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Abstract 

In the computation of the sum of many floating-point numbers Xi (i = 1,2, ... 17,-1,17,), 

the method S = (( ... ((Xl +X2)+X3)+ ... +Xn -l)+Xn ) is called the Ordinary Recursive 

Summation (ORS) algorithm. Since significant digits might be discarded when the 

partial sums are rounded, the results are rarely correct. In 1969, Knuth [IJ proposed 

a simple algorithm AddTwo for transforming a pair of floating-point numbers (a, b) 

into a new pair (x, y) with non-overlapping mantissas and satisfying x = fl(a + b) 

and a + b = x + y, regardless of the magnitude of a and b, where x is the floating

point sum of a and b, while y is the roundoff error. We call an algorithm with such 

property an error-free transformation. Such transformations are at the center of the 

interest of this thesis. Extending the principle of AddTwo to 17, summands is called 

distillation by Kahan. Since then, many distillation algorithms have appeared to im-

prove the accuracy of summation. Among them, there are three accurate summation 

algorithms SumK, iFastSum and HybridSum, which are particularly appropriate for 

ill-conditioned data, where ORS fails due to the accumulation of rounding error and 

severe cancellation. In this thesis, we present the accurate summation algorithms 

with their properties, and then apply them to improve the accuracy of the LAPACK 

subroutines DDOT and DGEMV. 
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Chapter 1 

Introduction 

In this thesis, we study the problem of accurate summation and vector dot product 

of large vectors of floating-point numbers. Accurate summation and vector dot prod-

uct have applications in many areas of numerical analysis, e.g., in accurate matrix 

multiplication, in iterative refinement of the solution of Ax - b, in the problem of 

inversion of extremely ill-conditioned matrices [2]. Since vector dot product can be 

transformed into summations, we put the main effort on accurate summations. 

Summation is the fundamental task in numerical computation, Higham devoted a 

chapter for the problem of summation in [3]. In the standard computer systems, 

floating-point numbers are stored with limited digits. In the addition of two floating

point numbers, the computer arithmetic first aligns the two summands with the same 

exponent, and then computes the sum and rounds it to fit in the limited digits. Some 

digits might be discarded during the rounding, which is called the rounding error. 
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2 CHAPTER 1. INTRODUCTION 

In the computation of the sum of many floating-point numbers Xi (i = 1,2, ... n-1, n), 

the method S = ((",((Xl + X2) + X3) + ... + Xn-l) + xn) is called the Ordinary Recur

sive Summation (ORS) algorithm. Since significant digits might be discarded during 

the floating-point additions, the results are rarely correct due to cancellation. The 

condition number 

of the set of floating-point numbers Xi is used to measure the severity of cancellation. 

In the following, we use flO where ".11 E {+,-,*,\} to denote the floating-point 

arithmetic. Let y = fl(x) denote the assignment that assigns to y the floating-point 

number closest to x. Assume a ::; X < b, where a and b are two adjacent floating-point 

numbers. We say that y is correctly rounded if y is rounded to the nearest of a or b 

determined by the value of x. If X is the mid-point of a and b, y should be rounded 

to a or b deterministically. We say that y is faithfully rounded if y is rounded to a 

only when x = a, and either a or b otherwise. In the following, we assume that the 

ordinary computer arithmetic flO is correctly rounded. 

Let fJ denote the base of the floating-point number, t denote the length of the man-

tissa, and l denote the length of exponent where both mantissa and exponent are 

represented in base fJ. We use the IEEE754 double precision standard where fJ = 2, 

t = 53 including an implicit bit and l = 11. We assume a double floating-point num

ber is stored in the computer by 64 bits and the bit operations are allowed. 

We denote the relative rounding error unit of the given format by eps which is also 

2 



3 CHAPTER 1. INTRODUCTION 

called Machine Epsilon [3]. According to the IEEE754 standard, floating point op

erations satisfy fl(a . b) = (a· b)(l + E) where ".11 E { +, - } and lEI:::; eps. In 

mathematical terms, the fl-notation implies Ifl(a· b) - a· bl :::; epsla· bl. The relative 

rounding error unit gives an upper bound on the relative error due to rounding in 

floating point arithmetic. In IEEE754 the quantity eps = ~(31-t = 2-53 . We use Ulp 

to denote Unit in the Last Place [3]. It is the gap between the floating-point numbers 

nearest a given real number. More generally, it is the absolute value of the distance 

between the two floating-point numbers which are closest to a given number. It is 

used as a measure of accuracy in numeric calculations. One Ulp of the floating-point 

thesis we assume no overflow occurs, but allow underflow. 

Some algorithms diminish rounding errors by sorting the input data, which incurs 

the extra time O(n log n) for adding n floating-point numbers. Some algorithms use 

long accumulators for summations to minimize the rounding errors. Both approaches 

slow down the programs performance. There is another approach to improve the ac-

curacy of the floating-point summations by compensated summation. This approach 

estimates the rounding error from the floating-point summation and recycles it at the 

succeeding summations. 

In 1969, Knuth [1] proposed a simple algorithm AddTwo for transforming a pair 

of floating-point numbers (a, b) into a new pair (x, y) with non-overlapping mantissas 

and satisfying x = fl(a + b) and a + b = x + y, regardless of the magnitude of a and 

b, where x is the floating-point sum of a and b, while y is the roundoff error. We call 
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4 CHAPTER 1. INTRODUCTION 

an algorithm with such property an error-free transformation. Such transformations 

are at the center of the interest of this thesis. Other error-free transformations like 

TwoProduct, Split and VecSum will be presented when they are applied in the later 

chapters. 

ALGORITHM (x, y) = AddTwo(a, b) 

(1) x = fl(a + b) 

(2) z=fl(x-a) 

(3) y = fl((a - (x - z)) + (b - z)) 

Let's briefly describe how the algorithm works, the working mechanism is illustrated 

in Figure 1.1. Assume a > b > 0 and a overlaps b. The other cases like a < b, or a 

does not overlap b can be treated in the similar way. First we compute x = fl(a+b), 

which is the sum of a and b using the ordinary computer arithmetic. Then we esti

mate the quantity z by z = fl(x-a), which satisfies fl(a+b) = fl(a+z). In Step (3) 

we compute the rounding error y by y = fl((a - (x - z)) + (b - z)). In this example, 

we assume a> b > 0 and a overlaps b, therefore fl(a - (x - z)) = 0 and fl(b - z) is 

the estimated rounding error. 

Algorithm AddTwo plays a fundamental role in the highly accurate algorithms like 

SumK [7], iFastSum and HybridSum [6], since they all apply the algorithm instead 

of the ordinary computer fl( +) arithmetic so that all of the rounded errors are pre-

served. No significant digits are discarded during their summations. 

4 



5 CHAPTER 1. INTRODUCTION 

x=fl(a+b) 

1---·---- ---- ---, 

I I 
I : 
I a ~--4n~------------~ 
I ~I __ -*y ____________ ~ 
L _________________ J 

b 
f-- z ---I 

f--:--b-z 

Figure 1.1: Algorithm TwoSum 

Another compensated summation is the following algorithm by Dekker[4]. 

ALGORITHM [x, y] = FastTwoSum(a, b) 

x = fZ(a+ b) 

y = fZ((a - x) + b) 

Dekker showed in 1971 that the result is exact if the input is ordered by magni-

tude, that is x + y = a + b given JaJ 2: JbJ. However, branches involved in the sorting 

of a and b may increase the computing time due to the lack of compiler optimization. 

We will see in Chapter 2 that Kahan applied this idea in his summation algorithm. 

Kahan's algorithm performs well with most data sets and gives more accurate results 

than OPLS. This method is recommended as an efficient algorithm for general data. 

Extending the principle of AddTwo to n summands is called distillation by Kahan 

[5], because we can think of it as a process to seperate the significant parts of each 
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6 CHAPTERl. INTRODUCTION 

summand and then add that part into the sum. It is an iterative refinement using Ad-

dTwo to create a new array of floating-point numbers with mutually non-overlapping 

mantissas, but whose sum is exactly equal to the sum of the original array. 

We will see in Chapter 2 that Rump applied the idea of distillation in his accurate 

array summation algorithm SumK [7], which has an integer parameter K representing 

the limit of the numbers of the iterative refinements. For sufficiently large K, the al-

gorithm is guaranteed to return the correct result. However, it is not easy to know the 

proper value of K beforehand, and always using a large value of K will cause overhead. 

Recently, Y. K. Zhu proposed two highly accurate array summation algorithms iFast-

Sum and HybridSum [6J. The idea of distillation was also applied in iFastSum with a 

clever method to control the loops of iterative refinements on the array. HybridSum 

uses a large number of "buckets" to store the partial sums, and its running time is 

independent of the condition number. 

This thesis has two purposes. The first is to present comparisons of the above-

mentioned four accurate summation algorithms. Those algorithms are applicable to 

all sets of data but are particular appropriate for ill-conditioned data where ORS fails 

due to the accumulation of rounding error and severe cancellation. The second pur-

pose is to apply those summation algorithms to DDOT and DGEMV, which are two 

fundamental subroutines of LAPACK [10J. The first 'D' in the function name suggests 

that it works in the double precision. LAPACK is a Linear Algebra PACKage with 

a rich set of subroutines concerning the following algebra problems: linear equations, 

6 



7 CHAPTER 1. INTRODUCTION 

linear least squares problems, eigenvalue problems and singular value problems. In 

the following we use the C-LAPACK instead of the Fortran 77 implementation. BLAS 

is a set of subroutines that implements low level functions for vectors and matrices 

operations used in LAPACK. BLAS is divided into three levels. 

Levell: vector/vector operations; 

Level 2: matrix/vector operations; 

Level 3: matrix/matrix operations. 

LAPACK routines perform their computations with the facilities offered by BLAS 

routines. 

This thesis is organized as follows. In Chapter 2 we will present the four accurate 

summation algorithms as well as their properties. In Chapter 3, we will compare the 

summation algorithms in accuracy, execution time and space complexity. Numerical 

results are also included to support the comparisons. In the last part, the summation 

algorithms are applied to improve the performance of some LAPACK subroutines, 

and we also supply the numerical results. 

7 



Chapter 2 

Summation Algorithms 

In this chapter, we will present the four recent summation algorithms. We also ana-

lyze how and why the summation algorithms work. 

2.1 Kahan's Algorithm 

Kahan's algorithm is a compensated summation algorithm. In 1951 Gill noticed that 

in computing the sum of two numbers, the rounding error could be estimated by sub-

tracting one summand from the sum. In 1970 Kahan used the similar idea to derive 

a compensated summation method to compute the sum of a floating-point number 

array [3]. 

8 



9 CHAPTER 2. SUMMATION ALGORITHMS 

ALGORITHM: Sf- Kahan(x,n) 

Input: x, the array of the given floating-point summands 

n, the length of the array 

Output: s, the sum of the array 

1. S f- 0; e f- 0; 

2. for if-I to n 

(a) temp f- s; 

(b) y f- Xi + e; 

(c) sf-temp + y; 

(d) e f- (temp - s) + y; 

3. END 

2.1.1 Algorithm Description 

Figure 2.1 gives an intuitive explanation of Compensated Summation. Assume a and 

b are two floating point numbers with lal 2': Ibl. Let's denote S = a + band s = 

fl(a + b). The figure shows that if we evaluate e = - fl(Jl(Jl(a + b) - a) - b) with 

floating-point arithmetic flC) in the order indicated by the parentheses, then the 

computed e will be a good estimate of the error S - s. For rounded floating-point 

arithmetic in base 2, we have S = s + e, that is, the computed e represents the error 

exactly. This result is proved by Knuth in [1]. 

The main idea of Kahan's algorithm is to keep the rounding error of the current 

summation and feed it back into the next summation. It employs a correction term 

9 
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10 CHAPTER 2. SUMMATION ALGORITHMS 

a a2 

+ b b2 

- a al a2 
'----'----' 

/I 
= s-a 

- b 

= (~- a)- b 

e = -((~-a)- b) 
= (a -~)+ b 

bl 0 

bl b2 

I -b21 

b2 

0 

0 

Figure 2.1: Recovering the rounding error 

on every step of a recursive summation to diminish the rounding errors. Specifically, 

a correction term is computed immediately after each partial sum is calculated, and 

in the next loop it is added into the next summand Xi before that summand is added 

to the partial sum. 

Step 1 first initializes the variable s which is used to store the partial sum of the 

floating-point array X, and then it initializes the correction term e. Step 2 is the main 

loop of the algorithm. Step 2( a) first records the partial sum s of the previous loop in 

the variable temp. In Step 2(b) the correction term e computed in the previous loop 

is added to the current summand Xi to compute the corrected summand y. Step 2(c) 

adds the corrected summand y to the previous partial sum to compute the current 

partial sum. Step 2(d) estimates the rounding error generated by step 2(c) and stores 

it in e as the correction term to be applied in the next loop. 

10 
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2.1.2 Properties 

• The algorithm has two weaknesses. First, the correction term e computed in 

Step2(d) may not be the exact rounding error, because the correction term e is cal-

culated based on the assumption that lal ;::: Ibl. (see Figure 2.1). If the condition 

lal ;::: Ibl is not satisfied, the correction term e is always computed to zero. In other 

words, the computation of the current partial sum shares the same error estimated 

with the ordinary addition operation in computer. Second, the local error generated 

by the addition y = Xi + e in Step2(b) is discarded. 

• Comparing with the sum s = l:~=1 Xi computed by ORS, Kahan's algorithm 

improves the error bound of the sum significantly. Knuth showed that the sum s 

computed by Kahan algorithm satisfies [1] 

n 

s = 2..:(1 + Oi) . Xi, whereloil:S 210 + O(nc2
). 

i=l 

• If the condition number of the floating-point number array X is very large, that is 

if 2:~=1 IXil » 12:~=1 xii, Kahan algorithm is not guaranteed to yield a small relative 

error. 

11 



12 CHAPTER 2. SUMMATION ALGORITHMS 

2.2 SumK 

SumK extends the idea of the error-free transformation for two floating-point num-

bers to floating-point number array. The working mechanism of SumK is to iterate 

K - 1 applications of the array transformation to produce a result as if it is com-

puted in K-fold working precision. We say the result is "as if computed in K-fold 

working precision 11 , because it shares the same error estimated with first comput-

ing the sum of the array by K-fold working precision and then rounding the result 

back into the working precision, i.e., the result s' should satisfy Is' - ~~=1 xii ::; 

epsl ~~=1 Xii + (<p. eps)K ~~=llxil with a constant <po For example, assume the work

ing precision is single precision in IEEE754 floating-point standard, and K = 2 which 

means the 2-fold working precision, the result is almost as accurate as computing the 

array sum in double precision and then rounding back to single precision. 

SumK improves Kahan's algorithm in two aspects. First, the error-free transfor-

mation AddTwo in SumK for two floating-point numbers a and b does not require lal 

;:::: Ibl. Second, SumK could iterate array transformation for more than one time to 

produce a more accurate result. 

ALGORITHM: s f- SumK(x, n, K) 

Input: x, the array of the given floating-point summands 

n, the length of the array 

K, it performs K-1 transformation iterations on x 

Output: s, the correctly rounded sum of the array 

1. for k f- 1 to K - 1 / / loops of error-free array transformations 

12 



13 CHAPTER 2. SUMMATION ALGORITHMS 

2. x f- VecSum(x); 

3. Sf- 0; 

4. for if-I to n / / sum up the floating-point numbers in x 

5. Sf- S + Xi; 

6. END 

FUNCTION: x' f- VecSum(x, n) 

Input: x, the array of the given floating-point summands 

n, the length of the array 

Output: x', the transformed array 

1. for i f- 2 to n 

3. END 

2.2.1 Algorithm Description 

Denote x' as the output array of Function VecSum. The array x is transformed by 

function VecSum without changing the sum, such that ~~=1 Xi = ~:1 x~, and the 

last summand of the array is replaced by fl(~~=l Xi)' Denote s' = fl(~~=l xD, 

S = ~:1 Xi and S = ~~=llx~l, we have 

Is' - sl :S epsisl + 1';-1 S, 
n· eps 

where 'Yn = and n· eps « 1 
1- n· eps 

13 



14 CHAPTER 2. SUMMATION ALGORITHMS 

The proof was given by Rump in [7]. The inequality implies that the sum of the 

transformed array shares the same error estimated as if computed in doubled work-

ing precision and rounded back to working precision. 

SumK applies VecSum on x for K - 1 times, and then sums up the array by us

ing standard floating-point addition arithmetic. After applying the transformation 

on the array x for K - 1 times, the sum of the array satisfies for K 2': 3 [7], 

Note that, the second term /1£.-2S reflects that the result is computed in K-fold 

precision, since /2n-2 ~ (2n - 2)eps with n· eps « 1. The term 3/~_1 is negligible 

compared to eps. So the first term is approximated to epslsl which reflects that the 

result is rounded back into the working precision. 

2.2.2 Properties 

• SumK requires only ordinary addition and subtraction arithmetic in computer. It 

does not require extra working precision. Access to mantissa or exponent is not 

needed. 

14 
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• K - 1 is the number of applications of VecSum on the array x. K must be in-

creased either with the number of summands n, or the condition number. For large 

enough K, the algorithm is guaranteed to produce a correct result. The author of 

SumK suggests a value of K = 3 for practical purposes. [7] 

2.3 iFastSum 

iFastSum is a typical iterative refinement algorithm. It applies AddTwo operations 

instead of the standard addition operations in computer. The local errors generated 

by addition operations are kept in the array instead of being discarded. The input 

array x acts as the storage for local errors generated by each refinement. The algo-

rithm iterates refinements until the sum of errors is small enough. Then it performs 

a careful check on the errors and returns the correctly rounded sum. 

ALGORITHM: s +- iFastSum(x, n) 

Input: x, the array of the given floating-point summands 

n, the length of the array 

Output: s, the correctly rounded sum of the array 

Global: rc , indicates if a recursive call of iFastSum occurs, initially 0 

1. s +- 0; loop +- 1; / / loop counts the number of loops 

2. for i +- 1 to n / / accumulate first approximation 

15 



16 CHAPTER 2. SUMMATION ALGORITHMS 

3. loop forever / / main loop 

(1) count f- 1; St f- 0; loop f- loop + 1; Sm f- 0; 

/ / count points to the next position in x to store the local error 

/ / St is the temporary sum 

(2) for if-I to n 

(a) (St, xcount) f- AddTwo(St, Xi); 

(b) if Xcount of 0, then 

(i) count f- count + 1; 

(ii) Sm f- max(sm, IStl ); 

(3) em f- (count- 1) . HalfUlp(sm); 

/ / each local error :S HalfUlp(sm) 

/ / Xcount: local error 

/ / em is the weak upper bound on magnitude of the sum of the errors 

(4) (s, St) f- AddTwo(s, St); St f- Xcount; n f- count; 

(5) if em = 0 or em < HalfUlp(s), then 

(a) if rc > 0, then return s; / / return S if it is a recursive call 

(b) (WI, e1) f- AddTwo(St, em); 

(c) (W2' e2) f- AddTwo(St, -em); 

(d) if (for j = 1, 2) fl(wj + s) of S or Round3(s, Wj, ej) of s, then 

4. END 

(i) rc f- 1; Sl f- iFastSum(x, n); / / first recursive call 

(iii) S2 f- iFastSum(x, n); rc f- 0; / / second recursive can 

(iv) S f- Round3(s, Sl, S2); 

(e) return s; 

16 



I 
i 
I 

.; 

-: 

17 CHAPTER 2. SUMMATION ALGORITHMS 

FUNCTION: R r- Round3(so, Sl, S2) 

Input: So, Sl, 82, the three floating-point numbers, 

where fl( so+sd = 80 and fl( Sl +S2) = Sl 

Output: r, correctly rounded SO+Sl +S2 

1. if Sl has the form of 1.0 x 2e and Sign(sl) = Sign(s2), then 

return fl (1.1 X 81 + so); / / magnify Sl and add it to So 

2. return So; / / Sign(s) returns 1 if x> 0, 0 if x = 0, and -1 otherwise 

3. END 

2.3.1 Algorithm Description 

In the following, we present a brief description of the working mechanism of iFastSum. 

More detailed descriptions and the proof of the algorithm correctness can be found 

in [6]. 

In Step 2, we first compute the sum of the floating-point numbers in the original 

array by accumulating Xi in s. We compute the sum of Xi by applying AddTwo op-

erations instead of the standard floating-point addition operations in computer. The 

computed sum of the array is stored in the global sum s. All the local addition errors 

generated by AddTwo operations are put back into the original array x. Those local 

errors become summands in the array for later operations. Denoting the array after 

17 



18 CHAPTER 2. SUMMATION ALGORITHMS 

step 2 as x', Step 2 is actually an error-free transformation on the original array since 

Step 3 is the main distillation loop. It repeats refinement until the global error 

bound em is small enough. The proof of the termination of loops can be found in [6]. 

In Step 3(2), it performs a refinement on the array x and computes the sum St of the 

array. During the traverse of array x from Xl to X n , it records the largest absolute 

value of St in Sm, which will be used in Step 3(3) to estimate the sum of local errors 

left in the array. After the refinement is done, in the worst case, every element left in 

the array is at most !Ulp of Sm since the property of Add Two suggests that in (a', b') 

= AddTwo(a, b), if b < !Ulp(a) then a' = a and b' = b. Note that it is different from 

Step 2, only nonzero errors are redistributed back into the array. 

Step 3(3) estimates a weak upper bound em for the sum of the current array x, 

because after Step 3(2) all the errors left in array are at most !ulp(sm) due to the 

property of AddTwo operation. Subfunction HalfUlp( n) returns n' =!ulp( n) if n' is 

representable by a floating-point number, otherwise it returns O. 

In Step 3(4), the temporary sum computed in Step 3(2) is added to the global sum 

s. The error of this operation is appended to the array. There is no out-of-boundary 

problem for the array x. Note that when i = 1 in Step 3(2a), Xcount (where count 

= 1) is zero because St is initialized to 0 in Step 3(1). Since count points to next 

position in array, we always have count < n after Step 3(2) is executed. Therefore 
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19 CHAPTER 2. SUMMATION ALGORITHMS 

the new length of the array x is less than n. So St can be appended into the array 

safely without out-of-boundary problem. The new length n of the array is updated 

for next refinement. 

In Step 3(5), it first checks whether the error bound em computed in step 3(3) is 

small enough. 

Case1: if the estimated sum of the array is not small enough, it will repeat the re-

finement. 

Case2: if the estimated sum of the array is small enough, a careful check is performed 

to ensure the sum is correctly rounded. If the local error St and the estimated sum 

of error array em can not affect the global sum s, that is, the condition 3(5)(d) is 

not satisfied, then S is returned as the exact sum. Otherwise the exact sum will be 

represented by three floating point numbers with non-overlapping mantissa. Since 

the local errors are left in the array, two recursive calls of iFastSum are executed to 

compute the non-overlapping numbers. Function Round3 is used to compute the cor-

rectly rounded sum of three floating-point numbers with non-overlapping mantissa. 

2.3.2 Properties 

• iFastSum returns the correctly rounded sum of a floating-point numbers array. 

• The accuracy of the sum is independent of condition number and the number of 

summands. 

• iFastSum requires constant storage and its space complexity is 0(1). 
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• It doesn't require extra precision accumulators. 

2.4 HybridSum 

The main idea of HybridSum is as follows. It first creates large numbers of "buckets 11 

and each bucket acts as an accumulator for summing up the floating-point numbers 

of a particular exponent. Each summand in the input floating-point number array x 

is "split 11 into two numbers of which each has half as many nonzero mantissa digits 

as the original summand. Therefore the accumulator can act as an extra-precision 

accumulator for the split numbers. After all of the summands are added to the cor-

responding accumulators, iFastSum is applied to sum up those accumulators. It is 

proved that if the number of summands entering an accumulator is less than a certain 

value, then no significant digits are discarded [6]. The limit number is N=,6Lt/2J with 

,6 = 2 and t = 53 according to the IEEE754 standard. 

ALGORITHM: S f- HybridSum(x, n) 

Input: x, the array of the given floating-point summands 

n, the length of the array 

Output: s, the correctly rounded sum of the array 

Constant: N = ,6Lt/2J 

1. initialize two arrays, al and a2, each with ,6l floating-point numbers 
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2. set all the numbers in a1 to be zero 

3. i t-- 1; I I i records the next summand in x we will process 

4. m t-- min(n, N); 

I I m records how many summands a1 will process in each loop 

5. loop forever I I if n > N, r ~=~ 1 + 1 iterations; otherwise 1 iteration 

(1) for k t-- 1 to mil add summands in x with a1 

(a) {ZI,Z2} t-- Split(xi); it-- i + 1; 

(b) j t-- exp(zl) + /31-\ a1j t-- fl(a1j + zd; 

(c) j t-- exp(z2) + /31-\ a1j t-- fl(a1j + Z2); 

I I add two split parts by the corresponding accumulator a1j' 

I I expO returns the exponent of a floating-point number, 

I I assume that the minimum exponent is 1 - /31-1. 

(2) n t-- n - m; I I n records the number of unprocessed summands in x 

(3) if n = 0, then go to Step6; I I the ending condition 

(4) set all the numbers in a2 to be zero; 

(5) for k t-- 1 to /31 I I add partial sums in a1 with a2 

(a) {Zl,Z2} t-- Split(alk); 

(b) j t-- exp(zd + /31-1; a2j t-- fl(a2j + Zl); 

(c) j t-- exp(z2) + /31-\ a2j t-- fl(a2j + Z2); 

(6) swap two array points, a1 and a2; 

(7) m t-- min(n, N - /31); 

I I the newly initialized a1 has already processed /3 l summands 

6. return iFastSum( a1, /31); 

7. END 
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FUNCTION: 

Input: Z) the given floating-point number 

Output: Zl and Z2) split Z into two floating-point numbers) each with half 

of z)s mantissa. 

1. Zl ~ z; 

2. set the last l (t + 1) /2 J digits of the mantissa of Zl be zero; 

5. END 

2.4.1 Algorithm Description 

There are f31 many distinct exponents in the working precision. Therefore f31 many 

accumulators need to be created. In Step 1) two arrays of accumulators are pre-

allocated) where the size of each array is f31. Step 2 initializes the accumulators in 

the arrayal to zero and Step 3 initializes the variable i which is used to record the 

position of the next summand in the array x. 

HybridSum does not limit the number of summands to enter each accumulator. In-

stead) it limits the total number of the summands entering the accumulator array in 

one loop. Therefore each accumulator is guaranteed to process less than N summands 

in one loop. If n > N) r ;:;-=;11 + 1 loops are iterated for processing all summands in 
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the array x. In Step 4 the variable m is set to record how many summands for al to 

process in a loop. 

In Step 5(1), the m summands in array x are split and added to the corresponding 

accumulators. Step 5(2) updates the number of unprocessed summands in the array 

x. In Step 5(3), if all summands in the array x have been processed, it breaks the loop. 

From Step 5(4) to Step 5(6), the numbers in al are split again and distributed to 

the corresponding accumulator in the array a2. The array a2 is used to store the 

intermediate sums accumulated in al in one loop. Then it swaps al with a2, and a2 

will be the accumulators array for the next iteration. In Step 5(7), since there are 

already f31 numbers in al, m is updated and it goes to next loop. 

In Step 6, iFastSum is used to sum up all accumulators and return the correctly 

rounded sum. 

2.4.2 Properties 

• HybridSum returns the correctly rounded sum of a floating-point number array . 

• HybridSum sums up numbers of a particular exponent by the corresponding ac-

cumulator, and afterwards sums up the accumulators by iFastSum. Therefore only 
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one traverse of the input array is required and the cost is O(n). Thus the time com-

plexity of HybridSum is O(n) plus the cost for iFastSum to sum up the accumulators. 

When n is large, the cost for iFastSum to sum up the accumulators can be ignored. 

Therefore the time complexity of Hybridsum is O(n) and it is independent of the 

condition number . 

• Another advantage of HybridSum is its space complexity. No matter how many 

summands in the input array x, HybridSum only allocates 2 arrays with size (3l. 

Therefore the space complexity is O((3l). 
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Chapter 3 

Numerical Experiments 

In this chapter, we compare the performances of the following algorithms: ORS (Or

dinary Recursive Summation), Kahan's algorithm, SumK (K = 3), iFastSum and 

HybridSum. We use the standard IEEE754 double precision arithmetic where fJ = 2, 

l = 11 and t = 52. All the algorithms are implemented in ANSI C and compiled by 

GCC 4.1.2. The programs are run on a server with four AMD 2.53GHz dual-core 

Processors and 8GB physical memory. The operating system of the server is X86 

64bit Redhat Linux. 

3.1 Test Data 

The algorithms are tested on four kinds of data with size n=10,OOO,OOO. A param-

eter 0 is used to denote the maximum exponent difference of the generated random 

25 



26 CHAPTER 3. NUMERICAL EXPERIMENTS 

numbers. Different values of 0 from 8 to 1800 are considered. 

(1) Data Set No.1 is an extremely Ill-Conditioned data for which the exact sum equals 

zero. They are generated as the following: After a random number a is generated, it 

is put into the first half part of the data set. Then the number with the opposite sign 

-a is put into the other half part of the data set. 

(2) Data Set No.2 is a well-conditioned data where the random numbers are all posi

tive. The condition number of the data computed by R = fff~ll::11 is 1. 

(3) Data Set No.3 is the random numbers including signs. 

(4) Data Set No.4 contains the Anderson's Ill-Conditioned data. They are generated 

by first generating random numbers including the signs, then subtracting the mean 

of the data from each number. This method was proposed by 1. J. Anderson in [8]. 

The condition number of the transformed data is more than 109 . 

3.2 Test Results 

In the test using Data Set No.1 (extremely ill-conditioned data) where the exact sum 

of the data eaquls zero, we list the exact results returned by the algorithms in Table 

3.1. The Size of test data is 10,000,000. From Table 3.1 we observed that, ORS 

and Kahan's algorithm never return a correct sum. We denote SumK (K = 3) as 

Sum3 in the following. When 0 is greater than 64, Sum3 fails to return the correct 

sums. However, iFastSum and HybridSum always return the correct sums. Therefore, 

iFastSum and HybridSum are both reliable algorithms to return the correctly rounded 

sum of the testing data. Thus in the tests using Data Set No.2, No.3 and No.4, we use 
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Data Set No.1: Extremely Ill-Conditioned Data 
0 R ORS Kahan Sum3 iFastSum HybridSum 
8 1.0723e+17 5.5723e-10 4.8850e-14 O.OOOe+OO O.OOOOe+OO O.OOOOe+OO 
32 8.1573e+16 -7.5298e-07 -2.1270e-11 O.OOOe+OO O.OOOOe+OO O.OOOOe+OO 
64 5.4110e+16 -3.7190e-02 -4.9950e-06 0.000e+00 O.OOOOe+OO O.OOOOe+OO 
128 9.8596e+15 4.3985e-I-08 -5.3024e+04 -5.7260e-19 O.OOOOe+OO 0.0000e+00 
256 7.1814e+16 5.5912e+26 -7.078ge+21 7.8125e+00 O.OOOOe+OO O.OOOOe+OO 
512 2.0588e+16 3.3298e+65 7.7133e+61 3.5092e+38 O.OOOOe+OO O.OOOOe+OO 
1024 3.2686e+16 -1.2231e+ 142 1.348ge+ 139 -3. 7324e+ 114 O.OOOOe+OO O.OOOOe+OO 
1800 2.7906e+17 1.7946e+258 7.8230e+255 -2.4137e+231 O.OOOOe+OO 0.0000e+00 

Table 3.1: Test results (returned sums) of the algorithms on the extremely ill
conditioned data 

the results returned by HybridSum as the correct results, and list the relative errors 

of the results returned by all algorithms. The Size of test data is 10,000,000. The 

results are listed in Table 3.2, Table 3.3 and Table 3.4. We also list the exact sums of 

the data sets using the results returned by HybridSum in Table 3.5. As we know, the 

IEEE754 double precision is about 16 decimal digits. Due to the limit of space, we 

can not print all the 16 decimal digits of the results. Thus listing the relative errors 

of the results is more illustrative for comparison. 

From Table 3.2 to Table 3.4 we observed that in the testing of Data Set No.2 - the 

well-conditioned random data with R = 1, ORS never returns the correctly rounded 

sums. The relative errors of the results returned by ORS have the magnitudes around 

10-13 . In our test using Data Set No.3, the numbers are random including the signs. 

In this case, ORS never returns the reliable results. Kahan's algorithm fails to return 

the correctly rounded sums in the case of 8 is 256 and 512. However, the relative 

errors of Kahan's results have the magnitude about 10-16 , which is within the machine 
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28 CHAPTER 3. NUMERICAL EXPERIMENTS 

Data Set No.2: Positive Random Data 
0 R ORS Kahan Sum3 iFastSum HybridSum 
8 1.0000e+00 2.3678e-15 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
32 1.0000e+00 4.5310e-14 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
64 1.0000e+00 6.0914e-12 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
128 1.0000e+00 3.1221e-12 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
256 1.0000e+00 1.4773e-12 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
512 1.0000e+00 7.5036e-13 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
1024 1.0000e+00 4.0242e-13 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
1800 1.0000e+00 3.7735e-13 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 

Table 3.2: Test results (relative errors) of the algorithms on well-conditioned data 

Data Set No.3: Random including sign 
0 R ORS Kahan Sum3 iFastSum HybridSum 
8 1.6974e+03 7.3953e-14 O.OOOOHOO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
32 9.3762e+02 4.9218e-14 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
64 4.7283e+02 2.1110e-14 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
128 3.3738e+02 3.8770e-14 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
256 2.3632e+02 1.3738e-15 1.144ge-16 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
512 1.8378e+02 2.3644e-14 1.7778e-16 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
1024 1.2234e+02 1.5986e-14 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
1800 1.6478e+02 1.5228e-14 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 

Table 3.3: Test results (relative errors) of the algorithms on random numbers includ
ing signs 

precision. In our test using Data Set No. 4 - the Anderson's Ill-Conditioned data 

with the condition numbers greater than 109, only Sum3, iFastSum and HybridSum 

always return the correctly rounded sums. 

Next we present the Liming results. From Table 3.6 to Table 3.9 we list the time cost 

by each algorithm to return the results. We display the absolute value of the time in 

the unit of millisecond, and also the ratio in parenthesis with the time of HybridSum 
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Data Set No.4: Anderson's Ill-Conditioned Data 
0 R ORS Kahan Sum3 iFastSum HybridSum 
8 3.0678e+16 1. 121ge-0l 2.0883e-04 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
32 1.5902e+16 1. 6960e-0l 6.8941e-04 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
64 4.4333e+13 1.1584e+03 7.5702e-03 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
128 1.5655e+13 6.00l6e+02 5.1350e-03 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
256 1.5962e+13 1.2296e+03 6.6594e-03 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
512 8.1574e+12 1.1522e+03 9.5511e-04 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
1024 5.0964e+12 2.2227e+03 4.3694e-03 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 
1800 1.7800e+12 4.3102e+03 1.6377e-03 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO 

Table 3.4: Test results (relative errors) of the algorithms on Anderson's Ill
Conditioned Data 

The exact sums of the four testing data sets 
0 Data Set No.1 Data Set No.2 Data Set No.3 Data Set No.4 
8 O.OOOOe+OO 5.9786e+07 3.5222e+04 2.1951e-09 
32 O.OOOOe+OO 6.1460e+l0 6.5548e+07 4.6570e-06 
64 O.OOOOe+OO 2.0l25e+15 4.2560e+12 -3.9283e-02 
128 O.OOOOe+OO 4.3251e+24 1.2820e+22 -4.6077e+08 
256 O.OOOOe+OO 3.9925e+43 1.6895e+41 -2.0405e+27 
512 O.OOOOe+OO 6.8042e+81 3.7024e+79 7.2833e+65 
1024 O.OOOOe+OO 3.9660e+ 158 3.241ge+ 156 3.5276e+ 142 
1800 O.OOOOe+OO 4.9906e+275 3.0290e+273 6.5462e+259 

Table 3.5: The exact sums of the four testing data sets with different (j values 
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Data Set No.I: Extremely Ill-Conditioned Data 
0 R ORS Kahan Sum3 iFastSum HybridSum 
8 1.0723e+17 0.06 (0.10) 0.17 (0.27) 0.91 (1.47) 0.76 (1.23) 0.62 (1.00) 
32 8.1573e+16 0.06 (0.10) 0.17 (0.27) 0.91 (1.47) 0.77 (1.24) 0.62 (1.00) 
64 5.4110e+ 16 0.06 (0.10) 0.17 (0.27) 0.91 (1.47) 1.00 (1.61) 0.62 (1.00) 
128 9.8596e+15 0.06 (0.10) 0.17 (0.27) 0.92 (1.48) 1.37 (2.21) 0.62 (1.00) 
256 7.1814e+16 0.06 (0.10) 0.17 (0.27) 0.90 (1.46) 2.17 (3.50) 0.62 (1.00) 
512 2.0588e+16 0.06 (0.10) 0.17 (0.27) 0.91 (1.47) 3.70 (5.97) 0.62 (1.00) 
1024 3.2686e+16 0.05 (0.08) 0.17 (0.27) 0.91 (1.47) 6.51 (10.50) 0.62 (1.00) 
1800 2.7906e+17 0.05 (0.08) 0.17 (0.27) 0.91 (1.47) 10.74 (17.32) 0.62 (1.00) 

Table 3.6: Test timing of the algorithms on the extremely ill-conditioned data 

is normed to 1. From Table 3.6 to Table 3.9 we observed that when the size of 

data are the same, the running time of ORS, Kahan's algorithm and HybridSum are 

independent of 6. The running time of Sum3 is also independent of 6. However, 

when the extremely ill-conditioned data is used, Sum3 starts to return the incorrectly 

rounded sum when 6 > 64. In order to return the correctly rounded sum by SumK, 

the parameter K of SumK which represents the number of iterations of the refinement 

on the data has to be increased. Table 3.10 lists the least value of K and the running 

time for SumK to return the correctly rounded sum of the extremely ill-conditioned 

data, starting from 6 > 64. From Table 3.6 we also observed that when the extremely 

ill-conditioned data is used, the running time of iFastSum is linear to 6. Comparing 

Table 3.6 with Table 3.10, SumK and iFastSum both generate the same correctly 

rounded results when extremely ill-conditioned data is used, but iFastSum is faster 

than SumK. 
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Data Set No.2: Positive Random Data 
0 R ORS Kahan Sum3 iFastSum HybridSum 
8 1.0000e+00 0.06 (0.10) 0.18 (0.29) 0.93 (1.50) 0.79 (1.27) 0.62 (1.00) 
32 1.0000e+00 0.07 (0.11) 0.17 (0.27) 0.93 (1.50) 0.81 (1.31) 0.62 (1.00) 
64 1.0000e+00 0.06 (0.10) 0.18 (0.29) 0.93 (1.50) 0.90 (1.45) 0.62 (1.00) 
128 1.0000e+00 0.06 (0.10) 0.17 (0.27) 0.92 (1.48) 0.92 (1.48) 0.62 (1.00) 
256 1.0000e+00 0.07 (0.11) 0.17 (0.27) 0.94 (1.49) 0.91 (1.44) 0.63 (1.00) 
512 1.0000e+00 0.06 (0.10) 0.17 (0.27) 0.94 (1.52) 0.91 (1.47) 0.62 (1.00) 
1024 1.0000e+00 0.06 (0.10) 0.17 (0.27) 0.92 (1.52) 0.91 (1.47) 0.62 (1.00) 
1800 1.0000e+00 0.06 (0.10) 0.17 (0.27) 0.93 (1.50) 0.90 (1.45) 0.62 (1.00) 

Table 3.7: Test timing of the algorithms on the well-conditioned data 

Data Set No.3: Random including sign 
0 R ORS Kahan Sum3 iFastSum HybridSum 
8 1.6974e+03 0.06 (0.10) 0.17 (0.27) 0.93 (1.50) 0.80 (1.29) 0.62 (1.00) 
32 9.3762e+02 0.06 (0.10) 0.17 (0.27) 0.93 (1.48) 0.79 (1.25) 0.63 (1.00) 
64 4.7283e+02 0.06 (0.10) 0.17 (0.27) 0.93 (1.50) 0.88 (1.42) 0.62 (1.00) 
128 3.3738e+02 0.07 (0.11) 0.17 (0.27) 0.94 (1.49) 0.90 (1.43) 0.63 (1.00) 
256 2.3632e+02 0.07 (0.11) 0.17 (0.27) 0.97 (1.52) 0.92 (1.44) 0.64 (1.00) 
512 1. 8378e+02 0.06 (0.10) 0.17 (0.27) 0.93 (1.50) 0.90 (1.45) 0.62 (1.00) 
1024 1.2234e+02 0.06 (0.10) 0.17 (0.27) 0.94 (1.52) 0.92 (1.48) 0.62 (1.00) 
1800 1. 6478e+02 0.06 (0.09) 0.17 (0.27) 0.93 (1.45) 0.90 (1.41) 0.64 (1.00) 

Table 3.8: Test timing of the algorithms on the random numbers including signs 

Data Set No.4: Anderson's Ill-Conditioned Data 
0 R ORS Kahan Sum3 iFastSum HybridSum 
8 3.0678e+16 0.06 (0.10) 0.17 (0.27) 0.93 (1.50) 0.79 (1.27) 0.62 (1.00) 
32 1.5902e+16 0.05 (0.08) 0.17 (0.27) 0.93 (1.48) 0.80 (1.27) 0.63 (1.00) 
64 4.4333e+13 0.05 (0.08) 0.18 (0.28) 0.92 (1.44) 0.80 (1.25) 0.64 (1.00) 
128 1.5655e+13 n (lD. (0 10\ 0.17 (0.27) 0.93 (1.48) 0.80 (1.27) 0.63 (1.00) U.UU ~u . .LU) 

256 1.5962e+13 0.06 (0.10) 0.17 (0.27) 0.93 (1.50) 0.79 (1.27) 0.62 (1.00) 
512 8.1574e+12 0.06 (0.10) 0.17 (0.27) 0.93 (1.48) 0.80 (1.27) 0.63 (1.00) 
1024 5.0964e+12 0.06 (0.10) 0.17 (0.27) 0.92 (1.46) 0.80 (1.27) 0.63 (1.00) 
1800 1.7800e+ 12 0.06 (0.10) 0.16 (0.27) 0.93 (1.48) 0.79 (1.25) 0.63 (1.00) 

Table 3.9: Test results of the algorithms on the Anderson's Ill-Conditioned Data 
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Test SumK on Extremely Ill-Conditioned Data 
b K Time Sum 
128 5 1.79 O.OOOe+OO 
256 7 2.66 O.OOOe+OO 
512 13 5.30 O.OOOe+OO 
1024 24 10.04 O.OOOe+OO 
1800 40 17.09 O.OOOe+OO 

Table 3.10: The least K and Running Time for SumK to produce the correct results 
on the extremely ill-conditioned data 

3.3 Accuracy 

From the test results we observed that, ORS never returns a correctly rounded sum 

for any kind of testing data. Kahan's algorithm fails to return reliable results when 

the data is badly ill-conditioned. SumK (K=3) fails to return the correctly rounded 

sum when the extremely ill-conditioned data is used and 8 > 64. In this case, in 

order to return the correctly rounded sum by SumK, the parameter K of SumK 

which represents the number of iterations of the refinement on the data has to be 

increased. The running time of SumK is also increased. However, the exact value of 

the parameter K is not easy to be known before SumK is executed. Thus when the 

data is extremely ill-conditioned, iFastSum and HybridSum are recommended to be 

used to return reliable results. All of ORS, Kahan's Algorithm, SumK, iFastSum and 

HybridSum return correctly rounded results when the data is denormalized numbers. 

Knuth's Add Two and Dekker's FastTwoSum are both valid in the presence of un-

derflow since in the algorithms they only used additions and subtractions, and we 
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know that addition and subtraction are exact when the denormalized number is in-

eluded in the system. Therefore, all of the summation algorithms we presented by 

now are valid in the presence of underflow since they only apply addition and sub

traction on the data. 

3.4 Running Time 

In the timing comparisons, we only consider the algorithms returning the correctly 

rounded sums. The running time of Kahan's algorithm is independent of o. When the 

condition number of the data is less than 100, Kahan's algorithm returns the correct 

result and its timing performance outperforms Sum3, iFastSum and HybridSum. 

When more badly ill-conditioned data is used, ORS and Kahan's algorithm never 

return reliable results. In order to return the correctly rounded sum, the value of K 

as well as the running time of SumK have to be increased. From Table 3.6 and Table 

3.10 we observed that iFastSum is faster than SumK although they both return the 

same results. 

Note that for Data Set No. 4 - Anderson's Ill-Conditioned data, 0 listed in the 

table is the original 0 of the data before Anderson transformation is performed. The 

real a of the data after Anderson transformation is about 1015 no matter what the 

original 0 is. Thus the running time of iFastSum for Data Set No.4 is independent to o. 
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JO- 0"~. 

,.~J. 

°OL-=---~O.5~--~L-----~1.5~----~2--~~2.~5~~-+3~--~3L.5----~4 

. Size of Data 2000<.=n<.=40000 X"10' 

Figure 3.1: Comparison of Timing Results of iFastSum, HybridSum and Sum3 

From the results we observed that HybridSum always return reliable results indepen-

dent of condition number and the value of 6. The author of iFastSum and HybridSum 

suggests that when the size of data n < 20,000, iFastSum is recommended; when the 

size of data n > 20,000, HybridSum is recommened [6]. We also compare the timing 

performance of iFastSum, HybridSum and Sum3 on different sizes of data and the 

result is represented in Figure 3.1. We use the random numbers including signs with 

the difference of exponent 6 = 1800, which is the most general situation. The vector 

length 2000 ~ n ~ 40000 and the number of samples is 10000. From Figure 3 we 

observe that the timing costs of iFastSum, HybridSum and Sum3 increase linearly 
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with the increasing of the data size. When n < 8000, iFastSum is faster than Hybrid-

Sum; when n 2: 8000, HybridSum is faster than iFastSum. Sum3 is always a little 

slower than iFastSum. However, when the extremely ill-conditioned data is used, 

the parameter K of SumK needs to be increased and as the consequence it is much 

slower than iFastSum. Therefore for pratical uses, we suggest using iFastSum when 

the data size is less than 8000, and HybridSum when the data size is larger than 8000. 

3.5 Space Complexity 

Assume the input data for the algorithms can not be changed (immutable). ORS and 

Kahan's algorithm require no extra space because they only read data from the array. 

SumK and iFastSum need O(n) space because they will modify the input array. Hy

bridSum requires 0((31) space ((31 is 2048 when using the standard IEEE754 double 

precision) for the accumulators. When iFastSum is called by HybridSum to sum up 

the accumulators, the size of the input array for iFastSum is (31. Thus the space for 

HybridSum is constant. Therefore if the data amount is too huge for the physical 

memory, or the input data comes from a data stream of arbitrary length, HybridSum 

is recommended. 
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Chapter 4 

Application to LAPACK subroutines 

4.1 Vector Dot Product 

In this chapter, we apply the summation algorithms ORS, Kahan's Algorithm, Sum3, 

iFastSum and HybridSum for computing vector dot product, and then compare their 

timing and accuracy results with the subroutine DDOT of LAPACK. 

The calculations in this chapter satisfy the IEEE754 double precision standard and 

the working precision is about 16 decimal digits. The programs were run on a lap

top with Intel 1.6GHz CPU and 1.00GB physical memory. The operation system is 

Windows 7. All the comparisons of timing and accuracy were done in 32-bit MAT

LAB2010a. 

In [4], T. J. Dekker presented an error-free transformation method. 
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ALGORITHM: [x,yJ = TwoProduct(a,b) 

Input: a, b, 

Output: x, y, 

a pair two floating-point numbers 

the pair of transformed floating-point numbers 

1. x = fl(a· b); 

2. [a1, a2J = Split(a); 

3. [b1 , b2J = Split(b); 

4. y = fl(a2 . b2 - (((x - a1 . bd - a2 . bd - a1 . b2)); 

This method transforms the product of a pair of floating-point numbers [a, bJ into 

the sum of another pair [x, yJ with a· b = x + y and x = fl(a . b) in case no under

flow occurs. Denote eta = 2-1074 in IEEE754 double precision standard. In case of 

underflow occurs in any of the five multiplications of TwoProduct, denote the results 

by x' and y', Rump proved that the error of transforming product to sum is at most 

5eta, that is Iy - y'l ~ 5eta [7]. Therefore, in case of a and b are both denormalized 

numbers, underflow occurs and the error of the transformation is 5eta. Since under

flow is rare and 5eta is very small, the error is negligible. 

As well known, the dot product of two vectors x and y is calculated by xT y = 

L:.":~=1 (Xi' Yi). Vlith the Algorithm TwoProduct, Rump extended the idea of error-free 

transformation for the product of two floating-point numbers to vector dot products 

of arbitrary length in [7]. Therefore the calculation for the product of vector x and y 

is transformed into the calculation for the sum of an array r which is a transformation 
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of vector x and y. That is, 2::::;:1 ri = xT y. Combining this with the highly accurate 

summation algorithms we presented in the previous chapter, we expect it would yield 

some highly accurate dot product algorithms. Dot product algorithms are widely 

applied in numerical linear algebra, e.g., in computing the product of matrices, in the 

iterative refinement of the solution of Ax - b. 

ALGORITHM: d <- Ddot(x,y) 

Input: x, y, two vectors of floating-point numbers 

Output: d, the dot product of vector x and y 

1. for i <- 1 to n 

3. d=Sumofr. 

4. return d; 

5. END 

Our goal is to apply the different summation algorithms ORS, Kahan's Algorithm, 

Sum3, iFastSum and HybridSum in summing up the array r in Step3 of Algorithm 

Ddot. We also compare their performance with the LAPACK subroutine DDOT. 

LAPACK is an acronym for Linear Algebra PACKage. It is a library of Fortran 77 

subroutines for solving the most commonly occurring problems in numerical linear 

algebra. DDOT of LAPACK is a subroutine for computing the dot product of two 

vectors. 
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In order to test the performance of those Ddot programs combining different ap

proaches, we need vector dot products with different condition numbers which is 

defined by cond(xT Y)=2 ·lxITlyl/lxTyl. In [7], Rump presented an algorithm GenDot 

for generating extremely ill-conditioned dot products. The MATLAB implementation 

of this algorithm can be found in INTLAB [9]. 

FUNCTION: [x, y, d, CJ = GenDot(n, c) 

Input: n, dimension of vectors x, y, n >= 6 

c, the anticipated condition number of xT y 

Output: x, y, generated vectors 

d, dot product x T y rounded to nearest 

C, actual condition number of xT y 

n2 = round(n/2); I I Initialization 

x = zeros(n, 1); 

y=x; 

b = lOg2(C); 

e = round(rand(n2, 1)*b/2); I I e is a vector of exponents between 0 and b/2 

e(l) = round(b/2) + 1; 

e(end) = 0; 

I I ensure exponents b/2 and 0 actually occur 

x(l : n2) = (2*rand(n2, 1) - 1).*(2e); / / generate first half of vectors x,y 

y(l : n2) = (2*rand(n2, 1) - 1).*(2e); 

e = round(linspace(b/2, 0, n - n2)); 

I I generate exponents for second half of vectors x, y 
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for i = n2 + 1 : n 

x(i) = (2*rand-l)*2eCi-n2); 

y(i) = ((2*rand-l) *2eCi-n2LDocExact (x', y))jx(i); 

end 

index = randperm(n); j j generate random permutation for x, y 

x = x(index); 

y = y(index); 

d = DotExact(x', y); 

C = 2*(abs(x')*abs(y))jabs(d); 

j j permute x and y 

j j the true product rounded to nearest 

j j the actual condition number 

The inputs of Algorithm GenDot are the size of the expected vector x and y as well 

as the anticipated condition number of the vector dot product. The outputs of the 

algorithm are the generated vectors, the exact dot product of the vectors and the true 

condition number of the vector dot product. The algorithm requires the existing of a 

subroutine DotExact which produces a floating-point number close to the exact value 

of the dot product xT y. Rump used some highly accurate floating-point arithmetic 

and algorithm DotK with suitably chosen K to implement DotExact. The algorithm 

GenDot was carefully designed to ensure the vectors are general and not following 

any obvious patterns [7]. The main idea of GenDot is as following. In order to cre-

ate two vectors with extremely ill-conditioned dot product, the entries of the vectors 

must cause heavy cancellation. The expected condition number of the dot product 

xT Y is proportional to the degree of cancellation. The algorithm generates the first 

half parts of vector x and y randomly within a large exponent range. The exponent 

range is chosen according the expected condition number. Then the elements in the 
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second half of the vector x are generated randomly with decreasing exponent, and 

the corresponding Yi is generated which will cause some cancellations. Finally, the 

elements in vectors x and yare permuted randomly and the real condition number 

of the vector x and y is calculated. More details can be found in [7]. 

Since we have already implemented the different approaches of summation algorithms 

ORS, Kahan's algorithm, Sum3, iFastSum and HybridSum in ANSI C in the previous 

chapter, we take the advantage of MEX file which is an interface between C and MAT-

LAB. Thus those C programs can be called in MATLAB and the corresponding dot 

product programs can be compared with using the data generated from GenDot. Al

though the most popularly used implementation of DDOT in LAPACK is in Fortran 

77 and the MEX also has the functionality to call functions written in Fortran, we 

notice that the programs written in Fortran and C may have different performances 

in the same environment. For a fair comparison with DDOT of LAPACK, we choose 

the C version implementation of DDOT from [10], and omit its extra functionalities 

like increment etc. 

For the comparisons, we use GenDot to generate 1000 test cases where each test 

case contains vector x and y of length 100. The condition numbers of the vector dot 

products are within the range of (1,1010°). In our laptop with Intel 1.6GHz CPU 

and 1.00GB physical memory, it costs about one hour in using GenDot to generate 

the data set. Either increasing the anticipated condition number or the lengths of 

the vectors would increase the time costed by GenDot. The condition number in the 

range of (1,1010°) includes the most situations we could meet. Since the dot product 
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of two length n vectors can be error-freely transformed into the summation of a length 

2n vector, and based on the numerical results of the summation algorithms we know 

that the accuracy of the dot product algorithms would be independent of the vector 

length. However the timing performance would be related to the vector length and 

the time will increase linearly with the increasing of the vector length. Due to the 

time limitation, we compare the performance of the dot product algorithms on the 

vectors of different condition numbers but with the fixed length 100. 

GenDot also returns the exact value of the dot product and the condition num-

ber of the dot product for every test case. We test every dot product method and 

compute its relative error by: Id- xTYl/lxTYI, where d is the result of the dot product 

computed by one method and xT Y is the real dot product returned by GenDot when 

generating the vectors. The following four figures are the test results by using the 

plot function in MAT LAB. 

We denote the ordinary DDOT subroutine of LAPACK as Ddot_LAPACK, and 

the combining of dot product transformation with summation algorithm ORS as 

Ddot_ ORS. Similarly, Ddot_Kahan, Ddot_Sum3, Ddot_iFastSum and Ddot_HybridSum 

follow the same naming rules. We tested them on the data where Vector Length = 

100 and Number of Samples = 1000. For creating the more illustrative figures, we set 

the relative error to 2 if it is greater than 2, since the result is useless if the relative 

error is greater than 2. The following figures present the performance of dot product 

algorithms with different approaches. We plot the relative error against the actual 

condition number of the test data. 
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From Figure 4.1, Figure 4.2 and Figure 4.3, we observe that with the exponentially in

creasing of dot product condition number, the relative error Id- xT Yl/lxT YI computed 

by Ddot_ ORS, Ddot_Kahan and Ddot_LAPACK increase exponentially. It seems 

like that the results returned by Ddot_ ORS, Ddot_Kahan and Ddot_LAPACK share 

the same error estimated. However, Ddot_Kahan performs better than Ddot_ ORS 

and Ddot_LAPACK. Figure 4.8, Figure 4.9 and Figure 4.10 illustrate the testing re

sults of Ddot_ ORS, Ddot_Kahan and Ddot_LAPACK on the data with maximum 

condition number of 1020 . From Figure 4.8 and Figure 4.9 we observed that when the 

condition number is greater than 1016, the relative errors of the results returned by 

Ddot_ORS and Ddot_LAPACK exceed 2. However, from Figure 4.10 we observed 

that when the condition number is greater than 1017 , the relative errors of the results 

returned by Ddot_Kahan exceed 2. In another word, Ddot_Kahan is more accurate 

than Ddot ORS and Ddot LAPACK. 

From Figure 4.4 we observe that when the condition number is less than 1030 , the rel

ative errors of Ddot Sum3 are zeros. Note that we also checked the numerical results 

to ensure the relative errors are exactly zeros. We did not list the numerical results 

due to the space limitation. From Figure 4.5 we observe that when the condition 

number is greater than 1030 , the relative error computed by Ddot_Sum3 increase ex

ponentially with the increasing of dot product condition number. When the condition 

number is greater than 1050 , the relative errors always exceed 1. However, from Fig

ure 4.6 and Figure 4.7 we observe that Ddot_iFastSum and Ddot_HybridSum always 

return the results with relative errors equal to 0 independent of condtion number. We 
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also checked the numerical results to ensure all the relative errors are exactly zeros. 

Next we present the timing result of each method. Table 4.1 lists the average time for 

each method to process one test case. The number of samples = 1000, Vector Length 

= 100 and Maximum Condition Number = 1O lDO.We display the absolute value of 

the time in the unit of millisecond, and also the ratio in parentheses with the time of 

Ddot LAPACK is normed to 1. 

Algorithms 
Ddot _ Lapack 
Ddot ORS 
Ddot Kahan 
Ddot Sum3 
Ddot iFastSum 
Ddot _ HybridSum 

Time 
27.5 (1.00) 
60.2 (2.19) 
75.1 (2.73) 
110 (4.00) 
205.6 (7.48) 
525.8 (19.12) 

Table 4.1: Measured computing time for different dot product algorithms with 
Ddot LAPACK normed to 1 

From the observations, we briefly summarize the algorithms for vector dot prod-

uct. As expected, the dot product algorithms have the similar properties with 

the corresponding summation algorithms. When the condition numbers of the test 

data are varying between 0 and 1018 , the relative errors of the computed results 

returned by Ddot_LAPACK, Ddot_ ORS and Ddot_Kahan increase exponentially 

with the increasing of condition number; When the condition number is greater than 

1018 , the relative errors exceed 1. Ddot_iFastSum and Ddot_HybridSum always 

return the computed results with the relative errors equal to zeros. In other word, 

Ddot _ iFastSum and Ddot _ HybridSum return the exact results of the vector dot 
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product independent of condition number. Therefore when the accuracy of the result 

is an issue) Ddot_iFastSum and Ddot_HybridSum are recommended to return reli-

able results. From the timing comparisons we observe that although Ddot _ iFastSum 

and Ddot_HybridSum return reliable results) they cost more time than the other 

approaches. Therefore when the vector dot products are not ill-conditioned) small 

relative errors are allowable) and time cost is an issue) Ddot_Kahan is recommended. 

From the comparisons of timing and accuracy) we also found that Ddot_Sum3 is 

a compromise between unreliable and reliable algorithms. It returns reliable results 

when the condition number is smaller than 1030 . When the condition number is 

within (1030 ) 1050 )) the relative error is smaller than 1. When the condition number 

is greater than 1050 ) it returns unreliable results. 

4.2 Vector-Matrix and Matrix-Matrix multiplications 

DGEMV is the LAPACK subroutine for computing vector and matrix multiplications. 

Its extra functionalities like unequal index increasement are not in our interest) thus 

for better demonstration) we give the simplified algorithm as follows. 

ALGORITHM: y = DGEMV(o:) A) m) n) x) y),6) 

Input: 0:) the scalar of A 

A) a m x n matrix 

m) the first dimension of matrix A 

n) the second dimension of matrix A 
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x, the n x 1 vector 

y, the m x 1 vector 

{3, the scalar of y 

Output: y, where y = a * A * x + (3 * y 

2. for i f- 1 to n 

3. temp = a * xli]; 

4. for j f- 1 to m 

5. Yj = Yj + temp * A[j][i]; 

6. END 

We can modify this algorithm by using the accurate vector dot product algorithms 

presented in Section 4.1 as follows. 

ALGORITHM: Y = DGEMV_ACCURATE(a,A,m,n,x,y,{3) 

Input: a, the scalar of A 

A, a m x n matrix 

m, the first dimension of matrix A 

n, the second dimension of matrix A 

x , the n x 1 vector 

y, the m x 1 vector 

{3, the scalar of Y 

Output: y, where Y = a * A * x + {3 * Y 
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1. for i f- 1 to m 

2. Yi = (3 * Yi + C\' * Ddot(x, A[i]); 

3. END 

Due to the time limitation, we did not implement the algorithm. However, based 

on the experience of implementing the DDOT and the comparisons of numerical re-

suIts, as well as the simple structure of the algorithm DGEMV, we expect using 

our accurate dot product algorithms would improve the accuracy of computing the 

vactor-matrix multiplication. DGEMM is the LAPACK subroutine for computing 

matrix and matrix multiplications, we also expect it would benefit from the accurate 

vector dot product algorithms. 

47 



48 

I 

~ 

.j 

-i 

CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES 

10' 
Tosl Odpt·l.APAfK onVeclo( Si.o=100. Number of Samples~1000a~d Maximum Cond~io~ Np,mberfle'100 

...... ·· .... ··T .. ··· .. · .. · .. ·T .... · .. ··· .... ·T· .... · .. ··· .. · .. r .. · .. ·· ........ ·'1" ............. . 

10'" '10+) 10.... 10·'· '1.0'00 10.20 

Condition t.Jumber 

Figure 4.1: Test Results for Ddot_Lapack 

Test Odol-ORSonVeclor 3Izo=100. Number of SamPles=lQO and Maximum Condition Numbei=le+l00 
til .---"----,------'-,----'---'---r---~-r---~-'-r---~--. 

10'" 10'" 
Co~dilion Number 

10"" 

Figure 4.2: Test Results for Ddot _ ORS 

48 



49 

~ 
m 

i cr 

CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES 

102 ,----~Te_S_1 D_~_OI_'K_'-"-~'f-,q_·~-,-nV_e_C,--IO~rS_iz-,,~~i=ll-'0_O._N_P!ll_b_._rO_f~s._.mrpl~e_s=_i_oo_o_an~Q~M~ax1r'_m_um-"c_o_n--,dll,--,io_n_;Nr-hm_be __ r=_~_je_+_l0-,-0--, 

O.B 

0.0 

0,4 

-0.2 

·0_4 

·0_6 

·0.8 

rl-I-ri 
rr:::lfl 

---------------1------------------r -----------------r -----------------r -----------------1---------- -------

-- " -----------] ----------. -------f -------------. ---] ----------. -------f ----. ------------] ----------------. 
, I • , I I . --------------1----.. -.. ------ ---r -------------- ---1------. -----------r ----- ------------1----. ----- --. ----

. '10e~ 
Condition Number • 

Figure 4.3: Test Results for Ddot _ Kahan 

, --- ," 

reSI Dd~l-sium3 on VeclorSiz."lop, ~iomb.r of Sam~es=l0o a~d MaximumCo,nd~io~ Nuinber';'.1e.+22 

• I I I -------------···----1-------------------··,---------------------,--_.------------------,--------------------. · , . , 
I I • I 
I I • , , , . , , , . , 
, • I • ____________________ 1 _____________________ .1 _____________________ J ______________________ , ____________________ _ 
, I I , 
, , , I 

• I , I · , . . 
, , • I 
, I • , 
I , , • --------------------.---------------------.-------_ .. -_ .... _ ... - .... _ ..... _ .. -.-_.- .. _ .. , ...... _ .. _ .... __ ... _. , . , . , . , , , , , , · , , , · , , , , , , , , , . , _._---_. __ A ••• ___ • _ _ ~ _ _____________ ._. ____ , ___________________ ._ ..... ___________________ , ___ ._. ____ • _______ • __ 

, , . , 
, • I • 
I • , • 
, , I • 
I I I , · , . . 

:::""m::""I::"::':":u':I"::'::::":"t:::'::::::"I: 
-........ ---------.. ; ........ -.. -.-.------1'-------.... ····--·--1'--------············-r-··-·--·-------·--·-

- ~f'-;;-~~~......,.._'_;_----_';;;_----__';_;-----'::;c-----,-,---' 
~ ~ ~ ~ ~ ~ 

Conditioll Number 

Figure 4.4: Test Results for Ddot_Sum3 (Condition Number::; 1030) 

49 



1 
j 

50 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES 

10
2 

'rest D<\ot-Sum3 on Vector Siz~=100. t{Jmber ofSamples"io,oo and Maxikilm Condition NU,mber-leTtOO 
, < '-i-" ','- _;"~".' c ',"0;; ,. .' 

10· 

10-" 

10'" 

£ 10" .. 
~ 

10" :'ii. 

'" 
10-'0 

,'-"', 

',;if" 

Figure 4_5: Test Results for Ddot_Sum3 

" Tesl Odol·iFastSum on Veitor 8;"0=100, f'I,umoo; of8ampies=1pPP and Maximum Condftion Number=1i+1b1l , 

0;8 ----------------1------------------r-----------------1------------------r-----------------1-----------------

:::-::1;1:: 
g, , 0_2 -- -- --------- ---j---- -------- -----·r --- ---------- ----j----- -------------r------ -----------j------ -- --- ------

'''!! : : : : : ,,, !-----i---......j.---'*'---....j..----io---------------
'li 

&! , , . . . 
-0_2 ----------------1------------------r-----------------1------------------:-----------------1-----------------
-0_4 ----------------1------------------i-----------------1------------------i-----------------1-----------------
-0,6 ----------------1- -----------------~ -----------------~ ------------------r -----------. -----~ ------. ----------

-0_8 ----------------1------------------r-----------------1------------------r-----------------1-----------------
-1~------~------~._----~~------~------~~----~, 
~ ~ ~ ~ ~ ~ ~ 

Ctlndition Number 

Figure 4.6: Test Results for Ddot_iFastSum 

50 



, 
I 

~ 
Il 
; I 

j 

--i 

51 

g 
w .. 
.<: 

~ 
'" 

CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES 

Test Ddot:HybtidSum on Vector Si~.='100:Number ofSamples=1000 lind Maximum Condition Number=1e+l00 

0.8 
• , I I I -.--------------.,------------------r-----------------.,------------------t'"-----------------,-----------------
• • I , , , . , , , 
I • , • • , . , . . 
I • , • • 
, I , I • 

0.6 

0;4 

0:2 
flili: 

o • 

-0.2 ::!tl·-:~tl 
-0.8 -·--------------r-----------------r-------------·---1------------------r-----------------1-----------------
-~Ol:9-~-'-l..l0.,.;:-'·----10'-;;<O:-----1""OffJ;;:-. ----. ..Jl0\;;;.,.-... -~.,.,,----10c-';ji»"".'---:--1--'0"2(1 __ 

Condition NumbOr 

Figure 4.7: Test Results for Ddot_HybridSulll 

10' - Tes! Odpt-lAPACK on Vector Size=JOq, NumbSr ofSamples=10,O,O and .!'1aximum Corditiph Number=lenO 

· . --------------.--.--,--------------------- ..... --------------------· . · . · . · . · . 
10.2 ____________________ : _____________________ J ________ _ -----------.--------------------

10"" -------------------.!---------------------..:. · . ----- --~----- ---------- ----- -~- ----- ----------- ---· . · . · . · . · . · . · . --------------------r ------------------ ----------T --------------------1--------------------

"r:rr 
· . · . · . I I I I -----1----- ________________ -< ___________________ __ ~ __ --- --------------- -. - -- -----------------

I 1 I I 
I I I I 
I I • • 
I I , I · . . . , . . . 

10'· 10" 10'" 
Condition Number 

Figure 4.8: Test Results for Ddot_LAPACK (Condition Number:::; 1020) 

51 



52 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES 

Tes! Odot-ORS on Vector S~."100. Number of Samp{es=1000 and Maximum COj1ditjon Number=1e.20 L 

:------!.::-::-:--------------, , . ------_._-----------.----_._-------------- .. ---------------------.,--

I ! 
.-------------------~--------------------~------------ --- ':f;;-"-.;:?rJ-I-----------~--------------------

: : .: if : 

I1-r~r 
--------------------;------------ ---------------------l---------------------!--------------------

. . . . 
--------------------:-c. ________ ::::::_::-L:::::_:::::::::--:1:":::--:--:::::::::::1::::-::-::-::-:-:::: 

10'-' 10" 
~ __ ~~C_OI\Miojj_NiJmbet ~_ ~_~_~~ 

Figure 4.9: Test Results for Ddot _ ORS (Condition Number::; 1020) 

1Q' r-T:..e~st-'-p-'-~o~t-K:..-~:..~":..a-?"'-,-ornV'-e-c'--!or~S-jz-~=-'-1_00_' '--NuTn_'b"'-e!_Of_S-'-am_p~I._S=_'_1'_00'_r.O-a"'--d~fyI-.)(l-'--m-U"-m-C_OI ___ 'd-",jtirOh-'-~"_fyh~lb_e_r=_'_le_f~20____"\ 

· . , ------------------- .... -------------------- .. ---------_._ .. _._ .. --,---- ---_.-.--_._----_ .. ---_ .. _. · . , , · , 
10-2 ___________________ L ___________________ L___ ________ ____ V- ___________ ! __________________ __ 

,~ ···················f+!~i 
••••••••• _ •• _. ______ •• __ • _____ • ___________ J -.-- •• ---- •• -1.-----.-.- .. ---------!----------.---------

, , , , , , , . , . 
--------------------!-------------- -! --------------------1---------------------1--------------------

, . , .--.----------------,----- --------,,---------------------,,_._--------_._ .. _----,------.-------------, , , , , , , , . , , . , , . , , . , , . 
-- --.-.-------.-,---------------------,---------------------T--------------------· . . · . , · . , · . . , . , 

-~ -- --t -- -- -- -- -- -- -- -- -- --(------ -- -- ---- -- -- -1- ---- -- -- -- -- -- ----- -1-- -- -- -- -- -- -- -- ----

10'" 
Condition Number 

Figure 4.10: Test Results for Ddot_Kahan (Condition Number::; 1020) 

52 



.J 

Bibliography 

[1] Donald E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical 

Algorithms, Third edition, Addison-Wesley, Reading, MA, USA, 1998. ISBN 0-

201-89684-2. 

[2] Siegfried M. Rump, Inversion Of Extremely Ill-Conditioned Matrices In Floating

Point. Japan Journal of Industrial and Applied Mathematics, Volume 26, Num-

bel's 2-3, 249-277, DOl: 10.1007/BF03186534, 2008. 

[3] N. J. Higham, Accuracy and Stability of Numerical Algorithm, Second edition, 

SIAM, Philadelphia, PA, 2002. ISBN 0-89871-521-0. 

[4] T. J. Dekker, A floating-point technique for extending the available precision, 

Numer. Math., 18 (1987), pp. 224-242. 

[5] W. Kahan, A survey of error analysis, In Proc. IFIP Congress, Ljubjana, In

formation Processing 71, North-Holland, Amsterdam, The Netherlands, 1972, 

pages 1214-1239. 

[6] Y. K. Zhu and W. B. Hayes, Correct Rounding and a Hybrid Approach to Exact 

Floating-Point Summation, SIAM Journal on Scientific Computing, Volume 31, 

Issue 4, 2009, Pages: 2981-3001, ISSN:1064-8275. 

53 



I 
§ 
9 
iii 

. 1 

-1 

54 BIBLIOGRAPHY 

[7] T. Ogita, S. M. Rump and S. Oishi, Accurate sum and dot product, SIAM Journal 

on Scientific Computing, 26 (2005), pp. 1955-1988. 

[8] I. J. Anderson, A Distillation Algorithm For Floating-Point Summation, SIAM 

J. SCI. COMPUT. Vol. 20, No.5, 1999, pp. 1797-1806 . 

[9] S. M. Rump, INTLAB - INTerval LABoratory, Kluwer Academic Publishers, 

pp. 77-104, 1999, URL: http://www.ti3.tu-harburg.de/ rvrump/intlab/ 

[10] Anderson, E. and Bai, Z. and Bischof, C. and Blackford, S. and Demmel, J. 

and Dongarra, J. and Du Croz, J. and Greenbaum, A. and Hammarling, S. and 

McKenney, A. and Sorensen, D., LAPACK Users' Guide, Third Edition, Society 

for Industrial and Applied Mathematics, Philadelphia, PA, 1999, ISBN:0-89871-

447-8, URL: http://www.netlib.org/lapack/ 

54 


