
A LANGUAGE AND A LIBRARY OF ALGEBRAIC THEORY-TYPES

A LANGUAGE AND A LIBRARY OF ALGEBRAIC THEORY-TYPES

By

HUAN ZHANG, B.SC.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

McMaster University

© Copyright by Huan Zhang, October 2009

MASTER OF SCIENCE (2009)

(Computing and Software)

McMaster U niveristy

Hamilton, Ontario

TITLE: A Language and a Library of Algebraic Theory-types

AUTHOR: Huan Zhang, B.Sc. (The University of Western Ontario)

SUPERVISOR: Dr. Jacques Carette

NUMBER OF PAGES: ix, 78

11

Abstract

Many issues stand in the way of the development of contemporary mechanized

mathematics systems (MMS) and the following are two major obstacles:

• Dedicated languages with mathematical specifications for MMS.

• A well-endowed theory library which serves as a database of mathemat­

ics.

We implement a MathScheme Language (MSL) , which represents theory

types useful for covering basic algebraic structures and improving the expres­

sive power of mathematical modeling sysLems. The development of MSL pri­

marily focuses on language syntax and its logic independence.

More importantly, we present a library of theory types developed based

on module systems of typed programming languages and algebraic specifica­

tion languages. The modularity mechanism used in our library aims for the

interface manipulation and high level expressivity of MMSs. The theories are

organized according to the little theories method [10J. Our module system ex­

tensively supports several building operations to construct new theories from

existing theories.

iii

Acknowledgements

I would first and foremost like to express my deep-felt gratitude to my su­

pervisor, Dr. Jacques Carette, who shared with me a lot of his expertise and

research insight through my studies. This thesis was made possible by his

advice, assistance and guidance.

My special thanks and appreciation goes to the members of my examination

committee, Dr. Jacques Carette, Dr. William M. Farmer, and Dr. Spencer

Smith.

Many helpful suggestions and comments by various members of the Math­

Scheme project group have helped to improve the quality of this work.

And finally, I would like to thank my family and friends, for their love,

encouragement and continuous support.

iv

Table of Contents

Abstract

Acknowledgements

Table of Contents .

List of Tables

Chapter

1 Introduction.

1.1 Overview of MMS and MathScheme .

1.2 Programming and specification languages for MMS

1.3 Theory library for MMS

2 Intersection Between MMS and Programming and Specification Lan-

guages

2.1 Programming languages

2.2 Specification languages .

3 Design Goals of Theory Library

3.1 Theory library in an interactive mathematics laboratory

3.2 Design goals .

3.2.1 DG1: A library of well-presented theories.

Page

iii

iv

v

ix

1

1

2

3

4

4

5

7

7

8

8

3.2.2 DG2: A library of well-structured theories 9

3.2.3 DG3: A library of interconnected and extended theories 11

3.2.4 DG4: An expressive language of signatures

4 High Level Tools and Techniques

v

12

13

4.1 Biform theory in Chiron .. 13

4.2 Little theories in the library 14

4.2.1 Little theories and IMPS 14

4.2.2 Examples 15

4.3 Theory building operations . 20

5 A Module System of Theory Representations . 21

5.1 Theories 21

5.2 Theory development 22

5.3 Theory building operations . 23

5.3.1 Theory extension 23

5.3.2 Theory renaming 24

5.3.3 Theory combination 25

6 MathScheme Language Generation and Implementation . 27

6.1 Lexing and parsing overview 27

6.2 Lexer and parser generator . 28

6.3 Lexical conventions 29

6.3.1 Blanks, comments and identifiers 29

6.3.2 Keywords and logical operators 29

Keywords 29

Logical operators 32

6.3.3 Special tokens . . 32

6.4 Representing parse trees in OCaml 33

6.5 AST structure 34

6.5.1 Top-level expressions 34

6.5.2 Theory expressions 35

VI

7

6.5.3 Declarations .

6.5.4 Expressions

6.5.5 Type definition of application

6.5.6 Type definition of types ...

6.5.7 Function definition, theory type declaration, simple ap-

plication and substitutions

6.5.8 Type definition of composed types.

6.5.9 Type definition of property and constructor

6.5.10 Type definition of variable specification . . .

Implementation of Algebraic Structures in Theory Library and Some

Useful Utilities

7.1 Overview of theory library

7.2 Notion of theory

7.3 Theory extractor - A tool for literate programming

7.3.1 Usage and Options

7.3.2 Example.

7.4 Theory expander

7.4.1 Example single-level expansion

7.4.2 Example multi-level expansion.

8 Conclusion and Future Work.

8.1 Conclusion.

8.2 Future work

Bibliography

Appendix

A Lexical Conventions

vii

36

38

39

39

40

41

42

42

43

43

44

44

45

46

47

47

49

52

52

53

54

58

A.I Blanks ..

A.2 Comments

A.3 Identifiers

B Representation of Theory Library

Vlll

58

58

59

60

List of Tables

6.1 Keywords

6.2 Logical operators

6.3 Operators

A.1 Identifiers

ix

30

32

33

59

Chapter 1

Introduction

1.1 Overview of MMS and MathScheme

The mathematics activity consists of formulating mathematical models and

then exploring them by stating and proving conjectures and by performing
!

calculations. The goal of mechanized mathematics system (MMS) is to pro-

duce a computer environment that is intended to support and improve rigorous

mathematics activity. Today MMSs include two major types: computer alge­

bra systems (CAS) and theorem proving systems (TPS). The MathScheme [15]

system is a mechanized mathematics system based on the integrated frame­

work for computer algebra systems and theorem proving systems. CASs, such as

Axiom [12], Maple [2] and Mathematica [21], provide high-level symbolic com­

putation based on algorithmic theories, while TPSs, such as Coq [3], HOL [11],

IMPS [9], Mizar [20] and PVS [18], provide low-level reasoning environments

based on axiomatic theories. As an MMS, MathScheme is a computer system

that aims to support and improve both aspects and provides tools for building

and extending theories.

1

1.2 Programming and specification languages

for MMS

Most programming languages and specification languages have module sys­

tems for organizing large software developments and specifications. Current

MMSs involve various ways in which it intersects with programming languages

and specification languages. Many systems for mathematics contain a dedi­

cated input language and are frequently built in that same language. For

instance, the Latc language in Coq, mathematical languages as in Mizar, and

other languages built into computer algebra systems. Another important ob­

servation is that modeling languages used for many systems for mathematics

cover both fields of functional languages and specification languages, such as a

number of portions of HOL are similar to ML and Haskell and languages like

CASL [16J and SPECTRAL [14J improve the expressivity of formal specifica­

tion. We know that good programming and specification languages provide

powerful means of expression within their domains, which will be examined

in Chapter 2. The tendency in both programming language and specification

language design seems to be towards providing structuring mechanisms with

increasingly more power. Hence, it is our intention to implement a specialized

language that can build theories as "types" and aid the detailed representa­

tion of their relationships as "interfaces". Such expressive language of "theory

types" should be close to a typed functional language and contains very rich

specification capabilities.

2

1.3 Theory library for MMS

An effective MMS needs a well organized and constructed theory library which

contains sufficient mathematical knowledge to support mathematical activi­

ties. Unfortunately, very few MMSs have a sophisticated theory library sup­

ported by a good module system and there is no consensus in current MMSs for

how the library should be organized and constructed. We developed a theory

library built in MSL, the specialized language of "theory types" , which employs

and formalizes a collection of basic algebraic structures. The library empha­

sizes the interface-manipulation and expressivity of theory abstractions rather

than full-fledged low-level axiomatic and algorithmic theories. The library also

supports some specification-building operations, such as theory combination,

renaming, and extension to construct new theories from existing theories in

a structured fashion. In fact, our work on library module system construc­

tion derives from many structuring mechanisms developed in many algebraic

specification languages.

3

Chapter 2

Intersection Between MMS and

Programming and Specification

Languages

Vve examine, in this chapter, the intersection between MMS and programming

and specification languages. In particular, we are interested in the modularity

mechanisms for programming and specification languages for MMSs.

2.1 Programming languages

Dialects of ML usually have a rich module system. An ML-family module

system itself is a small typed functional language, where structures and func­

tors are objects and signatures are types. While modules can be manipulated

in various ways, types (signatures) are described by enumerating their parts.

N. Ramsey, K. Fisher and P. Govereau [19] present a language that maniplu­

ates signatures, e.g. two signatures can be combined to form a new signature.

The language of signatures exposes no information about how a structure

matches a signature. For instance, a signature that combines two signatures

is the same as the fiat signature that is the union of the two component signa-

4

tures. A structure that implements the combination signature also implements

the flat signature.

In the module system of our theory library, a module expression of a union

type must be built from two sub expressions of corresponding component types.

In another view, the language of signatures can be seen as our module type

level in the sense that the operations are over module types instead of module

expressions.

2.2 Specification languages

While most specification languages support theory building operations: exten­

sion, combination, and renaming as in module system of our theory library,

they usually have a different parameterized specification mechanism. We have

taken many useful idea from CASL [16]. CASL is an algebraic specification

language based on partial first-order logic. A basic specification consists of a

signature ~ and a set of sentences (axioms or constraints) over ~.

CASL provides a number of mechanisms for structuring specifications, the

followings have their counterparts in the module system of our library.

• Extension: S Pl then '" then S Pn

SPl determines an extension from the local environment to a complete

signature ~l' For i = 2, ... ,n each S Pl determines an extension from

~i-l to a complete ~i' The signature determined by the entire extension

is then ~n'

• Union: SPl and ... and SPn

5

The signature of the union is obtained by the ordinary union of the L;i

(not the disjoint union). Thus all (non-localized) occurrences of a symbol

in the S Pi are interpreted uniformly. If the same name is declared both

as a total and a partial operation with the same profile (in different

signature), the operation becomes total in the union .

• Translation: SP with SM

This is a renaming mechanism and S M is a symbol mapping. The

signature L; given by SP and symbol mapping SM together determine

a new signature t and a morphism from L; to t.

6

Chapter 3

Design Goals of Theory Library

This chapter presents the major design goals of our theory library. Some of

design goals proposed in § 3.2 determine modularity mechanisms and features

supported by the library.

3.1 Theory library in an interactive mathe­

matics laboratory

The ultimate goal of the MathScheme project [15] is to build, on top of

the mechanized mathematics system, an interactive mathematics laboratory

(IML) [4, 7], a computer system that provides a set of integrated tools for fa­

cilitating the mathematics process and managing mathematical reasoning. An

IML offers a formal, interactive, and mechanized environment that combines

the capabilities of both computer theorem proving systems and computer al­

gebra systems. To support the process the users use to explore, apply and

extend the mathematics in such system, a library of rich mathematical knowl­

edge is considered one of the essential elements. Mathematics library should

be a web accessible environment that includes dynamically stored mathemat­

ical knowledge. We have chosen to use the term "theory library" to represent

7

the mathematics library because it provides a theory development facility in

our system. The theory library should help end users to have easy access

to the network of well-organized algebraic structures; on the other hand, it

should support the development of producing and formalizing new mathemat­

ical knowledge by developers.

3.2 Design goals

In this section, we explicitly present the design goals (DGs) we want to achieve.

A theory library could be viewed and constructed in many different ways. A

good modularity of theory library aids the expressivity of MMSs. It can help to

build up contexts and allow the user to reuse the theorems developed within

one context in other contexts with similar structure. Keeping the ultimate

goal in mind, a desirable implementation of the library would be to create

an "expressive" environment that provides the ability to allow the user and

developer to browse and expand the theory library in sophisticated ways. Our

work eventually integrates the ideas from modular programming systems and

algebraic specification module systems to build a library of theory types suited

to the MathScheme project.

3.2.1 DG1: A library of well-presented theories

Mathematics is conventionally done in informal (in theory, it could be made

formal) high-level reasoning environments that include an integrated set of

basic concepts and deductive, computational, visual, and other kinds of prac­

tical tools. To emulate a similar environment in a mechanized mathematical

8

system (MMS), a library of theories should be abstract, highly structured, and

interconnected mathematics in an organized fashion. Such library has the best

chance to provide a rich set of abstract concepts and definitions without too

many low-level details exposed. Not only does the end user have the mathe­

matical information he or she needs, but also the mathematical information in

the library would be well encapsulated. Moreover, it is certainly feasible if the

same theory can be derived from several different underlying sets of axiomatic

theories.

3.2.2 DG2: A library of well-structured theories

Our aim is to present end users a rich set of abstract theories. Such library can

be constructed incrementally from low-level theories. A theoryl consists of a

language, a set of axioms, and a set of theorems. Low-level theories should

be considered as part of the supporting infrastructure of the theory library.

Certain desirable property enables MMS developers, who are interested in the

structure of mathematics and the problems involved in formalizing mathemat­

ics, to facilitate the development and expansion of the library.

We favor using the little theories approach as the structuring mechanism

for our system. The "little theories" method is one of several versions of the

axiomatic method. It is described in W. M. Farmer, J. D. Guttman, and

F. J. Thayer's paper "Little Theories" [10], pg. 2:

In the little theories method, a number of theories will be used in the

course of developing a portion of mathematics. Different theorems

lOur notion of a theory may be called a theory presentation in some other systems.

9

will be proved in different theories, depending on the amount of

structure required.

There are several advantages to the little theories approach presented in

this paper. We summarize them as follows:

i. Relation to the big theory approach

The little theories approach is opposed to the modules in most program­

ming language paradigms which are based on the big theory approach. In

the big theory approach, one powerful set of axioms is used to model all

objects of interest. Consequently, a module is a name scope mechanism,

where an object developed in one module can be referred to from within

another module by qualifying the object name. In the little theories ap­

proach, the work of establishing the network of interconnected theories

can be carried out under different, separated contexts being modeled by

theories.

11. A modular construction

In analogy with programming tools between the two extremes of pro­

gramming paradigm and low-level primitives, like classes, modules, or

functor, the little theories method assembles a modular construction that

is recorded in the structure of the library of abstract theories. Thus the

network of abstract theories is derived and instantiated in a structured

fashion from its underlying set of basic theories.

iii. Use of minimal axiomatization

The little theories approach also ensures the use of minimal axiomatization

10

for specific groups of theorems through interpretation into other theories,

or though direct inclusion in larger theories. Another advantage is to allow

theorems to be written in simpler forms encoded in theory expressions in

the library.

iv. Supported in theorem prover

Because of its usefulness for establishing consistency and independence,

the little theories approach has become a deeply entrenched way of orga­

nizing mathematical knowledge. So far as we know, IMPS, an Interactive

Mathematical Proof System [9], is the first interactive theorem prover to

have been designed from the start to support little theories.

We will discuss some examples of theory construction and decomposition

as how our library supports the approach in § 4.2. Our examples exemplify

the usefulness of the little theories approach in MathScheme Language (MSL).

3.2.3 DG3: A library of interconnected and extended

theories

In the little theories version of the axiomatic method, mathematical knowledge

is distributed over a network of theories linked to one another via theory inter­

pretations [8]. To use an object developed in another theory under the current

context, we need to build a theory interpretation between them. Effectively, it

will import a translated version of that theory implicitly and explicitly. Thus,

the connection of one abstract theory to another abstract theory in the the­

ory library is largely due to the power that theory interpretations provide. It

11

should give us the utilities to achieve theory abstraction goals and have the

MMS properly interpret the result.

We use theory importing and extension to be important modular technique

to support theory reuse in our library. Each theory in our library is a con­

crete representation of some mathematical theory, in contrast to approaches

(as in many algebraic specification languages) where a theory contains all the­

orems that are provable. And more complicated theory constructions can be

expressed with supported operations such as renaming and extension. Theory

building operations is an import technique described in § 4.3.

3.2.4 DG4: An expressive language of signatures

The modular system for our theory library should itself be a typed functional

language, where structures and functors are objects and signatures are types.

We need a language to describe theories. This language of "theory types" is

intended primarily as a tool for program specification, but it also serves to

represent mathematical knowledge in a manipulable form. A language that

manipulates signatures [19] is presented by N. Ramsey, K. Fisher, and P. Gov­

ereau. While modules can be manipulated in various ways, signatures are de­

scribed by enumeration their parts. The language of signatures exposes no

information about how a structure matches a signature.

12

Chapter 4

High Level Tools and

Techniques

This chapter presents some high level tools and techniques we intend to use

to meet our design goals of theory library described in § 3.2.

4.1 Biform theory in Chiron

Developed by Hong Ni [17], the definition of the notion of a biform theory is

implemented on a very basic basis with three experiments for some kind of

environments. An environment is a well-designed interface for exporting the

transformer implementation of the kernel theories and libraries of Ghiron.

Chiron [6] is an exceptionally well-suited logic for formalizing biform the­

ories since it has a high level of both theoretical and practical expressivity.

Precisely speaking, the meaning formulas of rules can be directly expressed in

Chiron.

13

4.2 Little theories in the library

As indicated in library design goals, our aim is to present to users a rich set

of theories. For that purpose, we favor using the little theories method to

organize mathematics in theory library. In little theories method, a complex

body of mathematics is represented as a network of axiomatic theories. Bigger

and advanced theories are composed of smaller and basic theories. Theories

are linked by building operations and interpretations. Reasoning is distributed

over the network. These can be assembled in a principled and modular fashion

and implemented atop a module framework like Jian Xu's Mei [22].

4.2.1 Little theories and IMPS

The little theories [10] idea is a familiar ingredient in work on specification

languages. This characteristic lies off the main path of our work in constructing

module system of the theory library as the language of "theory type" holds

the power of specification.

There has been some work on supporting little theories in logic framework

and mechanized theorem proving. A great deal of previous work shows an

approach of combining logics and theories to be proven beneficial in practi­

cal use. Developed at The MITRE Corporation by W. Farmer, J. Guttman,

and J. Thayer, IMPS [9] is an Interactive Mathematics Proof System. The

main approaches of IMPS are to support traditional mathematical techniques

and human oriented instead of machine oriented. The IMPS methodology

for formalizing mathematics is based on a particular version of the axiomatic

method. IMPS is the first interactive theorem prover to have been designed

14

from the start to support little theories for organizing mathematics, essentially

for formalizing large portions of mathematics. As far as we know, IMPS pro­

vides stronger support for little theories than any other contemporary theorem

proving system.

4.2.2 Examples

The little theories method is used both for encoding existing mathematics and

for creating new mathematics. In our theory modular system, a number of

theories are used in the course of developing a portion of other theories. The­

ories are logically linked together by theory building operations which serve as

conduits to pass results from one theory to another. This approach of orga­

nizing algebraic structures across a network of linked theories is advantageous

for managing complex structures by means of abstraction and resue. We give

an example of how a classical concept Group is defined and how a properly de­

composed version of Group is being done through the little theories method.

This method applied in MathScheme Language (MSL) satisfies our second

design goal (DG2).

Classically, a group G is a finite or infinite set of elements together with a

binary operation that satisfy the four fundamental properties:

1. Closure: if A and B are two elements in G, then the product A . B is

also in G.

2. Associativity: The defined multiplication is associative, i.e., for all

A,B,C E G, (A· B)· C = A· (B· C).

15

3. Identity: There is an identity element e such that e . A = A . e = A for

every element A E G.

4. Inverse: For each element A E G, the set contains an element B = A-I

such that A· A-I = A-I. A = e.

Now we present how to decompose a theory of Group through little theories

method. Theories in the classic definition i.e., set, binary operation, closure,

associativity, identity, and inverse are necessary to be included. The theories

are constructed step-by-step using theory building operations such as theory

extension and combination (see § 5.3). We begin by defining the network of

interrelated theories used in the Group theory construction.

• A theory of a carrier.

• A theory of a binary operation over a carrier set.

• A theory of a magma.

• A theory of a pointed magma.

• A theory of associativity.

• A theory of a loop (constructed incrementally from a theory of unital

and a theory of quasi-group).

• A theory of a group.

From these theories we build a number of other theories through little

theories method. We briefly explain the interrelated theories (terms) in the

algebraic structure's definitions.

16

• A Carrier is a set of universal objects that is dependent on a Carrier­

Type.

• A BinaryOperation ** on a carrier U is a binary function that maps

elements of (U, U) to U.

• A Magma consists of a carrier S equipped with a single binary operation

T.

• A PointedMagma consists of a magma and a pointed carrier along with

a supported carrier.

• A Unital is a magma with an identity element.

• A Qua.siGroup is a cancellative magma.

• A Loop is a quasigroup with an identity element.

• A Group is a loop with associative magma.

We have interpreted these concepts by using the language of "theory­

types" .

• A theory of a carrier set is obtained by extending a carrier type and a

theory of binary operation is built as an extension of the carrier set.

Carrier CarrierType extended by { U:carrier };;

BinaryOperation Carrier extended by { **:(U, U)->U };;

17

• A theory of a pointed magma is obtained by including a magma with a

pointed carrier along with a supported carrier.

PointedMagma = Theory

{

combines Magma, PointedCarrier along Carrier

}; ;

• Using a carrier equipped with a binary operation, a theory of magma is

constructed with no specifications.

Magma = Theory { BinaryOperation with ** = * };;

• A theory of associativity is formed as an extension of a theory of binary

operation by adding an associative property.

Associativity = Theory

{

property assoc(**)

forall x,y,z in U. (x**(y**z))=(x**y)**z

}; ;

• A theory of loop is constructed incrementally from several subtheories.

A theory of loop is built as a union of a theory of unital and a theory

of quasigroup. A theory of quasigroup is obtained as an extension of

a theory of magma by adding a cancellative property. As the same

approach, a theory of unital is defined by extending a theory of pointed

magma by adding an identity property.

18

Unital PointedMagma extended by

{

import Identity;

axiom identity(e,(*))

}; ;

QuasiGroup Magma extended by

{

import Cancellative;

axiom cancellative(*)

}; ;

Loop Theory

{

combines Unital, QuasiGroup along Magma

}; ;

• By applying theory building operation, a theory of Group is finally con­

structed with the combination of two subtheories Associativity and Loop.

Group

{

Loop extended by

import Associativity;

axiom assoc(*)

}; ;

19

4.3 Theory building operations

Although we can always formalize a theory from scratch, it is convenient if

we can reuse previously developed theories. Our module mechanism should

support theory building techniques, such as renaming, extension, and com­

bination implemented in most algebraic specification systems. For example,

renaming can be used to avoid unintended name clashes, or to adjust names of

sorts and change notations for operations. These theory building operations

are supported in many module systems such as CASL [16J and MEl [22J. We

explain theory building operations used in our library module system through

examples in § 5.3.

20

Chapter 5

A Module System of Theory

Representations

As indicated in § 1.3, the library module system is built and developed upon

many nice features supported by two families of module systems: the typed

functional language module system and the algebraic specification module sys­

tem. In this chapter we describe the library module system and its supported

building mechanisms, followed by a formal presentation of its syntax and ex­

amples to clarify them.

5.1 Theories

Algebraic structures in our library are organized as modules called theories. A

theory in our library may be called a theory representation of already proved

theorems, as opposed to approaches where a theory consists of all the theo­

rems that are provable. Thus, our notion of a theory is a syntactic object in

terms of the underlying M1/IS. In other words, our module system represent­

ing the theory library manipulates only syntactic representations (interface)

of algebraic structures.

21

5.2 Theory development

Taking experiences from theory development apporach from IMPS, the user

creates a theory and the mathematical object associated with it by evaluating

theory expressions. The theory expressions supplied by the system and created

by the user can be stored in a file which can be parsed as needed into a running

process. In this section, we give an overview of the tasks that are involved

in creating a well-developed theory. By presenting MathScheme Language

(MSL) syntax in examples, our design goals of constructing a well-organized,

interconnected library are well met.

• Built from scratch The first task in developing a theory is to build a

primitive, bare bones theory T .

• Built from basic theory Once the barebones theory is built, we can

build more advanced and complex theories. There are theory building

mechanisms for doing this that can be used separately or in combination.

These building operations are presented in order in the next section.

Such theory creation techniques include:

- Extension of a theory.

- Renaming of a theory.

- Union of several theories.

22

5.3 Theory building operations

Theories can be written down explicitly one at a time. As soon as they get to

be complex, we wind up with a large set of expressions that prevents us easily

interpreting the theory itself. So we must build our theories up from small

intelligible pieces. We often build one theory on top of another. Our work

on theory building operations derives from many techniques adopted in most

algebraic specification languages, as well as theory building operations, such

as "combine" and "enrich" proposed in R. M. Burstall and J. A. Goguen's

paper [1 J. We will explain these operations informally, using examples.

5.3.1 Theory extension

Extension is a very useful reasoning technique to add machinery to a theory

by means of a theory extension. Thus, extending an existing theory by adding

new symbols is an approach to form a structured theory hierarchy. To develop

a new theory, instead of starting from scratch, we can start from an existing

theory and extend it by adding new language symbol and axioms. In our

language, this operation is identified by conjoin keywords "extended by". This

setup would eventually allow one to prove results in an enriched theory [1J and

then transport them back to the unenriched theory.

To make our presentation concrete, let Li = (Gi , ti) be a language for

i = 1,2. L2 is an extension of L1 (and L1 is a sub language of L2), written

L1 ::; L2 , if G1 ~ G2 and t1 is a subfunction of t2.

Definition 1 Let'n = (Li' f i) be a theory for i = 1,2. T2 is an extension of

T1 (and T1 is a subtheory of T2), written T1 ::; T2, if Ll ::; L2 and fl ~ f2'

23

where r is the set of axioms of T.

Example 1

CarrierType Theory { carrier:type };;

Carrier = CarrierType extended by {U:carrier };;

A CarrierType is a type to represent a carrier set. With extending the

theory of CarrierType, a Carrier is a set of universal objects that is dependent

on a carrier type. We need it as a basic data type in our theory development.

Hence, an extension of a theory T is obtained by adding new vocabulary and

axioms to T. A theory development can be viewed as a sequence of theory

extensions.

5.3.2 Theory renaming

Renaming is an important mechanism to avoid name clashes. A renaming is

introduced by the keyword "with". This is illustrated in Example 2, one may

use ** to represent a binary operation in a theory of Magma and it is necessary

to rename ** to *, representing a binary operation on the same carrier set.

Example 2

Magma = Theory

{

BinaryOperation with ** *
}; ;

24

Another reason is to adjust name symbols according to the semantics. As

shown in Example 3, without renaming, it is quite possible that AbelianGroup

theory ends up using * as the name of its binary operation and e as the name

of its identity element in a theory of Group.

Example 3

AbelianGroup

{

Theory

Group with * = +, e = 0;

import Commutativity;

axiom comm(+)

}; ;

5.3.3 Theory combination

One motivation for the design of "theory type" language is a rich combination

of concepts. Similarly, an expressive approach to constructing a theory relies

on the union of two or many simpler theories or properties. In other words,

to develop a new theory, instead of stating its language and set of axioms, we

can start from combining existing theories. For instance, an operation to build

a theory of Ring is to extend the combination of a theory of AbelianGroup

and a theory of Monoid with renaming operation (see § 5.3.2). The idea is

illustrated in the following example:

Example 4

AbelianGroup Theory

25

{

Group with * = +, e = 0;

import Commutativity;

axiom comm(+)

}; ;

Monoid Theory

{

combines Unital, 8emiGroup along Magma

}; ;

Ring Theory

{

Import Distributivity;

81 AbelianGroup;

82 := Monoid with e 1-,

combines 81, 82 along 82;

axiom distri(*, +);

} - -, ,

By renaming, we identify the binary operation as additive operation + and

multiplicative operation *, separate e as 0 and I, and combine AbelianGroup

and Monoid with Distributivity property_

26

Chapter 6

MathScheme Language

Generation and Implementation

This chapter describes the generation and implementation of MathScheme

Language (MSL). This language contains many abstracted expressions built

from low-level and basic algebraic theories. We mainly focus on syntax im­

plementation of MSL and this language is logic independent. The lexical

conventions are presented in § 6.3. The abstract syntax structure is described

in section § 6.5.

6.1 Lexing and parsing overview

Compilers and interpreters take as input programs in string form. Most of the

foremost interaction with mathematical modeling systems can also be consid­

ered as to build a formula in a convenient and human-pleasant way. A parser

takes a formula represented as a string and produces a formula represented as

a data structure that the system can deal with.

Lexing and parsing are the first two steps towards converting this string

input into abstract syntax tree (AST) in the language that can then be inter­

preted. That is, the process of building an internal-expression from an input

27

string can be broken up into two parts:

• Lexing or tokenization of the input string. This can be thought of as

breaking the input string into a sequence of smaller different syntactic

categories, called tokens. Tokens are often separated by spaces, newlines,

operators, and other characters like semicolon and parenthesis.

• Parsing of the sequence of tokens. Once a string has been tokenized into

a sequence of tokens, the parsing takes the sequence and converts lists

of tokens into ASTs according to the rules defined by the grammar.

6.2 Lexer and parser generator

The tokens of a progranlming language are specified using regular expressions,

and thus the lexing process involves a great deal of regular-expression match­

ing. It would be tedious to take the specification for the tokens of our language,

convert the regular expressions to a Deterministic Finite Automaton (DFA) ,

and then implement the DFA in code to actually scan the text.

Instead, most languages come with tools that automate much of the process

of implementing a lexer in those languages. To implement a lexer and a parser

with these tools, you simply need to define the lexing behavior and parser

grammar in the tool's specification language. The tool will then compile your

specification into source code for an actuallexer and parser that you can use.

We have chosen OCaml tools to build our lexer and parser .

• ocamllex the lexer-generator, that produces a lexical analyzer from a set

of regular expressions with associated semantic actions.

28

• ocamlyacc the parser-generator, that produces a parser from a grammar

with associated semantic actions.

The core and support machinery of the lexer and parser were written in

two specification files in particular formats that ocamllex and ocamlyacc can

process, and they generate pure OCaml code that can be executed to lex and

parse strings.

6.3 Lexical conventions

This section covers lexical conventions for our language. Blanks, comments,

and identifiers are given in Appendix A. Keywords and operators are discussed

in the subsequent sections.

6.3.1 Blanks, comments and identifiers

Refer to Appendix A.

6.3.2 Keywords and logical operators

Keywords

The identifiers below are reserved words, defined as keywords in Table 6.1.

29

signature property axiom theorem

Theory implies iota combine

combines along with enrich

Inductive by extended type_plus

Import import in conservatively

Concept Concepts concept concepts

Transformer Transformers transformer transformers

Definition Definitions definition definitions

Fact Facts fact facts

Table 6.1: Keywords

Each of these keywords is designed to represent a start of a language ele­

ment, a membership, a relationship, or a theory building operation (see § 5.3).

• signature: indicates a definition of a signature and is used when you

want to create a new type.

• property: indicates the start of a property.

• axiom: indicates the start of the definition of an axiom.

• theorem: indicates the start of the definition of a theorem.

• Theory: indicates the start of the definition of a theory.

• implies: indicates an implication.

• iota: indicates an iota expression, which is a definite description oper­

ator for objects of kind.

30

• combine, combines: represents theory combination building operation.

It indicates that a list of theories is combined.

• along: indicates supporting element of a theory.

• with: represents the renaming building operation.

• enrich: indicates the start of an enriched theory declaration.

• Induct i ve: indicates an induction expression.

• by: followed by the keyword "extended".

• extended: represent the extension building operation. It indicates that

the theory you are writing has an inheritance.

• type_plus: indicates plus types for the domains of quantification.

• Import, import: indicates a "theory import" declaration.

• in: indicates membership.

• conservatively: indicates a model conservative extension, which in­

troduce new symbols that are defined in terms of old vocabulary.

• Concept, Concepts, concept, concepts: indicates the start of "a

concept" or "concepts".

• Transformer, Transformers, transformer, transformers: indicates

the start of "a transformer" or "transformers".

• Definition, Definitions, definition, definitions: indicates the

start of the definition of a variable.

31

• Fact, Facts, fact, facts: indicates the start of "a fact" or "facts".

Logical operators

All the logical operators defined in our language is grouped together in Ta-

ble 6.2.

forall exists and or not

Table 6.2: Logical operators

We explain what each logical operator represent.

• forall: refers to universal qualification.

• exists: refers to existential qualification.

• and: represents the relationship of Boolean operator "and".

• or: represents the relationship of Boolean operator "or".

• not: represents the relationship of Boolean operator "not".

6.3.3 Special tokens

The following sequences of characters are special tokens, as defined in Ta-

ble 6.3.

Each token has its own rule in the lexer specification. The lexer tries

to match the longest string possible each time. Hence

DOUBLESEMI, instead of two SEMICOLON tokens.

32

" .. " , , is match with

, , -> (

) { } []

?

Table 6.3: Operators

Also the regular expression rules are tried on the input from top to bottom.

Hence, if "fun" is defined as a reserved word (FUN) ahead of alphanumeric

identifiers, the lexer will recognize it as FUN and not the variable "fun".

6.4 Representing parse trees in OCaml

Our end goal of parsing will be to build an OCaml data structure representing

the parsed form of a program. Our general strategy can be broken down into

multiple phases:

• Create an OCaml datatype for each syntactic category in the language.

• Use this datatype, most likely to be mutually recursive, to represent the

inherent recursive structure of language definitions.

• Generate an OCaml term, using these mutually recursive types, repre­

senting the parsed form of the program - containment in a type construc­

tor shows that the contained items are children of the containing item

in the AST.

The next section will discuss more of the AST structure in our language.

33

6.5 AST structure

As the result of parsing, an AST of the input program will be returned. The

abstract syntax for our language is given by the following mutually-recursive

OCaml type definitions.

6.5.1 Top-level expressions

Block 1 Top level expressions
type assign = Assign of ident * theory_expr

type toplevel_expr assign list

A program is a class of top level expressions, assigned by a list of theory

expressions, as shown in Block 1. A top level expression has multiple cases

with:

• T = theory expression.

• T := theory expression.

• enrich T with { declaration }.

34

6.5.2 Theory expressions

Block 2 Type definition of theory expressions
type theory_expr =

ThyExpr of declaration list

ThyName of simple_app

ThyFunc of thytypedecl list * declaration list

ThyExtend of theory_expr * declaration list * qual

A theory expression, as shown in Block 2, can be four types of theories:

• ThyExpr a basic theory declaration, such as T = Theory { }.

• ThyName theory declaration with copy in extension.

• ThyFunc theory declaration containing functor(s).

• ThyExtend theory declaration with extension operation such as T =

Theory extended by E { }.

35

6.5.3 Declarations

Block 3 Type definition of declarations
typ~ declaration =

Rename of theory_expr * subst list

Prop of property

DefWithRenam of ident * theory_expr * subst list

TypDecl of typedecl

FuncDecl of funcdefn

AxBase of ident * expr * bool

AxFunc of expr * bool

Inductive of simp_app * constructor list

CombDecl of simple_app list * simple_app option

Import of ident list

Concept of typedecl list

Definition of funcdefn list

LocalThyExtend of theory_expr * declaration list * qual

Block 3 shows type definitions of declaration in our program. They are broken

up into:

• Rename denotes definition of "T(S) with renaming" with most parts op­

tional.

• Prop denotes a property declaration.

• DefWi tRenam denotes definition of "T := Theory(T) with renaming" .

36

• TypDecl denotes a type declaration.

• FuncDecl denotes a single function declaration.

• AxBase denotes basic axiom or theorem declaration.

• AxFunc denotes axiom or theorem as functor declaration.

• Inductive denotes an induction declaration.

• CombDecl denotes combination of theories.

• Import denotes a "theory imports" declaration.

• Concept denotes a concept block.

• Definition denotes a definition block.

• Local ThyExtend denotes a theory extension.

37

6.5.4 Expressions

Block 4 Type definition of expressions
type expr

Ident of ident

Oper of oper

EqOp of expr * expr

PairOp of expr * expr

And of expr * expr

InOp of expr * string

Or of expr * expr

Not of expr

Implies of expr * expr

Appl of application

Forall of var_spec * expr

Exists of var_spec * expr

Iota of var_spec * expr

(* identifier *)

(* operator *)

(* 'equal' operation *)

(* pair operation *)

(* 'and' operation *)

(* 'in' operation *)

(* 'or' operation *)

(* 'not' operation *)

(* implication *)

(* application *)

(* for all *)

(* there exists *)

(* iota expression *)

The abstract syntax for expressions has obvious meanings, with explanatory

comments as shown in Block 4.

38

6.5.5 Type definition of application

Block 5 Type definition of application
and application =

ExprApp of ident * expr list

OpApp of ident * ident list

BinOp of op * expr * expr

The abstract syntax for applications is shown in Block 5.

• ExprApp denotes an expression application such as T(81 , 82, ... ,S).

• OpApp denotes an operator application such as T(**, ++).

• BinOp denotes a binary operation such as exprl op expr2.

6.5.6 Type definition of types

Block 6 Type definition of typeR
and typedecl -

TBase of ident * type_comp

TExtension of ident list * type_comp

The abstract syntax for types is shown in Block 6.

• TBase denotes a basic type declaration such as a : Int -t Int.

• TExtension denotes an extended type declaration such as m, n, ... u, v

: Int -t Int.

39

6.5.7 Function definition, theory type declaration, sim­

ple application and substitutions

Block 7 Type definition of function, theory type declaration, simple applica­

tion and substitutions
and funcdefn = simple_app * expr

and thytypedecl = ident * ident

and simple_app = SimpApp of ident * ident list

and subst = ident * ident

and subste ident * expr

and substt ident * type_comp

The abstract syntax of function definition, theory type declaration, simple ap­

plication, and substitutions are shown in Block 7.

• funcdefn denotes a function definition as of type of a simple application

and an expression.

• thytypedecl denotes a theory type declaration as of identifiers.

• simple_app denotes a simple application as of type of substitution list.

• subst denotes a substitution list as of type of identifiers.

• subste denotes a substitution list as of type of an identifier and an

expression.

• substt denotes a substitution list as of type of an identifier and an

composed type expression.

40

6.5.8 Type definition of composed types

Block 8 Type definition of composed types
and type_comp =

TId of simple_app

TProd of type_comp list

TPlus of type_comp list

TArrow of type_comp * type_comp

TInduct of constructor list

TPredicate of type_comp

The abstract syntax of composed types is shown in Block 8.

• TId defines basic unit of type declaration.

• TProd denotes composed type declaration such as a : (T, S,... V)----t

Int.

• TPlus denotes type plus declaration.

• TArrow denotes composed type declaration such as a : Int ----t Int ----t Int.

• TInduct denotes an inductive type declaration.

• TPredicate denotes a predicate type declaration.

41

6.5.9 Type definition of property and constructor

Block 9 Type definition of property
and property = simple_app * expr

and constructor =

TConstr of ident * type_comp

The abstract syntax of property is shown in Block 9 .

• property denotes a property declaration such as "property T(x) :=".

• constructor denotes a constructor declaration such as "T : type def" .

6.5.10 Type definition of variable specification

Block 10 Type definition of variable specification
and var_spec =

I VarSpec of ident list * type_comp

The abstract syntax of variable specification is shown in Block 10. A variable

specification consists of a variable list and a composed type definition. For

example, a variable specification in our language can be I d1 , I d2 , ••• I dn

in CompType or I d1 , I d2 , •. , I dn : CompType.

42

Chapter 7

Implementation of Algebraic

Structures in Theory Library

and Some Useful Utilities

In the forgoing chapter, we have seen examples of constructing modules (theo­

ries) through the language of "theory types" together with building operations.

This chapter presents the implementation of basic algebraic structures in an

organized fashion as adopted by Common Algebraic Specification Language

(CASL) [16J.

7.1 Overview of theory library

The creation of libraries facilitates the module system building mechanisms of

theories. The collection of algebraic structures presented here consists of the

following libraries:

• Relations and Orders

• Basic Algebraic Structures

43

7. 2 Notion of theory

Each algebraic structure is syntactically denoted as a "Theory". Our notion

of theory is expressed through the following entities:

ConceptName

Definition

Theory Code

Please refer to Appendix B for instantiated representations of each theory

element.

7.3 Theory extractor - A tool for literate pro-
.

grammlng

The idea of Literate Programming is by Donald E. Knuth (see also [13]) in

Literate Programming. CSLI, 1992, pg. 99:

Let us change our traditional attitude to the construction of pro­

grams: Instead of imagining that our main task is to instruct a

computer what to do, let us concentrate rather on explaining to

human beings what we want a computer to do.

Our system provides support for literate programming with a utility: "theory

extractor" that extracts out theory source code in ~'IEX version of theory

library. The library is written using a special format, which means the ~'IEX

and theory code are interwoven into a single source document. This approach

44

to mixing theory description with theory source code also encourages the user

to adopt literate programming from the outset, so that the end product of

their own input is reproducible and readable program.

This Perl program written for thesis, by default, extracts the code out

of the "theory" environments containing the theory source portionwise and

distributes contents over a single file or different target files which could be

parsed directly.

7.3.1 Usage and Options

Usage: MS-xtr. pl < options> texfile < codefile>

MS-xtr . pl searches for a marker pattern followed by a blank and codefile

and copies the content of the following environment into the target file codefile.

This can be used to extract only the contents corresponding to a certain part

of the program instead of the whole lot. If no codefile is given, the default

output file is "lib.msl" so it can be parsed as input file.

Options:

-a extract all code into different target files, so it is not supposed to be

used together with codefile. This is useful if you have program code which is

intended to be distributed over separate files; when documenting it you will use

a "marker pattern" , such as %%@ code. msl preceding each theory environment

containing parts of code .msl, and similarly with the other target files. With

the -a option, the extractor will interpret code. msl as the name of the file

which shall contain the content of the following environment, and will copy

the contents of all environments of the selected type into the respective target

files. The use of a marker pattern is necessary here, and no codefile should be

45

specified.

-eenvironment extract content of environment instead of the default the­

ory environment.

-ppattern marker pattern for environments to extract; default is %%@. A

null pattern is possible.

-h show help, usage and synopsis of standard options.

7.3.2 Example

Consider a partial]5'IEX file of MathScheme theory library "MS-lib.tex" with

the following description of two theory expressions:

\concept{Abelian Group}

\abbreviation{AbGrp}

\libclass{\Alg}

\begin{MSdefinition}

{\rm An \cptnm{AbelianGroup} is a commutative group.}

%%@ algebra.msl

\begin{theory}

AbelianGroup Theory

{

Group with * = +, e = 0;

import Commutativity;

axiom comm(+)

}; ;

\end{theory}

46

\end{MSdefinition}

With MS-xtr. pl -a MS-lib. tex, all the code in the theory environment

will be extracted, copying everything marked with %%@ algebra. msl into a file

algebra. msl. Some theory expressions that are marked with %%@ relations­

orders .msl will be extracted into a file, namely relations-orders .msl.

With MS-x-cr .pIMs-cli15. tex algeora.iilsl you can extract everything marked

with %%@ algebra.msl; with MS-xtr.pl -eMSdefinition MS-lib.tex you

can extract all lines of all MSdefinition environments.

7.4 Theory expander

As a mathematical object, a theory consists of a language L and a set of

sentences in L called axioms. Theory expander provides the technique for

expanding abstracted "theory" in our theory library and reconstructing it as

a language and a set of axioms.

The theory expander is currently being developed by Dr. Jacques Carette.

7.4.1 Example single-level expansion

Theory of Reflexivity is a Theory of UnaryRelation extended by a reflexive

property and expressed with the following syntax:

Reflexivity = UnaryRelation extended by

{

property refl(R) := forall x in U. (x 'R x)

}; ;

47

The expander expends UnaryRelation with a theory of UnaryRelation,

which is a BinaryRelation extended by an axiom,

UnaryRelation = BinaryRelation extended by

{

axiom U V

}; ;

the expander expands BinaryRelation with a theory of BinaryRelation,

which is CarrierType extended by a binary relation representation.

BinaryRelation = CarrierType extended by

{

U:carrier;

V: carrier;

R:(U, V)->Bool

}; ;

A Theory of BinaryRelation is a theory of CarrierType extended by a

type of carrier, and it reaches the lowest level where no more theory can be

extended.

CarrierType = Theory { carrier:type };;

therefore, a theory of Reflexivity is decomposed through the three subthe­

ories and expressed one by one as follows:

Reflexivity = Theory {

carrier:type;

48

U:carrier;

V:carrier;

R:(U, V)->Bool;

axiom U = V;

property refl(R) := forall x in U. (x 'R x) };;

7.4.2 Example multi-level expansion

We have showed how theory expander works on a single-level expansion in the

previous example, a more complex expansion of a classical Ring is decomposed

in the following steps:

A theory of Ring is expressed as a theory of Carrier extended by several

properties:

Ring = Carrier extended by

{

Import Distributivity;

81 AbelianGroup with ** = +, e Q. ,

82 Monoid with ** = *, e = 1;

combines 81, 82;

axiom distrib(*, +);

}; ;

Starting from Carrier Type, Carrier, and Singular, a Ring is constructed

through these three basic theories.

CarrierType = Theory

{

49

carrier:type

}; ;

Carrier CarrierType extended by

{

U:carrier

}; ;

Singular

{

Theory

property singularCx,V)

}; ;

forall y in V. x y

To build a theory of Distributivity, a theory of BinaryOperation is essential

on a Carrier set.

BinaryOperation Carrier extended by

{

**: CU, U)->U

}; ;

A theory of Distributivity is obtained by importing LeftDistributivity and

RightDistributivity in addition to a distributive property

Distributivity = Theory

{

import LeftDistributivity, RightDistributivity;

property distriC**, ++) :=

(ldistri(**, ++)) and (rdistri(**, ++))

}; ;

50

therefore, a theory of Ring is decomposed through a list of sub theories and

expressed one by one as follows:

Ring = Theory

{

carrier:type;

U:carrier;

property singular(x, V)

**: (U, U)->U;

forall y in V. x

property distri(**, ++) :=

((ldistri(**, ++)) and (rdistri(**, ++)));

81 := AbelianGroup with ** = +, e = 0;

82 Monoid with ** = *, e = 1;

using AbelianGroup with ** = +, e

using Monoid with ** = *, e = 1;

axiom distrib(*, +)

o· ,

}; ;

51

y;

Chapter 8

Conclusion and Future Work

8.1 Conclusion

MathScheme Language (MSL) is an expressive language providing both a for­

mal semantics and a rich specification capability. This language can be a tool

for theory specification, but it also serves to present mathematical knowledge

in a manipulable form. Since MSL is an abstract and well-organized language,

it builds our theory library in a compact and encapsulated fashion. Thus

our design goal of a library of well-presented theories is achieved by the pre­

sentational feature of MSL. Through the little theories approach, our theory

library is constructed incrementally from a portion of existing theories. The

example of Group demonstrates that such method applied in MSL links the­

ories together by theory building operations. Our deign goal of a library of

well-structured theories is met by the usefulness of the little theories approach

in MSL. MSL also meets our design goal of a library of interconnected and

extended theories since its modular technique supports theory reuse and exten­

sion described in § 4.3. A design goal of an expressive language of signatures is

achieved by the orthogonality between the one hand basic specifications pro­

viding means to write algebraic structures in a specific theory module system,

which constructs our theory library; and on the other hand structured and

52

architectural specifications, which have a logic-independent semantics.

8.2 Future work

A library of algebraic theory-types in Appendix B have been developed in the

language of theory types. We have showed the library can be implemented

using the language of theory-types. The work continues as using the language

of theory types to specify and implement many categories of biform theories,

such as more advanced algebraic structures, numbers, simple data types like

boolean, pair, string, structured data types like array, various kinds of trees,

list, map, queue, set, stack and model-building tools from mathematics. These

data structures and tools will be used to carefully build up advanced mathe­

matical knowledge in the library.

53

Bibliography

[1] R. M. Burstall and J. A. Goguen. Putting Theories Together To Make

Specifications. Proc. Fifth Int. Joint Conf. on Artificial Intelligence, pages

1045-1058. Cambridge, Mass., 1977.

[2] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan

and S. M. Watt. Maple V Language Reference Manual. Springer-Verlag,

1991.

[3] Coq Development Team. The Coq Proof Assistant Reference Manual, Ver­

sion 8.1, INRIA-Rocquencourt, 2006.

Available at http://coq.inria.fr/doc/main.html

[4] W. M. Farmer. A proposal for the development of an interactive mathe­

matics laboratory for mathematics education. in: E. Melis, editor, Pro­

ceedings of the Workshop on Deduction Systems for Mathematics Educa­

tion, pages 20-25. Carnegie Mellon University, Pittsburgh, Pennsylvania,

2000.

[5] W. M. Farmer. Biform theories in Chiron. in: M. Kauers, M. Kerber,

R. R. Miner, and W. Windsteiger, editors, Towards Mechanized Mathe­

matical Assistants, volume 4573 of Lecture Notes in Computer Science,

pages 66-79. Springer-Verlag, 2007.

[6] W. M. Farmer. Chiron: A multi-paradigm logic. in: R. Matuszewski and

A. Zalewska, editors, From Insight to Proof: Festschrift in Honour of An-

54

drzej Trybulec, volume 10(23) of Studies in Logic, Grammar and Rhetoric,

pages 1-19, University of Bialystok, 2007.

[7] W. M. Farmer. The Interactive Mathematics Laboratory. in: Proceed­

ings of the 31st Annual Midwest Instruction and Computing Symposium

(MICS '98), pages 84-94, Fargo, North Dakota and Moorhead, Min­

nesota, 1998.

[8] W. M. Farmer. Theory interpretations in simple type theory. in: J. Reer­

ing et al., editors, Higher-Order Algebra, Logic, and Term Rewriting, vol­

ume 816 of Lecture Notes in Computer Science, pages 96-123, 1994.

[9] W. M. Farmer, J. D. Guttman and F. J. Thayer Fabrega. IMPS: An

updated system description. in: M. McRobbie and J. Slaney, editors, Au­

tomated Deduction-CADE-13, volume 1104 of Lecture Notes in Computer

Science, pages 298-302, 1996.

[10] W. M. Farmer, J. D. Guttman and F. J. Thayer. Little Theories. in:

D. Kapur, editor, Automated Deduction-CADE-11, volume 607 of Lec­

ture Notes in Computer Science, pages 567-581. Springer-Verlag, 1992.

[11] M. J. C. Gordon and T. F. Melham. Introduction to HOL: A Theo­

rem Proving Environment for Higher Order Logic. Cambridge University

Press, 1993.

[12] R. D. Jenks and R. S. Sutor. Axiom: The Scientific Computation System.

Springer-Verlag, 1992.

[13] D. E. Knuth. Literate Programming. CSLI. Stanford, CA, 1992.

55

[14] B. Krieg-Bruckner and D. Sannella. Structuring Specifications in-the­

Large and in-the-Small: Higher-Order Functions, Dependent Types and

Inheritance in SPECTRAL. Proc. Joint Conf. on Theory and Practice

of Software Development (TAPSOFT), volume 494 of Lecture Notes in

Computer Science, pages 313-336. Springer-Verlag, London, 1991.

[15] MathScheme. An Integrated Framework for Computer Algebra and Com­

puter Theorem Proving.

Website at http://imps.mcmaster.ca/mathschemej.

[16] T. Mossakowski. CASL Basic Libraries. in: M. Bidoit and P. D. Mosses,

editors, CASL User Manual: Introduction to Using the Common Alge­

braic Specification Language, volume 2900 of Lecture Notes in Computer

Science, pages 143-154, Springer-Verlag, London, 2004.

[17] H. Ni. Chiron: Mechanizing Mathematics in OCaml. Masters thesis, Mc­

Master University, July 2009.

[18] S. Owre, S. Raj an, J. M. Rushby, N. Shankar and M. Srivas. PVS: Com­

bining specification, proof checking, and model checking. in: R. Alur and

T. A. Henzinger, editors, Computer Aided Verification: 8th International

Conference, CAV '96, volume 1102 of Lecture Notes in Computer Science,

pages 411-414. Springer-Verlag, 1996.

[19] N. Ramsey, K. Fisher and P. Govereau. An Expressive Language of Signa­

tures. ICFP '05: Proceedings of the tenth ACM SIGPLAN international

conference on Functional programming, pages 27-40. ACM Press, New

York, 2005.

56

[20] P. Rudnicki. An overview of the MIZAR project. Technical report, De­

partment of Computing Science, University of Alberta, 1992.

[21] S. Wolfram. Mathematica: A System for Doing Mathematics by Com­

puter. Addison-Wesley, 1991.

[22] J. Xu. Mei - A module system for mechanized mathematics systems. in:

Programming Languages for Mechanized Mathematics Workshop, Hagen­

berg, Austria, 2007.

57

Appendix A

Lexical Conveniions

A.I Blanks

The following characters are considered as blanks: space, newline and horizon­

tal tabulation. Blanks are ignored, but they separate tokens, such as adjacent

identifiers, literals and keywords that would otherwise be confused as one single

entity.

A.2 Comments

Comments in the language are enclosed between (@* and *@), with no inter­

vening blanks. Comments can also be nested. They can contain any character.

Comments are treated as blank characters.

(@* This is a single-line comment. *@)

(@* This should be a multi-line comment, but breaks line-counting. *@)

(@* (@* This is a nested comment *@) *@)

58

A.3 Identifiers

Identifiers, written ident, are sequences of alphabets, digits, _ and \, shown as

Table A.I. Identifiers are case-sensitive. They are recognized by the following

lexical class: (in ocamllex syntax)

alpha := ['a'-'z' 'A'-'Z']

digit := ['0'-'9']

goodchars := (alpha I digit I - I \)
ident := goodchars+

Table A.l: Identifiers

59

Appendix B

Representation of Theory

Library

This appendix represents the implementation of a collection of basic algebraic

structures in our theory library. The contents are directly extracted from

"MS-lib.tex" , a :01E;X version of MathScheme theory library.

CarrierType

Definition 2 A Carrier Type is a type to represent a carrier set. It is the

fundamental algebraic structure served in the library.

CarrierType = Theory

{

carrier:type

}; ;

Carrier

Definition 3 A carrier is a set of universal objects that is dependent on a

carrier type. We need it as a basic data type.

60

Carrier CarrierType extended by

{

U:carrier

}; ;

Pointed Carrier

Definition 4 A Pointed Carrier is a carrier set having distinguish elements 0

and 1 that is dependent on a carrier set. We will use it to define PointedBi­

nary Operation.

PointedCarrier Carrier extended by

{

e:U

}; ;

Singular

Definition 5 A Singular is a pointed carrier C with a singular property.

Singular

{

Theory

property singular(x,V) := forall y in V. x y

}; ;

One

Definition 6 A One is a one-pointed carrier C, i.e. the theory of Singular

where the property is made into an axiom.

61

One PointedCarrier extended by

{

import Singular;

axiom singularCe,U)

}; ;

Two

Definition 7 A Two is a two-pointed carrier C, i.e. the co-product of One

with itself, along Carrier.

Two = Theory

{

T := One with e = e1;

combines One, T along CarrierType

}; ;

Binary Operation

Definition 8 A BinaryOperation ** on a carrier U is a binary function that

maps elements of (U, U) to U. Binary operations are the keystone of algebraic

structures studied in abstract algebra: they form part of groups, monoids,

semigroups, rings, and more. Most generally, a magma is a set together with

any binary operation defined on it.

BinaryOperation = Carrier extended by

{

**: CU, U)->U

} .. , ,

62

Pointed Binary Operation

Definition 9 A PointedBinaryOperation is a pointed carrier set having a bi­

nary operation. It is the supporting element of algebraic structures such as

Identity and Inverse.

PointedBinaryOperation Theory

{

combines BinaryOperation, PointedCarrier along Carrier

}; ;

Boolean

Definition 10 A Boolean is defined as theory instantiation of a Two with two

renamed elements true and false. It is served as a basis algebraic structure.

Boolean = Theory

{

Two with e true, e1 false, U Boole

}; ;

Binary Relation

Definition 11 A BinaryRelation on two carriers U and V is represented as

a function (U, V) ~ Baal. Binary relations are heavily used in many other

theories as a fundamental theory.

BinaryRelation = CarrierType extended by

{

63

U:carrier;

V: carrier;

R:(U, V)->Boole

}; ;

U nary Relation

Definition 12 A UnaryRelation on a carrier U is represented as a function

R : (U, U) ~ Baal. This is really a special case of a BinaryRelation where

U = V, but is here axiomatized separately.

UnaryRelation = BinaryRelation extended by

{

axiom U=V

}; ;

Associat i vity

Definition 13 A binary operation ** on a carrier U is said to be associative

if:

Associativity Theory

{

property assoc(**)

forall x,y,z in U. (x**(y**z»=(x**y)**z

}; ;

Commutativity

64

Definition 14 A binary operation T on a carrier S is said to be commutative

if:

Commutativity Theory

{

property comm(**)

}; ;

Idempotency

forall x,y in U. (x**y)=y**x

Definition 15 A binary operation T on a carrier S is said to be idempotent

if:

Idempotency Theory

{

property idem(**)

}; ;

Left Absorption

forall x in U. (x**x)=x

Definition 16 Given a carrier U and two binary operations ** and ++ on

U, then the operation is said to be left-absorptive over ++ if:

LeftAbsorption = Theory

{

property labsor(**, ++)

forall x,y in U. ((x**(x++y))=x) and ((x++(x**y))=x)

}; ;

65

Right Absorption

Definition 17 Given a carrier U and two binary operations ** and ++ on

U, then the operation is said to be right-absorptive over ++ if:

RightAbsorption = Theory

{

property rabsor(**, ++)

forall x,y in U. (((x++y)**y)=y) and (((x**y)++y)=y)

}; ;

Absorption

Definition 18 Given a carrier and two binary operations, then the opera­

tion is said to be absorptive over ++ if it is both left-absorptive and right­

absorptive.

Absorption Theory

{

import LeftAbsorption, RightAbsorption;

property absorption(**, ++)

(labsor(**,++)) and (rabsor(**,++))

}; ;

Left Distributivity

Definition 19 Given a carrier U and two binary operations ** and ++ on

U, then the operation is said to be left-distributive over ++ if:

66

LeftDistributivity Theory

{

property ldistri(**, ++)

forall x,y,z in U. (x**(y++z))=(x**y)++(x**z)

}; ;

Right Distributivity

Definition 20 Given a carrier U and two binary operations ** and ++ on

U, then the operation is said to be right-distributive over ++ if:

RightDistributivity = Theory

{

property rdistri(**, ++)

forall x,y,z in U. ((y++z)**x)=(y**x)++(z**x)

}; ;

Distributivity

Definition 21 Given a carrier and two binary operations, then the opera­

tion is said to be distributive over ++ if it is both left-distributive and right­

distributive.

Distributivity Theory

{

import LeftDistributivity, RightDistributivity;

property distri(**, ++)

:= (ldistri(**, ++)) and (rdistri(**, ++))

}; ;

67

Unipotency

Definition 22 A binary operation T on a carrier U is said to be unipotent if:

Unipotency = Theory

{

property unipot(**)

}; ;

Left Identity

forall x,y in U. (x**x)=y**y

Definition 23 An element e of a pointed carrier U with a binary operation

T is called a left identity if:

Leftldentity = Theory

{

property lident(e,(**))

}; ;

Right Identity

forall x in U. (e**x)=x

Definition 24 An element e of a pointed carrier U with a binary operation

T is called a right identity if:

Rightldentity = Theory

{

property rident(e,(**))

}; ;

Identity

forall x in U. (x**e)=x

68

Definition 25 A binary operation T on a carrier U is said to be idempotent

if: An element e of a pointed carrier U with a binary operation T is called a

two-sided identity, or simply an identity if:

Identity = Theory

{

import LeftIdentity, RightIdentity;

property identity(a, (++))

(lident(a, (++))) and (rident(a, (++)))

}; ;

Left Inverse

Definition 26 Let U be a pointed carrier with a binary operations T, then

an element x is said to be a left inverse if:

LeftInverse = Theory

{

property linv(a, (**))

}; ;

Right Inverse

forall x,y in U. (x**y)=a

Definition 27 Let U be a pointed carrier with a binary operations T, then

an element x is said to be a right inverse if:

RightInverse = Theory

{

property rinv(a, (**))

}; ;

forall x,y in U. (y**x)=a

69

Inverse

Definition 28 Let S be a pointed carrier with a binary operations T, if an

element x is both a left inverse and a right inverse of y, then x is said to be

a two-sided inverse, or simply an inverse, of y if:

Inverse = Theory

{

import LeftInverse, RightInverse;

property inverse (a, (**))

(linv(a, (**))) and (rinv(a, (**)))

}; ;

Antisymmetry

Definition 29 We say a relation R on a carrier U is antisymmetric if:

Antisymmetry = Theory

{

property antisym(R)

forall x,y in U.((x 'R y) and (y 'R x)) implies (x y)

}; ;

Asymmetry

Definition 30 We say a relation R on a carrier U is asymmetric if:

Asymmetry = Theory

{

70

property asym(R)

forall x,y in U. not(x 'R y implies y 'R x)

}; ;

Symmetry

Definition 31 We say a relation R on a carrier U is symmetric if:

Symmetry = Theory

{

property sym(R) forall x,y in U. x 'R y implies y 'R x

} .. , ,

Transitivity

Definition 32 We say a unary relation R on a carrier U is transitive if:

Transitivity = Theory

{

property trans(R)

:= forall x,y,z in U.

((x 'R y) and (y 'R z)) implies x 'R z

}; ;

Function

Definition 33 A Function on two earners U and V is a mapping f from

elements of U to elements of V.

71

Function CarrierType extended by

{

U:carrier;

B:carrier;

f:U->V

}; ;

Reflexivity

Definition 34 We say a relation R on a carrier U is reflexive if:

Reflexivity = Theory

{

property refl(R) := forall x in U. x 'R x

}; ;

Irreflexivity

Definition 35 We say a relation R on a carrier U is irreflexive if:

Irreflexivity = Theory

{

property irrefl(R)

}; ;

Magma

forall x in U. not(x 'R x)

Definition 36 A Magma consists of a carrier S equipped with a single binary

operation T. A binary operation is closed by definition, but no other axioms

are imposed on the operation. In abstract algebra, a magma is a basic and

very important kind of algebraic structure.

72

Magma Theory

{

BinaryOperation with ** *

}; ;

PointedMagma

Definition 37 A PointedMagma consists of a magma and a pointed carrier

along with a supported carrier.

PointedMagma = Theory

{

combines Magma, PointedCarrier along Carrier

} .. , ,

Left Cancellative

Definition 38 Let U be a carrier with a binary operations T, an element z

is left cancellative if:

LeftCancellative Theory

{

property lcancel(**)

forall x,y,z in U. «z**x)=z**y) implies x=y

}; ;

Right Cancellative

Definition 39 Let U be a carrier with a binary operations T, an element z

is right-cancellative if:

73

RightCancellative Theory

{

property rcancel(**)

forall x,y,z in U. «x**z)=y**z) implies x=y

}; ;

Cancellative

Definition 40 Let S be a carrier with a binary operations T, i.e. a Magma,

an element z is cancellative if it is both left-cancellative and right-cancellative.

Cancellative = Theory

{

import LeftCancellative, RightCancellative;

property cancellative(**) := (lcancel(**)) and (rcancel(**))

}; ;

Unital

Definition 41 A Unital is a magma with an identity element.

Unital = PointedMagma extended by

{

import Identity;

axiom identity(e,(*))

}; ;

QuasiGroup

74

Definition 42 A QuasiGroup is a cancellative magma.

QuasiGroup = Magma extended by

{

import Cancellative;

axiom cancellative(*)

}; ;

Loop

Definition 43 A Loop is a quasigroup with an identity element.

Loop = Theory

{

combines Unital, QuasiGroup along Magma

}; ;

SemiGroup

Definition 44 A Semigroup is an associative magma.

Semi Group = Magma extended by

{

import Associativity;

axiom assoc(*)

}; ;

Band

Definition 45 A Band is a semigroup of idempotents.

75

Band SemiGroup extended by

{

import Idempotency;

axiom idem(*)

}; ;

Group

Definition 46 A Group is a loop with associative magma.

Group = Loop extended by

{

import Associativity;

axiom assoc(*)

}; ;

Abelian Group

Definition 47 An AbelianGroup is a commutative group.

AbelianGroup = Theory

{

Group with * = +, e = 0;

import Commutativity;

axiom comm(+)

}; ;

Monoid

76

Definition 48 A Monoid is a unital semigroup.

Monoid = Theory

{

combines Unital, 8emiGroup along Magma

}; ;

Commutative Monoid

Definition 49 A CommutativeMonoid is a monoid whose operation is com­

mutative.

CommutativeMonoid Monoid extended by

{

import Commutativity;

axiom comm(*)

}; ;

Ring

Definition 50 A Ring is a carrier equipped with an Abelian group under

addition; a Monoid under multiplication; and satisfying the Distributivity law

of multiplication over addition.

Ring = Theory

{

Import Distributivity;

81 AbelianGroup;

82 Monoid with e l' ,

77

combines 81, 82 along 82;

axiom distri(*, +);

}; ;

Commutative Ring

Definition 51 A CommutativeRing is a ring with commutative multiplica­

tion.

CommutativeRing Ring extended by

{

import Commutativity;

axiom comm(*)

}; ;

78

