xi$

and ξ is the random noise component.

Since the differentiation in equation (4.19) does not exist in general, one may use the following approximation

$$\frac{d n(U_i)}{d U_i} \simeq \frac{n(U_i + \Delta U_i) - n(U_i - \Delta U_i)}{2\Delta U_i}$$
(4.20)

Convergence is guaranteed if the following conditions are satisfied:

$$\lim_{i \to \infty} K_{i} = 0 ,$$

$$\lim_{i \to \infty} \Delta U_{i} = 0 ,$$

$$\sum_{i=1}^{\infty} K_{i} = \infty ,$$

$$\sum_{i=1}^{\infty} K_{i}^{2} < \infty ,$$

$$\sum_{i=1}^{\infty} \left[\frac{k_{i}}{\Delta U_{i}}\right]^{2} < \infty ,$$

$$(4.21)$$

A basic idea [15] of stochastic approximation is that a stochastic counterpart exists for any deterministic algorithm. Fu et al [20], Sinha and Griscik [18] and Kwanty [19] have proposed specific formulae to .implement the above ideas.

4.4. Formulation of the Noise Model

and

Let the system dynamic equation be represented in the following form:

$$[t + A(z^{-1})]y_{i} = [b_{0} + B(z^{-1})]U_{i} + e_{i}$$
(4.22)

where $e_i = [1 + A(z^{-1})]n_i$, the residual error (4.23) $\{n_i\}$ is a zero mean random noise sequence $A(z^{-1}) = a_1 z^{-1} + a_2 z^{-2} + ... + a_n z^{-n}$ $B(z^{-1}) = b_1 z^{-1} + b_2 z^{-2} + ... + b_m z^{-m}$

To guarantee stability of the process, the roots of $[1 + A(z^{-1})]$ are assumed to lie inside the unit circle.

We assume that the noise sequence $\{n_i\}$ can be described as a filtering of a well behaved, zero mean white noise signal ξ_i i.e.

or equivalently,

$$n_{i} = \frac{1 + G(z^{-1})}{1 + D(z^{-1})} \xi_{i}$$
(4.24)

where

 $D(z^{-1}) = d_1 z^{-1} + d_2 z^{-2} + \dots + d_p z^{-p}$ $G(z^{-1}) = g_1 z^{-1} + g_2 z^{-2} + \dots + g_q z^{-q}$

Again, the roots of $[1 + D(z^{-1})]$ are assumed to lie within the unit circle.

Combining (4.23) and (4.24), we have

$$\mathbf{e_i} = \frac{\left[1 + A(z^{-1})\right] \left[1 + G(z^{-1})\right]}{\left[1 + D(z^{-1})\right]} \xi_i$$
(4.25)

The above residual error sequence $\{e_i\}$ is now approximated by a low order linear process. The filter involved is the inverse of this process. This is similar to the method of "pre-whitening" used in spectral density estimation. Two possible processes are suitable for this purpose. They are the moving average process of the form

$$e_{i} = \xi_{i} + \sum_{r=1}^{p} m_{r} z^{-r} \xi_{i}$$
 (4.26)

and the autoregressive process of the form

$$\mathbf{e}_{i} + \sum_{r=1}^{p} f_{r} z^{-r} \mathbf{e}_{i} = \xi_{i}$$
(4.27)

These processes are duals of each other as a moving average process filtered by an autoregressive filter becomes a white noise or vice versa.

In the present study, an autoregressive model is chosen. In particular, if we have cascaded filters of the type

$$\hat{\mathbf{e}}_{i} = \left[1 + \sum_{j=1}^{p} \mathbf{f}_{j} z^{-j}\right] \mathbf{e}_{i}^{\dagger}$$
(4.28)

we can approximate the true process to any degree of accuracy by choosing an appropriate sequence $\{f_i\}$. Using this principle, equation (4.25) can therefore be approximated by

$$e_{i} = \frac{\xi_{i}}{[1 + F_{s}(z^{-1})]}$$
 (4.29)

where

$$F_s(z^{-1}) = f_1 z^{-1} + f_2 z^{-2} + \dots + f_s z^{-s}$$

This implies that

$$[1 + F_{s}(z^{-1})] \approx [1 + D(z^{-1})] [1 + A(z^{-1})]^{-1} [1 + G(z^{-1})]^{-1}$$

This is true if sufficient number of terms of the filter on the left hand side are used.

Substitute (4.29) into (4.22), we have

$$[1 + A(z^{-1})] y_{i} = [b_{0} + B(z^{-1})] u_{i} + \frac{\xi_{i}}{[1 + F_{s}(z^{-1})]}$$

Multiplying throughout by $[1 + F_{s}(z^{-1})]$, we get

$$[1 + A(z^{-1})] [1 + F_s(z^{-1})] y_i = [b_o + B(z^{-1})] [1 + F_s(z^{-1})] u_i + \xi_i$$

or

$$[1 + A(z^{-1})] \overline{y}_{i} = [b_{0} + B(z^{-1})] \overline{u}_{i} + \xi_{i}$$
(4.30)

where

$$\overline{y}_{i} = (1 + f_{1}z^{-1} + f_{2}z^{-2} + ... + f_{s}z^{-s}) y_{i}$$

$$\overline{u}_{i} = (1 + f_{1}z^{-1} + f_{2}z^{-2} + ... + f_{s}z^{-s}) U_{i}$$
(4.31)

 ξ_i is a white noise sequence.

If the filter is known, the measurements y_i and u_i will be filtered in such a manner as in equation (4.31) to obtain the filtered input-output pair $\overline{u_i}$ and $\overline{y_i}$. These filtered quantities are then used in the algorithm to calculate the estimates. Comparing equations (4.22) and (4.31), the residual error sequence has now been changed to a white noise sequence. The final estimates will therefore be unbiased because the white residual error is not correlated with the input and output.

The next logical step is to find the parameters of the filter $F_s(z^{-1})$. This is where stochastic approximation comes into the picture and is the subject of discussion in the next section.

4.5 Application of Stochastic Approximation

At the kth iteration, the residual error is represented by

$$\hat{\mathbf{e}}_{\mathbf{k}} = \mathbf{F}^{\mathrm{T}} \mathbf{E}_{\mathbf{k}} + \mathbf{W}_{\mathbf{k}}$$
(4.32)

where

1

 $\mathbf{F}^{T} = \begin{bmatrix} \mathbf{f}_{1} & \mathbf{f}_{2} & \dots & \mathbf{f}_{s} \end{bmatrix}^{T}, \text{ the filter parameter vector}$ $\mathbf{E}_{k} = \begin{bmatrix} -\hat{\mathbf{e}}_{k-1} & -\hat{\mathbf{e}}_{k-2} & \dots & -\hat{\mathbf{e}}_{k-s} \end{bmatrix}^{T}, \text{ the error vector}$

 W_k is a white noise sequence

s is the order of the noise filter

To obtain F, the stochastic approximation method of the form proposed by Kwanty [19] is employed, i.e.

$$\hat{F}_{k+1} = \hat{F}_{k} - \frac{\gamma}{k+1} \frac{[F_{k}^{T} E_{k} - \hat{e}_{k}] E_{k}}{||E_{k}||^{2}}$$
(4.33)

where γ is a positive gain constant chosen large enough to guarantee convergence.

[.]37

$$F_{k} = kth \text{ ostimate of F}$$

= $[\hat{f}_{1}(k) \ \hat{f}_{2}(k) \ \dots \ \hat{f}_{s}(k)]$ (4.34)

Using the estimated filter \hat{F}_k , the input and output measurements u_k and y_k respectively are filtered to obtain

$$\overline{u}_{k} = u_{k} + \sum_{i=1}^{s} \hat{f}_{i} u_{k-i}$$

$$\overline{y}_{k} = y_{k} + \sum_{i=1}^{s} \hat{f}_{i} y_{k-i}$$
(4.35)

These filtered quantities are used in the updating of the information -matrix A_k in the pseudoinverse algorithm. Since \hat{F}_k is only an approximation to the true F, using \hat{F}_k as filter will not remove all the bias but only part of it.

The results of experiments on a second order system are presented in chapter six.

CHAPTER FIVE

ANALOG SIMULATION AND HARDWARE

¢\$

5.1 Introduction

The two algorithms we have just discussed are implemented and tested in real time as applied to the identification of a one-input oneoutput second order system. In the present chapter, a detailed description of the simulation and hardware will be provided.

Figure 5.1 shows the general layout of the hybrid set up of the experiment. It consists of three different types of equipments. The first one is the TR-20 analog computer. The integrators, summing operational amplifiers and the potentiometers on it provide the simulation of the system to be identified as well as the pseudorandom analog input signal. The second piece of major equipment is the PDP-11/45 minicomputer. This computer is of recent design with a unibus. It allows us to address any peripheral device as convenient as any other memory locations and thus facilitate the data acquisition procedures. The memory size is 20K with both the fixedhead and moving-head disks. It is also equipped with a hardwired floatingpoint arithmetic processor and a real time clock. Loading and running of programs can be done easily through the system monitor which is a software package provided by the manufacturer. The analog and digital computers are coupled together by the interface panel in between. Mounted on this panel are the sampling devices and control circuits to co-ordinate the sampling process.

Control of the analog computer is a manual mechanical switch. However, the program provides a feature to co-ordinate the on-off switching of the analog computer and the starting of the identification algorithm. This is done by having the computer to repeatedly check the data buffer of one channel at the beginning. If the analog computer is off, this data buffer is zero. As soon as a certain threshold value is being detected in this data buffer, it is understood by the program that the analog computer has been switched on and it will proceed with the rest of the program. The non-zero threshold value is necessary because of the presence of a small amount of noise in the system. Experience shows that about 0.075 volt is enough.

The control of program running itself is by means of the switch register console on the computer and the keyboard. Output device can either be the cathode ray screen or the teletype printer. Since each device works on a different speed, precise timing is necessary. This can be accomplished by utilizing the priority interrupt structure of the digital computer.

For experimental purposes, an external noise generator is installed to provide noise at different power levels. The noise is artificially introduced into the output terminal of the system. For all practical purposes, we can assume that this noise source gives us white guassian noise with a very wide spectrum.

Figure 5.1 General Schematic of Experiment

5.2 Interface Hardware

The interfacing panel has been designed to handle two channels of input signals. The circuit diagram is shown in figure 5.2a.

The two channels of incoming signals are connected to a signal sampling unit which consists of two sample-and-hold modules so that simultaneous sampling of both channels is possible. This is necessary to obtain corresponding input and output measurements at the same time instant.

There is only one analog-to-digital converter capable of converting one voltage at a time. The multiplexer is situated in front of it to act as a switch. It can be programmed in such a way that different channels are presented to the input of the analog-to-digital converter individually in a pre-determined order. The binary coded digital outputs from the analog-todigital converter are fed into a data buffer register which can be directly accessed by the digital computer to facilitate a data transfer into the core memory.

The sequence of actions of the sampling process are co-ordinated by programmed control signals together with hardwired control logic circuits. The circuit diagram of the control logic is shown in figure 5.2b.

The control bits from the channel selector register are gated to control the switching of the multiplexer through two flip-flops. The time delay circuit is used to delay the conversion trigger pulse so that the analog-to-digital converter is triggered to start the conversion just after the selected channel has been switched to the input of the converter by the

multiplexer. The delay introduced in the path travelled by the bus ready pulse is about fifty nanoseconds. The required delay for the trigger is then equal to this length of time plus the time for the analog voltage to settle in the multiplex output.

When the conversion is complete, it is signalled to the computer through a change in the logic level of the end-of-conversion output in the analog-to-digital converter. Now, the computer can transfer the data into core. After reading in the data, the computer is ready for another cycle of action.

The control of sampling frequency is done by setting an external frequency control switch on the interface panel. A detailed circuit diagram of the clock frequency generator is shown in figure 5.2c. The different frequencies are generated by allowing the clock pulses originated from the crystal clock inside the computer to pass through a different number of decade counters depending on the setting of the switch. There are a total of fifteen choices. At the lower end, we can either select one, two or five hertz. By bypassing one decade counter, we can generate pulses ten times faster. There are altogether four decade counters so that we can step up the above frequencies by four folds. However, for the purpose of process identification, we seldomly need such high frequencies. In the program written, the user can step down the sampling frequency set on the switch by any integral number of times by entering an integer constant from the keyboard. The program will make use of the integer supplied to determine the number of times it will loop through a delay loop in it.

Figure 5.2a Circuit Diagram of Interface Panel

.

Figure 5.2b Circuit Diagram of Control Logic

Figure 5.2c Circuit Diagram of Clock Pulse Generator

46

Ď

Referring back to figure 5.2a, the clock pulse is gated with the end-of-conversion output and is also fed into the sample-and-hold modules. The fomer connection is used for producing a bus request which is primarily responsible for the generation of an interrupt. The latter connection is used to switch the sample-and-hold modules to either one of two different modes of operation depending on the need. In the track mode, the sampleand-hold will be tracking the voltage level of the input signal. The second mode is the hold mode during which the voltage is being held at the level just before the switching signal comes in. Since both sample-and-hold modules are wired together, they go to the hold mode, at the same time and hence simultaneous sampling of both channels. These samples will eventually be transmitted to the analog-to-digital converter for conversion. The digital outputs are received by a data buffer for final transfer to the computer.

Having briefly reviewed the functions of each piece of hardware in the interface panel, we shall describe the sequence of operations in the next section.

53 Operating Sequence

The whole interrupt sequence is effected by three sources of control working together, namely the external clock, the control logic circuits and the software.

There are three specialized registers in the computer central to the whole operation (see figure 5.3). The first one is the control-andstatus register (ADCSR) at location 177520. Bit six is the interrupt enable bit and has to be set by the program to initiate the interrupt

sequence. Bit seven is the bus request bit set by the external circuits. When it is set, an interrupt will be generated. Depending on the priority of this interrupt request and that of the task being processed at that time, the computer will determine whether to honour the request immediately or wait until the higher priority jobs have been completed. The priority of the interrupt request is of course chosen by the programmer. The second register is the channel selector register (CHNSLR) at location 177522. Since there are two channels, we need a two-bit binary code to represent them. Bits twelve and thirteen of this register are used for this purpose. They decide which channel is being selected for conversion. The third register is the data buffer register (DATBUF). This is simply a data logging register serving as a temporary storage for the outputs of the analog-to-digital converter.

A timing diagram is shown in figure 5.4. There are six curves in the figure. The clock pulse curve determines the mode of the sample-andhold modules. They are in track mode when the clock pulse is HI and in hold mode when the clock pulse is LO. The end-of-conversion (EOC) curve is normally at LO level except when conversion is taking place. The bus request curve is formed by ANDing the logical compliments of the first two curves. If the interrupt enable bit in the ADCSR is set, an interrupt will be generated whenever there is a positive logical transition from LO to HI in the bus request curve. In this situation, we have the sample-and-hold modules holding the signals and the previous conversion has been completed. Priority permitting and depending on the contents of a two-word interrupt vector at locations 110 and 112, the computer will honour the request by

0

9

15

Control and Status Register (ADCSR) Address = 177520 Bit 6 -- set for interrupt enable Bit 7 -- set for bus request Channel Selector Register (CHNSLR) Address = 177522 Bit 12 -- channel 1 selected if set Bit 13 -- channel 2 selected if set Data Register (DATREG) Address = 177524 10 bits two's complement format

Figure 5.4 Timing Diagram

executing the subroutine pointed to by the first word of the vector with a priority according to the second word of the vector. The type of task performed is under program control. The program can change the contents of the vector to assign different tasks to different interrupt requests As indicated in figure 5.4, the first interrupt service subroutine commands the interface panel to convert the first channel. The next one is for storing the data of the first channel in an assigned location in core followed by a command to convert the next channel. Finally, the third one is to store the data from channel two.

After servicing both channels, the cycle can be made to repeat itself for any desired length of time by simply keeping the interrupt enable bit in ADCSR set. If no further sampling is desired, the interrupt enable bit is cleared to inhibit further action.

5.4 Pseudorandom Input Signal

In section 3.4, we have noted that in order to make the assumption about the rank of the information matrix, the input signal has to satisfy one of several conditions. One such condition is to excite the system by a random signal. In practice, true white noise signal cannot be realized physically. However, we can synthesize pseudorandom signals that would still satisfy our purpose. What we really need is a random sequence during the finite time interval when the identification process is taking place. We have at least two convenient methods at our disposal. The first method is to use a pseudorandom binary sequence (PRBS) generated from switch registers. In our present study, we use the technique of summing many sinusoids with randomly selected phase angles to produce a pseudorandom signal. The use of sinusoids for this purpose has the important advantage that we can obtain whatever spectral density we desire. This is important because in identification problems, we can excite every mode of the system dynamics by a proper choice of the component sinusoids.

The basic principle can be understood by referring to figure 5.5 which represents a certain specified spectral density distribution of signal y(t). The curve is divided into 2m parts of equal area. We can now replace the whole spectrum by pairs of impulse functions in both positive and negative frequencies as shown in figure 5.6. The frequency of each impulse function corresponds to the centre frequency of each of the 2m partitions. The magnitudes of the impulses are all equal to the area of each portion they replace. The pair of positive and negative spectra constitutes one sinusoid of randomly selected phase angles.That is, the approximation of the pseudorandom signal will be

$$y(t) = \sqrt{A} \sum_{k=1}^{m} \sin (w_k^k + \phi_k)$$

where

A = $\frac{2}{\pi}$ x area of each partition

ϕ = randomly sected phase angle

If m is increased to infinity, we would obtain a truely random signal that matches the specified spectral density exactly.

51

.... -

3. C.

5.5 Analog Simulations

Analog simulations of the system to be identified and the input signal we have just discussed are done on the TR-20 analog computer. A complete circuit diagram is shown in figure 5.7.

Simulation of the one-input one-output second order system is relatively straight forward requiring only two integrators and two summing amplifiers in addition to the potentiometers.

The input signal is constructed by superposing several sinusoids. Each sinusoid requires two integrators and an inverter. The choice of frequency for the construction of the pseudorandom signal must be such that they are not integrally related. This is to avoid pattern repetition by eliminating the presence of subharmonics. Fortunately, this can be easily satisfied when we use analog simulation.

Note that even though the phase angles are randomly selected, these sinusoids become deterministic signals once they are fixed. The resulting signal using a finite number of these components is therefore also deterministic and has a certain finite repetition frequency. This frequency is equal to the least common multiple of all the component frequencies and can be made small by proper adjustment. Again, using analog simulation, it poses no serious problem. Experience shows that at least five sinusoids are needed for our purpose.

The fact that we have a deterministic input signal is in effect an advantage in the experimental work because this signal is also repeatable.

Figure 5.7 Analog Simulation

A repeatable input signal gives the same output signal every time. We can make comparisons of effects due to different noise levels. We can also compare different algorithms under essentially identical conditions. Should this input signal be truely random, we would have to make many runs of the same test in order to arrive at a statistical result.

5.6 Error Analysis

There are two main sources of errors in the system we have just described. Firstly, there are the random disturbances within the system that are completely unpredictable. This kind of disturbances are usually assumed to be white gaussian and are difficult to assess.

The second source of errors comes from the non-ideal components of the instruments used in the experiments. They are of systematic in nature. The following is a brief summary of these systematic errors:-

- (A) Analog unit (non-ideal operational amplifiers)
 - (i) drift
 - (ii) zero off-set
 - (iii)phase shifts
- (B) Multiplexer
 - (i) zero off-set
 - (ii) non-infinite backward resistance
 - (iii) non-zero forward resistance
 - (iv) cross-talk due to imperfect isolation between channels

- (C) Sampler
 - (i) finite aperture time
 - (ii) time delay due to finite tracking time and switching
 - (iii) uncertainty in synchronization of simultaneous sampling
 - (iv) due to finite word length

Ð

Temperature dependence of many electronic components also may introduce errors. However, the electronic components available nowadays are quite reliable and a 0.01 percent full scale deviation can usually be obtained. This is not at all severe in our present application. Since a 10-bit converter is used, it is accurate up to about ±0.01 volt. Again, it will not cause severe degradation in the results.

CHAPTER SIX

SOFTWARE AND RESULTS

6.1 Introduction

This is a user-oriented program designed for convenient application to identify a second order one-input one-output system. It can easily be modified for higher order systems. The main bulk of the program is written in the MACRO-11 assembly language for the PDP-11/45 minicomputer. Compared with compiler language programs, the assembly language programs have the advantage of using less core memory and require less computation time since a lot of overheads can be eliminated. There is however one FORTRAN subroutine. This is being used for conducting the initial interactive dialog to obtain some essential data. It does not affect the efficiency of the identification algorithms because the dialog is being carried out at the beginning of the program before sampling is started. But it offers the convenience of flexible formats for the data to be read in from the keyboard.

As far as the size of the program is concerned, the assembly language portion of the program which consists of all computational and input/output aspects of both algorithms requires only 7632 words of core. The FORTRAN subroutine requires 1722 words of core. There is one common data block between the assembly language program and the FORTRAN subroutine occupying only 24 words of core. Modification of this program for higher order systems does not significantly change the numbers just quoted. If the output device is not fast enough to empty the output buffer for the intermediate estimates,

57 -

سيندي المحمد المري

58

storage area has to be provided for storing all these intermediate results. The size of this temporary storage depends on the number of samples we want to take. Two words of storage are necessary to store one parameter value for each iteration.

6.2 Organization of the Program

A flowchart of the program is shown in figure 6.1 giving a general picture of its organization. The program is loaded into core by the system monitor in the usual manner. When it starts to run, it will first jump to the subroutine that conducts the initial dialog with the user.

During the interactive dialog, the user is asked to select either one of two algorithms i.e. the algorithm using matrix pseudoinverse only and the algorithm with filter. In the case of the second algorithm, the user has to supply a gain factor for use in the iterative stochastic approximation formula. He also has to specify when the filtering should begin. Since a third order filter is used and thirteen previous error terms are needed for updating the filter parameters, the filtering can only start after at least fourteen samples have been taken. Should the user direct the filtering to start at a even later time, the program would still update the noise filter after fourteen samples so that a more accurate filter would be available at that time.

We can also specify the maximum number of samples to be taken. However, the user reserves the right to abort the program any time during run time. This is done simply by raising bit 0 in the switch register console on the computer. The program checks this bit every time it enters a service

40.74 v

Figure 6.1 Flowchart of Program

subroutine. It would immediately clear all interrupts and then exit from the program to return to the system monitor. From thereon, the user can restart the program.

As we have noted in chapter five, the lowest sampling frequency available on the selector switch is one hertz. Here, we can enter an integer that will be used by the program as a multiplying factor of the sampling period. We can therefore greatly increase the number of choices in sampling frequency.

After completing the initial dialog, it will jump into a loop waiting for the analog computer to be switched on. The identification will start after the analog computer has been started.

Results of each iteration are printed out as soon as they are ready. A sample print-out of a typical run can be found on figure 6.2. Because of the different speeds of the many devices and the need to sample at equal intervals, priorities have been assigned to the different interrupt driven service subroutines. The sampling service subroutines have the highest priority (priority 5) because samples need to be taken at precise instances. The data acquired through sampling also need to be transferred into core from the data buffer before the next data comes in. By arranging the priority of the printing interrupt (priority 4) below that of the sampling and analysis but above that of the processor (priority 3), they can swap control of the computer until the prescribed maximum number of iterations has been reached without interfering with each other.

Figure 6.3 tabulates the functions of the major subroutines together

DO YOU WANT FILTERING ? IF YES, TYPE 1; IF NO, TYPE Ø WHEN DO YOU WANT FILTERING TO START ? (I3) 050 ENTER THE GAIN TERM FOR STOCHASTIC APPROXIMATION. (F5.1) 1.0 ENTER THE MULT. FACTOR FOR THE SAMPLING PERIOD. (I2) 01 ENTER THE MAX. NO. OF SAMPLES YOU WANT. (I3) 300

THANK YOU. TO START, STRIKE ANY KEY

,

	PHI 1	PHI2	PHI 3	PHI 4	PHI5
1	2.22E-01	0.00E-00	0.00E-00	0.00E-00	0.005-00
2	2.21E-01	5.89E-02	0.00E-00	-1.33E 00	0.00E-00
3	2.21E-01	5.90E-02 ·	-1.61E-01	-1.33E ØØ	4.485-01
4	2-21E-01	5.90E-02	-1.62E-01	-1.33E 00	4.52E-01
5	2.21E-01	5.90E-02	-1.61E-01	-1.33E 00	4.51E-ØI

1.

2

Figure 6.2 Sample Print-out of the Results

Figure 6.3 Table of Subroutines

Subroutine Name	Functions and calling conventions			
START				
DIALOG	Obtains information from user through a series of questions.			
ANAL	Dispatch subroutine for data analysis, stores the resulting estimations into buffers.			
METHOD	Minimum norm and least squares algorithm for pseudoinvers.			
STAPR	Stochastic approximation.			
FILTER	Filtering of measurements.			
CONVSN	Conversion of A/D outputs into floating point format. Calling convention: MOV DATA, R3 JSR R5, CONVSN Result is on top two words of the stack			
CLOCK	Enable the sampling interrupt.			
AD	Gives command to convert channel $\hat{1}$; interrupt driven.			
STR1	Stores data of channel 1; gives command to convert channel 2, interrupt driven.			
STR2	Stores data of channel 2; jumps to subroutine CONVSN: interrupt driven.			
DELAY	Dispatch subroutine for analysis of data; stores resulting estimates in buffers.			
DELAY	Modifies sampling period by an integer multiplicative factor $k \ge 1$.			
PRINT	Enables the printing interrupt; monitors the progress of			
IO	ASCII conversion of results before transferring to the printing buffers.			
IOP	Generates a 3-digit ASCII coded line counter in ascending order			
PRN	Printing subroutine; interrupt driven.			

Figure 6,3 cont'd.

Mathematical Subroutines	·
MULFP ADDFP DIVFP SUBFP	Floating point multiplication, addition or subtraction of A and B. Calling convention: JSR R5, XXXFP .WORD A, B, C Result is in C
MMUL MADD MSUB	Matrix multiplication, addition or subtraction of A and B. Calling convention: JSR R5, MXXX .WORD A, B, C .WORD ROW, COL Result is in C.
DSC . MSC	Matrix division or multiplication by a scaler. Calling conventions: JSR R5, XSC .WORD A, B, SC .WORD RWO, COL Result is in B.
MTRN	Matrix transposition. Calling convention: JSR R5, MTRN WORD A, AT WORD ROW, COL Result is in AT.
SHIFT	Shifts all elements of vector A by one position downwards. Calling convention: JSR R5, SHIFT .WORDS A, N

with their calling conventions whenever they are appropriate. This program is adaptable to computers without a hardwired floating point processor without making any changes. Macro definitions are liberally used in the mathematical subroutines to facilitate easy checking. The complete heavily commented program listing is in the appendix.

6.3 Results

The results are based on experiments identifying the second order one-input one-output system given by

$$H(s) = \frac{0.04 + 0.28s}{0.04 + 0.4s + s^2}$$
(6.1)

According to Sinha [21], the sampled-data equivalent of equation (5.1) can be obtained by the bilinear transformation

$$s = \frac{2(1-z^{-1})}{T(1+z^{-1})}$$
(6.2)

subject to the condition that

$$\mathbf{p}_{\mathbf{k}}\mathbf{T} \leq 0.5 \tag{6.3}$$

where

T = sampling period

$$p_{L} = system poles.$$

The system represented by equation (6.1) has poles

$$p_1 = p_2 = 0.2$$
 (6.4)
Therefore, the transformation given by (6.2) is valid if T=2 seconds is used.

Applying (6.2) to (6.1), we have

$$H(z) = \frac{0.222 + 0.0556z^{-1} - 0.167z^{-2}}{1 - 1.333z^{-1} + 0.444z^{-2}}$$
(6.5)

However, due to the presence of a small amount of disturbance in the system even when no external noise is added, the experimental results of the coefficients of equation (5.5) are found to be

$$\phi^{\rm T} = \begin{bmatrix} 0.221 & 0.059 & 0.162 & -1.33 & 0.452 \end{bmatrix}$$
(6.6)

Values in equation (6.6) are being used as a reference for subsequent comparisons.

Whenever it is appropriate, experimental results from both algorithms are presented together. Both algorithms are tested under different amount of externally introduced white noise into the output of the simulated system. For the second algorithm using combined matrix pseudoinverse and stochastic approximation, a third order noise filter has been used.

Figure 6.4 summarizes the estimates and the resulting normalized errors for both algorithms after three hundred iterations. We can conclude from these results that the error of estimation is directly dependent on the level of noise present. It is also observed that the second algorithm gives better estimates in all instances. The extent of improvement, however, varies. Sample plots are shown in figures 6.5 and 6.6 displaying the behavious of the error in the estimates during the course of identification for the pseudoinverse algorithm and the one with filtering respectively. Note that in figure 6.6, filtering starts only after fifty iterations in order to avoid the initial region with large fluctuations in the estimation.

Despite the good convergence properties clearly exhibited, there always exists a bias in the estimation as expected because the residuals are correlated. Considerable amount of the bias is successfully removed by the filtering method.

It is of interest to recall that parameter estimation problems can be considered as optimization problems. In our case, the objective for minimization is the residual error sequence. This is our criterion to define the "goodness" of estimation. There are other criteria that can be used. For example, the time domain errors of step response or the impulse response are both valid criteria to evaluate estimations. Since there is no direct functional relationship among different criteria, a good estimation according to one criterion does not necessary imply that it is also good when judged by other criteria. A case in point to illustrate this fact is to compare the step response and impulse response of the tests we have performed.

The two plots figure 6.7 show the step response and impulse response respectively of the two algorithms at a noise ratio of 25%. From the table of figure 6.4, we notice the big different in the values of the parameters. We also notice that, the first algorithms has a normalised error of 88.72% compared with the much smaller 11.38% in the second algorithm. The difference

of almost seven hundred percents is also show graphically in figure 6.6b. Despite all these dramatic differences, a reference to figure 6.7 shows that their responses are not too far apart considering what we have seen from the difference in parameter values. The table in figure 6.8 tabulates the corresponding mean square errors in step and impulse response of all the tests we have performed. There is no direct correlation between this set of values and the normalised errors. While filtering unfailingly reduces the parameter error, no such conclusion can be drawn about the errors in step response and impulse response.

As far as computation time is concerned, no more than 0.05 second per iteration is required for the matrix pseudoinverse algorithm. Twice as much time is required for the second algorithm i.e. 0.1 second.

	NOISE RATIO (%)	•1'	$\hat{\phi}_2$	_ESTINATI \$3	ON ¢4	• ₅	NORMALIZED ERROR
	5	0.2199	0.2506	0.04155	0 4156	0.07847	0.5497
SRSE .	3	0.2100	• 0,2390	0,04135	-0,4150	-0.07847	0.5407
	10	0.2176	0,2928	0.07486	-0.2561	-0,1682	-0,8035
	25	0.2137	0,3011	0.08354	-0.1934	-0,1879	0.8872
, VNIO	50	0.2076	0,2992	0.08611	-0,1603	-0.1546	0.9044
SEUD	75	0.2025	0.2976	0.08969	-0.1305	-0.1081	0.9130
P.	10 0	0.1982	0.2961	0.09082	-0,1056	-0.0654	0.9199
			· · · · · · · · · · · · · · · · · · ·			******	
х.	5.	0.2126	0.1407	-0.07118	-0,9829	0.2575	0.08469
PPRO	10	0.1835	0.1252	-0.04103	-0.9497	0,2355	0.1035
IC A	25 [°]	0.2167	0,1960	-0.06142	-0.9101	0.2858	0.1137
HAST	50	0.1878	0.1088	-0,04592	-0.5546	-0.05058	. 0.4255
STOC	75	0.1973	0.06805	0.03884	-0.5079	0.02452	0.4387
HITIN	100	0.1841	0.01295	0.02091	-0,4835	0.005042	0.4716

1

•

Figure 6.4 Results in Parameter Estimation and the Normalized Errors

1 mg -

89

.

.

Figure 6.7b Comparison of Impulse Responses

NOISE	MEAN SQUARE ERI	≀OR
RATIO (\$)	STEP RESPONSE (x10 ⁻²)	IMPULSE RESPONSE (x10 ⁻⁴)
<u>ر</u> 5	0.1122	0.2367
ய 10 ஜ	0.07293	0.2759
NAER 25	. 0.1108	0.5449
10g · 50	1.3490	2.1173
BS 75	3,8398	5.0463
100	6.6374	8.4712
Rox.	0.1186	0 2367
API	0.4299	0,2319
STIC	0.4288	0.2518
25 HD	0.2245	3.0333
0LS 50 (11.7404	20.811
任 75	14.086	24.0609
100	C 28.6127	46.859

.

•

Figure 6.8 Mean Square Errors in Step Responses and Impulse Responses

72

,

CHAPTER SEVEN

CONCLUSIONS

The theories presented in this thesis result in two algorithms for on-line system identification. The first one is the matrix pseudoinverse algorithm. A fundamental property of this method is that the estimates are optimal in the sense that the residual error is minimized.

The second algorithm is an extension of the first one aiming at further improving the estimation by removing the bias in the estimates due to measurement noise. The mechanism employed is the introduction of a filter obtained from the properties of the noise present in the system. The estimation of the noise properties and hence the construction of the filter is itself an on-line estimation process being carried out in parallel with the pseudoinverse method. The tool to this end is the use of stochastic approximation which is also computationally simple. As a result, incorporation of the stochastic approximation into the original scheme does not result in serious degradation in efficiency.

The upgrading of the program to accommodate higher order systems can be easily done by simply expanding the data block to provide enough room as a working area. All other instructions remain unchanged. However, high order models are usually not necessary in many engineering applications. Very complex systems can sometimes be approximated by second or third order models. For example, Sinha and Bereznai [22] have modelled the dynamics of the nuclear reactor power generating station in Douglas Point by a second order model. This second order model which is being updated on-line is subsequently used for controller design. This example may serve as a justification for choosing only a second order example in the present study. Also of importance as a reminder, simulation of the system on the analog computer bearsclose resemblance to the actual situations where identification might be employed. In the industrial setting, transducers are used to make such measurements as temperature and speed in terms of electrical voltages. These voltages are being sampled just as we have done in the present study.

We can see from the results that the convergence property of both algorithms are clearly and nicely exhibited even in high noise environment. The accuracy in estimation are quite naturally deteriorating with the increase in the amount of noise. Introduction of filtering, however, greatly enhances this accuracy at the expense of a relatively small amount of computation time.

However, there remains room for further improvement. A common problem in applying stochastic approximation is the difficulty in choosing an appropriate gain factor that would best suit a particular situation. No systematic method yet exists. It would be a worthwhile research area to devise an iterative scheme by which an optimal prediction of this gain factor can be done on-line together with what we have already developed. A point of caution is in order. We have to watch out for the amount of extra computation thereby introduced. A time consuming method would destroy the major appeal of our present approach which is computational simplicity.

APPENDIX

4

j

١

Program Listing

2 .GLOBL DIALOG 3 .GLOBL \$ADR, \$SBR, \$MLR, \$DVR, \$POLSH 4 000000 R0=20 5 000001 R1=71 6 000002 R2=72 7 000003 R3=73 8 000002 R2=72 9 000005 R5=75 10 000007 PC=7 12 ; 13 .SBTIL MACRO DEFINITIONS 14 ; 15 .MACRO MIUL A, B, C, ROWA, COLA, COLB 16 JSR R5, MMUL 17 .WORD A, B, C 18 .WORD ROWA, COLA, COLB 19 .ENDM 20 .MACRO MADD A, B, C, ROW, COL 21 .WORD A, B, C, ROW, COL 22 .WORD ROW, COL 23 .WORD A, B, C, ROW, COL 24 .ENDM 25 .MACRO MSUE A, B, SC, ROW, COL 26 .WORD A, B, SC 27 .WORD A, B, SC 28 .WORD A, B, SC 29 .ENDM 30 .MACRO NSC A, B, SC, ROW, COL 31 .SR 32 .WORD A, A, S, SC	1	•		.TITLE	IDENT		
3 .GLOBL \$ADR, \$SBR, \$MLR, \$DVR, \$POLSH 4 000000 R0=Z0 5 000001 R1=Z1 6 000002 R2=Z2 7 000003 R3=Z3 8 000005 R3=Z3 9 000005 R3=Z3 10 000005 R3=Z3 11 000007 PC=Z7 12 ; 13 .SBTIL MACRO DEFINITIONS 14 ; 15 .MACRO MIUL A,B,C,ROWA,COLA,COLB 16 JSR R5,MMUL 17 .WORD A,B,C,ROW,COL 18 .WORD A,B,C 29 .MACRO MADD A,B,C,ROW,COL 21 .WORD A,B,C 22 .WORD A,B,C 23 .WORD A,B,C 24 .ENDM 25 .MACRO MSUB A,B,C,ROW,COL 26 .WORD A,B,C 27 .WORD A,B,C 28 .WORD A,B,SC 29 .ENDM 30 .MACRO DSC A,B,SC,ROW,COL 31 JSR R5,SDSC .WORD A,B,SC	2		GLOBL	DIALOG			
4 000000 R0=Z0 5 000002 R2=Z2 7 000002 R2=Z2 7 000003 R3=Z3 8 000005 R3=Z5 10 000005 SP=Z5 11 000005 SP=Z5 12 ; 13 .SBTL MACRO DEFINITIONS 14 ; 15 .MACRO MIUL A, B, C, ROWA, COLA, COLB 16 JSR R5, MMUL 17 .WORD A, B, C .WORD ROWA, COLA, COLB 18 .WORD A, B, C .WORD ROW, COL 21 .WORD ROW, COL 22 .WORD ROW, COL 23 .WORD ROW, COL 24 .WORD ROW, COL 25 .MACRO MSUB A, B, C, ROW, COL 26 JSR R5, MSUB .WORD A, B, SC .WORD A, B, SC .WORD A, B, SC .WORD A, A, ST 36 .MACRO DSC A, B, SC, ROW, COL 37 <td< td=""><td>3</td><td>•</td><td>GLOBL</td><td>SADR, SSBF</td><td>R, SMLR, SD</td><td>VH, SPOL</td><td>SH</td></td<>	3	•	GLOBL	SADR, SSBF	R, SMLR, SD	VH, SPOL	SH
5 000002 R2: 22 7 000003 R3: 23 8 000004 R4: 24 9 000005 SP: 25 10 000007 PC: 27 12 ; 13 .SBTTL MACRO DEFINITIONS 14 ; 15 .MACRO MIUL A, B, C, ROWA, COLA, COLB 16 JSR R5, MMUL 17 .WORD ROWA, COLA, COLB 18 .WORD ROWA, COLA, COLB 19 .WORD ROWA, COLA, COLB 19 .WORD A, B, C, ROW, COL 21 JSR R5, MADD 22 .WORD A, B, C, ROW, COL 23 .WORD A, B, C, ROW, COL 24 .WORD A, B, C, ROW, COL 25 .MACRO MSUB A, B, C, ROW, COL 26 .WORD A, B, SC 27 .WORD A, B, SC 28 .WORD A, B, SC 30 .MACRO MSC A, B, SC, ROW, COL 31 JSR R5, MSC 32 .WORD A, B, SC 33 .WORD A, B, SC 34 .WORD A, B, SC 35 .MACRO MSC A, B, SC, ROW, COL 36 .MACRO MSC A, B, SC, ROW,	4	000000	RØ= ZØ	•	•	-	
6 000002 R2= 22 7 000003 R3= 23 8 000004 R4= 24 9 000005 R5= 25 10 000005 R5= 25 11 000005 PC= 27 12 ; 13 .SBTL MACRO DEFINITIONS 14 ; 15 .MACRO MIDL A, B, C, ROWA, COLA, COLB 16 JSR R5, MAUL 17 .WORD A, B, C 18 .WORD A, B, C 19 .WORD A, B, C, ROW, COL 21 .WORD A, B, C 22 .WORD A, B, C 23 .WORD A, B, C 24 .WORD A, B, C 25 .MACRO MSUB A, B, C, ROW, COL 26 .WORD A, B, SC 27 .WORD A, B, SC 28 .WORD A, B, SC 29 .WORD A, B, SC 29 .WORD A, B, SC 30 .MACRO MSUB A, B, SC, ROW, COL 31 .WORD A, B, SC 32 .WORD A, B, SC 33 .WORD A, B, SC 34 .ENDM 35 .MACRO MIRN A, AT, ROW, COL	5	000001	R1=71			•	•
7 909003 R3=23 8 909004 R4=24 9 909005 R5=25 10 909006 SP=26 11 909006 SP=27 12 :	6	000002	R2=72				
8 000004 R4=24 9 000005 R5=25 10 000007 PC=27 12 ; 13 .SBTL MACRO DEFINITIONS 14 ; 15 .MACRO MIUL A,B,C,ROWA,COLA,COLB 16 JSR R5,MMUL 17 .WORD A,B,C 18 .WORD A,B,C 19 .WORD A,B,C 20 .MACRO MADD A,B,C,ROW,COL 21 .WORD A,B,C 22 .WORD A,B,C 23 .WORD A,B,C 24 .WORD A,B,C 25 .MACRO MSUB A,B,C,ROW,COL 26 .WORD A,B,C 27 .WORD A,B,C 28 .WORD A,B,C 29 .WORD A,B,C 20 .MACRO NSC A,B,SC,ROW,COL 21 .WORD A,B,SC 22 .WORD A,B,SC 23 .WORD ROW,COL 24 .WORD A,B,SC 25 .WORD A,B,SC 26 .WORD A,B,SC 27 .WORD A,B,SC 33 .MACRO DSC A,B,SC,ROW,COL 34 <td< td=""><td>1</td><td>000003</td><td>R3=Z3</td><td></td><td></td><td>•</td><td></td></td<>	1	000003	R3=Z3			•	
9 000005 R5=25 10 000006 SP=26 11 000007 PC=27 12 ;	, ,	000004	$R_{4}=Z_{4}$				•
10 000006 SP=26 11 000007 PC=27 12 ; 13 .SBTTL MACRO DEFINITIONS 14 ; 15 .MACRO MIUL A,B,C,ROWA,COLA,COLB 16 JSR R5,MMUL 17 .WORD A,B,C 18 .WORD ROWA,COLA,COLB 19 .WORD A,B,C 20 .MACRO MADD A,B,C,ROW,COL 21 .WORD A,B,C 22 .WORD A,B,C 23 .WORD A,B,C 24 .ENDM 25 .MACRO MSUB A,B,C,ROW,COL 26 .WORD A,B,C 27 .WORD A,B,C 28 .WORD A,B,C 29 .WORD A,B,C 29 .WORD A,B,SC 30 .MACRO MSC A,B,SC,ROW,COL 31 JSR R5,MSC 32 .WORD A,B,SC 33 .WORD A,B,SC 34 .ENDM 35 .MACRO DSC A,B,SC,ROW,COL 36 .WORD A,A,T,ROW,COL 37 .WORD A,AT,ROW,COL 38 .ENDM 40 <	à	000005	R5=25				
I ØØØØØ7 PC=Z7 12 .SBTTL MACRO DEFINITIONS 13 .SBTTL MACRO DEFINITIONS 14 .MACRO MIUL A,B,C,ROWA,COLA,COLB 15 .MACRO MIUL A,B,C,ROW,COLA,COLB 16 .WORD A,B,C 17 .WORD A,B,C 18 .WORD A,B,C,ROW,COL 19 .WORD A,B,C 20 .MACRO MSUB A,B,C,ROW,COL 21 .WORD A,B,C 22 .WORD ROW,COL 23 .WORD ROW,COL 24 .ENDM 25 .MACRO MSUB A,B,C,ROW,COL 26 .WORD A,B,C 27 .WORD A,B,C 28 .WORD A,B,C 29 .ENDM 30 .MACRO MSC A,B,SC,ROW,COL 31 .WORD A,B,SC 32 .WORD A,B,SC 33 .WORD A,B,SC 34 .SR R5,DSC 35 .MACRO MTRN A,AT,ROW,COL 36 .WORD A,B,SC 37 .ENDM 48 .MACRO SAVE RA,RB,RC,RD,RE,RF	10	000006	SP=26	•	•		
12 ;SBTTL MACRO DEFINITIONS 14 ;MACRO MIUL A,B,C,ROWA,COLA,COLB 15 .MACRO MIUL A,B,C,ROWA,COLA,COLB 16 JSR R5,MMUL 17 .WORD A,B,C 18 .WORD ROWA,COLA,COLB 19 .WORD ROW,COL 21 JSR R5,MADD 22 .WORD A,B,C,ROW,COL 23 .WORD A,B,C 24 .ENDM 25 .MACRO MSUB A,B,C,ROW,COL 26 JSR R5,MSUB 27 .WORD A,B,C 28 .WORD ROW,COL 29 .WORD ROW,COL 20 .WORD ROW,COL 21 JSR R5,MSUB 22 .WORD ROW,COL 23 .WORD ROW,COL 24 .WORD A,B,SC 25 .WORD A,B,SC 26 .WORD A,B,SC 31 JSR R5,DSC 32 .WORD A,B,SC,ROW,COL 33 .WORD A,B,SC 34 .ENDM 35 .MACRO MIRN A,AT,ROW,COL 36 .WORD A,AT 37 .WORD A,AT <	11	000007	PC=27				•
13 .SBTIL MACRO DEFINITIONS 14 ; 15 .MACRO MIUL A,B,C,ROWA,COLA,COLB 16 JSR R5,MMUL 17 .WORD A,B,C 18 .WORD ROWA,COLA,COLB 19 .ENDM 20 .MACRO MADD A,B,C,ROW,COL 21 JSR R5,MADD 22 .WORD A,B,C 23 .WORD A,B,C 24 .ENDM 25 .MACRO MSUB A,B,C,ROW,COL 26 JSR R5,MSUB 27 .WORD A,B,C 28 .WORD A,B,SC 29 .ENDM 30 .MACRO NSC A,B,SC,ROW,COL 31 JSR R5,MSC 32 .WORD A,B,SC 33 .WORD A,B,SC 34 .ENDM 35 .MACRO DSC A,B,SC,ROW,COL 36 .WORD A,B,SC 37 .WORD A,B,SC 38 .WORD A,B,SC 39 .ENDM 40 .MACRO MIRN A,AT,ROW,COL 41 JSR R5,MTRN 42 .WORD A,AT .WORD A,AT	12		•				
14 ; 15 .MACRO MIUL A,B,C,ROWA,COLA,COLB 16 JSR R5,MMUL 17 .WORD A,B,C 18 .WORD ROWA,COLA,COLB 19 .ENDM 20 .MACRO MADD A,B,C,ROW,COL 21 JSR R5,MADD 22 .WORD A,B,C 23 .WORD A,B,C 24 .ENDM 25 .MACRO MSUB A,B,C,ROW,COL 26 .WORD A,B,C 27 .WORD A,B,C 28 .WORD A,B,C 29 .ENDM 20 .MACRO MSUB A,B,C,ROW,COL 21 .WORD A,B,SC 28 .WORD A,B,SC 29 .ENDM 30 .MACRO DSC A,B,SC,ROW,COL 31 JSR R5,DSC 32 .WORD A,B,SC 33 .WORD A,B,SC 34 .ENDM 35 .MACRO DSC A,B,SC,ROW,COL 36 .MACRO DSC A,B,SC,ROW,COL 37 .WORD A,A,T,ROW,COL 38 .WORD A,AT,ROW,COL 39 .ENDM 42	13		SBTTL	MACRO DEI	FINITIONS	5	
15 .MACRO MIUL A,B,C,ROWA,COLA,COLB 16 JSR R5,MMUL 17 .WORD A,B,C 18 .WORD ROWA,COLA,COLB 19 .ENDM 20 .MACRO MADD A,B,C,ROW,COL 21 JSR R5,MADD 22 .WORD A,B,C 23 .MACRO MSUB A,B,C,ROW,COL 24 .ENDM 25 .MACRO MSUB A,B,C,ROW,COL 26 JSR R5,MSUB 27 .WORD A,B,C 28 .WORD ROW,COL 29 .ENDM 30 .MACRO MSC A,B,SC,ROW,COL 31 JSR R5,MSC 32 .WORD A,B,SC 34 .ENDM 35 .MACRO DSC A,B,SC,ROW,COL 34 .ENDM 35 .MACRO DSC A,B,SC,ROW,COL 34 .ENDM 35 .MACRO MSC A,B,SC,ROW,COL 36 JSR R5,MTRN 47 .WORD A,A,AT,ROW,COL 38 .WORD A,AT,ROW,COL 49 .MACRO MRIN A,AT,ROW,COL 41 JSR R5,MTRN 42 .WORD ROW,COL	14		:				
16 JSR R5, MMUL 17 .WORD A,B,C 18 .WORD ROWA,COLA,COLB 19 .ENDM 20 .MACRO MADD 21 JSR R5, MADD 22 .WORD A,B,C 23 .WORD A,B,C 24 .WORD A,B,C 25 .MACRO MSUB A,B,C, ROW,COL 24 .ENDM 25 .MACRO MSUB A,B,C, ROW,COL 26 JSR R5, MSUB 27 .WORD A,B,C 28 .WORD ROW,COL 29 .ENDM .SC 30 .MACRO MSC A,B,SC,ROW,COL 31 JSR R5,MSC 32 .WORD A,B,SC 33 .WORD ROW,COL 34 .ENDM .SC 35 .MACRO DSC A,B,SC,ROW,COL 34 .ENDM .SC 35 .MACRO MACRO 36 .JSR R5,MSC 37	15		MACRO	MILL A.B.	.C .R OVA .C	OLA COL	В
17	16		••••••	JSR	R5.MMUL		
18 .WORD ROWA, COLA, COLB 19 .ENDM 20 .MACRO MADD A, B, C, ROW, COL 21 JSR R5, MADD 22 .WORD A, B, C 23 .WORD ROW, COL 24 .ENDM 25 .MACRO MSUB A, B, C, ROW, COL 26 JSR R5, MSUB 27 .WORD A, B, C 28 .WORD ROW, COL 29 .ENDM .ENDM 30 .MACRO MSC A, B, SC, ROW, COL 31 JSR R5, MSC 32 .WORD A, B, SC 33 .WORD A, B, SC 34 .ENDM . 35 .MACRO DSC A, B, SC, ROW, COL 34 .ENDM . 35 .MACRO MSC A, A, AT, ROW, COL 36 .WORD A, AT, ROW, COL 37 .WORD A, AT, ROW, COL 41 JSR R5, MTRN 42 .WORD A, AT 43 .WORD	17			WORD	A.B.C	•	
19 .ENDM 20 .MACRO MADD A,B,C,ROW,COL 21 JSR R5,MADD 22 .WORD A,B,C 23 .WORD ROW,COL 24 .ENDM 25 .MACRO MSUB A,B,C,ROW,COL 26 JSR R5,MSUB 27 .WORD A,B,C 28 .WORD ROW,COL 29 .WORD ROW,COL 29 .WORD A,B,SC 30 .MACRO MSC A,B,SC,ROW,COL 31 JSR R5,MSC 32 .WORD A,B,SC 33 .WORD A,B,SC 34 .ENDM . 35 .MACRO DSC A,B,SC,ROW,COL 34 .ENDM . 35 .MACRO MACRO 36 .WORD A,B,SC 37 .WORD A,B,SC 38 .WORD A,AT 49 .ENDM . 41 .WORD A,AT 42 .WORD	18			WORD	ROWA .COL	A.COLB	
23 .MACRO MADD A,B,C,ROW,COL 21 JSR R5,MADD 22 .WORD A,B,C 23 .WORD ROW,COL 24 .ENDM 25 .MACRO MSUB A,B,C,ROW,COL 26 JSR R5,MSUB 27 .WORD A,B,C .WORD 28 .WORD A,B,C .WORD 29 .ENDM .WORD A,B,SC 30 .MACRO MSC A,B,SC,ROW,COL 31 JSR R5,MSC 32 .WORD A,B,SC .WORD A,B,SC 33 .WORD A,B,SC .WORD A,B,SC 34 .ENDM .WORD A,B,SC 35 .MACRO DSC A,B,SC,ROW,COL 34 .WORD A,B,SC .WORD A,B,SC 35 .MACRO DSC A,B,SC,ROW,COL 36 .WORD ROW,COL .ENDM 37 .WORD A,AT,ROW,COL .ENDM 48 .WORD ROW,COL .ENDM 49 .MACRO SAVE RA,RB,RC,RD,RE,RF 46 MOV RA,CSP) .IIF DF RB, MOV RD,-(SP) 47 .IIF DF RC, MOV RC,-	19			ENDM			
21 JSR R5, MADD 22 .WORD A, B, C 23 .WORD R0W, COL 24 .ENDM 25 .MACRO MSUB 26 JSR R5, MSUB 27 .WORD A, B, C 28 .WORD ROW, COL 26 JSR R5, MSUB 27 .WORD A, B, C 28 .WORD ROW, COL 29 .ENDM .ENDM 30 .MACRO MSC A, B, SC, ROW, COL 31 JSR R5, MSC 32 .WORD A, B, SC 33 .WORD ROW, COL 34 .ENDM 35 .MACRO DSC A, B, SC, ROW, COL 34 .WORD A, B, SC 35 .MACRO DSC A, B, SC, SOC 36 .WORD A, B, SC 37 .WORD A, B, SC 38 .WORD A, B, SC 49 .MACRO MACRO 44 .WORD RA, T	2.9		MACRO	MADD A.B.	.C.ROW.CC)L	
22 .WORD A, É, C 23 .WORD ROW, COL 24 .ENDM 25 .MACRO MSUB A, B, C, ROW, COL 26 JSR R5, MSUB 27 .WORD A, B, C 28 .WORD ROW, COL 29 .ENDM . 30 .MACRO MSC A, B, SC, ROW, COL 31 JSR R5, MSC 32 .WORD A, B, SC 33 .WORD A, B, SC 34 .WORD ROW, COL 35 .MACRO DSC A, B, SC, ROW, COL 36 .WORD A, B, SC 37 .WORD A, B, SC 38 .WORD A, B, SC 39 .MACRO DSC A, B, SC, ROW, COL 41 .SR R5, MSR 38 .WORD A, AT .WORD A, AT .WORD .WORD A, AT .WORD .WORD A, AT .WORD .MACRO SAVE RA, RB, RC, RD, RE, RF MOV RA, -(SP)<	21		••••••	JSR	R5-MADD	* > ,	
	22			WORD	A,B,C		
24 .ENDM 25 .MACRO MSUB A,B,C,ROW,COL 26 JSR R5,MSUB 27 .WORD A,B,C 28 .WORD ROW,COL 29 .ENDM 30 .MACRO MSC A,B,SC,ROW,COL 31 JSR R5,MSC 32 .WORD A,B,SC 33 .WORD ROW,COL 34 .ENDM 35 .MACRO DSC A,B,SC,ROW,COL 34 .ENDM 35 .MACRO DSC A,B,SC,ROW,COL 36 .WORD ROW,COL 37 .WORD ROW,COL 38 .WORD ROW,COL 39 .ENDM .WORD 40 .MACRO MTRN A,AT,ROW,COL 41 JSR R5,MTRN 42 .WORD RA,AT 43 .WORD A,AT 44 .WORD A,AT 45 .MACRO SAVE RA,RB,RC,RD,RE,RF 46 .MOV RA,-(SP) 41 .IIF DF R	23			WORD	ROW COL		
25 .MACRO MSUB A,B,C,ROW,COL 26 JSR R5,MSUB 27 .WORD A,B,C 28 .WORD ROW,COL 29 .ENDM 30 .MACRO MSC A,B,SC,ROW,COL 31 JSR R5,MSC 32 .WORD A,B,SC 33 .WORD A,B,SC 34 .ENDM 35 .MACRO DSC A,B,SC,ROW,COL 36 .WORD A,B,SC 37 .WORD A,B,SC 38 .WORD A,B,SC 39 .WORD A,B,SC 38 .WORD A,B,SC 39 .WORD A,B,SC 40 .MACRO MTRN A,AT,ROW,COL 41 JSR R5,MTRN 42 .WORD A,AT 43 .WORD A,AT 44 .ENDM 45 .MACRO SAVE RA,RB,RC,RD,RE,RF 46 MOV RA,-(SP) 47 .IIF DF RB, MOV RB,-(SP) 48 .IIF DF RB, MOV RC,-(SP) 49 .IIF DF RB, MOV RC,-(SP) 50 .IIF DF RE, MOV RE,-(SP) 51 .IIF DF RF, MOV RE,-(SP) .IIF DF RF, MOV RF,-(SP)	24		*	. ENDM	•		
26 JSR R5,MSUB 27 .WORD A,B,C 28 .WORD ROW,COL 29 .ENDM 30 .MACRO MSC A,B,SC,ROW,COL 31 JSR R5,MSC 32 .WORD A,B,SC 33 .WORD ROW,COL 34 .ENDM 35 .MACRO DSC A,B,SC,ROW,COL 36 .WORD ROW,COL 36 .WORD A,B,SC 37 .WORD A,B,SC 38 .WORD A,B,SC 39 .WORD A,B,SC 40 .MACRO MTRN A,AT,ROW,COL 41 JSR R5,MTRN 42 .WORD A,AT 43 .WORD ROW,COL 44 .ENDM 45 .MACRO SAVE RA,RB,RC,RD,RE,RF 46 MOV RA,=(SP) 47 .IIF DF RE, MOV RE,-(SP) 48 .IIF DF RE, MOV RE,-(SP) 49 .IIF DF RE, MOV RE,-(SP) 50 .IIF DF RE, MOV RE,-(SP) 51 .IIF DF RF, MOV RE,-(SP) .IIF DF RF, MOV RE,-(SP)	25		.MACRO	MSUB A,B	,C,ROW,CC	յլ	, ,
27 .WORD A,B,C 28 .WORD ROW,COL 29 .ENDM 30 .MACRO MSC A,B,SC,ROW,COL 31 JSR R5,MSC 32 .WORD A,B,SC 33 .WORD ROW,COL 34 .ENDM 35 .MACRO DSC A,B,SC,ROW,COL 36 .WORD A,B,SC 37 .WORD A,B,SC 38 .WORD A,B,SC 39 .WORD A,B,SC 38 .WORD ROW,COL 39 .ENDM .WORD 40 .MACRO MTRN A,AT,ROW,COL 41 JSR R5,MTRN 42 .WORD A,AT 43 .WORD A,AT 44 .WORD RA,=(SP) 45 .MACRO SAVE RA,RB,RC,RD,RE,RF 46 .MACRO SAVE RA,RB,RC,RD,RE,RF 46 .IIF DF RE, MOV 47 .IIF DF RC, MOV 48 .IIF DF RE, MOV	26		-	JSR	R5,MSUB		
28 .WORD ROW,COL 29 .ENDM 30 .MACRO MSC A,B,SC,ROW,COL 31 JSR R5,MSC 32 .WORD A,B,SC 33 .WORD ROW,COL 34 .WORD ROW,COL 35 .MACRO DSC A,B,SC,ROW,COL 36 .WORD A,B,SC 37 .WORD A,B,SC 38 .WORD A,B,SC 39 .WORD A,B,SC 40 .MACRO MTRN A,AT,ROW,COL 41 JSR R5,MTRN 42 .WORD A,AT 43 .WORD A,AT 44 .WORD ROW,COL 45 .MACRO SAVE RA,RB,RC,RD,RE,RF 46 .MACRO SAVE RA,RB,RC,RD,RE,RF 46 .MOV RA,-(SP) 47 .IIF DF RB, MOV RD,-(SP) 48 .IIF DF RC, MOV RD,-(SP) 49 .IIF DF RE, MOV RE,-(SP) 50 .IIF DF RF, M	27			.WORD	A,B,C	,	
29 .ENDM 30 .MACRO MSC A,B,SC,ROW,COL 31 JSR R5,MSC 32 .WORD A,B,SC 33 .WORD ROW,COL 34 .ENDM 35 .MACRO DSC A,B,SC,ROW,COL 36 .WORD ROW,COL 36 JSR R5,DSC 37 .WORD A,B,SC 38 .WORD ROW,COL 39 .WORD ROW,COL 40 .MACRO MTRN A,AT,ROW,COL 41 JSR R5,MTRN 42 .WORD A,AT 43 .WORD A,AT 44 .WORD ROW,COL 45 .MACRO SAVE RA,RB,RC,RD,RE,RF 46 MOV RA,=(SP) 47 .IIF DF RB, MOV RB,-(SP) 48 .IIF DF RC, MOV RC,-(SP) 49 .IIF DF RD, MOV RD,-(SP) 50 .IIF DF RE, MOV RE,-(SP) 51 .IIF DF RF, MOV	28			• WORD	ROW,COL		
30 .MACRO MSC A,B,SC,ROW,COL 31 JSR R5,MSC 32 .WORD A,B,SC 33 .WORD ROW,COL 34 .ENDM 35 .MACRO DSC A,B,SC,ROW,COL 36 JSR R5,DSC 37 .WORD A,B,SC 38 .WORD A,B,SC 39 .WORD ROW,COL 40 .MACRO MTRN A,AT,ROW,COL 41 JSR R5,MTRN 42 .WORD A,AT 43 .WORD A,AT 44 .WORD ROW,COL 45 .MACRO SAVE 46 .WORD A,AT 47 .WORD ROW,COL 54 .ENDM . 45 .MACRO SAVE RA,RB,RC,RD,RE,RF 46 MOV RA,=(SP) 47 .IIF DF RE, MOV RE,-(SP) 48 .IIF DF RD, MOV RD,-(SP) 50 .IIF DF RE, MOV RE,-(SP)	29			. ENDM			
31 JSR R5,MSC 32 .WORD A,B,SC 33 .WORD ROW,COL 34 .ENDM 35 .MACRO DSC 36 JSR R5,DSC 37 .WORD A,B,SC 38 .WORD A,B,SC 39 .WORD A,B,SC 40 .MACRO MTRN 41 JSR R5,MTRN 42 .WORD A,AT 43 .WORD A,AT 44 .WORD ROW,COL 54 .MACRO SAVE 45 .MACRO SAVE RA,RB,RC,RD,RE,RF 46 MOV RA,=(SP) 47 .IIF DF RB, MOV RC,-(SP) 48 .IIF DF RC, MOV RC,-(SP) 49 .IIF DF RD, MOV RE,-(SP) 51 .IIF DF RF, MOV RE,-(SP) 51 .IIF DF RF, MOV RF,-(SP) 52 .ENDM .ENDM .SC <td>30</td> <td></td> <td>• MACRO</td> <td>MSC A,B,S</td> <td>C, ROW, CO</td> <td>)L</td> <td></td>	30		• MACRO	MSC A,B,S	C, ROW, CO)L	
32 .WORD A,B,SC 33 .WORD ROW,COL 34 .ENDM 35 .MACRO DSC A,B,SC,ROW,COL 36 JSR R5,DSC 37 .WORD A,B,SC 38 .WORD A,B,SC 39 .WORD A,B,SC 40 .WORD A,B,SC 41 JSR R5,MTRN 42 .WORD A,AT 43 .WORD A,AT 44 .WORD ROW,COL 34 .WORD A,AT 43 .WORD ROW,COL 34 .WORD ROW,COL 45 .MACRO SAVE 46 .WORD ROW,COL 47 .WORD ROW,COL 48 .IIF DF RB, MOV RB,-(SP) 47 .IIF DF RC, MOV RC,-(SP) 48 .IIF DF RD, MOV RC,-(SP) 49 .IIF DF RE, MOV RE,-(SP) 50 .IIF DF RE, MOV RE,-(SP) .IIF DF RF, MOV RF	31			JSR	R5,MSC		
33.WORDROW,COL34.ENDM35.MACRODSC A,B,SC,ROW,COL36JSRR5,DSC37.WORDA,B,SC38.WORDROW,COL39.ENDM40.MACROMTRN A,AT,ROW,COL41JSRR5,MTRN42.WORDA,AT43.WORDA,AT44.WORDROW,COL54.ENDM45.MACROSAVE RA,RB,RC,RD,RE,RF46MOVRA, -(SP)47.IIF DF RB,MOV48.IIF DF RC,MOV49.IIF DF RC,MOV49.IIF DF RE,MOV50.IIF DF RF,MOV51.IIF DF RF,MOV52.ENDM	32			WORD	A,B,SC		
34.ENDM35.MACRODSC A,B,SC,ROW,COL36JSRR5,DSC37.WORDA,B,SC38.WORDROW,COL39.ENDM40.MACROMTRN A,AT,ROW,COL41JSRR5,MTRN42.WORDA,AT43.WORDROW,COL44.ENDM45.MACROSAVE RA,RB,RC,RD,RE,RF46MOVRA, -(SP)47.IIFDF48.IIFDF49.IIFDF50.IIFDF51.IIFDF52.ENDM	33			• WORD	ROW,COL	•	
35 .MACRO DSC A,B,SC,ROW,COL 36 JSR R5,DSC 37 .WORD A,B,SC 38 .WORD ROW,COL 39 .ENDM 40 .MACRO MTRN A,AT,ROW,COL 41 JSR R5,MTRN 42 .WORD A,AT 43 .WORD ROW,COL 44 .WORD ROW,COL 45 .MACRO SAVE RA,RB,RC,RD,RE,RF 46 MOV RA,=(SP) 47 .IIF DF RB, MOV RB,-(SP) 48 .IIF DF RC, MOV RC,-(SP) 49 .IIF DF RC, MOV RD,-(SP) 50 .IIF DF RE, MOV RE,-(SP) 51 .IIF DF RF, MOV RE,-(SP) 52 .ENDM	34			. ENUM			
36JSRRJ, DSC37.WORDA,B,SC38.WORDROW,COL39.ENDM40.MACROMTRN A,AT,ROW,COL41JSRR5,MTRN42.WORDA,AT43.WORDROW,COL34.WORDROW,COL45.MACROSAVE RA,RB,RC,RD,RE,RF46MOVRA, -(SP)47.IIF DF RB,MOV48.IIF DF RC,MOV49.IIF DF RC,MOV50.IIF DF RC,MOV51.IIF DF RF,MOV52.ENDM	35		-MACRO	DSC A,B,S	SC,ROW,CC	<i>ال</i>	
37 .WORD A,B,SC 38 .WORD ROW,COL 39 .ENDM 40 .MACRO MTRN 41 JSR R5,MTRN 42 .WORD A,AT 43 .WORD A,AT 43 .WORD ROW,COL 44 .WORD ROW,COL 45 .WORD ROW,COL 46 .WORD ROW,COL 47 .WORD ROW,COL 48 .IIF DF RB, MOV RB,-(SP) 47 .IIF DF RB, MOV RB,-(SP) 48 .IIF DF RC, MOV RC,-(SP) 49 .IIF DF RD, MOV RE,-(SP) 50 .IIF DF RE, MOV RE,-(SP) 51 .IIF DF RF, MOV RE,-(SP) 51 .IIF DF RF, MOV RF,-(SP) .S2 .ENDM	30			JSK	KJ,USC		
38 . WORD ROW,COL 39 . ENDM 40 .MACRO MTRN A,AT,ROW,COL 41 JSR R5,MTRN 42 .WORD A,AT 43 .WORD ROW,COL 44 .WORD ROW,COL 45 .MACRO SAVE RA,RB,RC,RD,RE,RF 46 .MACRO SAVE RA,RB,RC,RD,RE,RF 46 .MOV RA, = (SP) 47 .IIF DF RB, MOV RB, = (SP) 48 .IIF DF RC, MOV RC, = (SP) 49 .IIF DF RD, MOV RD, = (SP) 50 .IIF DF RE, MOV RE, = (SP) 51 .IIF DF RF, MOV RF, = (SP) 51 .IIF DF RF, MOV RF, = (SP) .S2 .ENDM	31		. `	+WURD			
39. ENDM40.MACRO MTRN A, AT, ROW, COL41JSR42.WORD43.WORD44.ENDM45.MACRO45.MACRO46MOV47.IIF DF RB, MOV48.IIF DF RC, MOV49.IIF DF RC, MOV49.IIF DF RD, MOV50.IIF DF RF, MOV51.IIF DF RF, MOV52.ENDM	38		-	+ WURD	HOW POOL		
41 JSR R5,MTRN 42 .WORD A,AT 43 .WORD ROW,COL 44 .ENDM 45 .MACRO SAVE 46 MOV RA,=(SP) 47 .IIF DF 48 .IIF DF 49 .IIF DF 50 .IIF DF 51 .IIF DF .IIF DF RE, MOV 75 .IIF DF RD, 6 .IIF DF RD, 6 .IIF DF RE, 7 .IIF DF RE, MOV 7 .IIF DF RE, MOV .IIF DF RE, MOV RE,= .S2 .ENDM	39	•	MACDO				
41	40	*	• MACKU	ICD	DR MTDN	• .	·
42 43 43 44 45 45 46 46 47 47 48 48 49 50 50 51 52 40 40 40 40 40 40 40 40 40 40	41	•		JUNDU			
43.ENDM45.MACRO SAVE RA,RB,RC,RD,RE,RF46MOV47.IIF DF RB,48.IIF DF RC,49.IIF DF RC,50.IIF DF RE,51.IIF DF RF,52.ENDM	4 <u>6</u> ^ 1		*	WOND WOND			
 MACRO SAVE RA,RB,RC,RD,RE,RF MOV RA,-(SP) IIF DF RB, MOV RB,-(SP) IIF DF RC, MOV RC,-(SP) IIF DF RD, MOV RD,-(SP) IIF DF RE, MOV RE,-(SP) IIF DF RF, MOV RF,-(SP) ENDM 	40			FNDM	104,000		•
45MOVRA,=(SP)46MOVRA,=(SP)47.IIF DF RB,MOV48.IIF DF RC,MOV49.IIF DF RD,MOV50.IIF DF RE,MOV51.IIF DF RF,MOV52.ENDM	74 AS		MACDO	SAUE DA .	A PC PD	PF PF	
47.IIF DF RB,MOVRB,-(SP)48.IIF DF RC,MOVRC,-(SP)49.IIF DF RD,MOVRD,-(SP)50.IIF DF RE,MOVRE,-(SP)51.IIF DF RF,MOVRF,-(SP).52.ENDM	46		• MUNU		RA (SP)	,	
48.IIF DF RC,MOVRC,-(SP)49.IIF DF RD,MOVRD,-(SP)50.IIF DF RE,MOVRE,-(SP)51.IIF DF RF,MOVRF,-(SP).52.ENDM	Δ7 .			IIF DF	RB',	MOV	RB:-(SP)
49.IIF DF RD,MOVRD,-(SP)50.IIF DF RE,MOVRE,-(SP)51.IIF DF RF,MOVRF,-(SP).52.ENDM	48			IIF DF	RC.	MOV	RC(SP)
50. IIF DF RE,MOVRE,-(SP)51. IIF DF RF,MOVRF,-(SP).52. ENDM	49		•	IIF DF	RD.	MOV	RD(SP)
51 .IIF DF RF, MOV RF,-(SP) .52 .ENDM	50	•	,	IIF DF	RE.	MOV	RE(SP)
.52 . ENDM	51		•	.IIF DF I	RF.	MOV	RF(SP)
	.52			. ENDM	-		

53	.MACRO	UNSAVE R	A,RB,RC,F	D.RE.RF	
54		.IIF DF	RF.	MÓV	(SP)+.RF
55		IIF DF	RE.	MOV	(SP)+RE
56		INF DF	RD.	MOV	(SP) + RD
57		IIF DF	RC,	MOV	(SP)-,RC
58		.IIF DF	RB,	MOV .	(SP)+,RB
59		MOV	(SP)+.RA	l l	
60		ENDM	•	•	
61	MACRO	POPFA			
62	••••••	MOV	(SP)+.A		
63		MOV	(SP) + A+	-2	•
64		ENDM			
65	MACRO	PUSHE A			
66	• 111 011 0	MOV	A+2 . + (SF	23	
67		MOV	$\Delta = (SP)$		
		ENDM	ну - (0) У		
00	MACDO	EMUL A D	c		
20	• PIACKU	THUL APD	DE MULER		
16		JON		-	
11		• WURD	A , D , U	•	,
72		- ENDM	•		
13	• MACRO	FDIV A,B	•6		
74		JSR	R5,DIVFF	•	
75 -		.WORD	A,B,C		
76		• ENCM	-		
77	• MACRO	FADD A,B	, C		
78		JSR	R5, ADDFF)	
79		.WORD	A,B,C		
80		. ENDM			
81	• MACRO	FSUB A,B	, C		
82		JSR	R5,SJBFF		
83		• WORD	A,B,C ·		
84		. ENDM			
85	. MACRO	MOVF A,B			
86		MOV	A,B		
87 .		MOV	A+2,8+2		
88		. ENDM			
89	MACRO	FSHIFT A	NUM		•
90	÷	JSR	R5 SHIFT	•	
91 .		WORD	A.NIM	•	
92		ENDM	2 11 y 12 01 y	· · ·	
~ •		A #494.94.91			

••

76

.

A

.

,

2 3 4 5 THIS IS THE MAIN PROGRAM 6 7 8 IT FIRST JUMPS TO SUBROUTINE DIALOG TO 9 OBTAIN THE FOLLOWING PARAMETERS :-10 'IFTR-- - TO SEE IF FILTERING IS DESIRED 11 IFTRST-- IF SO, WHEN SHOULD IT BEGIN 12 GAIN-- AND WHAT WOULD BE THE VALUE OF 13 THE GAIN FACTOR FOR STOCH. APPROX. 74 19 IDELAY-- A PARAMETER TO MODIFY THE SAMPLING 16 FREQUENCY 17 MAXAD --- MAX. NO. OF SAMPLES TO BE TAKEN 18 19 NEXT, SUBROUTINE CLOCK INITIATES THE SAMPLING PROCESS AND PROCEED WITH THE 20 21 ALGORITHM SELECTED I.E. 22 ALGORITHM 1 -- MATRIX PSEUDOINVERSE ALGORITHM 2 -- COMBINED PSEUDOINVERSE 23 24 AND STOCHASTIC APPROX. 25 26. SUBROUTINE PRINT MONITORS THE PROGRESS OF THE PROGRAM AND PRINTS OUT THE ESTIMATES 27 28 WHEN THEY ARE READY 29 30 31 32 R5, DIALOG: 33 00300 204567 START: JSR INITIAL DIALOGE 003000G 34 00004 004567 JSR R5,CLOCK; STARTS SAMPLING 003532 35 00010 000001 WAIT 36 00012 004567 JSR R5.PRINT: STARTS PRINTING 004620 37 00016 000005 RESET 38 00020 000000 HALT 39 00022 104060 15: EMT 60 40 ; 41 2 42 000000 CSECT FTRN 43 44 DATA OBTAINED FROM INITIALIZATION SUBROUTINE 45 46 47 00000 000000 IFTR: .WORD Ø 48 00002 000000 IFTRST: .WORD 0 49 00004 000000 IDELAY: .WORD 0 .WORD Ø 50 00006 000000 MAXAD: .BLKW 2. 51 00010 GAIN:

7 A

77,

. 1 2 3 4		0 00024	CSECT SBITL	PSEUDOIN	VERSE ALGOR	ITHM		
6			j	COMMON	SECTION			
7			, ;	CAL. AT	PHI.Y-ATPHI	.PA.ATPA.	I +ATPA	
8			;	•			-	
96	000024		METHOD	: MMUL	AT,PHI,DUM	IL, ONE, FIV	E,ONE	
10	00044			FSUB	Y, DUMI, DUM	1		
11	00056			MMUL	P,A,PA,FIV	E,FIVE,ON	E	
12	00076			MMUL	AT, PA, DUM2	,ONE,FIVE	,ONE	
13	00110	A0 6707		r AUU CMP	r. UNE, DUME	,DUMZ	TERATIONS	2
14	00130	020121		CMP	AN•K • # 4 ;	>5 I	ICRAILUNS	4
		004000						
15	99136	003156		BGT	PSEUDO			
16	00100		:	201	104000			
17			;	MINIMUM	NORM SECTI	ON		
18			;					
19	00140			MMUL	Q,A,QA,FIV	E,FIVE,ON	Ξ	
29	00160	•		MMUL	AT, QA, DUM3	,ONE,FIVE	,ONE	
21.	00200		•	DSC	QA,15.1,DU	M3,FIVE,O	NC	
. 44			;	UPDATE (·			
24			*	UP DAIL C	a B.		,	
25	00216		,	MMUL	T5.1.QAT.T	5.5.FIVE.	ONE.FIVE	
26	236			MSUB	Q, T5.5,Q,F	IVE, FIVE	,	
27			;					
28			;	UPDATE F	PHI			
29	0.005		;				0.115	
30	00254			MSC	10.1,10.1,	DUMI, FIVE	, ONE	
30	00212	*	•	MADD	FR1912+198	ni,rive,u	NC.	
33			9 •	HPDATE P)			
34			, :	UI PAIL I				
35	00310			DSC	T5.5,T5.5,	DUM3,FIVE	,FIVE	
36	00326			MSC	T5.5, T5.5,	DUM2, FIVE	FIVE	
37	00344			MADD	P, T5.5, P, F	IVE,FIVE		
38	00362			MMUL	PA,QAT,PAQ	AT,FIVE,O	NE,FIVE	
39	00402			MTRN	PAQAT, T5.5	,FIVE,FIVE	5 5 5 6 6 6 6	
40	00416	•		MADU	PAQA1,15.5	,17.7,11Vi	1,71VL 5105	
41	00434			MOLID	17.7,17.7,1	ひひりろ , FI Vと , 1 VE - ET VE	PIVL	
44 14	00452	999167		.IMP	FINSH	I VE JE I VE	•	
	00-110	000126			1 2 17 69 1 1			

.

.

` • •

¥

,

.

				•			79
						• • •	
4	•		;				
5			;	LEACT	COUNDES SECT	TON (K-P)	
6 7			;	LEASI	SQUARES SECT		
8			;				
9			;	UPDATI	EP		
Ø 1	00A74		; PSFUDO:	MMIII	PA.PAT.T5.	5.FIVE.ONE.FIVE	
2	00514		132000	DSC	T5.5,T5.5,	DUM2, FIVE, FIVE	
i3	00532			MSUB	P, T5.5, P, F	IVE,FIVE	•
54			;				
55			;	UPDATI	E PHI		
57	24550		;	MSC	PA.T5.1.DU	MI.FIVE.ONE	
58	00566			DSC	T5.1.T5.1,	DUM2, FIVE.ONE	
9	00604			MADD	PHI, T5.1, P	HI,FIVE,ONE	
0		•	;	41.000			
2			;	ALGURI	LIHM I OR 2		
3	99622	022767	FINSH:	CMP	#Ø,IFTR;	NEED FILTER	ING ?
		000000			· ·		
•	00530	000000		950		NO CKIP	
5 15	00632	001402		JSR	R5'STAPR:	STOCHASTIC APPR	AL GO.
-		001576		~ ~ 11		e.connerte norm	
6	22636	020205	15:	RTS	R 5		

.

.

`~

1				SBTTL	SUBROUTI	NE UPDATE	
2 3 4 5 5				; ; ;	UPDATE Inform. It also	-SUBROUTINE TO MATRIX AS NEW S JUMPS TO FILTER	UPDATE THE SAMPLES COME IN RING IF NEEDED
7				, ,			
8		000640	926767	UPDATE:	CMP	IFTEST AN K.	START FULTERING ?
5			000302	,	0117	11 11.01 91.000 9	DIANI (IDIDALAG)
	~		003766		0.05		
1	Ø 1	00040	002002		JSR	213; R5.FILTER:	YES
•	•	00000	002574		00,1		,
1	2	00654 00654		21\$:	FSHIFT	A, N3;	UPDATING OF
1	J ∆	00004			MOVE	$A+14, N \geq j$	MATRIX
i	5	00710			MOVF	YOLD,A+14;	HERE
1	6	00724			MOVF	Y,YOLD	
1	7.	00740	022767		CMP	#Ø,YOLD;	CHECK IF
			000000				
1	8	00746	001005		BNE	10\$:	YOLD=0
1	9	00750	022767		CMP	#0,YOLD+2	
			020000			•	
2	3	00756	001020		BEG	25	
2	ī	20760	000407		BR	15	
2	2	00762	005767	105:	TST	YOLD	
2	τ	99766	1001006		8 PI	15	
2	4	00770	042767		BIC	#100000 YOLD	
			100000			, ,	
~	c	00776	000776		0.0	0.5	
2	5	01000	052767	15:	BIS	25 #100000.YOLD	
-	Č	01000	100000		010	1.00000,.000	
•			000766				
2	7 a	01006	000205	25:	RTS	R5 .	
2	9			9			
3	Ø			;	DATA BLO	OCK FOR BOTH ALC	Sori Thms
3	l.			;			· ·
ు - 3	23	01010		j			
3	4	Ø1010		AT:	BLKW 10	ð.	
3	5	01034		P:	BLKW 50	۹.	
3	6 7	01200		PA: PAT·			
5	•	01200		1 M I A	errena IX		· ,

.

,

38	01224	040200	9:	.FLT2 1.E0
20	01226	000000		
39	01 05 A	asaoaa		-DLAW 10-
40	01224	040200		FLIG ISCO
	01200	0000000		BIKH 10
41	01 304	anasaa		FITO I FO
42	01304	040200		
	01200	000000		
43				BLKW 10.
44	01334	040200		.FLT2 1.E0
	01336	0000000		
45				BLKW 10.
46	Ø1364	040200		.FLT2 1.EØ
	Ø1366	0000000		
47	91370		QA:	
48	01370		QAT:	BLKW 10.
49	01414		PHI:	BLKW 10.
50	01440		PAGAT:	BLKV 50.
51	01604		T5.5:	.BLKV 50.
52	Ø1750		T5.1:	BLKW 10.
23	Ø1774		YOLD:	BLKW 2.
54	02029		DUM1:	BLKW 2
55	02004		DUM2:	BLKW 2.
56	02010		DUM3:	BLKW 2.
57	02014	000001	ONE:	WORD I
58	02016	000002	TWO:	WORD 2
59	22020	002803	THREE:	WORD 3
60	02022	022005	FIVE:	WORD 5
61	02024	000302	N2:	WORD 2
62	02020	0000003	NJ I	
63	02030	020012	NID:	WORD 10.
64	02032	000014	NIZ:	WORD 12.
60	02034	000015	NISI	WORD 13.
00	02030	041710		ELTO LOO
01	00040	041710	NICO:	• FLIG 100.
<u> </u>	02042	000000	THDEY.	BIKWO
00	00050		COUNT	
70	22050		E.	
10	02079		F11.	BIKU 24
79	02010		51111-	
12	02150		FY •	BIKW 24
7	02204		FYY	BLKW 6
75	02211		EV:	BLKW 20.
76	02330		EVV:	BLKW 6.
77	Ø2344		EV2:	BI.KW 20.
78	02010		EV22:	BLKW 6-
70	02430	040200	F. ONE:	FLT2 1 FØ
	02432	000000		

Ģ

۲,

				E D		
1			SBTTIO	TICHASTI	C APPROXIMATION	ALGORITHM
•				20		
4			9 47 •	69		
3			7	STAPR	THIS SUBROUTINE	UPDATES THE
4			7	PARAMETE	RS OF THE NOISE	FILTER VECTOR
2			ž	F(3) BY	ITERATING TEN T	IMES PER PASS
6			5	FLUJ DI CTOD UITU	LIS PREVIOUS VA	LUES OF IL
7			; FU-VE	CIUR WIIN	LE PREVIOUS VA	LUES OF Y
8			; FY=VE	CIUK WIIT	T I PERIONS VA	
9			; FUU=V	ECTOR WII	H 3 PREVIOUS VA	
10			; $FYY=V$	ECTOR WIT	A 3 PREVIOUS VA	
11			;			
12			;			
13	02434		STAPR:	FADD	COUNT, F. ONE, COL	
14	02446			FSHI FT	FU,N15;	UPDATE FU & FY
15	02456			FSHIFT	FY, N15;	EACH STORING
16	02.466			MOVF	U,FU;	15 PREVIOUS
17	22502			MOVF	Y,FY;	U & Y VALUES RESP.
10	02516	022767		CMP	\$17.ÁN.K:	> 15 SAMPLES ?
10	02710	000017		••••		
		0000110				
	8050 A	002110		BIT	15.	YES
19	02524	002402			STA GO	NO-SKIP
20	02520	000107	5	Jur	514.00,	
		000714	*			
21			;		TOD (FU) & (FV)	1××2
22			; CAL.	ERROR VEL	TUR LEVI & LEVI	
23			;		N17 D.G.	
24	02532	016700	15:	MUV	NIS,RU;	
		177276				
25	02536	016701		MOV	N12;R1	•
		177270		_		
26	02542	ØØ6301		ASL	RI	
27	02544	006331		ASL	RI	
28	02546		STA.E:	MMUL	FUU, PHI, DUMI, O	NE, THREE, URE
29	02566	•		MMUL	FYY+4, PHI+14, D	UM2, OWE, TWO, OWE
3.0	02606			FSUB	FYY, DUMI, DUMI	
31	02620			FADD	DUMI, DUM2, DUMI	
32	02632	016761		MOV	DUM1,EV(R1)	-
		177142			-	
		002260	• •			
	005 A 0	016761		MOV	DUM1+2.EV+2(R1)
23	02040	177136				
		111100	•	•		
	00010	002202		EMIL	DUMI DUMI DUMI	
34	02646	a		MOU	DUMI EV2(RI)	
35	02050	010101		1304	NOUT TO ACTUEL	
		17/114.	4			
		002344	-	MOU	DUMITO ENOTO (D	1.)
36	Ø2666	016761		MON	DUNITZ,EVETECK	* /
	•	177110				-
	•	002346	•			
37	02674	Ø24141		CMP	-(RI);-(RI)	
38	02676			PUSHF	FUU+10	
-						

FYY+10 PUSHF 39 02706 FU. N1 5 FSHIFT 40 02716 FY, N15 FSHIFT 41 02726 POPF FU 42 02736 FY POPF 43 02746 RØ DEC 44 02756 005300 RØ.#Ø CMP 45 02760 020027 000000 46 02764 001402 BEQ 115 47 02766 000167 JMP STA.E 177554 48 ē RESTORE FU, FY 49 50 PUSHF FUU+13 11\$: 51 02772 FYY+10 PUSHF 52 03002 53 03012 FSHIFT FU.N15 FSHIFT FY,N15 54 03022 FU 55 03032 POPS FU POPF 56 03042 FU, 015 57 03052 FSHIFT FSHIFT FY.N15 58 03062 59 ; KWANTY FORMULA FOR STOCHASTIC APPROX. 60 61 ï N10,R9 62 03072 016702 MOV 176732 INDEX.F.OME.INDEX 63 03076 STA.F: FADD INDEX, COUNT, DUMI FADD 64 03110 GAIN, DUMI, DUMI 65 Ø3122 FDIV EVV, F, DUM2, ONE, THREE, ONE 66 Ø3134 MNUL 67 03154 FADD EVV-4, DUM2, DUM2 EV22 . EV22+4. DUM3 68 Ø3166 FADD EV22+10, DU13, DUM3 FADD 69 03200 70 03212 FD1 J DUM2 . DUM3 . DUM2 MUI DUMI, DUM2, DUMI 71 03224 MOVF DUMI , DUNL 72 03236 IF DUM1>100. DUM2: 73 Ø3252 00×161 TST 176522 74 032 - 5 100003 BP1 SKIP 1\$; 75 03260 042161 RIC # 100000 .DUM2 100000 176516 NIOD, DUME, DUME **FS UB** 76 03266 15: 77 03300 005767 1ST DUM2 116300 STA.A 78 03304 100436 BMI

79	,		;		
80	, i i i i i i i i i i i i i i i i i i i		; NEW (F] CALCULI	ATED HERE
81			;		·
82	03306			FMUL	DUM1,EVV+10,DUM3
83	03320			FMUL	DUMI,EVV+4,DUM2
84	03332			FMUL	DUMI, EVV, DUMI
85	03344			FSUB	F,DUM1,F
86	Ø3356			FSUB	F+4,DUM2,F+4
87	03370			FSUB	F+10,DUM3,F+10
88	03402		STA.A:	FSHIFT	EV, N13
89	03412			FSHIFT	EV2, N13
90	03422	005300		DEC	RØ
91	03424	020027		CMP	RØ,#Ø
		000000			
92	03430	001402		BEQ	11\$
93	03432	000167		JMP	STA.F '
		177440			
94	03436	005067	11\$:	CLR	_NDEX
		176402			
55	03442	005067		CLR	INDEX+2
		176400			
96	03446	000205	STA.GO	: RTS	R 5
97			;		
98			SUBRO	UTINE FIL	TER FITERS INCOMING DATA
99			;		
1 20	3450		FILTER	: SAVE	R5
101	3452			MMUL	F, FU, DUMI, OHE, THREE, ONE
102	> 3472			MMUL	F, FY, DUM2, ONE, THREE, ONE
103	5 3512			FADD	U,DUM1,U
104	1 3524			FADD	Y,DUM2,Y
105	5 3536	•		UNSAVE R	5
100	\$ 3540	000205		RTS	R5

1 2			,SBIIL	SAMPLING		
3		177560	J TPC-17	7564 + PILNO	TH STATUS REG	
4		177566	TPR=17	7566 PHN	CH BUFFFR RFG	
5		177520		177524.	ADDR OF CONTROL	& STATUS REG
0 7		177522	CHNSI R:	:177522:	ADDR OF CHANNE	1 SELECTOR REG
g		177524	DATREG	177524	ADDR. OF DATA B	HEFER REG.
0		111724	*			
10			CLOCK-		TINE TO START SA	MPLING PROCESS
12	03542	005037 177564	CLOCK:	CLR	@#TPS; INITIAL	IZE SAMPLING & PUNCH
13	03546	005037		CLR	@#ADCSR; CONTR	OL &STATUS REGS.
14	03552	012737		MOV	#AD.@#110: SET	UP INT. VECTOR
• •		003632	•	\sim		
		000110	,			
15	03560	012737		MOV	#240.@#112: FC	R SAMPLING: PRTY.=>
• •		000240				· · · · · · · · · · · · · · · · · · ·
		000112				
16	03566	013767		MOV	@264,C.V1; SAV	E OLD CONTENTS OF
		000064				
		000032				
17	03574	013767		MOV	@#66,C.V1+2; P	RINTER INTR. VECTOR
		000066				
		000026				
18	03002	012737	•	เวบง	\$10,0154; INIR	• VECTOR SOR
		204112				
10	03610	000004		MOV	ANDAR BEER. PD	INTING PRIM
13	00010	012131		1100	57202,01003 rh	Iniind)/Ali
		004200				
20	•	000000			. REG. SET NO	. 2
21	03616	012737		MOV	#100.@#ADCSR:	HERE WE GO BABY
		000100			ar an	
		177520				
22	03624	000205		RIS	R5 1	
23	Ø3626		C.V1:	.BLKW 2.	•	
24			;			
25			;			
26			;AD	-SERVICE	ROUTINE FOR THE	FIRST A/D
27			;	INTERUPT	TO CONVERT CH.	1
28			3			
29	03632	000235	AD:	SPL	5; MASK OUT PR	INTING INTERUPT
30	03634	Ø32737		BIT ,	#1,@#177570;	ABORT PROGRAM 7
		000001				
.	07640	1/1570		0.50	01.	NO 0410
31	03042	001400		BLQ	2)	NU,SKIP
32	WO044	177500		ULK	WADUSK;	1 L D , QUI I
22	03650	111220		TNO	AUTT.	SET ELAC
JJ	00000	000050		1 II U	MOT I Î	SEI FLAG

•

.

-

,

۴

.

,

34 35	Ø3654 Ø3656	000002 012737	25:	RTI Mov	#10000,0#CHNSL	R; CONVERT CH.1
10	alcon	177522		MOU		
20	03664	003732	•	MOV	#SIRI,9#110;	SERVE SIRI NEXI
37	Ø3672	022767 000000 000000		CMP	#Ø,AD.CHK;	CHECK PT. CLR ?
38	03700	001010		BNF	15.	NOSKIP
39	03702	005267		INC	AD.A; INÇ CO	UNT OF SAMPLES
40	03706	026767 000016 000006	•	CMP	AD.A, 11A XAD;	=MAX. COUNT?
41	03714	003402		BLE	15:	NO.SKIP
42	03716	005037 177520		CLR	@#ADCSR;	YES, FINISH
43	03722	000002	15:	RTI		
44	03724	0000000	GUIT:	.WORD Ø		
45	Ø3726	909391	AD.CHK:	.WORD 1		
46	03730	609303	AD.A:	.WORD C		
47			;			
48			;STRI	SERVICE	ROUTINE FOR TH	HE 2ND AVD INTERLAT
49			;	TO STORE	E CH.1 DATA & C	CONVERT CH.2
50			;			
51	03732	0.2235	STR1:	SPL	5; LASK CUT PE	AIMING LLLE PT
52	03134	013/5/		NOV	SADAIREG,BU.I;	SIGHE OF I Date
		111524	١			
5 2	22740	000202		чт т	AL ()AL7757().	NOOT PROCEAN -
55	00142	032131		DII	#1,0#111010;	ABORT PROCERT
		177570				
5۵	93759	001005		8Fa	45.	NOSKIP
55	03752	001402			@#ADCSR •	YES OULT
22	20172	177520		0En	ornoosky	,
56	03756	005267		INC	QUIT:	SET FLAG
		177742				
57	03762	000002		RTI		
58	Ø3764	022767	45:	CMP	#Ø,AD.CHK;	CHECK PT. CLR?
		000000			· ·	
		177734				
59	03772	001416		BEO	15;	YES,SKIP
60	03774	012737	-	MOV	#AD,@#110;	NO
		003632	7			
<i>.</i>		000110	•	NOL	0451 00	*
61	04002	015700		с V Um	BOL1 . KO3	IESI ABS(BUFI)
60	a	000215		TOT	Da	
20	04000	100000		191	ΛU 2 C	
64	04010	005100		NEG	C.≠ RØ	
			•		**	

.

65	04014	020027 00007	25:	CMP	RØ,#7;	>0.078 VOLT ?
66 67	04020 04022	101402 005067	•	BLOS CLR	3 \$; Ad.CHK;	NO, SKIP CLR CHECK PT.
68 69	04026 04030	177700 000002 012737 020000	35: 15:	RTI Mov	#20000,0#CHNSLR	; CONVERT CH.2
70	04036	012737 024046	*	MOV	#STR2,0#110;	SERVE STR2 NEXT
71	04044	0000002	*	RTI		
73			sTR2	SERVIC	E ROUTINE TO STO	DRE CH 2 DATA
74 75			,	AND PR	OCESS THEM IN TH	RE SELECTED METHOD
76	04046	003235	STR2:	SPL	5; MASK OUT PF	RINTING INTERUPT
77	04050	013767 177524		MOV	@DATHEG,BUF2;	STORE CH.2 DATA
78	34056	000150 032737 003001 177570		BIT	#1,3#17757Ø;	ABORT PROGRAM ?
79	04064	001405		BEC	15:	NO.SKIP
80	04066	005037		CLR	@#ADCSR;	YES,QUIT
81	04272	177520 005267		INC	OUIT;	SET FLAG
		177626				
82 83	04076 04100	000002 022767 000000	15:	RTI CMP	#Ø,IDELAΥ;	NEED DELAY ?
84	04196	001004		BNF	2.\$	
85	04110	012737 003632 000110	•	MOV	#AD,@#110;	NO,SERVE AD NEXT
86	04116	000403		BR	3\$	
87	04120	012737 004232 000110	25:	MOV	#DELAY,@#110;	YES, SERVE DELAY NEXT
88	04126	022767 000000 000074	3\$:	CMP	#Ø,ANFLG; FINI	SH LAST ANALYSIS ?
89	04134	001402		BEQ	45	x
90	04136	000236		SPL	6	
91	04140	104060		EMT	60;	IF NO, ERROR EXIT
92	04142	005267 000062	45:	INC	ANFLG;	SET FLAG
93	04146	016703		MOV	BUF1,R3;	CONVERT CH.1
94	04152	004567		JSR	R5,CONVSN;	TO FLT.PT.

· 87

95 (04156	012667		MOV	(SF)+,U;	STORE IN U
96 (84162	000032		MOV	(SP)+,U+2	
97 (84166	016703		MOV	BUF2,R3;	CONVERT CH.2
98 (84172	004567 004112		JSR	R5,CONVSN;	TO FLT. PT.
99 (04176	012667		MOV	(SP)+,Y;	STORE IN Y
100	4202	012667		MOV	(SP)+,Y+2	~
131	4206	004567		JSR	R5,ANAL;	GO TO PROCESS DATA
I DEN SAMF	NT N PLING	ACRO VI	RØ5A Ø1-	-JAN-72 Ø	5:23 PAGE 6+	
		000270				
102	4212	000002	•	RTI		
190	A21 A		*]•	BIKW 2		
105	4220		Y:	BLKV 2	•	
1.05	4224	aanaaa	BUF1:	WORD Ø	•	
1.00	1001	884688	BUE2 ·	WORD C		
101	4660	000000		• • • • • • • •		
108	4230	000000	ANFLG:	.WORD 0		
109		·	3			0.01 11 1 0 0 0
110			; DELAY	SERVI	CE ROUTINE AS A	DELAY LOOP
111			;	TO MODI	IFY THE SAMPLING	G FREC.
112						
113	4232	000235	DELAY:	SPL	5: MASK OUT PI	RINTING INTERUPT
114	42.34	032737		BIT	#1.@#177570:	ABORT PROGRAM ?
•••	1001	000001				
		177570				
115	1212	001/05		RFA	25.	NOSKIP
115	4646	001907				VEC AUIT
110	4८44	177500		GLA	errocsn,	16094011
	1050	177520		1.10	@117 T .	CET ELAC
11/	4270	102200		TNC	dot 1 2	OFT LTHO
		177450		DTT		
118	4254	000002	~ ~	RII	85 D -	THO DELAN COUNT
119	4256	005267	25:	INC	DE.D;	INC DELAT COUNT
		000024		0.WD	DE D TDELAN-	EN01101 2
120	4262	026767		CMP	DE.D.IDELAT;	ENOUGH I
		000020				
		000004	-		·	
121	4270	002405		BLT	15;	NU HURRY, SON
122	4272	012737	_	MOV	#AD,@#110;	BACK TO CH.1
		ØØ3632	•			
		000110			•	
123	4300	005067		CLR	DE.D;	RESET DE.D
		000002			-	
124	4304	000002	15:	RTI		
125	4306	000000	DE.D:	.WORD Ø		
				-		

.

• • .••

88

「いい」

, .

> , , , , ,

-

}

21.

. . "1" . .

.

2

ŵ

•

,

.

•

126			.SBTTL	DECODING	OF OUTPUT OF A	D CONVERTER
128			ý 2	SUBROUT	INE TO CONVERT	A BINARY CODED OUTPUT
129			, , ,	FROM A/I	O CONVERTER INT	O NORMALISED
130			9 2	FLOATING	G POINT FORMAT	
132	4310	012667	CONVSN	MOV	(SP)+,TMPSP;	SAVE STACK
133	4314	005703		TST	RJ:	POSITIVE?
134	4316	100004		BPL	15:	YES.SKIP
135	4320	012767		MOV	#100000,SIGN;	SET SIGN BIT
		100000				
		000152			- 1	
136	4326	005403	18.	NEG	RJ;	GET 2'S COMPLIMENT
120	4330	010301	13:	CMP	RS, SI;	SAVE ON RI
100	4002	000000		C M	Cheda (
139	4336	001436		BEO	3\$	
140	4340	006303		ASL	R3:	
141	4342	006303		ASL	R3;	
142	4344	060103		ADD	R1,R3;	*5
143	4346	936283	25:	ASL	R3;	SHIFT LEFT
144	4350	135367 000120		DECB	EX?;	DECREMENT ENLL ENT
145	4354	005703		TST	R3;	MS5 SET ?
146	4356	100373		BPL	25;	NO,GO BACX
147	4360	042703 100020		BIC	#100230,R3;	CLEAR ISE
148	4364	110057 000125		MOVB	R3,TENBUF+3;	STORE CHD LORD
149	4370	016746	-	MOV	TENBUF+2,-(SP);	; PUSH ON STACK
150	4374	000303		SWAB	R3:	GET 2ND BYTE
151	4376	110367		MOVB	R3, TEMBUF;	STORE MANTISA
		000070				
152	4402	000367		SWAB	EXP;	
		000070		n on	EVD.	ALLON EXPONENT DATE
153	4406	006061		ROR	EXP;	ALIGN EXPONENT BYTE
154	4412	000004		BIS	FXP. TEMBUE:	COPY FXPONENT
124		000060		510	ani yrano o'y	
		000052				
155	4420	Ø56767		BIS	SIGN, TEMBUF;	COPY SIGN
		000054				· .
		000044				DUCK LOT LODD
156	4426	016746		VON	IEMBOR - (SP);	FUSH ISI WORD
157	44.32	0000040 000102		BR	45:	ON STACK
171	4406	000402		UN	409	OW DIACK

158	4434	005046	35:	CLR	-(SP);	FLOATING	ZERO
159	4436	005046		CLR	-(SP)		
160	4440	005067	45:	CLR	TEMB UF;	READY TO	QUIT
		000026		4			
161	4444	005067		CLR	TEMBUF+2		
		000024					
162	4450	005067		CLR	SIGN		
		000024					
163	4454	012767		MOV	#000210,EXP;	RESTORE	INITIAL EXP
		000210					
		000014					
164	4462	016746		VCM	IMPSP,-(SP);	RESTORE	STACK
		000002					
165	4466	000205		RTS	R5		
166	4470	000000	TMPSP:	.WORD	Ø		
167	4472		TEMBUF:	.DLKW	2.		
168	4476	210	EXP:	.BYTE	210,0		
	4477	000					
160	1500	aaaaaa	CTCN.	NODD	<u>a</u>		

ż

\$

£

÷

1			.SBTTL	DATA ANAL	YSIS					۰.
2349			;ANAL	SUBROUT	INE TO JUMP RE RESULTS I	TO II N DAT	DENT. Fa bu	ALGORIT	HM	
6			,							~
7	004502	004567	ÁNAL:	JSR	R5,UPDATE;	UPDA	TE I	NFORM. M	ATRIX	4
8	004506	004567		JSR	R5,METHOD;		GO I	O ALGORI	THM	
9	004512	173312 016700		MOV	AN_K1,RØ;		LOAD	POINTER	ł	
10	84516	000114 016760		MOV	PHI,FI1(RØ)	;	STOF	E RESULT	s	
		174672	*							
11	94524	016760		MOV	PHI+2,FI1+2	(R9)				
		114000	•							
12	04532	016760		MOV	PHI+4,FI2(R	(0)				
• •		174662								
		003720	•							
13	04540	016760		MOV	PHI+6,F12+2	(RØ)				
		174656	_							
		003722	•							
14	04546	016769		MOV	PHI+10,FI3(RØJ				
		174652	-							
2		007640	•			~ ~~~				
15	04554	015730		MOV	PH1+12, 11,3#	24891	>			
	•	174546			ĺ					
		007642	-	NOU	DUT STAT	nav				
16	04562	016760	•	nov	PH1+14,F12(KG)				
		1/4042	•							
	a. 570	010700		MOU	DUTLIC STAL	0 (DA)	`			
14	04210	010100		NUV	ra1+10,114+	2(10)	,			
		114000	•							
	BA576	015760		MOV	PH1+20.F15(80)				
10	04210	174630		100	INT CONTIN	NO7				
		a17500	•							
10	arear	016760	•	MOV	PH1+22.FI5+	2 (RØ))			
13	04004	174626			·		,			
		017502	•							
20	04612	022020		CMP	(R0)+.(R0)+	•:	I NC	RØ BY 4	•	
21	04614	010067		MOV	RØ.AN.K1:	,	STOR	E POINTE	R	
~ •		000012					•	•	\sim	
22	04620	005267		INC	AN.K: INC	. ITE	ERATI	ON COUNT		
		000010				-	-			
23	04624	005067	١	CLR	ANFLG;	C	CLR F	LAG		
		177400			-					
24	04630	000205		RTS	R5					
25	04632	000000	AN.K1:	.WORD Ø						
26	04634	000000	AN.K:	.WORD Ø						

.

91

£

1			.SBTTL	SUBROUTI	NES FOR PRINTIN	G
3			PRINT.	SUBR	OUTINE TO MONIT	OR PROGRESS OF
4			;	ANALY	SIS AND PRINTIN	G
6	004636	032737	PRINT:	BIT	#1.@#177570:	ABORT PROGRAM ?
•		000001				
		177570				
7	004644	001401		BEQ	2\$;	NO,GO AHEAD
8	004646	000426		BR	5\$;	YES,QUIT
9	004650	026767	2\$:	CMP	IO.K, AN.K; IS	PRINTING LAGGING ?
		000114			•	
		177756				
10	Ø4656	002402		BLT	3\$;	IF YES, GO AHEAD
11	04660	090501		VAIT;	IF NO,V	WAIT AND
12	04662	000765		BR	PRINT;	CHECK AGAIN, SON
13	04664	012737	3\$:	Von	#100,@#TPS; PR	INT NEXT CHARACTER
		000100				
		177564				
14	04672	000001	45:	WAIT		
15	04674	022767		CMP	#Ø,PR.FI;	FINISH 1 LINE ?
		000000				
		000064		_		
16	04702	031373		BNE	45;	NO, CHECK AGAIN
17	04704	095267		INC	10 . K;	INC I/O COUNT
		003060				
18	04712	005267		INC	PR.FI;	RESET FLAG
		033052		A		
19	04714	026767		CMP	IO.K, MAXAD;	ALL DONE ?
		000050				
		000006	-	D		NO CARRY ON CON
20	04722	002745	~ ~	BLT	PRINI;	NO, CARRY ON SON
21	04/24	005037	53:	CLR	@#ADCSR	
~~	a . 77 7 0	1/1520		MOU	*77777 54	
22	04130	012700		MOV	#1111(gRØ	
0 T	0.4774	011111		MOU	C HI OFCA. DEC	TOPE INT VECTOR
23	04134	176666		HOV	U.VI, 9# 64; KES	SIURE INI. VECTOR
		170000			、	
•	a. 7.0	000004		MOU	C VILLO OFCC	
24	04142	176660		NOV	C. VI+2, 84 00	,
		110002			-	
05	0175à	0000000		MOU	AINA GATOS	
65	04720	012131			#100,9#1F5	
		177564				
00	Q 1 755	000005		PFCFT		
20 07	04120	agaaaa		HALT		
21	QATES	1000000		FMT	60	
20	ØA76A	000005		RTC	R5	
30	104766	0000001	PR_FI+	ו מאטא"		
31	04770	000000	10.K:	WORD Ø		
	W					•

F

32 Ĵ 33 ECO----MACRO DEFINITION TO FETCH A FLOATING 34 WORD AT NUM TO BE CONVERTED TO 9-BYTES å 35 ASCII CODES STARTING FROM ASCII ţ 36 37 .MACRO ECO ASCII,NUM 38 #ASCII,-(SP) MOV MOV 39 #11,-(SP) 40 MOV #2,-(SP) 41 MOV #1,-(SP) $NUM \Rightarrow 2(R2), -(SP)$ 42 MOV NUM(R2), -(SP)43 MOV PC, SECO 44 **JSR** 45 . ENDM .GLOBL \$5CO 46 47 ŝ 48 ; IO----SERVICE SUBROUTINE TO DO ASCII CONVERSION 49 50 AND FILL OUTPUT PRINTER BUFFER 3 51 52 Ø4772 Ø16702 IO: MOV IO.K.R2: R2=POINTER 177772 53 04776 006302 ASL R2 54 05000 006302 R2 ASL 55 05002 010267 MOV R2,10.R2 000346 56 05006 ECO \$FI1,FI1; CONVERT IST WORD 57 05042 016702 MOV 10.R2 R2 000306 58 05046 ECO \$F12,F12; CONVERT 2ND WORD 59 05102 016702 MOV 10.R2,R2 000246 60 05106 CONVERT 3RD WORD ECO \$FI3,FI3; MOV 10.R2,R2 61 05142 016702 000206 CONVERS 4TH WORD 62 05146 ECO SFI4, FI4; 10.R2,R2 63 05202 016702 MOV 000146 ECO \$FI5,FI5; 64 05206 CONVERT 5TH WORD #BUFST,R3 MOV 65 05242 012703 005470*` 66 05246 004567 JSR R5,10F; 3-DIGIT LANE NO. 000106 67 05252 012737 MOV #PRN,@#64 005266' 000064 68 05260 012767 MOV #BUFST, PONTR 065470 000070 69 Ø5266 Ø32737 PRN: BIT #1,@#177570; **ABORT PROGRAM ?** 000001 177570 70 05274 001403 BEQ NO,GO AHEAD 15:

\$

ş,

.

71	Ø5276	005037		CLR	©#ADCSR;	YES,QUIT
**0	45 100	177520		BP	25	
73	05304	105767	,1\$:	TSTB	TPS;	PRINTER READY ?
74	05310	100366		BPL	PRN	
75	05312	016700		MOV	PONTR, RØ;	YES, LOAD POINTER
76	05316	112037		MOVB	(RØ)+,@#TPB;	LOAD PRINTER BUFFER
77	Ø5322	010067		MOV	RØ,PONTR	
78	05326	Ø20027 005571	*	CMP	RØ,#BUFEND;	FINISH 1 LINE ?
79	Ø5332	001007		BNE	2\$	
80	Ø5334	005037 177564		CLR	G#TPS;	YIS
81	05340	005067		CLR	PR.FI;	CLR FLAG
82	05344	177422 012737 004772	•	MOV	#10,@#64;	RESTORE VECTOR
		000064				
83	05352	023002	25:	RTI		
84	05354	000000	10.R2:	WORD 0		`
80	02220	000000	POWIK:	.WURD 0		
87			ICF	- SUBROUT	INE TO FORM 3-DI	IGIT ASCII CODE
88			;	IN ASCE	VDING ORDER EACH	I TIME LY IS CALLED
89			;	ASCII EL	JFFER MUST FIRST	I BE INITIALISED
90			;	BY A NO.	•	
91	05360	126327	IOF:	CMPB	2(R3).#71:	DIGIT 3=9 ?
		000002				
~ ;	95766	000071		0.50	1.6	*
93	07300	105263		U NCB	1v 2(83):	NO.INC BY 1
34	00010	000002		THOD		
95	\$05374	000434		BR	5\$	
96	05376	112763	15:	MOVB	#60,2(R3);	DIGIT 3=0
		000060		•	-	
97	05404	126327		CMPB	1(R3).#60: DIO	SIT 2=0 OR SPACE ?
	02404	000001		.		
		000060				· •
98	05412	003004		BGT	25	
99	05414	112763		MOAR	#01,1(R3);	DIGI1 5=1
		000001				
102	5422	000421		BR	5\$	
101	5424	126327	2\$:	CMPB	1 (R3),#71;	DIGIT 2=9 ?
Ś		000001			,	-
102	2 5432	001403		BEQ	3\$ 4	
		-		-		

l Vant

INCB 103 5434 105263 1(83): NO.INC BY I 000001 104 5440 000412 BR 55 105 5442 112763 35: MOVB #60,1(R3): DIGIT 2=0 690060 000001 106 5450 121327 CMPB (R3),#40: DIGIT 1=SPACE ? 000040 107 5454 001003 BNE 4\$ 108 5456 112713 MOVB #61,(R3); DIGIT 1=1 000261 109 5462 000401 BR 5\$ 110 5464 105213 45: INCB (R3): DIGIT 1=1 111 5466 003205 55: **F.TS** R 5 112 OUTPUT ASCII BUFFER FOR 5 PARAMITERS 113 114 BUFST: 115 5470 116 5470 040 .BYTE 40,40,60,40,40,40 5471 04Ø 5472 960 5473 Ø40 5474 040 5475 **040** : 5476 SFI1: BLKB 11 118 5507 040 .BYTE 40,43,40 5510 040 040 5511 119 5512 \$F12: .BLKB 11 120 5523 .BYTE 40,40,40 040 5524 640 5525 040 SFI3: .BLXB 11 121 5526 122 5537 040 BYTE 40.40.40 5540 040 5541 040 123 5542 SFI4: .BLKB II 124 5553 .BYTE 40,40,40 040 040 . 5554 6055 040 125 5556 \$F15: .BLKB 11 126 5567 015 .BYTE 15,12 5570 012 005571 'BUFEND=. 127 128 .EVEN 129 ۱ DATA BUFFER FOR 5 PARAMETERS IN 2-WORD F.P. 130 131 :500 EACH 000000 .CSECT DATA 132 .BLKW 1000. 133 0000 FI1: .BLXW 1000. 134 3720 F12: .BLKW 1000. 135 7640 F13: .BLKW 1000. 136 3560 F14: 127 7500 F15: .BLKW 1000.

95

2

ł

138		005572'	.CSECT		
1 39		.SBTTL	ARITHMATI	ICAL SUBROUTINES	,
140					
141		· · · · · · · · · · · · · · · · · · ·			,
142		SUBR	OUTINE MUL	FP => A*B=C	
143		,			
144	5572	MULFP:	SAVE RØ	R1,R2	
145	5600	012500	MOV	(R5)+,R0:	ADDR.OF
146	5602	012501	MOV	(R5)+.R1:	A B &C
147	5604	012502	MOV	(R5)+,R2	
148	5626		SAVE	R5	
149	5610	016646	MOV	2(RØ) (SP)	
		000002		. 2	
150	5614	011046	MOV	(RØ)(SP)	
151	5616	016146	MOV	2(R1) - (SP)	
		002002			
152	5622	011146	MOV	(R1)(SP)	
153	5624	QQAA61	APL	RA SPOLSI	
1.70	1024	004401	054	14,310001	
154	5630	0000000 00000000	MUDD	CMI D	
1.55	5630	00000000	WOND .	2010 N	
20	5634	000004	MOV	(CP)+ (R2)+	DEC.ILT
.57	5636	012662	MOV	(SP) + 2(P2)	
121	2020	012002	HOV		
158	5642	000002	UNSAVE RO	1.R1.R2.R5	
150	5652	ana2a5	RTS	85	
160	2022	•		<i>X</i> ²	
161		• SUBRI	OUTTNE ADI	3=8+A	
162		;			
163	5654	ADDFP:	SAVE RØ	Ri R2	
164	5662	912500	MOV	(R5)+.R0:	ADDR.OF
165	5664	012501	MOV	(R5) + R1	A.B&C
166	5666	012502	MOV	(R5) + R2	
167	5670		SAVE	R5	
168	5672	016046	MOV	$2(R\emptyset) - (SP)$	
	20.0	000002			
169	5676	011046	MOV	(RØ)(SP)	
170	5700	016146	MOV	2(R1) - (SP)	
• • •		000002			
171	5704	011146	MOV	(R1)(SP)	
172	5706	004467	JSR	R4. SPOLSH	
• • •		000000G	÷.	•	
173	5712	000000G	.WORD	SADR	
174	5714	095716*	.WORD	.+2	
175	5716	012612	MOV	(SP)+,(R2);	RESULT
176	5720	012662	MOV	(SP)+,2(R2)	·.
		000002			
177	5724		UNSAVE RE	0,R1,R2,R5	
178	5734	000205	RTS	R5	

1/9		; ;			
180		; SUBRI	DULINE DIV	FP => A/B = C	
101	5786	DTUED.	CAUE DO	D1 D2	
102	5730	DIVEEL	MOU NOU	(95)+ P0+	
100	5784	012500	MOV	(P5) + P1	A B IC
104	5750	012502	MOV	(25) + 22	A 90 40
196	5752	012202	SAVE	R5	
197	5754	016046	MOV	$2(R_{0}) = (S_{1})$	
101	7174	010040	1107		
188	5760	011046	MOV	(R0) = (SP)	
180	5762	016146	MOV	2(R1) - (SP)	
.02	21.02	000002			
100	5766	011146	MOV	(R1) = (SP)	
101	5770	004467	JSR	R4. SPOLSH	
		0000000		,	
192	5774	Ø000000 Ø000000	. WO3 D	\$DVR	
103	5776	026000'	WORD	.+2	
194	6002	G 12612	MOV	(SP)+.(R2):	RESULT
195	6002	Ø12662	MOV	(SP) + 2(R2)	
		000002			
196	6006		UNSAVE RØ	-R1-R2-R5	
197	6216	000205	RTS	R5	
198					
199		SUBRO	DUTINE SUB	FP => A-B=C	
200		:			
201	6320	SUBFP:	SAVE RØ.	R1.R2	
202	6926	012500	MOV	(R5)+.R0:	ADDR.OF
2Ø3	6333	012501	MOV	(R5)+ R1;	A.B&C
224	6032	012502	MOV	(R3)+,R2	
205	6034		SAVE	R5	
206	6036	016046	MOV	2(RØ),-(SP)	
		003002			
207	6042	011046	MOV	(RØ),-(SP)	
208	6044	016146	MOV	2(R1),-(SP)	
		000002			
209	6050	Ø11146	MOV	(R1),-(SP)	
210	6052	004467	JSR	R4, SPOLSH	
~		000000G			
211	6056	000000G	.WORD	\$SBR	
212	6060	006062	.WORD	•+2	
213	6062	012612	MOV	(SP)+,(R2);	RESULT
214	6064	012662	MOV	(SP)+,2(R2)	
015	6070	DUDDDZ			
617 01C	0010	00006	UNSAVE RE	, KI, KZ, KD	
	~ • • • • •	כמצועומ	RIS	רא	

(

έ,

.

•

1

•

.

1

.

217			MATRIX MULT	τριν		
210			· ·	ه منه اه ه	I THIM DIMINI	
220	6102		MMIII + SAVE	RØ.	RI R2 R3 RA	
221	6110	Q12567	MOV		$(P5) \leftrightarrow \Delta MIII *$	ADDR OF A
<i>L</i> -L- 1	0114	012201	()00		(11)) · • • • • • • • • • • • • • • • • • •	ADDA OF A
222	6120	012567	MOU		(R5) → R MIII •	B AND C
la la la	0120	012331	HOV		(1)), ,D. Hot,	B AND C
222	6124	012567	MON		(P5) - C MIII	
660	0124	012201	170 V		(NJ) + jC + HOL	
00 1	6130	000512	MOU		A(D5)+ DA.	VALUES OF
664	0130	013500	MOV		achest pla	
222	0102	013501	MON		$\Theta(R) \rightarrow D$	AND COLD
220	0134	012202	MOV	06	@(R))+,R);	AND COLD
221	0130	000100	SAVE	K 2	20	
228	0140	000300	ALL		RØ	
229	6142	000300	ASL		RU;	4 TROVA
2310	6144	010067	MUV		RØ, NXIA;	NEXI ELEM. US A
~ • •		000354				
231	6159	010300	MUL		R0,R3;	4*ROVA*COLB =
232	6152	066703	ADD		C.MUL,R3;	BASL +
		000344				
233	6156	@13367	MOV		R3,NO.ELM;	NO. OF ELEN.IN MCR.20
		000352				
234	6162	010102	MOV	C?	R1,R2	
235	6164	070100	MUL		RØ,RI;	4*POUA#COLA
236	6166	024141	CMP		-(R1),-(R1);	-4 =>
237	6170	010167	MOV		R1,NXTCOL;	SWITCH COL IN B
		000332				
238	\$174	Ø667 67	ADD		A.MUL,NXTCCL;	+B.\SE
		000316				
		000324				
239	62.02	160001	SUB		RØ,R1;	-4*ROĽA =>
240	62.04	010167	MOV		R1, NXTROW;	SWITCH ROW IN A
		000320				
241	6210	005302	DEC		R2:	COLA-I
242	6212	010267	VOM		R2,COLA.1	
		000320				
243	6216	006302	ASL		R2	
244	6220	006302	ASL		R2;	4*(COLA-1)=>
245	6222	010267	MOV		R2,SAMCOL;	SAME COL IN B
		000304				· · · · · · · · · · · ·
246	6226	016700	MOV		A.MUL,RØ;	BASE ADDR OF A
0.0	••••	000264			*	
247	62.32	016701	MOV		B.MUL,RI;	BASE ADDR OF B
	•••	000262			•	•
248	62.36	016703	MOV		C.MUL,R3;	BASE ADDR OF C
~ ~		000260			- •	
249	62.42	016702	MOV		COLA.1,R2;	NO. OF ADDITIONS
** **		000270	-		· -	
250	6246		15: SAVE	RØ	R1,R2,R3	
251	6256	016046	MOV		2(RØ),-(SP)	
		000002				•

98

:

;

States and a second and and a second and the second and

252 253	6262 6264	Ø11046 Ø16146	MOV MOV	(RØ),-(SP) 2(R1),-(SP)	
254	6270	000002	MOV	(RI), $-(SP)$	
255	6272	004467 0000000	JSR	R4, SPOLSH	
256 257 258	6276 6300 6302	0000000 006302 '	.WORD SML .WORD .#2 POPF TMPN	_R 2 1UL	
259	6312		UNSAVE RE	ð, R1, R2, R3	
260	6322	022702 000000	CMP	#0,R2;	A = COL VECTOR ?
261	6326	001437	BEQ	3\$;	YES,SKIP
262	6330	0667002\$: 000170	ADD	NXTA,RØ; NXT E	LM. OF A, SANE RO'
263	6334	022121	CMP	(R1)+,(R1)+;	NEXT ELM. OF B
264	6336		SAVE RØ,R	11,R2,R3	
265	6346		PUSHF TMF	MUL; PREVIC	US PARTIAL SUM
266	6356	016046 000002	MOV	2(RØ),-(SP)	
267	6362	011046	110V	(RØ),-(SP)	
268	6364	015146	MOV	2(R1),-(SP)	
		003802			
: 59	6370	Ø11146 [°]	MOV	(R1),-(SP)	
270	6372	004467 000000G	JSR	R4, SPOLSH	
271	6376	023200G	.WORD SML	.R	
272	6400	୬୯ ୦ ଅ୭ ୬ ଜ	.WORD SAD	R	
273	6402	035404'	.WORD .+2	-	
274	64Ø4		POPF TMPM	IUL	
275	6414		UNSAVE RC	,R1,R2,R3	
276	6424	077237	SOB	R2,2\$	
277	6426	016702 35: 000104	MOV	COLA.1,R2;	RESTORE R2
278	6432	Ø16723 Ø00102	MOV	TMPMUL, (R3)+;	STORE RESULT
279	6436	Ø16723 Ø00100	MOV	TMPMUL+2,(R3)+	; IN C
280	6442	026703 000066	CMP	NO.ELM,R3;	DONE ?
281	6446	001414	BEO	105;	YES,QUIT
282	6450	020067	CMP	RØ, NXTCOL:	NEXT COL OF B?
		000052		•	-
283	6454	001405	BEQ	4\$;	YES, SKIP
284	6456	166701	SUB	SAMCOL,R1;	NO, SAME COL
		000050			
285	6462	166700 000042	SUB	NXTROV,RØ;	NEXT ROW OF A
286	6466	000667	BR	15; *	CARRY ON. SON
287	6470	016700 4 5: 000022	MOV	A.MUL,RØ;	BACK TO ROW I OF A
288	6474	022121	CMP	(R1)+, (R1)+;	NEXT COL OF B
289	6476	000663	BR	15;	CARRY ON, SON

•

•
290 6500 105: UNSAVE RØ,RI,R2,R3,R4,R5 291 6500 292 6514 000205 RTS R5 293 6516 030000 A.MUL: 0 294 6520 000000 B.MUL: 0 295 6522 000000 C.MUL: 0 296 6524 000000 NXTA: 0 297 6526 ØØØ000 NXTCOL: Ø 298 6530 000000 NXTROV: 0 299 6532 000000 SAMCOL: 0 300 6534 000000 NO.ELM: Ø 301 6536 000000 COLA.1: Ø 302 6540 TMPMUL: .BLKW 2. 303 2 :MATRIX ADDITION (A)+(B)=(C) 304 305 MADD: SAVE RU,RI,R2,R3,h4 306 6544 (R5)+,RØ; ADDR OF A 307 6556 812502 MOV B AND C MOV (R5)+,R2;308 6560 012502 MOV (R5) + R3 309 6562 012503 NO. OF ROW @(R5)+.R!: 310 6564 213501 MOV @(R5)+,R1; ROW*COL 311 6566 073135 MUL SAVE R5 312 6570 313 6572 005301 ASL **R1** 4#RC:/*COL 314 6574 006301 ASL R1; ADD RØ,R1; +BASE 315 6576 060001 316 6600 SAVE RØ,R1,R2,R3 15: 2(RO),-(SP) 317 6610 016046 MOV 200002 318 6514 811046 MOV (R0), -(SP)319 6616 216246 NOV 2(R2),-(SP) 0333002 MOV (R2),-(SP) 320 6522 011246 R4, SPOLSH JSR 321 6624 004467 000000G .WORD SADR 322 6630 003000G 323 6632 006634 .WORD .+2 POPF TMPADD 324 6634 UNSAVE RØ,R1,R2,R3 325 6644 TMPADD, (R3)+; STORE RESULT MOV 326 6654 016723 000032 327 6660 016723 MOV **TMPADD+2.(R3)+:** IN C 000030 INC RØ,R2 328 6664 022020 CMP (R0)+,(R0)+;BY 4 329 6666 022222 CMP (R2)+,(R2)+; 330 6670 020001 CMP RØ,R1: DONE ? 331 6672 001342 BNE 15: NO,GO BACK 332 6674 UNSAVE RØ,R1,R2,R3,R4,R5 333 6710 000205 RTS R5 334 6712 TMPADD: .BLKW 2.

100

1. S. S. S.

ł

,

÷

.

335 MATRIX SUBTRACTION [A]-[B]=[C] 336 337 MS UB: SAVE RØ,R1,R2,R3,R4 338 6716 ADDR OF A (R5)÷,RØ; MGV 339 6730 012500 B AND C MOV (R5) + , R2;340 6732 012502 $(R5) \div R3$ MOV 341 6734 012503 MOV @(R5)+,R1: NO. OF ROW 342 6736 013501 0(R5) + R1;ROW*COL MUL 343 6740 070135 SAVE R5 344 6742 ASL RI 345 6744 006301 4*R 01/*COL 346 6746 006301 ASL R1; +BASE ADD RØ,R1; 347 6750 060001 SAVE RØ,R1,R2,R3 348 6752 15: 349 6762 016046 MOV $2(R\emptyset), -(SP)$ 000002 $(R\emptyset), -(SP)$ NOV 350 6766 011046 2(R2),-(SP) 351 6770 016246 MOV 030002 MOV (R2), -(SP)352 6774 011246 R4, SPOLSH 353 6776 004467 JSR ØØØØØØG .WORD SSBR 354 7002 000000G 55 7004 007006 .WORD .+2 POPF IMPSUB 356 7996 UNSAVE RØ,RI,R2,R3 357 7016 TMPSUB, (R3)+; STORE RESULT MOV 358 7026 016723 000032 359 7032 015723 MOV TMPSUB+2, (R3)+;IN C 009930 C i/IP (RU) →, (R0) →; INC RO,R2 369 7036 022020 361 7040 022222 CMP (R2)+,(R2)+;BY 4 DONE ? 362 7942 020001 CMP RØ,R1; 363 7044 001342 BIE 1\$; NO, GO BACK 364 7046 UNSAVE RØ,RI,R2,R3,R4,R5 365 7062 000205 RTS R5 366 7064 TMPSUB: .BLKW 2. 367 ; ; MATRIX SCALAR MULTIPLICATION [A]*SC=[B] 368 369 SAVE RØ,RI,R2,R3,R4 370 7070 MSC: ADDR OF A 371 7102 012500 MOV (R5)+,RØ; ADDR OF B 372 7104 012501 MOV (R5) +, R1; ADDR.OF SCALER 373 7106 012502 MOV (R5)+,R2; 374 7110 013503 MOV @(R5)+,R3; NO. OF ROW @(R5)+,R3; ROW*COL 375 7112 070335 MUL 376 7114 SAVE R5 R3 377 7116 006303 ASL 4*ROW*COL 378 7120 006303 ASL R3; 379 7122 060003 ADD RØ,R3; +BASE 380 7124 SAVE RØ,R1,R2,R3 15: MOV $2(R\emptyset), -(SP)$ 381 7134 016046 000002

101

~

こうしょう シー・シー・シー・シー・シー・シー・シー・シー・シーン たいしょう ちょうちょう しょうちょう かんしょう かんしょう かんしょう かいしょう しょうしょう しょうしょう

(.,0), -(SP)MOV 382 7143 011046 MOV 2(R2),-(SP) 383 7142 016246 000002 2 MOV (R2),-(SP) 384 7146 011246 385 7150 004467 **JSR** R4. SPOLSH 000000G .WORD SMLR 386 7154 000000G 387 7156 007160 .WORD .+2 POPF IMPMSC 388 7160 UNSAVE RØ,RI,R2,R3 389 7170 TMPMSC, (R1)+: STORE RESULT 390 7200 016721 MOV 000030 391 7204 016721 MOV TMPMSC+2.(R1)+:IN B 000026 INC RO BY 4 CMP (R0)+,(R0)+;392 7210 022020 RØ.R3: DONE ? 393 7212 020003 CMP 394 7214 001343 BNE 15 395 7216 UNSAVE RØ,R1,R2,R3,R4,R5 396 7232 000205 RTS R5 IMPMSC: .BLXW 2. 397 7234 398 :MATRIX SCALAR DIVISION (A)/SC=[B] 3 403 -131 DSC: SAVE RØ,R1,R2,R3,R4 ADDR OF A 402 7252 012500 MOV (R5)∻,RØ; ADDR OF 3 (R5)+,R1; 403 7254 012501 MOV ADDR.OF SCALER 404 7256 012502 MOV (R5)+,R2: 405 7260 013503 @(R5)+.R3: NO. OF ROU MOV ROW*COL 406 7262 070335 Q(R5)+,R3;MUL SAVE R5 407 7264 408 7266 306303 ASL RJ 4*ROV*COL 409 7270 006303 ASL R3; +BASE ADD RØ,R3; 410 7272 060003 411 7274 SAVE RØ,R1,R2,R3 15: 2(RØ),-(SP) 412 7304 016046 MOV 000002 MOV $(R\emptyset), -(SP)$ 413 7310 011046 MOV 2(R2),-(SP) 414 7312 016246 000002 415 7316 011246 MOV (R2), -(SP)416 7320 004467 **JSR** R4, SPOLSH ØØØØØØG .WORD SDVR 417 7324 000000G .WORD .+24 418 7326 007330 419 7330 POPF IMPDSC UNSAVE RØ,RI,R2,R3 420 7340 TMPDSC,(R1)+; STORE RESULT 421 7350 016721 MOV 000030 422 7354 016721 TMPDSC+2, (R1)+:IN B MOV 000026 INC RØ BY 4 (RØ)+.(RØ)+:423 7360 022020 CMP DONE ? CMP 424 7362 020003 RØ,R3; 425 7364 001343 BNE 15 UNSAVE RØ,RI,R2,R3,R4,R5 426 7366 427 7402 000205 RTS R5 TMPDSC: .BLKW 2. 428 7404

429			3			
430			; MATRIX	(TRANSPO	SITION	
431			2 9			
432	7410		MTRN:	SAVE RØ	,R1,R2,R3,R4	
433	7422	012567		MOV	(R5)+,A.TRN;	ADDR OF A
		000120			•	
434	7426	012567		MOV	(R5)+,AT.TRN;	ADDR OF AT
		000116				
435	7432	013500		MOV 🦯	@(R5)+,RJ;	NO. OF ROW
436	7434	013502		MOV	@(R5)+,R2;	NO. OF COL
437	7436			SAVE R5		
438	7440	010267		MOV	R2,CO.TRN;	R2=C
		000106				
439	7444	010005		MOV	R0,R5;	RØ=R
440	7446	070502		i:UL	R2,R5;	R 5=RC
441	7450	010503		MOV	R5,R3	
442	7452	026303		ASL	RJ	
443	7454	006323		ASL	R 3	
444	7456	024343		CMP	-(R3),-(R3);	R3 = 4RC - 4
445	7460	010304		MOV	R3,R4;	R4=4RC-4
446	7462	310091		MOV	RC,R1	
147	7464	926391		ASL	RI	
- 48	7466	035331		ASL	R1;	R1 = 4R
449	7470	066723		ADD	A.TRN,R3;	R3=4RC-4+BASE
•		000052			-	
450	7474	016346	15:	MOV	2(R3),-(SP); GI	ET ELEMENTS
-		000002			-	
451	7503	911345		MOV	(R3),-(SP); IN	REVERSIC URDER
452	7562	163133		รเฮ	RI,R3; NEXT H	IGHER ELEM.
453	7504	077205		S OB	R2,1S;	FINISH 1 COL ?
454	7506	015702		MOV	CO.TRN,R2;	YES, RESTORE R2
		000040				
455	7512	060403		ADD	R4,R3;	NEXT COL
456	7514	077011		SOB	RØ,15;	DONE ?
457	7516	016700		MOV	AT.TRN.RØ	
		000026				2
458	7522	012620	25:	MOV	(SP)+, (RØ)+; S'	TORE TRANSPOSED
459	7524	012620		MOV	(SP)+,(RØ)+; 1	RESULTS
460	1526	077503		SOB	R5,2\$;	DONE 7
461	7530			UNSAVE R	Ø,R1,R2,R3,R4,R	5
462	7544	000205		RTS R5		
463	7546	000000	A.TRN:	0		
464	7550	000000	AT.TRN:	Ø		
465	7552	000000	CO.TRN:	Ø		
					•	•

466			3 -				
467			SHIFT	SUBROUT	FINE THAT SHIP	TS ALL NUT	1 ELEMENTS
468			:	OF VECT	OR A 1 PLACE	DOWN	
469			:				,
470	7554		SHIFT:	SAVE RI			
471	7556	012567		MOV	(R5) + .S .A:		ADDR OF A
		000246					
472	7562	013501		MOV	@(R5)+.R1:		VALUE OF NUM
473	7564			SAVE	R5		/
474	7566	005301	4	DEC	R1:	A* (NUM-)	
475	7570	006301	v	ASL	RI:	+BASE AL	DDR
476	7572	026301		ASL	RI	-	
477	7574	066701		ADD	S.A.RI		
		000030					
178	7600	015111	1 .	MOU			
910	1000	177774	1.01	140 4	-4(R1) ₃ (R1)		
170	7601	11114 016161	4	ман	0(01) 0(01)		
413	1004	177776		VUN	-2(RI),2(RI)		
		111110					
490	7610	DODDUC -		OMD	(R) \ (R) \		
400	7012	024141		CMP	-(R1),-(R1)		
401	1014	020101		CMP	R1,5.A		
100	7000	0100000					
402	1020	1901901		BNF	15		
483	1622	6 6 6 6 <i>6</i> 6		UNSAVE RI	,R 5		
484	1020	000205		RTS	R5		
437	1030	0000000	S.A:	.WORD Ø			
430		000033.		.END STAR	Т		
to 7							

)

104

s

1

, ^c

· . . .

34

• • • • • • •

A ADDFP ANAL AN.KI A.MUL BUFST B.MUL COLA.I COLA.I CO.TRN DATREG DIALOG DUMI EV EV22	001010R 005654R 004502R 004502R 006516R 005520R 006536R 007552R 177524 ****** G 002000R 002260R 002260R		AD AD.A ANFLG AT A.TRN BUF1 CHNSLR= CONVSN C.MUL DELAY DI VFP DUM2 EVV EXP	003632R 003730R 004230R 001010R 007546R 004224R 177522 004232R 004232R 004232R 005736R 002004R 002330R 0024476R	ADCSR AD.CHK AN.K AT.TR BUFLND BUF2 CLOCK COUNT C.VI DE.D DSC DUM3 EV2 F	 177520 003726R 004634R 207550R UE5571R 304226R 003542R 002050R 003626R 004306R 007240R 002010R 002344R 002054R 		
FILTER FIA	003450R 000000R 013560R	003 003	FIC FIC FIS	000022R 003720R 017500R	603 683	FI3 FU GB224AP	007640R 002070R	223
FUU F.ONE IFTR	0021307 002430r 000002r	002	GAIN IFTRST	0000107 000002R	002 002	IDELAY INDEX	000004R 002344R	895
IO IO.R2	004772R 025354R		IOF MADD	005360R 006544R	IO.K MAXAD	004770r 090006r	Ø92	
METHOD	000324R 006716R		MMUL MTRN	ØØ6102R ØØ7410R	MULFP	001010R 005572R		
NXTROW	006530R 006530R		NIØ NI3	002030R 0020348	N100 N15	00204CR 002036R		
N2 P	002024R 001034R		N3 PA	ØØ2Ø26F ØØ1299R	ONE PACAT	092914R 001449R		
PAT PONTR	631200R 005356R		PC = 7 PRINT	000007 004636R	PHI PBN	001414R 005266R		
PR.FI QA	004766R 001370R		PSEUDO QAT	0004748 001370R		001224R 003724R		
RO - RJ =	- 2000000 - 2000003 - 0065328		R4 =2 SHIFT	0000004 007554R	R5 : SIGN	= 2000005 = 2000005 004500R		
SANCOL SP =	2000006 003402R		STAPR STA.E	ØØ2434R ØØ2546R	START STA.F	ØØ2ØØ2R ØØ3Ø76R		
STA.GO SUBFP	003446R 006020R		STRI S.A	003732R 007630R	STR2 TEMBUF	004046R 004472R		
THREE TMPMSC	002020R 007234R		TMPADD TMPMUL	ØØ6712R ØØ654ØR	TMPDSC TMPSP	007404R 004470R		
TMPSUB TWO	007064R 002016R 004014D		178 = T5.1	1//266 001750R	1P5 3 15.5 Y	= 177204 001604R		
YOLD SECO =	001774R		SADR = SFI1	***** G ØØ5476R	SDVR = SF12	= ******* (005512R	3	
SFI3 SMLR =	005526R ***** G		SFI4 SPOLSH=	005542R ****** G	\$F15 \$SBR	005556R = ****** (3	
. ABS.	000000	000					•	

 ABS.
 000000
 000

 007632
 001

 FTRN
 000014
 002

 DATA
 023420
 003

SYMBOL TABLE

<u>ن</u>

.

105

Mary Street Street

Ĵ

:

÷

1- 1

٩.

ŝ

.

0001		SUBROUTINE DIALOG
0002		COMMON /FTRN/ IFTR, IFTRST, IDELAY, MAXAD, GAIN
0003		CALL SETFIL (5, 'A', IERR, 'KB')
0004		PRINT I
0005		READ (5.2) IFTR
0006		IF(IFTR.EQ.0) GOTO 100
0007		PRINT 3
นดนส์		READ(5.4) IFTRST
0009		PRINT 5
0010		READ(5.6) GAIN
0011	100	PRINT 7
0012	100	READ(5,8) IDELAY
0013		PRINT 11
0010		RFAD(5, 12) MAXAD
3015		PRINT Q
0015		PFAD(5 + a) = 7777
2017		
1018	1	FORMATC' DO YOU WANT FLITERING 2'/
2010	(* ' IF YFS TYPE I. IF NO TYPE 3'//)
PINN	2	FORMAT(II)
0010	z	FORMATC' WHEN DO YOU WANT FITERING TO START'.
0020	Ŭ	X = 1X, '? [13]'//)
0.921	4	FORMAT(IS)
ua22	5	FORMATC' ENTER THE GAIN TERM FOR STOCHASTIC'.
	-	X = 1X, APPROXIMATION, (F5.1) //)
8023	6	FORMAT (F5.1)
0024	7	FORMATC' ENTER THE MULT. FACTOR FOR THE .
	·	X IX. SAMPLING PERIOD. (12) //)
0025	8	FORMAT(12)
0026	11	FORMATC' ENTER THE MAX. NO. OF SAMPLES YOU',
	••	X 1X. WANT. [13] //)
0027	12	FORMAT(I3)
1028	9	FORMATC' THANK YOU. TO START, STRIKE ANY KEY '//)
0029	iø	FORMAT (A1)
0030	77	FORMAT(///, 5X, 'PHI1', 8X, 'PHI2', 8X, 'PHI3',
		X 8X, 'PHI4', 8X, 'PHI5',///)
0031		END FILE 5
0032		RETURN
0033		END

.

7

.

,

•

REFERENCES

- [1] ZADEH, L.A.: "From circuit theory to system theory". Proc. IRE, 1962, pp. 856-865.
- [2] ASTROM, K.J. and BOHLIN, D.: "Numerical identification of linear dynamic systems from normal operating records" in Theory of Selfadaptive Control System (Ed. P.H. Hammond). Plenum Press 1966.
- [3] ASTROM, K.J, and EYKHOFF, P.: "System Identification a survey". Automatica, vol. 7, 1971, pp. 123-162.
- [4] GUPTA, R.D.: "Parameter Estimation of State Variables Models". Ph.D. Thes, Queen's Univ., Kingston, Ont. 1974.
- [5] PENROSE, R.: "On the best approximate solution of matrix linear equation". Proc. Cambridge Philos. Soc., vol. 52, 1956, pp. 17-19.
- [6] GREVILLE, T.N.E.: "Some applications of the pseudoinverse of a matrix". SIAM Review, vol. 2, 1960, pp. 15-22.
- [7] GREVILLE, T.N.E.: "The pseudoinverse of a rectangular or singular matrix and its application to the solution of systems of linear equations". SIAM Review, Jan. 1959, pp. 38-43.
- [8] ALBERT, A.: "Regression and Moore-Penrose Pseudoinverse". Academic Press, 1972.
- [9] NOBLE, B.: "Applied Linear Algebra". Prentice-Hall, 1969, pp. 144-145.

107

V

- [10] LIFF, A.J.: "System identification in the presence of noise by digital techniques". IEEE Intern. Conv. Record, vol. 14, 1966, pp. 152-166.
- [11] WELLS, C.H.: "Minimum norm control of discrete systems". IEEE Intern. Conv. Record, vol. 15, 1967, pp. 55-64.
- [12] SINHA, N.K. and PILLE, W.: "On-line parametric estimation using matrix pseudoinverse". Proc. IEE, vol. 118, 1971, pp. 1041-1046.
- [13] VAN DEN BOOM, A.J.W.^Land VAN DEN ENDEN, A.W.M.: "The determination of the order of process and noise dynamics". IFAC Conf. on system identification 1973, Hague, pp. 929-938.
- [14] SEN, A. and SINHA, N.K.: "On-line system identification using combined stochastic approximation and pseudoinverse algorithm". IFAC Conf. on system identification 1974, Budapest.
- [15] SAKRISON, D.J.: "Stochastic approximation recursive method for solving regression problems" in Advances in Communications Systems, vol. 2, 1966, pp. 51-106.
- [16] ROBBINS, H. and MONRO, S.: "A stochastic approximation method". Ann. Math. Statistics, vol. 22, 1951, pp. 400-407.
- [17] KIEFER, J. and WOLFOWITZ, J.: "Statistical estimation of the maximum of a regression function". Ann. Math. Statistics, vol. 23, 1952, pp. 462-466.

108

- [18] SINHA, N.K. and GRISCIK, M.P.: "A stochastic approximation method". IEEE Trans. vol. SMC-1, Oct. 1971, pp. 338-344.
- [19] KWANTY, H.G.: "A note on stochastic approximation algorithms in system identification". IEEE Trans. AC-17, 1972, pp. 570-572.
- [20] FU, K.S., NICOLIC, Z.Z., CHIEN, T.Y. and NEE, W.G.: "On the stochastic approximation and related learning techniques". Purdue Univ. Tech. Rep. TR-EE66, April 1966.
- [21] SINHA, N.K.: "Estimation of transfer function of continuous system from sampled data". Proc. IEE, vol. 119, May 1972, pp. 612-614.
- [22] SINHA, N.K. and BEREZNAI, G.T.: "Suboptimal control of nuclear reactors using low-order models". Int. J. of Control, vol. 18, 1973, pp. 305-319.