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ABSTRACT

The first chapter provides basic prerequisites. In the
second chapter we demonstrate that an ordered Desarguesian
A. H. plane is coordigatized by an ordered A. é: ring. We then
show that given an ordered A. H. ring, one can construct an
\
ordered Desayguesian A, H. plane. IA the remaining chapters
we give an example‘of such a structure and examine its

relationship to the associated ordinary affine plane, the radical

in the A. H. ring and the Archimedean axiom.
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INTRODUCTION

An affine Hjelmslev plane {(or A. H. plane) may be
described as a gecmetry where more than one line may pass through
two distinct points. This is usually defined by a neighbouring
relation and eight axioms. A Desarguesian A. H. plane may be
coordinatized by an A. H. ring.

Hjelmslev himself studied ordered A. H planes using
reflections and motions. In this thesis we will give a more rigourous
account for Desarguesian A. H. planes using modern methods.

In his paper [11] "On Ordered Geometries", P. Scherk discussed
the equivalence of an -ordering of a Desarguesian affine plane to
an ordering of its division ring. We will define an ordered
Desarguesian A. H. plane and follow Scherk's methods.

We begin by showing that the coordinate ring of such a
plane is ordered. éhen we construct an ordexed A. H. plane
from a given ordered A. H. ring.

The next section provides an example of such an ordered
A. H. ring, and hence justifies our definition. We then briefly
examine the ordinary affine.plane associated with an ordered
A. H. plane.

Next we examine the radical of an ordered A. H. ring and
its relationship to the associated ordered A. H. plane. Finally,

we prove a suggestion of Hjelmslev's that any Archimedean ordered

3
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A. H. ring is a division ring, and thus any Archimedean ordered

A. H. plane is an ordinary affine plane.



CHAPTER 1

Elementary Properties of Affine Hjelmslev Planes

4

1.1. X= [(p, L, I," ] is called an incidence structure

with parallelism if:

1. P and L are sets.

2. 1 &« P x L.

3. “ % L x L is an equivalence relation (parallelism).
The elements of @ are called points and are denoted by P, Q, R...
The elements of L are called lines and are denoted by 1, m, n...
(P, 1) € I is written P I 1 and is read, "P is incident with 1";
similarly, (1, m) € ” is written 1 H m and is read, "1 is parallel
to m". P, QI lwillmean P I 1l and Q I 1, and P I 1, m will mean

PIland?P Im. Wewritel/\m={P€=lPlPI1,m}and

1vm={1>e fpjpllorpxm}.

1.2. Two points, P and ‘;Q, are neighbours (written P ~“p 0,
or just P~ Q) if there exist 1, m e &, 1_# m, such that P, 9 I 1, m.
Two lines, 1 and m, are neighbours (written 1 ~£L m,or just 1~ m)

if for any P I 1, there exists a ¢ I m such that P~ Q and for any

Q@ I m, there exists a P I 1 such that Q~ P, The non-neighbouring

relationship will be denoted by 7L
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1.3. An incidence structure with parallelism is called an

1
affine Hjelmslev plane (or an A. H, plane) if it satisfies the

following axioms.
Al. For any P, Q ¢ ®, there exists 1 € L
P, QI 1. If P o~ Q, we write 1 = PQ.

A2. There exist Pl, P2 3

,-P_ € 1P such that Pl Pj76 Pi P

such that

k

where (i, j, k) is any permutation of (1, 2, 3).

{Pl' P2' p3} is called a triangle.

A3. ~~is transitive on P.

A4. If PI 1, m, then 14m iff |1 Am| =1.

AS., If 19°m; P, RI1;Q, RImand P~¢Q, then R ~ P, Q.

A6, If 1~ m and no 1 with P I 1, n and Q
P~ Q.
A7, If 1 ” m; P I, nand l~ n, then m#

exists a point Q such that Q I m, n.

I m, n, then

n and there

A8, For every P € [P and every 1 € L, there exists a

unique line L(P, 1) such that P I L(P,
L, 1| 1.
From A3 and the definition of the neighbour

it is obvious that ~ is transitive on L also.

’

1) and

relation on L,

1.4. The set 7Tl = Zm € L!m” 13 is a pencil of L.

Two pencils, Trland TTé, are neighbours (written Tri

exists ll € TT; and l2 € TTZ' such that llﬂv 12.

is clear that if 1 “ m then either 1 Am = g or 1L = m.

~ TTz) if there
In view of A8 it

(However, the
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possibility that two non-parallel lines are disjoint is not excluded.)

[N

/
\
1.5. Lemma. If P I 1, then there exists Q 1 1 such that P~ Q.

Proof. {7}, Lemma 1. 1. 9.

1.6. Lenma. If g A h =g or g~ h, then there exists j such that

jll h: 3~gand j Ag ¥ g

Proof. {9], Lemma 2. 1.

~

1.7. Lemma. Let i Pys P P3} be a triangle, then for any 1 € L

2'

there exists P € fPl, P_, PBI such that P 4 X for each X I 1.

2

Proof. [9], Lemma 2. 4.

1.8. Lemma. If g A h # g, then there exists a pbint S such that

SA X for all X I g v h.
Proof. (9], Lemma 2. 9.

1.9. Lemma. Let glll 9y then the following are equivalent:
1. 9,7~ g2.

2. There exist Pi I 9, i =1, 2, such that Plfv P2.

Proof. {7}, Lemma 1. 1. 10.
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1.10. Lemma. If Pl =g, AN j, i =1, 2, and glllqz, then the following
are equivalent:
l. gl~ gz.

2. Pl~ P2.

Proof. (7], Lemma 1. 1. 11.

1.11. A mapping ¢: P — P 1s called a dilatation of X if
P, Q I 1 implies ¢P I L( Q, 1), for each 1 € L. Let D be the set
of all dilatations of 3 and let Dp be the set of all dilatations of
¥ with a fixed point P. For P ¢ P, Opwill denote the

dilatation which maps each point of P into P, and 1 will denote the

1dentity map.

1.12. A line 1 1s called a trace of the dilatationo if there
exists P I 1 such that ¢P I 1. If 1 is a trace of o, then ¢Q I 1
for all 9 I 1.

Pa)
1.13. A dilatation % is called a quasitranslation if U has

~

no fixed point, or T = 1.

A quasitranslation 7T is called a translation if for any
trace, g, of T , and any line h, h || g, then h is also a trace of ¥

A pencil A is called a direction of the translation T
if TT'is a #encil of traces of T .

Let T be the set of all translations.



Let D = {Tr)ﬁls a direction of 'K} . Let T, = {’CeTI mTe D’t} .
The set ND = {0"6 D} P ~ P for each P} is called the set of

neighbouring dilatations. N =ND N T is called the set of

neighbouring translations. It can be shown that if 7T € T\N,

then P % TP for any P e @, cf. [10], Theorem 3.6.

1.14. Lemma. Let T€T, then the following are equivalent:

1. T¢ .
2. If g and h are traces of T, then h ” g.

3. | Dp|=1.
<

-

Proof. [9), Lemma 3. 11.

~

AN
1.15. An A. H. plane ¥ is #alled a translation plane

(or a T.plane) if it satisfies*' the following axiom.
A9. T is a transitive group.

If T satisfies A9, then T P will denote the unique translation

Q

mapping P into Q. From (10], Theorem 3.7, T is abelian.

1.16. Let ¥ be a T-plane. A trace preserving endomorphism
is amap, a: T — T, ( ”C-~?’ta) such that:
l. a is a group endcmorphism of T.
2. Doy D,ta.
H will denote the set of all these endomorphisms. Then H is a ring
with identity with respect to the o;;erations:

"Cab = (’Cb) a.’ and ,ta+b = "Ca’tp
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P
The identity element, 4, and the zero, o of H are defined by
'Ci =T and ° = 1 & T,respectively, for all 7T € T.
H* will denote the multiplicative monoid of H, and 17
will denote the set of non-units of H.
1.17. Theorem. Let 3 be a translation plane, and le‘t P be any
point.
1. For each a € H, there exists a unique dilatation
o = (¢(a) € DP such that (TPS)a =TP &5 for each
'CPS € T.
* 2. The mapping hP: H* — DP defined by hP (a) = g (a)
is a monoid isomorphism.
In fact a €v? iff ¢ (a)e MP, where MP = {o’é Dpl ooQ ~P, for all Q}.
. N
Proof. {9], Theorem 4.4.

1.18. Corollaries. [9), 4. 4. 1. - 4. 4., 6.

1.

5.

Each a € H is uniquely determined by its action on one
T 6 T\N.

If ¥ € TNN and a € H, then ’ta = 1 implies a = o, and
~? = ’tb implies a = b.

a

N & N for each a € H.

Let a € H, théen the following are equivalent:
a) There exists - € T VN such that ’ta € N.
) T & N
c) a € vl

H is a local ring with unique maximal ideal V] .



1.19. }ﬁis called Desargquesian if }& is a translation plane

and satisfies the following axiom.

L)

alo., If ’l‘le T\ N and ’CzeTand D, & D, ., then
1 2
there exists a € H such that T&a = ?}.
. ! b
We note that if O, A, B I 1 and 0 , then B = 1TOA (0) for some

b €'H, /

¢
’ i
\

1.20. Axiom Al0 lis) connected with the following one,
—_— \

which applies to any point] P. °

A10.P. Por each\follinear triple P, Q, R, with Pf%—Q,

there ex#éﬁf a dilatation (¢ e DP such that

)
=(Rt

v
%

oQ \
p—
M\“@ -
1.2). Theorem. Let &ﬁ be a translation plane, then tHE‘{gllowing
are equivalent. ) e,
1. AloO,

2. AlO0.P for every point P.

3. There exists P such that A10.P. holds.

Proof. {9], Theorem 5,3.
Lorimer and Lane have also shown, [9], Theorem 5.11, that Al0.P is

equivalent to a Desarguesian configurational condition for P.

1.22. Coordinates can be introduced in a Qesarguesian

affine Hjelmslev plane, in the following way.



Theorem. Let T1. #7T1. ©Let T. e T_. ~N; i=1, 2. Then for
—_— Y 2 i i
/

each T €T there exists a unique a, b € H such that T= ’Z‘la ’c‘zb.

Proof. [9], 6.1.

€
1.23. Theorem. Let }{ be a Desarguesian A. H. plane with the ring H,

then H is a local ring with the properties:
1. 7 is the set of two-sided zero divisors of H.
2. If a, b € H, then a € bH or b € aH.

-

Proof. [9), Thecrem 6.9. i

¥
v

1.24. Such a local ring is called an affine Hjelmslev ring

(or an A. H. ring). One can always construct an analytic model "
of a Desarguesian A. H. plane }L(H) over such a ring, Hp { [B], Section

The A. H. plane so constructed will have as local ring qf trace

preserving endomorphisms an A. H. ring H' isomorphic to H; [8], 3.10.

1.25 Lemma. If.a e H, a # o and O, A, B € P are not collinear,

then, given A, B I 1, ’fosa(o) I L(‘TbAa(O), 1) ; see Figure 1.

°

-1
P ] = U T = T T .
Froof. Tpg oB ‘a oB Toa
a a -a a a
= = =
Thus TAB Top Ton - Let Ty, (O =¢, 'tOB (0) = D,

-~

Then, tABa(c) = T

a ~a a
op (Toa (O = Tog (©) = D.

10
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, . . , a
Since 1 is a TAB trace, it is a TAB trace. Letm = L{(C, 1).

. v 2 ) ~ 2 7 @ - - T @ i
The: m is a AB trace Thus AB (C) I m, but AB (C) D oB (0)
1.26. Note. Since we have put no restrictions on O, A and B, it is
possible that L(TOAa(O), 1) = 1 even if a # 1; cf. for example Figure 2.
In a Desarguesian A. H. plane, suppose O, B I s and A X for any X I s.
Then AB = 1 and 1 +# s. Let OA = t and suppose 1 ~ t. Thus, by A4,

,1 A tl # 1. Take another point, C, in 1At; C # A, Then, since

C
O + A, ’COA¢ N, and so C = ’Z‘oA (0) for some c €.H, where c # 1.

By 1.25, ’Z'OBC(o) 1 L{C, 1). However, C I 1, thus ’L‘OBC(O) I 1 and,
, c -
since 1 % s, TOB (0) = 1 As = B. However, in our dicussion we

shall always consider the situaticﬁ where 14 s, t.

-

-
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CHAPTER 2

— —— e ———t e W —

Geometrically Ordered Desarguesian A. H. plane

2.1. We shall assume thatb{ is a given Desarguesian affine
Hjelmslev plane. Thus, in addition to Al to A8, ¥ 1s a translation
plane, and 8atisfies AlO.

Following P. Scherk, [11], we shall 1ntrodu§é*seven axioms
of order .which will enable us to say that a point on a line lies
"between" two other points on the same line.

We shall show that this geometric ordering of ){ induces an
algebraic ordering of the A. H. ring H of the trace preserving

endomorphisms of the group T of translations of H .

2.2. An A. H. ring H wall be called ordered i1f there exists
+
a subset, 9”) of H, such that:
/ . e + +

l. /Every a € H satisfies exactly one, of a € H, -a € H, a = o.
+ +

2. If a, beH, then a+ b € H .
+ +

3. Ifa,beH , and b # v) , then abe H ..

(Note: Chapter 4 contains an example of an A. H. ring in which

- + .
condition 3 holds but a, be H and a‘;/7 does not imply ab € H+.)

2.3. An ordering of the affine Hjelmslev plane, }f , is a

ternary relation on P, which satisfies the following axioms.

13
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01. (A, B, C) implies that A, B, C are mutually
distinct and collinear.

02. (A, B, C) implies (C, B, A). ~

03. If A, B and C are mutually disinct and collinear,
then exactly one, of (A, B, C}, (B, C, A) and (C, A, B)
holds.

04. If A, B, C, D are collinear, then (A, B, C) and
(B, C, D) imply (A, B, D) and (A, C, D).

05. 1f A, B, C, D, are collinear, then (A, B, C) and
(A, ¢, D) imply (A, B, D) and (B, C, D).

06. Two, of (B,A, C), (C, A, D) and (D, A, B) exclude

the thirdy if A, B, C, D are collinear.

0J7. Parallel projections preserve order.

2.4. In the context of affine Hjelmslev planes we shall
assume that a parallel projection, from a line 1 to a line m, in the
direction 7| is a bijective mapping from the distinct points of 1

onto the distinct points of m; i.e. X = 1 A L(X, 7T) is taken into

X' =ma L(X, 7V), for any X I 1. Thus, by A7, L(X, TT)%1, m.

2.5, These axioms are not independent, since 05 can be
deduced from 01, 02, 03, 04 and 06. However, Ehey are in a

convenient form for applica®ion. ' :

Theorem, 01, 02, 03, 04 and 06 imply 05.
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Proof. Assume A, B, C and D are collinear, and (A, B, C) and

(A, c, D). If (B, C, D) is false, then, by 03, either (C, D, B)

or (D, B, C).

Case l: Suppose (C, B, D). (using 02).

Then, by 06, (A, B, C) and (C, B, D) exclude (A, B, D). Hence,

by 03, either (B, D, A) or (D, A, B).

However, by 04, (D, A, B) and (A, B, C) imply (D, A, C), which
;ontradicts (A, C, D), by 03. On the other hand, (A, D, B) and |
(b, B, C) imply (A, D, C), which contradicts (A, C, D).

Thus (C, B, D) is false.

Case 2: Suppose (C, D, B).

Then (A, C, D) and (C, D, B) imply (A, C, B), by 04, which contradicts

(A, B, C}, by 03. Thus (C, D, B) is false.

-
Hence (B, C, D).
Finally, (A,B, C) and (B, C, D) imply (A, B, D), by O4.

2.6, B and C are said to lie on the same side of A if .

exactly one, of (A, B, C), (A, C, D) and B = C ¥ A,holds. This will

~

be denoted B,CIA.

-

2.7. Theorem. If 1 is any line through A, then the property of

lying on the same side of A, on 1, is an equivalence relation on

—
(e N{a}l ) AL

Proof. 1. If B # A, then B,BJA.
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2. 1f B,C|A, then C,B|A, by definition.

3. Claim: If B,CJA and C,D|A, then B,DA.
If B=C or C = D, then B,DJA. If B =D, then B,D|A.
Hence we may assume that B,C and D are mutually distinct.
Since they are all different from A, there remain four possible
cases.
Case 1: (A, D, C) and (B, C, A) imply (A, D, B}, by OS.
Case 2: (A, B, C) and (A, C, D) imply (A, B, D).
Case 3: (A, D, C) and (A, B, C). Then, by 03, one, of
B=0DsA, (A, B, D), (B, D, A) and (B, A, D) holds. But (B, A, D) and
(A, D, C) imply (B, A, C), by 04, which contradicts (A, B, C), by 03.
Hence B, D,A.
Case 4: (n, C, D) and (B, C, A). fhen, by 03, on?, of
B=D3s%A, (A, B, D), (B, D, A)lanfi (D, A, B) holds. But (A, C, D) and
(D, A, B) imply (C, A, B), by 05, which contradicts (A, C, B).

Hence B,D|A.

Thus in every case B,DIA. The claim is proved.

2.8. Lemma. The property of lying on the same side of A is

preserved under a parallel projection, as described in 2.4.

Proof. Let X' be the image of X under a parallel projection from

a line 1 to a line m. Let A, B, C I 1 and B,C]A: Thus one, of
B=Cg¢¥A, (B, C, A) and (C, B, A) holds. Hence, one, of B' = C'# A',

(B', C', A') and (C', A', B') holds, by 07 and A7. Thus B', C'[A"'.
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2.9, Lemma. If A, B, C, D are collinear, then (B, A, C) and (B, A, D)

imply C,DIA. ~

Proof. By 06, (B, A, C) and (B, A, D) exclude (C, A, D). Hence

C=Dy#Aor (C, D, A) or (D, C, A). Thus C,D]A.

2.10. Theorem. Translations preserve order, see Figure 3.

‘g‘roof. Let A, B, CI 1l and (A, B, C) and TeT.
'I‘l}en TB, 7TC I L(TA, J'.) = m,
Case 1l: 1 is not a T trace.

a) 14 m.

Then A ¥ X for X I m, by 1.9, so L(A/, TA) £ m, and
TAMNY for any Y I 1,- so L{A, TA) 4 1. "/I'hus for any ¥ I 1,
L(Y, L(A, TA))+ m, 1, by A7. Since T is a transla-t:ion,
TY I L(Y, L{A, T A)) A m. So U can be considered to be
generated by a parallel projec;ion having a pencil of lines parallel
to ’L(A, T A). Thus 07 applies and so (A, B, C) implies
(A, TB, TO).

b) 1~ m.

‘ <\
Then there exists a point Z X 1 with 2 #Y for any Y I 1,

by 1.7. . Take n = L(2Z, 1). Then n + 1 and so n 4 m.
Take some X I n such that neither t = AX, nor s = TAX, aré' T traces.
. . : /
= e T
Then T T and ’l‘z x 7a 8¥e as in Case 1 a) and )

1l AX
T = Tz Tl. Thus (A, B, C) implies (TI A, ”C'IB, ’Z’IC), which
. ] ,

¢
-



1 is not a 7 trace.

18

Case 1:
a) 1% m.
//fn // T8 //rtc y—
(\
b) 1~ m.
| \\}\TC -
/ / : |
7 ’
Case 2: 1 is a T trace.
/%\\\% |
Figure 3.
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i ) = T T ’ .
implies (Tz’?'lA, ’?’2’2’ B, TleC) (TA, Ts, CC)

1

Case 2: 1 is a T trace.
Choose Z a point which 1s not a neaghbour of any point on

= = Th.
1, then Z ¥ 1. Take 1?1 ‘Zkz and define 1?2 by ’Tz(Trl A) A

Clearly AZ and 2 TA are not 7T traces. Then by Case 1, (A, B, C)

wmplies ( T A, T B, T C) which implies ( T, 7)A, T, 7B, 7,70

(T a, T, TQ).

2.11. We define a € H' (0, A) 2f T_ %(0), A[0, where v 7 A.

We say that a 1s positive with respect to O and A.

+
2.12. Theorem. For any choice of 0 and A, 074 A, 1 € H (O, A).

Proof. A, TOAl (0) = A, lie on the same side of O.

+
2.13. Lemma. H (O, A) does not gdepend on the choice of A; A % 0,

see Figure 4.

Proof. Let B be any point such that B ¥ A and B’)LO.
Case 1: B J oA = 1.
Let 80 = m, Since 1l A m A g, there exists a point 3,
such that S# Z for any 2 I 1 vm, by 1.8. Let 05 = n. Then
ne 1, m. Since 0 # A, any X I 1 can be expressed in the form
T OAx(O), for a unique x € H. Then, by 1.25. 'ZOSX(O) I L(X, AS).
Also T _(0) I n.

If AS ~n, then, since 17‘ n, A6 impiies O ~ A; a contradiction.



BIOA:l'

Case 1:

Ton (0]

Figure 4.
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Thus AS~~ n and also AS 4~ 1. Then the map which takes X = ’tOA (0)

into 'ZOSX(O) I n is a parallel projection, as in 2.4, and so

T X . . X .
A, oA (O)l O implies S, 7708 (O)f 0
Similarly, since SB # m and SB 7 n, the map which takes Y = ‘tosy(o)
. y » . . /t y
into T:OB (0O) I m is a parallel projection. Thus S, oS (0] o
implies B, T _Y(0)] o.

oB

+ + +
Thus a € H (O, A) implies a € H (0, B) and symmetrically a € H (O, B)

) ) +
implies a € H (0, A).

Case 2: B I OA =1.

f
Choose C, C * X for any X I 1. Then A, 77osa(0)] o)

. a . a é' + .
iffc, ¥ (0 o iff B, T “(0)]0. Thus ak H (0, A) iff

ac H (0, B).

. Lt +
2.14. Notation. We may now write H (O, A) as H (0).

+
2.15. Lemma. H (0) does not depend on the choice of 0, see Figure 5.

Proof. Let O' # O; O, O' I 1.

"

Choose a point A which is not a neighbour of any point on 1.

T ] = L] ] = =
Put OA(O ) A'. Then A' I L{A, 1) m and /rOA T thus

O'A"

(0):1 ” O'A'. Since A is not a neighbour of any point on 1,

l+4+m and also OA 7 1. Thus, by A7, O'A' 4 1.

Hence O7 applies to the projection T, parallel to 1, taking any

I

21
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Toa™0) i PR :‘ o)
A Y > m
T
R
@) o' ’ (

Figure 5.
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X
X= T Ax(o) I OA,for a unique x € H, into TO'A' (0'). Thus

O

a . +
A, "COAa(O) ] O implies A', 7 . (") [O' i.e., a € H (0)

0

+ . . +
implies a € H+ (0'). Symmetrically a€ H (0') implies a € H (O).

. + +
2.16. Notation. We may now write H (0) as H .

+ +
2.17. Theorem. If a, b € H and b ?V] , then ab € H .

Proof. Choose O, A € P such that 0 % A.

o b _ b
Then b € H implies A, T ) | o. Put B = T, " (0).

Then B # O and since b § ¥ , B# 0. (If B ~O then Top € N,

b

but TOB = TOA

so, by 1.18, b € v , since ’COAg N; a contradiction.)

+ . a a - b, a _
Then a € H implies B, ’tOB (0) ' 0. But 7, (0) = (’COA ) (0) =

ab a . a .
TOA (0). A,B|O and B, T 4 (0)’0 imply A, ’COB (0) I 0, i.e,

+
A, tOAab(o) o, by 2.7. Thus ab e H .
2.18. We may assume that every line of 3 is incident
with at least three points, or Ol to O7 are satisfied trivially,
and H has only two elements with no ordering. In fact, for every
proper affine Hjelmslev plane, H has at least four elements and

each line is incident with at least four points; cf. [3], Chapter 2~

2.19. Lemma. The characteristic of H is not equal to two.




N

\

~

’
’

N

Proof. Assume (O, A, B).
If we apply TOA to O, A and B, then 2.10 implies

. 2
( TOA(O), ’Z‘OA(A), ’Z’OA(B)), which equals (A, TOA (o), ’COATOB(O)).

Put T (0) =C= T

T . ! t
oa Top oB OA(O) Now if we apply ’Z"OB o

(0, A, B), then 2.10 implies ( ’tOB(O), TOB(A), ?OB(B)) , which
1s (B, ¢, T 20N
equals , C, OB .
. 2 o
If the characteristic of H is two, then TOA (o) = ?'_OA (0) =0
and 'L’OB2(O) = 0. So (A, 0, C) and (B, C, 0) hold and these imply

(p, 0, B), by 04; a contradiction.

2.20. If C, BI 1, we define O I 1 to be the midgoint of

i T = T _.
C and B on 1 if co oB

2.21. Letmma. I1f Q, C, O, B, PI 1 and (P, B, C) and O is the

’ midpoint on 1 of both Q and P,and C and B, then (P, B, Q).

1
i

N

Proof. Take T I 1 so that O %~ T.

-

a
= T = 3 o =
Then TOB co TOT for a unique a € H, and TOP ’CQO TOTb
for a unique b e H, i.e B=T a(0) c=T %o, Pr= T b(O)
! o oT ! oT ’ oT '
-b
Q = Torr (o). Now choose T' +£ X for any X I 1l,by 1.7.

Then T' ¥ 1 (see Figure 6). Construct a parallel projection from

\

1 to OT' = n, in the direction of TT' = m. Then n 44 m, or by A6, O~T.

N
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Figure 6. ,
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Thus L(B, m) * n and meets n at a unique point, say B', by A7.

Similarly,C', P' and Q' are obtained uniquely. By 1.25,

a a s 1 1 t
t(fl" (0) I L( TOT (0), m). Thus, since B', C', P' and Q )
a -a b
i Vo= ' = T ''= T
are unique, B TOT‘ (0), C , (0), P , (0)
Vo -b
and Q' = T ., (0).

Now construct a second parallel projection from n to 1, taking

T' into U = ’C’OT—l(O) . T'U + 1, by our choice of T', so Al

unigquely determines B", C", P", Q" and, as before, B" = Toua(O) etc.

These parallel projections are as described in 2.4, since n-+ m and
n%# 1 and also T'U %1 and T'U ¥+ m (if T'U~m then U~ 0, but

T = i
T OT# N and or TUO' thus U # 0). Thus 07 applies to

both parallel projections. So (P, B, C) implies (P', B', C') which
1

. . b -1.b
" ", "y, , P" = T = ' =
implies (P", B", C") However, P ou (0) (’COT (0) Q

and B" = T Ua(O) =Cc,c"= T

o U-a (0) = B. Thus we have (Q, C, B)

O

which with (P, B, C) implies (Q, B, P).

+ +
2.22. Theorem. If a, b€ H, a# b, thena+ b€ H .

Proof. Choose 0, A; 0~ A.

+ a b
Then a, b€ H imply A, ’COA (0) ' O and &, ’tOA (O)l 0.

a b
Put Toz\ ©©) =B, T (0 =c. Thus A, B | O and A, c[o, so B, C |o.
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Also a ¥ b implies that B # C. Hence (O, B, C) or (O, C, B).

Case 1: (0, B, C).

O, A, BI1L. Let E be the midpoint of B, C on 1.
& 2

Set @ = ’COE(E) = TOE (0O). Thus E is also the midpoint of
a+b a b
= = T =
Q and O on 1. Then TOA TOA TOA TOB o
2 atb
T T T T = T = . H = 0).
EB OE EC OE OE Tog- Hence 9 = T, (0

(6, B, C) implies (0, B, Q), by 2.21. Thus B, Q| O and, since

. a+b . +
A, B[O,A,Q’O, i.e., A, TOA (0) 0, i.e., a+ bEH

Case 2: (0, C, B)-

The proof follows symmetrically.

- +
2.2¥. Let H be the complement of H U {o} in H.

+ - - .
Thus H=H U {o} VH . The elements of H are called negative elements of H.
' oo - -
2.24, Theorem. a € H implies -a € H , /
+
Proof. a € H implies a ¥ o, hence -a ¥ o. Since characteristic

+ +
of H is not two,a ¥ -a. If —a€ H , then a+(-a) € H , by 2.22;

a contradiction.

2.25. Lemma. a € H iff ( ’COAa(O), O, A), where O+t A.
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a

Proof. If a ¢ H, then a€ H U H iff a # o iff T,

iff T __%(0) # O iff exactly one, of T _ °(0) = A, (¥ %), A, 0)
oA * Y one. OA =R oA r B Pl

(a, T’OAa(o), 0), (A, O, QfOAa(O)) holds. a € H' is equivalent to the

assertion that exactly one of the first three relations holds.

Thus, the last relation is equivalent to the a € H .

2.26. Theorem. If a, b € H—, a#¥ b, then a + b e H—.

Proof. Choose O% A.

-, a b
Then a, b€ H imply ( rtOA (0), 0, A) and ( 1:0A (o), o, n),
. a b .
which exclude ( ?TOA (0), o, Q‘OA (0)), by 06. Hence

a b a b
'L‘OA (0), ’L‘OA (0)] 0. As in 2.22, let "COA (0) = B, TOA (0) = ¢

so (B, C, 0) oxr (O, B, C).
Case 1l: (0, B, O).

Letting Q = T OE(E), where E is the midpoint on 1 of B and C,

} .
we have, as in 2,22, (0, B, Q). Since (B, O, A) we have (9, O, A} =

+b , -
(T OAa (0), 0, A), i.e., a + b € H .

Case 2: (0, C, B).

The proof follows symmetrically.

2.27. Theorem. a € H implies ~a € H+.

<

Proof. a € H implies a # o, hence -a # o. Since characteristic of

H is not two, a # -a. If ~a & H-, then -a + a € H-, by 2.26; a contradiction.
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+ +
2.28. Theorem. For all a€ H, exactly one, of a€ H , a = o, —a& H holds.

2.29. Theorem. -1¢€ H .

\

. + -
Proof. By 2.12, 1 € H . Hence, by 2,24, -1 € H .

+ +
2.30. Theorem. If a € H, then 2a € H .

Proof. Choose Of)‘ A.

, a 2a
Claim. ’I'OA (0), TOA (0)’ 0.

Since 0% A, 2(0) # 0, by 1.18, and since characteristic of H

’tOA
. 2a
is not equal to two ?"OA (0) # o.

2a a a 2a
e v %0 = ©) # 0, then T, 7,0 ]o.

’tOA
If o, ’t.‘oAa(O) and ’sza(O) are mutually distinct {(and collinear),

2a

then, by 03, exactly E)ne, of ( (o), 0), ( ’C'OAza(O) , 'Z'OAa(O) , 0)

2a a
and (’EOA (0), o, TOA (0)) holds.

2a a , -a ~
If ( ’COA (o), o, ’C‘OA (0)), then, applying TOA , we get

a -a . - -a v
(’COA (O).’L'OA (o), 0. But, since -a € H, (‘COA (0), 0, A).

+
Thus, by 04, ( TOAa (0), O, A); a contradiction to ae H .

Thus ‘T OAa(o), ~ 2"(0)) 0 in all cases.

OA

‘ 2
Since A, T OAa(O) ]0, we have A, T a(O) 10, i.e., 2a € Hh,

OA



2.31.

A. H, ring.

/

-

Thus, by 2.28;

2.22 and 2.30;

2.17, H is an ordered

30




CHAPTER 3

x
¥

The Construction of a Geometrically Ordered

\

Desarguesian A.' H. Plane from an Ordered A. H. Ring

3.1. Now, given an algebraically oxdered A. H. ring H,
we wish to construct a geometrically ordered Desarguesian affine
Hjelmslev plane. Since Lorimer and Lane ({8}, 3) have
constructed a Desarguesian affine Hjelmslev plane }t -frem an
A. H. ring, it remains to show that the given ordering of H

induces a geometric ordering of JL(H). Since the A. H. ring

v

{

of }e is isomorxrphic to H, we may identify] the two A. H. rings
and assume that the A. H. ring of $f is the given A. H. ring H.

Using (8], 3.11, we can verify that H and H' ‘ge order isomorphic;
cf. Appendix 1.

3.2. 1f A, B, C are mutually distinct and collinear
with a line 1, then there exist poipts O and E on 1 such that O 7¢ E.

We define (A, B, C) if a<bd{cor c<b<ca, where A = T é‘(O),
) 0,E QE

b 4 . .
B = ’Z.'OE (o), ¢ = ’C'OEC (0) . B is said to (Yie between A and C.

3.3. Lemma. Order on a line 1 is independent of the choice of

O, E on 1, where O7LE.

Proof. Let O % E.and-(R, B, c)o £

’
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Let O', E' be any two points such that O'+ E'.

a b

(oM,

Then A = ’tosa(o) = ’Z'O,E, '(o'), B = ’?OEb(O) = 'Z'O,E.

C = TOEC(O) = TO,E,C'(O'). Since O #* E, there exists

x € H, x # o such that TO'E' = TOEX and y € H such that

TOO' = TOEY' Then x% 17 since 20'1:‘:' % N.

As T R0 = TR0 = Tt T 0 =T 0 T Yo
= 'C'OEa'x+y(o). Thus a = a'x+y, since .T OEF{ N.

' +
Assume a'< b'<c',ti1.e., b'-a', c'-b' € H .

+ toa
If x € H, then (b'-a')x, (c'-b')x € H since x # 9 -

+ +
Hence (b'x+y)-(a'x+y), (c'x+y)-(b'x+y) € H , ie., b-a, c-b € H ,

i.e., a<b«c.
- +
If x € H ,then -x € H and so c<b<ca.
Similarly, one can deal with the case when a'< b'< c'.

Thus (A, B, C)O £ implies (A, B, C)O' for any O'¢# E'.
[

/B’

3.4. We are now in a position to prove 0l to 07, as in

Chapter 2. We may now write (A, B, C)o E as (A, B, Q).

’
-

3.5. 01. (A, B, C) implies that A, B, C are mutually distinct

and collinear, by definition.

3.6. 02. Clearly (A, B, C) implies (C, B, A).



3.7. 03. A, B, C, mutually distinct and collinear implies exactly

one, of (A, B, C), (B, C, A) and (C, A, B) holds.

Proof. Assume A, B, C I 1.

- (b -
B = TOE‘(O)'C'— T

OE

1,
2,
3.
4.
5.
6.

€0 , then exactly one

a<b<c,
bd<cca,
c<acdchb,
c<b<«a,
b< a<c,

ac<c<b, holds.

(A, B, C) is equivalent to 1 and 4.

(C, A, B) is equivalent to 3 and 5.

(B, C, A) is equivalent to 2 and 6.

Thus exactly one, of (A, B, C), (B, C, A) and

3.8. 04. (A, B, ¢) and (B, C, D) imply (A, B,

if A, B, C, D are collinear.

Proof. If O#A E and A

D= 7T Ed(o), then (A, B, C) is equivalentfto a<b< c or c<bca.

0

a b
’l‘E(O),B- TOE ©), CcC= T

0

(B, C, D) is equivalent to b¢c<d or d<cb.

(B, C, D) are equivalent to a< b<c¢<d or d<cd4b<a which implies

of:

(C, A, B)

D) and (A, C, D)l

Hence (A, B, C) and

holds.

c
OE

(o),

33

If 0%E and O, E I 1 and A = ’COEa(O),

a<b{d or d<b<a, i.e., (A, B, D). Similarly we obtain (A, C, D).
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3.9. ¢5. (A, B, C)} and (A, C, D) imply (B, C, D) and (A, B, D),

if A, B, C, D are collinear.

Proof. The proof 1s similar to that of 04.

3.10. 06. Two, of (B, A, C), (C, A, D) and (D, A, B), exclude

the third, i1f A, B, C and D are collinear.

Proof. Without loss of generality assume (B, A, C) and (C, A, D).
This is equivalent to b<a<c and d<a<c or c<a<b and c<a<d.
In particular either b<a and d<a or a<d and a <b. (D, A, B)

is equivalent to d< a <b or b<a<d, which is clearly excluded.

3.11. 07. If /T is a parallel projection, then it preserves orxder,

see Figure 7.

Proof. Assume A, B, C I 1 and (A, B, C) and /T is a parallel
projection which takes any X I 1 into X' I m such that X = 1 A L(X,77),
X' =m A L(X, ﬂ’).

Case 1: 1 m ¥ &,

Say 0 I 1, m. Now take E I 1 such that 0~¢ E.
ThenA = T 20, B= T P, c= 7T _ S0 for b H
OE ’ = OE ' OE or some a, b, ¢ &€
a a
and a< b<c or c¢b<a. By 1.25, TOE' (0) 1 L(’Z.'OE (), L(E,TT ).

Thus A' = ’t‘OE,a(O) and, since O # E, L(0,7T) “ L(E, 7T ), by-1.10,



Case 1:

lAamy¥g.

Case 2: 1l A m= ¢,
a) 1 “ m.
0, R' al Cl
/ / / / / > m
o/ € Al cl —{
b) 14 m. : o
) /H/m’ A/B—L/
O/ y s
e A 8"
0 A 8 ’ ¢

Figgre 7.
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so 072 E'. Since a <b<¢c or c<b<«a 3.2 implies that (A', B', C').
Case 2: 1A m= &.

a)- l”m.

Take E I 1, O #E. Then T _.(0') I L(E, 7T ) A m, thus
E' = ”IOE(O') and O' £ E'. Since A = T Ea(o) for some a € H and

0

a' | B al | bl | - CI
’ZOE 0') 1 LA, TT)A M, A -’Z‘OE(O),B -’z'OE o", ¢ "/toz (o").

Thus, as before, (A, B, C) implies (A', B', C").

b) I,H/m.

Then, by 1.6, there exists s, s H 1, sAm3# g and-s ~ m.
Say 0' I's, m. L(X,7T) % m for any X I 1, thus L(X, 7T ) +* s.
L', TT ) meets 1 at a unique point O, by the definition of a
parallel projection, and L(O', T y+# 1. However, O' I s and
(0", 7T )+ s, so by A7, for any X I 1 Lj(X, 7T ) meets s at a Y}
unique point X".
Thus, (A, B, C) implies (A", B", C"), by Case 2(a), which implies

(a', B', C'), by Case 1.

3.12. By 3.5 to 3.11, ¥ is a geo‘metrically ordered

Desarguesian affine Hjelmslev plane.
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CHAPTER 4

4.1. A projective Hjelmslev ring or P. H. ring
is an A. H. ring which also satisfies:
3. If a, b €H, then a € Hb or b &€ Ha.
The following example of an A. H. ring which is not a P. H. ring
is originally due to R. Baer, [2], and is examined in [9], 5.

»

4.2. Let F be a field, F' a proper subfield of F, and

-

+ an é;anorphism from F into F'. Take H = P x F and define addition

and multiplication as follows:

{a, b) + (c, Q) (a+c, b+ 4d),

(a, b) - (¢, @) = (ac, $(a)d + bc).
Then H is easily seen to be an A. H. ring, but not a P. H. ring,

where M = {(o, a) f ae€ F‘} .

4.3. We can take F = Q(x), a simple transcendental
extension of the rational numbers Q, F' = Q(xz) and 4: the map from
F into F' which takes x into x2.

Q(x) can be regarded as the field of real-valued rational

functions with rational coefficients, and can be made into an

ordered field by defining:

37



+ f(x) f£(z) v
Q(x) = —g(x) € Q(x)! 3 x, €90 g—(z) > 0, z < x} .
Then clearly,
. l. For any a € Q(x),either a € Q(x)+ or, -~ a € Q(x)+

or, a= 0.
+ + ) +
2. a €Q(x) , b € g(x) implies a + b € Q(x) .
+
3. acot, b e o) implies a-b e o).
Now consider H = Q(x) x Q(x) and define a lexicographic order on H,

i.e.,H+= { o = (a, b) € H]eithera>00r.a=0andb>0}.

Then clearly,

38

) + +
l. For any o € H, either o€ H or, -« &H or, o= o.

2. «€H, B eH @ implies o+ B € H .
Also, 3. x,pB € H, ﬁlé»? implies o/3 cnt.
Proof of 3.
Case 1: ' -
Let o= (a, b), B = (c, d). Then a » 0 and ¢ > O.
Thus, u/} = (ac, #(a)d + bc) € H+, since ac > 0.
Case 2: ’ .
Let X = (0, b), B = (c, 4). Then b, ¢ > O.
Thus, O(ﬁ = (0-c, ¢(O)d + bc). But, ¢(0) = 0, thus
®xB = (0, be) € H+, since bc > 0.

Thus H is an ordered A. H. ring.

4.4. It is interesting to note that &, B € H+,
. +
Y 4 M . Pew does not imply that o«B€H .

) +
Assume o= (a, b), A= (0, d), a,d> 0. Thus«, 3 ¢ H.



39

Then, 0</3= (a-0, ¢(a)d + b-0) = (0, ¢ (aya). However,
. 2
¢> (a) is not necessarily greater than zero in Q(x ). For example,

take a = f(x), where f£(x) = -x. Then 47 (a) = f(x2) = -x2 and

cléarly ‘4)(a) < 0. Thus 4) (a)d < 0, and so B € H .

L



CHAPTER 5

The Ordinary Affine Plane Associated

with an Qrdered Desarguesian A. H. Plane

'

)

5.1. With every affine Hjelmslev plane, H , we may

associate a structure M = [ ©, ©, I, | by the quotient maps
?(/P and ?C'L of ~pand ~.-  We define P I 1 iff there exists

S e Psuch that P~S and § I 1. If || is the parallelism
relation for ordinary affine planes, then } is an ordinary

affine plane; c¢f. {8], 1.2. In fact, A. H. planes may be defined

in terms of their associated ordinary affine plrane; cf. [9], 2.2.
1

"
5.2. Once a Desarquesian A. H, plane has been \
coordinatized, we see that if P = (a, b), Q@ = (c, d), then P~ Q

iff a~c € v) and b-4d € v cf. [8), 6.2,3.

5.3. If 3 is a Desarguesian A. H. plane, then it is clear

-

that 3 is the ordinary Desarquesian affine plane coordinatized by
the division ring H/q . If H is an ordered A. H. ring, then

H/q is an ordered division ring and thus 3 is an ordered affine

plane; cf. [1ll}.

40 «
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CHAPTER 6

— — ————————— ——— ———

-
6.1. Theorem. * Let H be an ordered A. H ring and r) be the

radical {(maximal ideal) of H.

1. Ifréffl,then—l<r<l.

Ne

2. 1If ¢ eq\’, then -c <« b < ¢ implies b €9 .

~

+
Proof. 1. Suppose ¥ € H and r » 1. Then r -1 }{ v i cf. [6],pg.75.

Since r € v , there exists r' such that r'r = o. We may assume,

. . + +
without loss of generality, that xr'€ H . Thus r'(r - 1) € H .
However, r'(r - 1) = -r'; a contradiction. Thus r < 1.

If r < -1, then -r > 1; again a contradiction.

2. Consider, for instance, o < b < ¢ and suppose b £ » .

+ . .

Then ¢ -~ b € H and ¢ - b ﬁ N - Since ¢ € v , there exists

¢' such that c'c = o. We may assume, without loss of generality,
' + [ + ' ' +

that c¢'e H . Then ¢'b € H . But -¢'b = c¢'(c - b) € H ;

a contradiction, Thus b € 9 -

If ~c< b <¢co, then o« -b <« ¢; again a contradiction.

* Dr. J. W. Lorimer brought this result to my attention.
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Figure 8.
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6.2. Geometrically,this means that if O is any point on a
line 1, in an ordered Desarguesian A. H. plane, then all the
neighbouring points of O lie between E and E', where E is any
non-neighbour of 0 and E' = 'T'OE-l(O). If A is any neighbour

of O, then all points between A and O are also neighbours of O.

See Figure 8.
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; CHAPTER 7

The Archimedean Axiom and Desarguesian A. H. Planes

AN

S~

7.1. An ordered A. H. ring H is called Archimedean if
for any a, b € H+ there exists n € & such that na > b. This is
clearly eguivalent to the Archimedean ordering of the plane ),
i.e., if (0, A, B) then there exists n € Z such that (O, B, ’tOAn(O)).
Sincelif O, A, B 1 1, then O % T for some T I 1 where A = T 2(0) and

oT
B= T b(O) and A, T IO and B, T[ 0; cf. [1], pg.78.

or
7.2. Hjelmslev and Xlingenberg suggested, [4], pg.l17 and
(5], pg.406, that any Archimedean ordered A. H. ring\is automatically
a division ring. This~is indeed true. Thus any Archimedean
ordered Desarguesian A. H. plane is an ordinary Desarguesian affine

plane.

7.3. Theorem. Let H be an Archimedean ordered A. H. ring. Then H

is a division ring, i.e., 9 = fo} .

Proof. Let H be Archimedean and assume H is not a division ring.

+
Then, for any a, b € H there exists n & £ such that na » b, i.e.,

+ + ,
na ~-b €H . Take a, b € H , a ¢ 9 b )ft7 . Thus there exists
a' € H such thﬁa = o. We may assume that a'e H' .

%
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+ ' +
Hence a'b € H . Since na -b ¢ », -a'b = a'(na~-ble H '

a contradiction.

Note. By means of ternary rings, Dr. J. W. Lorimer has shown
that any non-Desarguesian proper A. H. plane cannot be Archimedean

ordered.



The A.

APPENDIX 1

H. ring, H', of trace preserving endomorphisms of an

A. H. plane ¥ (H) 1s order isomorphic to H. This is clear when

we consider the following theorem, originally due to Klingenberg.

Thecrem. Let H' be the A. H.

of a2 (H) and let n be its unique maximal ideal. Then; cf.(8], 3

1.

c'e H'" iff there exists ¢ € H such that

c
= H.
'to (@,b) ’to (ca,cb) for all (a,b) H xH

C.
Tas Ty oy = To (e,0) °

The mapping H - H' (¢ =-» c¢') is a ring isomorphism.

c'en' iff c e .

If c & wt then consider the points O = {0,0), E = (1,0},

+
C = {c,0). c € H implies that ¢ = l,0or 0<l<c,or 0<c<l, 1.e,

C = E,or (0, E,

= = T = T ' ot
and (c,0) to ,0) (0) o (1,0 (or op (0). Thus c'e H'".
+ c!
] t = = 't
If c' € H then E, C [O where C T:OE (0} o (C,O)(O)'

C),or (0, C, E). So E, C|O, but C = (c,0)

Cl

Thus 0< 1<c, or 0<c<1l, oxr ¢ = 1, Le.cé!ﬁ.

46
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ABSTRACT:

A method for the determination of partial
‘radiation cross sections based on the energy‘dispersion
of the capture process was undertaken. A description
of the experimental reactor facility and details of the
method has been presented. Measurements of gamma rays
following neutron capture in isotopes of silicon,
chromium and nickel revealed resonances which were
analyzed for resonance parameters. The characteristics
of the resonance decay properties for the different

isotopes were discussed. .
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