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Abstract 

Seizure is the result of excessive electrical discharges of neurons, which usually devel­

ops synchronously and happens suddenly in the central nervous system. Clinically, it 

is difficult for physician to identify neonatal seizures visually, while EEG seizures can 

be recognized by the trained experts. Usually, in NICUs, EEG monitoring systems are 

used instead of the expensive on-site supervision. However, it is time-consuming to 

review an overnight recording, which motivates the researchers to develop automated 

seizure detection algorithms. 

Although, there are few detection algorithms existed in the literature, it is diffi­

cult to evaluate these mathematical model based algorithms since their performances 

vary significantly on different data sets. By extending our previous results on mul­

tichannel information fusion, we propose a distributed detection system consisting 

of the existing detectors and a fusion center to detect the seizure activities in the 

newborn EEG. The advantage of our technique is that it does not require any prior 

knowledge of the hypotheses or the detector performances, which are often unknown 

in real applications. Therefore, this proposed technique has the potential to improve 

the performances of the existing neonatal seizure detectors. 

In this thesis, we first review two newborn EEG models, one of which is used to 

generate neonatal EEG signals. The synthetic data is used later for testing purpose. 
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We also review three existing algorithms and implement them to work as the local 

detectors. Then, we introduce the fusion algorithms applied in the fusion center for 

two different scenarios: large sample size and small sample size. We finally provide 

some numerical results to show the applicability, effectiveness, and the adaptability 

of the blind algorithms in the seizure detection problem. We also provide the testing 

results obtained using the synthetic to show the improvement of the detection system. 
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Chapter 1 

Introduction 

1.1 Motivation 

A seizure is defined clinically as a paroxysmal alteration in neurologic function, i.e., 

behavioural, motor, or autonomic function. It is a result of excessive electrical dis­

charges of neurons, which usually develop synchronously and happen suddenly in the 

central nervous system (CNS). It is critical to recognize seizures in newborns, since 

they are usually related to other significant illnesses. Seizures are also an initial sign 

of neurological disease and a potential cause of brain injury [18]. 

Clinical signs of seizures are different for adults and newborns. In adults, seizures 

are often accompanied by uncontrollable jerky movements of the body or the tonic 

flexion of the muscles. In newborns, many EEG seizures are not accompanied by 

any clinical signs. They may be accompanied with some nonobvious symptoms, such 

as sustained eye opening with ocular fixation, repetitive blinking of eyelids, or other 

slight facial expressions or body movements [14]. Since the clinical signs of seizures 

in newborns are subtle, it is difficult for physicians to identify the seizure occurrences 
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visually. Beyond clinical observations, seizures could be recognized in EEG recordings 

by some particular pattern, such as rhythmicity and repetitiveness [14]. Electroen­

cephalographers are trained to identify EEG seizures from the recordings, but the 

number of these expertise usually is limited in the hospitals. Therefore, instead of 

the expensive on-site supervision, EEG recording systems are usually used in neonatal 

intensive care units (NICUs) to monitor the high risk babies [4]. 

The recorded EEG signals contain all the brain activities of the neonatal pa­

tient, normal or abnormal. Although on-site supervision is not required, reviewing an 

overnight recording is time-consuming because long-term monitoring generates huge 

amount of data, but only a small portion of which represents seizures. Nowadays, 

under the help of the powerful computational facilities, we have the potential to au­

tomatically detect seizure activities in newborns. Thus, automated seizure detections 

becomes a popular research topic. Several neonatal seizure detection algorithms exist 

in the .literature. They use different biomedical signal processing techniques. The 

following three methods are the most popular ones, which are cited frequently. 

1. Based on the rhythmicity of the neonatal EEG seizures, Liu et at. perform 

analysis on the autocorrelation function of the EEG signals in [8]. 

2. In [5], Gotman et at. divided neonatal seizures into three main groups: rhyth­

mic discharges, multiple spikes, and very slow rhythmic discharges. They used 

spectral analysis in the frequency domain to detect the rhythmic discharges. 

They also provides two additional methods to detect the other two types of 

seizures. 

3. The algorithm proposed by Celka and Colditz in [1] checked the complexity of 

neonatal EEG in order to identify newborn seizure activities. 

2 
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Any of these well-known algorithms can be viewed as a single local detector. Usu­

ally, the performance of a single detector can be checked by its probability of false 

alarm and missed detection. In detection theory, the false alarm occurs when a non­

target is detected as a target, while the missed detection occurs when a target is 

identified as a non-target. It is difficult to evaluate the performances of the existing 

seizure detectors since all of them are based on mathematical models whose perfor­

mances vary significantly on different data sets and the statistical properties of the 

underlying EEG signals are time-dependent and patient-dependent. 

In hospitals, a physician usually orders more laboratory tests when it is difficult 

to usc the current test results to judge if a surgical operation is necessary Or not. 

Similarly, in the seizure detection problem, multiple detectors can be used in order to 

accurately determine if there are seizure activities in the EEG or not. These multiple 

detectors observe the common phenomenon, the neonatal EEG, and make decisions 

on their own observations. The decisions are sent to a central processor, named as 

the fusion center. In the fusion center, the final decision is made by combining the 

received decisions in some way. The phenomenon, multiple local detectors, and the 

fusion center are the basic components of a distributed detection system. Usually, 

when the local decision rules are fixed, the fusion center requires the perfect knowledge 

on the prior information of the phenomenon and the performances of the detectors to 

optimally fuse the local decisions. However, such knowledge is not always available 

in real applications. 

In our previous work, we proposed a blind algorithm for the distributed detection 

problem with M hypotheses. The advantage of this proposed fusion rule is that it 

does not require the prior knowledge of the hypotheses or the performances of the 
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local detectors. 

In this work, we propose to combine the existing single seizure detectors to form 

a distributed detection system and apply our previously proposed blind algorithm 

on multichannel information fusion [9, 10]. First, we formulate the set of nonlinear 

equations consisting of the unknown a priori probabilities of the binary hypotheses 

and the unknown probabilities of false alarm and missed detection. Then, we esti­

mate these unknowns using the corresponding multinominal distribution, maximum 

likelihood estimation and actual count of decisions made by different detectors. Fi­

nally, we present the analytical expression of overall error probability when the true 

values of the parameters are given and explore the effect of our blind algorithm to 

the overall seizure detection. To the evaluation purposes, we use a proposed neonatal 

EEG model [13] to generate neonatal EEG signals. 

1.2 Outline 

This thesis is organized as follow: 

In Chapter 2, we introduce two neonatal EEG models proposed in [13] and [2]. 

We use the first model to generate neonatal EEG signals in order to evaluate the 

performance of our proposed detection system. 

In Chapter 3, we review the three well-known algorithms on neonatal seizure 

detection. 

In Chapter 4, we propose the distributed detection system by giving the structure 

of the system, describing the local decision rules, and introducing the fusion rule. 

When we introduce the blind algorithm used in the fusion center, we consider two 

scenarios: the number of the local decisions is large and the number of the local 
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decision is small. 

In Chapter 5, a series of testings are conducted to evaluate the performance of the 

distributed detection system. The results provide the evidences that the proposed 

technique is applicable on the neonatal seizure detection problem. 

In the last chapter, we give the summary of the completed work. We also list 

some the future research direction on this topic. 

5 



Chapter 2 

Neonatal EEG Synthesis 

To evaluate the performance of our proposed seizure detection system, it requires 

sufficient amount of EEG data. Due to the limited amount of real data, we decide 

to use simulated EEG. Simulation is a useful technique for engineers and researchers 

to examine the performance of a proposed algorithm [12]. If the proposed algorithm 

does not work well with the simulated data, it has little chance to perform well with 

real data. Another reason of using simulated data is that the artifacts in real neonatal 

EEG may interfere the evaluation of the performance since they sometimes mask the 

useful information in the signal [1, 4]. 

To the best of our knowledge, there are two models for simulating newborn EEG. 

In this chapter, we first review the newborn EEG model proposed by Rankine et al. 

in [13]. Then, we introduce another model proposed by Celka and Colditz in [2]. 

In this thesis, the synthetic neonatal EEG signals used for plotting and testing are 

referred to the ones generated from the former model unless otherwise stated. Using 

the synthetic signals, we can have the control of the testing data, such as the location, 

duration, and occurrence number of the seizure activities. 

6 
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2.1 A Nonstationary Model 

The newborn EEG model proposed in [13] consists of two sub-models: the newborn 

EEG background model and the newborn EEG seizure model. 

2.1.1 EEG Background Model 

The upper plot in Figure 2.1 is a typical neonatal EEG background epoch (T = 48) 

and its power spectrum is shown as the solid line in the lower plot. Base on the fact 

that the power spectrum can be approximated by a power law, shown by the dashed 

line in the same plot, Rankine et al. proposed a EEG background model in [13], given 

by 

(2.1 ) 

where Sn(J) is the power spectrum of the nth epoch, c is a constant, and 'Yn is the 

power law exponent of the nth epoch. Since the EEG signal is nonstationary [1, 13], 

but it is assumed to be quasi-stationary for a certain epoch, the exponent 'Yn varies 

for different epoches, but stays constant within an epoch. 

The model in (2.1) is the frequency representation of the EEG background model. 

It can be rewritten as the product of two conjugate terms: Xn(J) and X~(f), given 

by 

(2.2) 
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Figure 2.1: Newborn EEG Background and Power Spectrum 
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where 

(2.3) 

The term Xn(J) is considered to be the Fourier Transform of the nth epoch xn(t), 

with the phase spectrum en(J). The synthetic nth epoch xn(t) could be obtained 

from the inverse Fourier Transform of Xn(J) as 

(2.4) 

However it has a smooth power spectrum. To simulate the phenomenon that the 

spectrum of real EEG background fluctuates, several sub-epoches are generated by 

setting the power law exponents same and the phase spectra different. We denote 

the different phase spectra as en,l(J) for l = 1, . .. , L, where L is the number of the 

sub-epoches used. The sum of L sub-epoches 

Yn(t) (2.5) 

represents the nth epoch of synthetic EEG background in the time domain. 

Rankine et al. provided the estimation results for the background model in [13]. 

The estimated distribution of the power law exponents "In is obtained using a max-

imum likelihood estimator. It is a Beta distribution with parameters a = 7.82 and 

(3 = 7.44. The phase spectrum en(J) is assumed to be a realization of a random 

process, which is uniformly distributed in [0, 21T). Some EEG signal generated using 

this model is shown in Figure 2.2, compared with some real EEG background signal. 
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Figure 2.2: Synthetic and Real Newborn EEG Background 

2.1.2 EEG Seizure Model 

Based on the amplitude modulated, piecewise LFM, and multiple harmonic char-

acteristic of EEG seizure, Rankine et al. proposed a neonatal EEG seizure model 

in [13J 

(2.6) 
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which involves functions of the amplitude modulation ak(t), instantaneous frequency 

2.1.2.1 Amplitude Modulation ak(t) 

The amplitude modulation of each harmonic ak(t) is a function of the gain factor Rk, 

normalized variation Vn , and the number of turning points P, 

(2.7) 

The gain factor Rk is the ratio between the average amplitude of the kth harmonic 

and the fundamental. It implies Rl = 1. The normalized variation Vn has the mean 

of 0.33. Suppose the P turning points occur randomly at 

N(p+X) 
q=----

P 
(2.8) 

where p = [0, ... ,P - 1] and X is a stationary random process, which is uniformly 

distributed in [0 1]. The amplitudes associated with these P turning points are 

obtained from the gain factor Rk and the normalized variation Vn by 

(2.9) 

The amplitude modulated function ak(t) is then obtained from Equation (2.9) using 

a cubic spline interpolation. 

The estimation results for the function ak(t) are provided in [13]. The distribution 

of P is a discrete Beta distribution with parameters a = 1.8 and (3 = 3.0. The 
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Table 2.1: Beta Distributions of Rk and Vn 
R2 R3 R4 R5 Vn 

a 1.7 1.5 1.9 1.4 3.9 

f3 3.2 4.1 3.6 1.2 8.0 
mm 0.2 0.2 0.2 0.2 0 
max 1.2 1.0 0.6 0.4 1 

minimum of P is 1 and the maximum is 8. The distributions of the gain factor Rk 

and the normalized variation Vn are all Beta distributions, whose parameters are 

shown in Table 2.1. 

2.1.2.2 Time-varying Instantaneous Frequency fk(T) 

The fundamental instantaneous frequency !I (t) is a piecewise linear frequency mod­

ulated (LFM) function with M pieces. Its mathematical representation is shown as 

follow: 

!I (t) 
M 

""" F (c C.), (t - 0.5(Bm+l - Bm)) 
~ m c"m, m, t rect B _ B 
m=l m+l m 

(2.10) 

where 

(2.11) 

and 

m=l 
(2.12) 

The starting frequency of LFM is given by fst in Eq. (2.12). It is randomly 
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chosen from a Log-Normal distribution with parameters p, = -0.17 and (72 = 0.55. 

The minimum allowed value of fst is 0.425. The gradients of LFM are given by 

~ = [6,6, ... '~MJ, which can be drawn from Beta distribution with parameters 

ex = 69.1,,6 = 69.8, falling in the range of [-0.06 0.06]. The turning points B = [BI = 

0, B 2 , B 3 , ... , B M , B M + 1 = N], where N is the discrete length of the seizure, is a 

stationary random process, which is uniformly distributed across the epoch. In order 

to guarantee the continuity offunction !I (t), the alignment intercept em is computed 

using Eq. (2.12). 

The instantaneous frequency of other harmonics fk (t) can be derived from the 

fundamental by 

(2.13) 

2.1.2.3 Simulation of Newborn EEG Seizure 

The model (2.6) show us that the functions ak(t), fk(t), Bk, and K are all necessary to 

simulate the EEG seizure of newborns. We already describe the functions ak(t) and 

fk(t) in the previous sections. We now introduce the rest of the required functions 

and parameters. 

The discrete epoch length is N = 256. The number of harmonic K is suggested 

to be 5. M-piece LFM is chosen to have 3 pieces. Initial phase Bk is randomly chosen 

from a stationary random process, uniformly distributed in [-7r, 7r). Let us define a 

vector 

(2.14) 
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Synthetic EEG Seizure 
100 
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Real EEG Seizure 
100 
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-50 

-100 
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Figure 2.3: Synthetic and Real Newborn EEG Seizures 

which contains all the parameters that are required to simulate the EEG seizure. 

We name it as the control vector of the EEG seizure model. To generate different 

neonatal EEG seizure signals, we can randomly choose the parameters in the control 

vector c. A piece of synthetic EEG seizure signal is shown in Figure 2.3, compared 

with real EEG seizure. 

2.2 A Nonlinear Nonstationary Wiener Model 

Celka and Colditz proposed a nonlinear nonstationary model in [2] to simulate the 

neonatal EEG. The reason we introduce another neonatal EEG model is because 

14 
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p(k) y(k) n(k) 

s(k) w(k) 

9s 

Figure 2.4: Nonlinear Nonstationary Model of EEG Seizure 

this model is the basics of an existing detection algorithm which is reviewed later 

in this thesis. As shown in Figure 2.4, the upper branch is used to model the non­

gaussianity of pure background brain activity and the lower branch is used to model 

the non-stationity of pure seizure activity. 

The mathematical representation of the model is given by 

v(k) gs[w(k)] + gp[y(k)] + n(k) 
00 00 

(2.15) 
i=O i=O 

where qp(i) has Z transform Gp(z) = H1(z)/ H2(Z), qs(i) has z transform Gs(z) 

1/ H2 (z), and n(k) is the measurement Gaussian white noise (GWN) with mean zero 

and variance (T~. 

15 



M.A.Sc. Thesis - Huaying Li McMaster - Electrical Engineering 

-------------------------

n(k~j 
A A 

p(k) y(k) V(k) 
A -1 

y(k) 
A -1 

p(k) 
Gp gp + gp Gp 

Background Model 
Inverse 

Background Model 

-------------------- ______ 1 

Figure 2.5: Background Model and Inverse Background Model 

2.2.1 EEG Background Model 

When there is no input signal in the lower branch of the model (Figure 2.4), i.e., 

s(k) = 0, it turns to be the EEG background model, shown in the bold rectangle in 

Figure 2.5. 

The input signal p(k) is supposed to be a Gaussian white noise. The first block 

of the background model Gp is an auto-regressive moving average (ARMA) filter. It 

is excited by the input p(k) and followed by a nonlinear shaping function gpo The 

inverse background model, shown in the dashed rectangle in Figure 2.5, contains the 

inverse shaping function fJ;1 and the inverse ARMA whitening filter 6;1. 

To estimate the background model, we start from the estimation of the inverse 

shaping function g;1. The algorithm used to achieve this goal is called shaping 

algorithm. Suppose gauss(k) is a Gaussian variate time series. It has L samples, zero 

mean, and unit variance. Ranking gauss(k) in ascending order produces another 

series, named gaussr(k). In a similar way, vr(k) is obtained from the measured EEG 

16 
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signal v(k). 

Suppose rank(v(k)) = r, i.e., v(r) = vr(k). The intermediate signal y(k) can be 

obtained by 

y(k) = gauss(r) for k = 0, ... , L - 1 (2.16) 

which has a Gaussian pdf. It is also the output of the inverse shaping function §:;;I 

when v(k) is treated as the input, i.e., y(k) = g;l[v(k)]. 

Let us define two monotonic increasing graphs: f;1 = {vr(k),gaussr(k)} and 

fp = {gaussr(k), vr(k)}. The inverse shaping function g;1 and shaping function gp 

can be estimated from graph f;1 and fp respectively. However, the parametric model 

of g;1 is not useful because we can obtain the intermediate signal y(k) by applying 

the shaping algorithm. Thus, only the estimation of the parametric model of gp is 

necessary. 

To estimate the shaping function gp, the parametric model is defined as 

(2.17) 

where the parameters (3Pi (for i = 0, ... ,3) can be estimated using a least-square 

method on graph f and a Levenberg-Marquardt search algorithm. The estimates of 

(3Pi are given in Table 2.2. 

We use the knowledge of y(k) to estimate the inverse ARMA filter 6;1. It can be 

done using MatLab routine armax with the model order D = 10 and N = la, which 

are the orders of the polynomials of HI (z) and H2 (z) respectively. Once the inverse 

ARMA filter 6;1 is estimated, we can have the access to the estimated ARMA filter 

17 
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Table 2.2: Parameters of ~Pi 
Parameters (Jpo (JPl (JP2 (JP3 
Averaged 0.014 0.76 -0.02 0.071 
Maximum 0.016 0.87 -0.002 0.12 
Minimum 0.013 0.60 -0.0039 0.039 

Table 2.3: Parameters of PWLFM Signal s(k) 
Parameters &[S-2] &ds-2] &2 [S-2] fm[Hz] 

Maximum 0.092 0.039 0.087 1.55 
Minimum -0.083 -0.078 -0.048 0.67 

Gp easily. 

2.2.2 EEG seizure model 

To simulate the seizure activities in the EEG signal, the input signal s(k) of the 

lower branch in Figure 2.4 is chosen to be a piecewise linear frequency modulated 

(PWLFM) sawtooth signal [2]. For t = k/FT) the input signal s(k) is given as follow, 

s(t) 

¢(t,l) 

fpWL(t) 

z( t)ej</>(t,f) 

al - a - a - a2 -
2 It-BpII+ 2 It-Bp21 

al + a2 - al a2 
+ 2 t-2'BPI-2'BP2+fm 

(2.18) 

(2.19) 

(2.20) 

where z(t) is a periodic sawtooth signal and the estimates of parameters a, aI, a2 

and fm are shown in Table 2.3. The sum of BPI and BP2 is set to 20 seconds. 

The estimation of the ARMA filter Gs can be obtained from the results in Sec-

tion 2.2.1, since Gs(z) = 1/H2 (z) is only related to the denominator of Gp(z) 
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J')(k) 

+ 

s(k) _I G
s 
I W(k)_1 go I + -0 v(k) -

Figure 2.6: Seizure Model 

H1(z)/H2 (z). The mathematical model (2.15) shows that the EEG signal v(k) has 

three parts: the pure seizure activity, the pure background activity, and the noise. 

Consider the background activity and the noise together as the stochastic part of the 

model, named as'r/(k). Therefore, the model (2.15) can be rewritten as 

v(k) = 9s[w(k)] + 'r/(k) (2.21) 

where 'r/(k) = 9p[y(k)] +n(k). For a typical EEG seizure signal, the contribution from 

'r/(k) is much less than that from the seizure activity (9s[w(k)]) [1, 2]. Therefore, we 

can reconstruct the model to be the one shown in Figure 2.6. The intermediate signal 

w(k) is obtained from the estimated ARMA filter Os excited by the input signal s(k), 

given by 

00 

w(k) = L (js(i)s(k - i) (2.22) 
i=O 

where fJAi) are obtained from Os = 1/ fI2 (z). 

Using the shaping algorithm explained in the previous section, we create another 

graph fs = {wr(k), vr(k)} to estimate the shaping function 9s. Its parametric model 
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Table 2.4: Parameters of ~8i 
Parameters f3so 1381 f3s2 f3s3 

Averaged 0.097 1.03 0.10 -0.02 
Maximum 0.19 1.16 0.16 0.06 
Minimum -0.00056 0.83 0.08 -0.06 

is defined as 

(2.23) 

where estimates of parameters f3s i (for i = 0, ... ,3) are shown in Table 2.4. 
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Chapter 3 

Neonatal EEG Seizure Detection 

Several neonatal EEG seizure detection algorithms exist in the literature. To our best 

knowledge, the algorithms proposed by Liu et al. [8], Gotman et al. [5], and Celka 

and Colditz [1] are cited most frequently in this research field. In this chapter, we 

provide the reviews of the detection techniques used in these well known algorithms. 

They are also implemented to work as the local detectors in our distributed detection 

system. 

3.1 Liu's Algorithm 

Liu et al. focused on the rhythmic characteristic of neonatal EEG seizure and pro­

posed a detection algorithm in [8] using autocorrelation analysis. Autocorrelation 

is the cross-correlation of a signal with the delayed version of itself. It is a useful 

mathematical tool in signal processing to detect repeated patterns in a signal. For 
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Figure 3.1: An EEG Epoch (30 seconds) and its Autocorrelation Function 

example, it can be used in the detection of periodic signals buried under noises [7J. 

Neonatal EEG seizure is an ictal event that consists of repetitive waveforms last­

ing at least ten seconds [3J. Due to the periodicity of EEG seizure, its autocorrelation 

function has more peaks with similar periodicity of the original signal. In contrast, 

normal neonatal EEG does not have clear periodicity, so its autocorrelation usually 

has irregular peaks. This phenomenon is verified clearly by the plots in Figure 3.1. 

The upper plots are the segments of the EEG signal and the lower plots are their cor­

responding autocorrelation functions. The first two lower plots both have repeated 

peaks and the corresponding EEG segments contain seizure activities. The last three 

lower plots all have irregular peaks and no seizure activities appear in their corre­

sponding EEG segments. 

A scoring system is used by Liu et al. in [8J to determine the degree of periodicity 

of the EEG signal quantitatively in order to identify the existences of the seizure 
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Figure 3.2: Moment Center of Autocorrelation Function 

activities. For a single-channel EEG, 30-second data is considered as an epoch. As 

shown in Figure 3.1, this EEG epoch is divided into five consecutive windows. Each 

window is approximately 6-second long. The breaking points of the time interval 

[0,30] are 6.4s, 12.8s, 19.2s, and 25.6s. 

To check the periodicity, the moment centers are first calculated. The moment 

center of a certain peak is defined as the moment that halves the area between zero-

crossings of that peek. For example, in Figure 3.2, Tl is the moment center of the first 

positive peak, so it is called the primary moment center. T2 and T3 are the second 

and third moment center respectively. (If more positive peaks exist, nomination is 

similar.) Then, we calculate the ratios of second and third moment center to the 
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Table 3.1: Scale for Scoring Autocorrelation Function 
Difference Score 

0.000-0.025 +5 
0.025-0.050 +4 
0.050-0.075 +3 
0.075-0.100 +2 
0.100-0.125 +1 
0.125-0.150 0 
0.150-0.175 -1 
0.175-0.200 -2 
0.200-0.300 -3 
0.300-0.400 -4 
0.400-0.500 -5 

primary moment center, i.e., R2 = TdTl and R3 = T3/T1 . Finally, the difference 

between each ratio and its nearest integer is calculated to obtain scores using the 

scale shown in Table 3.1. In our example, according to Figure 3.2, ratio R2 is 2.0256. 

The difference between R2 and its nearest integer 2 is 0.0256. Ratio R3 is 3.0256, 

whose difference with its nearest integer is also 0.0256. According to Table 3.1, the 

second and third peak both obtain score of 4. Thus, the total score of this particular 

window is 4+4 = 8. 

Therefore, the EEG signal containing seizure activities should obtain high score 

because its autocorrelation has more repeated peaks. The normal EEG signal with 

irregular peaks in its autocorrelation function should obtain low score. The criteria 

proposed in [8] is used to determine the existences of seizure activities in a 12-channel 

EEG signal. Since we are only interested in single-channel EEG, we modify the 

criteria to be: if one of the following is satisfied, the epoch contains seizures. 

1. 2 consecutive window scores within a channel were:?: 2, with a sum of the 2 

window scores ~ 10 
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2. 3 consecutive window scores within a channel were ~ 2, with a sum of the 2 

window scores ~ 14 

3. a score from a single window was ~ 12 

3.2 Golman's Algorithm 

Gotman et al. proposed three different seizure detection methods in [5] to detect 

three types of seizures: rhythmic discharges, multiple spikes, and very slow rhythmic 

discharges, respectively. In this thesis, we only focus on the rhythmic discharge 

detection since it could identify 90% of the seizures detected by all three detection 

algorithms [4]. 

Power spectrum analysis is an important tool in signal processing. It is frequently 

used in EEG classification and detection problem [6]. The algorithm reviewed in 

the previous section is based on the rhythmicity of the neonatal EEG seizure in 

the time domain. Gotman et al. proposed the detection method in [5] using the 

same characteristic of neonatal EEG seizure, but they performed the analysis in the 

frequency domain. 

The rhythmicity of a signal can be represented in the frequency domain by a high 

and narrow peak at the frequency of that signal. Therefore, in the spectrum of the 

EEG segment containing seizure activities, a large distinct peak is expected to appear 

at the main frequency of EEG seizure. Smaller peaks may appear at one or two other 

frequencies. In the rest of the spectrum, only little power is expected. 

Gotman et al. considered 10-second as an current epoch and 20-second as a 

background epoch. Between current and background epoch, there is a 60-second gap. 
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Figure 3.3: Full Width at Half Maximum 

As the current epoch moving, the background epoch is updated constantly. Therefore, 

the detection results do not depend on the choice of background. Also, a 2.5-second 

sliding window is used in the detection algorithm. It provides an overlap of 75% of 

the current epoch, which guarantees that a IO-second seizure could be identified at 

least once. 

Features of the current epoch, such as the frequency and the bandwidth of the 

dominant peak, are examined and compared with those of the background epoch. In 

the following sections, we introduce the features that used to detect seizure activities. 

3.2.1 Dominant Frequency 1M 

Let us first have a quick review on the term of full width at half maximum (FWHM). 

As shown in Figure 3.3, function P(J) has maximum value Pmax . The values of 

function P(J) at II and fz are both equal to the half of the maximum value Pmax . 

The difference between II and fz is defined as the full width at half maximum. 

The spectrum of an EEG seizure epoch usually has several peaks. The dominant 
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peak M is the one with the largest average power in its full width half maximum 

band. The corresponding frequency of the dominant peak is called the dominant 

frequency, named as 1M. It represents the the most prominent rhythmic component 

of the epoch. 

3.2.2 Bandwidth B 

The bandwidth of the dominant spectral peak, B, is defined as the full width at half 

maximum of the dominant peak. For example, suppose the peak in Figure 3.3 is 

the dominant peak. The amplitude of II equals half of the maximum value in the 

rising slope of the peak. The amplitude of h has the same amplitude but appears in 

the falling slope. By definition, the difference between II and h is the width of the 

dominant spectral peak, which is the bandwidth B. The smaller this width is, the 

more rhythmic the signal is. 

3.2.3 Power Ratio Rp 

Suppose Pc is the power in the full width half maximum band of dominant peak in the 

current epoch and Pb is the power in the same frequency band but in the background 

epoch. The power ratio Rp is defined as the ratio of Pc and Pb. It is computed 

to determine if the rhythmic activity in the current epoch is new compared to the 

background. 

3.2.4 Detection 

Other features, such as stability Is, 60-Hz indictor ha, and disconnect indicator I d , are 

also checked in this detection method to get rid of artifact or non-useful information. 
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Table 3.2: Boundaries of Decision Regions 
Dominant Frequency 1M Bandwidth B Power Ratio Rp 

First Choice 0.5-1.5 ~ 0.6 3-4 
Second Choice 1.5-10 ~ 0.6 2-4 
third Choice 1.5-10 ~ 1 40-80 

The current epoch is divided into four sub-epoches, each of which is 2.5 seconds. The 

average amplitude of each sub-epoch is computed. The stability of current epoch 

Is is checked by the ratio of the highest value and the lowest. The 60-Hz indicator 

160 is the ratio of the peak at 20 Hz to the total energy in the spectrum. Patient 

disconnection is noticed when the total energy in the spectrum is extremely low. 

Define a 3-dimensional space <I> using the three parameters described in Sec-

tion 3.2.1- 3.2.3, 1M, B, and Rp . The boundaries of <I> is used to determine where the 

detections belong, which is shown in Table 3.2. All epoch il:l conl:lider to be seizure, if 

it is accepted according to Table 3.2 and Is < 3, ho < 0.8%, and Id > O. 

3.3 Celka's Algorithm 

The algorithm reviewed in this section was proposed by Celka and Colditz in [1]. 

The authors used a new detection technology compared with the ones used by Liu 

et al. and Gotman et al.. They performed the singular spectrum analysis and the 

information theoretic-based signal subspace selection to examine the complexity of 

the EEG signal. This detection algorithm has three main steps: Pre-processing, 

singular spectrum analysis, and minimum description length. 
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3.3.1 Singular Spectrum Analysis (SSA) 

Singular Spectrum Analysis (SSA) is widely used in time-series analysis. It is a 

robust method of extracting information from a noisy environment. The measured 

EEG signal, x = {x (k)}£'=l , is zero-meaned and normalized to have unit variance. 

Define Xk = [x(k),x(k + 1), ... ,x(k + (ns - l))]T as a state vector in ]Rns. ns is 

determined by ns < min {Fr / !::.B, (N /3 + I)}, where Fr is the sampling frequency and 

!::.B is the bandwidth of the information bearing signal. In this thesis, the sampling 

frequency is Fr = 40 Hz. For EEG seizure, !::.B is in the interval of [1, 5] Hz, which 

leads 8 < ns < 40. 

The trajectory matrix Z is defined as ZT = [XIX2 ... XNT ], shown in (3.1), and 

its size is NT x ns , where NT = N - (ns - 1). 

x(l) 

x(2) 

x(2) 

x(3) 

x(NT) x(NT + 1) x(N) 

T 

(3.1) 

The covariance matrix Azz has ns eigenvalues, Al ?:: A2 ?:: ... ?:: Ano ?:: ... ?:: Ans' 

The deterministic portion of the signal is related to the no largest eigenvalues, while 

the noise part is related to the rest (ns - no) eigenvalues. 

Compared with computing the covariance matrix Azz , singular value decompo­

sition (SVD) of Z is more robust against noise and more efficient to evaluate the 

eigenvalues of Azz for a short time series. The relationship between the singular 

values O"i and the eigenvalues Ai is O"l = Ai for i = 1, ... ,ns . 
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3.3.2 Minimum Description Length (MDL) 

The optimal dimension estimation is performed to determine the minimal dimension 

(no) of the space embedded in the state space (ns-dimensional). Rissanen's MDL 

criterion was used since it is suit for selecting subspace in a noisy environment. 

(3.2) 

where 'Y = 32 is for a floating point representation and nf(l) = nsl - (l2/2) + l/2 + 1 

is the number of freely adjustable parameters. By using L1 norm, we have (Xi = Ai. 

The minimum description length is determined by 

no = arg min MDL(l, (Xi). 
IE{1, ... ,ns } 

(3.3) 

Usually, a signal consists of two parts: deterministic part containing information 

and stochastic part containing noise. The purpose of the S~A step is to separate the 

noise of EEG signal from the deterministic part of it. The role of no is to examine 

the complexity of the deterministic part of the signal. A pure white noise could be 

considered as a signal that only has stochastic part and no = 1. For other signals 

containing both parts, no > 1. 

3.3.3 Pre-processing 

The pre-processing is based on a model proposed by the same author in another paper 

[2]. We already introduced this model in Chapter 2, which was shown in Figure 2.4. 
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Also, we already have the access to the estimated inverse nonlinear function fJ;;l and 

the inverse ARMA filter (;;-;;I. To Gaussianize the measured EEG, we apply fJ;;l 

to x(k) and then apply (]-;;1 to x(k) in order to whitening the background. This 

procedure is described mathematically as follow, 

xn(k) = G;l(Z)fJ;l[X(k)] = G;l(Z)(fJ;l 0 gs)[Gs(z)s(k)] + 
,----_.,v J 

deterministic part 

n(k) 
"-v-" 

stochastic part 

(3.4) 

which shows that x(k) consists of a deterministic part and a stochastic part. For 

EEG background, there is no seizure activity (s(k) = 0). Therefore, the signal x(k) 

becomes whitened after pre-processing and does not contain any deterministic part. 

The MDL result should be no = 1. Otherwise, for EEG with seizure activities, the 

result should be no > 1. Based on the complexity of EEG seizure, no ~ 3 for EEG 

seizure. 
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Chapter 4 

Distributed Detection System 

Diagnosis of neonatal seizure is a typical detection problem. Each of the algorithms 

reviewed in the previous section can be considered as a single detector. Since the sta­

tistical properties of neonatal EEG are time-dependent and vary significantly from 

patient to patient, it is difficult to evaluate the performance of existing single de­

tectors since they are all based on mathematical models whose performances change 

on different data sets. For example, a single detector may have different false alarm 

rates at different time of the day. The missed detection rate of a detector may change 

when examining patients with different ages. Thus, it motivates us to combine the 

existing single detectors and utilize their strengths by extending our previous results 

on blind multichannel information fusion [9J. 

In this chapter, we present a parallel distributed detection system, by first dis­

cussing the structure of the system, then briefly describing the local detectors and 

their decision rules, and finally introducing the optimal fusion rule applied in the 

fusion center. The advantage of this proposed technique is that it does not require 

any knowledge on a priori probability of seizure occurrence or the performances of 
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Figure 4.1: Parallel Distributed Detection System 

the local detectors. 

4.1 Overview of the System 

Distributed detection is originally used in military surveillance, but now it has more 

applications in other fields, such as communication, biomedical engineering, and etc 

[9, 17J. There are four major topologies of distributed detection: parallel with or 

without fusion center, series, and tree [16J. We choose the topology of our detection 

system as parallel since the local detectors work on their own observations and do not 

communicate with others. Although, it is possible to enable the connections between 

local detectors, this approach increases the computational complexity of the system 

at the same time. Finally, a fusion center is required in this system in order to make 

a final decision based on the decision of the local detectors. The fusion center does 

not have access to the statistical parameters of the phenomenon. 

Figure 4.1 shows the structure of a typical parallel distributed detection system 

with N detectors. The role of the local detectors LDn is to make local decision 

Un based on their own observations Yn' All the local decisions are then sent to the 
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fusion center, where the global decision Uo is made based on a fusion rule in order to 

minimize the overall probability of error. In this work, we only focus on the case of 

three local detectors, i.e, N = 3, unless otherwise stated. Additional detectors can be 

added into the system whenever more information is required to make final decision. 

Although increasing the number of detectors has the potential to reduce the detection 

error probability, it also increases the computational cost. 

4.2 Local Detectors 

The local detectors LDn have their own decision rules. We use the three algorithms 

reviewed in Chapter 3 to formulate the local decision rules. 

We perform hypothesis testings (local decisions) with two hypotheses: 

Ho : The EEG signal does not contain seizure 

HI : The EEG signal contains seizure 

for the local detector LDn. The local decisions Un, n = 1,2,3, are made by 

Un = {o, 
1, 

the nth detector favors Ho 
(4.1) 

the nth detector favors HI 

We use P(Ho) and P(HI ) to denote the a priori probability of the hypothesis Ho and 

HI, respectively. 

A common assumption used here is the local observations Yn are conditionally 
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for all j =1= k and all i. 

In a more general problem, the binary hypothesis testings could be replaced by 

the hypothesis testings with more hypotheses, i.e., M = 3. 

4.3 Fusion Center 

After receiving the local decisions, the fusion center makes the global decision by 

applying an optimal fusion rule in order to minimize the final error probability. For 

a binary hypothesis testing problem, the error probability Pe is given by 

(4.2) 

and the two hypotheses are still 

Ho : The EEG signal does not contain seizure 

HI : The EEG signal contains seizure 
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Varshney provided the optimality criterion for N local detectors in the sense of 

minimum error probability in [15]. We recall it here for the case of N = 3. 

Uo 

where, Wo 

and Wn 

{

I, if Wo + 2:~=1 Wn > 0 

0, otherwise 

log (;~) 

{

log((l- P;:")/P1), if 

log(P;:" /(1 - p1)), if 

Un = 1 

(4.3) 

(4.4) 

(4.5) 

As the short form of P( Hd, PI is a priori probability of hypotheses HI. Similarly, 

Po is the short form of P(Ho). The sum of Po and PI is 1. The probabilities of 

false alarm and missed detection of the nth local detector are denoted as pi and 

P;:", respectively. The optimal fusion rule tells us that the global decision Uo is 

determined by the a priori probability and the detector performances, i.e., PI, pi 
and P;:". However, they are all unknown in our seizure detection problem, which is 

usually the case in many other real applications [9, 11]. In order to make the final 

decision, we need to utilize the information available to us: the local binary decisions 

Suppose the decision combination {UI = i, U2 = j and U3 = k} is represented by 

e = (ijkh, where i, j, k = 0 or 1 [11]. In our system, the number of all the possible 

local decision combinations is 23 and will be denoted as L in the remainder of this 

thesis. The joint probability of decision {UI = i, U2 = j and U3 = k} is also the 
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occurrence probability of the {!th decision combination, given by 

P(UI = iIHI )P(U2 = jIHI )P(U3 = kIHI)PI (4.6) 

+P(UI = iIHo)P(U2 = jIHo)P(U3 = kIHo)(I - PI) 

= {l-~' if i=I 
P(un = iIHI) 

p;:", if i=O 
(4.7) 

( 

r' if i=I 
P(un = ilHo) 

- I-pI if i=O n' 

(4.8) 

By listing all the possible decision combinations and substituting them into Eq. (4.6) 

- Eq. (4.8), it generates a nonlinear equation set: 

Pooo PIPrp!3PI + (1- P!)(I- P!)(I- Pf)(1- PI) 

POOl PI pr(1- P3m)PI + (1 - P!)(I - p!)pf (1 - PI) 

POlO PI(I - pr)P!3 PI + (1 - p!)p! (1 - Pf)(1 - Pd 

POll 
(4.9) 

PIOO (1 - p[,,)pr P!3 PI + p! (1 - P!)(I - Pf)(1 - PI) 

PIOI (1 - p[,,)pr(1- P!3)PI + p! (1 - P!)P/(I - PI) 

PllO (1 - PI)(I - pr)P!3 PI + p! p! (1 - Pf)(1 - PI) 

P111 (1 - P[")(I - pr)(1 - P!3)PI + p! p! pf (1 - Pd 
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In this nonlinear system, only seven out of eight equations are independent since 

L-Pg = 1 and there are seven unknowns PI, PI and P;'::, for n = 1,2,3. Thus, it 

can be solved theoretically when Pg are known. Although Pe is usually unavailable in 

practice, it could be replaced by empirical probability defined as 

Pg Pr(u1 = i,U2 = j,U3 = k) 

number ofu1 = i, U2 = j, U3 = k 
number of local decisions Nt 

(4.10) 

where Nt is the number of decisions made by one of the local detectors. Eq. (4.10) is 

true usually when the number of decisions is large [9]. 

Mirjalily et al. provided the analytical solution to this nonlinear equations in [11], 

given by 

x 

(4.11) 

pm = 1 - 'Y - a V I-PI 
n In n PI 

1* - 11/2/3 - (,11623 - 12/31 + 121 613 - 11131 + 131 612 - 11/21) (4.12) 
V(612 - 11/2)(613 - 11/3)(623 - 12/3) 
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II = "£j,k Pljk 

1* = PUI 

0'12 = Pua + PllI 

(012 -')'1')'2)( 013 -')'1')'3) 

023-,),2')'3 

(012-')'1')'2)(023-')'2')'3) 

013-')'1')'3 

(013 -')'1')'3) (023 -')'2/3) 

012-')'1')'2 

( 4.13) 

(4.14) 

(4.15) 

By time-averaging, the unknown a priori probability and the probabilities of false 

alarm and missed detection can be estimated from the local decisions Un. 

However, the usage of Eq. (4.10) is limited when the number of decisions is not 

large enough. To estimate those unknown probabilities in this situation, let us first 

define the random variable Xe to represent the number of occurrences of the €th 

decision combination. Recall Pe is the corresponding occurrence probability, defined 

earlier in Eq. (4.6). Let X = (XI ,X2 , ... ,XL) denote the occurrence numbers of 

all eight decision combinations, which are multinomially distributed with probability 
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mass function [9] 

P(X - X - IN) - Nt! pXl pXL I - Xl,· .. , L - XL t - I I I ... L 
Xl···· XL· 

( 4.16) 

We also define a 7-dimensional vector p, named performance vector, contain the 

true values of the a priori probability and the false alarm and missed detection prob­

abilities, i.e., p = [P(HI ) pI pi pI PI P;" prj· Thus, Eq. (4.6) can be rewritten 

in a short form as 

Pe = ie(P) ( 4.17) 

which gives all the occurrence probabilities Pe, for R = 1, ... ,L. 

Suppose Ze is the estimate of the Rth occurrence probability and 

Ze = ie (p) + ee, R = 1, ... , L (4.18) 

where ee is the estimation error. Now we define a vector z = [Zl Z2 .. , ZL]T, f(p) = 

[!t(p) fz(p) ... h(p)]T, and e = [el e2 ... eL]T. Thus, the nonlinear system (4.9) can 

be rewritten in the matrix format as 

z = f(p) + e (4.19) 

where z, f(p) and e are the matrices of the estimates of the occurrence probabilities, 

their true values, and the estimation error, respectively. 

Since the distribution of the occurrences of the decision combinations is given 
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by Eq. (4.16), we could apply maximum likelihood estimator to find the unknown 

parameters which make the observed outcome most likely to happen. It means that 

as long as the occurrence numbers are known, the ML estimator gives the value of p 

that maximize Equation (4.16). The ML estimator can be written as 

p = argmaxP(XI = Xl,··· ,XL = XLINt,p) 
p 

41 
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Chapter 5 

Results and Discussions 

In this chapter, we present numerical results in order to show the applicability of 

the blind adaptive algorithms to the neonatal seizure detection problem. Due to a 

possibly non-stationary nature of the EEG signals, time-dependent approach may be 

needed in order to correctly estimate the time-varying parameters. In this case, the 

number of decisions available for estimation may be limited. To this purpose, we 

evaluate the algorithm for two scenarios: small sample size and large sample size. 

We also perform tests using the surrogate data generated by the model introduced in 

Chapter 2 to show the improvement of the detection system. 

5.1 Simulations Results 

5.1.1 Large Data Set 

Recall that we defined the performance vector as p = [P(H1 ) p! pi pI PI Pf prj 
in the previous chapter. In this example, we generate the binary local decisions Un 
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Figure 5.1: Averaged False Alarm Rate over 5000 Realizations 

by using an arbitrarily chosen p = [0.20.080.170.120.230.180.15]. Applying the 

blind adaptive algorithm [11], the global decision uo is then obtained by calculating 

the non-linear set of equations. The decision number Nt is set to be 1000 and the 

simulation is performed 5000 times. The estimated unknown probabilities of false 

alarm pI and missed detection P;:" are then averaged over 5000 realizations, and 

these are shown in Figure 5.1 and 5.2, respectively. As expected these plots show 

that the estimated values of the probabilities converge to their true values. 

In Figure 5.3, the upper plots show the averaged error probabilities of the local 

detectors and the lower plot shows the averaged overall error probability of the system. 

It is clear that by fusing the detection probabilities the overall performance of the 

detection system is much better than any of the local detectors in terms of low error 

pro babili ty. 
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Figure 5.2: Averaged Missed Detection Rate over 5000 Realizations 
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Figure 5.3: Averaged Error Probabilities over 5000 Realizations 
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Figure 5.4: Estimated A when the Statistical Property of the Signal Change 

5.1. 2 Adaptability to the Changes of Phenomenon 

As we discussed before, the statistical properties of the neonatal EEG signals are time-

dependent. We present a numerical example to show the adaptability of the blind 

algorithm. We use the same performance vector p to generate the local decision Un, 

except that the a priori probability PI is changed from 0.2 to 0.35 at the 1000th 

decision. The total number of decisions is 2000 and the simulation is repeated 1000 

times. From Figure 5.4, it can be seen that the algorithm can adapt to the changes 

of the unknown a priori probability. 

However, since the algorithm is based on the time-averaging, it adapts to the 

changes quite slowly. To increase the speed of the convergence, we introduce the 

windowed approach. Suppose the length of the sliding window is N s . At the Nith 

decision, Ni > N s, we use the previous Ns decisions including the Nith decision for 
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Figure 5.5: Estimated PI Using a Sliding Window 

estimation instead of using all Ni decisions. Figure 5.5 provides the numerical result 

of using a sliding window of length 200. The plot shows the averaged value of PI 

over 1000 realizations. The rate of the convergence depends on the size of the sliding 

window. As a consequence, an effort is needed to determine an adequate window size 

for a particular dynamic of the system. 

5.1.3 Small Data Set 

In Section 4.3, we propose to estimate the unknown probabilities using the maximum 

likelihood estimator [9J when the size of the data set is small. Now, we present 

numerical comparison in order to show the effectiveness of the ML estimator. In 

Figure 5.6, the estimates obtained from the ML estimator converge to its true value 

much faster. Note that it is expected since the ML estimation accounts for statistical 
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Figure 5.6: Comparison 

properties of the error, while the trade off is computationally much more complex. 

The term analytical in Figure 5.6 means that the unknown probabilities are estimated 

using the analytical solution of the non-linear equation set under the assumption that 

the occurrence probabilities could be replaced by the empirical probabilities. 

5.2 System Performance with Surrogate Data 

In this section, we first use the model reviewed in Section 2.1 to simulate neonatal 

EEG signal. The occurrence rate of EEG seizure is close to 0.2 and the length of the 

testing signal is about 1 hour. The generated neonatal EEG signal is fed into the local 

detectors LDn , where the binary local decisions Un are made. The global decision Uo 

is made by applying the blind adaptive algorithm. The unknown probabilities of false 

alarm pI and missed detection P;:" are shown in Figure 5.7 and 5.8, respectively. It 

47 



M.A.Sc. Thesis - Huaying Li McMaster - Electrical Engineering 

-~- ::r ~ , ' '002771 
o 200 400 600 800 1000 

.~" ::f ~ , : -01372t 
o 200 400 600 800 1000 

-~"::~~ 
a 200 400 600 800 1000 

Number of decisions 

Figure 5.7: False Alarm Rate of the Local Detectors 

is clear that the local detector LDI is good in the sense of low false alarm rate and 

the local detector LD3 is good in the sense of low missed detection rate. It is a good 

numerical example to show the effectiveness of the detection system. 

In Figure 5.9, the upper plots shows the error probabilities of the local detectors 

and the lower plot shows the overall error probability of the system. The distributed 

system has been improved by 2.3% (difference between 13.8% and 11.5%) compared 

with the local detector who performs the best individually. 

5.3 Summary 

The proposed technique allows us to evaluate the performance of the local detec­

tors for any given patient. Namely the performance of the local detectors may vary 

significantly from patient to patient. Therefore, the probabilities of false alarm and 
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Figure 5.8: Missed Detection Rate of the Local Detectors 
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Figure 5.9: The Overall Error Probability of the Detection System 
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missed detection listed in tables and figures are random variables. Therefore, this 

uncertainties can significantly deteriorate the performance. Our algorithm has the 

potential of accounting for this randomness in an optimal way. 
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Chapter 6 

Conclusions 

In this thesis, we proposed a parallel distributed detection system for neonatal seizure 

detection problem using the blind adaptive fusion algorithms. The advantage of our 

technique is that it does not require any a priori probabilities of the hypotheses or 

the performance of the local detectors, which are usually unavailable in practice, 

especially the biomedical applications. 

We first discussed two EEG models for simulating neonatal EEG signals. The first 

model was used to generate synthetic data in order to evaluate the proposed technique. 

The second model was the basics of one of the existing detection algorithms. We also 

presented three well-known neonatal seizure detection methods, each of which can be 

considered as a single seizure detector. 

We then described the parallel structure of the system which enables us to combine 

heterogeneous detectors into one system, followed by introducing its components: 

the local detectors and the fusion centre. In practice, since the size of EEG data 

from the patients may be limited, we consider two cases: large data set and small 

data set. In the first case, we applied the blind algorithm proposed in [11 J in the 
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fusion center, which solves the non-linear equation set formulated by the unknown 

probabilities. In the second case, we applied the blind algorithm proposed in our 

previous work [9J, which uses maximum likelihood estimator to estimate the unknown 

probabilities. Note that since the EEG signal is non-stationary, it may require the 

windowed approach. Thus, the small data set may be the only option. 

Further, we provided the numerical examples to show the effectiveness and appli­

cability of the blind algorithms in the seizure detection application. We performed 

tests for both aforementioned cases of small and large sample sizes. We also demon­

strated the decrease of the overall probability of error of the existing seizure detection 

algorithms by efficiently fusing their decisions. 

The future research will include the following topics: 

1. We are currently implementing the proposed local detectors and fusion algo­

rithm on real neonatal EEG data sets. 

2. An effort should be made to investigate the possibility of developing improved 

seizure detectors. 

3. We can extend the hypothesis testing to allow for more hypotheses. For exam­

ple, when M = 3, the possible hypotheses could be 

Ho : No seizure in the signal 

HI : Seizures in the signal 

H2 : Not sure if there is seizure in the signal 

4. An effort should be made to derive a statistically optimal detector to detect the 
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changes in phenomenon or the changes in the local detectors. For example, the 

adaptability shown in Figure 5.4 can occur faster using such a detector. 

5. By developing an algorithm for automatic counting of the number of seizures, we 

can correlate the frequency of seizures with the brain development in neonates 

with cerebral pathologies. 
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