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INTRODUCTIONM

The terms system identification and process parameter estimation
have been used interchangeably by many people. It is the process of
obtaining the characteristic parameters of a system by artificially
exciting the system with some specially selected signals.- Depending on
the situation and the need, a great variety of techniques have been .

developed.

The rapid development in the area of system identification can be
attributed to many roots. Prominent among them is that there is a real
need to plan and devise better process control., In order to do so, there
is the inevitable prerequisite of a good knowledge of the process at hand.
Due to the different conditions under which the process will operate, an
accurate calculation baforehand is very difficult or sometimes impossible.
To complicate the probleﬁ further, in the real world énvironment, we always
have random disturbances generally called noise in the system. This

naturally makes the characterization of the system aven more difficult.

The techniques of system identification lend themselves to a host
of applications. The study of the dynamics of many high performance ‘systems
such as space vehicles is another example. Howevex, aside from the fact
that there exists a need to.utilize these technique% in vgrious situations,

tho availability of the necéssary tools is also an important factor. On

\



«

thoe theorectical side, we sac tremendous advances in' control theory.

Also of vicsl importance 1s the phenomenal development of computer hard-
ware technology and softwarco. Nowadays, computers are fast enougﬁ té
accomrodate complex calculations in relatively complicated algorithms in
auch less time than a decade age. Yet, they are cheap enough to be con-
sideved for implementation in many industrial processes. Parallel develop-
ments arce also found in pheripherai devices for data acquxsition, inter-
facing ard data transmission. The dramatic veduction in size and weight

further facilitate their usage in manvy more situations.

The present study represents an attempt tending to the goal of
utilising the modern computer technology in system identification in a

noisy environment,

In the remaining parts of this thesis, the various aspects of
impiementing two on-line system 1déntification algorithms based on matrix
pseudoinverse will be presented. Chapter two is primarily concerned with
the definition and classification of diffarent methods of system identifi-
cation. Ways of constructing a convenient model are also discussed.
Chapter three reviews the basics of matrix pseudoinverse together with its
application to develop an on-line identification algorithm. Before leaving
for the discus§ion of a second algorithm, we will study methods for the
deternination of the order of the model of the system, Chapter four begins
with an investigation of the effects of measurement noise on estimation and
then groposes a method using stochastic approximation to improve the
ostimation. All the practical aspects of the experiments are presented in

chapter five. Results of the oxperiments with tables and plots are pre-

¥
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sented in the next chapter. Chapter seven is the final conclusion of the

whols work with an appendix giving the program listing.



CHAPTER TWO

SYSTEM IDENTIFICATION

-

2.1 Definition of System Identification

-

While there is not yet a unique definition~for system identificat-
ion agreed upon by everybody, we shall adopt the one suggested by Zadeh
[1]: , '

"Identification is the determination, on the basis of input

and output, of a system within a specified class of systems,

to which the system under test is equivalent”

i
Before we proceed, clarification of some of the terms used in the

above definition/is in order. Systems here refer to the mathematical

models of physical systems. Ithnis the first step in the formulation of an
identification ﬁroblem and indeed of any analysis., Modelling of a system
generally refers to its representation by a pulse transfer function or by
the state variables. Identification, therefore, is the determination of
the coefficients in either representation. The meaning of equivalence can
be better understood by referring to another concept called identifiability,
Astrom and Bohlin [2] suggested that a system is identifiable if the
estimates ;f its parameters axe consistent. A necessary condition is that
the information matrii be positive definite. Vhen ;wo models are identi-

fiable and result in the same consistent estimates, they are said to be

oquivalent.



2.2 Classification of Identification Mazthods

The problem of parameter identification can be viewed as an
optimization problem. The solution to this problem consists of finding
the extremum of a certain specified loss function as a function of the

parameters to be identified,

Computationally, identification methods can be divided into two

categories, namely on-line methods and off-line methods.

0ff-line method is a one-shot technique where the loss function is
an explicit mafbematical relation between the measurements and the estimates
of interest. It is also known as the open loop method. The solution is
available after a fixed finite number of elementary operations. But pro-
cessing of the data can only start after all measurements are completed.
In general, algorithms belonging to this category require considerable
computer memory for the processing and storage of the data, Manfl&gthods

S

S
making use of auto- and cross-correlation [3] belong to this category.

On-line methods, on the other hand, are closed loop methods. An
iterative scheme whereby the estimation of parameters are being continuous-
ly updated as new measurements are made. These intermediate estimates are
spproximate solutions only. The final solutlion is approached asymptotically
and is therefore, in principle, available only after an infinite number of
elementary operations. The objective fhnctién in this case is an implicit
function of the parameters and some form of‘mode1~adjustmant strategy is
c@ployad to search for the extremum of tﬁ@ objective function. For example,

the‘ﬁatr}x pseudoinverse method Seing investigated in the present study



adopts the squares of the residual exrors of the system dynamic equation

as the objective function. Thia,functicn is being minimized through an
¥

K

iterative scheme .

The stochastic approximation method can also be formulated in an
iterative form for on-line application. This method is being used to
identify the noise model in the present study. Both methods will be des-

cribed in greater detail later. -

The on-line methods have the obvious advantage over the off-line
methods in that intermediate results are available for use during the
identification process if desired. This type of estimation will also be

.

able to respond to a change in the system dynamics. When applied in real
time, however: they pose more problems in their im%lementation. A useful
on-line method mus£ have the important property that it be computationally
efficient. The reason is obvious because we have to complete all necessary
calculations in updating the estimates before the next set of new measure-
ments can be made. An inefficient algorithm will impose severe constraints
on the choice of sampling frequencies. Moreover, in an industrial setting,
identification is only part of the control loop.‘ The computer is likely to
be used for other purposes as well. Thus, the ease of implementation, and

hence the feasibility for realistic application, depends heavily on the

computationai simplicity.

2.3 Forrmulation of an Identification Problem

The formulation of an identification problem begins with the model-



ling of the system. Preferably, the model chosen should have the following
properties:-
(&) It is based on the input-output measurements and does not
depend on other measurements that might be difficult or

impossible to be made directly;

(b} It must assume a simple form with the smallest possible number
¥
of parameters to be identified and can readily be used for

controller design;

(¢c) It should be able to accommodate the stochastic behaviour of

the system due to random disturbances.

Several basic assumptions are also made in the modelling which
would greatly reduce the amount of work without severely limiting the
usefulness., Ve shall assume that the system is linear or can be adequately
approximated by a linearised model. Further the system is assumed to be
time-invariant. If the system is only slowly time-varying, the changes can
be reflected on the estimates obtained by on-line algorithms. Finally, the

physical system is assumed to be of finite order.

There are two convenient types of models available, namely the

state-variable . model and the pulse transfer function model.

The state-variable model of a linear, finite dimensional'and time-

invariant discrete time system is given by

"x(k+1) = Ax(k) + Bu(k) (2.1)



y(k) = Cx(k) | (2.2)

-

where k3o is/an integer,
% is the state vector of dimension m,
A iz 2 mwon matrix,
B is a mxl vector,
C is a lxm G%ctor,
u is the input,

and y is the output,

The parameters are the elements in matrices A, B and C. Gupta
[4] has investigated this type of model in detail applied to system identi-

fication.

The transfer function counterpart of equations (2.1) and (2.2) are

as follows: -~
1 ng"lz
H(z = gl .
R(z 7)
-1 -m
ay +a;z2 "+ ... +az
* -1 -n (2.3)
1+ blz + . .+ bnz

where C(z’l) is a polynomial for the output of order m
R(z'l) is a polynomial for the input of order n
The parameter vector for identification can be defined as
n

T ' ' .
g =laga, . .. apbb,-" - b1 (2.4)

where superscript T denotes matrix transpose.



Tho transfer function model is more suitable for the equation-

crror approach since it is a direct rzlation between the input and output.

For this reason, it is chosen for the present study.
In discrete time, equation (2.3) can be written as

ol
¢ =ja, T, . -

i- b, i ; (2.%)
js0 ] J j=1 J J
whare cy ™ C{iT), output of system at t = iT
L v(iT), input of system at t = iT
T = sampling period
i = integer <
In matrix notation, letting i range from 1 to same integer k, we
can again rewrite (2.5) as
'
Ak $ = Ck (2.6)
a
where Ty T, e e v Ty Gy "G ~<
' 1'1 1‘0 . . » Tz-m -CO "C-l s . . . -C
Ak = L L] L] - .
- - .c
T-1 Tk-2 " Tkem k-2 ko3 v oo
. T @
and oT = [& ¢ ¢, ] (2.8)
k 1 2 . L] [ k .
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Equation (2.6) can be solved analytically if men+1 pairs of s
and c; are known exactly, assuming known initial conditions, or twice as

many pairs of measurements if initial conditions are unknown.

However, the measurements are usually contaminated with noise and
#

we have the input-output measurements as follows:

ui = ri + W (2.9)

Yyt ety (2.10)

. ¢
where {w,} and {vi} are noise sequences for input and output respectively.

-

Therefore, equations (2.6), (2.7) and (2.8) will be replaced by

Ak ¢ =¥y (2.11)
4" n,
where u,u_, ul-m =Y 1 « Yin {
U, u, T <+« Yon
Ak = . . . . . . (2.12)
Ue1%-2 0 Ykem k2 0 Yken |

vy = byyyy. ..yl (2.13)
n

and the parameter vector

ﬁT ~y A ”~ ”~ ~
3 = [aga; - . . g bb, . o L b ] (2.18)
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In subsequent chapters, an algorithm will be developed to solve

-~

¢ inm an iterative manner suitable for on-line application based on the

noise-corrupted input-output measurements. The error of estimation ER is
A

defined as the difference between the estimated vector é and the true

parameter vecgor Q

¥

(2.15)

Very ofteni it is convenient to express the error as a scalar

quantity which can be norpalised for easy comparison. Thus, we define the

s

normalised errotr of the estimated parameter vector as

NIL:
ey = ‘lQ Ql‘ (2.16)
g

where || || denotes the norm.

Pictorially, the error due to an incorrect estimation of the para-

meter vector can be depicted in figure 2.1.
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CHAPTER THREE

PSEUDOINVERSE APPLIED TO, SYSTEM IDENTIFICATION

3.1 Definition of Pseudoinverse

In solving the system of linear equations

AX = X
-1
we have X= A X
where A"l is called the inverse matrix of matrix A

such that A must be a square non-singular matrix
with the property that
a7l e ala e
Penrose [5] generalized the idea of matrix inverse to include cases
where A is rectangular and gave it the name generalized inverse or pseudo-
inverse of a matrix. Greville [6] and others also have investigated its
properties and applications. One way of defining [6] the pseudoinverse is

as follows:

\

Let A be a matrix of dimension mxn with rank equal to r, It can

be factorized into two matrices B and C such that
A = BC (3.1)

whore B is a nxr matrix of rank r
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C is a rxn matrix of rank r

T £ m, n integers

The factorization can be found by first selecting B such that its
columns are the linearly independent columns of A. Since A is of rank r,
the dimension of B must be mxr. Then C is chosen such that 1t will satisfy

gquation (3.17.
The pseudoinverse of A is then given by

1 1
At = clree™y  8Te] BT if avo
(3.2)

. if AmQ

It can be proved [7] that there always exists a unique pseudoinverse

+
A as defined above for any matrix A.

In the special case when n=r, (3.1) reduces to

A = BI
and (3.2) is simplified to
A = [BTB]-I B!
L (3.3)
LRI S
= [A'A] A
where AT is called the left pseudoinverse of A with the rows in

L
T +
the row space of A° such that AL A=

Example: 1 0

Let A= 0 2



Hevxo

Using (3.3)

Similarly, when m=r,

and (3.2) becomes

Mwd » ney=?
' 1

AY = [ATA] AT
L i

5 -4
[—2 10

.

21

(3.1) reduces to

A = IC

-1
A « cT1ech
VT o Tt
= A [aa’]

]

15

(3.4)

where . Al is called the right pseudoinverse of A with the columns

R

in the column space of AT

Example:

Let A= {1 2]

Here m=y=]l , n=2

Using (3.4) AT = [ATA] A

My

-1 T

50 ]

=] =]

such that AAT = [

Cozmparing equations (3.2), (3.3) and (3.4), we can deduce that

+

A

AR

(3.5)
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3.2 Proparties of the Pseudoinverse

Bofore going on to consider the use of pseudoinverse for system
identification, we have to look more closely into its properties. Many of
these properties will bo used 1n the derivation of the i1dentification

algorithm

For every real mxn matrix A, there exists a unique real pseudo

N N .
inverse A as defined earlier which will satisfy the following i1dent:ities

AT AAT « A"

AAT A=A

LR (3.6)
[A*A]T = A'A

where the superscript T denotes transpose of a matrix.

In fact, the above identities are used by Penrose [4] to define
pseudoinverse in his original paper. They form a set of necessary and
sufficient conditions to prove the existence and uniqueness of the pseudo-

inverse.

Other properties are summarized below [8]:-

1. A" = a
2. AT T
3. A" = Al if A s square and nonsingular

4, [XA]* « 2*A" » X scalar
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.1
and X = Y'for A0
2" v 0 for A=0

E3
5. [ATA ] = At AT
&

(] = AT

1n general [A8)" # 8" A"

o 8 T .
&. The canks of A, A A, A, A’A are all squal to the trace ot At

3.3 Applicacion to the Solution of A System of Linear Equations

In this section, we shall prove an important theoram which serves
to illustrate the crucial value of matrix pseudoinverse in the solution of
a system of linear equations., This in turn plays an important role 1in the

development of the algorithm for system identification.

Recall the definition of the pseudoinverse given 1in section 3.1 that

if A = BC ‘ (3.1)
-1 -1
then A = ¢T [ccT] [8¥B] 87 (3.2)

Theorenm [9]:
With the pseudoinverse A' of matrix A defined as in equations (3.1)

and (3.2), the solution of the system of linear equations

X = A (3.7)

which will minimize

(a) the sum of squares of the residuals Q? L

where g=X- A& (3.8)



(v) the sum of squares of the unknown §T X is given by

5= A@‘X (3.9)

Proof: Lot S = (;,;—A;@)T (,‘(TA{‘)

T

g, T T T T,T
R A S S

X - AY XA

mnimizing S

wa. have ATA§ = ATX (3.10)
Now, substitute equation (3.1) into (3.10), we have

¢t [878] cx=cl By (3.11)

-1 -1

Multiply both sides by [BTﬂ] [CCT] and rearranging, we get
T Tq b rToq™t T

x=Cfcc’] [8B] B Y .

= A"y (3.12)

by applying equation (3.2). Hence the assertions (a) and (b) follow.

In other words, the solution given by x = At Y has the important
consequence that it is also the optimal solution in the sense that the
square of the residual error is minimized. The identification algorithm
developed according to this same principle will likewise }ield optimal

ostimates in the same sense.
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3.4 Recursive Identification Algorithm

Recall that we have formulated the parameter estimation problem

in section 2.3 as
¢, = ¥ 2.1
M ST Yy

Applying what we have just developed in the preceding section,

we have at the kth iteration

-~ Y ‘
") Ay
with ¢, as the optimal estimation of -
A" "

If ¢k has p=m+n+l elements as defined in section 2.3, we may form
")
the following special cases: 7

(a) Fork gp,
-1
" T T
3k = A [Ak Ay ] ik (3.14)

-1
where A);r [Ak ART] is the right pseudoinverse of Ak. It

~

gives the so called minimum norm solution of O
n

(b) For k > p

s = [ATA] AT (3.15)
¥ 0 T 4t \ :

where [AérAk]'l AkT is the left pseudoinverse of A . It

gives the least squares solution of ;k'
")

In both cases, Ak is assumed to have full rank. This condition

can be guaranteed -if one of the following conditions [;0] is imposed on the
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input sequence r{iT):-
1, ©(iT) is a sequence composed of n discrete Fourier components
and all naturél modes are present in the output sequence Ci‘
2. r, = 0 for k <n
= ] for k xn
3. wv(iT) is a random signal.
More will be said about the input signal for the experiments in

chapter five.

The transformation of equation (3.13) into an iterative formula
has been considered by Wells [11] and Sinha and Pille [12]. The information

matrix Ak+1 is considered to be formed in the following manner:

’ A
. A r k
k+1 * T (3.16)
%k+1
T
where Rrey = [uk+1 N I R R I yk-n] (3.17)

a row vector containing the latest set of measurements.

Similarly, the output vector Yk+1 is of the form

Lk

yk+1

Xke1 = (3.18)

wher§ Yia1 is t?e latest measurement of the output of the system at the
(k+1)th instant corresponding to the input Uy

The result is that, when a new pair of input-output measurements is made,

a new row is added to the %nformapion matrix Ak+1 and a new element is

added to the output vector Xxe1®
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7ith these arrangements, we are now in a position to derive the
itorative algorithm [12]. The major results for th kth iteration are

summarized below:

Let p be the dimension of vector ¢,

For ¥ ¢ p (minimum noxrm solution)

Qk+1 §k+i
Rre1 W Riel

) ) - o
o1 ™ " gy = Rpey ) (3.1

where T T
[Qk §k+1] ﬂQk %k+1]
Qk+1 * Qk - T (3.20)
Rx+1 Qk\%ksl
and T
B e p s (Q .13 o 8,1 [0+ &1 Px Q:kq]
k+1 k T Q ]2 T -
Lepar & Rk \ e
o’
[» 1 (o 1T+ [a 10p ik
O D% Rierd Bk Bk k Bon? P Rk
T 2
Rxs1 & Rier
withe the initial conditions
Q° =1 , Po = 0 and Qo = 0 (3.22)
For k > P (least squares estimation)
\ - . (e §k+1] Oy - 5&:& %k]
%kOI b Qk + T (3.23)
1+ Rxa1 Pk Real
Py #ya1d [Py ﬁk+1]T
where pk*l ] Pk - - (3.24)

T
1+ 2y P fxa
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The matrices Pk and Qk are defined as
P = A AT . (3.25)
Q =1-4"A (3.26)

Thus they are both symmetric. The dimensions of matrices Pk and Qk are
both pxp while that of the vectors Rx and 3, are both p. The storage
requirement is minimal, Further, only a total of

N = 3p° + 4p

multiplications are required to calculate equations (3.23) and (3.24) so

that this algorithm is regarded as computationally efficient.

The results of the experiments applying this algorithm to the
identification of a second order system will be described in greater details
in chapter six. Meanwhile, making use of some of the definitions just pre-

sented, we shall discuss methods to determine the order of the model,

3.5 Determination of the order of the System

The algorithm discussed in the previous section assumes that we
know the value of
P . men+l - - Co (3.27)
where m and n are th; number of‘coefficients_in the numerator and denominator
of equation (2.3) respectively. Naturally, the values of m and n depend

on the order of the model used for ideﬁtification.
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One method to determine the order of the model is to assume certain
low values for m and n in equatiofi (3.27) and proceed with the estimation

of $. Then, increase m and n by one and repeat the estimation procedures.

The step responses of the last two trials are compared. If they are the

same or sufficiently close, the latter model is of unnecessary high order.

Otherwise, the trial process is carried on until we meet such a requirement.

This is admittedly a very crude trial and error approach. We might have

problems if the noise level is high.

The following method is a much more systemafic approach proposed by

Sinha and Pille [12], It is based on the following theorem.

Theoren:

Consider a system transfer function

-1
H(z) = ELZ___I_l (3.28)
Qiz )
™ -1 -1
Sl where P(z 7) and Q(z ) are polynomials of order m and n

respectively,

Assume that, in the model, the order of both the numerator and

denominator is N which may be chosen arbitrary large. Let

q=tr Qk : \ (3.29)

e

where Q =1 -A"A B (3.30)

which can be obtained iterativoly from equation (3.20). 1If k is incremented
from 1 to M (M ¢ 2N) until q becomes a constant, the true order of the system

is ziven by
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n=N-gq (3.31)
Proof:
\ Renk A = or(a’ A
= 2N - tr Qk (3.32)
= 2N - q

The maximum rank of Ak is N+n, since Ak has 2n + (N-n) degrees of
freedom. Thus, when Ak has attained a maximum rank, q becomes a constant,

and

Nen = 2N - q
or n=N-gq

In the event when the order m < n, the algorithm should yield zero

~ -~

for the estimates of a . a, etc. in equation (2.14) and the

m+l® Zme2? C °

order of the system is apparent.

However, the above derivation assumed the effect of noise to be
insignificant so that q would approach.a constant value When the noise

level is high, we might have difficulty in applying th1s method, e

A third method to the same end takes the presence of noise into .

account. It is worthwhile to note that, in a noisy environment, several

independent methods are sometimes necessary since each method has its own

limitations due to the assumptions made in each of them;‘ If they all give

. the same result, we can be confident that it is the correct value,

BN



The 3ys;em dynamic equationldefined in section 2.3 is

Xx = Ak b ¢ (2.11)
where Xy = output measurement vector with noise

Ak = information matrix with noisy measuréments

= estimation vector at the kth instant
X .

~oon ~osn ~ ST
= [ao a; . . .33 by by L bn] (2.14)
Let the error function be defined as -
v = %(.,(,‘T ° (3.33)

According to Van den Boom and Van den Enden {13], assume the noise

is white and taking the probability limit of v, we have

1 7T
plim [v] = plim [ ] (3.34)
ke kra KR | ‘
Let N be an estimation of the true order N of the system, this leads
to the following consideration by taking into account the asymptotic proper-

ties of the estimates ék‘

( ¥ a; if N<N due .to trunction effect
- ‘= a, - if N = N -
“plim [ii] < : '
kves - ‘it i ¢N ~ . .
T } if N» N i - . (3.35)
=0 4i>N :

!
/ . . '
!

| .
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o #b, 4if N <N due to truncation effect

R =b, ifN=N
plim [bi] < . (3.36)
kb

=b, 1N .
}1fN>N
L =0 i>N

These conditions result in

z>

>0 for < N

(3.37)

)
W
4

=0 for

plim [ ¢’ g] {

An important consequence is apparent in that there is a marked
change in the behaviour of the error function v when N = N. Pictorially,

its behavious ii,,«shown in figure 3.1.

<
=

Error Function

. Pigure 3.1 Error Function V versus Estimated Order N

i



CHAPTER FOQUR

STOCHASTIC APPROXIMATION FOR THE REMOVAL OF BIAS

4.1 Effect of Measurement Noise on the Estimation

Again refer to the basic dynamic equation

A fx = X (2.11)
where the solution is given by

4" AT X (3.13)

Matrix A, is the information matrix containing the input-output
measurements. As noted earlier, these measurements are contaminated with

noise, We shall analyze the effect of noise on the final estimates.

Let matrix A, be decomposed into two component matrices as follows

(dropping the subscript k):

A=B+N (4.1)

v

where B is the noise-free component of A and N is the noise matrix.

Similarly, the output can be decomposed to
X=&*X (4.2)

whore ¢ is the true output and y is the output noise.
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As shown in the previous chapter, for least squares estimation,

the pseudoinverse At is given by

-1
A« [AT A] AT

Substituting equation (4.1)

R T -1 T
A" = [(B+N)" (B+N)]  [B+N]

1 T

T « nTB o NTN] [BeN] (4.3)

- [8'8 + B

If the noise is white and hence uncorrelated with the input and

output, we have
BTN » 0 N'B ~ 0

Then, equation (4.3) becomes

1

AY = [BTB + N'N]  [BsN]T (4.4)
Using the identity [14]
T~ Tyt T4} T b g ol T
(BB + N'N] =[BB] ([I+ (NN) (B'B)] [B+N] (4.5)
equation (4.4) becomes
. + Tyl T
A = [1-2] B + [1-2] [B'B] N (4.6)
A .00 1 7} :
where z={I+ (NN (B8B)]
-1
= [N'N + B8]  [NTN] (4.7)

-

Substituting (4.6) and (4.7) into (4.1), we get .
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- -1
g = [1-2] B" ¢ + [1-2] (8T8] NT £
. Tl T
= [1-2] B y + {1-z] [B'B] N X (4.8)
For uncorrelated white noise
NT £ Q
-
B X * 0
N+ X * Q
Hence, equation (4.8) becomes {
¢ = [1-21 8" ¢
= [1-2] ¢ (4.9)
Since 2 = g' £
- T T, (T
Thus ¢ - ¢ = [N'N + B'B] [B'N] (4.11)

0 1fN#ZO

The difference given by equation (4.11) is called the bias of the

sstimation due to the presence of measurement noise.

Removal of Bias by Filtering

The result in the previous section holds true only for white uncor-

related additive noise. In practice,\the noise is coloured. Coloured noise
can be modelled as the output resulting from passing white noise through a
finite order transfer function. Recognizing this fact, we can devise a

‘mcthod to find out this noise model. From this model, we can find its inverse

%
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with which a filter is constructed. ¥ith this filter, we can remove the

noise component from the measurements by passing them through this filter.

This approach is not unlike the Wiener-Hopf filtering method. In
order to achieve this, we have to first identify the noise model and
secondly develop a filtering mechanism. All these have to be integrated
with the pseudoinverse algorithm we have just discussed. Further 1t must be
an iterative algorithm so that it can be applied on-line. Finally, the amount
of extra computation involved should be as little as possible in order to end

up with & still efficient algorithm.

Sen and Sinha [14] have proposed a scheme by applying stochastic
approximation to find the noise filter working in parallel with the pseudo-
inverse algorithm. The derivation of this algorithm will be given in a later
section while we pause to introduce the basic.principles of stochastic

approximation.

4.3 Stochastic Approximation

Stochastic approximation may be regarded as a scheme for successive
approximation of a sought quantity when the observations involve random
errors dué to the stochastic nature of the problem. It has the following
advantages:

(a) Only a small interval of data needs processing.

(b) Only simple computations are required.

(c) A priori knowledge of the process statistics is not required,

nor is the functional relationship between the desired para-
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maters and the ebserved data. The only requirements are that
it satisfies certain regularity conditions and that a unique

solution exists.

Many major contributions are made to the area by various people. A
comprahensive survey paper by Sakrison [15] gives a good general picture of

various aspects of the subject.

First, let us look at the Robbins-Monro approach [16] which 15 the
statistical analogue of the simple gradient method for finding the root ot

the equation

. h(x) = 0 (4.12)

which is 2 Xiep 2% - Kih(xi) (4.13)

where {Ki} is a sequence of real numbers which must satisfy certain conditions

to ensure that the algorithm will converge.
When there is additive random noise, h(x) becomes

Z(xi) = h(xi) * v (4.14)

whore (vi} is a zero mean noise seguence.

Making use of the fact that the expectation of Z(xi) is h(xi),

equation (4.13) may be modified to

Xiop = % - K Z(xi\) (4.18)

iel

Robbins and Monro showed that equation (4.15) will converge if the

following conditions are met:
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-
lim Ki =0 ,
jroe
Lk == (4.16)
i=1
and K 2w

(4.17)

where a and B are positive constants. Also, it is required that h(x) be
bounded on either side of a true solution by straight lines, such that it is
not possible to overshoot the solution x which cannot be corrected by a Ki

satisfying equation (4.17).

Kiefer and Wolfowitz [17) extended the method to find the extremum
of an unknown unimodal regression function 8(u). This approach is the exact
analogue of the gradient approach in the deterministic optimization procedure

which yields

d i
The stochastic counterpart is
' d n(u,) -
i+1 i i
LA
where *n(u) = 0(u) + ¢
~
” .
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and § is the random noise component.

Since the differentiation in equation (4.19) does not exist in

general, one may use the following approximation

d n(U;)  n(U;+aU;) - n(Ug-AU,)

- (4.20)
d Ui \ ZAUi

b

Convergence is guaranteed if the following“eonditions are

satisfied:

> (4.21)
121 T
= o
j=1 '
.k, 2
= L]

A basic idea [15] of stochastic approximation is that a stochastic
counterpart exists for any deterministic algorithm. Fu et al [20], Sinha
and Griscik [18] and Kwanty [19] have proposed specific formulae to

A 1
.implement the above ideas.

4.4,  Formulation of the Noise Model

Lst the system dynamic equation be represemted in the following

form:
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[(i + A(z'l)]y.1 = [bo + B(z'l)]ui + e, (4.22)

where e, = [1 + A(z’l)]ni , the residual error (4.23)

{n;} is a zero mean random noise sequence

-1 -1 -2 -n
A(z ) = 8,2 7+ a,z LA a z

1 -2 -~

+ bzz + ., . ., +b 2

B(z™}) = b,z .

To guarantee stability of the process, the roots of [1 + A(z°1)]

are assumed to lie inside the unit circle.

We assume that the noisg sequence {n;} can be described as a

filtering of a well hehaved, zero mean white noise signal Ei i.e,

P q
ngtldomy o=8 v Tgy &
i ja1 j i-j i im1 i "i-j
or equivalently,
-1
nin.l_:._G_LE_-TlEi (4,24)
1 +D(z )
1y 4 -1 -2 P
where D(z ™). dlz + dzz ... dpz
PPI) PO -1 -2 - -q
G(z ) g1z * gzz + . .+ ng

Again, the roots of [1+ D(z'l)] are assumed to lie within the unit

circle.
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Combining (4.23) and (4.24), we have

o, = L1t az bl s ee™h] ;. (4.25)

[1+ 0z 1] 1

The above residual error sequence {ei} is now approximated by a
low order linear process. The filter involved is the inverse of this
process. This is similar to the method of "pre-whitening' used in spectral
density estimation. Two possible processes are suitable for this purpose.

They are the moving average process of the form
P

ey &5+ Loz
r=1

r

Ei o (4.26)

and the autoregressive process of the form

P

+ ] frz'r e, = &, (4.27)

e
i i i

h ]

These processes are duals of each other as a moving average process

filtered by an autoregressive filter becomes a white noise or vice versa.

In the present study, an autoregressive model is chosen. 1In

particular, if we have cascaded filters of the type
~y P __j [
e, = [1+ ] f277] e (4.28)
i j i
i=1 ,
we can approximate the true process to any degree of accuracy by choosing
an appropriate sequence (fi}‘ Using this principle, equation (4.25) can

therefore be approximated 6y_
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. Ei
e, = ) (4.29)
[1+F.(z27))]

-1 -1 -2 -s
where Fs(z ) = flz . .

This implies that

-1 -1

e r D=0 +0GEHI0+aE™HI 1+ 6a™]

This is true if sufficient number of terms of the filter on the left

hand side are used.

Substitute (4.29) into (4.22), we have

&

[1+F ()]

[1+AG™1y; = [b, + BT u; +

i
1

Multiplying throughout by [1 + F;(z-l)],we get

S/

-1/ - - -
[1+ac™H [ s P D]y = by + 8GTHI 01+ Pz hlugeg

or
[1+acH1F, = [b, « BGHIT + gy (4.30)
where . y. =« (1 + £ PRI SR +£2%) y
Yy 12t vt iy i
' (4.31)
- -1 -2 . -s
u, = 1+ flz + fzz + ...+ fsz‘ ) Ui

Ei is a white noise sequence.

If the filter is known, the measurements Y3 and uj will be filtered

in such a manner as in equation (4.31) to obtain the filtered input-output

-
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pair G} and ;}. These .filtered quantities are then used in the algorithm
to calculate the estimates. Comparing equations (4.22) and (4.31), the
residual error sequence has now been changed to a white noise sequence.
The final estimates will therefore be unbiased because the white residual

error is not correlated with the input and output.

The next logical step is to find the parameters of the filter
Fs(z-l). This is where stochastic approximation comes into the picture and

is the subject of discussion in the next section.

4.5 Application of Stochastic Approximation 3

At the kth iteration, the residual error is represented by

~ T
e, = F E +W (4.32)

where FT = [fl f2 . . fS]T , the filter parameter vector

~ -

E, = [- € 1 -ek—Z R -ek_s]? , the error vector

wk is a white noise sequence

s is the or&er of the noise filter

To obtain F, the stochastic approximation method of the form proposed

by Kwanty [19] is employed, i.e.
— L -

-

T i "
» [Fy By - & E

ot = P BT AL

(4.33)

‘where Y is a positive gain constant chosen large enough to guarantee conver-

gence.
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Fk = kth ostimate of F

= [fl(k) fz'(k) .o fs(k)] (4.34)

Using the estimated filter Fk, the input and output measurements

v and Yk respectively are filtered to obtain

Yot Y “izl Y

(4.35)
— s ~
yk = yk +.Z fl yk—l
i=1

These filtered quantities are used in the updating of the information
-matrix Ak in the pseudoinverse algorithm. Since Fk is only an approximation
to the true F, using F, 8s filter will not remove all the bias but only part

of it.

The results of experiments on a second order system are presented

in chapter six.

L e



CHAPTER FIVE

ANALOG SIMULATION AND HARDWARE

o=
S.1 Intxoduction

The two algorithms we have just discussed are implemented and
tested in real time as applied to the identification of a one-input one-
output second order system. In the present chapter, a detailed description

of the simulation and hardware will be provided.

Figure 5.1 shows the general layout of the hybrid set up of the
experiment. It consists of three different types of equipments. The first
one is the TRiZO anaiog computer., The integrators, summing operational
amplifiers and the potentiometers on it provide the ;imulation of the system
to be identified as well as the pseudorandom analog input signal. The second
piece of major equipment is the PDP-11/45 minicomputer. This computer is
of recent design with a unibus. It allows us to address any peripheral
device as convenient as any other memory locations and thus facilitate the
data acquisition procedures. The memory size is 20K with both the fixed-
head and moving-head disks. It is also equipped with a hardwired floating-
point arithmetic processor and a real time clock. Loading and running of
programs can be done easily through the system monitor which is a software
package provided by the manufacturer. The analog aﬁd digital compg}crs are
coupled together by the interface panel in between. Mounted on this panel
are the sampling devices and control circuits to co-ordinate the sampling

process.

-39 « .



Control of the analog computer is a manual mechanical switch.

However, the program provides a feature to co-ordinate the on-off switching
of the analog computer and the starting of the identification algorithm.
This is done by having the computer to repeatedly check the data buffer of
one channel at the beginning. If the analog computer is off, this data
buffer is zero. As soon as a certain threshold value is being detected in
this data buffer, it is understood by the program that the analog computer
has been switched on and it will proceed with the rest of the program. The
non-zero threshold value is necessary because of the presence of a small
amount of noise in the system. Experience shows that about 0.075 volt is

enough.

.The control of program running itself is by means of the switch
register console on the computer and the keyboard. Output device can either
be the cathode ray screen or the teletype printer. Since each device works
on a different speed, precise timing is necessary. This can be accomplished

by utilizing the priority interrupt structure of the digital computer.

For experimental purposes, an external noise generator is
installed to provide noise at different power levels. The noise is arti-
ficially introduced into the output terminal of the system. For all practi-
cal purposes, we can assume that this noise source gives us white guassian

noise with a very wide spectrum,
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5.2 Interface Hardware

The interfacing panel has been designed to handle two channels of

3

input signals. The circuit diagram is shown in figure 5.2a.

The two channels of incoming signals are connected to a signal
" sampling unit which consists of two sample-and-hold modules so that
simultaneous sampling of both channels is possible. This is necessary to

-

obtain corresponding input and output measurements at the same time instant,

There is only one analog-to-digital converter capable of converting
one voltage at a time. The multiplexer is situated in front of it to act as
a switch. It can be programmed in such a way that different channels are
presented to the input of the analog-to-digital conVerter individually in a
pre-determined order. The binary coded digital outputs from the analog-to-
dléital converter are fed into a data bhffer register which can be directly

accessed by the digital computer to facilitate a data transfer into the

¢ore memory.

The sequence of actions of the sampling process are co-ordinated
by programmed control signals together with hardwired control logic circuits.

The circuit diagram of the control logic is shown in figure 5.2b.

The control bits from the channel selector register are gated to
control the switching of the multiplexer through two flip-flops. The time
delay circuit is used to delay the conversion trigger pulse so thé& the
analog-to-digital converter is triggered to start the conversion just after

the selectgg channel has been switched to the input of the converter by the
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multiplexer. The delay introduced in the path travelled by the bus ready
pulse is about fifty nanoseconds. The required delay for the trigger
is then equal to this length of time plus the time for the analog voltage

to settle in the multiplex output.

When the conversion is complete, 1t 1s signalled to the computer
through a change in the logic level of the end-of-conversion output in the
analog-to-digital converter. Now, the computer can transfer the data into
core. After reading in the data, the computer is ready for another cycle of

action.

The control of sampling frequency is done by setting an external
frequency control switch on the interface panel. A detailed circuit diagram
of the clock frequency generator is shown in figure 5.2c. The different
frequencies are generated by allowing the clock pulses originated from the
crystal clock inside the computer to pass through a different number of
decade counters depending on the settingiof the switch. There are a total
of fifteen choices. At the lower end, we can either select one, two or
five hertz. By bypassing one decade counter, we can generate pulses ten
times faster. There are altogether four decade counters so that we can step
up the above frequencies by four folds. However, for the purpose of process
identification, we seldomly need such high frequencies. Iﬁ the program
written, the user can step down the sampling frequency set on the switch by
any integral number of times by entering aﬂ integer constant from the key-

.

board. The program will make use of the integer supplied to determine the

number of tim®s it will loop through a delay loop in it.
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Figure 5.2b <Circuit Diagram of Control Logic
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Referring back to figure 5.2a, the clock pulse is gated with the
end-of-conversion output and is also fed into the sample-and-hold modules.
The fomer connection is used for producing a bus request which is primarily
responsible for the generation of an interrupt. Tﬁe latter connection is

% (
used to switch the sample-and-hold modules to either one of two different

modes of operation depending on the need. In the track mode, the sample:
and-hold will be tracking the voltage level of the input signal. The second
mode is the hold mode during which the voltage is being held at the level

just before the switching signal comes in. Since both sample-and-hold modules
are wired together, they go to the hold mode.at the same time and hence simul-
taneous sampling of both channels. These samples will eventually be trans-

mitted to the analog-to-digital convertef for conversion. The digital out-

puts are received by a data buffer for final transfer to the computer.

Having briefly reviewed the functions of each piece of hardware

in the interface panel, we shall describe the sequence of operations in the

next sectfon.

83 Opdratinngeqégnce

The whole interrupt sequence is effected by three sources of
control working together, namei& the external clock, the coptrol logic

circuits and the software.

‘There are three speciallzed registers in the computer central to

the whole operation (see figure 5.3). The first one is the control-and-

~statais register (ADCSR) at location 177520. Bit six is the interrupt

enable bit and has to be set by the program to initiate the interrupt
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sequence. Bit seven is the bus request bit set by the external circuits.
¥hen it is set, an interrupt will be generated. Depending on the priority

af this interrupt requeét and that of the task beéng processed at that time,
the computer will determine whether to honour the request immediately or

wait until the higher priority jobs have been completed. The priority of

the interrupt request is of course chosen by the programmer. The second
reé{ster is the channel selector register (CHNSLR) at location 177522. Since
there are two channels, we need a two-bit binary code to represent them.

Bits twelve and thirteen of this register are used for this purpose. They
decide which channel is being selected for conversion. The third register

is the data buffer register (DATBUF). This is simply a data logging register
serving as a temporary storage for the outputs of the analog-to-digital

converter,

A timing diagram is shown in figure 5.4. There are si; curves in
the figure. The clock pulse curve determines the mode of the sample-and-
hold modules. They are in track mode when the clock pulse is HI and in
hold mode when the clock pulse is LO. The end-of-conversion (EOC) curve is
normally at LQ level except when conversion is taking place. The bus request
curve is formed by ANDing the logical compliments of the first two curves.

If the iqé:rrupt enable bit in the ADCSR is set, an interrupt will be
generated whenever there is 8 positive logical transiti;n from LO to HI
in the bus request curve. In thié situa;ion, we have the sample-and-hold
modules ho;ding the signals and the previous conversion has been completed.

Priority permitting and'depending on the contents of a ;Qo-word interxupt

vector at locations 110 and 112, the‘computﬂr will honour the request by

Y
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Figure 5.4 Timing Diagram .
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oxecuting the subroutine pointed to by the first word of the vector with

a priority according to the second word of the vector. The type of task
performed is under program control. The program can change the contents

of the vector to assign different tasks to different interrupt requests

As indicated in figure 5.4, the first interrupt service subroutine commands
the interface panel to c&gvert the first channel. The next one is for
storing the data of the first channel in an assigned location in core
followed by a command to convert the next channel. Finally, the third

one is to store the data from channel two.

After servicing both channels, the cycle can be made to repeat
itself for any desired length of time by simply keeping the interrupt enable
bit in ADCSR set. If no further sampling is desired, the interrupt enable

bit is cleared to inhibit further action.

5.4 Pseudorandom Input Signal

In section 3.4, we have noted that in order to make the assumption
about the rank of the information matrix, the input signal has to satisfy
one of several conditions:— One such condition is to excite the system by
a random signal. In practice, true white noise signal cannot be realized
physically, However, we can synthesize pseudorandom signals that would
still satisfy our purpose. What we really need is a random sequenc; during
the finite time interval when the identification process is taking place.
¥e have at least two conéenient methods at ouf disposal, The firét method
is to use a pseudorandom binafy sequénce (PRBS) generated from switch

registers, ', -
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W

In our present study, we use the technique of summing wany
sinusoids with randomly selected phase angles to produce a pseudorandom
signal. The use of sinusoids for this purpose has the important advantage
that we can obtain whatever spectral density we desire. This is important
because in identification problems, we can excite every mode of the system

dynamics by a proper choice of the component sinusoids.

L

The basic principle can be understood by referring to figure 5.5
which represents a certain specified spectral density distribution of
signal y(t). The curve is divided into 2m parts of equal area. We can
now replace the whole ;pectrum by pairs of impulse functions in both
positive and negative frequencies as shown in figure 5.6. The frequency of
each impulse function corresponds to the centre frequency of each of the
2m partitions. The magnitudes of the impulses are all equal to the area of
each portion they replace, The pair of positive and negative spectra
constitutes one sinusoid of randomly selected phase angles.That is, the

approximation of the pseudorandom signal will be
) m
y(t) = /A Z sin (wkk + ¢k)
k=1
where A = %-x area of each partition

¢ = randomly sected phase angle

If m is increased to infiﬁity,_we would obtain a truely random

signal that matches the spebifiqd spectral density exactly,

-
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5.5 Analog Simulations

Analog simulations of the system to be identified and the input
signal we have just discussed are done on the TR-20 analog computer. A

complete circuit diagram is shown in figure 5.7.

Simulation of the one-input one-output second order system is
relatively straight forward requiring only two integrators and two summing

amplifiers in addition to the potentiometers.

The input signal is constructed by superposing several sinusoids.
Each sinusoid requires two integrators and an inverter. The choice of
frequency for the construction of the pseudorandom signal must be such
that they are not integrally related. This is to avoid pattern repetition
by eliminating the presence of subharmonics. Fortunately, this can be

easily satisfied when we use analog simulation.

<
4

y
Not9,%hat even though the phase angles are randomly selected, these

sinusoids become deterministic signals once they are fixed. The resulting
signal using a finite number of these components is therefore also determinis-
tic and has a certain finite repetition frequency. This'frequency is equal

to the least common multiple of all the component frequencies and can be

made small by proper adjustment. Again, using analog simulation, it poses

no serious problem. Experience shows that at least five sinusoids are

needed for our purpose.

The fact that we have a deterministic input signal is in effect an

"advantage in the experimental work because this signal is also repeatable.
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A repeatable input signal gives the same output signal every time. We can
make comparisons of effects due to different noise levels. We can also
compare different algorithms under essentially identical conditions. Should
this input signal be truely random, we would have to make many runs of the

same test in order to arrive at a statistical result,

5.6 Error Analysis

There are two main sources of errors in the system we have just
described. Firstly, there are the random disturbances within the system
that are completely unpredictable. This kind of disturbances are usually

assumed to be white gaussian and are difficult to assess.

The second source of errors comes from the non-ideal components of
the instruments used in the experiments. They are of systematic in nature.

The following is a brief summary of these systematic errors:-

(A) Analog unit (non-ideal operational amplifiers)
(1) drift
(ii) zero off-set
(iii)phase shifts
(B) Multiplexer
(i) zexo off-set
(ii) non-infinite backward resistance
(iii )non-zero forward resistance

(iv) cross-talk due to imperfect isolation between channels
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(C) Sampler
(1) finite aperture time
(ii) time delay due to finite tracking time and switching
(#1) uncertainty in synchronization of simultaneous sampling

(iv) due to finite word length

Temperature dependence of many electronic components also may
introduce errors. However, the electronic components available nowadays
are quite reliable and a 0.01 percent full scale deviation can usually le
obtained. This is not at all severe in our present application. Since a
10-bit converter is used, it is accurate up to about *0.01 volt. Again, 1t

will not cause severe degradation in the results.
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CHAPTER SIX

SOFTWARE AND RESULTS

6.1 Introduction

This is a user-oriented program designed for convenient application
to identify a second order one-input one-output system. It can easily be
modified for higher order systems. The main bulk of the program is written
in the MACRO-11 assembly language for the PDP-11/45 minicomputer. Compared
with compiler language programs, the assembly language programs have the
advantage of using less core memory and require less computation time since
a lot of overheads can be eliminated. There is however one FORTRAN sub-
routine. This is\being used for conducting the initial interactive dialog
to obtain some essential data. It does not affect the efficiency of the
identification algorithms because the dialog is being carried out at the
beginning of the pxogram before sampling is started. But it offers the

convenience of flexible formats for the data to be read in from the keyboard.

As far as the size of the program is concerned, the assembly language
portion of the program which consists of all computational and input/output
aspects of both algprithms requires only 7632 words of core. The FORTRAN
subroutine requires 1722 words of core. There is one common data block
between the assembly language program and the FORTRAN subroutine occupying
only 24 words of core. Modification of this program for higher order systems
does not significantly change the numbers just quoted., If the output device

is not fast enough to empty the output buffer for the intermediate estimates,

57 - .
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storage area has to be provided for storing all these intermediate results.
The size of this temporary storage depends on the number of samples we want
to take. Two words of storage are necessary to store one parameter value

for each iteration.

6.2 Organization of the Program

A flowchart of the program is shown in figure 6.1 giving a general
picture of its organization. The program is loaded into core by the system
monitor in the usual manner. When it starts to run, it will first jump to

the subroutine that conducts the initial dialog with the user,

During the interactive dialog, the user is asked to select either
one of two algorithms i.e. the algorithm using matrix pseudoinverse only
and the algorithm with filter. In the case of the second algorithm, the
user has to supply a gain factor for use in the ite;ative stochastic
approximation formula. He also has to specify when the filtering should
begin., Since a third order filter is used and thirteen previous error
terms are needed for updating the filter parameters, the filtering can only
start after at least fourteen samples have been taken. Should the user
direct the filtering to start at a even later time, the program would still

update the noise filter after fourteen samples so that a more accurate filter

would be available at that time.

We can also specify the maximum number of samples to be taken.

However, the user reseryes the right to abort the program any time during

.run time. This is done simply by raising bit 0 in the switch register console

on the computer, The program checks this bit every time it enters a service
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START
WV
NO INITIAL
>~ DIALOG
\/ Y
BUFFER > < ENABLE ’ s
0.078 ? = SAMPLER
INTERRUPT
V' YES
o ALL , YES DISABLE |
> DONE LINTERRUPT _ |
0 bl
WAIT | 2
. FOR
—<&—a| CONVERT CH. 1 15T INTERRUPT |
v
. STORE CH. 1 2ND . SERVICE ]
—< CONVERT CH. 2 INTERRUPT AJ
< STORE CH. 2 3RD
: ves [\
\j( l /
ENABLE
} IDENTIFICATION | [ PRINTER 2
ALGORITHM re ~
INTERRUPT
\
PRINT
‘ 1 LINE >
S
| DISABLE YES NO
~ | INTERRUPT

Pigure 6.1 Flowchart of Program



subroutine. It would immediately clea® all interrupts and then exit from
the program to return to the system monitor. From thereon, the user can

restart the program.

As we have noted in chapter five, the lowest sampling frequency
available on the selector switch is one hertz. Here, we can enter an integer
that will be used by the program as a multiplying factor of the sampling
period. We can therefore greatly increase the number of choices in sampling

frequency.

Il

After completing the initial dialog, it will jump into a loop
waiting for the analog computer to be switched on. The identification will

start after the'analog computer has been started.

Results of each iteration are printed out as soon as they are ready.
A sample ﬁ}int-out of a typical run can be found on figure 6.2. Because of
the different speeds of the many devices and the need to sample at equal
intervals, priorities have been assigned to the different interrupt driven
service subroutines. The sampling service subroutines have the highest
priority (priority 5) because samples need to be taken at precise instances.
The data acquired through sampling also need to be tr;nsferred into core

from the data buffer before the next &ata comes in, By arranging the priority
of the printing interrupt (priority 4) below that of the sampling and analysis
but above that of the prpcessor (priority 3), .they can swap control of the
computer until the prescribed maximum number of fter;tions has been reached

without interfering with each other.

Figure 6.3 tabulates the functions of the major subroutines together
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DO YOU WANT FILTERING ?
1IF YES,TYPE 1; 1F NO,TYPE 0

l

Figure 6.2 Sample Print-out of the Results

<

~

YHEN DO YOU WANT FILTERING TO START 72 [(13)

250 _

ENTER THE GAIN TERM FOR STOCHASTIC APPROXIMATION. (F5,.!)

1.0

ENTER THE MULT. FACTOR FOR THE SAMPLING PERIOD. (12}

g1

ENTER THE MAX. NO. OF SAMPLES YOU WANT. (I3]}

300

THANK YOU. TO START,STRIKE ANY KEY

PH11I PHI2 PHI3 PHI 4 PHIS

2.22E-01 0.00E~-00 8.00E~-00 P.08E-DQ 2.805~-0D
2.21E-01 5.89E-02 - 0.00E-00 ~-1.33E DO g.ﬁ@E-OG
2.21E-01 5.90E~02+ ~|,6lE~0I -1 I3E B0 «48L-0
2.212"01 50905"02 "I.GZE"QI "‘0338 1%} 4052E"G
2.21E-01 5.908E~-02 ~l.61E~-D1 -] «33E 008 4.,51E-01}
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Figure 6.3 Table of Subroutines

Sub;z;gine Functions and calling conventions .
START Main Program,
DIALOG Obtains information from user through a series of questionms.
ANAL Dispatch subroutine for data analysis, stores the resulting

estimations into buffers.

METHOD Minimum norm and least squares algorithm for pseudoinvers.
SfAPR Stochastic approximation.
FILTER Filtering of measurements,

- CONVSN Conversion of A/D outputs into floating point format.

Calling convention:

Mov DATA, R3

JSR RS, CONVSN

Result is on top two words of the stack

CLOCK ’ Enable the sampling interrupt.
AD Gives command to convert channel 1; interrupt driven.

STR1 Stores data of channel 1; gives command to convert channel 2,
interrupt driven.

STR2 Stores data of channel 2; jumps to subroutine CONVSN: interrupt
driven. .
DELAY . Dispatch subroutine for-analysis of data, stores resulting
’ estimates in buffers,
DEfAY Modifies sampling period by an integer multiplicative factor
: ” k3 L
PRINT : Enables the printing 1nterrupt monitors the progress of
‘ . sampling, data analysi's and printing.
10 . ASCII conversion of results before transferring to the printing
* buffers.
10¥ Gencrates a 3-digit ASCII coded line counter in ascending order.

PRN - Printing sdbroutine; interrupt driven.



Mathematical
Subroutines

MULFP
ADDFP
DIVFP
SUBFP

MMUL
MADD
MSUB

DSC

MSC

MTRN

SHIFT
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Figure 6.3 cont'd.

Floating point multiplication, addition or subtraction
of A and B,

Calling convention:

JSR RS, XXXFP

.NORD A, B, C -

Result is in C

Matrix multiplication, addition or subtraction of A and B.
Calling convention:

JSR RS, MXXX

.WORD A, B, C

.WORD ROW, COL

Result is in C.

Matrix division or multiplication by a scaler.
Calling conventions:

JSR RS, XSC

.WORD A, B, SC

.WORD RWO, COL

Result is in B.

Matrix transposition.
Calling convention:
JSR RS, MTRN

JNORD A, AT

.WORD ROW, COL
Result is in AT.

Shifts all elements of vector A by one position downwards.
Calling convention:

JSR RS, SHIFT

.NORDS A, N
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with their calling conventions whenever they are appropriate. This program
is adaptablg to computers without a hardwired floating point processor
without making any changes. Macro definitions are liberally used in the
mathematical subroutines to facilitate easy checking. The complete

heavily commented program listing is in the appendix.
6.3 Results

The results are based on experiments identifying the second order

one-input one-output system given by

0.04+0.28s

H(s) = vl
0.04+0.4s+s

(6.1)

According to Sinha [21], the sampled-data equivalent of equation

(5.1) can be obtained by the bilinear transformation

-1
s ='%fl:3:Tl (6.2)
(1+z 7)

subject to the condition that
T € 0.5 ‘ (6.3)
where T = sampling period
Py = System poles,
The system representeé by equation (6.1)'has poles

p, =P, = 0.2 (6.4)
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Therefore, the transformation given by (6.2) is valid if T=2

seconds is used.
Applying (6.2) to (6.1), we have

0.222+0.05562"1-0.167z" 2

H(z) = -1 2
1-1.333z7 140,444z

(6.5)

<

However, due to the presence of a small amount of disturbance in
the system even when no external noise is added, the experimental results

of the coefficients of equation (5.5) are found to be

-

¢ = [0.221 0.059 0.162 -1.33 0.452] (6.6)

-

Values in equation (6.6) are being used as a reference for sub-

sequent comparisons.

Whenever it is app Kate, experimental results from both algorithms
are presented together, B§§§i21gorithms are tested under different amount
of externally introduced white noise into the output of the simulated system.
For the second algorithm using combined matrix pseudoinverse and stochastic

approximation, a third order noise filter has been used.

Figure 6.4 summarizes thé estimates and the resulting normalized
errors for both algorithms after three hundred iterations. We can conclude
_from these results that the error of estimation is directly dependent on
the level of noise present, It is also observed that the second algorithm
. gives better estimates in all instances. The extent of imprbv;ment, hodever,

varies. !



Sample plots are shown in figures 6.5 and 6.6 displaying the
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behavious of the error in the estimates during the course of identification

for the pseudoinverse algorithm and the one with filtering respectively.

Note that in figure 6.6, filtering starts only after fifty iterations in

order to avoid the initial region with large fluctuations in the estimation,

Despite the good convergence properties clearly exhibited, there

always exists a bias in the estimation as expected because the residuals

are correlated. Considerable amount of the bias is successfully removed by

the filtering method.

It is of interest to recall that parameter estimation problems can

be considered as optimization problems. In our case, the objective
minimization is the residual error sequence. This is our criterion
the ''goodness' of estimation. There are othér criteria that can be
For example, the time domain errors of step response or the impulse
are both valid criteria to evaluate estimations. Since there is no
functional relationship among different criteria, a good estimation

to one criterion does not necessary imply that it is also good when

for

to define
used.
response
direct
according

judged by

other criteria. A case in point to illustrate this fact is to compare the

step response and impulse response of the tests we have performed.
.I

The two plots figure 6.7 show the step response and impulse

Tesponse

respectively of the two algorithms at a noise ratio of 25%. From the table

of figure 6.4, we notice the big different in the vaiues of the parameters.

We also notice that, the first algorithms has a normalised error of 88.72%

compared with the much smaller 11,38% in the second algorithm. The difference
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of almost seven hundred percents is also show graphically in figure 6.6b.
Despite all these dramatic differences, a reference to figure 6.7 shows
that their responses are not too far apart considering what we have seen

from difference in parameter values. The table in figure 6.8 tabulates

the cor¥esponding mean square errors in step and impulse response of all
the tests we have performed. There is no direct correlation between this
set of values and the normalised errors. While fiitering unfailingly

reduces the parameter error, no such conclusion can be drawn about the

errors in step response and impulse response.

As far as computation time is concerned, no more than 0.05 second
per iteration is required for the matrix pseudoinverse algorithm. Twice as

much time is required for the second algorithm i.e. 0.1 second.



PSEUDOINVERSE

, ggﬁg ) , _ESTIMATION ) ) mg:gg;zsu
(%) 4y 7! ¢3 7 3
5 0.2188 0.2596 0.04155 -0.4156 -0.07847 0.5487
10 0.2176 0.2928 0.07486 -0.2561 -0.1682 .0,8035
25 0.2137 0.3011 0.08354 -0.1934 -0,1879 0.8872
50 0.2076 0.2992 0.08611 -0,1603 -0,1546 0.9044
75 0,2025 0.2976 0.08969 -0.1305 -0.1081 0.9130
100 0.1982 0.2961 (.09082 -0.1056 -0.0654 0.9199
g 5 0.2126 0.1407 -0.07118 -0.9829 0.2575 0.08469
% 10 0.1835 0.1252 -0.04103 -0.9497 02355 0.1035
3 25 0.2167 0.1960 -0.06142 -0,9101 0.2858 0.1137
50 .0.1878 0.1088 -0,04592 -0.5546 -0.05058 0.4255
. 75 0.1973 0.06805 0.03884 -0.5079 0.02452 0.4387
E 100 0.1841 0.0129§ 0.02091 -0,483% 0.005042 0.4716
=
’
‘ Figure 6.4 Results in Parameter Estimation
and the Normalized Errors o
[+

" :
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NOISE

MEAN SQUARE ERROR

Figure 6,8 Mean Square Errors in Step Responses
and Impulse Responses

RATIO i »
%) STEP RESPONSE (x10™%) IMPULSE RESPONSE (x10™%)
5 0.1122 0.2367

w10 0.07293 0.2759

e

E 25 0.1108 0.5449

Yot

§ ‘50 1.3490 2.1173

w

2 75 3,8398 5.0463
100 6.6374 8.4712

><'

g

£ S 0.1186 0,2367

«

g 10 0.4288 0.2318

% 25 0.2245 3.0333

£ 50 11.7404 20.811

£ 75 14,086 24.0609

=
100 ¢ 28.6127 46.859

L



CHAPTER SEVEN

CONCLUSIONS

The theories presented in this thesis result in two algorithms for
on-line system identification. The first one is the matrix pseudoinverse
algorithm. A fundamental property of this method is that the estimates

are optimal in the sense that the residual error is minimized.

s
The second algorithm is an extension of the first one aiming at
further improving the estimation by removing the bias in the estimates due |
to measurement noise. The mechanism employed is the introduction of a
filter obtained from the properties of the noise present in the system. The
estimation of the noise properties and hence the construction of the filter
is itself an on-line estimation process being carried out in parallel with
the pseudoinverse method. The tool to this end is the use of stochastic
approximation which is also computatiénally simple. As a result, incorporat-
ion of the stochastic approximation into the original scheme does not result

in serious degradation in efficiency.

The upgrading of the program to accommodate higﬂer order systems
can be easily done by simply expanding the data block to provide enough
TOoOom as’a working. area. All other instructions remain unchanged. However,
high order models are usually not necessary in many engineering applicationms.
_Very complex systems can sometimes be approximated by second or third order

models, For example, Sinha and Bere;&ai[22] havs modelled the dynamics of
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the nuclear reéctér power generating station in Douglas Point by a second
ordgr model. This second order model which is being updated on-liné is
subsequently used for controller design. This example may serve as a
justification for choosing oﬁ&y a second order example in the present study.
Also of importance as a reminder, simulation of the system on the analog
coﬁbﬁxer bearsclose resemblance to the actual situations where identification
might be employed. In the industrial setting, transducers are used to mahke

such measurements as temperature and speed in terms of electrical voltages.

These voltages are being sampled just_as we have done in the present study.

<
We can see from the results that the convergence
property of both algorithms are clearly and nicely exhibited even in high
noise environment, The accuracy in estimation are quite naturally deterio-
rating with the increase in the amount of noise. Introduction of filtering,
however, greatly enhances this accuracy at the expense of a relatively small

Y
amount of computation time.

However, there remains room for further improvement. A common
;roblem in applying stochastic approximation is the difficulty in choosing
an appropriate gain factor that would best suit a particular situation.
No systematic met@od yet exists. It would be a worthwhile research area to

devise an iterative scheme by which an opt&mal prediction of this gain

factor can be done on-line together with what we have already developed. A

point of caution is inr order. We have to watch out for the amount of extra

«

cbmpptation thereby introduced. A time consuming method would destroy the

s

major-appeal of jour prqﬁcné,apprbach which is computational simplicity!

»
~ .



APPENDIX

Program Listing
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000000
000001
2008922
008083
000004
800005
000006
0020837

«GLOBL
«GLOBL
RO=Z9
RI=Z1
R2z72
R3=23
Raz=Z4
R5:=7Z5
SP:=Z6
PC=Z1

;
SBTTL
“MACRO

«MACRO

+«MACRO

«MACRO

+MACRO

75

«TITLE IDENT
DLALOG
$ADR, $SBR  SMLR 4 $DVR , SPOLSH .

MACRO DEFINITIONS

ML A,B,C,ROWA,COLA,COLB
JSR R5,MMUL

«YORD A,B8,C '
«WORD ROWA,COLA,COLB

« ENDI
MADD A,B,C,ROY,COL
JSR R5,MADD

+«WORD A,B,C
«WORD ROY,COL

« ENDM
msus3 A,8,C,ROW,COL
JSR RS5,MSUB

«WORD A,B,C
+WORD RoY,COL

« ENDM
pMSC A,B,SC,ROW,COL
JSR R5,1SC

«WORD A,B,SC
+WORD ROW,COL

« ENDM
bsc A,B,SC,ROW,COL
JSR R5,DSC

«WORD A,B,SC

" «WORD ROW,COL

«MACRO

«MACRO

« ENDM
MTRN A,AT,ROV,COL
JSR RS 4MTRN

«WORD A,AT
«WORD ROW,COL

« ENDM

SAVE RA,RB,RC,RD,RE,RF

Mov RA,=(SP

«11F DF RB, . MOV RB,~(SP)
«11F DF RC, Mov RCy=(SPY
«11F DF RD, Mov ~ RDy=(SP)
«11F DF RE, MoV RE,~(S5P)
OIIF DF RF. MOV . RF,'(SP)
«ENDY

: e;'



«MACRO

«MACRO

«MACRO

+«MACRO

+MACRO

«MACRO

« MACRO

+MACRO

«MACRO

UNSAVE RA,RB,RC,RD,RE,RF
+11F DF RF, Mov
«11F DF RE, Mov
«INF DF RD, Mov
«I1F DF RC, MoV
+11F DF RB, Mov
MOV (SP)+,RA
.ENDM *
POPF A

MoV (SPI+,A

mMmov (SP)+,A+2

o ENDM

PUSHF A

MoV A+2,-(SP)
Mov Apy=(SP)

» ENDM

FUL A,B,C

JSR RS5,MULFP
+WORD A,B,C

« ENDHM

FDIV A,B,C

JSR R5,DIVFP
+«WORD A,B,C

«ENCH

FADD A,B,C

JSR RS, ADDFP
«¥ORD A,B,C

« ENDM

FSUB A,3,C

JSR R5,5JU3FP
0":’ORD A,B’C *

« ENDU

MOVF A,B

Mov A,B

Mov A+2,B8+2

« ENDM

FSHIFT A,NUNM

JSR R54SHIFT
+WORD Ay, NUM

« ENDM

(SP)+,RF
(SP)+,RE
(SP)+,RD
(SP)=,RC

. (SP)+,RB
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MAIN PROGR:.1

THIS IS THE MAIN PROGRAM

L |

IT FIRST JUMPS TO SUBROUTINE DIALOG TO
OBTAIN THE FOLLOWING PARAMETERS :-

‘1FTR~~ - TO SEE IF FILTERING 1S DESIRLD
1FTRST-~ IF SO,WHEN SHOULD 1T BEGIN

GAIN=-- AND WHAT WQULD BE THE VALUE OF
THE GAIN FACTOR FOR STOCH. APPROX.
IDELAY~~ A PARAMETER TO MODIFY THE SAMPLING
FREQUENCY

HAXAD--- [MAX, NO, OF SAMPLES TC BE TAXE!

NEXT, SUBROUTINE CLOCK INITIATES THE

SAMPLING PROCESS AND PROCEED WITH THKE

ALGORITHM SELECTED I.E,.

ALGORITHM | =~ MATRIX PSEUDOINVERSE

ALGORITHM 2 =-- CCM3IHNED PSEUDOINVERSE
AND STOCHASTIC APPROX,

SUBROUTINE PRINT KOMNITORS THE PROGREST OF
THE PROGRAM AND PRINTS OUT THE ESTIMATES
WHEN THEY ARE READY

JSR R5,DIALOG; INITISL DIALOGE
JSR R5,CLOCK; STARTS SAMPLING
WAIT .

JSR R5,PRINT; STARTS PRINTING
RESET
HALT

EMT 60
FIRN

; .
3DATA OBTAINED FROM INITIALIZATION SUBROUTINE

’
000000 IFTR:
000008 IFTRST:
000200 IDELAY:
PVBVOY MAXAD:
GAIN:

+WORD 0
+WORD ©
WORD ©
.WORD ©
«BLKW 2,

wA



1 200024 ' ,CSECT
2 .SBTTL PSEUDOINVERSE ALGORITHM
3 ;
4 ;
5 H
6 : COMMON SECTION
7 ; CAL. ATPHI,Y-ATPHI,PA,ATPA,{+ATPA
8 : -
S 082224 METHOD: tMmUL AT ,PHI,DUM!,ONE,FIVE,ONE
10 00044 FsuB Y,DuMi ,DUMI
11 80056 MMUL P,A,PA,FIVE,FIVE,ONE
12 02876 MMUL AT,PA,DUM2,08E,FIVE,ONE
13 20116 FADD F.ONE,DUM2 ,DUM2
14 98138 026727 chp AN K, 243 >5 ITERATIONS ?
204580
008534
15 98136 0233156 BGT PSEUDO
16 H
17 s MINIMUM NORM SECTION
18 3
19 92140 MMUL Q,A,QA,FIVE,FIVE, ONE
29 00162 : MMUL AT,QA,DUM3,0ONE,FIV:,0NE
21.080200 DSC GA,T5.1,DUM3,FIVE,ONE
.22 H
23 3 UPDATE Q -é
24 :
25 Qg2l6 MMyL ‘T541,8AT,15.5,F1VE,ONE, FIVE
26 8236 MSUB Q,T5.5,0,FIVE,FIVE -
21 :
28 : " UPDATE PHI
29 H
30 00254 MSC T5.1,T5.1,DUMl ,FIVE,ONE
31 9272 . MADD PH1,T5.1,PHI,FIVE,ONE
32 H
33 : UPDATE P
34 H
N5 08310 psc 15.5,75.5,DUM3 ,FIVE,F1VE
36 008326 MSC 15.5,15.5,DUM2 ,FIVE,F1VE
37 00344 . MADD P,T5.5,P,FIVE,FIVE
38 00362 MMUL PA,QAT,PAQAT,FIVE,ONE,FIVE
39 00402 MIRN PAQAT,T5.5,FIVE,FIVE
40 00416 . MADD PAQAT,T5,5,75.5,FIVE,FIVE
Al 00434 psC . 15.5,T5.5,DUM3,FIVE,FI1VE
A2 06452 MSUB P,T5.5,P,FIVE,FIVE -

43 00AT0 008167 JMP FINSH
gpoi26 .
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LEAST SQUARES SECTION (K=>P)

UPDATE P
00474 SEUDO: MMUL  PA,PAT,T5.5,F1VE,ONE,FIVE
08514 DSC 15.5,15.5,DUM2 ,FIVE ,FIVE
00532 MSUB P,T5.5,P,FIVE,FIVE
;
; UPDATE PHI
29550 ’ MSC PA,TS.1,DUNI,FIVC,0NE
00566 DSC T5.1,15.1,DUM2 ,FIVE ,ONE
80604 MADD PHI,T5.1,PHI,FIVE,ONE
; ALGORITHM | OR 2
02622 ¢22767 FINSH: CMP ¢0,lFIR; NEEL FILTERING 2
000200
200000 '
30535 201402 BEQ 1$; NO,SKIP
40632 624567 JSR R5,STAPR; STOCHASTIC APFRO.ALGO,
851576

23636 U235 |

&%
.

RIS, R3



80

1 «SBTIL SUBROUTINE UPDATL
2 H :
3 H UPDATE--SUBROUTINE TO UPDATE THE
4 ; INFORM. MATRIX AS NEW SAMPLLCS COME IN
5 H IT ALSO JUMPS TO FILTERING IF NEEDED
o s ;
7 ;
8 B00V640 UPDATE:
9 000640 226787 CcMP IFTRST,AN.K; START FILTERING ?
000202
PR3766
19 02646 2028022 BGE 21%; NO,SKIP
1l PP658 BR45617 JSR R5,FILTER; YES
022574
12 39654 21%: FSHIFT A,N3; UPDAYING OF
13 00664 FSHIFT A+14,N2; INFORMATION
14 00674 MOVF UsAs; MATRIX
15 00710 MOVF YOLD,A+1 43 HERE
16 88724 MOVF Y,YOLD
17.0807408 ¢22767 ChMP #3,YOLD; CHECK IF
820200
801226
18 82746 2Q10@5 BNE 10%; - YOLD=8
1S 02752 022767 CMP #0,YOLD+2
pZR0aY :
8321029
23 90756 031413 BEQ 2%
21 20760 ©00407 BR 15
22 0¢762 0B5767 105 IST YOLD
Y1006
23 90766 10UDOA BPL 13
24 00779 Q42767 BIC #100080,Y0LD
) | B0B0
PRBT76
25 00776 P0R4A3 BR 2%
26 01000 252767 1$: BIsS #1000088,YOLD
1 30230
. POB766
27 01006 000205 2§: RIS R5
28 3
29 ; .
30 3 DATA BLOCK FOR BOTH ALGORITHMS
31, ; :
32 H
33 01010 H
34 91010 AT: «BLKVW 10,
35 021034 P «BLKW 5ﬂ<
36 21200 PA: : N\
37 81200 PAT: «BLKW ‘0‘\\\ﬂ

~
~— s



38

39
40

41
42

43
a4

21224
81226

01254
21256

B1304
p130@6

d1334
01336

B1364
B1366
71370
81370
01414
01440
@1604
81759
81714
82022
229024
820610
22214
82016
22629
02922
22924
82526
82330
82832
P2034
220836
82040
02042
02044
22050
@20854
B2070
82150
R2164
Q2244
02260
P2330
92344
B2414
02430
02432

840200 Q:

000000

240200
002090

P49200
000000

402020
020020

040209
02239

genaa!
082022
002233
622205
090322
0CCo9d
0C5a12
0QaG!1 4
povoLS
o017
041710
080000

040200
900d00

QA
8AT:
PHI:
PAQAT:
T5.5¢
T5.13
YOLD:
DuMie
DUmM2 2
DUM3:
ONE:
TvO;
THREE:
FIVE:
N2 s
N3
N1D:
N12:2
N13:
NiS:

N1QO:

INDEX:
COUNT:
Fs

Fu:
FUUs
FY:
FYY:
EV:
EVV:
EV2:
EV22:
FeONE:

FLT2

1.E0

«BLKW 10,
.FLT2 | .EO

.BLKW 1@,
.FLTI2 1.EO

BLKW
.FLT2

«BLKW
LFLT2

«BLKW
«BLKW
+BLKW
BLKY
«BLKW
«BLXV
«BLKW
+BLKW
«BLKW
.WORD
«WORD
+WORD
o'-‘«' OR D
+HORD
+WGORD
.WORD
+WORD
+WORD
+WORD
.FLT2

+BLKW
BLKW
+BLKW
+BLKW
+BLKW
BLKW
«BLKW
«BLKW
+BLKW
"«BLKW
«BLKW
+FLT2

10,
l.EQ

19.
1.EQ

1Q.
10.
50,
59.
10.
2e

2.

2.

2.
1

81
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18

36

37
38

02434
02446
02456
P2466
22502
02516

2524
2526

82532
€2536

82542
2544
22546
B2566
2686
2629
P2632

826490

B2646
82660

R2666

P2674
82676

8227617
gaogL7
802110
202492
0093167
002714

216709
1772176
216781
177273
pas301
¢eg6321

P16761
177142

7T
§ v
i

«SBTT

(1'8¢ we we 0 we V¢ Ve Yo ¥ Yo e

TAPR: FADD
FSHIFT
FSHIFT
MOVFE
MOVF
cmMp

5LT
- JMP

e Wwe WO

$: * MoV

MoV

ASL
ASL
STA.E: MMUL
MMUL
FsuB
FADD
MOV

002260 °

016761
177136
ge2262°

216761
177114,
002344 '
816761
177110
002346 "
824141

MoV

FMUL
MoV

MoV

cMpP
PUSHF

CHASTIC APPROXIMATION ALGORITHM

STAPR-~ THIS SUBROUTINE UPDATES THE

PARAMETERS OF THE NOISE FILTER VECTCR

F(3) BY ITERATING TEN TIMES PER PASS
FU=VECTOR WITH 15 PREVIOUS VALUES OF U
FY=VECTOR WITH 15 PREVICUS VALUES OF Y
FUUZVECTOR WITH 3 PREVIOUS VALUES OF U
FYY=VECTOR WITH 3 PREVIOUS VALUES OF Y

R2’

COUNT,F.ONE,COUNT; =K+
FU,NL5; UPDATE FU & FY
FY,N15; EACH STORING

u,Fu; 15 PREVIOUS

Y,FY; U & Y VALUES RESF.
517,AN.K; > 15 SANPLES ?
15; YES

STA.GO; NO,SKIP

CAL. ERROR VECTOR [EV} & [EVI]xx*Z

N13,RO;
V12.R1

Rl

Rl

FUU,PHI,DUMl.ONE,THREE,ONE
FYY+4,PHI+14,DUM2 ,0HE,TYO,0lE
FYY,Dupmt ,DUMI

puMl ,DuM2 ,DUMI

puil JEVCRILD

DUML+2,EV+2(R1)

pumi ,DumMi1 ,DUMI
DUMl LEVZ2(RL)

DuUMI+2,EV2+2(R1)

-(R1).~(R1)
FUU+10



39
48
41
42
43
44

45

46
47

48
49
50
51

53
54
55

57
58
59
69
6!
62

63
€4
€5
66
&7
68
69
10
11
12
13

14
15
76
11

78

02706
82716
g2726
82736
821746
B2756

02760

82764
Q2766

pe712
83262
B38l12
83022
83032
23042
83@52
R3062

83872

23078
g31!o
23122
83134
83154
83166
83200
03212
83224
03236
nl252

R32 s
A32 605
V3266
B3390

83304

825300

0200827
0BBY02
201402
000167
177554

Q16702
176732

QU I8
L 1652,
1 guBuBs
ni2 et
| By
176516

BYSTET
1716500
180436

s W W

18:

e Wwe we

STA.Fs

PUSHF
FSHIFT
FSHIFT
POPF
POPF
DEC

CcmP

BEQ
JPp

RESTORE FU,FY

PUSKF
PUSHF
FSHIFT
FSHIFT
POPS
POPF
FSHIFT
FSHIFT

KWANTY FORMULA

mMov

FADD
FADD
FDIV
MPUL
FADD
FADD
FADD
FDy/
I
MOVF
TST

BPI

RI¢
FSUB

1ST

BMl

FYY+10
FU,NL15
FY,NL5S
FU

RO
R@,#0

119
STA.E

FUU+L2
FYY+1D
FU,NLS
FY,ZN1Z

FOR STOCHASTIC APPROX.
N1G,RE

INDEX,F. 00z, INCEX
LNDEX,COUNT,DUNI
GAIN,DUMI ,DUMI
EVV,F,DUNM2,0NE, THREE,ONC
EVV-4,DUl2,DUM2

EV22 ,EV22+4,DUNS
EV22+10,DUNS ,DUMS

punz ,0UM3 ,DUM2

dum! ,DUM2 ,DUMI

DUMI ,DUbC

DuUM. ; TF DUMI>100.
13, SKIF
#101008,LUM:

N1OD, LUt VUt
DuMe

STA.A

83



94

<

Y5

956
97
98
99
149
1 01
192
193
1 84
105
106

83306
833290
03332
03344
03356
03370
83402
23412
83422
03424

03430
83432

83436
83442

83446

3450
3452
3472
3312
3524
33536
3540

805300
p2op27
080889
Q1402
U167

177440
005667
176402
PO5267
176400
090205

0002085

84

NEW (F) CALCULATED HERE

we we we

FMUL DumMl ,EVV+12,DUM3
FMUL punMt ,EVV+4,DUM2
FMUL DuUM! ,EVV,CUM1
FSuB F,DUNl ,F

FSUB F+4,DUM2 ,F+4
FSUB F+18,DUM3 ,F+19

STA.A: FSHIFT EV,NI3
FSHIFT EV2,N13

DEC R@

chp RG’#G

BEna 113

JMP STA.F !
11$: CLR -NDEX

CLR INCZX+2
STA.GO: RIS RS

;
sSUBROUTINE FILTER FITERS INCOMING DATA
FILTER: SAVE RS

MMuL FyFU,DUML,ONE,THREE,ONE
MUl FeFY,DU2 ,0NE, THREE,C)E
FADD u,bumt,u

FADD Y,DuUn2,Y

UNSAVE R5

RTS R5



e O RN D N

I R

,...
&

—
N

16

17

18

19

20
21

22
23
24
25
26
27
28
29
30

31
32

33

83542
B3546
83552

83562

03566

83574

0lenz

33619

83616

83624

83626

83632
83634

03642
R3644

23650

177564
177566
177520
177522
177524

PB5037
177564
205837
177520
812737
PR332
0a2110
127317
PR32490
gonlLl2
13767
Poagac4
32832
13767
BU3066
PeLB26
12737
vwil12
B0BC4A
12737
Q4200
BOBOS66

012737
000100
177520
2oY205

@RR235
832737
VoAl
177570
001405
0850317
177520
085267
200050

-

85

.SBTTL SAMPLING

%PS=I77564; PUNCH STATUS REG

TPB=177566; PUNCH BUFFER REG

ADCSR=1T77520; ADDR.OF CONTROL & STATUS REG
CHNSLR=177522; ADDR. OF CHANNEL SELECTOR REG

DATREG:=177524; ADDR, OF DATA BUFFER REG,
3CLOCK---SUBROUTINE TO START SAMPLING PROCESS
;
CLOCK: CLR @¥TPS; INLTIALIZE SAMPLING & PUNCh
CLR @¥ADCSR; CONTROL &STATUS RESGS.
MoV #AD,8¢110; SET UP INT, VECTOR
MOV £240,94112; FCR SAUPLING; PRTY.:>
MOV @564,C.V1; SAVE OLD CONTENTS cr
MoV ©466,C.V142; PRINTER I 3R. VECT.N
Qv #10,0:84; INTR. VECTOR <CR
MOV #220¢,08 665 PRINTING;PR1Y
; REG. SET NO. 2
MOV 7100,84ADCSR; HERE WE GO BABY
-4
RIS RS
C.Vi:  JBLKW 2.
;
;
§AD-=~~=SERVICE ROUTINE FOR THE FIRST A/D
; INTERUPT TO CONVERT CH. 1
3
AD: SPL 5¢ MASK OUT PRINTING INTERUPT
BIT . #1,0#177570; ABORT PROGRAM ?
BEQ 2%; NO,SKIP
CLR @#ADCSR; YES,QUIT
INC QUIT; SET FLAG



34
35

36
37
38
39
F-Y|
4]

42
43
A4
45
46
47
a8
49
5Q
51

52

53
54
55
56
57
58

59

61

62
64

83654
83656

B5664
83672
03700
83702
03706
03714
B3716
03722
83724

83726
237302

G732
03734

23742
83750
P31752
B3756
83762

B3764

B3772
Q3774

84082
84006

84018
24812

86

000002 RTI
@12737 25: MOV #100800,8#CHNSLR; CONVERT CH.!
210000
117522
812737 MOV #STR1,0#110; SERVE STRl NEXT
003732"
0001190
822767 CMP #0,AD.CHK; CHECK PT. CLR ?
000000
000026
201010 BNE 1S3 NO,SK1P
825267 INC AD.A;  INC COUNT OF SAMPLES
000022
026767 cMP AD.A,MAXAD; MAX. COUNT?
002016
000006 °
803402 BLE 153 NO,SKIP
085037 CLR @4ADCER; YES,FINISH
177528
0I0002 1%: RT1
062020 GUIT:  JWORD ©
203231 AD.CHA: WORD 1
€323 AD.A:  LWCRD C
;STR!--- SERVICE ROUTINE FOR THE 2ND A/D INTEQLQ
; TO STORE CH.1 DATA & CONVERT CH,
’
V.0235 STRI:  SPL 5; 1.0SC OLT POINTING i, PT
013757 LoV ISDATREG,BUT L Silne Chel Dov.
177524
800262
232737 BIT #1,00177570; ABORT PROCFAN
@200801
177570
021405 BE® as; NO,SKIP
205037 CLR @#ADCSR; YES,QUlT
177520
005267 INC QUIT; SET FLAG
177742
000002 RT1
022767 4§ CMP #03,AD .CHK; CHECK PT. CLR?
000000
177734
901416 BEa 1S; YES,SKIP
012737 MoV /AD,8#110; NO
003632 "
202119 -~
015700 MoV BUF1,R0; TEST ABS(BUF1)
200216
005700 ST RO
100001 BPL 23
005400 NEG RO



65

66
67

68
69

70

71
72
735
74
75
76
77

78
73
80
81
82
83

84
85

86
87

88

89
S8
91
92

83
94

84014

04020
BA@22

40226
04839

04036

Pa044

24a¢4s
84650

24058
a0h4
BAB66
24272
249176

g4100

04106
24110

Balle
B4128

84126

BA134
B4136
BAl140
04142

84146
04152

020027 2%

222007

181402 °

gasa67
177700
00902
BL2737
820000
177522
212737
024046
pgo; 1o
002062

RGIG YA
glro. oy
177524
ge3153
232737
63041
177579
001465
895237
177520
0R5267
177626
gooor2
022767
o)alelaloty)
200904
PALBA4
0127317
PR 3832
000110
80V403
0127317
004232

L

o O
[

e 2%

Uy s %o we wy

25:

002118 °

0227617
280000
200674
Bo1402
PPY236
104360
052617
800062
016703
000052
004567
000132

38:

CHP

BLOS
CLR

RT1
Mov

MoV

RTI

T 87

RO, #73 >3.078 VOLT ?
383 NO, SKIP
ADJCHK; CLR CHECK PT.

#20000,0#CHNSLR; CONVERT CH.2

#§STR2,04110; SERVE STR2 NEXT

---- SERVICE ROUTINE TC STORE CH.2 DaTA

AND PROCESS THEM 1IN

SPL
MoV

BIT
BEQ
CLR
INC
RTI
CP

BNE
Mov

BR
MOV

CtiP

BEqQ

SPL

EMT
Inc

MoV
JSR

5§ MASK OuUT PRINTING INTERUPT
@#DATREG,BUF2; STORE Cr.2 DATA

#1,38177573; ABORT PROGR#M 7

1S; NO,SKIP
@#ADCSR; YES,2UIT
aulT; SET FLAS
£0,1DELAY; NEED DELAY 7

2%

*AD,G#110; NO,SERVE AD NEXT

3%
#§DELAY,0#110;

#O,ANFLG; FINISH LAST ANALYSIS ?

43

[

60; IF NO,ERROR EXIT
ANFLG; SET FLAG
BUF1,R3; CONVERT CH.1!
R5,CONVSN; TO FLT.PT.

THE SELECTED {nIZTHCO

YES,SERVE DELAY NEXT




a8

95 04156 012667 MoV (SF)+,U; STORE IN U }
220032 ¥
96 B4162 B12667 MoV (SP)+,U+2 i
202038 ‘ %
97 B4166 B16733 MOV BUF2,R3; CONVERT CH.2 <:
2928034
98 04172 204567 JSR R5,CONVSN; TO FLT. PI.
38s112
99 B4176 8126617 MOV (SPY+,Y; STORE IN Y
Q0016 . &
100 4202 B12667 MoV (SPY+,Y+2
22291 4 -
131 4206 @Q4567 JSR R5,ANAL ; GO TO PROCESS DATA \
IDENT  MACRGC VROSA 2l1=JAN-72 05:23 PAGE 6+
SAMPLING
¢e23270
102 4212 002282 RTI
103 3
194 4214 : BLKW 2,
185 4220 Y: BLKW 2,

198 4224 POCYOB BUFI: +WORD ©
137 4226 ¢@2e06 BUre: JWORD ©
108 4230 000004 ANFLG: LWORD @ ' .

199 3

119 sDELAY--~-SERVICE ROUTINE AS A DELAY LOOP

1] : TC MODIFY ThT SAMPLING FREC.

112 3

113 4232 p03235 DELAY: SPL 53 1ASK OUT PRILTING (NTERURT

114 4234 832737 BIT #1,04177570; ABORT PROGRA! 7
330081
177570

115 4242 801405 BEQ 2%; NO,SKIP

116 4244 805037 CLR @#ADCSR; YES,QUIT
177520 .

117 4250 205267 INC QuUIT; SET FLAG
177450

118 4254 000002 RTI / :

119 4256 D85267 2%: INC DE,.D; INC DELAY CCUNT :
000024 t

128 4262 826767 chp DE.D,IDELAY; ENOUGH ? ;
200820 5
200084 * : ;

121 4270 022405 Bu{) 13; ~ NO HURRY, SoON

122 4272 812737 MOV #AD,04110; BACK TO CH.! '
2083632° !
po0L 19 - , _

123 4308 905067 CLR DE,.D; RESET DE.D
000002

124 4304 000002 1S: RTI

125 4306 900900 DE.D: «WORD 8



126
127
128
129
150
131
132

133

134
135

136
137
138
139
140
l4al

142
123

144
i45
146
147
148
1 49

158
151

152
153
154

155

156
157

4319
4314

4316
4326

4326
4330
4332
4336
4349
82342
4344
4248

4359
4354
4356
4360
4364
4370

4374
43176

4402
4406
4412

4420

4426
4432

012661
008154
605783
| 00004
212767
180600
090152
865433
013391
222723
028900
001436
006303
886303
2661¢3
SR TN
135367
083122
885723
128373
842703
186027
11008
888125
B16746
080100
080303
118367
082070
000367
822078
006067
800064
056767
8ER060
8008052
856767
09805 4
BBOB44
BL6TA6
002040
0008402

89

».SBTTL DECODING OF OUTPUT OF A/D CONVERTER

«
#
*
#
¥
-4
.
¥
T
¥

ONVSN:

253

SUBROUTINE TO CONVERT A BINARY CODED QUTPUT

FROM A/D CONVERTER INTOQ NORMALISED

FLOATING POINT FORUAT

MoV (SP)+,TMPSP;
IS8T R3;
BPL 1%5;

MoV #100G023,S1GuU;
NEG R3;

cMp 8G,R3:
BEQ 3%
ASL R3;
ASL R3;
ADD R1,R3;

ASL R3;

DECB EX?3

151 R3:
BPL 25;
BIC #1093232,R3;
MoV R3,TENBUF+33
MoV TENBUF+2,-(SP);
SWAB R3;
MOovB R3,TEMBUF;
SWAB EXP;

ROR EXP;
BIS EXP,TEMBUF;
BIS SIGN,TEMBUF;
MoV TEMBUF,~-(SP);

BR 48;

SAVE STACK
POSITIVE?

YES,SKIP
SET SIGN BIT

GET 2'S COMPLINENT
SAVE Ol RI
ZeRO 7

* 3
SHIFT LEFT
DECAENENT

S
MSy SET 7
NO,GO BACK
CLEAR (iS5
STOUAE NS LO3D
PUSH O STACK

GET 2ND BYTEL
STORE MANTISA

ALIGHN EXPONENT BYTE

COPY EXPONENT

COPY SIGN

PUSH 1ST WORD
ON STACK



158
159
169
161
182

183

164

165
166
167
168

1689

4434
4436
44489

4444
4450

4454

4462

4466
4470
4472
4476
4477
4509

885846 335: CLR

Bu50846 CLR

825867 4%: CLR

Bap92¢ *

Bu50667 CLR

8000224

005067 CLR

80002 4

B12767 MoV

@s0210

000014

Bi61746 MoV

0220062

200205 RIS

Po@oBO TMPSP: LWORD B

TEMBUF: LDLKW 2.

210 EXP: .BYTE 21
009

002006 SIGN: .WORD @

-(SP);
~(SP)
TEMBUF ;
TEMBUF+2
SIGH

#000210,EXP;

THPSP, =(S®);
RS

8,0

90

FLOATING ZERC
READY TO QUIT

RESTORE INITIAL EXP

RESTORE STACK

L e —

o M1 o At i s 35 4



.

! .SBTTL DATA ANALYSIS O
2 ; :
3 $ANAL--~SUBROUTINE TO JUMP TO IDENT. ALGORITHM
4 ; AND STORE RESULTS IN DATA BUFFER
4 ;
6 H
7 B045082 084567 ANAL:  JSR RS,UPDATE; UPDATE INFORM. MATRIX
: 174132
8 804506 894567 JSR RS,METHOD; GO TO ALGORITHM
173312
9 §04512 816708 1OV ANJK1 R LOAD POINTER
206114
10 84516 016760 MoV PHI,FI1(R8);  STORE RESULTS
174672
000000 '
11 24524 Q16760 MoV PHI+2,F11+2(R9)
174666
000002 *
12 84532 016760 MOV PHI+4,FI2(RE)
174662
083720
i3 04540 16760 MOV PHI+6,F12+2(RE)
174656
083722 "
14 84546 0816769 1oV PHI+10,F13(RO)
174652
987640 ]
*|5 B4554 815730 MOV PHI+12,FI3+2CR
’ 174846 g
607642 " ‘
16 84562 016760 . MoV PHI+14,F14(RE)
174642
913568"
17 04579 916760 MOV PHI+16,F14+2(RE)
174636
013562 "
18 84576 016760 MoV PHI+20,FI5(R0)
174632
017560" :
IS 246084 816760 MOV PH1+22,F15+2(R@)
174626
817502 "
20 0a6l2 022020 cHMp (RB)+,(R@)+;  INC RO BY 4 .
21 04614 010067 MOV RO,ANKI; STORE POINTER
002012 : ‘ ~
22 04628 005267 INC AN.K; INC. ITERATION COUNT
02001 0
23 04624 885867 .  CLR ANFLG; CLR FLAG
177400
24 PA630 0BO205 RTS RS
25 84632 PBOOGD AN.Kl: LWORD @

26

91

P4634 000002 AN.K: +WORD 9§

s et T W O ———



BB4636

71 084644
8 804646
9 Q4650

20
21

22
23

24

25

26

28
29
30
31

84656
04668
J4662
04664

04672
04674

847062
04704
04712
04714
4722
04724
04730
04734

04742

04750

4756
24760
04762
04764
V47668
4770

.SBTTL SUBROUTINES FOR PRINTING

92

H
3PRINT=-~--<-SUBROUTINE TO MONITOR PROGRESS OF
ANALYSLIS AND PRINTING

;

’

B32737 PRINT:
9000491
171570
301401

U1 AN
B26767 2%:
opBLl4
177756
082402
828501
8eB765
812737 3%:
0oa1ve
177564
pe2921 483
8227617
6oB090
080364

B35

2085267
9923062
P0B5267
232052
2267617
003050
200006
802745
085037 5%
177520

2127090

877171

28167317

176666

200064

16737

176662

PPPO66
W12737

PRV100

177564

208005
202000

104060

290205

PPPOB! PR.FI:
200000 10.K:

/

BIT #1,6#1717570; ABORT PROGRAM ?
BEQ 283 NO,GO AKEAD
BR 5%; YES,QUIT
CiMP 10.K,AN.K; IS PRINTING LAGGING ?
BLT 38; IF YES, GO AHEAD
YAIT; IF HO,WALT AND
BR PRINT; CHECK AGAIN, SO
1OV #100,84TPS; PRINT NEXT CHARACTER
WAIT
CMP #B,PR.FI1; FINISH 1 LINE ?
BNE 45; NO,CHECK AGAIN
INC 10.K; INC 1/0 COUNT
INC PR.FI; RESET FL&G
Ctip 10.K,MAXAD; ALL DONE ?
BLT PRINT; NO,CARRY OH SO
CLR @#ADCSR
MoV #77777,R0
MOV C.V1,8#64; RESTORE INT. VECTOR
MOV C.V1+2,8466
MOV #100,@4TPS
RESET
HAL T
" EMT 60
RTS R5
JWORD 1
+WORD @
~ /

e ®

PRSI,

S P Y




32
33
34
35

37
38
39
49
41
42
43
44
45
a6
47
48
49
50
51
52

53
54
56
57

58
59

68
6l

62
63

64
65

66
67

68
69

70

4772
84718
085200
25022

85806
05042

85046
B5102

R5106
85142

05146
85202

85206
05242

85246
05252

5260
85266

85274

gl1ée7e2
177772
296302
ges3ae
o126t
002346

R16792
0263586

216702
RU2246

016702
00r28s

ple702
000146

12783
p05470°
084567
PY010B6
12737
005266 "'
0000864
812767
065470°
200079
832737
200001
1717570
801403

93

H
$ECO-~-~MACRO DEFINITION TO FETCH A FLOATING

3 WOR
H ASC

H
.MACRO ECO

D AT NuM TO BE CONVERTED TO 9-BYTES
II CODES STARTING FROM ASCII

ASCIT,NUM

MOV #ASCI1,=-(SP)
MOV #11,-(SP)
© MOV 82, ~(SP)
MOV #1,-(SP)
MOV NUM+2 CR2) 4= (SP)
MoV HUMCR2) , = (SP)
JSR PC, SECO
. ENDM
.GLOBL $5CO
;
$10----SERVICE SUBROUTIME TO DO ASCI] CONVERSION
: AND FILL OUTPUT PRINTER BUFFER
;
10: MOV 10.X,R2; R2:zPOI NTER
ASL R2
ASL R2
MOV R2,10.R2
ECO $FI11,FI1; CONVERT IST WORD
MOV 10.R2,R2
ECO $F12,FI2; CONVERT 24D LORD
MOV 10.R2,R2
ECO $FI3,F13; CONVERT 38D VORD
MoV 10.R2,R2
ECO SF14,Fl4; CONVER® 4TH WORD
MOV 10.R2,R2
ECO $FI5,F15; CONVERT STH\ WORD
) MOV #BUFST,R3
" JSR ‘R5,10F; 3-DIGIT LANE NO.
MOV #PRN,0# 64 (
MoV #BUFST,PONTR
PRN: BIT 71,0#177570; ABORT PROGRAM ?
BEg 183 80,60 AHEAD

F L sy
v

A e At e e e b
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94

71 85276 0885037 CLR @#ADCSR YES,aUIT
177520
72 85382 000423 BR 2% .
73 25304 1085767 15: 1SIB TPS; PRINTER READY ?
177564 :
74 @5310 100366 BPL PRN .
75 25312 0167060 MOV PONTR,RO; YES,LOAD POINTER
200040
76 85316 112037 MOVB (RO)+,8#TPB LOAD PRINTER BUFFER
177566
77 85322 8108067 MOV RO,PONTR
A00832
718 95326 620027 CMP RO, #BUFEND; FINISH | LINE ?
205571 " :
19 85332 001827 BNE 2%
83 95334 035637 CLR @#TPS; Y"S
177564
81 0534@ 005067 CLR PR.FI1; CLR FLAG
177422
82 05344 012737 MOV #10,6#64; RESTORE VECTOR
847172 ,
0B0GE4
83 05352 0220C2 2%: RTI
84 05354 Q0000820 10.R2: LYORD @
85 85356 800223 PONTR: .WORD @ b
6 ;
\gg s ICF~~~ SUBROUTINE TO FORM 3-DIGIT ASCI! CCCE
88 3 IN ASCENDING ORDSIR EACH TIME LI 12 cauo’il
89 3 ASCI1 BUFFER MUST FIRST BE IwITIALISED '
90 3 BY A NO. ‘
Sl : ‘\‘\ —
92 95360 126327 IOF: CMPB ™\ 2(R3),#71; DIGIT 3:=9 2 \
002002 :
. 222071 v ‘
93 #5366 001403 BEQ 1% ;
94 95378 105263 INCB 2(R3); NO,INC BY 1 :
008002 ) :
95 85374 0P0434 BR 5% ;
96 95376 112763 15: MOVB #60,2C(R3); DIGIT 3:=0 :
200060 . A
202202 5
97 85404 126327 CMPB 1(R3),#60; DIGIT 2=8 OR SPACE ?
200001 '
PORBED : .
98 05412 0030084 BGT 2% |
99 85414 112763 MOVB #61,1(R3); DIGIT 2=1! ) ,
: 000061
X 000001
109 5422 9000421 BR 5%
181 5424 126327 283 CHMPB LCR3Y,#713; DIGIT 2:=9 ?
\ 900001 \ -
\ 0000871
102 5432 001403 BEQ 33 -
e

o TN



193
194
185
196

187
108

199
110
1l

— e B
o e Pt o
[ B0 S O

118

119

12l
122

123
124

125
126

127
128
1239
138
131
132
133
134
135

136
127

5434

54490
2442

5458

5454
5456

2462
5464
5468

5470
5472
54711
5472
5473
5474
5475

;5416

55017
5510
5511
5512
5523
5524
5523
5526
5537
5540
5541
5542
5553

- 5554

1255
2556
5567
5570

0002
720
640

3560
7500

195263
8000Vl
age4l2
112763
292069
0000201
121327
000049
29103
112713
BoACs!
200441
195213
823285

049
249
269
240
040
249

843
40
V40

040
240
B840

040
840
040

840
409
849

815
B12

3%:

$
5

B¢ e

.

[

INCB

BR
MovB

CMPB

BNE
MovB

BR
INCB
RTS

1¢H3)}

5%

(R3),440;

45
#61 ,(R3);

5%
(R3);
RS

95

NOLINL 3Y |
DIGIT 2:=0
DIGIT 1=SPACE ?

DIGIT 1=1

DIGIT i=}

:OUTPUT ASCII SUFFER FOR 5 PARAMOTEKS

b4

BUFST:

SFIL:

$F12:

SF13:

$F14s

$F15:

BYTE 40,43,60,40,49,49

«BLKS 11

BYTIE 40,

+BLYB 11

.BYTE 4¢,

«BLXB 11

«BYTE 40,

.BLKB 11

BYTE 48,

«BLKB 11

.BYTE 15,

@8557) 'BUFEND=.

000008 °

« EVEN

43,49

49,40

40,49

43,49

12

sDATA BUFFER FOR 5 PARAMETERS IN 2-WORD F.P.
5580 EACH
.CSECT DATA
.BLKV 1002,
.BLXV 1000,
.BLKV 1000,
-BLKM 1002,
-BLXV 1809.

FIl:
Fl2:
F13:
Fla:
Fi15¢




138
139
140
14l
142
143
144
145
146
147
148
149

158
151

152
153

154
155
PR

157

158
159
160
161
162
163
164
165
166
167
168

189
170

171
172

173
174
175
176

177
178

5572
5600
5602
5604
5636
5613

5614
5616

5622
5624

5630
5632
5634
5636

5642
5652

3654
5662
5864
5666
5618
56172

56176
5700

5704
5706

5712
5714
5716
5720

5724
5734

@p5572°

¢12500
812501
p12502

glewas
@oeva2
211046
B16148
Qeeeaz
Q11146

00446 ¢
2009284
g00008ea
2085634 °
plaste
012662
008022

823285

912509
g1a2s5el
B12592

D16046
goBee2
B11846
B16146
000202
811146
BO4467
PBOORBG
000000G
035746°
812612
12662
020002

260205

+CSECT
.SBTTL ARITHMATICAL SUBROUTINES

’

H .
3 SUBROUTINE MULFP => A*B=zC

MULFP: SAVE R@,R1,R2
MoV (RS)+,R8;
MOV (R5)+,R1;
1OV (R5)+.R2
SAVE RS
MoV 2(RO) , = (SP)
MoV (RO),-(SP)
MOV 2(R1) ,-(SP)
oV (R1),-(SP)
JSR R4, $POLSL
JMORD  SMLR
JWORD  .+2
MOV (SPy+,(R2);
MoV (SP)+,2(R2)
UNSAVE R®,R1,R2,RS
RTS R5

: SUBROGTINE ADDSP => A+B=C

ADDFP: SAVE RO,Ri,R2
1oV (R5)+,R O3
MOV (R5)+,R1;
MOV (R5)+.R2
SAVE RS
MOV 2 (R@) ,~ (SP)
MoV (RO) , - (SP)
MoV 2(R1) ,=(SP)
MoV (R1),~(SP)
JSR R4, SPOLSH
5
LWORD  SADR
JWORD .42
MoV (SP)+,(R2);
MoV (SP)+,2(R2)
UNSAVE R8,R1,R2,R5
RTS RS

96

ADDR.OF’
A,B&C

RESJLT

ACDR.OF
A,B&C

RESULT

st g A T b m g
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179
1880
181
182
183
184
185
186
187

188
189

150

Yoy

192
193
1594
155

196
197
198
15995
209
201
292
293
224
295
206

207
208

209
210

211
212
213
214

215
216

5736
5744
5746
5750
5752
5754

5766
5162

5766
5770

5774
57176
6022
6202

6896
6C16

6220
63226
§23

6532
6334
6036

€042
6044

6050
6052

6356
6060
6062
6064

6070
6100

Q12500
a12501
g12502

016846
0028092
011046
016146
Q00602
211146
004467
0300866
3300936
Q26000
gla612
012662
200002

008205

012500
212501
Ci25082

216046
003eB2
211046
a16146
080202
211146
BB4467
0990086
099A09G
086062 °
p12612
Ri2662
800092

000285

) ee we we

»
14
.
»
.
»
S

SUBROUTINE DIVFP => A/B=C
IVFP: SAVE RB,R1,R2
MoV (RS5)>+,R9;
MOV (R5)+,R1;
MoV (R5)+,R2
SAVE RS
mov 2(R8),~<(SP)
Mov (RG),~(5P)
MoV 2(R1J,-(SP)
MOV (R1),~-(5P2
JSR R4,%P0OLSH
~HWORD $DVR
»WCRD . T2
MOV (SPy+, (R2);
MOV (SPY+,2¢(R2)
UNSAVE RO,R1,R2,R5
RIS RS
SUBROUTLINE SUBFP => A-B=C
UBFP: SAVE R@,R!,R2
MOV (R5)+,R0;
MoV (RS)+,R1}
MoV (R53)+,R2
SAVE RS
MoV 2C(RB) ,-(SP)
Mmov (R2),~-(S5P)
MoV 2CR1),~(SP)
MOV (R1),=-(SP)
JSR R4, 3$POLSH
+WORD $SBR
«WORD 2
Mov (SPY+,(R2);
MOV (SPY)+,2(R2)

UNSAVE R@,R1,R2,R5

RIS

R3

a7

ADDR .OF
A,B &C

RESULT

AOPR.OF
A,B&C

RESULT



217
218
219
220
221

222
223

224
225
226
227
228
229
234

231
232

233
234
235
236
237
238
239
240

241
242

243
244
245
246
241
248
249

259
251

6102
6114

61282
6124

6130
s132
€134
6136
6142
6142
8144

6159
6152

6156
6162
6164
616§
6170
§174
8202
6204

62180
6212

6216
6220
6222
6226
6232
6236
6242

6246
6256

@12567
B80B376
a12s567
008374
12567
RPB372
grisea
g13501

913583

2963232
086580
v10867
BOA354
8713300
0667903
803344
@12367
03352
glelac
070100
024141

18167
e0o332
866767
0BB3L6
803324
162801

10167
200329
805302
8L1e267
000320
8068302
206302
810267
0003924
816709
PB0B264
0167081
290262
016793
000260
016702
0008270

8160846
200002

; R
$MATRIX MULTIPLY [A)}x(B)={C)

3
MMUL s

18$:

SAVE RO,R1,R2,R3,R4

MOV
MoV
MOV

MoV
MoV
MOV
SAVE RS
ACL
ASL
MoV

MUL
ADD

MoV

(R5)+,A.NUL;
(R5)+,B .MUL;
(R5)>+,C . MUL
@(R5)+,R0;
@CRS)+,R1;
@(R5)+,R3;
RO

RO;

RO, NXTA;

RO,RJ33;
CeMUL,R3;

]3,NO.ELM;

MOV g RI,R2

MUL
CmpP
MoV
ADD
suB
MoV

DEC
Mov

ASL
ASL
MoV
MOV
MoV
MoV

MoV

RD,R1;
-{R1),~(Ri);
R1,NXTCOL 3
AMUL,HNXTCCL;
FEd,R1;

R2;
R2,COLA.!

R2
R2;
R2,SAMCOL ;
A.MUL,RD;
B.MUL,R!;
C.MUL,R3;

COLA.1,R2;

SAVE RO,R1,R2,R3

MoV

2(RB) ,-(SP)

ADDR OF A

B AND C

VALUES O
ROWA, COLA
AND COLB

4 *RQOV'A
NEXT ELEN. OF &

4*ROVA*COLB =
BASE +

NO. OF ELEN,I! C0I0

4xROUA=COLA
SUWIICH COL IN 3
+8.\SE
~4¥ROVA =>
SWITCH ROW IN A
COLA~]

4*(COLA~1)=>
SAME COL IN B

BASE ADDR OF A
BASE ADDR OF B
BASE ADDR OF C
NO. OF ADDITIONS

AR RFL DT wvererean




99

D52 6262 011046 MOV (R@) 4= (SP)

253 6264 B16146 MOV 2(R1),-(SP)
209002

254 62790 @11146 MOV (R1),4=(SP)

255 6272 004467 JSR R4, SPOLSH
2000006

256 6276 BY0003G ,WORD S$MLR

257 6390 396302"° .WORD .+¥2

258 6302 POPF TMPMUL

259 6312 UNSAVE R@,R1,R2,R3

260 6322 222782 cwmp #0,R2; A = COL VECTOR ?
geeuoo

261 6326 2031437 8EQ 3%3 YES,SKIP

262 6330 066700 2%5: ADD NXTA,RQ; NXT ELM. OF A,SAME RO
200170

263 6334 g22121 cmp (R1X+,(R1)+3 MEXT EbLdi. OF 3

264 6336 SAVE R@,R1,R2,R3

265 6346 PUSHF TMPMUL; PREVIQUS PARTIAL Sui

266 6356 216046 MoV 2(R8) ,~(SP)
200862

267 6362 V11046 {10V (R®)>, ~(SP)

268 6364 215146 MoV 2C(R1),-(SP)>
gesaez

1S9 6370 @1114¢€ " Mov (R1),~(SP)

279 6372 804467 JSR R4,SPOLSH .
20008006

271 6376 2297096 .WORD SMLR

272 8208 GCOC206 .WORD $ADR

273 64€2 935404 +WORD .42

274 6404 POPF TMPMUL

275 8414 UNSAVE PZ,R1,R2,R3

276 6424 077237 S0B R2,2$

277 6426 D16702 3$: MOV COLA.1,R2; RESTORE R2
002104

278 6432 916723 MOV TMPMUL,(R3)+; STORE RESULT
900102 :

279 6436 B16723 MOV TMPMUL+2,(R3)+; 1IN C
000100

288 6442 0826703 CMP NO.ELM,R3; DONE ?
000066

281 6446 901414 BE®G 108; YES,QUIT

282 6450 2209267 chp RB,NXTCOL; MEXT COL OF B?

. POR2Z52

283 6454 001405 BEQ 4S8 YES,SKIP

284 6456 166701 SUB SAMCOL,R1; NO,SAME COL
2000650

285 64682 166700 suB NXTROW,RO; NEXT ROW OF A
080042

286 6466 QBDE67T BR 183 * CARRY ON, SON

287 6470 O16780 4$: Mov A.MUL RO BACK TO ROW | OF A
onRv22

288 6474 022121 cHP CRID+,(R1)+; NEXT COL OF B

289 6476 00B663 BR 1s; CARRY ON, SON



290
291
292
293
294
295
296
297
298
299
300
391
302
3103
3194
205
308
3@l
508
509
312
311
312
313
314
315
S16
317

318
319

320
321

322
323
324
3295
326

3217

328
329
330
331

332
333
334

6£500
6500
6514
6516
6528
6522
6524
6526
653¢€
6532
6534
6536
6540

6544
6556
6569
6562
6564
6566
6570
6512
6574
6576
6600
o610

614
6616

6522
6624

66308
6632
6634
6644
6654

6660

6664
6666
6679
6672
6674
6710
6712

089205
820008
020209
202290
202009
pdopsli]
200200
2080
202020
000298

C1250%
Bl1esee
8125C3
313501
273135

20539l
BCs301
0634321

D16246
230022
311046
216246
8330302
011246
004467
B0PBLOG
0022 B0G
806634"

B16723
28832
816723
080030
022020
p22222
820001
8081342

900205

1 6%
UNSAVE RO,R1,R2,R3,R4,R5
RIS RS

A.MUL: O

B.MUL: ©

C.tUL: ©

NXTA: ©

NXTCOL: @

NXTROW: 9

SAMCOL: 4

NOL.ELM: O

COLA.L: @

THMPMUL: BLXW 2.

sMATRIX ADDITION [A)+(B1=(C)
MADD:  SAVE Ri,R1,R2,R3.h4

MOV (R5)+,R 8; ADDR OF A
MOV (R5)+,R2; B AND C
MOV (R5)+,R3
MOV @(R5)+,R!; NO. OF ROY
MUL @(RS5)+,R1} ROW=COL
SAVE RS
ASL RI
ASL Rl 4+RC.IxCOL
ADD RO,R1; +BASE

18: SAVE RO,R1,R2,R3
MOV 2(RO) ,~(5P)
MoV (RO) ,=(SP)
MOY 2(R2),~(SP)
MOV (R2) ,-(SP)
JSR R4,$POLSH
.WORD $ADR
.WORD .42
POPF TMPADD
UNSAVE RO,R1,R2,R3
MoV TMPADD, (R3)+; STORE RESULT
MOV TMPADD+2, (R3>+3 IN C
cMP (R@)+, (RB)+; INC RB,R2
CMP (R2)+, (R2)+; BY 4
cmp RO,R 1; DONE 7
BNE 1%; NO,GO BACK
UNSAVE RO,R1,R2,R3,R4,R5
RTS RS

TMPADD: .BLKW 2,

100



335
336
337
3358
339
340
341
342
343
Ja4
345
346
341
348
349

350
351

352
353

254
)
v56
351
358

359

3690
361

362
363
364
365
366
367
368
369
379
371
372
373
374
375
376
377
378
379
380
381

6716
6139
6732
6734
6736
674

6742
8744
6746
6759
6752
6762

6766
6770

6774
6717¢

70082
71804
7008
1016
166

7832

7336
T840
7942
7044
7046
7962
1064

1079
7102
7104
7106
7110
7112
7114
7116
7129
7122
7124
7134

012500
912502
012583
13501
21a135

226301
BCE301
860021

gl16046
poreeg2
gl13246
316246
0020832
Ar124s
PO446T
2OPA2AG
20LB00G
PB7Te06 "

g16723
BBOB32
618723
033330
daz02¢
geze222
@222091
31342

002205

912500
012501
p12502
813523
B78335

BOE303
826383
B60Y03

216946
vvvBBLL

LTI 4

Ew

uB:

I$:

TMPSUB: oBLKW 2,

MATRIX SUBTRACTION [A)-[B])=[C]

SAVe RO,R1 R2,R3,R4

MoV
MoV
MoV
Maov
MUL
SAVE R5
ASL
ASL
ADD

(R5)+,R0; ADDR OF A
(R5)+,R2; B AND C
(R5)+,R3

@CRS5)+,R1; NO. OF RO
@(R5)+,R1; R 04 *C OL

Rl

R1; 4%R 0Y*COL
RO,R1; +BASE

SAVE RO,R1,R2,RS

Mov 2CRB) ,~(SP)
MoV (R@) ,~-(SP)
MOV 2(R2) ,~(5P)
mov {(R2) ,-(SP)
JSR R4,8POLSH
.4YORD $SBR

+WORD 2

POPF THUFSUB
UNSAVE R8,R:,R2,R3

Mov
MoV

CuP
cwip
CMP
Bic

TMPSUB, (R3)+; STORE RESULT
TMPSUB+2,{(R3>+; IN C

(RO)+, (BB~ 1S RUO,R2
(R2)+, (R2)+ BY 4
RG,R1; DORE 2

1S3 N0,G0 BACK

UNSAVE RO,R1,RZ2,R3,R4,R5

RTS

R5

;MATRIX SCALAR MULTIPLICATION [A)*SC=(B]

;
mMsCe

1$:

SAVE RG,R!,R2,R3,R4

MOV
MoV
Mov
Mov
MUL
SAVE RS
ASL
ASL
ADD

MoV

(R5)+,R0; ADDR OF A
(R5)+,R!l} ADDR OF B
(R5)+,R2; ADDR,OF SCALER
@C(R5)+,R3; NO, OF ROW
@(R5)+,R3; ROW*COL

R3

R3; 4xROW*COL
RO,R3; +BASE

SAVE R@,R1,R2,R3

2(R0) ,~(SP)
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382
383

384
385

386
387
588
589
390

391

392
393
394
395
396
397
98

403
G231
402
403
494
405
43¢
497
408
489
410
411
412

413
al4

415
416

AL7
418
419
420
421

422

423
424
425
426
4217
A28

7142
7142

T146
1150

7154
7156
1160
7170
7209

1204

7210
1212
1214
1218
7232
1234

7252
7254
7256
7266
7262
7264
7266
7279
7272
7274
7304

1310
1312

7316
1320

7324
1326
7330
7340
1350

1354

1368
1362
1364
7366
1402
1404

211046
glr6246
020002
811246
Bo4467
B022080G
2030096
B27160°

grer2y
Q08033
g16721
17103/ AN
022020
220023
001343

2082065

0125089
01250]
¢12502
€13503
078335

398333
BO638B3
060203

216046
evBeR2
g11048
016246
000002
11246
004487
0000006
890000G
07330°

816721
800039
816721
8000826
022020
9280083
0081343

000285

MOV (n8),=(SP)

MOV 2(R2) ,=(SP)

MOV (R2),=(SP)

JSR R4, SPOLSH

,WORD $MLR

LWORD .+2

POPF TMPHSC

UNSAVE RO,R1,R2,R3

MOV TMPMSC, (R1)>+; STORE RESULT
MoV TMPMSC+2, (R1)+; IN B

chpP (RO)+, (RO )+; INC RO BY 4

CtiP RO,R3; DONE ?

BNE 1$

UNSAVE R2,R!,R2,R3,R4,R5

RIS RS

TMPUSC: <BLKW 2.

;

SMATRIX SCALAR DIVISION (A1/SC=(B)
DSCs SAVE RG,R1,R2,R3,R4

MOV (R5)+,R8; & 2DR
MOV (R5)+,R1; ADDR OF 3
MOV (R5)+,R2}
OV @(R5)+,R3; NQ. OF ROU
MUL @(R5)+,R 33 ROM2COL
SAVE RS
ASL RS
ASL R3; 4%ROW1.COL
ADD RO,R3; +BASE
is: SAVE RO,R!,R2,R3
MOV 2(R0) ,~(SP)
MoV (R@),~(SP)
MOV 2(R2) ,~-(SP)
MOV (R2),~(SP)
JSR R4, $POLSH
.WORD $DVR
JHORD 42

POPF TMPDSC
UNSAVE RO,R!{,R2,R3

MoV TMPDSC, (R1)+; STORE RESULT
MOV TMPDSC+2,(RI1)>+; IN B

chp (RB)+, (RB)+3 INC RO BY 4
CHP RO,R3; DONE ?

BHE 1s ,

UNSAVE R®,Rl,R2,R3,R4,R5

RTS RS

TMPDSC: .BLKW 2.

ADDR.OF SCALER
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429
430
431
432
433

434

435
436
437
438

439
440
441
442
443
444
445
446
447
48
449

459

451
452
453
454

455
456
451

458
459
4602
461
462
463
464
465

7410
7422

7426

1432
7434
7436
1440

T444
7446
7459
7452
1454
7456
7462
1462
1464
1466
1410

7474

15293
152
1584
1506

1512
7514
1516

7522
524
526

1530

1544

1546

1550

1552

3
sMATRIX TRANSPOSITION
MIRN:  SAVE R@,R1,R2,R3,R4

812567 MOV (R5)+,A.TRN;
303120 :
312567 MOV (RS)+,AT.TRN;
000116 p
013508 MOV .©  ®(R5)+,RJ;
813502 MoV @(R5)+,R2;

SAVE RS
810267 MoV R2,C0.TRN;
300186
3100085 MoV RO,R5;
870522 UL R2,R 53
012523 MoV R5,R3
026303 ASL R3
636323 ASL R3
024343 CHp -(R3),~(R3);
016304 MoV R3,R4;
310091 MOV RE,R 1
826331 ASL Rl
235331 ASL Ri;
66673 ADD A.TRN,R3;
0000852
816346 1S: MOV 2(R3),-(SP)} GE
8u00p2
311346 M0V (R3),~-(5P); I
163133 Su3 Rl1,R3; HEXT HI
877205 S 0B R2,15;
B15702 MOV C0.TRM,R2;
B0ZOAD
060403 ADD R4,R3;
077011 S OB RO,18;
216709 MoV AT.TIRN,RD
0008026
812620 283 MOV (SP)+,(RO)+; ST
012629 MOV (SP)+,(R8)+; R
877583 S0B R5,25;

UNSAVE R@,R1,R2,R3,R4,R5
008205 RTS RS
900909 A.TRN: @

200000 AT.TRN: 0
P00PP8 CO.TRN: 0

ADDR OF A
ADDR OF AT
NO, OF RQVW
NO. OF COL
R2=C
RO=R
RS5=RC
R3z4aRC~-4
R4=4RC~-4
Rliz4R
R3Iz4RC=a+3ASL
T ELENMZENTS
ReVERS L LD TIR
GHZR ELzZ...

FINISA 1 CcCL 7
YES,RESTOIRE RZ2

NEXT COL
DONE ?

ORE TRANSPOSED
ESULTS
DONE 2
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466
467
468
469
470
471

472
413
474
475
476
A7

478
479

48¢
481

482
483
484
435
486
48T

1554
7556

1562
1564
1566
7570
7572
1574

1609
7604

1612
1614

76209
7€22
7626
7638

é
b4
; OF VECTOR A 1 PLACE DOWN
¥
SHIFT: SAVE Rl
012567 MOV (R5)+,S5 .A3
200246
213501 MoV @(RS)+,R 1}
SAVE RS
035531 + DEC R1g Ax CNUM-1)
0263¢! ASL Ri;
036391 ASL Rl I
266721 ADD S.AsRI
280930
BI6l11 182 MOV ~4(R1),(R1)
177774
216161 MOV ~2(R1),2(R1)
177776
228002
@2414} CMP ~(R1),~(R1)
820167 CHP R1,5.A
QU010
891367 BHE 19
UNSAVE R1,RS
6082¢5 RTS RS
3030806 S.A: .YORD 8
008233° .END START

_4BASE ADDR
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SYM3OL TABLE

)

ADDFP
ANAL

AN K}

A UL
BUFST
B.MUL
COLA. 1
co. TR
DATREG:=
DIALOG=
DUMI
EV
EV22
FILTER
F11
Fla
FUU
F.ONE
IFTR
10
10.R2
METHQOD
MSuB
NO, ELH
NXTROW
Ni2

N2

P

PAT
PONTR
PR.FI
QA

RO

R3
SANMCOL
SP
STA.A
STA, GO
SUBFP
THREE
THPMSC
TMPS UB
WO

u
YOLD
SECO
$F13
SMLR =

1"

. ABS,

FIRN
DATA

B21010R
BA5654R
QB4AS02R
BBAG3I2R
@BE51 6R
P25470R
PBEC520R
BO6538R
@07552R
177524
RCRERR G
BR20CABR
B02263R
292414R
PB3I452R
D20BC0R
B13566R
BOZ2158R
0224 30R
BORALAR
094772R
025354R
029324R
POSTISR
336534R
Pe6530R
002B32R
@32€L24R
2218 34R
E21209R
PB53568R
234766R
P2137dR

=Z20800000
=Z000003

BO65J32R

=7Z020006

PR3492R
PO3446R
RACZ28R
QB2020R
ROT234R
PRTO64R
PR20916R
P%4214R
@81 774R
x¥EKFK G
¥a3526R
Fdokkckk G

2000oRd
007632
000014
23420

@33
Qo

gge

oY
201
002
283

AD QB3632R
AD.A BA3TACR
ANFLG BO4230R
AT ga181eR
A.TRN BO1546R
BUF! BA4224R
CHNSLR= 177522
CONVSN (@B4310R
C.MUL BB6522R
DELAY 004232R
DI VFP BO5736R
Dume PO2004R
EVV PB2330R
EXP P0447T6R
FINSH PBY622R
Fla 083 T720UR
F15 Bl17532R
Y #8021 64R
GAIN ggec 1o
IFTIRST ©00092R
10F 053 69R
MADD PB6544R
fMMUL 2861 32R
MTRN PBT410R
NXTA BB6524R
NLl@ P0283YR
N13 Pe2R34R
NS pgpzazer
PA Z201296R
PC =A98208817
PRINT PBAGIER
PSEUDO BOBaATR
QAT BOL3T9R
Rl =Z08000921
R4 =7800004
SHIFT @B7554R
STAPR Q02434R
STAL.E PO2546R
STRI BB3TI2R
S.A BOTEIVR
TMPADD @0@6712R
TMPMUL 006548R
TPB = 177566
T5.1 0081 750R
UPDATE ORBS4QR
SADR = dxxkkx §
$FI11 P05476R
$FI4 PO5542R
$SPOLSH: mkxkk¥x (

ADCSR =
AD ,CHK
AN X
AT. TR
BUF. D=
BUF2
CLOCK
COUNT
C.VI
Dz.D
DSC
DUM3
EV2
F
FIVE
L83
JoN]
FYY
@sz
zo2
10.X
MAXAD
mMscC
HULFP
NXTCOL
N18©
N15
ONE
PAZAT
PHI
PRN
2
QulIT
R2
RS
S1GN
START
STA.F
STR2
TEMBUF
THPDSC
TMPSP
TIPS
15,5
Y
$DVR =
$F12
$F15
$SBR

t

L

177520
BB3T26R
00463 4R
227559R
WeS37IR
384226R
2B3542R
Q@2050R
983 626R
BB4308R
2@7240R
@32010R
88234 4R
DY2054R
0220622R
FI13

"y
0G2244R
IDELAY
INDEX
0Q4770R
UZ9806R
2LT078R
@85572R
BO8526R
@0204LR
2220361
3231 4R
e01449R
AB141¢R
CO52686R
69122 4R
BO3T24R

=7Z0890082
SZ033085

BB45080R
BR2203R
BA3IBTER
PB4046R
PB4472R
BB7404R
B04470R
177564
BA18V4R
BPA222R
*kkkkk G
RB5512R

BB5556R
ki G
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2276403
BA28TLR

A08204R
Bu2344R

z9z

T TR e R

o TP




Buol
auee
2083
DOV 4
4005
2006

100%

voveg
2829
0010
2011
gole
013
2014
@Bls
2818
2211
4218

wp1l o
Y2 o

3221
vaze

0023
gaz4

9925
JUPAN

vu27
w28
1O VA
0030

a3l
vR32
0833

198

*
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SUBROUTINE DIALOG

COMMON /FTRN/ IFIR,IFIRST,ICELAY,MAXAD,GAIN
CALL SETFiL (5, A°,1ERR, 'KB*)

PRINT |

READ (5,2) IFIR

IFCIFTR.EQ.9) GOTO 109

PRINT 3
READ(5,4) IFTIRST

PRINT 5
READ(5,68) GAIN

PRINT 7
READ(5,8) IDELAY
PRINT 11
READ(5,12) MAXAD
PRINT 9
READ(S,10) ZZZZ
FRINT 77

FORMATC ' DO YOU WANT FILTERING 7'/,

* IF YES,TYPE 13 IF NO,TYPE 9'//)
FORMATCI1) ‘

FORMATC' WHEN DO YOU WANT FITERING TO START',
IX, ' 2 L13)°7/) :

FORMAT C13)

FORMATC' ENTER THE GAIN TERM FOR STOCHASTIC',
IX, ' APPROXIMATION. (F5.11°//)

FORMAT C(F5.1)

F_UAMATC' ENTER THE MULT. FACTOR FOR THE®,
1X, ' SAMPLING PERIOD. (121°//)

FORMAT(12)

FORMATC' ENTER TNE MAX. NO. OF SAWPLES VQU°',
1X, ' WANT. (131'//)

FORMAT (1)

'
FORMATC' THANK YOU. TO START,STRIKE ANY KEY '//)

FORMAT (Al)
FORMAT(///,5X, 'PHI11',8X, "PHIZ2 ', 8X, 'PHI3",
8X, "PH14 ",8X, 'PHIS ", ///>

END FILE 5 .

RETURN

END
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