
DOCUMENTATION DRIVEN TESTING OF

SCIENTIFIC COMPUTING SOFTWARE

1

DOCUMENTATION DRIVEN TESTING OF

SCIENTIFIC COMPUTING SOFTWARE

By

BINGZHOU ZHENG, B.ENG.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

McMaster University

© Copyright by Bingzhou Zheng, August 2009

2

MASTER OF SCIENCE (2009) McMaster University

(Computer Science) Hamilton, Ontario

TITLE: Documentation Driven Testing of Scientific Computing Software

AUTHOR: Bingzhou Zheng, B.Eng. (Taiyuan University of Technology)

SUPERVISOR: Dr. Ned. Nedialkov

NUMBER OF PAGES: vii, 104

3

Abstract

Domain experts, who create mathematical models and then implement sci­

entific computing software typically focus on their models and implementa­

tion, but often pay less attention to systematic and extensive testing of their

software. One reason for this situation is that domain experts usually lack

software testing experience and know little about testing tools. However,

it is desirable to introduce software testing techniques and tools into the

development process of scientific computing software.

This thesis originates from testing the scientific computing package DAETS,

Differential-Algebraic Equations by Taylor Series. Documentation driven

testing, code coverage analysis, and software testing tools are utilized to help

verify and improve the quality of the software in this testing project. First,

static inspection is used to check the correctness and completeness of the user

guide, and verify the consistency of public interface information between the

user guide and the source code. Then, black box test cases are designed

based on public interface specifications in the user guide. After that, by

executing code coverage analysis, test cases are added based on white box

testing. Finally, the automatic testing framework tool CppUnit is used to

automate the testing process, which greatly facilitates regression testing.

In the DAETS testing projects, 163 test cases (more than 5000 line test code)

are implemented, 27 documentation and software defects are found, and 150

lines of dead code are removed.

2

Acknow ledgments

I would like to start by thanking my supervisor, Dr. Ned Nedialkov who gave

me the great opportunity to study and do research here. I wish to express my

sincere gratitude for his strong support, constant encourage, and instructive

guidance for my research and thesis. His detailed comments, enlightening

suggestions, and complete corrections help ameliorate this thesis greatly. I

have learned much from him.

Next I want to thank Dr. Spencer Smith. Each conversation with him was

of great benefit to me. I greatly appreciate his comprehensive review for this

thesis. I would like to thank Dr. Emil Sekerinski for reviewing this thesis

and being an examiner of thesis defense committee. I also want to thank Dr.

John Pryce for his suggestions and help.

Finally, I give my thanks to my parents and my wife for their support and

understanding.

1

Contents

1 Introduction 2

1.1 Motivation............................. 3

1.2 Background 5

5

9

1.2.1 Overview of Verification Methodologies

1.2.2 Testing Scientific Computing Software ..

1.2.2.1 Current State of Testing iu SCS 9

1.2.2.2 Documentation Driven Testing for SCS 10

1.2.3 Overview of DAETS 12

1.3 Scope 14

1.4 Thesis Outline. .. 15

2 User Guide Verification 16

2.1 Purpose of User Guide .. 16

2.2 Verifying a User Guide 18

2.2.1 Expected User Characteristics 19

2.2.2 Verifying the Theory Underlying SCS 20

2.2.3 Verifying Public Interface Description. 22

2.2.4 Verifying Installation and Portability Information 23

2.2.5 Results from Inspecting the User Guide of DAETS 24

3 Test Case Design 27

3.1 Designing a Template for Test Cases " 28

3.2 Designing Test Cases for Public Interfaces 31

3.2.1 Black Box Method for Designing Test Cases 31

3.2.2 White Box Method for Designing Test Cases 36

3.3 Designing Test Cases for User Scenarios 37

3.4 Results of Black Box Testing. 38

11

4 Bug Management and Analysis 41

4.1 Bug Management .. 41

4.1.1

4.1.2

Bug Template .

Bug Management Tool

.......... 41

.......... 45

4.2 Bug Handling · .. 45

4.3 Bug Categorizing and Analyzing. · .. 47

5 Software Testing Tools 48

5.1 Introduction............................ 48

5.2 Automated Test Framework · .. 49

5.2.1 Introduction · .. 49

5.2.2 Automated Test Framework CppUnit 50

5.2.2.1 What is CppUnit 50

5.2.2.2 Architecture of the Test Suite for Testing DAETS 51

5.2.3 How to Add a Test Suite into DAETS Testing Project 59

5.2.3.1 Creating a Header File for the Test Suite. .. 59

iii

5.2.3.2 Creating Environment Setup File for the Test

Suite. .. 62

5.2.3.3 Creating Testing Logic Files for the Test Suite 64

5.2.3.4 Registering the Test Suite 66

5.2.3.5 Selecting a Test Suite or a Test Suite Group

to Execute 67

5.2.3.6 Testing Result Output of CppUnit 68

5.3 Code Coverage Analysis Tools 69

5.3.1 Introduction 69

5.3.2 What Code Coverage Analysis Can Achieve " 70

5.3.3 How to Do Code Coverage " 73

5.3.4 Results of Code Coverage Analysis .. , 76

6 Conclusion 79

A Example of Test Cases Organization 84

A.l daeTest.h .. 85

A.2 daeTest.cpp 87

IV

A.3 daeSolverTest.h .. 89

AA setDAESolverTestEnv.cpp 90

A.5 daeSolverTest.cpp. .. 91

B Result of DAETS Testing Project 93

v

List of Figures

1.1 Simple Pendulum Problem 13

5.1 The Relationship between DAETS Library and ATF 52

5.2 The Organization of a Test Suite 53

5.3 The Organization of Test Suite DAESolverTest 54

5.4 The Organization of DAETS Testing Project. 60

5.5 Code Coverage Report .. 76

vi

List of Tables

1 Acronyms Used in This Thesis 1

3.1 An Example of Test Case Design 34

VB

Acronym
API
ATF
DAE

DAETS
DDT
QA
SC

SCS
SDET

SE
USB

Table 1: Acronyms Used in This Thesis
Description

Application Programming Interface
Automated Testing Framework
Differential-Algebraic Equations
Differential-Algebraic Equations by Taylor Series
Documentation Driven Testing
Quality Assurance
Scientific Computing
Scientific Computing Software
Software Developing Engineer in Testing
Software Engineering
Unexecuted Statement Block

1

j-

Chapter 1

Introduction

Scientific Computing Software (SCS) typically uses finite precision fioating­

point numbers to represent continuous quantities. It is distinguished from

other computer softwares in that it is normally relates to a great amount of

mathematical knowledge.

For a long time, domain experts not only take charge of creating mathemati­

cal and computational models, and then representing the models into source

code of SCS, but also are responsible for verifying their SCS. A question may

automatically arise: can normal testers, who are familiar with software test­

ing, can help domain experts improve the quality of SCS? This thesis aims

to answer this question by explaining how testers can use the documenta­

tion driven testing (DDT) technique and software testing tools to verify and

improve the quality of SCS.

2

This chapter includes four sections. Motivation section (§1.1) explains why

SCS development teams need to grasp software engineering (SE) knowledge.

Background section (§1.2) defines the terms used in this thesis, describes

the current testing work in SCS, and introduces a DAETS - Differential­

Algebraic Equations by Taylor Series, which is the case-study used in this

thesis. Scope section (§1.3) talks about the testing target of this thesis. Orga­

nization section (§1.4) describes how the remaining chapters are structured.

1.1 Motivation

Nowadays, SCS plays an important role in scientific research, engineering

and service trade. Experts with domain specific knowledge and scientific

computing knowledge develop a large amount of algorithms and libraries,

which greatly improve the productivity of the related fields. It is natural to

realize that the quality of a SCS decides if the results of SCS can be trusted.

To evaluate the quality of SCS one needs to use some evaluating indicators,

say, correctness, accuracy, performance, etc.

Among all these indicators, the correctness of SCS is the most important one.

A SCS without correctness is useless and dangerous. For example, Oliveira

and Stewart [11] present three SCS failures: i) in 1991, the failure of a Patriot

missile did not hit an incoming Scud missile; ii) in 1991, the Sleipner A oil

rig collapsed; iii) in 1996, the Ariane 5 rocket exploded. All these failures

3

result in significant losses, and even a tragic loss of human life in the case

of the Patriot missile disaster. In addition, the defects of a SCS can cause

other developers not to trust the SCS. The software reuse is hampered by

the lack of confidence in the code of others.

If the code came with proof that it was extensively verified, this would help

build trust. But how? That domain experts develop a SCS normally expe­

rience three stages: creating mathematical model for a real world problem;

discretizing the mathematical model into a computational model; and im­

plementing it as SCS [4]. Since all three stages rely on approximations, they

naturally introduce uncertainties into SCS. To characterize these uncertain­

ties, domain experts need to do code verification, and validation to decide the

extent to which the computer implementation corresponds to the computa­

tional model, the mathematical model, and the real world problem. However,

these domain experts are usually "caretakers" of the models [6]. What they

do is to tune a SCS to show the models can work, not to improve the quality

of the software. Domain experts are good at science and/or engineering, but

they usually lack effective software engineering techniques [6, 7]. As Gregory

V. Wilson mentioned, overwhelming domain experts still use plain text ed­

itors like notepad, and do not test their programs systematically at all [5].

Therefore, a caretaker of software itself, a tester role, is needed.

The idea presented in this thesis aims to introduce testing methodologies

that have been successfully used in SE, so people developing SCS can invite

4

or directly mimic testers to follow these methodologies for their own work.

1.2 Background

1.2.1 Overview of Verification Methodologies

Both software testing and formal mathematical specification can be used

to verify the quality of software. However, the cost of a formal method

is normally much higher than that of software testing, and it is generally

used for mission-critical project. Hence, software imlu:;try usually chooses

software testing as verification method to evaluate the quality of software.

This thesis emphasizes software testing techniques to verify SOS.

Before explaining how software testing is currently done in software industry,

some terms should be introduced first.

Inspection ~ A team of people read or vi:;ually inspect a program or a

document [3J.

Black box testing ~ A test that is based on a component's specified be­

havior without regard to its implementation [13J.

White box testing ~ White box testing assumes that the tester can take

a look at the code for an application block and create test cases that look

5

for any potential failure scenarios. During white box testing, one analyzes

the code of the application block and prepares test cases for testing the

functionality to ensure that the code is behaving in accordance with the

specifications and testing for robustness [13].

Uni t testing - The primary goal of unit testing is to take the smallest

piece of testable software in the application, isolate it from the remainder of

the code, and determine whether it behaves exactly as one expects. Each

unit is tested separately before integrating them into modules to test the

interfaces between modules. Unit testing has proved its value in that a large

percentage of defects are identified during its use [13].

System testing - System testing is a logical extension of unit testing. In

its simplest form, two units that have already been tested are combined into

a component, and the interface between them is tested. A component, in

this sense, refers to an integrated aggregate of more than one unit. In a

realistic scenario, many units are combined into components, which are in

turn aggregated into even larger parts of the program. The idea is to test

combinations of pieces and expand the process to test modules with those

of other groups. Eventually, all the modules making up a process are tested

together. Beyond that, if the program is composed of more than one process,

they should be tested in pairs rather than all at once [13].

Regression testing - Any time one modifies an implementation within

a program, one should also do regression testing. This can be done by re-

6

running existing tests against the modified code to determine whether the

changes break anything that worked prior to the change, and by writing new

tests where necessary. Adequate coverage without wasting time should be

a primary consideration when conducting regression tests. One goal is to

spend as little time as possible doing regression testing without reducing the

probability of detecting new failures in old, already tested code [13].

Performance testing - A system test in which you try to demonstrate

that an application does not meet certain criteria, such as response time and

throughput rates, under certain workloads or configurations. [3]

Security testing - A form of system testing whereby you try to compro­

mise the security mechanisms of an application or system. [3]

Stress testing - A form of system testing whereby you subject the pro­

gram to heavy loads or stresses. Heavy stresses are considered peak volumes

of data or activity over a short time span. Internet applications, where large

numbers of concurrent users can access the applications typically require

stress testing [3].

Equivalence classes - partition the input domain of a program into a

finite number of equivalence classes such that one can reasonably assume

(but, of course, not be absolutely sure) that a test of a representative value

of each class is equivalent to a test of any other value [3].

Developing software is an engineering activity, which yields an engineering

7

product called software. An engineering product may contain defects, so

testers need to verify that its functionality and quality satisfy the require­

ments of customers. One way to verify the functionality and quality of prod­

ucts is testing, also called quality assurance (QA). As software is also an

engineering product, software testing plays an important role in checking

software quality. Testing software is mainly performed by testers in the field

of SE.

In the current software industry, software testing is executed simultaneously

with software developing since SE experience shows that the earlier bugs are

found, the lower the cost of fixing them. In the designing phase of a software,

testers should design testing specification based on developing specification.

When developers begin to implement modules of the software, developers

and tester should do unit testing, which belongs to white box testing, for

these modules. After the software is completely implemented, testers need to

execute system testing, which belongs to black box testing and mainly focuses

on the functionality of the software. This testing mechanism can permit the

development team and test team to find potential defects of software as early

as possible and decrease the cost of fixing them. In addition, the software

may be subject to regression testing, performance testing, stress testing, and

security testing, etc., based on different testing purposes.

8

1.2.2 Testing Scientific Computing Software

1.2.2.1 Current State of Testing in SCS

As for most domain experts, testing SCS is based on models. Domain experts

usually pay more attention to how much a mathematical model corresponds

to its real world problem, but do not pay much attention to the quality of

the implementation of SCS [12]. When they tune a SCS, they just want to

show that their model works, but may not perform extensive and rigorous

testing.

Domain experts, who are aware of the importance of the quality of SCS

implementation, introduce to SCS development software testing techniques,

which are well known in SE. For example, they carry out unit testing, system

testing, regression testing and so on for SCS [4]. However, when designing

test cases, testers of SCS can often meet the oracle challenge - in scientific

computing (SC), testers rarely know what the true answer to SC problem

is, even though most testing methodologies assume that they will have this

information. To get out of this jam, communities of scientists interested in SC

collect test problems, which are fit for SCS testing, as benchmark test suites.

Some problems in the benchmark test suite have known analyzed solutions;

thus their solutions can be directly used as the expected results in a test case.

Other problems have no known closed-form solutions, but they are still useful

for they can be utilized to compare a target SCS with the best solution in the

9

literature or other competing SCS (also called Parallel Testing). In addition,

to verify the derived properties and characteristics of a solution is another

way, to overcome this oracle challenge of SCS, for the properties of solution

is ofter easier to find [7]. After designing test cases, testers can evaluate the

completeness and the ability of test cases by executing code coverage analysis

technique (refer to §5.3) and mutation testing technique - insert code faults

randomly into source code of SCS and then run test cases to try to find these

faults.

In addition, domain experts can also use static inspection technique and

static inspection tools to ensure the quality of SCS. This technique requires

developers or static inspection tools to review documents and source code

of SCS line by line to locate documentation defects, software defects, dead

code, infinite loops etc [4].

1.2.2.2 Documentation Driven Testing for SCS

This thesis is dedicated to explain how to inspect the completeness of the

documentation i.e. the user guide of public interfaces of SCS implementation

and check the correctness of public interface functionality of SCS by mainly

using the document-driven testing (DDT) technique [7].

DDT in this thesis is a top-down black box testing technique, and it is usually

executed by testers. Hence, this thesis describes the testing technique from

a tester's perspective.

10

Here, the tester mentioned in this thesis is a software development engineer

in testing (SDET), which means he ought to be able to write testing scripts

to automate testing process, besides grasping software testing techniques.

Software testing is intended to find bugs in software systems before users hit

them. Testers testing SCS should act as either professional testing engineers

or common users, and switch these two roles adeptly depending on the type of

the content that needs testing. A tester acting as a professional test engineer

knows well the software system that is being tested, so he has the ability to

tell the correctness of the contents he wants to test. However, a tester acting

as a common user is expected to think or operate the software system like a

normal user. A normal user of SCS usually knows little or nothing about the

software system. This kind of users need to study how to use the software:

they can encounter any type of problems confusing them, and they may make

mistakes, sometimes even the mistake that the professional developers and

testers can never make. A tester cannot take for granted the assumption that

the end users are familiar with the software system and the domain-related

mathematical knowledge underlying it. A tester should try to figure out how

normal users make use of the software, instead of how developers use it.

When a tester, who has experience of testing business application software,

wants to test SCS, he faces a great challenge. This challenge comes from

the complexity of mathematical knowledge and particular characteristics of

SCS. However, with the help of domain experts and developers, a tester can

overcome the challenge and use his testing experience to improve the qual-

11

ity of the software. In contrast with developers, who own domain specific

knowledge and mathematical knowledge, and carry out unit testing, testers

use inspection technique to validate the user guide, but do not execute ex­

tensively static code inspection for they lack enough experts to help them

execute the conventional code inspection, which involves multiple reviews of

the code by people that understand it.

1.2.3 Overview of DAETS

This thesis originates from the testing project for testing DAETS: Differential­

Algebraic Equations by Taylor Series [lJ. DAETS is a software package im­

plemented in C++. It is used to integrate an initial value problem (IVP) for

differential-algebraic equation (DAE) system of an arbitrary index and order

over a range, using a Taylor series method. DAETS can provide its users

with detailed structure information of the DAE and calculate the numerical

solution of an IVP either at the end of the range or step-by-step.

John Pryce developed the idea - solving a DAE by Taylor series originated

by Y.F.Chang and G.F.Corliss, into a systematic method in 1996. Nedialko

S. Nedialkov began to collaborate with John Pryce in developing the theory

and code of DAETS in 2002. They offered the first version of the code and

user guide in the spring of 2008.

DAETS solves initial value problems for DAE system. The system has the

12

form:

fi(t, the Xj and derivatives of them) = 0, i = 1, ... , n,

in terms of the unknown state variables Xj(t), j = 1, ... ,n. It is defined

by a user-supplied function that evaluates the functions fi [1 J.

A DAE example: the simple pendulum problem.

Figure 1.1: Simple Pendulum Problem
~------X

L

(X,y)

lG
y

The simple pendulum system is a DAE of differential index 3, and is defined

by the equations:

0= f = x" + x>.

o = 9 = y" + y>. - G

o = h = x2 + y2 - L2 .

The gravity G and the length L of the pendulum are constants. The indepen-

dent variable is time t. The dependent (state) variables are the coordinates

X(t), y(t) of the pendulum bob, and the Lagrange multiplier >.(t).

For more details about DAETS, refer to the user guide of DAETS [IJ.

13

1.3 Scope

The testing methodology described in this thesis is comprised of the user

interface testing theory, and some software testing techniques and tools to

assist with testing. It aims to help verify and improve the functional require­

ment i.e. the correctness of the documentation, the public interface functions

of code library, and the source code of SCS, but not the non-functional re­

quirement, say, accuracy and performance of SCS.

The core of DDT is to test the user interface of SCS. The user interface in

this thesis is composed of the user guide of SCS and the public interfaces

of code libraries of SCS. Hence, the user interface is a bridge connecting a

software and its users. The user guide is the knowledge interfaces of SCS,

and the public interfaces of code libraries are the application programming

interface(API) of SCS.

The DDT technique explicitly assumes the existence of a user guide for SCS.

The user guide should includes the description of mathematical theory under­

lying SCS and explanations about how to use the public interface functions

of SCS. The depiction of mathematical theory tries to provide users with

general information of the theory underlying the SCS. This general informa­

tion intends to narrow the knowledge gap between users and developers, so

users can make a good use of the features of the SCS. The user guide explains

detailed information of public interface functions of SCS, such as their pa-

14

f-

rameters, return values and exceptions they may throw. It also talks about

the use experience of these public interface functions, say, good practices,

pitfall and traps that users can use or avoid.

The public interface functions of code libraries are the API of SCS. Users

of SCS can solve numerical problems by calling these interface functions. If

users meet problems in the process of calling these functions, they can consult

the description of public interface functions in the user guide.

The software testing technologies involve designing test cases, managing bugs

information, and using software testing tools that are available to assist with

testing.

1.4 Thesis Outline

The remaining chapters of this thesis are organized as follows. Chapter 2

describes how to verify the user guide of SCS. Chapter 3 discusses about test

case design. Chapter 4 involves the reasons and methods of bug management

and analysis. Chapter 5 explains how to use software testing tools to help

improve the quality and efficiency of SCS testing. Chapter 6 concludes the

thesis.

15

Chapter 2

User Guide Verification

2.1 Purpose of User Guide

A user guide for a software package is a technical document aimed to provide

assistance to people using the particular software system.

The user guide needs to summarize the theory underlying SCS. SCS like

DAETS is dedicated to solving a particular type of numerical problems, so

it uses some domain-related mathematical theory. This kind of mathemat­

ical theory is usually abstract and difficult to understand. As a result, a

small number of professional mathematicians can develop such kind of soft­

ware. The users of such packages, however, are normally not familiar with

the mathematical ideas. Obviously, there is a huge knowledge gap between

16

developers and users. The user guide can help users out of this predicament

of knowing little about related mathematical knowledge. For example, it can

present users with mathematical notions underlying the software, explain

hard mathematical ideas in sufficient detail, and sometimes give real exam­

ples to decrease the learning curve of the theory. In this way, the user guide

provides a bridge to connect developers and users. The user guide needs also

to let users know the advantages and disadvantages of this SCS compared

to similar ones. It should point out situations that may make the software

fail to work properly, or even more subtle cases that make the software does

work properly in certain situations.

The user guide is supposed to expose systematically to users the features of

SCS and public interface function information, and give enough examples

to demonstrate how to use these features and public interface functions. It

should also tell users good practices and warn them against pitfalls and traps

they may encounter in the process of using the software.

In addition, the user guide should tell user installation information and porta­

bility information of the software.

Finally, the user guide ought to be an open system. It should frequently

supplement new typical or common questions that users often ask and sum­

marize usage experience based on the interaction between developers and

users.

17

2.2 Verifying a User Guide

A user guide is the knowledge interface between developers and users. It

represents what the developers expect users to know. As a user guide directly

determines if a user can make full use of the features of the SCS, people can

immediately realize the importance of the correctness and completeness of

it. In view of its importance, it should be the first target to be verified in

the whole testing process.

A good style user guide should cover all the topics that can help the end

user employ a SCS correctly and efficiently. Testers can use static inspection

technique to verify if the user guide is correct, complete and consistent by

checking the information in the following checking list.

Check list for a good style user guide:

1. Summary of expected user characteristics

2. Assumption and limitation of the theory

(a) Errors and typographical errors

(b) Understandability and consistency of the explanation of the theory

(c) Terminology definition-usage order

(d) Terminology abbreviation and acronyms

3. Description of public interface function

18

(a) Description of public interface:

l. Parameter list

ii. Return value(s)

iii. Constraints on valid input

iv. Exceptions

(b) Good practices

(c) Pitfalls and traps

(d) Interface information consistence between the user guide and source

code

4. Installation and portability information of the software

2.2.1 Expected User Characteristics

Since SCS is usually related to a great amount of theory and math, it is

inevitable that the users need to have some knowledge of the basic theory

and math underlying the SCS, or the user cannot make good use of the SCS.

For this reason, testers should verify if the user guide explicitly announces

the expected characteristics of users. They ought to check if the user guide

further provides resources that can help make up the knowledge for the users,

who do not grasp the basic theory, so that this kind of users can finally master

the ability to use the SCS.

19

2.2.2 Verifying the Theory Underlying ses

The mathematical theory underlying a SCS can be the most difficult part of

the user guide for both the developer who writes it and the user who reads

it. On one hand, the developer cannot explain the theory in great detail

due to the lack of space for a detailed description of it. On the other hand,

the end user normally knows nothing or little about the background theory

of the software system. Under this circumstance, a tester should play his

role to check if the explanation of the theory is correct, clear, consistent and

understandable for the end user, and to give the developer his feedback to

improve explanations, where necessary.

The first step is to read the explanation of the theory carefully to find possible

errors and typos in sentences, formulas, and diagrams of the user guide,

based on related mathematical knowledge and literature, or assistances from

domain experts.

The second step is to verify if the explanation of the theory is understandable

and consistent, and if there is a better way to describe the theory. To accom­

plish this task, a tester is expected to check the design and the organization

of the development of the theory, and he is also supposed to ask himself if

the meaning of this sentence or this paragraph is clear enough from the point

of view of a general user.

Testers should check the correct order of definitions-usage and full name-

20

abbreviation of key terms and concepts. Since key concepts are important

for the description of a theory, and they can frequently appear in the user

guide, their definition must appear before their usage. The full names of

terms must also appear before their abbreviations in the user guide. Testers

need to find those definition-usage and full name-abbreviation that are out

of order and then help developers modify them.

In addition to the order of the definition-usage of key concepts, a tester needs

to verify if the user guide provides appropriate concrete examples to show

how to use the theory to solve real problems. Generally, the description of

the theory of SCS is abstract and complex, so it is difficult for the end users

to understand completely the theory. To solve this difficulty, the user guide

has to provide concrete examples to show end users how real problems are

solved. So a tester should make sure if these examples can properly cover

abstract concepts users need to grasp.

Finally, testers should pay attention to the complete extent of the description

of a method in the user guide. A method usually has its advantages and

disadvantages compared to other similar methods. A method may even fail

to work in some cases. In this case, the user guide needs to point out problems

for which the method is appropriate, and problems for which the method does

not work.

21

2.2.3 Verifying Public Interface Description

Public interface functions is the application programming interface (API) of

SOS. The users of SOS perform their computing task by calling these func­

tions. Therefore, the description of these functions should be clear, complete

and helpful.

When testers verify the descriptions of public interfaces in the user guide,

they should first check if each public interface function has its corresponding

description document. Then, for each specific function, testers are supposed

to examine if the documentation of the function elaborately describes its

parameter list, return value(s), constraints on valid input and exceptions the

function may throw and reasons that lead to them.

In addition, testers should check if the description provides good practices,

pitfalls and trap of these functions. Users may encounter many problems in

the process of calling public interface functions of SOS. Some problems orig­

inate from users lacking experience, and others may result from the features

of language or design defects. Good practices can help user efficiently call

these functions, and the information of pitfalls and traps can help users avoid

problems.

Finally, testers need to verify the consistency of public interface functions be­

tween source code and the user guide. The consistency means public interface

functions in source code and user guide should have identical parameters lists,

22

return values and exceptions lists (The order of the parameters in the list

must also be the same).

2.2.4 Verifying Installation and Portability Information

The installation of a software is the first step of user's experience. A user's

first impression about the software may be influenced by whether the de­

scription of the installation steps is clear and unambiguous, and whether

the installation of the software, based on the installation steps, is successful.

Given this, a tester should carefully verify the usability of installation infor­

mation. To verify the usability of installation information, a tester should

check both the completeness of installation steps and support information for

a software installing. As for the support information, the user guide should

describe how the software can be obtained, say, downloaded from a website,

and show the supported platforms for this software, say Linux, Mac or Win­

dows. The user guide also needs to provide email addresses or web sites for

users to get further support information from developers.

For the installation steps, the user guide should first list all the dependent

libraries and third-party components that are necessary to install the main

software. For each dependent library or component, the document ought

to tell users where to find this component, and how to install it. The user

guide needs to show how to install the main software based on all dependent

components. After that, the user guide should provide some way to verify

23

if the installation is successful. For example, if the software package is a

library, the user guide can provide an application program to call this library

and its expected result.

The installation information should also include a section about frequent

asked questions, which lists the most common problems users may encounter

when installing the software and the methods to solve these problems.

After verifying the completeness of the installation document, the tester

should try to install the software by following the installing information step

by step and make sure the software can be indeed installed successfully on

all the supported platform.

Finally, the user guide needs to provide the portability information of the

software. It should point out clearly which kind of platforms can support

this software, and tell users the difference of installation process in different

platform.

2.2.5 Results from Inspecting the User Guide ofDAETS

By utilizing static inspection technique to verify the user guide of DAETS,

we find 7 document issues.

1. Some issues result from mathematical mistakes and typos.

For example:

24

(a)

(b)

Mathematical mistakes:

It was discovered that the formula for the simple pendulum system

should be

f 1 0 X x" 0

9 0 1 Y y" + -G

h 0 0 0 A x2 + y2 _ L2

instead of

f 1 0 0 x" XA

9 0 1 0 y" + YA- G

h 0 0 0 A x2 + y2 _ L2

Typos:

Another example is that one of the public interface declarations

should be "int getOrderOconst", but was written as

"void getOrderO const".

2. Other issues are related to software design problems.

For instance, we find the interface function void printDAEinfoO const

is designed to output information only to the monitor. However, the

function with an ostream parameter, like

void printDAEinfo(ostream &s = cout)const,

can provide users with more choices, say, outputting into a file, to a

string, or just to the screen. This software issue was corrected based

on the advice of the author.

25

It is obvious that static inspection for the user guide improve not only the

quality of document, but also the usability and testability of the software.

26

Chapter 3

Test Case Design

Software may contain defects like other engineering products, thus software

testing is a necessary step in the process of developing software. Many differ­

ent testing techniques can be used to verify the functionality and quality of

a software, depending on different testing targets, intentions and operators.

This thesis results from the testing project of the DAETS package, and this

project focuses on the verification of the user interface of DAETS by using

DDT, which mainly belongs to black box testing. In addition, code coverage

testing - one of the white boxing testing methods, is used to supplement

DDT to improve the quality of DAETS further.

Designing test cases is one of the core tasks of testers. The purpose of design­

ing test cases is to organize properly the testing activities to find as many

defects as possible. However, both testers and developers should recognize

27

that test cases can only prove the existence of software defects, but can never

prove the absence of software defects.

3.1 Designing a Template for Test Cases

Before designing test cases, testers need to create a template for test cases.

This template specifies what kind of information should be presented in each

test case. Because designing test cases usually takes professional testers

familiar with domain knowledge or testing skills plenty of time, test cases

should not be discarded easily (unless the software they test is not used any­

more). Test cases ought to be a memo, carefully recording how those pro­

fessional testers have tested the software. With the information in these test

cases, any tester should be able to reproduce the testing process. Hence test

cases can be repeatedly executed in the same high testing quality throughout

the software developing process. To achieve this goal, a guideline is needed

to decide what kinds of information in test cases can lead to a repeatable

and consistent testing quality. This guideline is the template for test cases.

To design a test case template, a tester needs to imagine how a tester, who is

new to the software system, can succeed in executing test cases only with the

descriptions of test cases. Hence, a test case should have a name to tell testers

which one needs to be executed. A test case needs to have a description

of its purpose, so testers know what this test case is intended to do. A

28

test case should provide input data or input scenarios for public interface

functions of the software. It needs an expected result to be compared with

the actual result returned from a function. The compared result can be

used to tell if the test case executes successfully. A test case also needs to

provide detailed steps to guide testers how to execute this test. At last, a

test case may have the traceability between a test case and its origin, so the

test case is connected with the user guide and the public interfaces of source

code, etc. This traceability can help testers make sure test cases cover all

the functionality of the software. In addition, it can verify the consistency

among test cases, user guide and the public interface functions of the source

code. Finally, it can help testers and developers quickly locate and correct

errors in the user guide and source code, when a related test case fails.

To summarize the template for test cases should include the following infor-

mation:

1. Test case name

2. Purpose

3. Detailed reproduction steps

(a) input data or input scenarios

(b) steps in details

(c) expected result

4. Traceability between a test case and its design origin

An example follows:

29

1. Test case name:

DAEsolutionTest: :testCtrThrowLogicErrorException

2. Purpose:

To test if the constructor of the DAEsolution object 1 throws

std: : logic_error exception

3. Reproduction steps:

(a) Create a DAEsolver object 2 with an ill-posed sigmaMatrix3

(b) Call DAEsolution constructor with the just created DAEsolver object

as its parameter

(c) The DAEsolution constructor should throw a std:: logic_error ex-

ception

4. Traceability:

This test case originates from the description of the constructor of

DAEsolution class in DAETS user guide, §1.3.3.

After designing the template of test case, testers can begin to design test

cases for public interfaces and user scenarios.

lrefer to §1.3.3 of [1]
2refer to §1.3.2 of [1]
3refer to §5.1 of [1]

30

3.2 Designing Test Cases for Public Interfaces

To design test cases for a public interface is not a simple, one-step task, but a

task containing a series of steps. In this design process, the verification of the

user guide and the design and execution of test cases are interwoven. Black

box testing and white box testing are used in succession, to make test cases

as complete as possible. When test cases fail, testers should try to figure out

the problems and help developers correct the related source code and user

guide. The detailed design process is described step by step in this section.

3.2.1 Black Box Method for Designing Test Cases

After a tester verifies the consistency of public interfaces, he needs to design

test cases based on the description of public interfaces in the user guide. This

method belongs to black-box testing. The designing process of test cases can

be divided into three steps:

1. Verifying the descriptions of public interfaces in the user guide

2. Designing test cases

3. Checking the completeness of test cases

The first step is to check if the description of the public interfaces in the user

guide are understandable and helpful.

31

Understandable descriptions means the explanation of the public interfaces is

proper and clear, and helpful descriptions means they provide good practices,

and pitfalls and traps about these public interfaces. Understandable and

helpful descriptions are important to both testers and users. For testers,

understandable and helpful interface descriptions can be efficiently converted

into test cases for covering all the possible types of input data and exceptions.

In addition, testers need also realize that vague interface descriptions often

imply design problems of public interfaces. For users, understandable and

helpful interface information can help them correctly and efficiently call these

public interfaces without errors.

The second step is to design test cases based on the descriptions of public

interfaces in the user guide. Testers are expected to create test cases for each

parameter, and the exceptions that each invalid parameter can trigger by

using the ideas of equivalence classes [3] and boundary value analysis [3].

For each parameter of a public interface function, there must be a detailed

description of its input range in the user guide. This input range should be di­

vided into two groups: valid input value group and invalid input value group.

These two value groups are called equivalence classes, and the operation of

dividing these two groups is called equivalence partitioning. Sometimes each

of these groups can be divided further into several disjoint sets. After equiv­

alence classes are created, boundary value analysis can be used to cover test

cases in which their input values lie on the boundary of each equivalence

32

classes and also below and above the boundary.

Example. The function getX [lJ of DAEsolution class is described in the user

guide of DAETS as follows:

double getX (int index, int order) const throw(std::logic_error, std::out_of_range)

Input: index, order. Such that x.getX(j-l,k) returns the current value of the entry of
x representing xj(kl, the kth derivative of the jth variable.

Constraint: (j,k) must be in the index set J. Otherwise, an exception std::out_of_range
results. getX must be called on initialized entries.
If getType(index,order) == Uninitialized, an exception std: :logic_error results.

Returns: x.getX(j-l,k) returns the current value of the entry of x representing Xj(k)

Given that a tester creates a DAEsolver object and a DAEsolution object for

the simple pendulum problem, the range of the parameter index is [O,lJ and

the range of the parameter order is [O,lJ.

When the tester begins to design test cases, he should first partition equiv-

alence classes for the parameters index and order. Based on the interface

description information in the user guide and this simple pendulum problem,

the tester knows the ranges of index and order. For the parameter index, it

can be divided into two equivalence classes, one valid input group including

the values 0 and 1, and one invalid input group including the two disjoint

sets, whose values are below 0 and above 1. Then the tester should continue

to do boundary value analysis for the parameter index and get the result

that all the possible input values for index can be picked up from four sets:

33

{all the input values less than O}, {O}, {I}, {all the input values larger than

I}. And the analysis process for the parameter order likewise.

Then the tester should also design test cases to cover the exceptions, which

may occur when calling this function. There are two possible exception for

getX function: std:: logic_error and std:: out_of _range. For the exception

std: : out_Derange, the tester knows from the interface description that the

valid input group of index and order will not cause getX to throw

std: : out_oerange exceptions and that the invalid input group of index and

order must cause the function to throw std: : out_oerange exception. For the

exception std: : logic_error, the tester can create a DAEsolution object with

initial variable values, then call the function getX to verify if the function does

not throw the exception std: : logic_error. Then the tester should create a

DAEsolution object with uninitialized variable, and call getX to verify if getX

does throw the exception std: : logic_error.

Table 3.1: An Example of Test Case Design
index and order variables correct out of _range logic error

index E [0,1]' order E [0,1] initialized X
index < 0, order E [0,1] initialized X
index> 1, order E [0,1] initialized X

index E [0,1], order < 0 initialized X
index E [0,1], order> 1 initialized X

index E [0,1], order E [0,1] uninitialized X
index = 0, order E [0,1] ini tialized X
index = 1, order E [0,1] initialized X
index E [0,1], order = a initialized X
index E [0,1], order = 1 initialized X

Based on this black box analysis process, the tester can find all the possible

test cases covering cases described by public interface information in the user

guide.

The third step is to verify the completeness of test cases for each public

interface function by checking the following list:

1. A test case with all parameters on valid input range

2. For each parameter

(a) for each exception the parameter can trigger, a test case with the

parameter on invalid input range (above the correct input range),

other parameters on valid input range

(b) for each exception the parameter can trigger, a test case with the

parameter on invalid input range (below the correct input range),

other parameters on valid input range

(c) for each exception the parameter can trigger, a test case with the

parameter on valid boundary input value, other parameters on

valid input range

3. If there exist other descriptions of the public interface function in the

user guide that can be translated into test cases

Testers can create the complete traceability between the user guide and test

cases by following this list.

35

3.2.2 White Box Method for Designing Test Cases

If a tester wants to find all the defects in a software by using the black

box method, he must do the exhaustive input testing in the entire input

domain. However, this normally turns out to be impracticable due to the

complexity of input domains. In this case, the tester may have to supplement

equivalence classes analysis and boundary value analysis with the white box

testing method.

Statement coverage of source code is often used in white-box testing. This

method expects every statement in the program to execute at least once.

Although this method is not as strong as other complex white box methods,

like condition coverage, it does work to supply supplementary test cases to

find defects, which cannot be spotted by the black box testing.

Data for statement coverage can be obtained by executing code coverage test­

ing. With such coverage data, a tester can easily locate unexecuted statement

blocks. This kind of unexecuted statement block (USB) is the aggregates of

a sequence of unexecuted statements, which do not have branch and jump

statements. For each USB, the tester has to analyze the calling chains from

the function, where this USB is located, until those public interface func­

tions, so as to trace a reversed path from the public interface function to

this function. Then the tester may try to find the appropriate input values

to trigger these calling chains. If such input values can be discovered, the

tester is able to create a new test case to make the execution flow to hit this

36

unexecuted statement at last. However, sometimes the tester cannot find

proper input values for covering this unexecuted statement block, and this

often implies that some defects may exist somewhere in these calling chains.

More details about how to use code coverage tools are described in §5.3.

3.3 Designing Test Cases for User Scenarios

The test cases designed by the black box testing mentioned in the last sec­

tion can only test one public interface function at a time. However, some

program defects may occur only when the business logic of multiple public

interface functions communicate with each other. For this kind of defects in

the program, there is nothing the test cases designed in the last section can

do to detect them.

In this case, the concept user scenario is introduced. A user scenario is a series

of interaction between a user and a software system to make the software

system accomplish a certain task. This series of interactions between the

user and the software system must involve calling multiple public interface

functions. Normally, these user scenarios can appear in the user guide as

examples that teach users how to use the features of the software package to

solve real problems.

Testers can use these scenarios to design test cases. These test cases are

37

called system integration test cases. Operations of this kind of scenarios are

described as a series of public interface function calls. Hence an integration

test case can be designed as these public interface function calls. The exe­

cution of the test case can also return a result. This returned result should

be compared with the expected result supplied by the scenario in the user

guide. The compared result is used to tell whether the system integration

testing succeeds.

3.4 Results of Black Box Testing

By executing test cases designed by black box testing technique, we found 18

software implementation defects and software design defects on the DAETS

library.

The first class issues are related to implementation errors of source code. For

instance, a test case discovered that the function

void getCVector(vector<int> &c) const

did not returns "C" vector, but "D" vector [1]. By checking the source code

of the function, we located the error in the function. The defect is corrected

by making the function return the correct "C" vector.

The second class issues result from design problems. For example, a test case

found that the function

void getSigmaMatrix(vector< vector<int> > &s, int neginfval = -1)

38

can assign a positive number to the parameter neginfval, which appear in

sigma matrix to represent an infinite value. However, the positive number

can lead to an ambiguous meaning in sigma matrix. It is the design defect

that cause this issue. To avoid this problem, some code was added into this

function to forbid positive numbers from being assigned to the parameter

neginfval.

The third class issues originate in the features of programming language. For

the public interface function

DAEsolution & setX(int index, int order, double value, VarType type = Free)

the type of the fourth parameter VarType is an enumerate type. In C++,

enum type argument can be assigned to an integer or a double type param­

eter without triggering exceptions. However, this feature of C++ can cause

users to make mistakes in some situations. For example, users may call the

function with only two integer arguments and one enum type argument by

mistake, and it would lead to a strange result other than what the users

expects. This is because the enum value argument is assigned to the double

type parameter. A test case mimicking the previous calling found this issue.

The warning information was added into the descriptions of the function in

the user guide, to prevent user from making such mistake.

The fourth class issues are about multi-platform problems. A test case was

designed to verify the function void setHmax(double hmax) by assigning a dou­

ble value to the parameter hmax, and the test case expects the function throws

39

a std: :logic_error exception. The test case did throw the exception on Mac

as, but led to Segmentation fault in Ubuntu. The function was modified to

let the test case pass on different platforms.

40

Chapter 4

Bug Management and Analysis

4.1 Bug Management

When testers verify the user guide and design, implement and execute test

cases, they may find document issues, defects in the source code, software

design problems etc. To resolve effectively these defects and issues, testers

must completely collect their information and trace their fixing process.

4.1.1 Bug Template

Just like the purpose of the template for test cases, testers also need a bug

template to instruct them how to record a bug effectively.

41

What kind of information about a bug can help testers and developers trace

and fix this bug? Recording a bug needs an ID item and an Index item to

represent a source file or a document, where the bug is found. Bug Descrip­

tion item describes what the bug is, and Reproduction Steps item tells how

to reproduce this bug. Status item means the status of the bug, say, not

fixed, partially fixed or fixed. Bug type item categorizes the type of the bug.

History item traces the process of fixing the bug. Open by item points out

who finds this bug, and this item is useful for a test team.

The bug template is summarized as follows:

1.ID

2. Index

3. Bug Description

4. Reproduction Steps

5. Status

6. Bug Type

7. History

An example follows:

1. ID: 3

2. Index: DAESolver. h

42

3. Bug Description:

void getSigMatrix(Vector< vector<int> » &s, int neginfval=-1)

const throw (std: :logic_error); in DAESolver.h, line 31.

The second parameter of getSigMatrix function can accept a

positive integer number and 0, however, this parameter can

only accept a negative integer number based on the information

in the user guide.

4. Reproduction Steps:

1) create a solver object for SimplePendulum problem

2) input a correct vector S with 3*3 structure

3) call getSigMatrix function

4) output the signature matrix from the vector S

5. Status: fixed

6. Bug Type: software design problem

7. History:

(a) Tester:

Bug ID3 opened.

I give a positive number to the parameter neginfval, but

the function accepts it. I want to know if the function

should refuse to accept the positive number or ° as

43

the argument by throwing a logic error exception. 08/07/30

(b) Developer:

See what the user guide says and suggest changes,

if necessary. 08/07/31

(c) Tester:

r feel source code should prevent people from inputting

positive number and 0 once what he input is the same

positive value or 0 that structural analysis will create.

r think the parameter name "neginfval" cannot prevent users

from inputting positive value. The User Guide just prompts

users to use -1 to represent negative infinite, if we should

modify the User Guide to inform users not to input positive

number. 08/08/01

(d) Developer:

The function now prevents users from inputting positive

numbers and 0 by throwing an exception logic_error and

the user guide is updated for this function. 08/08/05

(e) Tester:

Fix verified and closed the bug 08/08/05

44

4.1.2 Bug Management Tool

In the process of developing of SCS, if testers have no dedicated software to

manage bugs, they can use spreadsheets, say Excel or the spreadsheets of

Google docs, to save bugs as below.

Bug Description Repro Steps Bug Type

The spreadsheet used as a bug depot must have several features. A spread­

sheet first must be the only one copy and be shared by all the testers and

developers. In other words, all the testers and developers access and modify

the same spreadsheet file, and so they can always see the real time update of

the file. The spreadsheet must also support its users to sort the information.

This sorting feature can help testers and developers categorize bugs so that

testers and developers can efficiently summarize, analyze and fix bugs.

In DAETS testing project, the spreadsheets of Google docs is used as man­

agement tool.

4.2 Bug Handling

Once the design of test cases is complete, testers need run them to verify

if functions can work properly. If a test case fails to work, testers have to

record the failed test case based on the instructions of the bug template and

constantly update the test case by tracing the handling process of the bug.

45

However, a good tester should not be satisfied with only finding bugs in a

program. A good tester is always providing feasible solutions for developers

to fix these bugs in the source code. He is always trying to give users a better

user guide with good practices about how to use public interface functions

or pitfalls and traps that users may encounter when calling public interface

functions. With the detailed information of a recorded bug, testers should

first locate the defects and analyze the reason resulting in this failure by

checking the user guide and examining source code. After that a tester

should figure out feasible solutions to help developers fix this bug. He should

also try to revise the user guide to tell users how to make good use of public

interface functions and how to avoid the pitfalls and traps of public interface

functions.

After fixing these bugs, testers need to do more searching in the places where

bugs happen. According to the software testing experience of Microsoft,

about 80% of bugs are located in 20% source code areas (This rule is a variant

of the Pareto principle) [14]. This means the probability of the existence of

more bugs in a section of a software is proportional to the number of bugs

already found in that section. In addition, when a developer fixes a bug,

this fixing may introduces more bugs for this feature. In this case, testers

should try more similar input values in the input domain resulting in this bug

before and after fixing a bug. If new bugs are found in this way, testers must

add new test cases dedicated to cover these defects in the future regression

testing, because old test cases cannot find these defects.

46

4.3 Bug Categorizing and Analyzing

Fixing bugs does not mean a tester's work is complete. Testers should con­

tinue to organize and categorize all the defects and bugs found in the testing

process, based on different demands to partition groups. For example, those

bugs can be categorized by the files in which they belong to, or they can be

partitioned by those types say document issue, software design issue, usabil­

ity and testability etc. The bug management tools can help testers improve

their work efficiency.

After categorizing bugs, testers should try to find common defect types and

their reasons for each group of bugs to get the relevant experience. Testers

should also pay more attention to these common defect types and reasons in

the next version of the software by designing some corresponding test cases

to cover these defect types. In addition, these common occurred defects

often imply the weakness of a developer's programming style. Testers should

provide developers with these data to help them improve their programming

style.

47

Chapter 5

Software Testing Tools

5.1 Introduction

Software testing tools can execute many tedious and repeated tasks, analyze

source code and manage the defects found in the testing process. These

software testing tools can improve testers' production capability and help

produce a better quality software.

This chapter covers automated test framework (ATF) and code coverage

analysis tools.

48

5.2 Automated Test Framework

5.2.1 Introduction

ATF is a testing system, which is used to automate the Unit Testing, System

Testing and Regression Testing in the process of developing software.

ATF introduces test cases designed for reusability. Test cases are normally

designed by professional testers, who are familiar with the features of the

software, so they should not be thrown away, unless the software they test

has no value any longer. For this reason, ATF acts as a container holding

test cases. With this set of test cases, the framework can repeatedly execute

the testing of a software, as if each time it is a professional tester, but not a

novice who performs the testing. This means the test framework can always

provide consistent test coverage and consistent test quality. It is obvious that

ATF is very suitable to be used in regression testing.

ATF can also organize and schedule test cases. In a testing framework, all the

introduced test cases are organized into several test suites. Each test suite

is a collection of test cases, which is used to test dedicatedly some specific

feature of the software. Thus, different test suites can be scheduled by the

testing framework to test different features of the software. This feature of a

testing framework give testers flexibility to choose freely the corresponding

test suites to execute based on the test target.

49

In addition, ATF owns facilities to provide common test environment for

test cases. The feature lets testers focus on designing and implementing the

real test logic of test cases of a software. ATF can automatically run test

cases against an application. It monitors the running, verifies the expected

and actual results and reports defects in real time. At the end, it provides

detailed statistical data of test results in several optional output styles.

5.2.2 Automated Test Framework CppUnit

For the merits mention above, we introduces the ATF CppUnit, into the

testing project of DAETS, to automate the testing process, especially the

regression testing.

5.2.2.1 What is CppUnit

CppUnit [2, 91 is a port of JUnit, which belongs to the well-known xUnit

testing family [21. It is implemented in C++, and it is used to test C and

C++ programs. Its basic architecture and usage closely follow the xUnit

model. CppUnit reduces test cases design and implementation overhead by

providing consistent executing environment for test cases. It enables reuse

and grouping of test cases to improve efficiency and scalability of the testing.

It automatically runs and monitors the selected test cases or test suites, and

50

collects and presents the test results to test engineers with such different

types output format as standard output, plain file or XML file.

Since it is an automated test architecture, which owns all the features de­

scribed in the introduction subsection, CppUnit is used as the automated

test framework in the testing project of DAETS.

5.2.2.2 Architecture of the Test Suite for Testing DAETS

The whole DAETS testing project is organized as a hierarchical structure,

which includes test suites and test suite groups. A tel:;t suite is used to

contain test cases, provide the common testing environment for test cases

and register test cases into the CppUnit test framework. A test suite group

is responsible for organizing test suites and helping CppUnit test framework

select appropriate test suites to execute.

1. Organization of a Test Suite

The first level is the test suite level. In the DAETS testing project,

there are two different type of test classes. One type of test classes

only takes charge of testing a single class of source code, and the other

type of test classes is responsible for testing multiple classes of source

code simultaneously. Each test class mentioned above is registered as

a corresponding test suite in CppUnit.

51

Figure 5.1: The Relationship between DAETS Library and ATF
The stars in the figure below are automatically created by Visio [15].

Automation Test DAETS Library
Framework

Un,ITest Suite

~I -..... ... Ii'<

~
DAEsolver DAEsolverTast

class test suite

• .. it

~
OAEsotution DAEsnlutionTesl

Class testsuile

,
.. Ii'<

~
DAEpoint bAEpointlest

Class teslsu,te

...

IntegmtionTest
Suite

alIA
VdpllltegHJliu;:

Tost
test suites

Chemakzolnte
grationTest
tesl suites

...

DAEsolver in DAETS library box holds the integrate function, DAEsolution holds inte­

gration result and DAEpoint holds the structure of integration result. UnitTest suite in

ATF box includes the test suites DAEsolverTest, DAEsolutionTest, and DAEpointTest,

etc. Each of them corresponds to a unit test class, e.g. DAEsolverTest suite corresponds to

DAEsolverTest class to test DAEsolver class. IntegrationTest suite consists of Vdplntegra­

tionTest and ChemakzolntegrationTest etc. Each of them corresponds to an integration

test class. VdplntegrationTest is used to test Van Der Pol problem. Chemakzolntegra­

tionTest is used to test Chemical Akzo Nobel problem.

52

Figure 5.2: The Organization of a Test Suite

Source '* '*
code Class

Test Class

Header file
Header file *

~ +
Test

.,.
'* '*

Environmoni
Tostlng Logic Testing Logic

Setup file.cpp
file 1.cpp File 2.cpp

A test class normally consists of a test class header file, which includes

the test target class header file, a test class environment configuration

file, and two or more testing logic files, which are used to store test

cases. All test cases in a test suite are designed to test the public

interface functions of its corresponding source code class. To simplify

the maintenance of the testing project, test cases in a test suite are

categorized into two or more different testing logic files based on their

testing purposes.

A test class is usually named after its corresponding source code class's

name plus the suffix name Test. This is a good practice to create the

53

Figure 5.3: The Organization of Test Suite DAESolverTest

* '* * DAESolver. DAESolverT
h esth

~ +
'* '* "* setDAESolver daeSolverT est daeSolverTest

TestEnv.cpp SA.cpp GS.cpp

relationship between testing code and source code. Here, DAEsolverTest

test class is used to explain the organization of a real test suite.

As the main testing method of DAETS testing project is black box

testing, the public function interfaces of DAETS package are the main

testing targets. DAEsolverTest test class aims to test the public inter-

faces of the DAEsolver class. It is composed of two testing logic files

daeSol verTestSA. cpp and daeSol verTestGS . cpp, the testing environment

configuration file setDAESolverTestEnv. cpp, and the testing class header

file DAESolverTest .h.

54

(a) Testing logic file

By observing the public interface of the header file of source code

class DAEsolver, testers can notice that these public functions in

DAEsolver class can be categorized into two groups. One group

contains the functions to report the structural analysis data when

analyzing a DAE [1], and the other group is composed of the func­

tions to set and get parameters for an integration process and the

integrate function itself. For the sake of separating the testing

functionality, simplifying management and improving maintain­

ability, the two testing logic files daeSolverTestGS. cpp and

daeSol verTestSA. cpp are created to test their corresponding fea­

tures of the DAEsolver class. These two testing logic files are actu­

ally test case container files. The test cases designed to test the

public interface functions of source code class are implemented as

test methods and saved into testing logic files.

(b) Testing environment configuration file

From daeSolverTestGS. cpp and daeSolverTestSA. cpp testing logic

files, testers can find that most test cases use the common test

environment facilities. For example, test cases use a common

DAEsolver object implemented from the same problem domain DAE

function. For convenience, the test environment configuration file

is responsible for creating and deleting these common testing en-

55

vironment facilities for each test method needing them, by using

functions setUp and tearDown, which are class methods in

CppUnit. In the process of executing those test methods, the

function setUpO is first called to initialize the testing environ­

ment, before each test method begin to execute, and tearDOlmO is

finally called to clear up the test environment after each test case

finishes.

(c) Testing class header file

The header file DAESol verTest . h is the interface declaration file of

the testing class DAEsolverTest. It declares all the test methods

implemented in testing logic files and all the auxiliary environment

setup methods in the testing environment configuration file. In

addition, the header file also uses CppUnit's Macro definition to

register all the testing methods into the corresponding test suite

i.e. CppUnit test framework. With this registration information,

CppUnit can retrieve test methods, execute them and collect their

results.

2. Test suite group - Test suite organization, selection and execution

The header file of a test class, testing environment configuration file

and testing logic files comprise a complete test class. Each test class is

56

registered as a test suite of CppUnit automated test framework in the

header file of this test class. After implementing these test classes and

then registering them as test suites, testers need to organize further

these test suites as test groups.

(a) Test suite organization

CppUnit uses a hierarchical structure to organize and manage test

suites. It has a default suite called all which is a universal test

suite. Two child suites UnitTest and IntegrationTest are created by

CppUnit macros, say, CPPUNIT_REGISTRY_ADD_TO_DEFAULT("UnitTest")

is used to register the child test suite UnitTest into all suite.

From what is mentioned in the beginning of this subsection, test

classes are divided into two groups. One group is used to test

the public interface of a single source code class, and the other is

used to test the public interfaces of multiple source code classes.

In turn, all the test suites for testing single source code class are

registered into UnitTest test suite, and all the test suites for test­

ing multiple source code classes are registered into IntegrationTest

test suite. For example,

CPPUNIT_REGISTRY_ADD(daetsTest: :DAEsolverTest::getSuiteName(),

"UnitTest")

is used to register DAEsolverTest suite into UnitTest test suite.

57

In this way, the whole family of test suites becomes a test suite

tree. The test suite all is the root node, and it has two children

nodes Uni tTest suite and IntegrationTest suite. Each child suite

has several children test suites. The header file daeTest.h is used

to create this tree-like hierarchical structure.

(b) Test suite selection and execution

After the tree-like test suite is successfully created, a single test

suite, or a test suite group say UnitTest or IntegrationTest, or the

default test suite all can be selected by its suite name and then

executed by CppUnit test framework in the file DAETest. cpp.

For instance, the following three statements select DAEsolverTest

test suite, Uni tTest test suite, and all the test suites respectively.

CPPUNIT_NS::Test *suite =

CPPUNIT_NS: :TestFactoryRegistry::

getRegistry(DAEsolverTest::getSuiteName(»

. makeTest () ;

CPPUNIT_NS::Test *suite

CPPUNIT_NS: :TestFactoryRegistry::

getRegistry("UnitTest").makeTest();

CPPUNIT_NS: :Test *suite =

CPPUNIT_NS: :TestFactoryRegistry: :getRegistry()

. makeTest () ;

58

Besides selecting test suites, the file DAETest. cpp also takes charge

of executing, monitoring the selected test suites, and collecting

and presenting the test results to test engineers with several op­

tional types of output.

For more details about the organization, selection and execution

of test suites, refer to Appendix A.

5.2.3 How to Add a Test Suite into DAETS Testing

Project

Here, the test suite DAEsolverTest is used to show how to add a test suite into

DAETS testing project.

5.2.3.1 Creating a Header File for the Test Suite

The first step is to create a header file daeSol verTest . h for DAEsol verTest test

class as follows.

Test class DAEsolverTest needs registering first as a test suite by macros

CPPUNIT_TEST_SUITE and CPPUNIT_TEST_SUITE_END.

Test methods testGetCVector and testSetHmaxThrow are two test cases imple­

mented in testing logic files. These two methods need declaring in this header

59

Figure 5.4: The Organization of DAETS Testing Project
'4'

..
DAETest.cpp

*
Unit Test Suite

* DAEsolverTest
test suite t-------l

* DAESolutlonTe
sf tOf>! suite I-~~

'It

More Unit tost
suites... t------'

daeTest.h

60

* Integration Test
Suite

PemJ ulumS imp"
t-----t lelntegralionTe

sf test suite

Chemakzolnte *
1--"-1 grationTest test

suite

..
More

'------l Integration test
suites n.

file below the public keyword. They also need registering into the test suite

DAEsolverTest by CPPUNIT_TEST and CPPUNIT_TEST_EXCEPTION.

The auxiliary functions setUp, tearDown and getSuiteName are public members,

and they are used to setup the common executing environment, and data

members used by these functions are private members.

The snippet of daeSolverTest.h is:

#ifndef SOLVERTEST_H

#define SOLVERTEST_H

#include <cppunit/extensions/HelperMacros.h>

#include DAEsolver.h

namespace daetsTest

{

class DAEsolverTest :public CPPUNIT_NS::TestFixture

{

public:

CPPUNIT_TEST_SUITE(DAEsolverTest);

CPPUNIT_TEST(testGetCVector);

CPPUNIT_TEST_EXCEPTION(testSetHmaxThrow,

void setUp(void);

void tearDown(void);

std: : logic_error);

static std::string getSuiteName(void);

void testGetCVector(void);

void testSetHmaxThrow(void);

61

private:

} ;

}

#endif

daets::DAEsolver *ptrSolver1;

double to;

double tend;

int n1;

5.2.3.2 Creating Environment Setup File for the Test Suite

The auxiliary functionsfen1, setUp, tearDown and getSuiteName are implemented

in environment setup file setDAESolverTestEnv. epp.

The function setUp create a common executing environment for all the test

cases. it provides the start-point to and end-point tend of the solution path of

Differential-Algebraic Equations (DAE), points out the number of the equa­

tions of DAE n1, and create a solver object to analyze the DAE problem. The

function tearDown cleans the common executing environment by destroying

the solver object that setUp creates. The function getSuiteN8.Jlle is used to

register the test class DAEsolverTest as a test suite by returning the name of

the test class. Finally, the function fen1 represents DAE equations of the

simple pendulum system. It has three equations representing respectively:

62

f = x" + AX

9 = y" + AY - G

h = X2 +y2 - L

The snippet of setDAESolverTestEnv. cpp is:

#include "daeSolverTest.h"

using namespace std;

using namespace daets;

namespace daetsTest

{

1* The DAE functions beLow come from penduLumsimpLe.cc weLL-

posed *1

template <typename T>

static void fcn1(T t, const T *z, T *f, void *param)

{

}

II z[O], z[1], z[2] are :c, y, Lambda.

const double G = 9.8, L = 10.0;

£[0] Diff (z [0], 2) + z [0] *z [2] ;

£[1] Diff(z[1],2) + z[1]*z[2] - G;

f[2] sqr(z[OJ) + sqr(z[1J) - sqrCL);

string DAEsolverTest::getSuiteName(void)

{

}

string suiteName = IDAEsolverSuite";

return suiteName;

63

void DAEsolverTest::setUp(void)

{

}

to = 0.0;

tend = 100.0;

n1 = 3;

ptrSolver1 new DAEsolver(n1, DAE_FCN(fcn1));

void DAEsolverTest::tearDown(void)

{

}

}

delete ptrSolver1;

5.2.3.3 Creating Testing Logic Files for the Test Suite

The test cases testGetCVector and testSetHmaxThrow are implemented in test

logic files daeSolverTest. cpp.

The function testGetCVector aIms to check if the function getCVector re­

turns the expected "c" vector. It gets the "c" vector by calling the function

getCVector of DAEsolver object, and then compare it with the expected re­

suit stored in "t" vector. If "c" vector is not equal to "t" vector, the macro

CPPUNIT_ASSERT reports a failure to CppUnit.

The function testSetHmaxThrow intends to verify if the function integrate

64

throws std: : logic_error exception when hMax is set less than hMin. It first

calls the function setHmax with the parameter small than hMin to set the step-

size less than the least stepsize, then it calls the integrate function. If the

integrate function does not throw a std: : logic_error exception, a failure are

reported to CppUnit.

The snippet of daeSolverTest. cpp is:

#include <vector>

#include <algorithm>

#include <cppunit!config!SourcePrefix.h>

#include IdaeSolverTest.h"

using namespace std;

using namespace daets;

namespace daetsTest{

1* DAEsoLverTest::testGetCVector repro steps:

1) create a soLver object (which has a non iLL-posed

sigmal1atrim)

2) input a correct vector C with n structure

3) check the resuLt *1

void DAEsolverTest::testGetCVector(void)

{

vector<int> c(ni);

ptrSolveri -> getCVector(c);

vector < int > t· ,

t.push_back(0) ;

t.push_backC 0) ;

t.push_back(2) ;

65

}

CPPUNIT _ASSERT (equal (c. begin (), c. end (), t. begin ())

) ;

/* DAEso~verTest::testSetHmamThrow repro steps:

1) create a so~ver object

2) ca~~ setHmam with parameter sma~~ than hNin

3) it throws std:: ~o9ic_ error emception */

void DAEsolverTest::testSetHmaxThrow()

{

}

}

ptrSolver1 -> setHmax(ptrSolver1 -> getHmin() - (1e

-15»;

SolverExitFlag flag;

ptrSolver1 -> integrate(<*ptrSolution1), 100, flag);

5.2.3.4 Registering the Test Suite

Because this new created test suite only tests the single pubic interface

DAESolver class, it belongs to UnitTest test suite group. The test suite need

registering by CPPUNIT_TEST_SUITE_NAMED_REGISTRATIDN and

CPPUNIT_REGISTRY_ADD as a member of UnitTest test suite group. UnitTest

test suite group is then registered into the default test suite by the macro

CPPUNIT_REGISTRY_ADD_TD_DEFAULT.

The snippet of daeTest. h is:

66

#ifndef DAETEST_H

#define DAETEST_H

#include "daeSolverTest.h"

CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(

daetsTest: :DAEsolverTest,

daetsTest::DAEsolverTest: : getSuiteName());

CPPUNIT_REGISTRY_ADD(

daetsTest: :DAEsolverTest::getSuiteName(),

"Uni tTest");

CPPUNIT_REGISTRY_ADD_TO_DEFAULT("UnitTest");

#endif

5.2.3.5 Selecting a Test Suite or a Test Suite Group to Execute

In the file DAETest. cpp of DAETSTest test project, the test suite or its test suite

group can be selected to execute test cases.

This snippet of DAETest. cpp selects DAEsolverTest test suite to execute is:

#include <cppunit/TextOutputter.h>

#include <cppunit/TestResult.h>

#include <cppunit/TestResultCollector.h>

#include <cppunit/BriefTestProgressListener.h>

#include <cppunit/extensions/TestFactoryRegistry.h>

#include <cppunit/TestRunner.h>

#include <iostream>

#include <string>

67

#include IdaeTest.h"

using namespace std;

using namespace daetsTest;

int main(int argc, char** argv){

CPPUNIT_NS::Test *suite =

CPPUNIT_NS: :TestFactoryRegistry::

getRegistry(DAEsolverTest: :getSuiteName(»

. makeTest () ;

This snippet selects UnitTest test suite group to execute

int main(int argc, char** argv){

CPPUNIT_NS::Test *suite =

CPPUNIT_NS::TestFactoryRegistry: :

getRegistry(IUnitTest").makeTest();

This snippet selects all the test suites to execute

int main(int argc, char** argv){

CPPUNIT_NS: :Test *suite =

CPPUNIT_NS: :TestFactoryRegistry::

getRegistry().rnakeTest();

5.2.3.6 Testing Result Output of CppUnit

A real example of CppUnit testing result output of DAETS testing project

as follow.

68

!!!FAILURES!!! Test Results: Run: 163 Failures: 1 Errors: 0

1) test: N9daetsTest16CodeCoverageTestE::

testModifiedPendulumForPow (F)

line: 651 codeCoverageTest.cpp

assertion failed - Expression: flag daets::success

This information means ATF CppUnit executed 163 test cases, and 1 test

case failed. The output also reports the name of the failed test case and the

line of source code in the test case that led to this failure.

For the total output result of DAETS testing project, refer to Appendix B.

5.3 Code Coverage Analysis Tools

5.3.1 Introduction

If a tester wants to use black box testing to find all possible bugs, this method

usually turns out to be infeasible. As a result, testers should further use white

box testing method to supplement black box testing, so that they can find

more defects in software.

White box testing requests testers to examine the internal business logic of

a software instead of its public interface. Code Coverage Analysis of source

code is one of the often used white box testing methods. Although this

69

method is not as strong as other complex white box methods e.g. branch

coverage, it indeed works to supply supplementary test cases to find defects,

which cannot be spotted by the black box testing.

5.3.2 What Code Coverage Analysis Can Achieve

Code coverage rate is an important way to evaluate the complete extent of

test cases. Although it is not absolute, normally the higher the code coverage

rate of software, the less defects may happen. For this reason, code coverage

rate analysis can evaluate the quality of software to some extent.

Code coverage analysis also provides testers with clues about how to design

new test cases to execute those uncovered statements. Although many test

cases have already been designed using black box testing approach, it is

usually impossible for those test cases to hit each statement in source code.

In this case, code coverage analysis tools are introduced to help testers figure

out the reason why test cases already designed cannot execute uncovered

statements. Code coverage analysis tools can generate code coverage data,

which show all the covered and uncovered statements of a program package in

detail. After uncovered statements are located, some forward and backward

analysis through the function calling chain of certain uncovered statements

are carried out. The analysis results can often help testers discover the

reasons why old test cases cannot cover these statements.

70

For instance, if a test case does not satisfy some conditions in a program,

it can never hit the statements in that conditional branch. In most cases,

it is the improper or incomplete input arguments of public interface func­

tions that lead to these uncovered statements. To solve this problem, testers

should trace the calling chain from the function, where these uncovered codes

lie, until the public interface functions to figure out the reason why this con­

dition cannot be satisfied by test cases. With this calling path analysis,

testers are usually able to find the appropriate arguments for the public in­

terface function, to trigger the located conditional branch. New test cases

with arguments satisfying this condition can be added into test suites. As a

consequence, code coverage rate also increases, duc to these new test cases,

and testers are more confident of the quality of the software.

In addition, code coverage analysis can assist testers to locate software de­

sign and implementation defects in the source code. Sometimes the reasons

resulting in uncovered code are software design defects or code implementa­

tion bugs. These software design defects and code implementation bugs may

exist either just in uncovered statements or in somewhere of the calling chain

of the uncovered code.

For example, some events or conditions can never be triggered due to design

defects. In turn, those codes implemented to deal with the events can never

be used or called. Testers sometimes may find that some business logic

codes cannot be covered, even though the corresponding event or condition is

71

already triggered by a well-designed test case. This phenomenon is very likely

due to bugs in the source code that make some condition become a tautology

or never hold. In this case, testers should first trace the whole calling chain

for uncovered statements. When testers make sure that the existed test

cases ought to execute these uncovered statements with the tracing result,

they should check, if it is bugs that give rise to the unexpected situation.

Testers should be sensitive to those two situations mentioned above, and try

to locate and get rid of this kind of defects and bugs by doing code coverage

analysis.

Finally, code coverage analysis can help testers discover and remove dead

code in source code. Dead code can also result in uncovered code. In the

process of the software development, some out of date codes are often present.

These out of date codes are called dead code. They are not the part of the

calling chain of functions, and they can never be called or call other functions.

Several reasons can make dead code exist. For instance, when some devel­

opers update codes or functions of a business iOgic, they still hold the old

version as the backup for the rolling back purpose. This operation often hap­

pens when a developer tries to fix a bug. After some time, even the developer

himself may forget to delete the backup.

The other reason often occurs in large projects. In such projects, it is often a

large team of programmers who simultaneously develop a system. Developers

in this team are often requested to fix a bug located in some module owned

72

by others (maybe the owner of this module is absent or leaves this team). In

this case, he would usually copy the original module and then slightly modify

this copied module to try to fix the bug. Once new module can run correctly,

he will stop without deleting the original module for the purpose of backup.

However, more and more modules accumulate in the developing process of

software. This finally gives rise to this situation: functions or blocks of codes

related to the modules that have been modified cannot be triggered anymore.

These functions or code blocks become dead codes in the end. Same things

happen to the maintenance phase of software as well.

Using code coverage data and tracing the calling chain, testers can sometimes

find certain functions or code blocks are not public interface functions, and

they also never relate to other functions or code blocks. Testers can think

this kind of codes as dead code. Based on the convention, testers must inform

developers, owning this module, the dead code information. Only developers

owning this module can make the final decision, if certain statements or

functions are real dead code. In this way, testers can help developers mark

or delete dead code, and both developers and testers can benefit from code

coverage analysis.

5.3.3 How to Do Code Coverage

The test project for DAETS uses statement coverage analysis, which is the

most common code coverage test method in the testing field. It is supported

73

by the build-in feature Gcov of Gee [8].

When test engineers want to do code coverage analysis with Gcov, they

should compile the source file with the compiling flags -fprofile-arcs and

-ftestcoverage. In the process of compiling with these two flags, Gee builds

call graphs and tracks basic blocks for the testing target source file and then

creates a new file to hold calling graphs and basic block information. This

new created file owns the same main file name with its corresponding source

file, but it also has a different extension name, .gcno.

Besides creating the gcno file, Gee also adds additional instructions into the

binary codes of each basic block of source file. These instructions are counters

that count how many times the corresponding basic block is executed.

After source code is compiled with the flags -fprofile-arcs and -ftestcoverage,

the binary just compiled needs executing to achieve code coverage data. Files

with the extension name .gcda are automatically created for each instru­

mented source file in the executing process. The gcda files own the same

main file name with its corresponding source files too, like the gcno files.

These gcda files hold code coverage information.

To do code coverage operation for the library DAETS, the following CXXFLAGS

variable is defined in the makefile of DAETS project:

CXXFLAGS = -fprofile-arcs -ftest-coverage ...

After the source files of DAETS are compiled with code coverage option and

74

then libdaets.a file is built, the executable testing file DAETest is build and

linked with libraries such as the instrumented DAETS package - libdaets,

and code coverage library of Gcov - libgcov, by using the following LDLIBS

variable for the makefile of CppUnitTest package:

LDLIBS = -lcppunit -ldaets -lgcov ...

After that the executable testing file DAETest is executed, the gcda files holding

code coverage data are generated.

With these gcda files, testers can use Gcov [8] or Lcov [10] tools to deal

with them and generate the code coverage report that human being can

understand.

In the DAETS test project, Lcov is chosen to generate the code coverage

report. Lcov is a graphical interface for the GCC Gcov. It extends Gcov

with a set of Perl scripts. Lcov first uses Gcov to handle gcda files and then

produces a friendly HTML output based on the textual analysis result of

Gcov.

The following instructions are used in the makefile of DAETest test project

that generate code coverage data:

lcov --directory ./ccsrc --capture --output-file DAETS.info

genhtml DAETS.info

The HTML output file displays as below:

75

Figure 5.5: Code Coverage Report

L TPGCOV extension - code coverage report
Current view: directory

Test: DAETS.info
Date: 2009-03-03

Code covered: 85.7 %

/hame!binqzhon/cc!ccsrc

lusr/ i nc1 ude/c++/4.2

bits:

ext

i486-1inux-ggg,/bi ts

Instrumented lines: 2520
Executed lines: 2159

96.2%

20.3%

57.2%

47.6 {j/o

1882! 1956 lines

15 l 741ines

2311 4041ines

10 l21lines

Generated by L TP GCOV extension version 1.5

5.3.4 Results of Code Coverage Analysis

Code coverage analysis for DAETS, which belongs to white box testing, ef­

fectively helped to supplement test cases designed by DDT, locate software

defects deeply related to the business logic of SCS, and find dead code.

Code coverage analysis found some code in DAETS library, which are never

hit by test cases designed by DDT.

76

One reason for this issue is that test cases designed by DDT lack the informa­

tion of low level functions. In this case, we can either go through the calling

chain from the public interface functions until the low level functions, or get

advice from the developer to figure out how to design appropriate inputs

to hit the related code. For example, one equation of the simple pendulum

formula is 0 = f = x" + x * A. The black box test case cannot trigger some

source code in the function Sigmamatrix for we cannot figure out an appropri­

ate input without reading source code. Sigmamatrix (§5.1 in [1]) is the

n x n signature matrix L: = (O"ij) of a DAE system where:

n is the number of equations of the DAE system.

order of the derivative to which the jth variable Xj

O"ij = occur in the ith equation fi; or

-00 if Xj does not occur in k

With the help of the developer of DAETS, we change the equation to

0= f = x" + x * A + sin(x) - sin(x) + cos(x) - cos(x).

New test cases implemented from this new equation can uncover the un-hit

source code in sigmamatrix.

Source code defects prove to be the other reason that cannot trigger some

code. In this case, we went through the whole calling chain paths from the

piece of code never hit until the public interface functions. We should try to

locate a condition that can never be satisfied. By fixing the defects in the

77

condition branch, we can find unexecuted code. In DAETS testing project,

two code defects were located and corrected in the function islnfRow and

DAEsolution::printFixed().

Code coverage analysis also exposed dead code of the DAETS library. We

discovered that some un-hit source code is not located in any calling chain

beginning from public interface functions. These code can be thought of as

potential dead code. After getting the verification from the developer, we

deleted them. In this way, we removes 150 lines of dead code.

By executing code coverage analysis, new test cases are supplemented to

verify more features of DAETS, software defects are found and corrected,

and all the dead code is removed. In the end, we achieved code coverage rate

from 78.9% (1515 instrumented lines are hitted by black-box test cases out

of 1920 instrumented lines) to 96.1% (1845 instrumented lines are hitted by

black-box test cases + white-box test cases out of 1920 instrumented line).

78

Chapter 6

Conclusion

From the descriptions of the preceding chapters, we can conclude that DDT,

code coverage analysis, and software testing tool can indeed improve the

quality of DAETS.

By executing static inspection, we verify the user guide and public interfaces

of DAETS. In the inspection process, we found 7 issues related to document

errors and software design defects etc. The quality of the user guide is im­

proved by correcting these issue. By using DDT, we designed 126 black box

test cases. These test cases helped us discover 18 software defects related to

implementation errors of source code, design issues of public interface func­

tions etc. They also supplemented the user guide with good practices and

pitfalls information about the calling experience of public interface functions.

79

By executing code coverage analysis, we further designed 37 test cases to un­

cover the source code that black box test cases originally could not hit, found

2 software defects deeply related to the business logic of the source code, and

deleted 150 line dead code. By using ATF, we automate the testing process.

Automated testing improves software testing performance, and makes the

testing result more accurate, consistent and trustable. It also make frequent

regression testing possible, which can provide a quick feedback of the quality

for each modification of source code.

Hence, domain experts grasping software testing techniques and software

testing tools mentioned above can effectively improve the quality of SCS.

However, domain experts should still remember one more thing: when do­

main experts perform the testing task for SCS, they should think from the

user's perspective, not the expert's or developer's perspective.

Finally, we summarize our recommendation. The first work is unit testing.

Based on current SE experience, the earlier defects are found, the lower the

cost pays. Therefore, developers and testers must spend enough time to do

unit testing. This work does not waste development time, but saves the

time. SE experience proves unit testing can effectively improve the quality

of software and the developer's confidence.

The second work is the testability problem of SCS. When domain experts

design SCS or developer implement SCS, testers should cooperate with them

to make the features or modules testable. An untestable module usually

80

means that it can cost more time and money to locate and fix potential

defects. For example, testers should make sure that domain experts provide

the testing interface for those private functions and properties when they

begin to design a SCS.

81

Bibliography

[lJ Nedialko S. Nedialkov, John D. Pryce. DAETS User Guide Version 1.0,

2008

[2J Paul Hamill. Unit Test Frameworks, O'REILLY, 2004

[3J Glenford J. Myers. The Art of Software Testing, Second ed., John Wiley

& Sons, Hoboken, New Jersey, 2004

[4J Bo Einarsson, Ronald Boisvert, Fransoise Chaitin-Chatelin, Ronald

Cools, Craig Douglas, Kenneth Dritz, Wayne Enright, William

Gropp, Sven Hammarling, Hans Petter Langtangen, Roldan Pozo,

Siegfried Rump, Van Snyder, Elisabeth Traviesas-Cassan, Mladen Vouk,

WilliamWalster, and Brian Wichmann. Accuracy and Reliability in Sci­

entific Computing. SIAM, Philadelphia, PA, 2005.

[5J Gregory V. Wilson. Where's the real bottleneck in scientific computing?

Scientists would do well to pick some tools widely used in the software

industry. American Scientist, 94(1), 2006.

82

[6J Diane Kelly, Nancy Cote, Terry Shepard, IISoftware Engineers and Nu­

clear Engineers: Teaming up to do Testing ll
, proceedings Canadian Nu­

clear Society Conference, St John New Brunswick, June 2007

[7J S. Smith, W. Yu. A Document Driven Methodology for Developing a

High Quality Parallel Mesh Generation Toolbox, 2009

[8J Richard M. Stallman and the GCC Developer Community. Using the

GNU Compiler Collection, GNU Press, Boston, MA, 2003

[9J CppUnit Documentation. http://cppunit.sourceforge .net/docl

lastest/index.html

[10J LCOV. http://ltp.sourceforge . netl coverage/lcov . php

[11J Suely Oliveira and David E. Stewart. Writing Scientific Software: A

Guide to Good Style. Cambridge University Press, New York, NY, USA,

2006.

[12J Rebecca Sanders, Diane Kelly. The Challenge of Testing Scientific Soft-

ware.

[13J Term definition.

http://msdn.microsoft.com/en-us/library/aa292484CVS.71)

.aspx

[14J 80-20 Rule. http: lien. wikipedia. org/wiki/Pareto_principle

[15J Visio. http://office.microsoft . com/en-us/visio/default. aspx

83

Appendix A

Example of Test Cases

Organization

When we used CppUnit to automate DAETS testing project, most reference

materials only provided simple examples to show how to use CppUnit to

automate testing processes. These examples are usually too simple to rep­

resent systematically how a real automated testing project is organized and

implemented.

This appendix tries to provide a detailed example to show how a real auto­

mated testing project using CppUnit is organized and implemented.

The first two files daeTest. hand daeTest. cpp come from the DAETS testing

project. The daeTest. h represents how to organize the hierarchical structure

84

2

3

4

5

6

7

8

9

10

11

12

of the test suites of the DAETS testing project. The file daeTest. cpp show

how to select a test suite or a test suite group as the testing target, and how

to execute the test target.

The following files daeSol verTest . h , setDAESol verTestEnv . cpp , and daeSol verTest

. cpp in appendix are not the same as the real test files in the DAETS testing

project. They only intend to show how to implement a test class. However,

they represent enough details to implement a test class in CppUnit.

I hope that this appendix can provide helpful support for readers, who want

to use CppUnit to automate their testing project.

A.1 daeTest.h

The whole daeTest. h file.

#define DAETEST_H

#include IIdaePointTest.hll

incl ude "daeSolutionTest.h"

#include "daeSolverTest.h "

#include "codeCoverageTest.h "

#include "toruslntegrationTest.h"

#include "chemakzolntegrationTest.h"

#include "daelntegBackForthTest .h"

include "testDerivslntegrationTest.h"

#include "pendulumSimplelntegrationTest.h"

#include "layneYatsonlntegrationTest.h"

#include "vdplntegrationTest.h"

85

13

14 CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(daetsTest::DAEpointTest. daetsTest::

DAEpointTest: :getSuiteName());

15 CPPUNIT_REGISTRY_ADD(daetsTest: :DAEpointTest::getSuiteName(). "UnitTest");

16 CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(daetsTest: :DAEsolutionTest. daetsTest

::DAEsolutionTest::getSuiteName());

17 CPPUNIT_REGISTRY_ADD(daetsTest: :DAEsolutionTest: :getSuiteName(). "UnitTest")

18 CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(daetsTest::DAEsoIverTest. daetsTest::

DAEsolverTest::getSuiteName());

19 CPPUNIT_REGISTRY_ADD(daetsTest: :DAEsolverTest: :getSuiteName(). "UnitTest");

20 CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(daetsTest::CodeCoverageTest. daetsTest

::CodeCoverageTest::getSuiteName());

21 CPPUNIT_REGISTRY_ADD(daetsTest: :CodeCoverageTest::getSuiteName(). "UnitTest"

) ;

22

23 CPPUNIT_REGISTRY_ADD_TO_DEFAULT("UnitTest");

24

25 CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(daetsTest::VdplntegrationTest.

daetsTest::VdplntegrationTest::getSuiteName());

26 CPPUNIT_REGISTRY_ADD(daetsTest: :VdplntegrationTest::getSuiteName(). "

IntegrationTest");

27 CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(daetsTest::ChemakzolntegrationTest.

daetsTest::ChemakzolntegrationTest::getSuiteName());

28 CPPUNIT_REGISTRY_ADD(daetsTest: :ChemakzolntegrationTest::getSuiteName(). "

IntegrationTest");

29 CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(daetsTest: :ToruslntegrationTest.

daetsTest::ToruslntegrationTest::getSuiteName());

30 CPPUNIT_REGISTRY_ADD(daetsTest::ToruslntegrationTest::getSuiteName(). "

IntegrationTest");

31 CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(daetsTest: :DAElntegBackForthTest.

daetsTest::DAElntegBackForthTest::getSuiteName());

32 CPPUNIT_REGISTRY_ADD(daetsTest: :DAElntegBackForthTest::getSuiteName(). "

IntegrationTest");

33 CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(daetsTest::TestDerivslntegrationTest.

86

daetsTest::TestDerivsIntegrationTest::getSuiteName ());

34 CPPUNIT_REGISTRY_ADD(daetsTest::TestDerivsIntegrationTest::getSuiteName(), "

IntegrationTest");

35 CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(daetsTest::

PendulumSimpleIntegrationTest, daetsTest::PendulumSimpleIntegrationTest

::getSuiteName());

36 CPPUNIT_REGISTRY_ADD(daetsTest: :PendulumSimpleIntegrationTest::getSuiteName

0, "IntegrationTest");

37 CPPUNIT_TEST_SUITE_NAMED_REGISTRATION(daetsTest::LaynewatsonIntegrationTest,

daetsTest::LaynewatsonIntegrationTest::getSuiteName());

38 CPPUNIT_REGISTRY_ADD(daetsTest::LaynewatsonIntegrationTest::getSuiteName(),

IIIntegrationTest 11
);

39

40 CPPUNIT_REGISTRY_ADD_TO_DEFAULT("IntegrationTest");

41 #endif

A.2 daeTest.cpp

The whole daeTest. cpp file.

#include <cppunit/TextOutputter.h>

2 #include <cppunit/TestResult.h>

3 #include <cppunit/TestResultCollector.h>

4 #include <cppunit/BriefTestProgressListener.h>

5 #include <cppunit/extensions/TestFactoryRegistry.h>

6 #include <cppunit/TestRunner.h>

7 #include < iostream >

8 #include <string>

9 #include IIdaeTest.h ll

87

10

11 using namespace std;

12 using namespace daetsTest;

13

14 int main(int argc, char** argv)

15 {

16 Iiseled all test suites to run

17 CPPUNIT_NS::Test *suite ; CPPUNIT_NS::TestFactoryRegistry: :getRegistry()

. makeTest () ;

18

19 Iiselect the single DAEsolverTest test suite to run

20 IICPPUNIT_NS::Test lsuite = CPPUNIT_NS::TestFactoryRegistry::getRegistry

(D A E sol v e r Te s t : : get Su it eN ame ()) . mak e Tes t () ;

21 Iiseled the whole UnitTest test suite group to run

22 IICPPUNIT_NS::Test lsuite = CPPUNIT_NS::TestFactoryRegistry::getRegistry

("UnitTest"). makeTest ();

23 Iiselect the whole IntegrationTest test suite group to run

24 IICPPUNIT_NS:: Test .suite = CPPUNIT_NS:: TestFactoryRegistry:: getRegistry

("IntegrationTest"). makeTest ();

25

26 CPPUNIT_NS::TestResult controller;

27 CPPUNIT_NS::TestResultCollector result;

28 controller.addListener(&result);

29 CPPUNIT_NS::BriefTestProgressListener progress;

30 controller.addListener(&progress);

31 CPPUNIT_NS::TestRunner runner;

32

33

runner.addTest(suite);

const std::string path; 1111.

34 runner.run(controller ,path);

35 CPPUNIT_NS::TextOutputter outputter(&result, std: :cout);

36 outputter.write();

37

38 IIReturn error code 1 if the one of test failed.

3D return result.wasSuccessful() ? 0 : l'

40 }

88

A.3 daeSolverTest.h

The snippet of daeSolverTest .h.

#ifndef SOLVERTEST_H

2 #define SOLVERTEST_H

3 #include <cppunit/extensions/HelperMacros.h>

4 #include "DAEsolver.h"

5

6 namespace daetsTest{

7 class DAEsolverTest :public CPPUNIT_NS::TestFixture

8 {

9 CPPUNIT_TEST_SUITE(DAEsolverTest);

10 CPPUNIT_TEST(testGetCVector);

11 CPPUNIT_TEST_EXCEPTION(testSetHmaxThrow, std: :logic_error);

12 CPPUNIT_TEST_SUITE_END();

13

14 publi c :

15 void setUp(void);

16 void tearDown(void);

17 static std::string getSuiteName(void);

18 void testGetCVector(void);

19 void testSetHmaxThrow(void);

20

21 private:

22 daets: :DAEsolver *ptrSolverl;

23 double to;

24 double tend;

25 int nl;

26 }; I_Class header file ends-/

89

27 }/*namespace ends*1

28 #endif

A.4 setDAESolverTestEnv.cpp

The snippet of setDAESolverTestEnv. cpp.

#include "daeSolverTest.h"

2 using namespace std;

3 using narnespace daets;

4

5 namespace daetsTest{

6 1* The DAE functions below come from pendulumsimple.cc well-posed *1

7 template <typename T>

8 static void fcn1(T t, const T *z, T *f, void *param) {

9 II z[Ol, z[1], z[2l are "', y, lambda.

10 const double G ~ 9.B, L ~ 10.0;

11 f [0] Diff (z [0] ,2) + z [0] *z [2];

12

13

f[1]

f[2]

Diff(z[1] ,2) + z[1]*z[2] - G;

sqr(z[O)) + sqr(z[1]) - sqr(L);

14 }

15

16 string DAEsolverTest::getSuiteName(void)

17 {

18 string suiteName ~ "DAEsolverSuite";

19 return suiteName;

20 }

21

22 void DAEsolverTest::setUp(void)

90

23 {

24 to = 0.0;

25 tend = 100.0;

26 nl = 3'

27 ptrSolverl neY DAEsolver(nl, DAE_FCN(fcnl));

28 }

29

30 void DAEsolverTest::tearDoyn(void)

31 {

32 delete ptrSolverl;

33 }

34 }/*name space ends *1

A.5 daeSolverTest. Cpp

The snippet of daeSolverTest. cpp.

#include <vector>

2 #include <algorithm>

3 #include <cppunit/config/SourcePrefix.h>

4 #include "daeSolverTest.h"

5

6 using namespace std;

7 using namespace daets;

8

9 namespace daetsTest{

10 1* DAEsolverTest:: testGetCVector repro steps:

11 1) create a solver object (which has a non ill-posed sigmaNatrim)

12 2) retrieve a vector C with n length from the solver object

91

13 3) setup t vector with the correct offset and then compare with C vector

14 4) check if t vector is the same with c vector */

15 void DAEsolverTest: :testGetCVector(void)

16 {

17 vector<int> c(n1);

18 ptrSolverl -> getCVector(c);

19 vector<int> t;

20 t.push_back(0);

21 t.push_back(0);

22 t.push_back(2);

23 CPPUNIT_ASSERT(equal(c.begin(). c.end(). t.begin()));

24 }

25

26 /* DAEsolverTest::testSetRmamThrow repro steps:

27 1) create a solver object

28 2) call setRmam with parameter small than hHin

29 3) it should throws std:: logic_error emception */

30 void DAEsolverTest::testSetHmaxThrow()

31 {

32 SolverExitFlag flag;

33 ptrSolverl -> integrate ((*ptrSolutionl). 100. flag);

34 }

35 }/*namespace ends */

92

Appendix B

Result of DAETS Testing Project

A real example of CppUnit testing result output of DAETS testing project

as follow.

N9daetsTest12DAEpointTestE::testCtrWithSolver : OK

N9daetsTest12DAEpointTestE: :testCtrWithSolverThrow OK

N9daetsTest12DAEpointTestE::testCtrWithDAESolution OK

N9daetsTest12DAEpointTestE: :testCtrWithDAEpoint : OK

N9daetsTest12DAEpointTestE: :testSetX : OK

N9daetsTest12DAEpointTestE: :testSetXOrderThrow OK

N9daetsTest12DAEpointTestE: :testSetXlndexThrow OK

N9daetsTest12DAEpointTestE: :testSetXUnPairThrow : OK

N9daetsTest12DAEpointTestE::testGetXOrderThrow OK

N9daetsTest12DAEpointTestE: :testGetXlndexThrow OK

93

N9daetsTest12DAEpointTestE: :testGetNumVariables : OK

N9daetsTest12DAEpointTestE::testGetNumDerivatives : OK

N9daetsTest12DAEpointTestE::testGetNumDerivativesThrow : OK

N9daetsTest12DAEpointTestE::testGetNumDerivativesThrow2 : OK

N9daetsTest12DAEpointTestE::testOpAssignWithParaDouble : OK

N9daetsTest12DAEpointTestE: :testOpAssignWithDAEpointObject

OK

N9daetsTest12DAEpointTestE: :

testOpAssignWithDAEpointObjectChain : OK

N9daetsTest12DAEpointTestE: :testOpAddAssign : OK

N9daetsTest12DAEpointTestE: :testOpAddAssignChain OK

N9daetsTest12DAEpointTestE::testOpAddAssignThrow OK

N9daetsTest12DAEpointTestE: :testOpSubAssign : OK

N9daetsTest12DAEpointTestE::testOpSubAssignThrow OK

N9daetsTest12DAEpointTestE: :testOpMultiAssign : OK

N9daetsTest12DAEpointTestE::testOpMultiAssignThrow OK

N9daetsTest12DAEpointTestE: :testOpDivAssign : OK

N9daetsTest12DAEpointTestE: :testOpDivAssignThrow OK

N9daetsTest12DAEpointTestE::testOpAdd : OK

N9daetsTest12DAEpointTestE::testOpAddThrow OK

N9daetsTest12DAEpointTestE: :testOpSub : OK

N9daetsTest12DAEpointTestE: :testOpSubThrow OK

N9daetsTest12DAEpointTestE::testOpMultiply OK

N9daetsTest12DAEpointTestE: :testOpMultiplyThrow OK

N9daetsTest12DAEpointTestE: :testOpDivide : OK

N9daetsTest12DAEpointTestE::testOpDivideThrow OK

N9daetsTest12DAEpointTestE::testOpEqual : OK

94

N9daetsTest12DAEpointTestE::testOpEqualThrow : OK

N9daetsTest12DAEpointTestE: :testOpNotEqual : OK

N9daetsTest12DAEpointTestE: :testOpNotEqualThrow : OK

N9daetsTest12DAEpointTestE::testOpEqualandNotEqual OK

N9daetsTest12DAEpointTestE: :testNorm : OK

N9daetsTest15DAEsolutionTestE::testCtr : OK

N9daetsTest15DAEsolutionTestE::testCtrThrow : OK

N9daetsTest15DAEsolutionTestE::testSetGetT : OK

N9daetsTest15DAEsolutionTestE::testSetGetTNotThrow

**

This program contains IPOPT, a program for large-scale

nonlinear optimization. IPDPT is released as open source

under the Common Public License (CPL). For more

information visit www.coin-or.org/Ipopt

**

: OK

N9daetsTest15DAEsolutionTestE::testSetTLogicThrow OK

N9daetsTest15DAEsolutionTestE::testGetTLogicThrow OK

N9daetsTest15DAEsolutionTestE::testGetTypeUnitialized : OK

N9daetsTest15DAEsolutionTestE::testGetTypeUnitialized2 : OK

N9daetsTest15DAEsolutionTestE::testGetTypeFree : OK

N9daetsTest15DAEsolutionTestE::testGetTypeFixed : OK

N9daetsTest15DAEsolutionTestE: :testGetTypeIndexRangeThrow

OK

N9daetsTest15DAEsolutionTestE: :testGetTypelndexRangeThrow2

95

OK

N9daetsTest15DAEsolutionTestE::testGetTypeOrderRangeThrow

OK

N9daetsTest15DAEsolutionTestE: :testGetTypeOrderRangeThrow2

OK

N9daetsTest15DAEsolutionTestE: :testSetGetX : OK

N9daetsTest15DAEsolutionTestE::testSetXlndexRangeThrow OK

N9daetsTest15DAEsolutionTestE::testSetXOrderRangeThrow OK

N9daetsTest15DAEsolutionTestE::testSetXLogicThrow : OK

N9daetsTest15DAEsolutionTestE::

testSetXAfterlntegratelndexRangeThrow OK

N9daetsTest15DAEsolutionTestE::

testSetXAfterlntegrateOrderRangeThrow : OK

N9daetsTest15DAEsolutionTestE::testSetXPairRangeThrow OK

N9daetsTest15DAEsolutionTestE: :

testSetXPairAfterlntegrateRangeThrow : OK

N9daetsTest15DAEsolutionTestE::testSetXRepeated OK

N9daetsTest15DAEsolutionTestE: :

testSetGetXlndexRangeWithoutlntegrateThrow OK

N9daetsTest15DAEsolutionTestE: :

testSetGetXlndexRangeWithlntegrateThrow OK

N9daetsTest15DAEsolutionTestE::

testSetGetXOrderRangeWithoutlntegrateThrow OK

N9daetsTest15DAEsolutionTestE::

testSetGetXOrderRangeWithlntegrateThrow OK

N9daetsTest15DAEsolutionTestE: :

testSetGetXlndexRangeWithoutlntegrateThrow2 OK

96

N9daetsTest15DAEsolutionTestE::

testSetGetXOrderRangeWithoutlntegrateThrow2 OK

N9daetsTest15DAEsolutionTestE::

testGetXlndexRangeWithoutlntegrateThrow OK

N9daetsTest15DAEsolutionTestE::

testGetXOrderRangeWithoutlntegrateThrow : OK

N9daetsTest15DAEsolutionTestE::testGetXLogicThrow OK

N9daetsTest15DAEsolutionTestE: :

testSetXUninitializedGetXLogicThrow : OK

N9daetsTest15DAEsolutionTestE: :testUpdatePointWithDAEpoint

OK

N9daetsTest15DAEsolutionTestE::testUpdatePointWithDAEsolution

: OK

N9daetsTest15DAEsolutionTestE: :

testUpdatePointAfterlntegrateNotThrow OK

N9daetsTest15DAEsolutionTestE::

testUpdatePointWithDAESolutionLogicThrow OK

N9daetsTest15DAEsolutionTestE::

testUpdatePointWithDAEpointLogicThrow OK

N9daetsTest15DAEsolutionTestE::

testUpdatePointDifferentShapeDAEsulotionLogicThrow OK

N9daetsTest15DAEsolutionTestE::

testUpdatePointDifferentShapeDAEpointLogicThrow : OK

N9daetsTest15DAEsolutionTestE::testSetFirstEntry : OK

N9daetsTest15DAEsolutionTestE::testSetOneStepMode : OK

N9daetsTest15DAEsolutionTestE::testSetOutputFunction OK

N9daetsTest15DAEsolutionTestE::testGetCPUtime : OK

97

N9daetsTest15DAEsolutionTestE::testGetNumAccSteps OK

N9daetsTest15DAEsolutionTestE::testGetNumRejSteps OK

N9daetsTest15DAEsolutionTestE::testPrintSolutionlnio OK

N9daetsTest13DAEsolverTestE::testGetSigmaMatrix : OK

N9daetsTest13DAEsolverTestE: :

testGetSigmaMatrixUninitializedThrow OK

N9daetsTest13DAEsolverTestE::

testGetSigmaMatrixWrongStrucThrow : OK

N9daetsTest13DAEsolverTestE: :testGetSigmaMatrixWithZeroThrow

: OK

N9daetsTest13DAEsolverTestE: :

testGetSigmaMatrixWithPositiveThrow : OK

N9daetsTest13DAEsolverTestE::testGetCVector : OK

N9daetsTest13DAEsolverTestE::testGetCVectorUninitializedThrow

: OK

N9daetsTest13DAEsolverTestE::testGetCVectorWrongStrucThrow

OK

N9daetsTest13DAEsolverTestE::testGetDVector : OK

N9daetsTest13DAEsolverTestE: :testGetDVectorUninitializedThrow

: OK

N9daetsTest13DAEsolverTestE::testGetDVectorWrongStrucThrow

OK

N9daetsTest13DAEsolverTestE::testIsIllPosed : OK

N9daetsTest13DAEsolverTestE::testCtrWithIllPosedFcn OK

N9daetsTest13DAEsolverTestE::testIsQuasilinear : OK

N9daetsTest13DAEsolverTestE::testGetStructurallndex OK

N9daetsTest13DAEsolverTestE::testGetNumDegsOfFreedom : OK

98

N9daetsTest13DAEsolverTestE::testPrintInfo : OK

N9daetsTest13DAEsolverTestE::testSetTol : OK

N9daetsTest13DAEsolverTestE::testSetTolOutLowerThrow OK

N9daetsTest13DAEsolverTestE::testSetTolOutUpperThrow OK

N9daetsTest13DAEsolverTestE::testGetErrorEstTypeDefault OK

N9daetsTest13DAEsolverTestE::testGetErrorEstTypeAbs OK

N9daetsTest13DAEsolverTestE::testGetErrorEstTypeRel OK

N9daetsTest13DAEsolverTestE::testGetXTol : OK

N9daetsTest13DAEsolverTestE::testSetGetOrder : OK

N9daetsTest13DAEsolverTestE: :testSetOrderUpperBoundThrow OK

N9daetsTest13DAEsolverTestE::testSetOrderLowerBoundThrow OK

N9daetsTest13DAEsolverTestE::testGetHmaxHmin : OK

N9daetsTest13DAEsolverTestE::testSetHmax : OK

N9daetsTest13DAEsolverTestE::testSetHmaxThrow Pay an

attention:

ptrSolver1 -> getHmin() == 2.22045e-16 : OK

N9daetsTest13DAEsolverTestE: :testSetHmaxAfterIntegrationThrow

Pay an attention: ptrSolver1 -> getHmin() == 2.27374e-13 : OK

N9daetsTest13DAEsolverTestE: :

testSetHmaxAfterIntegrationNotThrow OK

N9daetsTest16CodeCoverageTestE: :

testCheckSizeDiffStrucLogicThrow OK

N9daetsTest16CodeCoverageTestE::

testIllposedDAESolverContructor OK

N9daetsTest16CodeCoverageTestE::

testDAESolverCheckInputUninitialzingT

*** Initialize: t : OK

99

N9daetsTesti6CodeCoverageTestE: :

testDAESolverCheckInputUninitializedX

*** Initialize: variable derivative(s) xO 0 1 xi 0 1 OK

N9daetsTesti6CodeCoverageTestE::

testDAESolverCheckInputWithtoofewdofX

*** Too few degrees of freedom at stage -2

*** Fixed are: variable derivative xO 0 xi 0 OK

N9daetsTesti6CodeCoverageTestE::

testPrintDAEinfoWithIllPosedDAEsolver OK

N9daetsTesti6CodeCoverageTestE::

testprintDAEpointStructureWithIllPosedDAEsolver OK

N9daetsTesti6CodeCoverageTestE::

testprintDAEtableauWithIllPosedDAEsolver OK

N9daetsTesti6CodeCoverageTestE: :

testPrintStatsWithoutIntegration OK

N9daetsTesti6CodeCoverageTestE: :

testPrintSolutionWithUninitalizedT OK

N9daetsTesti6CodeCoverageTestE::

testPrintSolutionWithXUninitalized OK

N9daetsTesti6CodeCoverageTestE::

testprintSolutionStateWithInitalizedX OK

N9daetsTesti6CodeCoverageTestE::

testprintSolutionStateWithInitialConsistentX : OK

N9daetsTesti6CodeCoverageTestE::testGetSigmaMatrixLogicThrow

: OK

N9daetsTesti6CodeCoverageTestE::

testIntegSolverExitFlagSuccess OK

100

N9daetsTest16CodeCoverageTestE: :

testIntegSolverExitFlagUninitialT

*** Initialize: t : OK

N9daetsTest16CodeCoverageTestE::

testIntegSolverExitFlagUninitialXEXIT

at stage 0 exit flag = 9 : OK

N9daetsTest16CodeCoverageTestE: :

testIntegSolverExitFlagTooFewDoF

*** Too few degrees of freedom at stage = -2

*** Fixed are: variable derivative xO 0 x1 0 OK

N9daetsTest16CodeCoverageTestE::

testIntegSolverExitFlagDefault : OK

N9daetsTest16CodeCoverageTestE: :testDAEpointSetXRangeThrow1

OK

N9daetsTest16CodeCoverageTestE::testDAEpointSetXRangeThrow2

OK

N9daetsTest16CodeCoverageTestE: :

testModifiedPendulumForAlphaSinCos OK

N9daetsTest16CodeCoverageTestE: :

testModifiedPendulumForAlphaAssignmentoperator OK

N9daetsTest16CodeCoverageTestE::

testModifiedPendulumForAlphaUnaryAddoperator OK

N9daetsTest16CodeCoverageTestE: :

testModifiedPendulumForAlphaDivideAssignmentoperator OK

N9daetsTest16CodeCoverageTestE::

testModifiedPendulumForSintesting

sin = 0 : OK

101

N9daetsTest16CodeCoverageTestE::

testModifiedPendulumForCostesting

cos = 0 : OK

N9daetsTest16CodeCoverageTestE::

testModifiedPendulumForTantesting

tan = 0 : OK

N9daetsTest16CodeCoverageTestE::

testModifiedPendulumForSqrtesting

sqr = 0 : OK

N9daetsTest16CodeCoverageTestE: :

testModifiedPendulumForSqrttesting

sqrt = 0 : OK

N9daetsTest16CodeCoverageTestE: :

testModifiedPendulumForExptesting

exp = 0 : OK

N9daetsTest16CodeCoverageTestE: :

testModifiedPendulumForPowEXIT

at stage -2 exit flag = 11 : assertion

N9daetsTest16CodeCoverageTestE: :

testModifiedPendulumForLogtesting

log = 0 : OK N9daetsTest16CodeCoverageTestE::

testModifiedPendulumForAsintesting asin = 0 OK

N9daetsTest16CodeCoverageTestE: :

testModifiedPendulumForAcostesting

acos = 0 : OK

N9daetsTest16CodeCoverageTestE::

testModifiedPendulumForAtantesting

102

atan = 0 : OK N9daetsTest16CodeCoverageTestE::

testIllPosedProblemForcompOffsets : OK

N9daetsTest18VdpIntegrationTestE: :

vdpIntegrationTestIntegrating

VDP with mu=1.0e+00 tend = 50.0 t = 5.0000e+01 steps = 241 h

= 2.8ge-01 le

tend = 20.0 t

5.9ge-10 Integrating VDP with mu=1.0e+01

2.0000e+01 steps = 209 h = 1.74e-01 le

1.31e-09 Integrating VDP with mu=1.0e+02 tend = 20.0 t

2.0000e+01 steps = 2682 h = 8.15e-03 le = 8.73e-10 : OK

N9daetsTest23ChemakzoIntegrationTestE: :

chemakzoIntegrationTest

*** Significant correct digits: 8.5 : OK

N9daetsTest20TorusIntegrationTestE::torusIntegrationTest OK

N9daetsTest21DAEIntegBackForthTestE: :daeIntegBackForthTest

OK

N9daetsTest25TestDerivsIntegrationTestE: :

testDerivsIntegrationTest : OK

N9daetsTest29PendulumSimpleIntegrationTestE::

pendulumSimpleIntegrationTest

Error in pendulumSimpleIntegrationTest.cpp 4.33431e-13 OK

N9daetsTest26LaynewatsonIntegrationTestE: :

laynewatsonIntegrationTest

Error in laywnewatsonIntegrationTest.cpp 8.27072e-12 OK

!! !FAILURES!!! Test Results: Run: 163 Failures: 1 Errors: 0

1) test: N9daetsTest16CodeCoverageTestE::

testModifiedPendulumForPow (F)

103

line: 651 codeCoverageTest,cpp

assertion failed - Expression: flag

104

daets::success

