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Abstract 

Many applications such as communications may be modeled as integer least 

squares problems. The goal is to find the solution to the integer least squares 

problem, which could be the encoded integer vector in these applications. From 

the point of view of lattice space, finding the solution to an integer least squares 

problem is equivalent to finding the closest lattice point to a given point. Sphere 

decoding is often applied to the searching of the closest lattice point. 

An improved sphere decoding method, named adaptive sphere decoding, is 

discussed in this thesis. This method is examined from various views such as 

geometric interpretation and tree representation. The algorithm of adaptive 

sphere decoding is also presented. In addition, an experiment is conducted to 

show the improvement of performance provided by adaptive sphere decoding 

over the original sphere decoding. 

One of the key issues in sphere decoding is the determination of the initial ra

dius of a search hypersphere. For communication applications, the hypersphere 

radius could be computed from the statistical characteristics of signal noise or 

deterministically by Babai estimate. However, due to the computational error 

introduced during floating-point arithmetic, the initial radius computed by the 
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deterministic method may make sphere decoding fail. So, based on the standard 

computational error analysis of matrix-matrix multiplication and vector-vector 

addition, we investigate an error analysis for the numerical computation of the 

initial radius by the deterministic method and propose a revised deterministic 

method in computing the initial radius by taking the computational error into 

account in order to make sphere decoding as successful as possible. An ex

periment of comparing the two methods is conducted and the failure of sphere 

decoding is eliminated perfectly with the initial radius computed by the revised 

deterministic method. 
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Chapter 1 

Introduction 

1.1 Motivation 

The rapid development of digital technologies and the widespread use of these 

technologies make our life easier and allow the convenient exchange of infor

mation. This advancement of digital technologies has a huge impact on our 

commercial and personal activities as we are relying on the digital technologies 

nowadays. To handle and deal with these digital information, researchers devote 

large amount of time and efforts to study the techniques of digital information 

processing. For example, integer least squares problem is one of the techniques 

to model applications and process information. This thesis is focused on solving 

the integer least squares problem, specifically, is focused on one of the solving 

methods, the sphere decoding. 

The integer least squares problem arises from many applications such as 

communications [1], cryptography [2] and GPS [3]. The goal is to find the 

1 
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solution to the integer least squares problem, which could be the encoded integer 

vector in these applications. In order to solve the integer least squares problem, 

usually, a lattice interpretation is used. A lattice is a set of intersected points of 

a regular (but not necessarily orthogonal) m-dimensional grid. From the point 

of view of lattice, finding the solution to an integer least squares problem is 

equivalent to finding the closest lattice point to a given point. 

In aforementioned applications, the lattice is usually represents the communi

cation channell or the encryption function 2, while the given point is the received 

or given vector. In this context, solving the integer least squares problem corre-

sponds to the decoding or decryption process. Note, the lattice is usually fixed 

for a certain application. For example, due to the distinguished characteristics 

of a communication channel, the lattice is fixed for this channel. The lattice is 

also fixed for a cryptography due to the fixed encryption algorithm. Therefore, if 

an integer least squares problem is represented by a lattice, the lattice is known 

in advance, and only the given point should be considered as the input to the 

problem. 

A brief overview of methods in solving integer least squares problem: In gen-

eral, solving the integer least squares problem or equivalently finding the closest 

lattice point is an NP-hard problem [4]. The evaluation of the solving process 

involves the performance of the solving algorithm, namely, the complexity of 

the solving algorithm. The evaluation also involves the accuracy of the solution, 

namely, how close is the solved solution to the optimal solution. 

- Approximation and heuristic method 

1 In communication or GPS. 
zIn cryptography. 

2 
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In [1], Hassibi and Vikalo give an overview of solving integer least squares 

problem in communication applications with the focus "all practical sys

tems employ some approximations, heuristics or combinations of them" . 

The solving methods of approximation and heuristic targeting communi

cation can be categorized into Babai estimate [5], Nulling and cancelling 

and Nulling and cancelling with optimal ordering. 

- Exact method 

However, the above methods only get an approximation of the solution but 

not the optimal solution. In [6], the question of obtaining the optimal so

lution is studied for V-BLAST [7] system, where it is shown that the exact 

solution significantly outperforms even the best heuristics. In order to ob

tain the optimal solution, it is obvious that one needs to search the entire 

lattice space, although theoretically feasible for finite lattices but not for 

infinite lattices. Moreover, searching entirely even a finite lattice requires 

an exponential complexity, which is infeasible in practice. Anyway, there 

exist some exact search methods that are more sophisticated and more 

effective than the full search. These methods are Kannan's algorithm [8] 

which searches only a restricted parallelogram, KZ algorithm [9] which 

is based on the Korkin-Zolotarev reduced basis [10] and sphere decoding 

algorithm [11] which searches a hypersphere of an initial radius. 

3 
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1.2 Objectives 

Sphere decoding is an efficient search method and widely used for the NP-hard 

integer least squares problem. It has raised a lot of researchers' attention and 

has been rediscovered in several contexts since its first occurrence by Fincke 

and Pohst [11]. Sphere decoding is the focus of this thesis and it is the search 

technique used for finding the closest lattice point in this thesis. The basic idea 

of sphere decoding is quite simple: searching the lattice points which are lying 

inside a hypersphere of a certain radius and centered at a given vector rather 

than searching the entire lattice space, therefore, the search effort is reduced and 

the required computational complexity is mitigated as well. 

The main objective of this thesis is to enhance the search technique of find

ing the closest lattice point, namely, enhance the efficiency and performance of 

sphere decoding. To achieve this objective, this thesis concentrates on improving 

the search technique, sphere decoding itself, as well as reducing the determin

istic factor of sphere decoding, the initial radius of a search hypersphere given 

to sphere decoding as much as possible. In addition, it also addresses the is

sue of computational error. The main objective includes the following three 

sub-objectives. 

- Improving sphere decoding itself 

Although sphere decoding is an efficient search method in finding the clos

est lattice point, in order to find the closest lattice point inside a hyper

sphere, the decoding process has to search all lattice points in this hyper

sphere and compare their distances to the center to determine the closest 

4 
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lattice point. This approach constitutes an exhaustive search. So improv

ing sphere decoding technique is one of the objectives of this thesis. The 

goal of improvement is to make sphere decoding avoid going through all the 

lattice points in a hypersphere, hence the improvement should outperform 

the original sphere decoding. 

- Reducing the initial radius 

One of the deterministic factors of sphere decoding is the selection of the 

initial radius. Clearly, when an initial radius is too large, then too many 

lattice points are contained in this hypersphere, which degrades the effi

ciency of sphere decoding. Roughly speaking, the number of lattice points 

in this hypersphere is exponential to the radius of this hypersphere, so is 

the complexity of sphere decoding. Thus, attempting to reduce the initial 

radius of sphere decoding is another objective of this thesis. 

- Considering the computational error 

For any numerical processing, floating-point errors are inevitable, this is 

also true for sphere decoding. When an initial radius is very closed to the 

distance from the closest lattice point to the center, the computational 

errOr has to be taken into account when computing the initial radius and 

there should be some ways to compensate the computational errOr to avoid 

the failure of sphere decoding caused by the computed, too small initial ra

dius. Thus, error analysis of computing the initial radius is other objective 

of this thesis. 

5 
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1.3 Outline of the thesis 

In this thesis, we focus on the improvement of sphere decoding, the issue of radius 

selection of sphere decoding and the error analysis of computing the initial radius. 

The outline of this thesis is as follows. 

Chapter 2 describes the communication channel model, specially, the frequency

selective channel model, which is also our simulated application in the experi

ments. 

In Chapter 3, we introduce the integer least squares problem and the lattice 

interpretation of it, and geometrically interpret the lattice space and QR decom

position. Then we focus on sphere decoding from various views, both geometric 

interpretation and tree representation of sphere decoding. We also discuss in 

this chapter the mathematics of sphere decoding and present the algorithm of 

sphere decoding in both a recursive approach and a non-recursive approach. 

In Chapter 4, we discuss in details a new improved sphere decoding, named 

adaptive sphere decoding from various views, such as geometric interpretation 

and tree representation. The algorithm of adaptive sphere decoding is also pre

sented in this chapter. 

One of the major issues in sphere decoding is the selection of the initial ra

dius, which is investigated in Chapter 5. The statistical selection of the initial 

radius which arises from communication applications is introduced. Then an

other method, the deterministic selection of the initial radius is discussed. The 

algorithms of computing the initial radius in this two methods are presented 

thereafter. The radius update by adaptive sphere decoding is briefly discussed 

in this chapter as well. 

6 
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As floating-point errors are inevitable in numerical computation process, the 

initial radius computed by the deterministic method may make sphere decod

ing fail. We show the failure of sphere decoding by an example in Chapter 6. 

Then we conduct an error analysis for the deterministic radius based on the 

error formulas of matrix-matrix multiplication and vector-vector addition, and 

propose a revised deterministic selection of initial radius. The algorithm of re

vised deterministic selection of initial radius is also presented and the revised 

deterministic method is used to compute the initial radius to show the success 

of sphere decoding. 

In Chapter 7, a couple of experiments are conducted, they are targeting dif

ferent purposes. First experiment evaluates the improvement of performance of 

adaptive sphere decoding over the original sphere decoding. The second experi

ment compares the statistical radius and deterministic radius for the simulated 

communication system. The third experiment shows the failure rate of sphere 

decoding with the deterministic radius due to the computational error, then it 

shows the elimination of failure of sphere decoding with the revised determin

istic radius. Last, it is claimed that the revised deterministic radius does not 

impose a significant overhead on sphere decoding compared to the non-revised 

deterministic radius, which is verified in the fourth experiment. 

Finally, in Chapter 8, some concluding remarks are given and possible direc

tions for future work are advised. 

7 



Chapter 2 

Communication Channel Model 

2.1 Channel model 

In wireless communication applications, there are increasing demands for high 

rate digital transmission systems. Multiple antennae wireless communication 

systems have the capabilities of providing data transmission at a high rate. But, 

in real communication systems, problems also come up with multiple antennae 

systems, the increased amount of noise, intersymbol interference (lSI) 1 and in

teruser interference (lUI) 2 perturbs the transmitted signals when transmitting 

over a noisy dispersive channel. The received signals are combinations of trans-

mitted signals with noise, intersymbol interference and interuser interference. 

If we consider a multiple antennae communication system with m transmit-

ting antennae and n receiving antennae, y E en is the received signal vector, 

1 In telecommunication, intersymbol interference is a form of distortion of a signal in which 
one symbol interferes with subsequent symbols. 

2In some communication systems, interuser interference is known as multiple access inter
ference. 

8 
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sEem is the transmitted signal vector, then a single user Gaussian channel 

with multiple transmitting and receiving antennae can be modeled as: 

y=Hs+v, (2.1) 

where H E e nxm is a complex channel matrix and v E en is zero mean complex 

Gaussian noise with independent, equal variance real and imaginary parts [12]. 

The communication channel model is illustrated in Figure 2.1. 

s H 
y 

Figure 2.1: The discrete-time channel model 

Figure 2.1 shows a communication channel described by a linear discrete

time model with additive white Gaussian noise (AWGN) based on the following 

assumptions [13]. 

• The channel H is linear. 

• The channel matrix is of full column rank. 

• The noise sequence v is additive white Gaussian eN(O, 0-
2

) with mean zero 

and variance 0-
2

. 

Let us concentrate on the discrete-time channel model and consider the com

munication channel as dispersive multiple-input multiple-output (MIMO) chan

nel with finite impulse response (FIR). 

9 
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2.2 Frequency-selective channel 

In [14], Vikalo and Hassibi describe the MIMO channel as block-fading frequency-

selective model. The channel impulse response is constant for some discrete 

interval T, after which it changes to another impulse response that remains 

constant for another interval T, and so on. The additive noise is spatially and 

temporally independent and identically distributed (i.i.d) circularly-symmetric 

complex-Gaussian. The MIMO channel model is shown in Figure 2.2. 

g'1 Y 

6' y 

y 

Yl 
) 

Y2 
) 

Un 
) 

Figure 2.2: FIR MIMO channel model with m transmitting and n receiving 
antennae 

Assuming that the source data sequence is transmitted in length of T sym-

boIs, let H be the channel impulse response of length l + 1, where l is called the 

channel memory length or equivalently the number of interfering intersymbols, 

so we may think that the transmitted source data sequence is equally separated 

10 
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by a guard interval of l - 1 symbols. The frequency-selective model can be 

written as: 

i 

Yi = L hj si - j +1 + Vi, 

j=l 

(2.2) 

where hi, i = 1, ... , l are the coefficients of the channel impulse response of length 

l+l, and assumed to be GaussianN(O, 1), Si is the ith symbol in the transmitting 

source data sequence, and Vi is the ith component of the channel independent 

and identically distributed (i.i.d.) Gaussian noise N(O, (/2). 

We can see that Equation (2.1) and Equation (2.2) are equivalent, the dif

ference is that Equation (2.2) is the component wise form of Equation (2.1) and 

the matrix in (2.2) has a special structure (shown later). 

Remark 2.1. This model is assumed to be real, in [is}, there is detailed de

scription and deduction for FIR MIMO model. Although the FIR MIMO model 

in [is} was described originally as complex, it is also mentioned that it is more 

useful to rewrite this model as real. In fact, if we need the model in complex 

case, it is equivalent to doubling the dimension size of the real model described 

here. In another words, the assumed real model here (even dimension) can be 

fitted for complex model of half dimension (for simplicity, it is usually to write 

the model in real, i. e., the dimension in real case is double of the dimension in 

complex case for the same model). 

From now on, we consider the channel model in Equation (2.1) as real in

stead of complex, where matrix H E jR(T+Z-l)XT, T is the length of transmitted 

symbols, l is the length of channel memory. In Equation (2.1), H has the form 

11 
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of 

hI 
h2 hI 

H= hl hI 

hl h2 

hl 

8 is the vector of the transmitted data sequences, y is the vector of the received 

data sequence and v is the vector of additive white Gaussian noise, they have 

the forms of 

YI VI 

81 Y2 V2 

82 
EvI, E IRT+l-\ E IRT +l- I 

YT VT 

8T 

YT+l-I VT+l-I 

respectively, where V L is an L-PAM constellation. We can see that the channel 

matrix has Toeplitz structure. 

2.3 The transmitting data sequence 

In communication systems, some modulation schemes such as Quadrature Am-

plitude Modulation (QAM), Pulse Amplitude Modulation (PAM) are very pop-

ular. If we treat Equation (2.1) as a complex version of communication channel 

12 
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model, where the additive white Gaussian noise v E en is composed of i.i.d. 

complex-Gaussian eN(O, (72) entries, the channel matrix H E cnxm is com

posed of i.i.d. complex-Gaussian CN(O, 1) entries, then the transmitted vector 

s E C1Y£ is usually an m-dimensional vector whose entries are complex-valued 

elements chosen from an L2-QAM constellation. i.e., both the real and the imag-

inary parts of entries of s are elements from an L-PAM constellation Th. L is 

usually taken as a power of 2. 

On the other hand, if we treat Equation (2.1) as real for frequency-selective 

channel model, where the additive white Gaussian noise v E IRn is composed of 

i.i.d. Gaussian N(O, (72) entries, the channel matrix H E IRnxm is composed of 

i.i.d. Gaussian N(O, 1) entries, then the transmitted vector s E DI: is usually 

an m-dimensional vector whose entries are real-valued elements chosen from an 

L-PAM constellation DL . L is also usually taken as a power of 2. 

For the purpose of simplicity and also for the frequency-selective channel 

model, we assume that the entries in the vector of transmitted data sequence s 

are chosen from points of an L-PAM constellation [1] 

DL = { _ L - 1 _ L - 3 ... L - 3 L - 1 } 
2' 2' , 2 ' 2 

(2.3) 

and L is taken as a power of 2. We can say that the vector s belongs to the 

lattice-type signal constellation DI: 

DI: = PL x DL X ... x DI;" 
'V 

m-times 

where the operation' x' denotes the Cartesian product. 

13 
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For various values of L, let us examine the entries of s respectively. 

1. Vr: For a 2-PAM constellation, the entries of s belong to the set {±D. 

2. Dr: For a 4-PAM constellation, the entries of s belong to the set {±~, ±n. 

3. V'8: For a 8-PAM constellation, the entries of s belong to the set 

{±~, ±~, ±~, ±D· 

4. V16 and higher: The set of entries of 16-PAM constellation can be obtained 

in a similar pattern, even if for a higher order L-PAM constellation. 

2.4 The noise 

Whatever communication channel we are considering, the interference and noise 

are inevitable. When a signal transmits over noisy dispersive channels, the 

received signal at each receiving antenna is not the original transmitted signal 

any more, actually, it is the combinations of the transmitted signal perturbed 

by noise, intersymbol interference and interuser interference. Therefore, the 

received signal becomes unsatisfactory since the interference and noise cannot 

be removed by simply raising the signal power. 

As aforementioned, when we model the FIR MIMO channel, the intersymbol 

interference has already been considered into the channel model, now we need to 

investigate what impact the noise has on the communication channel. In 1972, 

Forney [16] introduced the whitened matched filter so that an important class 

of channels can be described by a linear discrete-time model with additive white 

Gaussian noise. 

14 
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In engineering, signal-to-noise ratio (SNR) is often defined as power ratio 

between a meaningful signal and the background noise, and SNR is usually 

expressed in term of the logarithmic decibel scale. However, in communication, 

when white noise is assumed present, optimal signal processing systems can 

sometimes take it into account and their performances typically depend on a 

modified definition of signal-to-noise ratio. In our FIR MIMO channel model, 

the noise sequence v is additive white Gaussian N(O, (]"2) with mean zero and 

variance (]"2, but instead of the noise variance (]"2, we are more interested in the 

SNR. Specifically, define SNR for our communication model as in [1]: 

o I'> m(L2 -1). 
12(]"2 

(2.4) 

By the SNR definition (2.4), we see that the SNR is closely related to the noise 

variance and dimension m. We can expect that the noise variance determines the 

SNR, therefore, impose a significant impact on the selection of the initial radius 

for sphere decoding by the statistical method (shown in the experiments). 
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Chapter 3 

Sphere Decoding 

3.1 Preliminary 

Sphere decoding (SD) has got a lot of attention by researchers recently, it is able 

to solve the closest lattice point problem, i.e., finding the closest lattice point 

to a given point. It is a maximum-likelihood (ML) detection algorithm with 

a relatively low expected complexity. It is useful· for many applications. For 

example, it has been adopted for different linear channels in digital communi

cations. The complexity of sphere decoding is usually polynomial in most cases 

and under certain assumptions, although in some cases, it could be shown to be 

exponential. 

The idea of sphere decoding was introduced originally by Finke and Pohst 

in [11] in 1985, which enumerates all lattice points within a hypersphere centered 

at the origin. The hyperspherc radius is a decisive factor for the complexity of 

the algorithm and determines the number of points visited throughout the entire 

16 
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searching process. The radius problem has been addressed and treated widely 

in the literature. 

Sphere decoding is often composed of two stages: 

1. Preprocessing stage 

2. Searching stage 

The first stage usually transforms the problem into a simpler form which makes 

the decoding process easier and more efficient. Some of the preprocessing meth-

ods such as QR decomposition and lattice reduction can be utilized for this 

purpose. The goal of the searching stage is to find the closest lattice point con-

strained by a hypersphere. In communication applications, a sphere decoder 

can be applied to the receiver side to obtain an optimal maximum-likelihood 

detection. 

3.2 Integer least squares problem 

3.2.1 Lattice interpretation 

In general, the integer least squares problem is to find a minimizer, an m-

dimensional integer vector s E zm to the problem: 

(3.1) 

where y E jRn, H E jRnxm. Here, s denotes an m-dimensional vector composed of 

integer entries. From the point of view of lattice, s also denotes an m-dimensional 
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integer lattice. H is called the lattice generating matrix. 

We can interpret the integer least squares problem simply from a geomet-

ric lattice. Since the entries of vector s are composed of integers, s spans a 

"rectangular" m-dimensional lattice 7l..m (see Figure 3.1). 

3 .............•........... ~ ............•............•............•.............• 

2 ....................................... ~ ...................... ~ ............ . 

........... -! ............ ~ ..........•.. -.-.- .... ~ ............ ~ ............ ~ 

o ...........•............•.............•............ + ........... ~ ........... + 

-1 .. ····~ ............... · +. ... .......... ! ... ~ 

~ ............ + ........... ~ ............•............ ~ ............ ~ ............ ~ 

-3_----+-----jf---........ -_--+--_ 
-3 -2 -1 0 2 

Figure 3.1: Geometric interpretation of a "rectangular" lattice 

The lattice generating matrix H transforms the m-dimensional vector s to 

an n-dimensional vector H s which spans a "skewed" lattice (it is "skewed" lat-

tice relative to the m-dimensional space, see Figure 3.2). So, given a "skewed" 

lattice H s and given a vector y E ~n, the integer least squares problem can be 

considered as to find the closest lattice point (in Euclidean sense) to the given 

vector y (this given vector y is in the n-dimensional space, also see Figure 3.2). 

In Figure 3.2, the lattice generating matrix H transforms the "rectangular" 

lattice s (in Figure 3.1) to a "skewed" lattice, the solid points represent the 

"skewed" lattice H s, which is a plane in space. The hollow point in Figure 3.2 
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represents the vector y, which is in a 3-dimensional space. The integer least 

squares problem is to find the solid point which is closest to the hollow pointl . 

... :.:.... -2 

-4 
2 

3 -6 

Figure 3.2: Geometric interpretation of "skewed" lattice generated by Hand 
the integer least squares problem 

The complexity of the general integer least squares problem has been studied 

by several people. It has been shown in [4] that it is an NP-hard problem, and 

a proof can be found in [17]. 

A typical method of solving the integer least squares problem (3.1) usually 

has two stages: reduction (preprocessing) and decoding (searching). A com-

prehensive survey of closest point search methods for lattices without a regular 

structure is presented in [18], which also provides an implementation of efficient 

closest point search algorithm, based on the Schnorr-Euchner variation of the 

Pohst method [19]. 

1 Note, the hollow point may not be necessarily in the plane of solid points, although it is 
also possible for the hollow point lying in the plane of solid points. 
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3.2.2 QR decomposition 

When the matrix H in (3.1) has full column rank, one of standard methods for 

preprocessing (3.1) is the QR decomposition method [20]. H is reduced to an 

upper triangular matrix by the QR decomposition 

where Q E jRnxn is orthogonal and R E jRmxm is upper triangular. Partition 

Q = [Q1, Q2], where Q1 is n x m and Q2 is n x (n - m), we get 

IIHs - yll; 

IIQ [~l s - yli: 

II [~l S - QTyli: 

II [~l s- [~n { 
IIRs - Qf YII~ + IIQr YII~ . 

We can do nothing about the second term IIQr YII~, however, we can minimize 

the first term IIRs - Qr YII~. Define y /::,. Qr y, then the integer least squares 

problem (3.1) is reduced to a triangular integer least squares problem: 

min IIRs - YII~. 
sEZTn 

(3.2) 
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3.2.3 Geometric interpretation of QR decomposition 

We can interpret the QR decomposition upon H geometrically. If the QR de

composition is applied to the lattice generating matrix H, H is transformed to 

R, strictly speaking, H is reduced to R. Since H is an n x m matrix and R 

is an m x m matrix, the transformation is actually a reduction, it reduces the 

dimension from n to m. In Figure 3.3, the solid points form the "skewed" lat

tice generated by the lattice generating matrix H upon a "rectangular" lattice 

spanned by s. After the QR decomposition is applied to H, the "skewed" lat

tice H s is reduced to Rs, which is formed by the hollow points in Figure 3.3. 

Although it is still a "skewed", it is in lower dimension (dimension m instead of 

dimension n). In the meanwhile, the point y (in dimension n) is also reduced 

to i) (in dimension m), which has the same dimension as Rs. Geometrically, y 

is projected onto Rs, the m-dimensional subspace spanned by the columns of 

R. Therefore, the QR decomposition reduces the original integer least squares 

problem. 

From the point of view of closest lattice point, after applying the QR decom

position to (3.1), the original integer least squares problem (3.1) is transformed 

(reduced) to find the closest lattice point (in Euclidean sense) to the point i), 

where the new lattice points are under the basis formed by the columns of R. 
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Figure 3.3: Geometric interpretation of QR decomposition 

3.3 The sphere decoding 

3.3.1 Overview of sphere decoding 

Sphere decoding is an efficient search method for obtaining maximum-likelihood 

detection performance for the NP-hard integer least squares problem. The prin-

ciple of sphere decoding is to search the closest lattice point to a given point 

inside a hypersphere of radius d centered at that given point, therefore it can 

reduce the computational complexity of the maximum-likelihood detection (see 

Figure 3.4). 

The complexity of sphere decoding depends on the following two factors: 

• The radius d of the hypersphere 

How do we choose the radius d? If d is too large, then we obtain too 
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-1 

-2 

Figure 3.4: Geometric interpretation of a hypersphere on a lattice space 

many points inside the hypersphere, and the search complexity may be 

exponential to d. If d is too small, then we obtain no points inside the 

hypersphere. In general, no guideline in choosing d, we do not know what 

size is appropriate for d, it depends on the applications. 

• Determination of the lattice points inside the hypersphere 

How to determine whether a lattice point is inside the hypersphere or not? 

This requires to test the distance (in Euclidean sense) between each lattice 

point and the given central point to determine whether it is smaller than 

the hypersphere radius d or not. So, this is an exhaustive search. 

3.3.2 Tree representation of sphere decoding 

It is not easy to determine the lattice points inside a general m-dimensional 

hypersphere, so let us first start with the lower dimensional case. Obviously, the 
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hypersphere in I-dimensional case is an interval, and the desired lattice points 

are the integers that lie within this interval. For m = 2, the desired lattice points 

in 2-dimensional case are the points inside a circle. For m = 3, the desired lattice 

points in 3-dimensional case are the points inside a sphere. And so on, for the 

higher dimensional spaces, the desired lattice points lie inside a hypersphere. 

The sphere decoding method works in a reverse order (from m-dimension 

down to I-dimension) and in component wise for lattice points. We know that 

an m-dimensional lattice point can also be considered as an m-dimensional vec

tor. Suppose for an unknown lattice point (also an unknown vector), we have 

determined its mth to kth entries, the kth entries is now in an integer interval 

computed from one of the (k + I)th entries by searching a hypersphere of radius 

dk in a k-dimensional space. For the lower (k - I)-dimensional space, we pick 

anyone kth entry in the integer interval determined in the k-dimension, use it 

to compute the radius dk - 1 for (k -I)-dimensional space, therefore, we are able 

to determine all the (k - 1 )th entries of this unknown lattice point by searching 

a hypersphere of radius dk - 1 in the (k -I)-dimensional space, which follows the 

kth entry we picked in the k-dimension. Let us use the following example to 

illustrate the decoding process. 

Example 1: 

Suppose that we solve an integer least squares problem in a 2-dimensional 

space, so we decode the lattice points inside a circle. Before searching, the QR 

decomposition need to be applied and then the integer least squares problem 

(3.2) in 2-dimension is 
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II ['6' ~:::] [::]- [~:]IJ:· 

Assuming that an initial radius d is given, in order to search in a circle, expand 

it in component wise2 

and it is necessary that 

This determines all the possible values for the second entry 82 of the closest 

lattice point inside this circle (see Figure 3.5). In Figure 3.5, there are three 

possible values (in vertical coordinate) for entry 82. We pick one of the three 

possible values of entry 82, compute the possible values (in horizontal coordinate) 

for entry 81 determined by this 82 value with 

Therefore, the lattice points inside this circle can be found. We follow the same 

pattern to find other lattice points inside this circle. That is, pick another one 

of the three possible values of entry 82, compute the possible values for entry 81 

determined by this 82 value. 

2The detailed mathematically analysis of sphere decoding algorithm is presented in the 
next subsection. 
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Figure 3.5: Geometric interpretation of a circle in a "skewed" 2-dimensional 
lattice space 

Now let us translate the geometric interpretation (in Figure 3.5) to a tree 

representation. In Figure 3.5, sphere decoding found three values for entry 82, 

the first value of entry 82 determines one value for entry 81 (entry 82 and 81 

determine the bottom lattice point inside the circle in Figure 3.5), the second 

value of entry 82 determines three values for entry 81 (entry 82 and 81 determine 

the three middle lattice points inside the circle in Figure 3.5) and the third value 

of entry 82 determines two values for entry 81 (entry 82 and 81 determine the 

two top lattice points inside the circle in Figure 3.5). The corresponding tree 

representation of the geometric interpretation (Figure 3.5) is shown in Figure 

3.6. 

The above method means that we can compute all the (k - 1 )th entries of 

lattice points in a (k -I)-dimensional hypersphere of radius dk- 1 by successively 

computing all the kth entries of lattice points in the k-dimensional hypersphere 

of radius dk . If we start with k = m, this method for computing the lattice points 

in an m-dimensional hypersphere essentially constructs a tree of depth = m + 1 
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1< = 2 

k=l 

Figure 3.6: Tree representation generated by sphere decoding in an m 2 
dimensional lattice space 

where the nodes in the kth level of the tree correspond to the kth entries of 

lattice points (see Figure 3.6). In Figure 3.6, the root node represents none 

entry of a vector (a lattice point) from the point of view of our decoding, as 

a matter of fact, the root node's children represent the top mth entries in m-

dimensional space. From the view of this tree representation, the complexity of 

sphere decoding depends on the size(density) of the tree, i.e., depends on the 

number of nodes of the generated tree by sphere decoding. 

3.3.3 The sphere decoding algorithm 

First, let us look into the sphere decoding algorithm mathematically. The lattice 

points H s lie inside a hypersphere of radius d centered at y if and only if 

(3.3) 

It is useful to apply the QR decomposition to the matrix H 

27 



MSc Thesis - F. Zhao, McMaster - Computing & Software 

where Q E ~nxn is orthogonal and R E ~mxm is upper triangular. Partition 

Q = [Q1, Q2], where Q1 is n x m and Q2 is n x (n - m). We know 

IIHs - YII~ = IIRs - Qf YII~ + IIQr YII~, 

so, the condition of (3.3) becomes 

and it can be written as 

(3.4) 

Define y /::, Qr Y and d,2 /::, d2 - IIQr YII~, then the condition of (3.4) is 

d,2 2: IIRs - YII~. (3.5) 

To make sphere decoding more understandable from mathematics, we in

vestigate it mathematically from two approaches: recursive and non-recursive. 

And following each approach, a corresponding algorithm is presented for that 

approach . 

• Recursive approach [21] 
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Assuming that we have applied QR decomposition to the original integer least 

squares problem (3.1), and it is reduced to problem (3.2), which is a triangular 

integer least squares problem now. So, sphere decoding needs to be applied 

to the problem (3.2) constrained in a hypersphere centered at Y with radius 

d, i.e., inequality (3.5). 

Partition the upper triangular matrix R in the inequality (3.5) 

R = [Rl rl:m-l,m], 
o rmm , 

where Rl is the order (m - 1) leading principal submatrix of R, rl:m-l,m is 

the subvector consisting of the first (m - 1) entries of the last column of R, 

and r m,m is the last entry of the last column of R. Accordingly, also partition 

vector 8 and y 

A = [Yl:m-l] Y A , 

Ym 

where 81:m-l and Yl:m-l are the first (m - 1) entries of 8 and Y respectively, 

8 m and Ym are the last entries of 8 and Y respectively as well. Then, we can 

get 
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i.e., 

satisfy inequality (3.5), it is necessary that 

(3.6) 

and 

(3.7) 

The inequality (3.7) is similar to inequality (3.5), but it is to find the lattice 

points inside a hypersphere of radius d' for the triangular integer least squares 

problem (3.2) in dimension m - 1. 

The solution 8 m for (3.6) are the integers between (-d + Ym)/rm,m and (d + 

(3.8) 

Thus, for each integer 8m in (3.8), we compute a new search radius d' and 

a new y' by d'2 = d2 
- (r m,m8m - Ym)2 and y' = Yl:m-l - rl:m-l,m8m, then 

solve the (m-l)-dimensional problem (3.7) following the similar pattern, i.e., 

recursively solving until we get to m = 1. 

3For rm,m < 0, it is similar, just switch the upper bound and lower bound of the inequality. 
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Table 3.1: Algorithm 1 - Recursive Sphere Decoding Algorithm 

Inputs: 

Output: 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 

R, where R is upper triangular. 
y, where Y is already reduced by QR decomposition. 
r, where r is the hypersphere radius to the reduced problem. 
s. 
d f- r; 
UB f- l(d+Ym)/rm,m;J; 
LB f- i(-d+Ym)/rm,m;l; 
ifm= 1 

return the integers in [LB, UB]; 
else 

for each integer 8m E [LB, U B] 
d,2 f- d,2 - (r s _ yh ) 2. m,m m m, 

, h 

Y f- Yl:m-l - rl:m-l,mSm; 

apply this algorithm to R1:m-1,1:m-l, y' and d'; 
append Sm to each of the solutions of dimension m - 1; 

end 
end 
return S; 

With all the above discussion, now it is time to implement the recursive sphere 

decoding algorithm. A brief description of the recursive sphere decoding al-

gorithm (Algorithm 1) is presented in Table 3.1. 

Note, this algorithm finds all the lattice points inside the hypersphere of initial 

radius d, not only the lattice point closest to y. However, once we have all the 

lattice points inside the hypersphere, it is straightforward to find the one clos-

est to y (in Euclidean sense), if it is exists. Actually, with tree representation 

of sphere decoding, this algorithm is a depth-first search method . 

• Non-recursive approach 

Due to the stack usage required by the recursive sphere decoding algorithm and 
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the limit of computer memory, in reality, we cannot decode a large dimensional 

space with the recursive sphere decoding algorithm, we need to discuss and 

implement a non-recursive version of sphere decoding algorithm. 

Also assuming that QR decomposition is done for the original integer least 

squares problem (3.1), and sphere decoding is for Equation (3.5). With the 

description of the tree representation of sphere decoding, we can now look into 

a non-recursive sphere decoding algorithm. 

We can also rewrite the condition of (3.5) in component wise as 

m (m )2 d"2 > ~ ~ 7" 'S' _ yA, 
- ~ ~ ~,J J ~ , 

i=1 j=i 

(3.9) 

where 7'i,j, J' 2:: i denotes the (i, j)th entry of upper triangular matrix R. With 

the upper triangular property of matrix R, the right hand side of inequality 

(3.9) can be expanded as 

(3.10) 

+ ... , 

where the first term in (3.10) depends only on the entry Sm of lattice point s, 

the second term in (3.10) depends on the entries {sm' Sm-I} of lattice point s, 

and so on. 

We can see that a necessary condition for H S lying inside the hypersphere of 

radius d is d,2 2:: (Ym - r m,msm)2, and it is equivalent for entry 8m to be within 
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the interval 

I -d + yml ::::; sm ::::; ld + YmJ . 
I rm,m rm,m 

(3.11) 

Remark 3.1. (3.8) and (3.11) are the same, i.e., solving Sm is the same in 

both the recursive approach and the non-recursive approach. 

Furthermore, for each Sm satisfying (3.11), define d:n-l !:> d2 
- (Ym - rm,msm)2 

and y'm-l !:> Ym-l - r m-l,mSm, it is also necessary that d:n-l ~ (y'm-l -

rm-l,m-lsm-l)2, which leads to Sm-l being within the interval 

i-dm-1 + Y'm-1l < < ldm-1 + Y'm-lJ _ 8 m -l _ . 
r m-l,m-l r m-l,m-l 

(3.12) 

We can follow the similar pattern to obtain the interval for Sm-2, 8 m -3 and so 

on until we obtain the interval for 81, therefore, we are able to determine all 

the lattice points which are inside the hypersphere of radius d. 

The implementation of the non-recursive sphere decoding algorithm (Algo

rithm 2) is presented in Table 3.2. 

Note, in the implementation of the non-recursive sphere decoding algorithm, 

there are two issues need to be addressed: 

II:§" We start with k = m, decrease k until k = 1. But, it is possible for the 

computed inequalities (3.11), (3.12) and other similar ones that the entry 

8k, m ~ k 2: 1 locates in all empty interval, that is, the lower bound of 

the interval is greater than the upper bound of the interval. In the case 
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Table 3.2: Algorithm 2 - Non-recursive Sphere Decoding Algorithm 

Inputs: 

Outputs: 
1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
21. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
31. 
32. 
33. 
34. 

R, where R is upper triangular. 
y, where Y is already reduced by QR decomposition. 
r, where r is the hypersphere radius to the reduced problem. 
s or null. 

dn f- r; 
UBn f- L(dn+Yn)/rn,nJ, LBn f- f(-dn+Yn)/rn,nl; 
minR f- dn; 
interSumn f- Yn; 
if LBn > UBn 

initial radius too small, return null; 
else Sn f- LBn; end 
k f- n; 
while Sn ::; UBn {top level not exhausted} 

if Sk > UBk {this level exhausted already} 
k f- k + 1; Sk f- Sk + 1; {go back to upper level} 

else {Sk ::; UBk } 
if k > 1 

k f- k -1; 

d~ f- d~+1 - (interSumk+1 - rk+1,k+1 * Sk+1)2; 

interSumk = Yk - rk,k+l:n * sk+l:n; 
UBk f- L(dk + interSumk)/rk,kJ; 
LBk f- f( -dk + interSumk)/rk,k 1; 
if LBk > UBk {empty interval} 

k f- k + 1; Sk f- Sk + 1; {go back to upper level} 
else Sk f- LBk ; end 

else {k = I} 
while Sk ::; U Bk {go through all Sk at k = I} 

if minR > II(Rs - Y)112 
found f- S; 

minR f- II(Rs - y)lb 
end 
Sk f- Sk + 1; 

end {inner while} 
k f- k + 1; Sk f- Sk + 1; {go back to k = 2 level} 

end {if k > 1 else} 
end {if Sk > U Bk else} 

end {outer while} 
return found or return null; 
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that the entry 8 m locates in an empty interval, that means the initial 

radius d is selected too small, no lattice point can be determined at the 

very beginning decoding stage. In the case that the entry 8k, 1 < k < m 

locates in an empty interval, we cannot go down further, instead, we 

have to go back to the upper level and pick another integer in this level's 

interval, then compute its lower level's interval (its children in the tree) 

again. In the case that the entry 81 locates in an empty interval, we 

still have to go back to the upper lever. This is why the generated tree 

structure of sphere decoding is not a balanced tree (all the branches have 

the same lengths), some branches are probably shorter than the depth of 

the generated tree (depth = m+ 1). Because we cannot go down further in 

those branches, along those branches, the integers in some level's interval 

compute an empty interval in their lower level. 

It is also possible that all the branches' lengths of the generated tree 

structure are less than m + 1, it means that from all the branches, the 

decoding process cannot reach the k = 1 level, that is, no lattice point 

can be determined. So we have to increase the initial radius d of the 

search hypersphere. 

1& Inside the hypersphere centered at y, there are many lattice points around 

the given y, however, we only need the one which is closest to y. There

fore, we have to search all the lattice points inside the hypersphere and 

compare their distance to y (in Euclidean sense) to determine whether a 

lattice point is the one closest to y or not. In order to determine the clos

est one, we have to reach the k = 1 level so that we are able to compute 
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the Euclidean distance. For the branches of the generated tree structure 

whose length equal to the tree depth (length = depth = m + 1), the de

coding process has to go through all of them, compute and compare the 

Euclidean distance of the lattice points corresponding to those branches, 

therefore determine the closest lattice point. 

From this two issues, we can see that the entire decoding process requires k 

to increase its value or decrease its value continually, i.e., go up level or down 

level continually but within different branches each time. Actually, it goes 

through the entire tree (except the root node) like a preorder traversal and 

performs a depth-first search. 

3.3.4 Complexity of sphere decoding 

In both the recursive and the non-recursive sphere decoding algorithms, they 

show that the number of lattice points inside the hypersphere can grow rapidly 

as the search radius increases. So the key issue for sphere decoding algorithm is 

the selection of the search radius. It is obvious when the initial radius is very 

large or as the initial radius d --7 00 in the extreme case, sphere decoding has 

to search a very large hypersphere or almost the entire lattice space, which is 

infeasible and computationally prohibitive. On the other hand, when the initial 

radius is too small, there may be no lattice points inside the hypersphere. How 

to determine an appropriate initial radius? In Chapter 5, we will focus on the 

issue of initial radius and examine 2 different methods for the selection of initial 

radius. 
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Chapter 4 

Adaptive Sphere Decoding 

Usually, sphere decoding searches all the lattice points within a hypersphere, 

then amongst all of these points, finds the one which is closest to the given point. 

However, going through every point in the hypersphere is not very efficient, we 

have to remember the currently closest point and compare it with a new point 

to determine whether the new point is closer than the known one. This is an 

exhaustive search. And the original sphere decoding must spend much of its 

search time on the determination and comparison of the new points, although 

lots of new points are supposed to be not closer than the already known one. 

In [14], the authors briefly mentioned an improved, more efficient method on 

sphere decoding - sphere decoding with radius update, which is able to avoid 

having to search all lattice points inside a hypersphere and potentially improves 

the search effort thereafter. However, the authors only introduced the idea 

without giving details. In this section, we get into this method and describe 

it in more details from two approaches. Before we start, we name this improved 
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sphere decoding method as "adaptive sphere decoding" (ASD) , because this 

method can adapt to the radius whenever it has found a smaller radius and 

restart the search. We also refer sphere decoding sometimes as original sphere 

decoding in comparison with adaptive sphere decoding. 

4.1 Geometry of adaptive sphere decoding 

Geometrically, to solve (3.2), minsEz'" IIRs - :ifll~, the original sphere decoding 

constructs a hypersphere originate from the vector :if and with an initial radius 

(given) as its radius (see Figure 4.1), then the search algorithm has to go through 

all the lattice points inside this hypersphere in order to find the minimized 

solution for (3.2), if it exists. 
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Figure 4.1: Geometric interpretation of a search hypersphere 

Once an initial radius is determined and given to sphere decoding, we start 

the search. In the original sphere decoding, we start the search from k = m 
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level, if we are able to reach k = 1 level, then it is likelyl that we can find a 

solution for (3.2), although it is not necessarily a closer one and is discarded if 

it is not. However, it is also possible that we cannot reach the k = 1 level at 

all, namely, no solution can be found, which means that the initial radius is too 

small. 

Assuming that the initial radius we selected is appropriate, and we are able 

to find the solution to (3.2). We start the search, if we find a closer solution, then 

we remember it as the currently closest, and search all other unreached points 

again, no matter whether those points are further or closer than this one. We can 

imagine that some points are further than the currently closest one, but we still 

have to go through them. We know, for each lattice point, the search algorithm 

has to spend time on decoding it and computing its Euclidean distance to the 

center (the vector fj) as well as doing the comparison. Thus, the original sphere 

decoding algorithm is not very efficient, since there exist some points which have 

to be searched are further than the already known one and then are discarded 

right after reaching it. Generally speaking, when the initial radius is fairly large, 

many of the lattice points need to be searched and then discarded right away. 

Now, let us look at adaptive sphere decoding, this method can improve the 

search techniques of the original sphere decoding. First of all, it still applies 

the hypersphere concept and decoding techniques. Before starting, the integer 

least squares problem (3.1) still needs to be reduced to a triangular integer least 

squares problem (3.2), then adaptive sphere decoding is applied to (3.2). It starts 

the search with an initial radius, however, unlike the original sphere decoding, 

1 A solution is not guaranteed to be found even if we have reached the k = 1 level. 
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once it has found a lattice point which is closer than the radius (suppose that 

the initial radius is large enough to find at least one lattice point inside the 

hypersphere), then it restarts the search immediately with the distance from 

this closer point to the center as a new radius. In this way, it does not have to 

go through all the lattice points inside the initial hypersphere. In other words, 

adaptive sphere decoding excludes searching the lattice points which are further 

than the already known one. 

Geometrically, at the beginning of a search, adaptive sphere decoding con

structs a hypersphere originate from the vector f) and with an initial radius 

(given) as its radius (the outer sphere in Figure 4.2), and starts the search. 

Once it has found a closer point (suppose that the initial radius is large enough 

to find at least one lattice point inside the hypersphere), it constructs another 

smaller hypersphere originate from the same vector f) and with the distance from 

this found, closer point to the vector f) as its radius (the inner dense sphere in 

Figure 4.2). If it restarts the search with the smaller hypersphere, then the lat

tice points between the two hyperspheres are excluded from reaching, it means 

that we do not need to search those lattice points in between. How good is 

it? In general case, it is very likely that certain amount of lattice points are in 

between (the points between the outer and inner dense sphere in Figure 4.2) and 

the original sphere decoding has to search them and discard them right away2, 

since apparently those points are not closer than the one with which the smaller 

hypersphere is constructed. Adaptive sphere decoding is able to eliminate the 

points in between rather than trying to search those points as the original sphere 

2 Although it is also possible that no lattice points in between in some cases. 
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decoding does. 
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Figure 4.2: Geometric interpretation of adaptive sphere decoding 

After restarting the search with the new smaller radius, adaptive sphere 

decoding follows the same rule, i.e., if a closer point is found, then it constructs 

another smaller hypersphere with the distance from this point to the center as 

its radius, and restarts the search. Applying the same pattern repeatedly, until 

we find the closest lattice point to the vector fl. Intuitively, adaptive sphere 

decoding can reduce the search radius rapidly and reach the closest lattice point 

dramatically, it may work very well even if the initial radius is fairly large, and 

many lattice points are inside the initial hypersphere. 
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4.2 Tree representation of adaptive sphere de-

coding 

Let us look at adaptive sphere decoding from another view - tree represent a-

tion. The original sphere decoding starts decoding from m-dimension down to 

1-dimension, and works in component wise in determining lattice points. Once 

it has determined the possible kth (1 ::; k ::; m) entries of a lattice point within a 

hypersphere of radius dk in a k-dimensional space and created an interval com-

posed of the possible kth entries, then it starts from the lower bound of this 

interval to the upper bound, picks one kth entry, uses it to compute the radius 

dk - 1 for (k -1)-dimensional space. Therefore, we are able to determine the pos

sible (k - 1)th entries of this lattice point within a hypersphere of radius dk - 1 

in the (k - 1 )-dimensional space, which follows from the kth entry picked in the 

k-dimension. 

If we start from k = m down to k = 1, this process constructs a tree of 

depth = m + 1 where the nodes in the kth level (1 ::; k ::; m) of the tree 

correspond to the kth entries of the lattice points. Any kth entry picked in 

k-dimensional space determines an interval in (k - 1)-dimensional space which 

is composed of the possible (k - 1 )th entries. If represented in a tree, each 

node in kth level is used to compute its children in (k - 1)th level. In this tree 

representation, the root node represents none entry of the lattice points from 

the point of view of our decoding3, actually, the root node's children4 represent 

3S0 , in our figures of tree representation, the root node is empty, means that it is not an 
entry of the lattice points. 

4Strictly speaking, the sphere decoding constructs a forest, the meaningless root node here 
conceptually makes the forest into a tree. Actually, the "root node's children" comprises the 
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the mth entries of the lattice points in m-dimensional space. 

If the initial radius is large, then the mth level's interval determined by this 

radius is large, and there are many children for the root node, it is also more 

likely for each node in this tree (except the leaf nodes), there are many children 

for it. In other words, the constructed tree is denser, just as shown in Figure 

4.3. 
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Figure 4.3: Dense tree representation generated by a sphere decoding with a 
large initial radius 

For the original sphere decoding, it searches all the lattice points inside the 

hypersphere, if represented in a tree, it goes through each node of this tree 

( except the root node) like a preorder traversal and performs a depth-first search. 

We can imagine how much time is consumed if this tree is extremely dense and 

the depth of tree is large (depending on the size of the given matrix). 

In this tree representation, if the initial radius is selected appropriately, it 

means that we are able to reach a leaf of full tree depth. Whenever we have 

solution entry Sm. In the following context, we forget the meaningless root node and uses this 
term "root node's children" to refer the meaningful solution entry Sm' 
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reached a leaf of full tree depth5 , we have found a lattice point locating inside 

the hypersphere, and the nodes on the path from the root node's child to the leaf 

of full tree depth are the found lattice point's corresponding entries. However, 

it is not guaranteed that it is the closest lattice point (minimized solution for 

(3.2)). Therefore, we have to remember this lattice point and compare it with 

other lattice points which correspond to other paths from the root node's children 

to the leaves of full tree depth in order to find the closest one, and we always 

remember the currently closest lattice point and compare it with the remaining 

ones. That is, all the paths from the root node's children arriving at the leaves 

of full tree depth are all the lattice points locating inside the hypersphere, we 

have to find all of this kind of paths and compare the distances from their 

corresponding lattice points to the center (the vector y), thus we are able to 

determine the closest lattice point amongst them. 

If adaptive sphere decoding starts with the same initial radius as for the 

original sphere decoding, then the generated tree structure for both of them are 

the same. But for adaptive sphere decoding, once it reaches a leaf of full tree 

depth (for example, the dark path in Figure 4.3), the solid nodes on this path 

are the entries of a found lattice point inside the hypersphere, and we compute 

the Euclidean distance from this lattice point to the center as a new radius, then 

adaptive sphere decoding restarts with this new radius. The restarted adaptive 

sphere decoding constructs a new tree which is sparser (see Figure 4.4) than the 

constructed tree before (the Figure 4.3). Similarly, adaptive sphere decoding 

searches this new tree, once a path from root node's children to the leaves of full 

5We only care about reaching the leaves which are at the m + 1 depth of the tree, the other 
leaves whose length are less than m + 1 are not the entries of lattice points. 
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tree depth (for example, the dark path in Figure 4.4) is found, we are able to 

compute another new radius and restart adaptive sphere decoding again, then 

another more sparser tree is constructed, and so on. We continue this process 

all the way down until the end (the termination of adaptive sphere decoding will 

be discussed in next section). 

k=3 
r'~,) 
1\ 1\ ... ... k=2 

I 

1 
k=l l~ l~ 1 

Figure 4.4: A sparse tree representation constructed by an adaptive sphere de
coding because of adapting to a smaller radius 

Unlike the original sphere decoding which constructs a huge dense tree only 

and searches this tree entirely, adaptive sphere decoding adapts to new radius 

and constructs several trees dynamically, and searches only part of those kind of 

trees. This reduces the overall search efforts, thus improves its total efficiency 

and performance6 . 

6 Adaptive sphere decoding does not guarantee an improvement, the performance may be 
the same for both decoding algorithms if the initial radius is exactly the same as the distance 
between the closest lattice point and the central point. 
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4.3 Termination of adaptive sphere decoding 

For the original sphere decoding, it constructs a huge dense tree only, and goes 

through all the nodes (except the root node) to determine the closest lattice 

point. So whenever going through the entire tree is completed, we know that 

the sphere decoding can be terminated. 

Adaptive sphere decoding constructs and searches many trees rather than 

only one huge dense tree, how does it terminate? From the algorithm of adaptive 

sphere decoding, simply speaking, if no new smaller radius can be computed, 

then it has found the closest lattice point (assuming it can). From the point 

of view of tree representation, adaptive sphere decoding constructs a sequence 

of trees, but the density of the trees in this sequence is usually reduced, that 

is, the branches of the trees become fewer and fewer (compare Figure 4.3 and 

Figure 4.4). If at a stage in this sequence, a very sparse tree is constructed and 

it happens that we have found the closest lattice point in this tree (see Figure 

4.5). But adaptive sphere decoding does not know yet that it is the closest 

lattice point, it continues to restart again with the distance from this lattice 

point to the center as a new radius7. However, no lattice point can be found 

inside this hypersphere any more (rather than the one on its surface), that is, 

no new smaller radius can be computed and it does not need to restart again. 

So adaptive sphere decoding now knows that the lattice point found in previous 

tree is the closest one and returns it. 

In conclusion, from the point of view of tree representation, there is no a 

7From the point of view of tree representation, adaptive sphere decoding then construct a 
final tree, it is possible but not necessary that the final tree is identical as the previous tree. 
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single form of tree to indicate the termination of adaptive sphere decoding. In 

addition, the tree from which the closest lattice point is found is not the final 

constructed tree. When no new smaller radius can be computed, adaptive sphere 

decoding does not need to restart, it can be terminated. The lattice point found 

in the previous one of the final tree is the closest lattice point we desired . 

................ 

k=3 
.. / 

k=2 
j\ 

k=1 

Figure 4.5: The constructed tree from which a closest lattice point is found 
by an adaptive sphere decoding, but it is not the final tree in a tree sequence 
constructed by adaptive sphere decoding 

Remark 4.1. In the case that the initial radius given to adaptive sphere decoding 

happens to be the distance from the closest lattice point to the center, then the 

adaptive sphere decoding algorithm (Algorithm 3) is not able to find the closest 

lattice point (the closest lattice point should be on the surface of this hypersphere), 

because neither is lattice point inside the hypersphere (rather than on its surface) 

nor can smaller radius be computed, and adaptive sphere decoding does not need 

to restart either. Since adaptive sphere decoding is designed to work with a 

relatively large initial radius, we do not take into account of this situation. If we 

really need to consider this situation, then it is not hard to modify the adaptive 
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sphere decoding algorithm (Algorithm 3) a little bit to accommodate the case that 

the initial radius is the same as the distance from the closest lattice point to the 

center. 

4.4 Adaptive sphere decoding algorithm 

The entire adaptive sphere decoding algorithm is presented in Table 4.1. We may 

notice that it has only very little modification compared to the original sphere 

decoding algorithm (Algorithm 2), however, in most cases, its improvement of 

efficiency and performance is significant over the original one. The performance 

evaluation of the two algorithms will be shown in Chapter 7. 
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Table 4.1: Algorithm 3 - Adaptive Sphere Decoding Algorithm 

Inputs: 

Outputs: 
l. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
ll. 
12. 
13. 
14. 
15. 
16. 
17. 
18. 
19. 
20. 
2l. 
22. 
23. 
24. 
25. 
26. 
27. 
28. 
29. 
30. 
3l. 
32. 
33. 
34. 
35. 

R, where R is upper triangular. 
y, where Y is already reduced by QR decomposition. 
r, where r is the sphere radius to the reduced problem. 
s or null. 

dn f- r; 
U Bn f- l(dn + Yn)/rn,nJ, LBn f- f( -dn + Yn)/rn,n 1; 
minR f- dn ; 

interSumn f- Yn; 

if LBn > UBn 
radius too small, return S or return null; 

else Sn f- LBn; end 
k f- n; 
while Sn ::; UBn {top level not exhausted} 

if Sk > UBk {this level exhausted already} 
k f- k + 1; Sk f- Sk + 1; {go back to upper level} 

else {Sk ::; U Bk } 
if k > 1 

k f- k -1; 
d~ f- d~+1 - (interSumk+1 - rk+1,k+1 * Sk+1?; 

interSumk = Yk - rk,k+l:n * Sk+l:n; 
UBk f- l(dk + interSumk)/rk,kJ; 
LBk f- f(-dk+interSumk)/rk,kl; 
if LBk > UBk {empty interval} 

k f- k + 1; Sk f- Sk + 1; {go back to upper level} 
else Sk f- LBk; end 

else {k = I} 
while Sk ::; U Bk {go through all Sk at k = I} 

if minR > II(Rs - Y)112 
found f- S; 

r f- IIRs - ylb 
goto 1; {start over with the new r} 

end 
Sk f- Sk + 1; 

end {inner while} 
k f- k + 1; Sk f- Sk + 1; {go back to k = 2 level} 

end {if k > 1 else} 
end {if Sk > UBk else} 

end {outer while} 
return found or return null; 
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Chapter 5 

The Selection of Radius 

The basic idea for both sphere decoding methods is the same and quite simple: 

compute an initial radius, construct a hypersphere centered at the given vector 

with this initial radius, then search all the lattice points inside this hypersphere 

to determine the closest one. However, how to select the initial radius is not clear 

and this is a major factor of computational complexity for both sphere decoding 

methods. As mentioned in previous chapters, if the initial radius is selected too 

large, then too many lattice points are contained in the hypersphere; whereas if 

the initial radius is selected too small, then there are no lattice points lying inside 

the hypersphere. We will discuss the issue of radius selection in this chapter. 

5.1 Statistical selection of initial radius 

If sphere decoding is applied to solve the communication system (2.1) which 

models the frequency-selective channel, then the statistical characteristics of 

noise added to the signal can be considered and exploited to compute the initial 
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radius [1]. This method is based on the assumption that the received vector 

y cannot be arbitrary, rather, it is a lattice point perturbed by additive noise 

with known statistical properties. Since this method takes into account of the 

statistical properties of the additive noise included in the received vector when 

computing the initial radius, it is only suitable for this particular frequency-

selective channel model when using sphere decoding to find the minimizer for 

the equivalent integer least squares problem of this model. 

In the application as modeled in (2.1), H is a matrix representing a commu-

nication channel and n = m + l - 1 where l is the order of the channel and its 

entries are assumed to be Gaussian N(O, 1), v is the additive white noise vector, 

whose entries are independent and identically distributed Gaussian noise with 

mean ° and variance a 2 (N(O, ( 2
)). Furthermore, y is the received signal vec

tor, s is the transmitted signal vector. So when y is received after transmitting 

through this frequency-selective channel, the source signal s can be determined 

by applying sphere decoding to solve the equivalent integer least squares problem 

(3.1) of this model. Note, from (2.1), we get 

Ilvll~ = IIH s - YII~, (5.1) 

then 

(5.2) 

It is a X 2 random variable with n degrees of freedom. Thus the initial radius r 
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for sphere decoding may be computed as a scaled variance of the noise 

(5.3) 

where a can be solved from the following probability density function 

n2<¥ A~-l -,\ 
p = 1 r(~) e dA, (5.4) 

where the integrand is the probability density function of the X 2 random variable 

with n degrees of freedom, p is its probability, usually a high probability and 

is set to a value close to 1. For example, set p = 0.99, then solve a from 

(5.4) and compute the radius r from (5.3). If with this computed radius, the 

sphere decoding cannot find the closest lattice point, then the probability in 

(5.4) should be increased to adjust the radius in (5.3) and search the larger 

hypersphere, until the closest lattice point is found. In such a way, the initial 

radius r may be selected appropriately for this specific communication channel 

model and the closest lattice point may be found with a high probability. The 

brief algorithm of statistical selection of initial radius is presented in Table 5.1. 

Remark 5.1. As mentioned in [1], this method only takes into account of the 

statistical properties of the noise, under some assumptions for the channel ma-

trix H, because [22] and [23] show that selecting the radius based on the noise 

mitigates the computational complexity. So, statistical selecting radius solely de

pends on the probability p, the noise variance 0-2 and the dimension n. If the 

channel matrix H is not ideal and should be taken into account as well; then it 

is an NP-hard problem, and this statistical method cannot be utilized any more. 
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Table 5.1: Algorithm 4 - Algorithm of statistical selection of initial radius 

Inputs: 

Output: 
Dependency: 

l. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

variance 0"2 of the random noise. 
initial probability p (a value close to 1). 
the initial radius r of the hypersphere. 
algorithm 2 in Table 3.2. 
solve a in probability density function (5.4); 
compute r from (5.3); 
sphere decoding with r as initial radius; 
if no solution found in sphere decoding 

increase the probability p; 
goto 1; 

else 
return r; 

end 

5.2 Deterministic selection of initial radius 

The above statistical method of computing the initial radius is based on the 

assumption that the channel matrix H is ideal. If we also need to take the char-

acteristics of the channel matrix H into account, then in [21], Qiao proposed a 

deterministic method in computing the initial radius. This method is also pro-

posed for communication applications. It assumes that the norm of H s cannot 

be too large due to the power constraint of the channel. This means that when 

the channel matrix H is applied to the source signal s, it does not magnify the 

length of the source signal vector too much. Based on this assumption, the initial 

radius can be computed by the following deterministic method. 

Suppose that QR decomposition is already applied to (3.1) and it is reduced 

to (3.2), now we will find the initial radius for sphere decoding by the following 

deterministic method. First, we need to solve the triangular system Rs = f) by 
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whatever means to obtain s, s E IRm, which is the real least squares solution to 

the problem min IIHs - YII~. For example, s can be solved by 

R- 1A 
S = y, (5.5) 

where R-1 is the inverse of matrix R. Since the entries of s are real, round them 

off to their nearest integers to obtain the lattice point 8, 8 E 7lm 

8 = fsJ. (5.6) 

Thus the initial radius r can be computed by setting it to the distance between 

R8 and the vector fJ (in Euclidean sense) 

r = IIR8 - fJ112' (5.7) 

The vector 8 is called the Babai estimate [5]. In communication applications, 

this procedure is often referred to as Zero-Forcing (ZF) equalization. 

It is clear that the hypersphere of radius r contains at least one lattice point, 

namely 8. It is the lattice point closest to the real least squares solution. If 

sphere decoding starts with this initial radius r, it gets at least one lattice point 

which lies on the surface of the hypersphere and this lattice point is also very 

likely to be the closest one to the vector fJ. 

If the real least squares solution s happens to be an integer vector, that is, 

s = s, then the radius r is zero, means that no sphere decoding is required, s is 

already the integer least squares solution. In communication applications, this 
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Table 5.2: Algorithm 5 - Algorithm of deterministic selection of initial radius 

Inputs: 

Output: 
l. 
2. 
3. 

R, where R is upper triangular. 
iJ, where iJ is the y reduced by QR decomposition. 
the initial radius r of the hypersphere. 
solve s, s E IR.m in triangular system Rs = iJ; 
round: s = fsJ, s E zm; 
set r = IIRs - iJ112; 

situation implies that both channel and signal are perfect, no channel distortion 

on transmitted signal and no additive noise to transmitted signal either, which 

is only possible in theory, not in practice. 

The brief algorithm of deterministic selection of initial radius r is presented 

in Table 5.2. 

The size of r is also examined in [21]. Let f = s - s, then from (5.7), we have 

r IIRs - iJII2 

IIR(s + f) - iJII2 

IIRfIl2. 

We know f = s - s = fsJ - s, s E IR.m, then IIfll2 ::;; Vm/2, thus from above, we 

get 

r IIRfll2 

< Vm IlRlb 2 

VmllHII2 2 . 
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The above derivation shows that the size of radius depends on the norm 

of the channel matrix H as well as the size m of the channel matrix H. In 

communication applications, under the assumption of channel power constraint, 

the norm of channel matrix, IIHlb, cannot be too large. In addition, the size 

of the channel matrix H depends on the number of transmitting antennae and 

the number of receiving antennae, which cannot be too large either. Thus the 

radius is expected to be moderate. 

Remark 5.2. This method of computing the initial radius is for communication 

applications only. As mentioned in [21j, "We must emphasize that this method 

for finding a search radius is for applications like communications where the 

signal to noise ratio is relatively high, that is, the noise variance is relatively 

small." When the SNR is high, the deterministic method gives a small radius. 

In general case (low SNR), this deterministic method still works, only the radius 

can be large. 

5.3 Adaptively updating radius 

For adaptively updating radius, there are three issues which need to be addressed . 

• An initial radius must be given to adaptive sphere decoding 

Although adaptive sphere decoding is able to adapt itself to the new smaller 

radius when searching a hypersphere, the initial radius must be given to 

it first. Unlike the statistical selection of initial radius or the deterministic 

selection of initial radius, the initial radius is computed by them, adaptive 

sphere decoding does not compute the initial radius and cannot start sphere 
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decoding until an appropriate initial radius is given to it. But what is an 

appropriate initial radius for adaptive sphere decoding, this still remains 

an unknown issue. From the characteristics of adaptive sphere decoding, 

this initial radius could be relatively large, since adaptive sphere decoding 

is able to reduce radius very rapidly. But, how large is relatively large for 

the initial radius? Theoretically, adaptive sphere decoding is not able to 

search the entire lattice space, i.e., the initial radius cannot be arbitrarily 

large. 

• Restarting sphere decoding may be costly 

Whenever adaptive sphere decoding restart, there is an associated cost to 

the restarting process. We have to consider whether it is worth restarting 

sphere decoding or not. If the initial radius is already relatively small, 

such as the radius computed by the deterministic method, there are not 

too many lattice points inside the hypersphere. Although adaptive sphere 

decoding starts with a relatively small initial radius, the overall restarting 

cost may be more than the cost of going through all the lattice points 

inside the hypersphere. So, applying adaptive sphere decoding is not an 

very good idea in this kind of situation. 

As pointed out in [14], in communication applications, when the SNR in a 

channel is low (the noise variance is relatively high), the number of lattice 

points inside an initial hypersphere are relatively large, and adaptive sphere 

decoding is quite useful. But, when the SNR in a channel is high (the noise 

variance is relatively low), restarting sphere decoding may be costly, then 
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it is not beneficial to apply adaptive sphere decoding . 

• Not only restricting on communication applications 

Computing the initial radius from both the statistical method and the 

deterministic method is based on certain assumptions for communication 

applications. But for adaptive sphere decoding, there is no such assump

tions and no particular application restriction, it does not restrict itself 

only on communication applications. The initial radius does not need to 

be relatively small. Adaptive sphere decoding may be useful for certain 

applications in which the initial radius cannot be computed very small. In 

particular, it is more beneficial to apply adaptive sphere decoding if the 

initial hypersphere is relatively large and the density of lattice points inside 

the hypersphere is large as well. 
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Chapter 6 

Error Analysis of Radius 

Computation 

6.1 Computational error 

In the deterministic method, the initial radius r is computed by setting it equal 

to the distance between Rs and the vector iJ (in Euclidean sense) where s is 
the integer vector closest to the real least squares solution vector s, and the 

hypersphere to be decoded is actually determined by IIRs - iJll s r. We know 

the initial radius computed by this method can be small, we do not know how 

many lattice points are contained in this hypersphere. Anyway, it is obvious 

that at least one lattice point, namely s, is on the surface of the hypersphere, 

this hypersphere cannot be empty. We may expect that with the initial radius 

computed by this method, the sphere decoding definitely finds a closest lattice 

point to the vector y. 

59 



MSc Thesis - F. Zhao, McMaster - Computing fj Software 

The above conclusion seems to be correct, but in practice, in the presence 

of inexact arithmetic due to rounding error in floating-point computation, the 

computed radius may not be the exact radius, rounding error is introduced into 

this computed radius. If the initial radius computed by this method is relatively 

small and the closest lattice point is on the surface of the hypersphere of exact 

radius, then it requires that the computed radius is at least not smaller than the 

exact radius. However, this is not always true. The introduced error also makes 

it possible that the computed radius is smaller than the exact radius, thus it is 

possible that sphere decoding finds no lattice point. We will examine this in the 

following example. 

Example 1: 

This example is done in MATLAB and using double precision. In (3.1), let 

Hand y be 

H = l-~ -~ = ~J y = l-~J 
-1 -1 -1 0 

respectively. After QR decomposition is applied to (3.1), it is reduced to (3.2), 

then we get Rand y 

l-204495 
R~ 0 

o 

004082 
1.3540 

o 

-0 o4082J 
1.6002 , 
1.8091 

y ~ l ~:~~~;J 
-0.6030 

respectively. If we solve the real solution s, s E ~m of the triangular system 

Rs = y, we get 
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[

-0.3333] 
s ~ 0.6667, 

-0.3333 

and round the entries of s to their nearest integers, then we get an integer vector 

S, S E zm 

Therefore the initial radius r can be computed from (5.7) 

f ~ 1.4142, 

where f denotes that this radius is a computed result, not the exact radius. 

Now, we search the closest lattice point to the vector y inside the hypersphere 

of this initial radius and centered at y with the sphere decoding algorithm (the 

Algorithm 2 in Table 3.2), then surprisingly, no closest lattice point can be 

found, this initial radius is too small to find a lattice point. What happened? It 

is against our expectation that at least one lattice point which is on the surface 

of the hypersphere should be found. 

As we mentioned earlier, during the floating-point computation process, 

rounding error is introduced. In this example, the exact radius should be ex

actly V2, however, the radius computed by (5.7) is approximately equal to V2, 

specifically, the difference f - V2 ~ -2.2204 X 10-016 , which is negative. So, this 

example shows that the introduced rounding error makes the computed radius 
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slightly smaller than the exact radius. 

If the error makes the computed radius greater than the exact radius (e.g. 

on the right hand side of the exact radius in Figure 6.1), that is fine, it makes 

the hypersphere a little bit larger, we can find the closest lattice point anyway. 

However, if the computed radius happens to be smaller than the exact radius 

(e.g. on the left hand side of the exact radius in Figure 6.1), then it is possible 

that there are no lattice points inside the hypersphere. 

exact radius 

computed radius l computed radius 
less than exact greater than 
radius exact radius 

< > < :> 

Figure 6.1: Computed radius versus exact radius 

Since for any floating-point computation, the rounding errors are inevitable 

and must be introduced. How to make sure the radius computed by the deter-

ministic method to be able to find at least one closest lattice point? The basic 

idea is to find a bound of the magnitude of the rounding error for this computed 

radius and compensate the computed radius with this error bound, then we en-

sure that the radius computed by the deterministic method, after compensation, 

does not make sphere decoding fail again. 
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6.2 Formulas of error analysis 

In floating-point arithmetic, the purpose of rounding error analysis is to find 

a bound of rounding error with some appropriate measures of the effects of 

rounding errors for an algorithm. It is better to put error bounds in a concise, 

easily interpreted form if we can. However, whether an error bound exists is 

dependent on the given problem data set. Ideally, the error bound is small 

and achievable for all sets of problem data, but if not, the error analysis should 

investigate the characteristics of an algorithm that raise any potential instability 

and therefore provide a solution on how the instability of an algorithm can be 

avoided and revised. 

Usually, there are two categories when doing an error analysis, forward error 

analysis and backward error analysis. 

• Forward error analysis 

If an algorithm takes x as an input and produces y as an output, this 

algorithm can be considered as a function y = f (x). We denote jj as the 

computed result from this algorithm, then the absolute error Iy -:iJ1 or the 

relative error Iy-jji/lyl is called forward error, the process of finding this 

forward error is called forward error analysis. 

• Backward error analysis 

Alternatively, the computed result jj may be the exact result of a slightly 

perturbed input x+~x, that is, jj = f(x+~x). Generally speaking, there 

may be many such ~x, but we are only interested in a minimal one of 

those ~x and a bound for I~xl. This bound, possibly divided by Ixl, is 
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called backward error, the process of finding this backward error is called 

backward error analysis. 

6.2.1 Error analysis of matrix multiplication 

The error analysis of matrix multiplication can be found in many textbooks, the 

following is just a restatement from [24]. 

The error of matrix-vector or matrix-matrix mUltiplication depends on the 

error of inner products since the multiplication is actually the inner products of 

their corresponding entries. Let A E jRnxm, x E jRm and matrix-vector multipli-

cation be y = Ax. The vector y can be formed as n inner products, Yi = ai,1..mX, 

1 ::; i ::; n, where Yi is the ith entry of vector Y and ai,l..m is the ith row of A. 

Denote the computed result for y as y and Yi as Yi, then from the error analysis 

of inner product [24], we have 

Y-· - (a· 1 + [j.a·l )x t - t, .. m t, .. m, 

where 

and fl is the unit of roundoffl. 

Thus, the backward error of matrix-vector multiplication is 

Y = (A + [j.A)x, 

1 Here we assume that the computer system complies with the IEEE floating-point stan
dards. 
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where IAI is the absolute value of its each entry, i.e., IAI = [lai,jlJ, 1 ::; i ::; nand 

1 ::; j ::; m. The above implies the bound of the component wise forward error 

of matrix-vector multiplication is 

Iy -:if I ::; ImlAllxl· 

And the bound of 2-norm forward error of matrix-vector multiplication is 

(6.1) 

6.2.2 Error analysis of vector addition 

The forward error of vector-vector addition is pretty straightforward. Let x, y, z E 

]Rm and the vector-vector addition be z = x + y. Denote the computed result 

for z is z. Thus, the bound of forward error of vector-vector addition is 

(6.2) 

6.2.3 Error analysis of deterministic radius 

Now, we perform a forward error analysis to derive an error bound of the com

puted radius for the deterministic radius selection algorithm. In this determin

istic method, we round the real least squares solution s to its nearest integer 

vector s and then the radius is computed by IIRs - y112' We know the rounding 

error has to be introduced in computing IiRs - Ylb. Actually, the error is the 

combinations of the rounding errors introduced by the computations of matrix-
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vector multiplication, vector-vector addition and the 2-norm. In order to find 

an error bound of the deterministic radius, it remains to apply the formulas of 

matrix-vector multiplication and vector-vector addition as well as the 2-norm to 

the computation of the deterministic radius. Denote the computed radius by the 

deterministic method as f, and we are trying to find the error bound Ir - fl. 

Let u = Rs and ii, be the computed Rs. By (6.1), the bound of forward error 

of matrix-vector multiplication, shows 

(6.3) 

where 

and jL is the unit of roundoff. By (6.3), the error in the computed radius we are 

looking for is 

Ir - fl IllRs - 71112 - fl 

Illu - v, + v, - 71112 - fl 

< Ilu - v,112 + 111v, - 71112 - fl 

< 'YmVm IIRII211s112 + I I Iii, - 71112 - fl· (6.4) 

The term 111v, - 71112 - fl is the computational error in computing the vector 

difference V, - 71 and then 2-norm of the computed V, - y. Denote i as the 

computed ii, - 71, then f is the computed Ilzlb. The 2-norm IIil12 is the square 
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root of the inner product, thus from (6.1), we get 

(6.5) 

For the computation of the vector subtraction, by (6.2), we have the component 

wise forward error 

Iz - (it - Y)I :::; J-Lizi 

and the 2-norm forward error 

(6.6) 

Combining (6.5) and (6.6), the forward error analysis of vector-vector addi

tion and inner product gives 

Illit - YI12 - il < I II (it - Y) - zl12 + IIzl!z - il 

< II (it - Y) - zl12 + IIIzll2 - il 

< J-Lllzl12 + 'Ym i . 

Thus, from (6.4), we have the error bound of the computed radius for the deter

ministic method, which is 

(6.7) 

The above formula gives an upper bound of rounding error in the computation 

of deterministic radius i, which can be used to find an upper bound of the exact 
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radius T. 

6.3 Revised algorithm of deterministic method 

For the deterministic method, we have already got the upper bound of rounding 

error of computed radius, by applying the error bound (6.7), we are able to 

take the computational error into account when deterministically computing the 

initial radius and get an upper bound of the exact radius T. 

The /l in '"'1m is the unit of roundoff. In single precision /l ~ 10-7 and in 

double precision /l ~ 10-16 , therefore we can assume in most cases that 

Thus we have 

smce 

Also note that 

1 
mp,< 2". 

'"'1m < 2m/l, 

1 
1- mIl > -. 

2 

Then neglecting the term /lllzl12 in (6.7), it follows 

(6.8) 

The above inequality gives an upper bound of the exact radius T, in terms of 
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Table 6.1: Algorithm 6 - Algorithm of revised deterministic selection of initial 
radius 

Inputs: R, where R is upper triangular. 
y, where y is the y reduced by QR decomposition. 

Output: the initial radius r of the hypersphere. 
1. solve s, s E IRm in triangular system Rs = y; 
2. round: s = rsJ, s E zm; 
3. compute f = IIRs - y112; 
4. set r = f + 2m( Vm IIHI1211slb + f)j.t; 

the computed radius f, the 2-norm of the channel matrix H and the 2-norm of 

the integer vector s. By using the bound (6.8), we present a revised algorithm of 

deterministic selection of initial radius (Algorithm 6) in Table 6.1. This revised 

algorithm incorporates the rounding error into the computation of the initial 

radius for a search hypersphere. 

Example 2: 

Following the Example 1, we have already computed f ~ 1.4142, which 

made sphere decoding fail to find the closest lattice point. Now let us apply the 

Algorithm 6 to get the upper bound of the exact radius r. In MATLAB and 

using double precision j.t ~ 10-16 , 

IIHI12 ~ 2.6762, 

By (6.8), the upper bound of the exact radius 

r ~ 1.4142 + 3.6298 x 10-015
, 
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and the difference r - V2 ~ 3.3307 X 10-015 , it is positive now, which means 

that the upper bound of the exact radius r is slightly greater than the exact 

radius, and sphere decoding should not fail any more. So we get the closest 

lattice point by sphere decoding with this upper bound of the exact radius as 

the initial radius of the search hypersphere, which is [0 1 oy. 
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Chapter 7 

Numerical Simulation and 

Experiment 

In this chapter, we conduct a couple of experiments, they target different pur

poses. The first experiment tests the improvement of performance provided by 

the adaptive sphere decoding over the original sphere decoding. In the second 

experiment, we see what the statistically computed radius and deterministically 

computed radius are, this experiment focuses on the simulated communication 

channel. The third experiment examines the failure rate of sphere decoding with 

the deterministically computed radius, then what is the failure rate after using 

the revised deterministic algorithm (Algorithm 6) to compute radius. From the 

last experiment, we see the performance evaluation of sphere decoding between 

the radius computed by the deterministic method and the radius computed by 

the revised deterministic method, this experiment shows that the radius com

puted by the revised deterministic method does not cause a significant overhead 
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for sphere decoding. 

7.1 Experiment setup 

For all experiments and simulations, the environment is MATLAB and uses dou

ble precision. A specific hardware configuration and software version is not a 

matter for these experiments. Although we need to record programs' running 

time sometimes and take the running time as measurements, the measurements 

of running time of programs are based on the same platform, the same platform 

has the same affects on both measured parties. The sphere decoding program 

is implemented in MATLAB code according to Algorithm 2, and the adaptive 

sphere decoding program is implemented in MATLAB code as well according 

to Algorithm 3. If an experiment does not involve a simulation of a particular 

application, then both matrix and vector given to a program are generated ran

domly by the MATLAB build-in function "rand", i.e., the entries of the input 

matrix H and the entries of the input vector yare pseudo random values drawn 

from the standard uniform distribution on the open interval (0,1). 

For both sphere decoding and adaptive sphere decoding, the matrix given 

to them is already reduced to upper triangular by QR decomposition, and QR 

decomposition is applied to the given vector as well, i.e., the actual inputs to 

both decoding programs are the triangular integer least squares problem (3.2). 

Similarly, the initial hypersphere radius given to both decoding programs are 

computed from the triangular integer least squares problem (3.2) too. The QR 

decomposition we use is the MATLAB build-in function "qr". 
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Since we usually do not compare directly two real values in numerical im

plementation, what needs to be pointed out is when we really need to compare 

two Euclidean distances in both sphere decoding algorithm and adaptive sphere 

decoding algorithm, i.e., "minR> II(Rs - Y)lb" (line 24 in both Algorithm 2 

and Algorithm 3), we replaced this line with "minR -11(Rs - Y)112 > p," when 

implementing this two algorithms in MATLAB code, where p, is set to fl = 10-7 . 

We know that a real value may not be exactly represented by floating-point, 

two reals may be considered as equal in floating-point as long as the difference 

between this two reals is smaller than a certain small value such as 10-7 . 

In adaptive sphere decoding algorithm, there is a goto statement, but there is 

no goto statement provided in MATLAB, so we cannot translate our algorithm 

into a MATLAB code directly. Alternatively, we implement the goto statement 

in the adaptive sphere decoding algorithm with the while loop combined with 

some flags in MATLAB code. 

7.2 Sphere decoding versus adaptive sphere de

coding 

In this section, we conduct an experiment which evaluates the performance im

provement provided by adaptive sphere decoding over the original sphere decod

ing. We take the number of iterations of a program as a measurement rather than 

measuring the running time of a program, since measuring running time is not 

very accurate even if both programs run on the same platform. We know that 

the number of iterations may be considered as the complexity of an algorithm. 
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In order to measure the number of iterations, we simply put a iteration 

counter right after each while statement1 in both original sphere decoding and 

adaptive sphere decoding. Although there are nested while loops in both algo

rithms, we just count the total number of iterations. Since the two algorithms 

are very similar, they have only very little differences, and the while loop struc

ture is similar in both algorithms too, this makes it feasible for us to pursue the 

performance evaluation for both algorithms based on measuring the number of 

iterations. 

As pointed out in Chapter 5, adaptive sphere decoding is able to adapt itself 

to the new smaller radius, but the initial radius to start sphere decoding is 

still not told yet by adaptive sphere decoding, the same as to the original sphere 

decoding. For this experiment, a radius is computed by the deterministic method 

as a base radius, then the initial radius given to both algorithms is the various 

magnifications of this base radius, so that we may evaluate both algorithms' 

performance for different given initial radii. 

Experiment 1: 

In this experiment, we see the overall performance evaluation for both al

gorithms from the total number of iterations, and compare the improvement 

provided by adaptive sphere decoding over the original sphere decoding. For a 

comparison, the size of matrix and the initial radius given to both algorithms are 

the same so that the comparison is based on the same criteria, and a couple of 

comparisons are for various matrix sizes and various initial radii. In addition, for 

a matrix size and an initial radius, we run both algorithms for 100 times, then 

1 Just after entering a while loop, we count it as one iteration. 
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Table 7.1: Number of iterations by sphere decoding (SD) versus adaptive sphere 
decoding (ASD) with various initial radii 

Size Base computed 2xr 3xr 4xr 

of H radius (#) (#) (#) 

(r) SD ASD SD ASD SD ASD 

3x3 0.412051 1244 196 3533 314 7683 436 
4x4 0.606766 3313 332 13134 539 36861 778 
5x5 0.724504 36525 797 229828 1350 885205 1973 
4x3 0.51985 79 37 214 59 457 85 
5x4 0.610472 572 113 2269 195 6383 285 
6x5 0.846448 9869 350 62212 622 239821 950 

there are 100 sets of matrix and vector. We take the average of total number 

of iterations for this 100 runs, thus it is more accurate for the evaluation of the 

overall performance, and reduces the random factor of a single run. The result 

of this experiment is in Table 7.1. 

From Table 7.1, roughly speaking, the complexity of sphere decoding is al-

most exponential to both the size of matrix and the initial radius. But, the 

adaptive sphere decoding is able to reduce the complexity of the search. Fur-

thermore, the larger the size of matrix is, the more performance improvement 

adaptive sphere decoding provides; the larger the initial radius is, the more per-

formance improvement adaptive sphere decoding provides as well. 

Remark 7.1. Although adaptive sphere decoding is able to search a hypersphere 

of relatively large initial radius, we cannot test too large matrix size or too large 

initial radius in this experiment, because this experiment focuses on the perfor-

mance evaluation of both adaptive sphere decoding and original sphere decoding. 

The original sphere decoding is not able to search a hypersphere of relatively large 

initial radius, and the complexity of searching a hypersphere increases as the size 

75 



MSc Thesis - F. Zhao, McMaster - Computing fj Software 

of matrix increases as well. 

7.3 Simulation of communication channel 

In this section, we present the simulation of a communication model, actually, the 

simulation of block-fading frequency-selective model as we discussed in Chapter 

2. The communication system can be modeled as (2.1), to find the transmitted 

source signal s, it is equivalent to finding the minimizer to the integer least 

squares problem (3.1). If the communication system is modeled as (3.1), then the 

channel matrix H E jR(T+Z-I)XT in this communication system has the following 

form: 

hI 

h2 hI 

H= hz hI 

hz h2 

hz 

where hi, i = 1,· .. ,l are the parameters of the channel and l is the order of the 

channel. Obviously, the channel matrix has a Toeplitz structure. In Experiment 

2, the channel matrix H is normalized according to the power constraint of the 

channel, and it is randomly generated for this experiment, strictly speaking, its 

entries hi are randomly generated and uniformly distributed over the interval 

[-1,1]. 

In this frequency-selective channel model, we assume that the entries of the 
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source signal vector s are chosen from points of an L-PAM constellation (2.3), 

where L is usually taken as a power of 2. Thus, in Experiment 2, the entries of 

the source signal vector are randomly chosen from the set {±1, ±3, ±5, ±7,' .. }, 

the size of this set depends on L. 

In this communication model, the noise vector v is additive white Gaussian 

N(O, (j2) with mean zero and variance (j2, and the noise vector is scaled based 

on the given signal-to-noise ratio, namely, the noise variance (j2 is obtained from 

the definition of SNR (2.4) for our communication model. 

Therefore, the actual received vector y given to Experiment 2 is computed 

by y = Hs+v. 

7.4 Statistical radius versus deterministic ra

dius 

In this section, we use the simulated communication system as given inputs, 

and investigate various behaviors in computing the initial radius of sphere de

coding under certain conditions. We compare the size of radius computed by 

the statistical method and the deterministic method with the same set of input 

data under a certain SNR, and the number of iterations of sphere decoding with 

these radii. We see the size of radius computed by the statistical method and 

the deterministic method under various SNRs. We also see the size of radius 

computed by the statistical method under various probabilities, and the failure 

rate of sphere decoding with these radii. 

Experiment 2: 
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In this experiment, L in L-PAM constellation is set to 4 (L = 4), so the 

entries of the source signal vector are chosen from the set {±1, ±3}. We use the 

communication system discussed in previous section for channel matrix, source 

signal vector and white noise vector, and for each randomly generated channel 

matrix H, 200 random source signal vectors sand 200 random white noise vectors 

v are generated, then 200 received signal vectors yare computed by y = H s + v. 

We take the average of total radius, total number of iterations and total failure 

rate of this 200 input data sets as each measurement. The order of channel is 

set to 3 or 5 (l = 3 or l = 5), and the length of source signal is set to 4 or 8 

(T = 4 or T = 8). The sphere decoding algorithm we use in this experiment is 

the original sphere decoding algorithm (Algorithm 2). 

First, we compare the size of statistical radius and deterministic radius under 

SNR = 20dB and probability p = 0.90, and the number of iterations of sphere 

decoding with these radii as initial radius. The location of iteration counter in 

sphere decoding is exactly the same as in Experiment 1. Table 7.2 is the result 

of this comparison, it shows that the deterministic radius is smaller than the half 

of statistical radius for the same input data set, and the number of iterations of 

sphere decoding is significantly reduced by the deterministic radius as well. 

Second, we compare the radii computed by the statistical method from vari

ous SNRs and under the starting probability p = 0.90. If the statistical method 

cannot find a radius with this starting probability, then we increment the proba

bility p by 0.001 until a statistical radius is found. The result of this comparison 

is presented in Table 7.3. It shows that the radius computed by the statistical 

method is dependent on the SNR of source signal, as the SNR increases, the 
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Table 7.2: Statistical radius versus deterministic radius, and their number of 
iterations of sphere decoding, SNR = 20dB, L = 4 and starting probability 
p = 0.90 

Size of signal T, 
Statistical Deterministic 

Order of channel l 
Radius Num of iter Radius Num of iter 

(r) (#) (r) (#) 

T = 4,l = 3 1.95276 56 0.782344 9 
T = 4,l = 5 2.1181 43 0.873108 7 
T = 8,l = 3 3.35385 17830 1.46811 229 
T = 8,l = 5 3.584 10865 1.68363 177 

Table 7.3: Radius statistically computed from various SNRs(dB) , L = 4 and 
starting probability p = 0.90 

Size of signal T, SNR=10 SNR=15 SNR=20 SNR=25 
Order of channel l (r) (r) (r) (r) 

T = 4,l = 3 2.76156 2.21867 1.76828 1.40668 
T = 4,l = 5 3.08233 2.41042 1.79252 1.66449 
T = 8,l = 3 4.71613 3.83557 2.93175 2.3602 
T = 8,l = 5 4.76763 3.84142 2.96562 2.41821 

statistical radius decreases. 

Third, we compare the radii computed by the deterministic method from 

various SNRs. Since probability is irrelative to the deterministic radius, we will 

not take it as an input. The result of this comparison is presented in Table 7.4, it 

shows that the radius computed by the deterministic method is independent of 

the SNR of source signal. Whatever the SNR is large or small, the deterministic 

radius is almost the same. 

Fourth, we compare the radii computed by the statistical method from var

ious probabilities under SNR = 20dB, and the failure rates of sphere decoding 

with the radii computed by those probabilities. Table 7.5 is the result of this 
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Table 7.4: Radius deterministically computed from various SNRs(dB), L = 4 

Size of signal T, SNR=10 SNR=15 SNR=20 SNR=25 
Order of channel l (r) (r) (r) (r) 

T = 4,l = 3 0.697119 0.787917 0.70803 0.654931 
T = 4,l = 5 1.0599 0.778816 0.773576 0.62176 
T = 8,l = 3 1.52893 1.40133 1.40327 1.40129 
T = 8,l = 5 1.53602 1.58759 1.6094 1.44537 

Table 7.5: Radius statistically computed from various probabilities and failure 
rate of sphere decoding with the radius computed by that probability, SNR = 

20dB and L = 4 

Size of P = 0.80 p = 0.85 p = 0.90 p = 0.95 
signal T, 

Order of Fail Fail Fail Fail 
channel l Radius rate Radius rate Radius rate Radius rate 

(r) (%) (r) (%) (r) (%) (r) (%) 
T = 4, l = 3 1.31651 7 1.39218 1.5 1.47905 1.5 1.62916 0.5 
T = 4,l = 5 1.33581 8.5 1.41738 2 1.52552 1.5 1.70255 0.5 
T = 8,l = 3 2.37797 1 2.4846 0 2.64743 0 2.86259 0 
T = 8,l = 5 2.48788 1 2.5591 1 2.63494 0.5 2.89788 0 

companson. It shows that as probability increases, the radius computed by the 

statistical method increases as well, and the failure rate of sphere decoding de-

creases. Although increasing probability, therefore increasing radius is able to 

improve the success of sphere decoding, note, the efficiency and performance of 

sphere decoding decreases as the initial radius increases, so there is always a 

tradeoff between the efficiency of sphere decoding and the initial radius given to 

it. We must take this tradeoff into account when applying sphere decoding with 

the initial radius computed by the statistical method. 

80 



MSc Thesis - F. Zhao, McMaster - Computing fj Software 

7.5 Deterministic radius versus revised deter

ministic radius 

For communication applications, the matrix H and vector y could be simulated 

by the MATLAB build-in function "rand", since the entries of matrix Hand 

vector y generated by "rand" are pseudo random values drawn from a standard 

uniform distribution on the open interval (0,1). The norm of this generated 

matrix H is relatively small, this corresponds the power constraint of the channel 

matrix. So the channel matrix and the received vector could be represented by 

this simulated Hand y. And the size of H will be the transmitting antennae 

and receiving antennae in communication applications. 

Experiment 3: 

This experiment tests the failure rate of sphere decoding with the initial 

radius computed by the deterministic method (i.e., the initial radius is computed 

by Algorithm 5, the pure deterministic method), and a continuing experiment 

still targets the failure rate of sphere decoding, but compares the failure rates of 

the initial radii computed by the pure deterministic method and by the revised 

deterministic method (i.e., the initial radius is computed by Algorithm 6). The 

sphere decoding algorithm used in this experiment is the original sphere decoding 

algorithm (i.e., Algorithm 2). We test various sizes of matrix to evaluate their 

failure rates and the computed initial radii. In order to make the evaluation 

more convincible, we run the test for each size of matrix for a certain number 

of times, then take the average failure rate as the measurement. The number of 
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Table 7.6: Failure rate of sphere decoding with the initial radius computed by 
the deterministic method 

H 
Average of Total number Failure rate 

Size of computed radius (r) of runs (#) (%) 

3x3 0.429184 1000 34 
5x5 0.727958 500 17 
7x7 1.0104 200 11 
6x4 0.714878 500 37 
9x6 1.07786 200 25 
12 x 8 1.45425 100 16 

runs depends on the size of matrix2
. The result of this experiment is shown in 

Table 7.6. 

From Table 7.6, we can see as the size of matrix increases, the hypersphere 

radius computed by the deterministic method increases as well, but the failure 

rate of sphere decoding decreases reversely. This implies the success or failure of 

sphere decoding is sensitive to the radius computed by the deterministic method. 

Continuing on the last experiment, now the initial radius used for sphere 

decoding is computed not only from the pure deterministic method but also 

from the revised deterministic method, then we search the hypersphere again 

with the same sphere decoding algorithm (Algorithm 2). The result of this 

second experiment is shown in Table 7.7. 

Table 7.7 compares the failure rates of sphere decoding. The "failure rate 

before" column is the sphere decoding with the initial radius computed by the 

pure deterministic method, and the "failure rate after" column is the sphere 

decoding with the initial radius computed by the revised deterministic method. 

2Since sphere decoding is an NP-hard problem, consider the time issue, the number of runs 
decreases as the size of matrix increases. 
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Table 7.7: Failure rate of sphere decoding after using the initial radius computed 
by the revised deterministic method 

Average of Total num Failure rate Failure rate 
Size of H computed radius of runs before after 

(r) (#) (%) (%) 

3x3 0.428378 1000 36 0 
5x5 0.735231 500 18 0 
7x7 0.990062 200 9 0 
6x4 0.711996 500 41 0 
9x6 1.08746 200 28 0 

12 x 8 1.46622 100 14 0 

We can see after using the revised deterministic method to compute the initial 

radius, the failure rate of sphere decoding becomes zero. So by using the revised 

deterministic method to compute the initial radius, sphere decoding achieved a 

perfect success rate in our experiment, thus the success of sphere decoding is 

ensured. 

7.6 Performance evaluation for revised deter-

ministic radius 

Since the initial radius computed by the revised deterministic method is increased 

a little bit, we may doubt that this increased initial radius can increases the 

performance of sphere decoding. We know that sphere decoding is an NP-hard 

problem, and its complexity increases as the initial radius increases. In this 

section, we evaluate the performance of sphere decoding with the initial radius 

computed by the revised deterministic method through the following experiment. 

Experiment 4: 
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Table 7.8: Overall performance evaluation of sphere decoding with the radius 
computed by the non-revised deterministic method (Algorithm 5) and the revised 
deterministic method (Algorithm 6) 

Radius computed by Alg 5 Radius computed by Alg 6 

Size of H Num of iter Running time Num of iter Running time 
(#) (sec) (#) (sec) 

3x3 213 0.00140401 213 0.00140401 
5x5 20999 0.153661 20999 0.177685 
7x7 156367 1.34348 156368 1.35705 
6x4 58 0.000624004 58 0.000156001 
9x6 3916 0.0313562 3916 0.0329162 
12 x 8 23178 0.201865 23178 0.199525 

In this experiment, we compare the performance of sphere decoding with the 

initial radius computed by both the pure deterministic method and the revised 

deterministic method from two measurements, the number of iterations and the 

running time. The iteration counter is exactly the same as in Experiment 1, 

that is, the iteration counter is simply placed right after each while statement. 

For the initial radii computed by both the pure deterministic method and the 

revised deterministic method, we run sphere decoding with these radii for a total 

number of 100 times, then take the average of total iterations of this 100 runs 

as a measurement. Similarly, we take the average of total running time of this 

100 runs 3 as another measurement. The summary of result of this experiment 

is shown in Table 7.8. 

From Table 7.8, we can see that the performances of sphere decoding with 

the initial radii computed by both the pure deterministic method (Algorithm 5) 

and the revised deterministic method (Algorithm 6) are almost the same, sphere 

3Here, the running time is measured for sphere decoding only, not includes any setup time, 
QR decomposition time and the initial radius computing time etc. 
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decoding with the initial radius computed by the revised deterministic method 

does not introduce any significant overhead, and it achieves a perfect success 

rate which is already shown in previous experiment. 
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Chapter 8 

Conclusion and Future Work 

From our experiments, roughly speaking, the complexity of sphere decoding is 

exponential to either the initial radius of a hypersphere or the size of the lattice 

generating matrix. 

8.1 Conel usion 

This research work is motivated to address solving the integer least squares prob

lem, which can be deployed in many applications such as communications. From 

the point of view of lattice, finding the solution to an integer least squares prob

lem is equivalent to finding the closest lattice point to a given point. Sphere 

decoding is an effective technique in finding the closest lattice point, it is a 

maximum-likelihood detection algorithm with a relatively low expected com

plexity. This thesis investigates and discusses an improved sphere decoding tech

nique, adaptive sphere decoding, which enhances the performance of the original 

sphere decoding. In addition, reducing the deterministic factor of sphere decod-
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ing, the initial radius of a search hypcrsphere given to sphere decoding is also 

addressed. Furthermore, the floating-point errors in numerical processing are 

inevitable and may cause sphere decoding fail to find the closest lattice point, so 

an error analysis is performed for the computation of the initial radius of a search 

hypersphere. The major results and contributions of this thesis are presented 

below. 

In Chapter 4, adaptive sphere decoding is shown and explained from both 

geometric interpretation and tree representation, it is an improvement to the 

original sphere decoding. Unlike the original sphere decoding, adaptive sphere 

decoding can reduce the radius of the search hypersphere to avoid going through 

all the lattice points inside the initial hypersphere, therefore it is able to reduce 

the search complexity. Generally speaking, the search complexity can be ex

pected to be reduced in most cases. What needs to be pointed out is that the 

search complexity of adaptive sphere decoding may be the same as the search 

complexity of the original sphere decoding. 

• In the extreme case, it is possible and unluckily that the next closer lattice 

point which adaptive sphere decoding found is the furthest one to the 

center inside this hypersphere. That is, adaptive sphere decoding still has 

to go through all the lattice points inside the initial hypersphere. Although 

it reduces the search radius whenever it finds a new closer lattice point, no 

other lattice point lies between this closer one and the surface of the search 

hypersphere, i.e., no any lattice points can be excluded from reaching. 

• If the initial radius given to adaptive sphere decoding is just the distance 

between the closest lattice point and the center, then adaptive sphere de-
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coding is not able to reduce the search radius and does not have a chance 

to reduce the search radius either. Because it has found the closest lattice 

point already in the initial hypersphere. So, the complexity of both sphere 

decoding algorithms is the same. 

• If the initial radius given to adaptive sphere decoding is smaller than the 

distance between the closest lattice point and the center, then both sphere 

decoding algorithms are not able to find any lattice points inside the hy

persphere. So, the complexity of both sphere decoding algorithms is the 

same as well. 

The experiment shows that adaptive sphere decoding outperforms the original 

sphere decoding a lot. 

In Chapter 5, different radius selection methods are discussed. The statis

tical method takes advantage of the characteristics of communication channel 

and utilizes the noise variance to compute the radius of a search hypersphere, 

therefore the search radius depends on the SNR of communication channel. 

The deterministic method may target the communication channel as well. 

It is based on the Babai estimate in communications, but unlike the Babai 

estimate, which is taken as the solution to the integer least squares problem, the 

deterministic method goes further. It utilizes the Babai estimate to compute the 

radius of a search hypersphere, then try to find the closest lattice point inside 

this hypersphere. The search radius computed by the deterministic method can 

be small, therefore, the search complexity of sphere decoding is reduced. 

Adaptively updating the search radius is discussed in this chapter, the basic 

idea is to reduce the search radius whenever adaptive sphere decoding finds a 
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closer lattice point inside a hypersphere. In this way, some lattice points inside 

the initial hypersphere may be excluded from reaching, therefore, the search 

complexity of sphere decoding is reduced. 

In any numerical processing, computational errors are inevitable and need to 

be taken into account. The radius computed by the deterministic method can 

be small, but sometimes this radius can be too small and make sphere decoding 

failure. So, in Chapter 6, the rounding error of floating-point is considered in the 

computation of the initial radius. Based on the error analysis of matrix-vector 

multiplication and vector-vector addition, an error analysis of computing the 

initial radius is performed and a correctional formula is proposed for computing 

the initial radius by the deterministic method. The experiment shows that the 

revised deterministic method guarantees the success of sphere decoding, and at 

the same time it does not produce a significant overhead to the performance of 

sphere decoding. 

8.2 Future work 

8.2.1 Complexity of adaptive sphere decoding 

We know that sphere decoding is an effective technique for obtaining maximum

likelihood detection performance in polynomial complexity for certain applica

tions which can be modeled as the NP-hard integer least squares problem and 

under certain assumptions. Generally speaking, solving a general NP-hard inte

ger least squares problem with sphere decoding is still an NP-hard problem, this 

is shown in our experiments. When the input data given to sphere decoding is 
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general, at the same time both the size of matrix and the initial radius given to 

sphere decoding is large, then the running time of sphere decoding is exponen

tially increased. Sometimes the running of sphere decoding cannot terminate in 

a reasonable time. Sphere decoding applying to a general integer least squares 

problem cannot be exploited beneficially. 

In our experiment, we have shown that adaptive sphere decoding is a more 

effective searching method than the original sphere decoding when the integer 

least squares problem is general. The experiment shows that adaptive sphere 

decoding outperforms the original sphere decoding a lot, it reduces the running 

time significantly for the same input data. But we do not know what is the 

exact complexity of adaptive sphere decoding. In future work, we will derive 

the complexity of adaptive sphere decoding formally and are expecting that 

adaptive sphere decoding is able to achieve the polynomial complexity for the 

general integer least squares problem. 

8.2.2 Applying LLL algorithm 

As mentioned before, some of the preprocessing methods such as QR decompo

sition and lattice reduction may be applied before sphere decoding to transform 

the integer least squares problem into a simpler form. We have already discussed 

the QR decomposition for sphere decoding. Another approach is lattice reduc

tion. In this approach, we attempt to find an invertible m X m matrix M, such 

that both M and M-l are integer matrices (unimodular matrices), therefore the 

matrix H M preserves the lattice structure. Denote s = M t and G = H M, where 

M is aforementioned m x m invertible integer matrix (unimodular matrix), then 
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the integer least squares problem (3.1) becomes 

min IIGt - YII~ 
tE7l,m 

(8.1) 

Thus, sphere decoding may be applied to (8.1), then it is straightforward to solve 

s by s = Mt. 

However, the lattice reduction approach is itself NP-hard, the famous LLL 

algorithm [25] is a strategic approach to lattice reduction. The LLL algorithm 

is originated from Lenstra, Lenstra and Lovasz, it is widely used by researchers 

as a preprocessor to solve the integer least squares problem, it is often arguably 

referred to as an integer Gram-Schmidt procedure. 

Suppose that QR decomposition is applied to the integer least squares prob

lem (3.1), it is reduced to (3.2), then apply the LLL algorithm to the upper 

triangular matrix R to decompose R into 

(8.2) 

where Q is orthogonal, R is upper triangular and M is unimodular, so M-1 is an 

integer matrix. The LLL algorithm transforms a basis formed by the columns 

of R into a basis formed by the columns of R, the lengths of the columns of R 

are shorter than those of R, so that the columns of R form a reduced basis for 

a lattice space, see [26], [27] and [21] for the details of LLL reduction. 

Generally speaking, LLL algorithm is able to reduce the computational com-

plexity of sphere decoding in two ways. First, it can reduce the initial radius 

of the hypersphere by reducing the norm of R. Second, since sphere decoding 
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is a depth-first search algorithm for the lattice points inside a hypersphere, the 

LLL algorithm can reduce the total number of search paths. Because in the tree 

representation of sphere decoding, LLL algorithm can shrink the integer interval 

at each level of the tree, therefore the number of nodes is reduced at each level 

of the tree. Consequently, the search paths as well as the complexity of sphere 

decoding is reduced. 

8.2.3 Other methods improving sphere decoding 

We know that integer least squares problem is NP-hard, although sphere de

coding is an effective technique for obtaining maximum-likelihood detection per

formance in polynomial complexity for certain applications and under certain 

assumptions, generally speaking, it could still be shown to be exponential com

plexity for general cases. In this thesis, we do not address the other deterministic 

factor of integer least squares problem, the size of lattice space, which also causes 

sphere decoding to be exponential in general. How to reduce the complexity of 

sphere decoding for a general NP-hard integer least squares problem, we propose 

the following idea for the future work. 

In the tree representation of sphere decoding, the size of lattice space is the 

depth of the tree. Since sphere decoding is depth-first search technique, it has 

to go through all the nodes of the tree (except the root). Sphere decoding has 

to find all the paths from the root node's children to the leaves of full tree 

depth and compares the Euclidean distances of the lattice points corresponding 

to those paths. If the size of lattice space is large, then the depth of the tree 

is large as well, and the computation of those Euclidean distances is expensive; 
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there are also tremendous paths and the comparison of those Euclidean distances 

is expensive as well. 

Amongst these tremendous many paths of full tree depth, only one path! 

is the one corresponding to the closed lattice point, but sphere decoding must 

compare all the paths of full tree depth to determine the closest lattice point. 

This means, sphere decoding has to reach a leaf of full tree depth every time 

in order to compute the Euclidean distance. So we propose an improvement 

for sphere decoding, no need to reach the leaf of full tree depth, just compute 

and compare the distance. In the algorithm of sphere decoding, we always keep 

the currently shortest distance. In the proposed improvement, we compute the 

distance for each sub-dimensional lattice space whenever we compute a new 

entry for the vector s, namely, we compute the distance at each level of the 

tree, and compare this distance with the currently shortest one2 to determine 

whether going further from this node or not. If the distance in sub-dimensional 

lattice space is already greater than the currently shortest distance, we ignore 

searching this node and thereafter its descendants, and go to the next node (its 

sibling) or go back to upper level (go up to search its parent's sibling or go up 

further). If the distance in sub-dimensional lattice space is still smaller than 

the currently shortest distance, we keep going further. We know this strategy 

is correct because of the characteristics of Euclidean distance. In general cases, 

the integer interval is large at each level of the tree, we can expect that this 

improvement method is feasible. 

1 Possibly many, but they all have the same Euclidean distance. 
2This currently shortest Euclidean distance is in the full-dimensional lattice space, namely, 

m-dimensional lattice space. 
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Note, the drawback of this improvement is obvious too, i.e., the cost of com

puting distance at each level of the tree. So we expect that this improved sphere 

decoding may be suitable for a problem with a large lattice space and we have 

to take the cost of computing distance at each level into account. If the lattice 

space is large, the performance we obtained overcomes the cost of computing 

distance at each level. But if the lattice space is relatively small, then cost of 

computing distance at each level is overwhelming. 
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