
SOME HIGHLY ACCURATE BASIC LINEAR

ALGEBRA SUBROUTINES

SOME HIGHLY ACCURATE BASIC LINEAR ALGEBRA

SUBROUTINES

BY

YUHANG ZHAO, B.Sc.

A THESIS

SUBMITTED TO THE SCHOOL OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

© Copyright by YUHANG ZHAO, September 2010

All Rights Reserved

Master of Science (2010)

(Computing and Software)

TITLE:

AUTHOR:

SUPERVISOR:

McMaster University

Hamilton, Ontario, Canada

SOME HIGHLY ACCURATE BASIC LINEAR ALGE

BRA SUBROUTINES

YUHANG ZHAO

B.Sc., (Computer Science)

McMaster University, Hamilton, Canada

Dr. Sanzheng Qiao

NUMBER OF PAGES: ix, 54

ii

Abstract

In the computation of the sum of many floating-point numbers Xi (i = 1,2, ... 17,-1,17,),

the method S = ((... ((Xl +X2)+X3)+ ... +Xn -l)+Xn) is called the Ordinary Recursive

Summation (ORS) algorithm. Since significant digits might be discarded when the

partial sums are rounded, the results are rarely correct. In 1969, Knuth [IJ proposed

a simple algorithm AddTwo for transforming a pair of floating-point numbers (a, b)

into a new pair (x, y) with non-overlapping mantissas and satisfying x = fl(a + b)

and a + b = x + y, regardless of the magnitude of a and b, where x is the floating

point sum of a and b, while y is the roundoff error. We call an algorithm with such

property an error-free transformation. Such transformations are at the center of the

interest of this thesis. Extending the principle of AddTwo to 17, summands is called

distillation by Kahan. Since then, many distillation algorithms have appeared to im-

prove the accuracy of summation. Among them, there are three accurate summation

algorithms SumK, iFastSum and HybridSum, which are particularly appropriate for

ill-conditioned data, where ORS fails due to the accumulation of rounding error and

severe cancellation. In this thesis, we present the accurate summation algorithms

with their properties, and then apply them to improve the accuracy of the LAPACK

subroutines DDOT and DGEMV.

III

Acknowledgements

First I would like to express my deep appreciation to my supervisor, Dr. Sanzheng

Qiao who gave me the great opportunity to study and do research here. I wish to ex-

press my sincere gratitude for his strong support, constant encourage, and instructive

guidance for my research and thesis. His detailed comments, enlightening sugges-

tions, and complete corrections help ameliorate this thesis greatly. I have learned

much from him in both academic research and non-academic fields.

Next I want to thank Dr. Wolfram Kahl. I greatly appreciate his comprehensive

review for this thesis and his valuable suggestions and comments. I would like to

thank Dr. Alan Wassyng for being an examiner of thesis defense committee, and also

his helps through my studies here. I also want to thank Dr. Christopher Anand for

his suggestions and help.

I am grateful to my dearest parents. I would never accomplish any goal in my life

without their selfless love and support in many years.

Finally, I give my special thanks to my wife Jinfang Xu for her support and under-

standing during my studies.

IV

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

2 Summation Algorithms 8

2.1 Kahan's Algorithm . 8

2.1.1 Algorithm Description 9

2.1.2 Properties 11

2.2 SumK 12

2.2.1 Algorithm Description 13

2.2.2 Properties 14

v

2.3 iFastSum.................................. 15

§

I 2.3.1 Algorithm Description 17

2.3.2 Properties 19

2.4 HybridSum 20

2.4.1 Algorithm Description 22

2.4.2 Properties............................. 23

3 Numerical Experiments 25

3.1 Test Data .. 25

3.2 Test Results .. 26

3.3 Accuracy 32

3.4 Running Time . . . 33

3.5 Space Complexity .. 35

4 Application to LAPACK subroutines 36

4.1 Vector Dot Product. .. 36

4.2 Vector-Matrix and Matrix-Matrix multiplications 45

VI

List of Tables

3.1 Test results (returned sums) of the algorithms on the extremely ill-

conditioned data ., 27

3.2 Test results (relative errors) of the algorithms on well-conditioned data 28

3.3 Test results (relative errors) of the algorithms on random numbers

including signs 28

3.4 Test results (relative errors) of the algorithms on Anderson's Ill-Conditioned

Data , 29

3.5 The exact sums of the four testing data sets with different IS values 29

3.6 Test timing of the algorithms on the extremely ill-conditioned data 30

3.7 Test timing of the algorithms on the well-conditioned data , 31

3.8 Test timing of the algorithms on the random numbers including signs 31

3.9 Test results of the algorithms on the Anderson's Ill-Conditioned Data 31

vii

3.10 The least K and Running Time for SumK to produce the correct results

on the extremely ill-conditioned data 32

4.1 Measured computing time for different dot product algorithms with

Ddot LAPACK Hormed to 1 44

viii

List of Figures

1.1 Algorithm TwoSum 5

2.1 Recovering the rounding error 10

3.1 Comparison of Timing Results of iFastSum, HybridSum and Sum3 . 34

4.1 Test Results for Ddot _ Lapack . 48

4.2 Test Results for Ddot ORS . 48

4.3 Test Results for Ddot Kahan 49

4.4 Test Results for Ddot_Sum3 (Condition Number :S 1030) 49

4.5 Test Results for Ddot Sum3 ... 50

4.6 Test Results for Ddot iFastSum. 50

4.7 Test Results for Ddot_HybridSum 51

4.8 Test Results for Ddot_LAPACK (Condition Number :S 1020) . 51

4.9 Test Results for Ddot_ ORS (Condition Number :S 1020) . 52

4.10 Test Results for Ddot_Kahan (Condition Number :S 1020) 52

ix

Chapter 1

Introduction

In this thesis, we study the problem of accurate summation and vector dot product

of large vectors of floating-point numbers. Accurate summation and vector dot prod-

uct have applications in many areas of numerical analysis, e.g., in accurate matrix

multiplication, in iterative refinement of the solution of Ax - b, in the problem of

inversion of extremely ill-conditioned matrices [2]. Since vector dot product can be

transformed into summations, we put the main effort on accurate summations.

Summation is the fundamental task in numerical computation, Higham devoted a

chapter for the problem of summation in [3]. In the standard computer systems,

floating-point numbers are stored with limited digits. In the addition of two floating

point numbers, the computer arithmetic first aligns the two summands with the same

exponent, and then computes the sum and rounds it to fit in the limited digits. Some

digits might be discarded during the rounding, which is called the rounding error.

1

2 CHAPTER 1. INTRODUCTION

In the computation of the sum of many floating-point numbers Xi (i = 1,2, ... n-1, n),

the method S = ((",((Xl + X2) + X3) + ... + Xn-l) + xn) is called the Ordinary Recur

sive Summation (ORS) algorithm. Since significant digits might be discarded during

the floating-point additions, the results are rarely correct due to cancellation. The

condition number

of the set of floating-point numbers Xi is used to measure the severity of cancellation.

In the following, we use flO where ".11 E {+,-,*,\} to denote the floating-point

arithmetic. Let y = fl(x) denote the assignment that assigns to y the floating-point

number closest to x. Assume a ::; X < b, where a and b are two adjacent floating-point

numbers. We say that y is correctly rounded if y is rounded to the nearest of a or b

determined by the value of x. If X is the mid-point of a and b, y should be rounded

to a or b deterministically. We say that y is faithfully rounded if y is rounded to a

only when x = a, and either a or b otherwise. In the following, we assume that the

ordinary computer arithmetic flO is correctly rounded.

Let fJ denote the base of the floating-point number, t denote the length of the man-

tissa, and l denote the length of exponent where both mantissa and exponent are

represented in base fJ. We use the IEEE754 double precision standard where fJ = 2,

t = 53 including an implicit bit and l = 11. We assume a double floating-point num

ber is stored in the computer by 64 bits and the bit operations are allowed.

We denote the relative rounding error unit of the given format by eps which is also

2

3 CHAPTER 1. INTRODUCTION

called Machine Epsilon [3]. According to the IEEE754 standard, floating point op

erations satisfy fl(a . b) = (a· b)(l + E) where ".11 E { +, - } and lEI:::; eps. In

mathematical terms, the fl-notation implies Ifl(a· b) - a· bl :::; epsla· bl. The relative

rounding error unit gives an upper bound on the relative error due to rounding in

floating point arithmetic. In IEEE754 the quantity eps = ~(31-t = 2-53 . We use Ulp

to denote Unit in the Last Place [3]. It is the gap between the floating-point numbers

nearest a given real number. More generally, it is the absolute value of the distance

between the two floating-point numbers which are closest to a given number. It is

used as a measure of accuracy in numeric calculations. One Ulp of the floating-point

thesis we assume no overflow occurs, but allow underflow.

Some algorithms diminish rounding errors by sorting the input data, which incurs

the extra time O(n log n) for adding n floating-point numbers. Some algorithms use

long accumulators for summations to minimize the rounding errors. Both approaches

slow down the programs performance. There is another approach to improve the ac-

curacy of the floating-point summations by compensated summation. This approach

estimates the rounding error from the floating-point summation and recycles it at the

succeeding summations.

In 1969, Knuth [1] proposed a simple algorithm AddTwo for transforming a pair

of floating-point numbers (a, b) into a new pair (x, y) with non-overlapping mantissas

and satisfying x = fl(a + b) and a + b = x + y, regardless of the magnitude of a and

b, where x is the floating-point sum of a and b, while y is the roundoff error. We call

3

4 CHAPTER 1. INTRODUCTION

an algorithm with such property an error-free transformation. Such transformations

are at the center of the interest of this thesis. Other error-free transformations like

TwoProduct, Split and VecSum will be presented when they are applied in the later

chapters.

ALGORITHM (x, y) = AddTwo(a, b)

(1) x = fl(a + b)

(2) z=fl(x-a)

(3) y = fl((a - (x - z)) + (b - z))

Let's briefly describe how the algorithm works, the working mechanism is illustrated

in Figure 1.1. Assume a > b > 0 and a overlaps b. The other cases like a < b, or a

does not overlap b can be treated in the similar way. First we compute x = fl(a+b),

which is the sum of a and b using the ordinary computer arithmetic. Then we esti

mate the quantity z by z = fl(x-a), which satisfies fl(a+b) = fl(a+z). In Step (3)

we compute the rounding error y by y = fl((a - (x - z)) + (b - z)). In this example,

we assume a> b > 0 and a overlaps b, therefore fl(a - (x - z)) = 0 and fl(b - z) is

the estimated rounding error.

Algorithm AddTwo plays a fundamental role in the highly accurate algorithms like

SumK [7], iFastSum and HybridSum [6], since they all apply the algorithm instead

of the ordinary computer fl(+) arithmetic so that all of the rounded errors are pre-

served. No significant digits are discarded during their summations.

4

5 CHAPTER 1. INTRODUCTION

x=fl(a+b)

1---·---- ---- ---,

I I
I :
I a ~--4n~------------~
I ~I __ -*y ____________ ~
L _________________ J

b
f-- z ---I

f--:--b-z

Figure 1.1: Algorithm TwoSum

Another compensated summation is the following algorithm by Dekker[4].

ALGORITHM [x, y] = FastTwoSum(a, b)

x = fZ(a+ b)

y = fZ((a - x) + b)

Dekker showed in 1971 that the result is exact if the input is ordered by magni-

tude, that is x + y = a + b given JaJ 2: JbJ. However, branches involved in the sorting

of a and b may increase the computing time due to the lack of compiler optimization.

We will see in Chapter 2 that Kahan applied this idea in his summation algorithm.

Kahan's algorithm performs well with most data sets and gives more accurate results

than OPLS. This method is recommended as an efficient algorithm for general data.

Extending the principle of AddTwo to n summands is called distillation by Kahan

[5], because we can think of it as a process to seperate the significant parts of each

5

6 CHAPTERl. INTRODUCTION

summand and then add that part into the sum. It is an iterative refinement using Ad-

dTwo to create a new array of floating-point numbers with mutually non-overlapping

mantissas, but whose sum is exactly equal to the sum of the original array.

We will see in Chapter 2 that Rump applied the idea of distillation in his accurate

array summation algorithm SumK [7], which has an integer parameter K representing

the limit of the numbers of the iterative refinements. For sufficiently large K, the al-

gorithm is guaranteed to return the correct result. However, it is not easy to know the

proper value of K beforehand, and always using a large value of K will cause overhead.

Recently, Y. K. Zhu proposed two highly accurate array summation algorithms iFast-

Sum and HybridSum [6J. The idea of distillation was also applied in iFastSum with a

clever method to control the loops of iterative refinements on the array. HybridSum

uses a large number of "buckets" to store the partial sums, and its running time is

independent of the condition number.

This thesis has two purposes. The first is to present comparisons of the above-

mentioned four accurate summation algorithms. Those algorithms are applicable to

all sets of data but are particular appropriate for ill-conditioned data where ORS fails

due to the accumulation of rounding error and severe cancellation. The second pur-

pose is to apply those summation algorithms to DDOT and DGEMV, which are two

fundamental subroutines of LAPACK [10J. The first 'D' in the function name suggests

that it works in the double precision. LAPACK is a Linear Algebra PACKage with

a rich set of subroutines concerning the following algebra problems: linear equations,

6

7 CHAPTER 1. INTRODUCTION

linear least squares problems, eigenvalue problems and singular value problems. In

the following we use the C-LAPACK instead of the Fortran 77 implementation. BLAS

is a set of subroutines that implements low level functions for vectors and matrices

operations used in LAPACK. BLAS is divided into three levels.

Levell: vector/vector operations;

Level 2: matrix/vector operations;

Level 3: matrix/matrix operations.

LAPACK routines perform their computations with the facilities offered by BLAS

routines.

This thesis is organized as follows. In Chapter 2 we will present the four accurate

summation algorithms as well as their properties. In Chapter 3, we will compare the

summation algorithms in accuracy, execution time and space complexity. Numerical

results are also included to support the comparisons. In the last part, the summation

algorithms are applied to improve the performance of some LAPACK subroutines,

and we also supply the numerical results.

7

Chapter 2

Summation Algorithms

In this chapter, we will present the four recent summation algorithms. We also ana-

lyze how and why the summation algorithms work.

2.1 Kahan's Algorithm

Kahan's algorithm is a compensated summation algorithm. In 1951 Gill noticed that

in computing the sum of two numbers, the rounding error could be estimated by sub-

tracting one summand from the sum. In 1970 Kahan used the similar idea to derive

a compensated summation method to compute the sum of a floating-point number

array [3].

8

9 CHAPTER 2. SUMMATION ALGORITHMS

ALGORITHM: Sf- Kahan(x,n)

Input: x, the array of the given floating-point summands

n, the length of the array

Output: s, the sum of the array

1. S f- 0; e f- 0;

2. for if-I to n

(a) temp f- s;

(b) y f- Xi + e;

(c) sf-temp + y;

(d) e f- (temp - s) + y;

3. END

2.1.1 Algorithm Description

Figure 2.1 gives an intuitive explanation of Compensated Summation. Assume a and

b are two floating point numbers with lal 2': Ibl. Let's denote S = a + band s =

fl(a + b). The figure shows that if we evaluate e = - fl(Jl(Jl(a + b) - a) - b) with

floating-point arithmetic flC) in the order indicated by the parentheses, then the

computed e will be a good estimate of the error S - s. For rounded floating-point

arithmetic in base 2, we have S = s + e, that is, the computed e represents the error

exactly. This result is proved by Knuth in [1].

The main idea of Kahan's algorithm is to keep the rounding error of the current

summation and feed it back into the next summation. It employs a correction term

9

.,

i
!

10 CHAPTER 2. SUMMATION ALGORITHMS

a a2

+ b b2

- a al a2
'----'----'

/I
= s-a

- b

= (~- a)- b

e = -((~-a)- b)
= (a -~)+ b

bl 0

bl b2

I -b21

b2

0

0

Figure 2.1: Recovering the rounding error

on every step of a recursive summation to diminish the rounding errors. Specifically,

a correction term is computed immediately after each partial sum is calculated, and

in the next loop it is added into the next summand Xi before that summand is added

to the partial sum.

Step 1 first initializes the variable s which is used to store the partial sum of the

floating-point array X, and then it initializes the correction term e. Step 2 is the main

loop of the algorithm. Step 2(a) first records the partial sum s of the previous loop in

the variable temp. In Step 2(b) the correction term e computed in the previous loop

is added to the current summand Xi to compute the corrected summand y. Step 2(c)

adds the corrected summand y to the previous partial sum to compute the current

partial sum. Step 2(d) estimates the rounding error generated by step 2(c) and stores

it in e as the correction term to be applied in the next loop.

10

·1

11 CHAPTER 2. SUMMATION ALGORITHMS

2.1.2 Properties

• The algorithm has two weaknesses. First, the correction term e computed in

Step2(d) may not be the exact rounding error, because the correction term e is cal-

culated based on the assumption that lal ;::: Ibl. (see Figure 2.1). If the condition

lal ;::: Ibl is not satisfied, the correction term e is always computed to zero. In other

words, the computation of the current partial sum shares the same error estimated

with the ordinary addition operation in computer. Second, the local error generated

by the addition y = Xi + e in Step2(b) is discarded.

• Comparing with the sum s = l:~=1 Xi computed by ORS, Kahan's algorithm

improves the error bound of the sum significantly. Knuth showed that the sum s

computed by Kahan algorithm satisfies [1]

n

s = 2..:(1 + Oi) . Xi, whereloil:S 210 + O(nc2
).

i=l

• If the condition number of the floating-point number array X is very large, that is

if 2:~=1 IXil » 12:~=1 xii, Kahan algorithm is not guaranteed to yield a small relative

error.

11

12 CHAPTER 2. SUMMATION ALGORITHMS

2.2 SumK

SumK extends the idea of the error-free transformation for two floating-point num-

bers to floating-point number array. The working mechanism of SumK is to iterate

K - 1 applications of the array transformation to produce a result as if it is com-

puted in K-fold working precision. We say the result is "as if computed in K-fold

working precision 11 , because it shares the same error estimated with first comput-

ing the sum of the array by K-fold working precision and then rounding the result

back into the working precision, i.e., the result s' should satisfy Is' - ~~=1 xii ::;

epsl ~~=1 Xii + (<p. eps)K ~~=llxil with a constant <po For example, assume the work

ing precision is single precision in IEEE754 floating-point standard, and K = 2 which

means the 2-fold working precision, the result is almost as accurate as computing the

array sum in double precision and then rounding back to single precision.

SumK improves Kahan's algorithm in two aspects. First, the error-free transfor-

mation AddTwo in SumK for two floating-point numbers a and b does not require lal

;:::: Ibl. Second, SumK could iterate array transformation for more than one time to

produce a more accurate result.

ALGORITHM: s f- SumK(x, n, K)

Input: x, the array of the given floating-point summands

n, the length of the array

K, it performs K-1 transformation iterations on x

Output: s, the correctly rounded sum of the array

1. for k f- 1 to K - 1 / / loops of error-free array transformations

12

13 CHAPTER 2. SUMMATION ALGORITHMS

2. x f- VecSum(x);

3. Sf- 0;

4. for if-I to n / / sum up the floating-point numbers in x

5. Sf- S + Xi;

6. END

FUNCTION: x' f- VecSum(x, n)

Input: x, the array of the given floating-point summands

n, the length of the array

Output: x', the transformed array

1. for i f- 2 to n

3. END

2.2.1 Algorithm Description

Denote x' as the output array of Function VecSum. The array x is transformed by

function VecSum without changing the sum, such that ~~=1 Xi = ~:1 x~, and the

last summand of the array is replaced by fl(~~=l Xi)' Denote s' = fl(~~=l xD,

S = ~:1 Xi and S = ~~=llx~l, we have

Is' - sl :S epsisl + 1';-1 S,
n· eps

where 'Yn = and n· eps « 1
1- n· eps

13

14 CHAPTER 2. SUMMATION ALGORITHMS

The proof was given by Rump in [7]. The inequality implies that the sum of the

transformed array shares the same error estimated as if computed in doubled work-

ing precision and rounded back to working precision.

SumK applies VecSum on x for K - 1 times, and then sums up the array by us

ing standard floating-point addition arithmetic. After applying the transformation

on the array x for K - 1 times, the sum of the array satisfies for K 2': 3 [7],

Note that, the second term /1£.-2S reflects that the result is computed in K-fold

precision, since /2n-2 ~ (2n - 2)eps with n· eps « 1. The term 3/~_1 is negligible

compared to eps. So the first term is approximated to epslsl which reflects that the

result is rounded back into the working precision.

2.2.2 Properties

• SumK requires only ordinary addition and subtraction arithmetic in computer. It

does not require extra working precision. Access to mantissa or exponent is not

needed.

14

1
I

15 CHAPTER 2. SUMMATION ALGORITHMS

• K - 1 is the number of applications of VecSum on the array x. K must be in-

creased either with the number of summands n, or the condition number. For large

enough K, the algorithm is guaranteed to produce a correct result. The author of

SumK suggests a value of K = 3 for practical purposes. [7]

2.3 iFastSum

iFastSum is a typical iterative refinement algorithm. It applies AddTwo operations

instead of the standard addition operations in computer. The local errors generated

by addition operations are kept in the array instead of being discarded. The input

array x acts as the storage for local errors generated by each refinement. The algo-

rithm iterates refinements until the sum of errors is small enough. Then it performs

a careful check on the errors and returns the correctly rounded sum.

ALGORITHM: s +- iFastSum(x, n)

Input: x, the array of the given floating-point summands

n, the length of the array

Output: s, the correctly rounded sum of the array

Global: rc , indicates if a recursive call of iFastSum occurs, initially 0

1. s +- 0; loop +- 1; / / loop counts the number of loops

2. for i +- 1 to n / / accumulate first approximation

15

16 CHAPTER 2. SUMMATION ALGORITHMS

3. loop forever / / main loop

(1) count f- 1; St f- 0; loop f- loop + 1; Sm f- 0;

/ / count points to the next position in x to store the local error

/ / St is the temporary sum

(2) for if-I to n

(a) (St, xcount) f- AddTwo(St, Xi);

(b) if Xcount of 0, then

(i) count f- count + 1;

(ii) Sm f- max(sm, IStl);

(3) em f- (count- 1) . HalfUlp(sm);

/ / each local error :S HalfUlp(sm)

/ / Xcount: local error

/ / em is the weak upper bound on magnitude of the sum of the errors

(4) (s, St) f- AddTwo(s, St); St f- Xcount; n f- count;

(5) if em = 0 or em < HalfUlp(s), then

(a) if rc > 0, then return s; / / return S if it is a recursive call

(b) (WI, e1) f- AddTwo(St, em);

(c) (W2' e2) f- AddTwo(St, -em);

(d) if (for j = 1, 2) fl(wj + s) of S or Round3(s, Wj, ej) of s, then

4. END

(i) rc f- 1; Sl f- iFastSum(x, n); / / first recursive call

(iii) S2 f- iFastSum(x, n); rc f- 0; / / second recursive can

(iv) S f- Round3(s, Sl, S2);

(e) return s;

16

I
i
I

.;

-:

17 CHAPTER 2. SUMMATION ALGORITHMS

FUNCTION: R r- Round3(so, Sl, S2)

Input: So, Sl, 82, the three floating-point numbers,

where fl(so+sd = 80 and fl(Sl +S2) = Sl

Output: r, correctly rounded SO+Sl +S2

1. if Sl has the form of 1.0 x 2e and Sign(sl) = Sign(s2), then

return fl (1.1 X 81 + so); / / magnify Sl and add it to So

2. return So; / / Sign(s) returns 1 if x> 0, 0 if x = 0, and -1 otherwise

3. END

2.3.1 Algorithm Description

In the following, we present a brief description of the working mechanism of iFastSum.

More detailed descriptions and the proof of the algorithm correctness can be found

in [6].

In Step 2, we first compute the sum of the floating-point numbers in the original

array by accumulating Xi in s. We compute the sum of Xi by applying AddTwo op-

erations instead of the standard floating-point addition operations in computer. The

computed sum of the array is stored in the global sum s. All the local addition errors

generated by AddTwo operations are put back into the original array x. Those local

errors become summands in the array for later operations. Denoting the array after

17

18 CHAPTER 2. SUMMATION ALGORITHMS

step 2 as x', Step 2 is actually an error-free transformation on the original array since

Step 3 is the main distillation loop. It repeats refinement until the global error

bound em is small enough. The proof of the termination of loops can be found in [6].

In Step 3(2), it performs a refinement on the array x and computes the sum St of the

array. During the traverse of array x from Xl to X n , it records the largest absolute

value of St in Sm, which will be used in Step 3(3) to estimate the sum of local errors

left in the array. After the refinement is done, in the worst case, every element left in

the array is at most !Ulp of Sm since the property of Add Two suggests that in (a', b')

= AddTwo(a, b), if b < !Ulp(a) then a' = a and b' = b. Note that it is different from

Step 2, only nonzero errors are redistributed back into the array.

Step 3(3) estimates a weak upper bound em for the sum of the current array x,

because after Step 3(2) all the errors left in array are at most !ulp(sm) due to the

property of AddTwo operation. Subfunction HalfUlp(n) returns n' =!ulp(n) if n' is

representable by a floating-point number, otherwise it returns O.

In Step 3(4), the temporary sum computed in Step 3(2) is added to the global sum

s. The error of this operation is appended to the array. There is no out-of-boundary

problem for the array x. Note that when i = 1 in Step 3(2a), Xcount (where count

= 1) is zero because St is initialized to 0 in Step 3(1). Since count points to next

position in array, we always have count < n after Step 3(2) is executed. Therefore

18

I
1

: ,

19 CHAPTER 2. SUMMATION ALGORITHMS

the new length of the array x is less than n. So St can be appended into the array

safely without out-of-boundary problem. The new length n of the array is updated

for next refinement.

In Step 3(5), it first checks whether the error bound em computed in step 3(3) is

small enough.

Case1: if the estimated sum of the array is not small enough, it will repeat the re-

finement.

Case2: if the estimated sum of the array is small enough, a careful check is performed

to ensure the sum is correctly rounded. If the local error St and the estimated sum

of error array em can not affect the global sum s, that is, the condition 3(5)(d) is

not satisfied, then S is returned as the exact sum. Otherwise the exact sum will be

represented by three floating point numbers with non-overlapping mantissa. Since

the local errors are left in the array, two recursive calls of iFastSum are executed to

compute the non-overlapping numbers. Function Round3 is used to compute the cor-

rectly rounded sum of three floating-point numbers with non-overlapping mantissa.

2.3.2 Properties

• iFastSum returns the correctly rounded sum of a floating-point numbers array.

• The accuracy of the sum is independent of condition number and the number of

summands.

• iFastSum requires constant storage and its space complexity is 0(1).

19

1
I

20 CHAPTER 2. SUMMATION ALGORITHMS

• It doesn't require extra precision accumulators.

2.4 HybridSum

The main idea of HybridSum is as follows. It first creates large numbers of "buckets 11

and each bucket acts as an accumulator for summing up the floating-point numbers

of a particular exponent. Each summand in the input floating-point number array x

is "split 11 into two numbers of which each has half as many nonzero mantissa digits

as the original summand. Therefore the accumulator can act as an extra-precision

accumulator for the split numbers. After all of the summands are added to the cor-

responding accumulators, iFastSum is applied to sum up those accumulators. It is

proved that if the number of summands entering an accumulator is less than a certain

value, then no significant digits are discarded [6]. The limit number is N=,6Lt/2J with

,6 = 2 and t = 53 according to the IEEE754 standard.

ALGORITHM: S f- HybridSum(x, n)

Input: x, the array of the given floating-point summands

n, the length of the array

Output: s, the correctly rounded sum of the array

Constant: N = ,6Lt/2J

1. initialize two arrays, al and a2, each with ,6l floating-point numbers

20

1
I

21 CHAPTER 2. SUMMATION ALGORITHMS

2. set all the numbers in a1 to be zero

3. i t-- 1; I I i records the next summand in x we will process

4. m t-- min(n, N);

I I m records how many summands a1 will process in each loop

5. loop forever I I if n > N, r ~=~ 1 + 1 iterations; otherwise 1 iteration

(1) for k t-- 1 to mil add summands in x with a1

(a) {ZI,Z2} t-- Split(xi); it-- i + 1;

(b) j t-- exp(zl) + /31-\ a1j t-- fl(a1j + zd;

(c) j t-- exp(z2) + /31-\ a1j t-- fl(a1j + Z2);

I I add two split parts by the corresponding accumulator a1j'

I I expO returns the exponent of a floating-point number,

I I assume that the minimum exponent is 1 - /31-1.

(2) n t-- n - m; I I n records the number of unprocessed summands in x

(3) if n = 0, then go to Step6; I I the ending condition

(4) set all the numbers in a2 to be zero;

(5) for k t-- 1 to /31 I I add partial sums in a1 with a2

(a) {Zl,Z2} t-- Split(alk);

(b) j t-- exp(zd + /31-1; a2j t-- fl(a2j + Zl);

(c) j t-- exp(z2) + /31-\ a2j t-- fl(a2j + Z2);

(6) swap two array points, a1 and a2;

(7) m t-- min(n, N - /31);

I I the newly initialized a1 has already processed /3 l summands

6. return iFastSum(a1, /31);

7. END

21

,

1
I

22 CHAPTER 2. SUMMATION ALGORITHMS

FUNCTION:

Input: Z) the given floating-point number

Output: Zl and Z2) split Z into two floating-point numbers) each with half

of z)s mantissa.

1. Zl ~ z;

2. set the last l (t + 1) /2 J digits of the mantissa of Zl be zero;

5. END

2.4.1 Algorithm Description

There are f31 many distinct exponents in the working precision. Therefore f31 many

accumulators need to be created. In Step 1) two arrays of accumulators are pre-

allocated) where the size of each array is f31. Step 2 initializes the accumulators in

the arrayal to zero and Step 3 initializes the variable i which is used to record the

position of the next summand in the array x.

HybridSum does not limit the number of summands to enter each accumulator. In-

stead) it limits the total number of the summands entering the accumulator array in

one loop. Therefore each accumulator is guaranteed to process less than N summands

in one loop. If n > N) r ;:;-=;11 + 1 loops are iterated for processing all summands in

22

-j
j

23 CHAPTER 2. SUMMATION ALGORITHMS

the array x. In Step 4 the variable m is set to record how many summands for al to

process in a loop.

In Step 5(1), the m summands in array x are split and added to the corresponding

accumulators. Step 5(2) updates the number of unprocessed summands in the array

x. In Step 5(3), if all summands in the array x have been processed, it breaks the loop.

From Step 5(4) to Step 5(6), the numbers in al are split again and distributed to

the corresponding accumulator in the array a2. The array a2 is used to store the

intermediate sums accumulated in al in one loop. Then it swaps al with a2, and a2

will be the accumulators array for the next iteration. In Step 5(7), since there are

already f31 numbers in al, m is updated and it goes to next loop.

In Step 6, iFastSum is used to sum up all accumulators and return the correctly

rounded sum.

2.4.2 Properties

• HybridSum returns the correctly rounded sum of a floating-point number array .

• HybridSum sums up numbers of a particular exponent by the corresponding ac-

cumulator, and afterwards sums up the accumulators by iFastSum. Therefore only

23

24 CHAPTER 2. SUMMATION ALGORITHMS

one traverse of the input array is required and the cost is O(n). Thus the time com-

plexity of HybridSum is O(n) plus the cost for iFastSum to sum up the accumulators.

When n is large, the cost for iFastSum to sum up the accumulators can be ignored.

Therefore the time complexity of Hybridsum is O(n) and it is independent of the

condition number .

• Another advantage of HybridSum is its space complexity. No matter how many

summands in the input array x, HybridSum only allocates 2 arrays with size (3l.

Therefore the space complexity is O((3l).

24

.j
;

l

Chapter 3

Numerical Experiments

In this chapter, we compare the performances of the following algorithms: ORS (Or

dinary Recursive Summation), Kahan's algorithm, SumK (K = 3), iFastSum and

HybridSum. We use the standard IEEE754 double precision arithmetic where fJ = 2,

l = 11 and t = 52. All the algorithms are implemented in ANSI C and compiled by

GCC 4.1.2. The programs are run on a server with four AMD 2.53GHz dual-core

Processors and 8GB physical memory. The operating system of the server is X86

64bit Redhat Linux.

3.1 Test Data

The algorithms are tested on four kinds of data with size n=10,OOO,OOO. A param-

eter 0 is used to denote the maximum exponent difference of the generated random

25

26 CHAPTER 3. NUMERICAL EXPERIMENTS

numbers. Different values of 0 from 8 to 1800 are considered.

(1) Data Set No.1 is an extremely Ill-Conditioned data for which the exact sum equals

zero. They are generated as the following: After a random number a is generated, it

is put into the first half part of the data set. Then the number with the opposite sign

-a is put into the other half part of the data set.

(2) Data Set No.2 is a well-conditioned data where the random numbers are all posi

tive. The condition number of the data computed by R = fff~ll::11 is 1.

(3) Data Set No.3 is the random numbers including signs.

(4) Data Set No.4 contains the Anderson's Ill-Conditioned data. They are generated

by first generating random numbers including the signs, then subtracting the mean

of the data from each number. This method was proposed by 1. J. Anderson in [8].

The condition number of the transformed data is more than 109 .

3.2 Test Results

In the test using Data Set No.1 (extremely ill-conditioned data) where the exact sum

of the data eaquls zero, we list the exact results returned by the algorithms in Table

3.1. The Size of test data is 10,000,000. From Table 3.1 we observed that, ORS

and Kahan's algorithm never return a correct sum. We denote SumK (K = 3) as

Sum3 in the following. When 0 is greater than 64, Sum3 fails to return the correct

sums. However, iFastSum and HybridSum always return the correct sums. Therefore,

iFastSum and HybridSum are both reliable algorithms to return the correctly rounded

sum of the testing data. Thus in the tests using Data Set No.2, No.3 and No.4, we use

26

27 CHAPTER 3. NUMERICAL EXPERIMENTS

Data Set No.1: Extremely Ill-Conditioned Data
0 R ORS Kahan Sum3 iFastSum HybridSum
8 1.0723e+17 5.5723e-10 4.8850e-14 O.OOOe+OO O.OOOOe+OO O.OOOOe+OO
32 8.1573e+16 -7.5298e-07 -2.1270e-11 O.OOOe+OO O.OOOOe+OO O.OOOOe+OO
64 5.4110e+16 -3.7190e-02 -4.9950e-06 0.000e+00 O.OOOOe+OO O.OOOOe+OO
128 9.8596e+15 4.3985e-I-08 -5.3024e+04 -5.7260e-19 O.OOOOe+OO 0.0000e+00
256 7.1814e+16 5.5912e+26 -7.078ge+21 7.8125e+00 O.OOOOe+OO O.OOOOe+OO
512 2.0588e+16 3.3298e+65 7.7133e+61 3.5092e+38 O.OOOOe+OO O.OOOOe+OO
1024 3.2686e+16 -1.2231e+ 142 1.348ge+ 139 -3. 7324e+ 114 O.OOOOe+OO O.OOOOe+OO
1800 2.7906e+17 1.7946e+258 7.8230e+255 -2.4137e+231 O.OOOOe+OO 0.0000e+00

Table 3.1: Test results (returned sums) of the algorithms on the extremely ill
conditioned data

the results returned by HybridSum as the correct results, and list the relative errors

of the results returned by all algorithms. The Size of test data is 10,000,000. The

results are listed in Table 3.2, Table 3.3 and Table 3.4. We also list the exact sums of

the data sets using the results returned by HybridSum in Table 3.5. As we know, the

IEEE754 double precision is about 16 decimal digits. Due to the limit of space, we

can not print all the 16 decimal digits of the results. Thus listing the relative errors

of the results is more illustrative for comparison.

From Table 3.2 to Table 3.4 we observed that in the testing of Data Set No.2 - the

well-conditioned random data with R = 1, ORS never returns the correctly rounded

sums. The relative errors of the results returned by ORS have the magnitudes around

10-13 . In our test using Data Set No.3, the numbers are random including the signs.

In this case, ORS never returns the reliable results. Kahan's algorithm fails to return

the correctly rounded sums in the case of 8 is 256 and 512. However, the relative

errors of Kahan's results have the magnitude about 10-16 , which is within the machine

27

I

J

=

-J
!

28 CHAPTER 3. NUMERICAL EXPERIMENTS

Data Set No.2: Positive Random Data
0 R ORS Kahan Sum3 iFastSum HybridSum
8 1.0000e+00 2.3678e-15 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
32 1.0000e+00 4.5310e-14 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
64 1.0000e+00 6.0914e-12 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
128 1.0000e+00 3.1221e-12 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
256 1.0000e+00 1.4773e-12 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
512 1.0000e+00 7.5036e-13 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
1024 1.0000e+00 4.0242e-13 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
1800 1.0000e+00 3.7735e-13 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO

Table 3.2: Test results (relative errors) of the algorithms on well-conditioned data

Data Set No.3: Random including sign
0 R ORS Kahan Sum3 iFastSum HybridSum
8 1.6974e+03 7.3953e-14 O.OOOOHOO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
32 9.3762e+02 4.9218e-14 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
64 4.7283e+02 2.1110e-14 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
128 3.3738e+02 3.8770e-14 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
256 2.3632e+02 1.3738e-15 1.144ge-16 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
512 1.8378e+02 2.3644e-14 1.7778e-16 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
1024 1.2234e+02 1.5986e-14 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
1800 1.6478e+02 1.5228e-14 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO

Table 3.3: Test results (relative errors) of the algorithms on random numbers includ
ing signs

precision. In our test using Data Set No. 4 - the Anderson's Ill-Conditioned data

with the condition numbers greater than 109, only Sum3, iFastSum and HybridSum

always return the correctly rounded sums.

Next we present the Liming results. From Table 3.6 to Table 3.9 we list the time cost

by each algorithm to return the results. We display the absolute value of the time in

the unit of millisecond, and also the ratio in parenthesis with the time of HybridSum

28

I
1 ,

I

i

: ,

29 CHAPTER 3. NUMERICAL EXPERIMENTS

Data Set No.4: Anderson's Ill-Conditioned Data
0 R ORS Kahan Sum3 iFastSum HybridSum
8 3.0678e+16 1. 121ge-0l 2.0883e-04 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
32 1.5902e+16 1. 6960e-0l 6.8941e-04 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
64 4.4333e+13 1.1584e+03 7.5702e-03 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
128 1.5655e+13 6.00l6e+02 5.1350e-03 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
256 1.5962e+13 1.2296e+03 6.6594e-03 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
512 8.1574e+12 1.1522e+03 9.5511e-04 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
1024 5.0964e+12 2.2227e+03 4.3694e-03 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO
1800 1.7800e+12 4.3102e+03 1.6377e-03 O.OOOOe+OO O.OOOOe+OO O.OOOOe+OO

Table 3.4: Test results (relative errors) of the algorithms on Anderson's Ill
Conditioned Data

The exact sums of the four testing data sets
0 Data Set No.1 Data Set No.2 Data Set No.3 Data Set No.4
8 O.OOOOe+OO 5.9786e+07 3.5222e+04 2.1951e-09
32 O.OOOOe+OO 6.1460e+l0 6.5548e+07 4.6570e-06
64 O.OOOOe+OO 2.0l25e+15 4.2560e+12 -3.9283e-02
128 O.OOOOe+OO 4.3251e+24 1.2820e+22 -4.6077e+08
256 O.OOOOe+OO 3.9925e+43 1.6895e+41 -2.0405e+27
512 O.OOOOe+OO 6.8042e+81 3.7024e+79 7.2833e+65
1024 O.OOOOe+OO 3.9660e+ 158 3.241ge+ 156 3.5276e+ 142
1800 O.OOOOe+OO 4.9906e+275 3.0290e+273 6.5462e+259

Table 3.5: The exact sums of the four testing data sets with different (j values

29

30 CHAPTER 3. NUMERICAL EXPERIMENTS

Data Set No.I: Extremely Ill-Conditioned Data
0 R ORS Kahan Sum3 iFastSum HybridSum
8 1.0723e+17 0.06 (0.10) 0.17 (0.27) 0.91 (1.47) 0.76 (1.23) 0.62 (1.00)
32 8.1573e+16 0.06 (0.10) 0.17 (0.27) 0.91 (1.47) 0.77 (1.24) 0.62 (1.00)
64 5.4110e+ 16 0.06 (0.10) 0.17 (0.27) 0.91 (1.47) 1.00 (1.61) 0.62 (1.00)
128 9.8596e+15 0.06 (0.10) 0.17 (0.27) 0.92 (1.48) 1.37 (2.21) 0.62 (1.00)
256 7.1814e+16 0.06 (0.10) 0.17 (0.27) 0.90 (1.46) 2.17 (3.50) 0.62 (1.00)
512 2.0588e+16 0.06 (0.10) 0.17 (0.27) 0.91 (1.47) 3.70 (5.97) 0.62 (1.00)
1024 3.2686e+16 0.05 (0.08) 0.17 (0.27) 0.91 (1.47) 6.51 (10.50) 0.62 (1.00)
1800 2.7906e+17 0.05 (0.08) 0.17 (0.27) 0.91 (1.47) 10.74 (17.32) 0.62 (1.00)

Table 3.6: Test timing of the algorithms on the extremely ill-conditioned data

is normed to 1. From Table 3.6 to Table 3.9 we observed that when the size of

data are the same, the running time of ORS, Kahan's algorithm and HybridSum are

independent of 6. The running time of Sum3 is also independent of 6. However,

when the extremely ill-conditioned data is used, Sum3 starts to return the incorrectly

rounded sum when 6 > 64. In order to return the correctly rounded sum by SumK,

the parameter K of SumK which represents the number of iterations of the refinement

on the data has to be increased. Table 3.10 lists the least value of K and the running

time for SumK to return the correctly rounded sum of the extremely ill-conditioned

data, starting from 6 > 64. From Table 3.6 we also observed that when the extremely

ill-conditioned data is used, the running time of iFastSum is linear to 6. Comparing

Table 3.6 with Table 3.10, SumK and iFastSum both generate the same correctly

rounded results when extremely ill-conditioned data is used, but iFastSum is faster

than SumK.

30

31 CHAPTER 3. NUMERICAL EXPERIMENTS

Data Set No.2: Positive Random Data
0 R ORS Kahan Sum3 iFastSum HybridSum
8 1.0000e+00 0.06 (0.10) 0.18 (0.29) 0.93 (1.50) 0.79 (1.27) 0.62 (1.00)
32 1.0000e+00 0.07 (0.11) 0.17 (0.27) 0.93 (1.50) 0.81 (1.31) 0.62 (1.00)
64 1.0000e+00 0.06 (0.10) 0.18 (0.29) 0.93 (1.50) 0.90 (1.45) 0.62 (1.00)
128 1.0000e+00 0.06 (0.10) 0.17 (0.27) 0.92 (1.48) 0.92 (1.48) 0.62 (1.00)
256 1.0000e+00 0.07 (0.11) 0.17 (0.27) 0.94 (1.49) 0.91 (1.44) 0.63 (1.00)
512 1.0000e+00 0.06 (0.10) 0.17 (0.27) 0.94 (1.52) 0.91 (1.47) 0.62 (1.00)
1024 1.0000e+00 0.06 (0.10) 0.17 (0.27) 0.92 (1.52) 0.91 (1.47) 0.62 (1.00)
1800 1.0000e+00 0.06 (0.10) 0.17 (0.27) 0.93 (1.50) 0.90 (1.45) 0.62 (1.00)

Table 3.7: Test timing of the algorithms on the well-conditioned data

Data Set No.3: Random including sign
0 R ORS Kahan Sum3 iFastSum HybridSum
8 1.6974e+03 0.06 (0.10) 0.17 (0.27) 0.93 (1.50) 0.80 (1.29) 0.62 (1.00)
32 9.3762e+02 0.06 (0.10) 0.17 (0.27) 0.93 (1.48) 0.79 (1.25) 0.63 (1.00)
64 4.7283e+02 0.06 (0.10) 0.17 (0.27) 0.93 (1.50) 0.88 (1.42) 0.62 (1.00)
128 3.3738e+02 0.07 (0.11) 0.17 (0.27) 0.94 (1.49) 0.90 (1.43) 0.63 (1.00)
256 2.3632e+02 0.07 (0.11) 0.17 (0.27) 0.97 (1.52) 0.92 (1.44) 0.64 (1.00)
512 1. 8378e+02 0.06 (0.10) 0.17 (0.27) 0.93 (1.50) 0.90 (1.45) 0.62 (1.00)
1024 1.2234e+02 0.06 (0.10) 0.17 (0.27) 0.94 (1.52) 0.92 (1.48) 0.62 (1.00)
1800 1. 6478e+02 0.06 (0.09) 0.17 (0.27) 0.93 (1.45) 0.90 (1.41) 0.64 (1.00)

Table 3.8: Test timing of the algorithms on the random numbers including signs

Data Set No.4: Anderson's Ill-Conditioned Data
0 R ORS Kahan Sum3 iFastSum HybridSum
8 3.0678e+16 0.06 (0.10) 0.17 (0.27) 0.93 (1.50) 0.79 (1.27) 0.62 (1.00)
32 1.5902e+16 0.05 (0.08) 0.17 (0.27) 0.93 (1.48) 0.80 (1.27) 0.63 (1.00)
64 4.4333e+13 0.05 (0.08) 0.18 (0.28) 0.92 (1.44) 0.80 (1.25) 0.64 (1.00)
128 1.5655e+13 n (lD. (0 10\ 0.17 (0.27) 0.93 (1.48) 0.80 (1.27) 0.63 (1.00) U.UU ~u . .LU)

256 1.5962e+13 0.06 (0.10) 0.17 (0.27) 0.93 (1.50) 0.79 (1.27) 0.62 (1.00)
512 8.1574e+12 0.06 (0.10) 0.17 (0.27) 0.93 (1.48) 0.80 (1.27) 0.63 (1.00)
1024 5.0964e+12 0.06 (0.10) 0.17 (0.27) 0.92 (1.46) 0.80 (1.27) 0.63 (1.00)
1800 1.7800e+ 12 0.06 (0.10) 0.16 (0.27) 0.93 (1.48) 0.79 (1.25) 0.63 (1.00)

Table 3.9: Test results of the algorithms on the Anderson's Ill-Conditioned Data

31

I ,

32 CHAPTER 3. NUMERICAL EXPERIMENTS

Test SumK on Extremely Ill-Conditioned Data
b K Time Sum
128 5 1.79 O.OOOe+OO
256 7 2.66 O.OOOe+OO
512 13 5.30 O.OOOe+OO
1024 24 10.04 O.OOOe+OO
1800 40 17.09 O.OOOe+OO

Table 3.10: The least K and Running Time for SumK to produce the correct results
on the extremely ill-conditioned data

3.3 Accuracy

From the test results we observed that, ORS never returns a correctly rounded sum

for any kind of testing data. Kahan's algorithm fails to return reliable results when

the data is badly ill-conditioned. SumK (K=3) fails to return the correctly rounded

sum when the extremely ill-conditioned data is used and 8 > 64. In this case, in

order to return the correctly rounded sum by SumK, the parameter K of SumK

which represents the number of iterations of the refinement on the data has to be

increased. The running time of SumK is also increased. However, the exact value of

the parameter K is not easy to be known before SumK is executed. Thus when the

data is extremely ill-conditioned, iFastSum and HybridSum are recommended to be

used to return reliable results. All of ORS, Kahan's Algorithm, SumK, iFastSum and

HybridSum return correctly rounded results when the data is denormalized numbers.

Knuth's Add Two and Dekker's FastTwoSum are both valid in the presence of un-

derflow since in the algorithms they only used additions and subtractions, and we

32

J

I

33 CHAPTER 3. NUMERICAL EXPERIMENTS

know that addition and subtraction are exact when the denormalized number is in-

eluded in the system. Therefore, all of the summation algorithms we presented by

now are valid in the presence of underflow since they only apply addition and sub

traction on the data.

3.4 Running Time

In the timing comparisons, we only consider the algorithms returning the correctly

rounded sums. The running time of Kahan's algorithm is independent of o. When the

condition number of the data is less than 100, Kahan's algorithm returns the correct

result and its timing performance outperforms Sum3, iFastSum and HybridSum.

When more badly ill-conditioned data is used, ORS and Kahan's algorithm never

return reliable results. In order to return the correctly rounded sum, the value of K

as well as the running time of SumK have to be increased. From Table 3.6 and Table

3.10 we observed that iFastSum is faster than SumK although they both return the

same results.

Note that for Data Set No. 4 - Anderson's Ill-Conditioned data, 0 listed in the

table is the original 0 of the data before Anderson transformation is performed. The

real a of the data after Anderson transformation is about 1015 no matter what the

original 0 is. Thus the running time of iFastSum for Data Set No.4 is independent to o.

33

-J
!

34

35

CHAPTER 3. NUMERICAL EXPERIMENTS

JO- 0"~.

,.~J.

°OL-=---~O.5~--~L-----~1.5~----~2--~~2.~5~~-+3~--~3L.5----~4

. Size of Data 2000<.=n<.=40000 X"10'

Figure 3.1: Comparison of Timing Results of iFastSum, HybridSum and Sum3

From the results we observed that HybridSum always return reliable results indepen-

dent of condition number and the value of 6. The author of iFastSum and HybridSum

suggests that when the size of data n < 20,000, iFastSum is recommended; when the

size of data n > 20,000, HybridSum is recommened [6]. We also compare the timing

performance of iFastSum, HybridSum and Sum3 on different sizes of data and the

result is represented in Figure 3.1. We use the random numbers including signs with

the difference of exponent 6 = 1800, which is the most general situation. The vector

length 2000 ~ n ~ 40000 and the number of samples is 10000. From Figure 3 we

observe that the timing costs of iFastSum, HybridSum and Sum3 increase linearly

34

35 CHAPTER 3. NUMERICAL EXPERIMENTS

with the increasing of the data size. When n < 8000, iFastSum is faster than Hybrid-

Sum; when n 2: 8000, HybridSum is faster than iFastSum. Sum3 is always a little

slower than iFastSum. However, when the extremely ill-conditioned data is used,

the parameter K of SumK needs to be increased and as the consequence it is much

slower than iFastSum. Therefore for pratical uses, we suggest using iFastSum when

the data size is less than 8000, and HybridSum when the data size is larger than 8000.

3.5 Space Complexity

Assume the input data for the algorithms can not be changed (immutable). ORS and

Kahan's algorithm require no extra space because they only read data from the array.

SumK and iFastSum need O(n) space because they will modify the input array. Hy

bridSum requires 0((31) space ((31 is 2048 when using the standard IEEE754 double

precision) for the accumulators. When iFastSum is called by HybridSum to sum up

the accumulators, the size of the input array for iFastSum is (31. Thus the space for

HybridSum is constant. Therefore if the data amount is too huge for the physical

memory, or the input data comes from a data stream of arbitrary length, HybridSum

is recommended.

35

I

Chapter 4

Application to LAPACK subroutines

4.1 Vector Dot Product

In this chapter, we apply the summation algorithms ORS, Kahan's Algorithm, Sum3,

iFastSum and HybridSum for computing vector dot product, and then compare their

timing and accuracy results with the subroutine DDOT of LAPACK.

The calculations in this chapter satisfy the IEEE754 double precision standard and

the working precision is about 16 decimal digits. The programs were run on a lap

top with Intel 1.6GHz CPU and 1.00GB physical memory. The operation system is

Windows 7. All the comparisons of timing and accuracy were done in 32-bit MAT

LAB2010a.

In [4], T. J. Dekker presented an error-free transformation method.

36

37 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

ALGORITHM: [x,yJ = TwoProduct(a,b)

Input: a, b,

Output: x, y,

a pair two floating-point numbers

the pair of transformed floating-point numbers

1. x = fl(a· b);

2. [a1, a2J = Split(a);

3. [b1 , b2J = Split(b);

4. y = fl(a2 . b2 - (((x - a1 . bd - a2 . bd - a1 . b2));

This method transforms the product of a pair of floating-point numbers [a, bJ into

the sum of another pair [x, yJ with a· b = x + y and x = fl(a . b) in case no under

flow occurs. Denote eta = 2-1074 in IEEE754 double precision standard. In case of

underflow occurs in any of the five multiplications of TwoProduct, denote the results

by x' and y', Rump proved that the error of transforming product to sum is at most

5eta, that is Iy - y'l ~ 5eta [7]. Therefore, in case of a and b are both denormalized

numbers, underflow occurs and the error of the transformation is 5eta. Since under

flow is rare and 5eta is very small, the error is negligible.

As well known, the dot product of two vectors x and y is calculated by xT y =

L:.":~=1 (Xi' Yi). Vlith the Algorithm TwoProduct, Rump extended the idea of error-free

transformation for the product of two floating-point numbers to vector dot products

of arbitrary length in [7]. Therefore the calculation for the product of vector x and y

is transformed into the calculation for the sum of an array r which is a transformation

37

38 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

of vector x and y. That is, 2::::;:1 ri = xT y. Combining this with the highly accurate

summation algorithms we presented in the previous chapter, we expect it would yield

some highly accurate dot product algorithms. Dot product algorithms are widely

applied in numerical linear algebra, e.g., in computing the product of matrices, in the

iterative refinement of the solution of Ax - b.

ALGORITHM: d <- Ddot(x,y)

Input: x, y, two vectors of floating-point numbers

Output: d, the dot product of vector x and y

1. for i <- 1 to n

3. d=Sumofr.

4. return d;

5. END

Our goal is to apply the different summation algorithms ORS, Kahan's Algorithm,

Sum3, iFastSum and HybridSum in summing up the array r in Step3 of Algorithm

Ddot. We also compare their performance with the LAPACK subroutine DDOT.

LAPACK is an acronym for Linear Algebra PACKage. It is a library of Fortran 77

subroutines for solving the most commonly occurring problems in numerical linear

algebra. DDOT of LAPACK is a subroutine for computing the dot product of two

vectors.

38

i
I

i

J

i,

39 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

In order to test the performance of those Ddot programs combining different ap

proaches, we need vector dot products with different condition numbers which is

defined by cond(xT Y)=2 ·lxITlyl/lxTyl. In [7], Rump presented an algorithm GenDot

for generating extremely ill-conditioned dot products. The MATLAB implementation

of this algorithm can be found in INTLAB [9].

FUNCTION: [x, y, d, CJ = GenDot(n, c)

Input: n, dimension of vectors x, y, n >= 6

c, the anticipated condition number of xT y

Output: x, y, generated vectors

d, dot product x T y rounded to nearest

C, actual condition number of xT y

n2 = round(n/2); I I Initialization

x = zeros(n, 1);

y=x;

b = lOg2(C);

e = round(rand(n2, 1)*b/2); I I e is a vector of exponents between 0 and b/2

e(l) = round(b/2) + 1;

e(end) = 0;

I I ensure exponents b/2 and 0 actually occur

x(l : n2) = (2*rand(n2, 1) - 1).*(2e); / / generate first half of vectors x,y

y(l : n2) = (2*rand(n2, 1) - 1).*(2e);

e = round(linspace(b/2, 0, n - n2));

I I generate exponents for second half of vectors x, y

39

J

I

40 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

for i = n2 + 1 : n

x(i) = (2*rand-l)*2eCi-n2);

y(i) = ((2*rand-l) *2eCi-n2LDocExact (x', y))jx(i);

end

index = randperm(n); j j generate random permutation for x, y

x = x(index);

y = y(index);

d = DotExact(x', y);

C = 2*(abs(x')*abs(y))jabs(d);

j j permute x and y

j j the true product rounded to nearest

j j the actual condition number

The inputs of Algorithm GenDot are the size of the expected vector x and y as well

as the anticipated condition number of the vector dot product. The outputs of the

algorithm are the generated vectors, the exact dot product of the vectors and the true

condition number of the vector dot product. The algorithm requires the existing of a

subroutine DotExact which produces a floating-point number close to the exact value

of the dot product xT y. Rump used some highly accurate floating-point arithmetic

and algorithm DotK with suitably chosen K to implement DotExact. The algorithm

GenDot was carefully designed to ensure the vectors are general and not following

any obvious patterns [7]. The main idea of GenDot is as following. In order to cre-

ate two vectors with extremely ill-conditioned dot product, the entries of the vectors

must cause heavy cancellation. The expected condition number of the dot product

xT Y is proportional to the degree of cancellation. The algorithm generates the first

half parts of vector x and y randomly within a large exponent range. The exponent

range is chosen according the expected condition number. Then the elements in the

40

,
-i

41 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

second half of the vector x are generated randomly with decreasing exponent, and

the corresponding Yi is generated which will cause some cancellations. Finally, the

elements in vectors x and yare permuted randomly and the real condition number

of the vector x and y is calculated. More details can be found in [7].

Since we have already implemented the different approaches of summation algorithms

ORS, Kahan's algorithm, Sum3, iFastSum and HybridSum in ANSI C in the previous

chapter, we take the advantage of MEX file which is an interface between C and MAT-

LAB. Thus those C programs can be called in MATLAB and the corresponding dot

product programs can be compared with using the data generated from GenDot. Al

though the most popularly used implementation of DDOT in LAPACK is in Fortran

77 and the MEX also has the functionality to call functions written in Fortran, we

notice that the programs written in Fortran and C may have different performances

in the same environment. For a fair comparison with DDOT of LAPACK, we choose

the C version implementation of DDOT from [10], and omit its extra functionalities

like increment etc.

For the comparisons, we use GenDot to generate 1000 test cases where each test

case contains vector x and y of length 100. The condition numbers of the vector dot

products are within the range of (1,1010°). In our laptop with Intel 1.6GHz CPU

and 1.00GB physical memory, it costs about one hour in using GenDot to generate

the data set. Either increasing the anticipated condition number or the lengths of

the vectors would increase the time costed by GenDot. The condition number in the

range of (1,1010°) includes the most situations we could meet. Since the dot product

41

42 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

of two length n vectors can be error-freely transformed into the summation of a length

2n vector, and based on the numerical results of the summation algorithms we know

that the accuracy of the dot product algorithms would be independent of the vector

length. However the timing performance would be related to the vector length and

the time will increase linearly with the increasing of the vector length. Due to the

time limitation, we compare the performance of the dot product algorithms on the

vectors of different condition numbers but with the fixed length 100.

GenDot also returns the exact value of the dot product and the condition num-

ber of the dot product for every test case. We test every dot product method and

compute its relative error by: Id- xTYl/lxTYI, where d is the result of the dot product

computed by one method and xT Y is the real dot product returned by GenDot when

generating the vectors. The following four figures are the test results by using the

plot function in MAT LAB.

We denote the ordinary DDOT subroutine of LAPACK as Ddot_LAPACK, and

the combining of dot product transformation with summation algorithm ORS as

Ddot_ ORS. Similarly, Ddot_Kahan, Ddot_Sum3, Ddot_iFastSum and Ddot_HybridSum

follow the same naming rules. We tested them on the data where Vector Length =

100 and Number of Samples = 1000. For creating the more illustrative figures, we set

the relative error to 2 if it is greater than 2, since the result is useless if the relative

error is greater than 2. The following figures present the performance of dot product

algorithms with different approaches. We plot the relative error against the actual

condition number of the test data.

42

43 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

From Figure 4.1, Figure 4.2 and Figure 4.3, we observe that with the exponentially in

creasing of dot product condition number, the relative error Id- xT Yl/lxT YI computed

by Ddot_ ORS, Ddot_Kahan and Ddot_LAPACK increase exponentially. It seems

like that the results returned by Ddot_ ORS, Ddot_Kahan and Ddot_LAPACK share

the same error estimated. However, Ddot_Kahan performs better than Ddot_ ORS

and Ddot_LAPACK. Figure 4.8, Figure 4.9 and Figure 4.10 illustrate the testing re

sults of Ddot_ ORS, Ddot_Kahan and Ddot_LAPACK on the data with maximum

condition number of 1020 . From Figure 4.8 and Figure 4.9 we observed that when the

condition number is greater than 1016, the relative errors of the results returned by

Ddot_ORS and Ddot_LAPACK exceed 2. However, from Figure 4.10 we observed

that when the condition number is greater than 1017 , the relative errors of the results

returned by Ddot_Kahan exceed 2. In another word, Ddot_Kahan is more accurate

than Ddot ORS and Ddot LAPACK.

From Figure 4.4 we observe that when the condition number is less than 1030 , the rel

ative errors of Ddot Sum3 are zeros. Note that we also checked the numerical results

to ensure the relative errors are exactly zeros. We did not list the numerical results

due to the space limitation. From Figure 4.5 we observe that when the condition

number is greater than 1030 , the relative error computed by Ddot_Sum3 increase ex

ponentially with the increasing of dot product condition number. When the condition

number is greater than 1050 , the relative errors always exceed 1. However, from Fig

ure 4.6 and Figure 4.7 we observe that Ddot_iFastSum and Ddot_HybridSum always

return the results with relative errors equal to 0 independent of condtion number. We

43

!
1

44 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

also checked the numerical results to ensure all the relative errors are exactly zeros.

Next we present the timing result of each method. Table 4.1 lists the average time for

each method to process one test case. The number of samples = 1000, Vector Length

= 100 and Maximum Condition Number = 1O lDO.We display the absolute value of

the time in the unit of millisecond, and also the ratio in parentheses with the time of

Ddot LAPACK is normed to 1.

Algorithms
Ddot _ Lapack
Ddot ORS
Ddot Kahan
Ddot Sum3
Ddot iFastSum
Ddot _ HybridSum

Time
27.5 (1.00)
60.2 (2.19)
75.1 (2.73)
110 (4.00)
205.6 (7.48)
525.8 (19.12)

Table 4.1: Measured computing time for different dot product algorithms with
Ddot LAPACK normed to 1

From the observations, we briefly summarize the algorithms for vector dot prod-

uct. As expected, the dot product algorithms have the similar properties with

the corresponding summation algorithms. When the condition numbers of the test

data are varying between 0 and 1018 , the relative errors of the computed results

returned by Ddot_LAPACK, Ddot_ ORS and Ddot_Kahan increase exponentially

with the increasing of condition number; When the condition number is greater than

1018 , the relative errors exceed 1. Ddot_iFastSum and Ddot_HybridSum always

return the computed results with the relative errors equal to zeros. In other word,

Ddot _ iFastSum and Ddot _ HybridSum return the exact results of the vector dot

44

I
I

J

I

45 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

product independent of condition number. Therefore when the accuracy of the result

is an issue) Ddot_iFastSum and Ddot_HybridSum are recommended to return reli-

able results. From the timing comparisons we observe that although Ddot _ iFastSum

and Ddot_HybridSum return reliable results) they cost more time than the other

approaches. Therefore when the vector dot products are not ill-conditioned) small

relative errors are allowable) and time cost is an issue) Ddot_Kahan is recommended.

From the comparisons of timing and accuracy) we also found that Ddot_Sum3 is

a compromise between unreliable and reliable algorithms. It returns reliable results

when the condition number is smaller than 1030 . When the condition number is

within (1030) 1050)) the relative error is smaller than 1. When the condition number

is greater than 1050) it returns unreliable results.

4.2 Vector-Matrix and Matrix-Matrix multiplications

DGEMV is the LAPACK subroutine for computing vector and matrix multiplications.

Its extra functionalities like unequal index increasement are not in our interest) thus

for better demonstration) we give the simplified algorithm as follows.

ALGORITHM: y = DGEMV(o:) A) m) n) x) y),6)

Input: 0:) the scalar of A

A) a m x n matrix

m) the first dimension of matrix A

n) the second dimension of matrix A

45

,
-,

46 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

x, the n x 1 vector

y, the m x 1 vector

{3, the scalar of y

Output: y, where y = a * A * x + (3 * y

2. for i f- 1 to n

3. temp = a * xli];

4. for j f- 1 to m

5. Yj = Yj + temp * A[j][i];

6. END

We can modify this algorithm by using the accurate vector dot product algorithms

presented in Section 4.1 as follows.

ALGORITHM: Y = DGEMV_ACCURATE(a,A,m,n,x,y,{3)

Input: a, the scalar of A

A, a m x n matrix

m, the first dimension of matrix A

n, the second dimension of matrix A

x , the n x 1 vector

y, the m x 1 vector

{3, the scalar of Y

Output: y, where Y = a * A * x + {3 * Y

46

J

I

;
1

47 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

1. for i f- 1 to m

2. Yi = (3 * Yi + C\' * Ddot(x, A[i]);

3. END

Due to the time limitation, we did not implement the algorithm. However, based

on the experience of implementing the DDOT and the comparisons of numerical re-

suIts, as well as the simple structure of the algorithm DGEMV, we expect using

our accurate dot product algorithms would improve the accuracy of computing the

vactor-matrix multiplication. DGEMM is the LAPACK subroutine for computing

matrix and matrix multiplications, we also expect it would benefit from the accurate

vector dot product algorithms.

47

48

I

~

.j

-i

CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

10'
Tosl Odpt·l.APAfK onVeclo(Si.o=100. Number of Samples~1000a~d Maximum Cond~io~ Np,mberfle'100

...... ·· ··T .. ··· .. · .. · .. ·T · .. ··· ·T· · .. ··· .. · .. r .. · .. ·· ·'1"

10'" '10+) 10.... 10·'· '1.0'00 10.20

Condition t.Jumber

Figure 4.1: Test Results for Ddot_Lapack

Test Odol-ORSonVeclor 3Izo=100. Number of SamPles=lQO and Maximum Condition Numbei=le+l00
til .---"----,------'-,----'---'---r---~-r---~-'-r---~--.

10'" 10'"
Co~dilion Number

10""

Figure 4.2: Test Results for Ddot _ ORS

48

49

~
m

i cr

CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

102 ,----~Te_S_1 D_~_OI_'K_'-"-~'f-,q_·~-,-nV_e_C,--IO~rS_iz-,,~~i=ll-'0_O._N_P!ll_b_._rO_f~s._.mrpl~e_s=_i_oo_o_an~Q~M~ax1r'_m_um-"c_o_n--,dll,--,io_n_;Nr-hm_be __ r=_~_je_+_l0-,-0--,

O.B

0.0

0,4

-0.2

·0_4

·0_6

·0.8

rl-I-ri
rr:::lfl

---------------1------------------r -----------------r -----------------r -----------------1---------- -------

-- " -----------] ----------. -------f -------------. ---] ----------. -------f ----. ------------] ----------------.
, I • , I I . --------------1----.. -.. ------ ---r -------------- ---1------. -----------r ----- ------------1----. ----- --. ----

. '10e~
Condition Number •

Figure 4.3: Test Results for Ddot _ Kahan

, --- ,"

reSI Dd~l-sium3 on VeclorSiz."lop, ~iomb.r of Sam~es=l0o a~d MaximumCo,nd~io~ Nuinber';'.1e.+22

• I I I -------------···----1-------------------··,---------------------,--_.------------------,--------------------. · , . ,
I I • I
I I • , , , . , , , . ,
, • I • ____________________ 1 _____________________ .1 _____________________ J ______________________ , ____________________ _
, I I ,
, , , I

• I , I · , . .
, , • I
, I • ,
I , , • --------------------.---------------------.-------_ .. -_ _ ... - _ _ .. -.-_.- .. _ .. , _ .. _ __ ... _. , . , . , . , , , , , , · , , , · , , , , , , , , , . , _._---_. __ A ••• ___ • _ _ ~ _ _____________ ._. ____ , ___________________ ._ ___________________ , ___ ._. ____ • _______ • __

, , . ,
, • I •
I • , •
, , I •
I I I , · , . .

:::""m::""I::"::':":u':I"::'::::":"t:::'::::::"I:
-........ ---------.. ; -.. -.-.------1'-------.... ····--·--1'--------············-r-··-·--·-------·--·-

- ~f'-;;-~~~......,.._'_;_----_';;;_----__';_;-----'::;c-----,-,---'
~ ~ ~ ~ ~ ~

Conditioll Number

Figure 4.4: Test Results for Ddot_Sum3 (Condition Number::; 1030)

49

1
j

50 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

10
2

'rest D<\ot-Sum3 on Vector Siz~=100. t{Jmber ofSamples"io,oo and Maxikilm Condition NU,mber-leTtOO
, < '-i-" ','- _;"~".' c ',"0;; ,. .'

10·

10-"

10'"

£ 10" ..
~

10" :'ii.

'"
10-'0

,'-"',

',;if"

Figure 4_5: Test Results for Ddot_Sum3

" Tesl Odol·iFastSum on Veitor 8;"0=100, f'I,umoo; of8ampies=1pPP and Maximum Condftion Number=1i+1b1l ,

0;8 ----------------1------------------r-----------------1------------------r-----------------1-----------------

:::-::1;1::
g, , 0_2 -- -- --------- ---j---- -------- -----·r --- ---------- ----j----- -------------r------ -----------j------ -- --- ------

'''!! : : : : : ,,, !-----i---......j.---'*'---....j..----io---------------
'li

&! , , . . .
-0_2 ----------------1------------------r-----------------1------------------:-----------------1-----------------
-0_4 ----------------1------------------i-----------------1------------------i-----------------1-----------------
-0,6 ----------------1- -----------------~ -----------------~ ------------------r -----------. -----~ ------. ----------

-0_8 ----------------1------------------r-----------------1------------------r-----------------1-----------------
-1~------~------~._----~~------~------~~----~,
~ ~ ~ ~ ~ ~ ~

Ctlndition Number

Figure 4.6: Test Results for Ddot_iFastSum

50

,
I

~
Il
; I

j

--i

51

g
w ..
.<:

~
'"

CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

Test Ddot:HybtidSum on Vector Si~.='100:Number ofSamples=1000 lind Maximum Condition Number=1e+l00

0.8
• , I I I -.--------------.,------------------r-----------------.,------------------t'"-----------------,-----------------
• • I , , , . , , ,
I • , • • , . , . .
I • , • •
, I , I •

0.6

0;4

0:2
flili:

o •

-0.2 ::!tl·-:~tl
-0.8 -·--------------r-----------------r-------------·---1------------------r-----------------1-----------------
-~Ol:9-~-'-l..l0.,.;:-'·----10'-;;<O:-----1""OffJ;;:-. ----. ..Jl0\;;;.,.-... -~.,.,,----10c-';ji»"".'---:--1--'0"2(1 __

Condition NumbOr

Figure 4.7: Test Results for Ddot_HybridSulll

10' - Tes! Odpt-lAPACK on Vector Size=JOq, NumbSr ofSamples=10,O,O and .!'1aximum Corditiph Number=lenO

· . --------------.--.--,--------------------- --------------------· . · . · . · . · .
10.2 ____________________ : _____________________ J ________ _ -----------.--------------------

10"" -------------------.!---------------------..:. · . ----- --~----- ---------- ----- -~- ----- ----------- ---· . · . · . · . · . · . · . --------------------r ------------------ ----------T --------------------1--------------------

"r:rr
· . · . · . I I I I -----1----- ________________ -< ___________________ __ ~ __ --- --------------- -. - -- -----------------

I 1 I I
I I I I
I I • •
I I , I · . . . , . . .

10'· 10" 10'"
Condition Number

Figure 4.8: Test Results for Ddot_LAPACK (Condition Number:::; 1020)

51

52 CHAPTER 4. APPLICATION TO LAPACK SUBROUTINES

Tes! Odot-ORS on Vector S~."100. Number of Samp{es=1000 and Maximum COj1ditjon Number=1e.20 L

:------!.::-::-:--------------, , . ------_._-----------.----_._-------------- .. ---------------------.,--

I !
.-------------------~--------------------~------------ --- ':f;;-"-.;:?rJ-I-----------~--------------------

: : .: if :

I1-r~r
--------------------;------------ ---------------------l---------------------!--------------------

. . . .
--------------------:-c. ________ ::::::_::-L:::::_:::::::::--:1:":::--:--:::::::::::1::::-::-::-::-:-::::

10'-' 10"
~ __ ~~C_OI\Miojj_NiJmbet ~_ ~_~_~~

Figure 4.9: Test Results for Ddot _ ORS (Condition Number::; 1020)

1Q' r-T:..e~st-'-p-'-~o~t-K:..-~:..~":..a-?"'-,-ornV'-e-c'--!or~S-jz-~=-'-1_00_' '--NuTn_'b"'-e!_Of_S-'-am_p~I._S=_'_1'_00'_r.O-a"'--d~fyI-.)(l-'--m-U"-m-C_OI ___ 'd-",jtirOh-'-~"_fyh~lb_e_r=_'_le_f~20____"\

· . , ------------------- -------------------- .. ---------_._ .. _._ .. --,---- ---_.-.--_._----_ .. ---_ .. _. · . , , · ,
10-2 ___________________ L ___________________ L___ ________ ____ V- ___________ ! __________________ __

,~ ···················f+!~i
••••••••• _ •• _. ______ •• __ • _____ • ___________ J -.-- •• ---- •• -1.-----.-.- .. ---------!----------.---------

, , , , , , , . , .
--------------------!-------------- -! --------------------1---------------------1--------------------

, . , .--.----------------,----- --------,,---------------------,,_._--------_._ .. _----,------.-------------, , , , , , , , . , , . , , . , , . , , .
-- --.-.-------.-,---------------------,---------------------T--------------------· . . · . , · . , · . . , . ,

-~ -- --t -- -- -- -- -- -- -- -- -- --(------ -- -- ---- -- -- -1- ---- -- -- -- -- -- ----- -1-- -- -- -- -- -- -- -- ----

10'"
Condition Number

Figure 4.10: Test Results for Ddot_Kahan (Condition Number::; 1020)

52

.J

Bibliography

[1] Donald E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical

Algorithms, Third edition, Addison-Wesley, Reading, MA, USA, 1998. ISBN 0-

201-89684-2.

[2] Siegfried M. Rump, Inversion Of Extremely Ill-Conditioned Matrices In Floating

Point. Japan Journal of Industrial and Applied Mathematics, Volume 26, Num-

bel's 2-3, 249-277, DOl: 10.1007/BF03186534, 2008.

[3] N. J. Higham, Accuracy and Stability of Numerical Algorithm, Second edition,

SIAM, Philadelphia, PA, 2002. ISBN 0-89871-521-0.

[4] T. J. Dekker, A floating-point technique for extending the available precision,

Numer. Math., 18 (1987), pp. 224-242.

[5] W. Kahan, A survey of error analysis, In Proc. IFIP Congress, Ljubjana, In

formation Processing 71, North-Holland, Amsterdam, The Netherlands, 1972,

pages 1214-1239.

[6] Y. K. Zhu and W. B. Hayes, Correct Rounding and a Hybrid Approach to Exact

Floating-Point Summation, SIAM Journal on Scientific Computing, Volume 31,

Issue 4, 2009, Pages: 2981-3001, ISSN:1064-8275.

53

I
§
9
iii

. 1

-1

54 BIBLIOGRAPHY

[7] T. Ogita, S. M. Rump and S. Oishi, Accurate sum and dot product, SIAM Journal

on Scientific Computing, 26 (2005), pp. 1955-1988.

[8] I. J. Anderson, A Distillation Algorithm For Floating-Point Summation, SIAM

J. SCI. COMPUT. Vol. 20, No.5, 1999, pp. 1797-1806 .

[9] S. M. Rump, INTLAB - INTerval LABoratory, Kluwer Academic Publishers,

pp. 77-104, 1999, URL: http://www.ti3.tu-harburg.de/ rvrump/intlab/

[10] Anderson, E. and Bai, Z. and Bischof, C. and Blackford, S. and Demmel, J.

and Dongarra, J. and Du Croz, J. and Greenbaum, A. and Hammarling, S. and

McKenney, A. and Sorensen, D., LAPACK Users' Guide, Third Edition, Society

for Industrial and Applied Mathematics, Philadelphia, PA, 1999, ISBN:0-89871-

447-8, URL: http://www.netlib.org/lapack/

54

