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Abstract 

Many issues stand in the way of the development of contemporary mechanized 

mathematics systems (MMS) and the following are two major obstacles: 

• Dedicated languages with mathematical specifications for MMS. 

• A well-endowed theory library which serves as a database of mathemat

ics. 

We implement a MathScheme Language (MSL) , which represents theory 

types useful for covering basic algebraic structures and improving the expres

sive power of mathematical modeling sysLems. The development of MSL pri

marily focuses on language syntax and its logic independence. 

More importantly, we present a library of theory types developed based 

on module systems of typed programming languages and algebraic specifica

tion languages. The modularity mechanism used in our library aims for the 

interface manipulation and high level expressivity of MMSs. The theories are 

organized according to the little theories method [10J. Our module system ex

tensively supports several building operations to construct new theories from 

existing theories. 
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Chapter 1 

Introduction 

1.1 Overview of MMS and MathScheme 

The mathematics activity consists of formulating mathematical models and 

then exploring them by stating and proving conjectures and by performing 
! 

calculations. The goal of mechanized mathematics system (MMS) is to pro-

duce a computer environment that is intended to support and improve rigorous 

mathematics activity. Today MMSs include two major types: computer alge

bra systems (CAS) and theorem proving systems (TPS). The MathScheme [15] 

system is a mechanized mathematics system based on the integrated frame

work for computer algebra systems and theorem proving systems. CASs, such as 

Axiom [12], Maple [2] and Mathematica [21], provide high-level symbolic com

putation based on algorithmic theories, while TPSs, such as Coq [3], HOL [11], 

IMPS [9], Mizar [20] and PVS [18], provide low-level reasoning environments 

based on axiomatic theories. As an MMS, MathScheme is a computer system 

that aims to support and improve both aspects and provides tools for building 

and extending theories. 
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1.2 Programming and specification languages 

for MMS 

Most programming languages and specification languages have module sys

tems for organizing large software developments and specifications. Current 

MMSs involve various ways in which it intersects with programming languages 

and specification languages. Many systems for mathematics contain a dedi

cated input language and are frequently built in that same language. For 

instance, the Latc language in Coq, mathematical languages as in Mizar, and 

other languages built into computer algebra systems. Another important ob

servation is that modeling languages used for many systems for mathematics 

cover both fields of functional languages and specification languages, such as a 

number of portions of HOL are similar to ML and Haskell and languages like 

CASL [16J and SPECTRAL [14J improve the expressivity of formal specifica

tion. We know that good programming and specification languages provide 

powerful means of expression within their domains, which will be examined 

in Chapter 2. The tendency in both programming language and specification 

language design seems to be towards providing structuring mechanisms with 

increasingly more power. Hence, it is our intention to implement a specialized 

language that can build theories as "types" and aid the detailed representa

tion of their relationships as "interfaces". Such expressive language of "theory 

types" should be close to a typed functional language and contains very rich 

specification capabilities. 
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1.3 Theory library for MMS 

An effective MMS needs a well organized and constructed theory library which 

contains sufficient mathematical knowledge to support mathematical activi

ties. Unfortunately, very few MMSs have a sophisticated theory library sup

ported by a good module system and there is no consensus in current MMSs for 

how the library should be organized and constructed. We developed a theory 

library built in MSL, the specialized language of "theory types" , which employs 

and formalizes a collection of basic algebraic structures. The library empha

sizes the interface-manipulation and expressivity of theory abstractions rather 

than full-fledged low-level axiomatic and algorithmic theories. The library also 

supports some specification-building operations, such as theory combination, 

renaming, and extension to construct new theories from existing theories in 

a structured fashion. In fact, our work on library module system construc

tion derives from many structuring mechanisms developed in many algebraic 

specification languages. 
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Chapter 2 

Intersection Between MMS and 

Programming and Specification 

Languages 

Vve examine, in this chapter, the intersection between MMS and programming 

and specification languages. In particular, we are interested in the modularity 

mechanisms for programming and specification languages for MMSs. 

2.1 Programming languages 

Dialects of ML usually have a rich module system. An ML-family module 

system itself is a small typed functional language, where structures and func

tors are objects and signatures are types. While modules can be manipulated 

in various ways, types (signatures) are described by enumerating their parts. 

N. Ramsey, K. Fisher and P. Govereau [19] present a language that maniplu

ates signatures, e.g. two signatures can be combined to form a new signature. 

The language of signatures exposes no information about how a structure 

matches a signature. For instance, a signature that combines two signatures 

is the same as the fiat signature that is the union of the two component signa-
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tures. A structure that implements the combination signature also implements 

the flat signature. 

In the module system of our theory library, a module expression of a union 

type must be built from two sub expressions of corresponding component types. 

In another view, the language of signatures can be seen as our module type 

level in the sense that the operations are over module types instead of module 

expressions. 

2.2 Specification languages 

While most specification languages support theory building operations: exten

sion, combination, and renaming as in module system of our theory library, 

they usually have a different parameterized specification mechanism. We have 

taken many useful idea from CASL [16]. CASL is an algebraic specification 

language based on partial first-order logic. A basic specification consists of a 

signature ~ and a set of sentences (axioms or constraints) over ~. 

CASL provides a number of mechanisms for structuring specifications, the 

followings have their counterparts in the module system of our library. 

• Extension: S Pl then '" then S Pn 

SPl determines an extension from the local environment to a complete 

signature ~l' For i = 2, ... ,n each S Pl determines an extension from 

~i-l to a complete ~i' The signature determined by the entire extension 

is then ~n' 

• Union: SPl and ... and SPn 
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The signature of the union is obtained by the ordinary union of the L;i 

(not the disjoint union). Thus all (non-localized) occurrences of a symbol 

in the S Pi are interpreted uniformly. If the same name is declared both 

as a total and a partial operation with the same profile (in different 

signature), the operation becomes total in the union . 

• Translation: SP with SM 

This is a renaming mechanism and S M is a symbol mapping. The 

signature L; given by SP and symbol mapping SM together determine 

a new signature t and a morphism from L; to t. 
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Chapter 3 

Design Goals of Theory Library 

This chapter presents the major design goals of our theory library. Some of 

design goals proposed in § 3.2 determine modularity mechanisms and features 

supported by the library. 

3.1 Theory library in an interactive mathe

matics laboratory 

The ultimate goal of the MathScheme project [15] is to build, on top of 

the mechanized mathematics system, an interactive mathematics laboratory 

(IML) [4, 7], a computer system that provides a set of integrated tools for fa

cilitating the mathematics process and managing mathematical reasoning. An 

IML offers a formal, interactive, and mechanized environment that combines 

the capabilities of both computer theorem proving systems and computer al

gebra systems. To support the process the users use to explore, apply and 

extend the mathematics in such system, a library of rich mathematical knowl

edge is considered one of the essential elements. Mathematics library should 

be a web accessible environment that includes dynamically stored mathemat

ical knowledge. We have chosen to use the term "theory library" to represent 
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the mathematics library because it provides a theory development facility in 

our system. The theory library should help end users to have easy access 

to the network of well-organized algebraic structures; on the other hand, it 

should support the development of producing and formalizing new mathemat

ical knowledge by developers. 

3.2 Design goals 

In this section, we explicitly present the design goals (DGs) we want to achieve. 

A theory library could be viewed and constructed in many different ways. A 

good modularity of theory library aids the expressivity of MMSs. It can help to 

build up contexts and allow the user to reuse the theorems developed within 

one context in other contexts with similar structure. Keeping the ultimate 

goal in mind, a desirable implementation of the library would be to create 

an "expressive" environment that provides the ability to allow the user and 

developer to browse and expand the theory library in sophisticated ways. Our 

work eventually integrates the ideas from modular programming systems and 

algebraic specification module systems to build a library of theory types suited 

to the MathScheme project. 

3.2.1 DG1: A library of well-presented theories 

Mathematics is conventionally done in informal (in theory, it could be made 

formal) high-level reasoning environments that include an integrated set of 

basic concepts and deductive, computational, visual, and other kinds of prac

tical tools. To emulate a similar environment in a mechanized mathematical 
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system (MMS), a library of theories should be abstract, highly structured, and 

interconnected mathematics in an organized fashion. Such library has the best 

chance to provide a rich set of abstract concepts and definitions without too 

many low-level details exposed. Not only does the end user have the mathe

matical information he or she needs, but also the mathematical information in 

the library would be well encapsulated. Moreover, it is certainly feasible if the 

same theory can be derived from several different underlying sets of axiomatic 

theories. 

3.2.2 DG2: A library of well-structured theories 

Our aim is to present end users a rich set of abstract theories. Such library can 

be constructed incrementally from low-level theories. A theoryl consists of a 

language, a set of axioms, and a set of theorems. Low-level theories should 

be considered as part of the supporting infrastructure of the theory library. 

Certain desirable property enables MMS developers, who are interested in the 

structure of mathematics and the problems involved in formalizing mathemat

ics, to facilitate the development and expansion of the library. 

We favor using the little theories approach as the structuring mechanism 

for our system. The "little theories" method is one of several versions of the 

axiomatic method. It is described in W. M. Farmer, J. D. Guttman, and 

F. J. Thayer's paper "Little Theories" [10], pg. 2: 

In the little theories method, a number of theories will be used in the 

course of developing a portion of mathematics. Different theorems 

lOur notion of a theory may be called a theory presentation in some other systems. 
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will be proved in different theories, depending on the amount of 

structure required. 

There are several advantages to the little theories approach presented in 

this paper. We summarize them as follows: 

i. Relation to the big theory approach 

The little theories approach is opposed to the modules in most program

ming language paradigms which are based on the big theory approach. In 

the big theory approach, one powerful set of axioms is used to model all 

objects of interest. Consequently, a module is a name scope mechanism, 

where an object developed in one module can be referred to from within 

another module by qualifying the object name. In the little theories ap

proach, the work of establishing the network of interconnected theories 

can be carried out under different, separated contexts being modeled by 

theories. 

11. A modular construction 

In analogy with programming tools between the two extremes of pro

gramming paradigm and low-level primitives, like classes, modules, or 

functor, the little theories method assembles a modular construction that 

is recorded in the structure of the library of abstract theories. Thus the 

network of abstract theories is derived and instantiated in a structured 

fashion from its underlying set of basic theories. 

iii. Use of minimal axiomatization 

The little theories approach also ensures the use of minimal axiomatization 
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for specific groups of theorems through interpretation into other theories, 

or though direct inclusion in larger theories. Another advantage is to allow 

theorems to be written in simpler forms encoded in theory expressions in 

the library. 

iv. Supported in theorem prover 

Because of its usefulness for establishing consistency and independence, 

the little theories approach has become a deeply entrenched way of orga

nizing mathematical knowledge. So far as we know, IMPS, an Interactive 

Mathematical Proof System [9], is the first interactive theorem prover to 

have been designed from the start to support little theories. 

We will discuss some examples of theory construction and decomposition 

as how our library supports the approach in § 4.2. Our examples exemplify 

the usefulness of the little theories approach in MathScheme Language (MSL). 

3.2.3 DG3: A library of interconnected and extended 

theories 

In the little theories version of the axiomatic method, mathematical knowledge 

is distributed over a network of theories linked to one another via theory inter

pretations [8]. To use an object developed in another theory under the current 

context, we need to build a theory interpretation between them. Effectively, it 

will import a translated version of that theory implicitly and explicitly. Thus, 

the connection of one abstract theory to another abstract theory in the the

ory library is largely due to the power that theory interpretations provide. It 
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should give us the utilities to achieve theory abstraction goals and have the 

MMS properly interpret the result. 

We use theory importing and extension to be important modular technique 

to support theory reuse in our library. Each theory in our library is a con

crete representation of some mathematical theory, in contrast to approaches 

(as in many algebraic specification languages) where a theory contains all the

orems that are provable. And more complicated theory constructions can be 

expressed with supported operations such as renaming and extension. Theory 

building operations is an import technique described in § 4.3. 

3.2.4 DG4: An expressive language of signatures 

The modular system for our theory library should itself be a typed functional 

language, where structures and functors are objects and signatures are types. 

We need a language to describe theories. This language of "theory types" is 

intended primarily as a tool for program specification, but it also serves to 

represent mathematical knowledge in a manipulable form. A language that 

manipulates signatures [19] is presented by N. Ramsey, K. Fisher, and P. Gov

ereau. While modules can be manipulated in various ways, signatures are de

scribed by enumeration their parts. The language of signatures exposes no 

information about how a structure matches a signature. 
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Chapter 4 

High Level Tools and 

Techniques 

This chapter presents some high level tools and techniques we intend to use 

to meet our design goals of theory library described in § 3.2. 

4.1 Biform theory in Chiron 

Developed by Hong Ni [17], the definition of the notion of a biform theory is 

implemented on a very basic basis with three experiments for some kind of 

environments. An environment is a well-designed interface for exporting the 

transformer implementation of the kernel theories and libraries of Ghiron. 

Chiron [6] is an exceptionally well-suited logic for formalizing biform the

ories since it has a high level of both theoretical and practical expressivity. 

Precisely speaking, the meaning formulas of rules can be directly expressed in 

Chiron. 
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4.2 Little theories in the library 

As indicated in library design goals, our aim is to present to users a rich set 

of theories. For that purpose, we favor using the little theories method to 

organize mathematics in theory library. In little theories method, a complex 

body of mathematics is represented as a network of axiomatic theories. Bigger 

and advanced theories are composed of smaller and basic theories. Theories 

are linked by building operations and interpretations. Reasoning is distributed 

over the network. These can be assembled in a principled and modular fashion 

and implemented atop a module framework like Jian Xu's Mei [22]. 

4.2.1 Little theories and IMPS 

The little theories [10] idea is a familiar ingredient in work on specification 

languages. This characteristic lies off the main path of our work in constructing 

module system of the theory library as the language of "theory type" holds 

the power of specification. 

There has been some work on supporting little theories in logic framework 

and mechanized theorem proving. A great deal of previous work shows an 

approach of combining logics and theories to be proven beneficial in practi

cal use. Developed at The MITRE Corporation by W. Farmer, J. Guttman, 

and J. Thayer, IMPS [9] is an Interactive Mathematics Proof System. The 

main approaches of IMPS are to support traditional mathematical techniques 

and human oriented instead of machine oriented. The IMPS methodology 

for formalizing mathematics is based on a particular version of the axiomatic 

method. IMPS is the first interactive theorem prover to have been designed 
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from the start to support little theories for organizing mathematics, essentially 

for formalizing large portions of mathematics. As far as we know, IMPS pro

vides stronger support for little theories than any other contemporary theorem 

proving system. 

4.2.2 Examples 

The little theories method is used both for encoding existing mathematics and 

for creating new mathematics. In our theory modular system, a number of 

theories are used in the course of developing a portion of other theories. The

ories are logically linked together by theory building operations which serve as 

conduits to pass results from one theory to another. This approach of orga

nizing algebraic structures across a network of linked theories is advantageous 

for managing complex structures by means of abstraction and resue. We give 

an example of how a classical concept Group is defined and how a properly de

composed version of Group is being done through the little theories method. 

This method applied in MathScheme Language (MSL) satisfies our second 

design goal (DG2). 

Classically, a group G is a finite or infinite set of elements together with a 

binary operation that satisfy the four fundamental properties: 

1. Closure: if A and B are two elements in G, then the product A . B is 

also in G. 

2. Associativity: The defined multiplication is associative, i.e., for all 

A,B,C E G, (A· B)· C = A· (B· C). 
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3. Identity: There is an identity element e such that e . A = A . e = A for 

every element A E G. 

4. Inverse: For each element A E G, the set contains an element B = A-I 

such that A· A-I = A-I. A = e. 

Now we present how to decompose a theory of Group through little theories 

method. Theories in the classic definition i.e., set, binary operation, closure, 

associativity, identity, and inverse are necessary to be included. The theories 

are constructed step-by-step using theory building operations such as theory 

extension and combination (see § 5.3). We begin by defining the network of 

interrelated theories used in the Group theory construction. 

• A theory of a carrier. 

• A theory of a binary operation over a carrier set. 

• A theory of a magma. 

• A theory of a pointed magma. 

• A theory of associativity. 

• A theory of a loop (constructed incrementally from a theory of unital 

and a theory of quasi-group). 

• A theory of a group. 

From these theories we build a number of other theories through little 

theories method. We briefly explain the interrelated theories (terms) in the 

algebraic structure's definitions. 
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• A Carrier is a set of universal objects that is dependent on a Carrier

Type. 

• A BinaryOperation ** on a carrier U is a binary function that maps 

elements of (U, U) to U. 

• A Magma consists of a carrier S equipped with a single binary operation 

T. 

• A PointedMagma consists of a magma and a pointed carrier along with 

a supported carrier. 

• A Unital is a magma with an identity element. 

• A Qua.siGroup is a cancellative magma. 

• A Loop is a quasigroup with an identity element. 

• A Group is a loop with associative magma. 

We have interpreted these concepts by using the language of "theory

types" . 

• A theory of a carrier set is obtained by extending a carrier type and a 

theory of binary operation is built as an extension of the carrier set. 

Carrier CarrierType extended by { U:carrier };; 

BinaryOperation Carrier extended by { **:(U, U)->U };; 

17 



• A theory of a pointed magma is obtained by including a magma with a 

pointed carrier along with a supported carrier. 

PointedMagma = Theory 

{ 

combines Magma, PointedCarrier along Carrier 

}; ; 

• Using a carrier equipped with a binary operation, a theory of magma is 

constructed with no specifications. 

Magma = Theory { BinaryOperation with ** = * };; 

• A theory of associativity is formed as an extension of a theory of binary 

operation by adding an associative property. 

Associativity = Theory 

{ 

property assoc(**) 

forall x,y,z in U. (x**(y**z))=(x**y)**z 

}; ; 

• A theory of loop is constructed incrementally from several subtheories. 

A theory of loop is built as a union of a theory of unital and a theory 

of quasigroup. A theory of quasigroup is obtained as an extension of 

a theory of magma by adding a cancellative property. As the same 

approach, a theory of unital is defined by extending a theory of pointed 

magma by adding an identity property. 
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Unital PointedMagma extended by 

{ 

import Identity; 

axiom identity(e,(*)) 

}; ; 

QuasiGroup Magma extended by 

{ 

import Cancellative; 

axiom cancellative(*) 

}; ; 

Loop Theory 

{ 

combines Unital, QuasiGroup along Magma 

}; ; 

• By applying theory building operation, a theory of Group is finally con

structed with the combination of two subtheories Associativity and Loop. 

Group 

{ 

Loop extended by 

import Associativity; 

axiom assoc(*) 

}; ; 

19 



4.3 Theory building operations 

Although we can always formalize a theory from scratch, it is convenient if 

we can reuse previously developed theories. Our module mechanism should 

support theory building techniques, such as renaming, extension, and com

bination implemented in most algebraic specification systems. For example, 

renaming can be used to avoid unintended name clashes, or to adjust names of 

sorts and change notations for operations. These theory building operations 

are supported in many module systems such as CASL [16J and MEl [22J. We 

explain theory building operations used in our library module system through 

examples in § 5.3. 
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Chapter 5 

A Module System of Theory 

Representations 

As indicated in § 1.3, the library module system is built and developed upon 

many nice features supported by two families of module systems: the typed 

functional language module system and the algebraic specification module sys

tem. In this chapter we describe the library module system and its supported 

building mechanisms, followed by a formal presentation of its syntax and ex

amples to clarify them. 

5.1 Theories 

Algebraic structures in our library are organized as modules called theories. A 

theory in our library may be called a theory representation of already proved 

theorems, as opposed to approaches where a theory consists of all the theo

rems that are provable. Thus, our notion of a theory is a syntactic object in 

terms of the underlying M1/IS. In other words, our module system represent

ing the theory library manipulates only syntactic representations (interface) 

of algebraic structures. 
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5.2 Theory development 

Taking experiences from theory development apporach from IMPS, the user 

creates a theory and the mathematical object associated with it by evaluating 

theory expressions. The theory expressions supplied by the system and created 

by the user can be stored in a file which can be parsed as needed into a running 

process. In this section, we give an overview of the tasks that are involved 

in creating a well-developed theory. By presenting MathScheme Language 

(MSL) syntax in examples, our design goals of constructing a well-organized, 

interconnected library are well met. 

• Built from scratch The first task in developing a theory is to build a 

primitive, bare bones theory T . 

• Built from basic theory Once the barebones theory is built, we can 

build more advanced and complex theories. There are theory building 

mechanisms for doing this that can be used separately or in combination. 

These building operations are presented in order in the next section. 

Such theory creation techniques include: 

- Extension of a theory. 

- Renaming of a theory. 

- Union of several theories. 
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5.3 Theory building operations 

Theories can be written down explicitly one at a time. As soon as they get to 

be complex, we wind up with a large set of expressions that prevents us easily 

interpreting the theory itself. So we must build our theories up from small 

intelligible pieces. We often build one theory on top of another. Our work 

on theory building operations derives from many techniques adopted in most 

algebraic specification languages, as well as theory building operations, such 

as "combine" and "enrich" proposed in R. M. Burstall and J. A. Goguen's 

paper [1 J. We will explain these operations informally, using examples. 

5.3.1 Theory extension 

Extension is a very useful reasoning technique to add machinery to a theory 

by means of a theory extension. Thus, extending an existing theory by adding 

new symbols is an approach to form a structured theory hierarchy. To develop 

a new theory, instead of starting from scratch, we can start from an existing 

theory and extend it by adding new language symbol and axioms. In our 

language, this operation is identified by conjoin keywords "extended by". This 

setup would eventually allow one to prove results in an enriched theory [1J and 

then transport them back to the unenriched theory. 

To make our presentation concrete, let Li = (Gi , ti ) be a language for 

i = 1,2. L2 is an extension of L1 (and L1 is a sub language of L2), written 

L1 ::; L2 , if G1 ~ G2 and t1 is a subfunction of t2. 

Definition 1 Let'n = (Li' f i ) be a theory for i = 1,2. T2 is an extension of 

T1 (and T1 is a subtheory of T2), written T1 ::; T2, if Ll ::; L2 and fl ~ f2' 
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where r is the set of axioms of T. 

Example 1 

CarrierType Theory { carrier:type };; 

Carrier = CarrierType extended by {U:carrier };; 

A CarrierType is a type to represent a carrier set. With extending the 

theory of CarrierType, a Carrier is a set of universal objects that is dependent 

on a carrier type. We need it as a basic data type in our theory development. 

Hence, an extension of a theory T is obtained by adding new vocabulary and 

axioms to T. A theory development can be viewed as a sequence of theory 

extensions. 

5.3.2 Theory renaming 

Renaming is an important mechanism to avoid name clashes. A renaming is 

introduced by the keyword "with". This is illustrated in Example 2, one may 

use ** to represent a binary operation in a theory of Magma and it is necessary 

to rename ** to *, representing a binary operation on the same carrier set. 

Example 2 

Magma = Theory 

{ 

BinaryOperation with ** * 
}; ; 
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Another reason is to adjust name symbols according to the semantics. As 

shown in Example 3, without renaming, it is quite possible that AbelianGroup 

theory ends up using * as the name of its binary operation and e as the name 

of its identity element in a theory of Group. 

Example 3 

AbelianGroup 

{ 

Theory 

Group with * = +, e = 0; 

import Commutativity; 

axiom comm(+) 

}; ; 

5.3.3 Theory combination 

One motivation for the design of "theory type" language is a rich combination 

of concepts. Similarly, an expressive approach to constructing a theory relies 

on the union of two or many simpler theories or properties. In other words, 

to develop a new theory, instead of stating its language and set of axioms, we 

can start from combining existing theories. For instance, an operation to build 

a theory of Ring is to extend the combination of a theory of AbelianGroup 

and a theory of Monoid with renaming operation (see § 5.3.2). The idea is 

illustrated in the following example: 

Example 4 

AbelianGroup Theory 
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{ 

Group with * = +, e = 0; 

import Commutativity; 

axiom comm(+) 

}; ; 

Monoid Theory 

{ 

combines Unital, 8emiGroup along Magma 

}; ; 

Ring Theory 

{ 

Import Distributivity; 

81 AbelianGroup; 

82 := Monoid with e 1-, 

combines 81, 82 along 82; 

axiom distri( *, + ); 

} - -, , 

By renaming, we identify the binary operation as additive operation + and 

multiplicative operation *, separate e as 0 and I, and combine AbelianGroup 

and Monoid with Distributivity property_ 
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Chapter 6 

MathScheme Language 

Generation and Implementation 

This chapter describes the generation and implementation of MathScheme 

Language (MSL). This language contains many abstracted expressions built 

from low-level and basic algebraic theories. We mainly focus on syntax im

plementation of MSL and this language is logic independent. The lexical 

conventions are presented in § 6.3. The abstract syntax structure is described 

in section § 6.5. 

6.1 Lexing and parsing overview 

Compilers and interpreters take as input programs in string form. Most of the 

foremost interaction with mathematical modeling systems can also be consid

ered as to build a formula in a convenient and human-pleasant way. A parser 

takes a formula represented as a string and produces a formula represented as 

a data structure that the system can deal with. 

Lexing and parsing are the first two steps towards converting this string 

input into abstract syntax tree (AST) in the language that can then be inter

preted. That is, the process of building an internal-expression from an input 
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string can be broken up into two parts: 

• Lexing or tokenization of the input string. This can be thought of as 

breaking the input string into a sequence of smaller different syntactic 

categories, called tokens. Tokens are often separated by spaces, newlines, 

operators, and other characters like semicolon and parenthesis. 

• Parsing of the sequence of tokens. Once a string has been tokenized into 

a sequence of tokens, the parsing takes the sequence and converts lists 

of tokens into ASTs according to the rules defined by the grammar. 

6.2 Lexer and parser generator 

The tokens of a progranlming language are specified using regular expressions, 

and thus the lexing process involves a great deal of regular-expression match

ing. It would be tedious to take the specification for the tokens of our language, 

convert the regular expressions to a Deterministic Finite Automaton (DFA) , 

and then implement the DFA in code to actually scan the text. 

Instead, most languages come with tools that automate much of the process 

of implementing a lexer in those languages. To implement a lexer and a parser 

with these tools, you simply need to define the lexing behavior and parser 

grammar in the tool's specification language. The tool will then compile your 

specification into source code for an actuallexer and parser that you can use. 

We have chosen OCaml tools to build our lexer and parser . 

• ocamllex the lexer-generator, that produces a lexical analyzer from a set 

of regular expressions with associated semantic actions. 
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• ocamlyacc the parser-generator, that produces a parser from a grammar 

with associated semantic actions. 

The core and support machinery of the lexer and parser were written in 

two specification files in particular formats that ocamllex and ocamlyacc can 

process, and they generate pure OCaml code that can be executed to lex and 

parse strings. 

6.3 Lexical conventions 

This section covers lexical conventions for our language. Blanks, comments, 

and identifiers are given in Appendix A. Keywords and operators are discussed 

in the subsequent sections. 

6.3.1 Blanks, comments and identifiers 

Refer to Appendix A. 

6.3.2 Keywords and logical operators 

Keywords 

The identifiers below are reserved words, defined as keywords in Table 6.1. 
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signature property axiom theorem 

Theory implies iota combine 

combines along with enrich 

Inductive by extended type_plus 

Import import in conservatively 

Concept Concepts concept concepts 

Transformer Transformers transformer transformers 

Definition Definitions definition definitions 

Fact Facts fact facts 

Table 6.1: Keywords 

Each of these keywords is designed to represent a start of a language ele

ment, a membership, a relationship, or a theory building operation (see § 5.3). 

• signature: indicates a definition of a signature and is used when you 

want to create a new type. 

• property: indicates the start of a property. 

• axiom: indicates the start of the definition of an axiom. 

• theorem: indicates the start of the definition of a theorem. 

• Theory: indicates the start of the definition of a theory. 

• implies: indicates an implication. 

• iota: indicates an iota expression, which is a definite description oper

ator for objects of kind. 
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• combine, combines: represents theory combination building operation. 

It indicates that a list of theories is combined. 

• along: indicates supporting element of a theory. 

• with: represents the renaming building operation. 

• enrich: indicates the start of an enriched theory declaration. 

• Induct i ve: indicates an induction expression. 

• by: followed by the keyword "extended". 

• extended: represent the extension building operation. It indicates that 

the theory you are writing has an inheritance. 

• type_plus: indicates plus types for the domains of quantification. 

• Import, import: indicates a "theory import" declaration. 

• in: indicates membership. 

• conservatively: indicates a model conservative extension, which in

troduce new symbols that are defined in terms of old vocabulary. 

• Concept, Concepts, concept, concepts: indicates the start of "a 

concept" or "concepts". 

• Transformer, Transformers, transformer, transformers: indicates 

the start of "a transformer" or "transformers". 

• Definition, Definitions, definition, definitions: indicates the 

start of the definition of a variable. 
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• Fact, Facts, fact, facts: indicates the start of "a fact" or "facts". 

Logical operators 

All the logical operators defined in our language is grouped together in Ta-

ble 6.2. 

forall exists and or not 

Table 6.2: Logical operators 

We explain what each logical operator represent. 

• forall: refers to universal qualification. 

• exists: refers to existential qualification. 

• and: represents the relationship of Boolean operator "and". 

• or: represents the relationship of Boolean operator "or". 

• not: represents the relationship of Boolean operator "not". 

6.3.3 Special tokens 

The following sequences of characters are special tokens, as defined in Ta-

ble 6.3. 

Each token has its own rule in the lexer specification. The lexer tries 

to match the longest string possible each time. Hence 

DOUBLESEMI, instead of two SEMICOLON tokens. 
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, , -> ( 

) { } [ ] 

? 

Table 6.3: Operators 

Also the regular expression rules are tried on the input from top to bottom. 

Hence, if "fun" is defined as a reserved word (FUN) ahead of alphanumeric 

identifiers, the lexer will recognize it as FUN and not the variable "fun". 

6.4 Representing parse trees in OCaml 

Our end goal of parsing will be to build an OCaml data structure representing 

the parsed form of a program. Our general strategy can be broken down into 

multiple phases: 

• Create an OCaml datatype for each syntactic category in the language. 

• Use this datatype, most likely to be mutually recursive, to represent the 

inherent recursive structure of language definitions. 

• Generate an OCaml term, using these mutually recursive types, repre

senting the parsed form of the program - containment in a type construc

tor shows that the contained items are children of the containing item 

in the AST. 

The next section will discuss more of the AST structure in our language. 
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6.5 AST structure 

As the result of parsing, an AST of the input program will be returned. The 

abstract syntax for our language is given by the following mutually-recursive 

OCaml type definitions. 

6.5.1 Top-level expressions 

Block 1 Top level expressions 
type assign = Assign of ident * theory_expr 

type toplevel_expr assign list 

A program is a class of top level expressions, assigned by a list of theory 

expressions, as shown in Block 1. A top level expression has multiple cases 

with: 

• T = theory expression. 

• T := theory expression. 

• enrich T with { declaration }. 
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6.5.2 Theory expressions 

Block 2 Type definition of theory expressions 
type theory_expr = 

ThyExpr of declaration list 

ThyName of simple_app 

ThyFunc of thytypedecl list * declaration list 

ThyExtend of theory_expr * declaration list * qual 

A theory expression, as shown in Block 2, can be four types of theories: 

• ThyExpr a basic theory declaration, such as T = Theory { }. 

• ThyName theory declaration with copy in extension. 

• ThyFunc theory declaration containing functor(s). 

• ThyExtend theory declaration with extension operation such as T = 

Theory extended by E { }. 
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6.5.3 Declarations 

Block 3 Type definition of declarations 
typ~ declaration = 

Rename of theory_expr * subst list 

Prop of property 

DefWithRenam of ident * theory_expr * subst list 

TypDecl of typedecl 

FuncDecl of funcdefn 

AxBase of ident * expr * bool 

AxFunc of expr * bool 

Inductive of simp_app * constructor list 

CombDecl of simple_app list * simple_app option 

Import of ident list 

Concept of typedecl list 

Definition of funcdefn list 

LocalThyExtend of theory_expr * declaration list * qual 

Block 3 shows type definitions of declaration in our program. They are broken 

up into: 

• Rename denotes definition of "T(S) with renaming" with most parts op

tional. 

• Prop denotes a property declaration. 

• DefWi tRenam denotes definition of "T := Theory(T) with renaming" . 
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• TypDecl denotes a type declaration. 

• FuncDecl denotes a single function declaration. 

• AxBase denotes basic axiom or theorem declaration. 

• AxFunc denotes axiom or theorem as functor declaration. 

• Inductive denotes an induction declaration. 

• CombDecl denotes combination of theories. 

• Import denotes a "theory imports" declaration. 

• Concept denotes a concept block. 

• Definition denotes a definition block. 

• Local ThyExtend denotes a theory extension. 
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6.5.4 Expressions 

Block 4 Type definition of expressions 
type expr 

Ident of ident 

Oper of oper 

EqOp of expr * expr 

PairOp of expr * expr 

And of expr * expr 

InOp of expr * string 

Or of expr * expr 

Not of expr 

Implies of expr * expr 

Appl of application 

Forall of var_spec * expr 

Exists of var_spec * expr 

Iota of var_spec * expr 

(* identifier *) 

(* operator *) 

(* 'equal' operation *) 

(* pair operation *) 

(* 'and' operation *) 

(* 'in' operation *) 

(* 'or' operation *) 

(* 'not' operation *) 

(* implication *) 

(* application *) 

(* for all *) 

(* there exists *) 

(* iota expression *) 

The abstract syntax for expressions has obvious meanings, with explanatory 

comments as shown in Block 4. 
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6.5.5 Type definition of application 

Block 5 Type definition of application 
and application = 

ExprApp of ident * expr list 

OpApp of ident * ident list 

BinOp of op * expr * expr 

The abstract syntax for applications is shown in Block 5. 

• ExprApp denotes an expression application such as T(81 , 82, ... ,S). 

• OpApp denotes an operator application such as T(**, ++). 

• BinOp denotes a binary operation such as exprl op expr2. 

6.5.6 Type definition of types 

Block 6 Type definition of typeR 
and typedecl -

TBase of ident * type_comp 

TExtension of ident list * type_comp 

The abstract syntax for types is shown in Block 6. 

• TBase denotes a basic type declaration such as a : Int -t Int. 

• TExtension denotes an extended type declaration such as m, n, ... u, v 

: Int -t Int. 
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6.5.7 Function definition, theory type declaration, sim

ple application and substitutions 

Block 7 Type definition of function, theory type declaration, simple applica

tion and substitutions 
and funcdefn = simple_app * expr 

and thytypedecl = ident * ident 

and simple_app = SimpApp of ident * ident list 

and subst = ident * ident 

and subste ident * expr 

and substt ident * type_comp 

The abstract syntax of function definition, theory type declaration, simple ap

plication, and substitutions are shown in Block 7. 

• funcdefn denotes a function definition as of type of a simple application 

and an expression. 

• thytypedecl denotes a theory type declaration as of identifiers. 

• simple_app denotes a simple application as of type of substitution list. 

• subst denotes a substitution list as of type of identifiers. 

• subste denotes a substitution list as of type of an identifier and an 

expression. 

• substt denotes a substitution list as of type of an identifier and an 

composed type expression. 
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6.5.8 Type definition of composed types 

Block 8 Type definition of composed types 
and type_comp = 

TId of simple_app 

TProd of type_comp list 

TPlus of type_comp list 

TArrow of type_comp * type_comp 

TInduct of constructor list 

TPredicate of type_comp 

The abstract syntax of composed types is shown in Block 8. 

• TId defines basic unit of type declaration. 

• TProd denotes composed type declaration such as a : (T, S,... V)----t 

Int. 

• TPlus denotes type plus declaration. 

• TArrow denotes composed type declaration such as a : Int ----t Int ----t Int. 

• TInduct denotes an inductive type declaration. 

• TPredicate denotes a predicate type declaration. 
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6.5.9 Type definition of property and constructor 

Block 9 Type definition of property 
and property = simple_app * expr 

and constructor = 

TConstr of ident * type_comp 

The abstract syntax of property is shown in Block 9 . 

• property denotes a property declaration such as "property T(x) :=". 

• constructor denotes a constructor declaration such as "T : type def" . 

6.5.10 Type definition of variable specification 

Block 10 Type definition of variable specification 
and var_spec = 

I VarSpec of ident list * type_comp 

The abstract syntax of variable specification is shown in Block 10. A variable 

specification consists of a variable list and a composed type definition. For 

example, a variable specification in our language can be I d1 , I d2 , ••• I dn 

in CompType or I d1 , I d2 , •. , I dn : CompType. 
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Chapter 7 

Implementation of Algebraic 

Structures in Theory Library 

and Some Useful Utilities 

In the forgoing chapter, we have seen examples of constructing modules (theo

ries) through the language of "theory types" together with building operations. 

This chapter presents the implementation of basic algebraic structures in an 

organized fashion as adopted by Common Algebraic Specification Language 

(CASL) [16J. 

7.1 Overview of theory library 

The creation of libraries facilitates the module system building mechanisms of 

theories. The collection of algebraic structures presented here consists of the 

following libraries: 

• Relations and Orders 

• Basic Algebraic Structures 
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7. 2 Notion of theory 

Each algebraic structure is syntactically denoted as a "Theory". Our notion 

of theory is expressed through the following entities: 

ConceptName 

Definition 

Theory Code 

Please refer to Appendix B for instantiated representations of each theory 

element. 

7.3 Theory extractor - A tool for literate pro-
. 

grammlng 

The idea of Literate Programming is by Donald E. Knuth (see also [13]) in 

Literate Programming. CSLI, 1992, pg. 99: 

Let us change our traditional attitude to the construction of pro

grams: Instead of imagining that our main task is to instruct a 

computer what to do, let us concentrate rather on explaining to 

human beings what we want a computer to do. 

Our system provides support for literate programming with a utility: "theory 

extractor" that extracts out theory source code in ~'IEX version of theory 

library. The library is written using a special format, which means the ~'IEX 

and theory code are interwoven into a single source document. This approach 
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to mixing theory description with theory source code also encourages the user 

to adopt literate programming from the outset, so that the end product of 

their own input is reproducible and readable program. 

This Perl program written for thesis, by default, extracts the code out 

of the "theory" environments containing the theory source portionwise and 

distributes contents over a single file or different target files which could be 

parsed directly. 

7.3.1 Usage and Options 

Usage: MS-xtr. pl < options> texfile < codefile> 

MS-xtr . pl searches for a marker pattern followed by a blank and codefile 

and copies the content of the following environment into the target file codefile. 

This can be used to extract only the contents corresponding to a certain part 

of the program instead of the whole lot. If no codefile is given, the default 

output file is "lib.msl" so it can be parsed as input file. 

Options: 

-a extract all code into different target files, so it is not supposed to be 

used together with codefile. This is useful if you have program code which is 

intended to be distributed over separate files; when documenting it you will use 

a "marker pattern" , such as %%@ code. msl preceding each theory environment 

containing parts of code .msl, and similarly with the other target files. With 

the -a option, the extractor will interpret code. msl as the name of the file 

which shall contain the content of the following environment, and will copy 

the contents of all environments of the selected type into the respective target 

files. The use of a marker pattern is necessary here, and no codefile should be 
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specified. 

-eenvironment extract content of environment instead of the default the

ory environment. 

-ppattern marker pattern for environments to extract; default is %%@. A 

null pattern is possible. 

-h show help, usage and synopsis of standard options. 

7.3.2 Example 

Consider a partial ]5'IEX file of MathScheme theory library "MS-lib.tex" with 

the following description of two theory expressions: 

\concept{Abelian Group} 

\abbreviation{AbGrp} 

\libclass{\Alg} 

\begin{MSdefinition} 

{\rm An \cptnm{AbelianGroup} is a commutative group.} 

%%@ algebra.msl 

\begin{theory} 

AbelianGroup Theory 

{ 

Group with * = +, e = 0; 

import Commutativity; 

axiom comm(+) 

}; ; 

\end{theory} 
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\end{MSdefinition} 

With MS-xtr. pl -a MS-lib. tex, all the code in the theory environment 

will be extracted, copying everything marked with %%@ algebra. msl into a file 

algebra. msl. Some theory expressions that are marked with %%@ relations

orders .msl will be extracted into a file, namely relations-orders .msl. 

With MS-x-cr .pIMs-cli15. tex algeora.iilsl you can extract everything marked 

with %%@ algebra.msl; with MS-xtr.pl -eMSdefinition MS-lib.tex you 

can extract all lines of all MSdefinition environments. 

7.4 Theory expander 

As a mathematical object, a theory consists of a language L and a set of 

sentences in L called axioms. Theory expander provides the technique for 

expanding abstracted "theory" in our theory library and reconstructing it as 

a language and a set of axioms. 

The theory expander is currently being developed by Dr. Jacques Carette. 

7.4.1 Example single-level expansion 

Theory of Reflexivity is a Theory of UnaryRelation extended by a reflexive 

property and expressed with the following syntax: 

Reflexivity = UnaryRelation extended by 

{ 

property refl(R) := forall x in U. (x 'R x) 

}; ; 
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The expander expends UnaryRelation with a theory of UnaryRelation, 

which is a BinaryRelation extended by an axiom, 

UnaryRelation = BinaryRelation extended by 

{ 

axiom U V 

}; ; 

the expander expands BinaryRelation with a theory of BinaryRelation, 

which is CarrierType extended by a binary relation representation. 

BinaryRelation = CarrierType extended by 

{ 

U:carrier; 

V: carrier; 

R:(U, V)->Bool 

}; ; 

A Theory of BinaryRelation is a theory of CarrierType extended by a 

type of carrier, and it reaches the lowest level where no more theory can be 

extended. 

CarrierType = Theory { carrier:type };; 

therefore, a theory of Reflexivity is decomposed through the three subthe

ories and expressed one by one as follows: 

Reflexivity = Theory { 

carrier:type; 
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U:carrier; 

V:carrier; 

R:(U, V)->Bool; 

axiom U = V; 

property refl(R) := forall x in U. (x 'R x) };; 

7.4.2 Example multi-level expansion 

We have showed how theory expander works on a single-level expansion in the 

previous example, a more complex expansion of a classical Ring is decomposed 

in the following steps: 

A theory of Ring is expressed as a theory of Carrier extended by several 

properties: 

Ring = Carrier extended by 

{ 

Import Distributivity; 

81 AbelianGroup with ** = +, e Q. , 

82 Monoid with ** = *, e = 1; 

combines 81, 82; 

axiom distrib( *, + ); 

}; ; 

Starting from Carrier Type, Carrier, and Singular, a Ring is constructed 

through these three basic theories. 

CarrierType = Theory 

{ 
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carrier:type 

}; ; 

Carrier CarrierType extended by 

{ 

U:carrier 

}; ; 

Singular 

{ 

Theory 

property singularCx,V) 

}; ; 

forall y in V. x y 

To build a theory of Distributivity, a theory of BinaryOperation is essential 

on a Carrier set. 

BinaryOperation Carrier extended by 

{ 

**: CU, U)->U 

}; ; 

A theory of Distributivity is obtained by importing LeftDistributivity and 

RightDistributivity in addition to a distributive property 

Distributivity = Theory 

{ 

import LeftDistributivity, RightDistributivity; 

property distriC**, ++) := 

(ldistri(**, ++)) and (rdistri(**, ++)) 

}; ; 
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therefore, a theory of Ring is decomposed through a list of sub theories and 

expressed one by one as follows: 

Ring = Theory 

{ 

carrier:type; 

U:carrier; 

property singular(x, V) 

**: (U, U)->U; 

forall y in V. x 

property distri(**, ++) := 

((ldistri(**, ++)) and (rdistri(**, ++))); 

81 := AbelianGroup with ** = +, e = 0; 

82 Monoid with ** = *, e = 1; 

using AbelianGroup with ** = +, e 

using Monoid with ** = *, e = 1; 

axiom distrib(*, +) 

o· , 

}; ; 
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Chapter 8 

Conclusion and Future Work 

8.1 Conclusion 

MathScheme Language (MSL) is an expressive language providing both a for

mal semantics and a rich specification capability. This language can be a tool 

for theory specification, but it also serves to present mathematical knowledge 

in a manipulable form. Since MSL is an abstract and well-organized language, 

it builds our theory library in a compact and encapsulated fashion. Thus 

our design goal of a library of well-presented theories is achieved by the pre

sentational feature of MSL. Through the little theories approach, our theory 

library is constructed incrementally from a portion of existing theories. The 

example of Group demonstrates that such method applied in MSL links the

ories together by theory building operations. Our deign goal of a library of 

well-structured theories is met by the usefulness of the little theories approach 

in MSL. MSL also meets our design goal of a library of interconnected and 

extended theories since its modular technique supports theory reuse and exten

sion described in § 4.3. A design goal of an expressive language of signatures is 

achieved by the orthogonality between the one hand basic specifications pro

viding means to write algebraic structures in a specific theory module system, 

which constructs our theory library; and on the other hand structured and 
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architectural specifications, which have a logic-independent semantics. 

8.2 Future work 

A library of algebraic theory-types in Appendix B have been developed in the 

language of theory types. We have showed the library can be implemented 

using the language of theory-types. The work continues as using the language 

of theory types to specify and implement many categories of biform theories, 

such as more advanced algebraic structures, numbers, simple data types like 

boolean, pair, string, structured data types like array, various kinds of trees, 

list, map, queue, set, stack and model-building tools from mathematics. These 

data structures and tools will be used to carefully build up advanced mathe

matical knowledge in the library. 
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Appendix A 

Lexical Conveniions 

A.I Blanks 

The following characters are considered as blanks: space, newline and horizon

tal tabulation. Blanks are ignored, but they separate tokens, such as adjacent 

identifiers, literals and keywords that would otherwise be confused as one single 

entity. 

A.2 Comments 

Comments in the language are enclosed between (@* and *@), with no inter

vening blanks. Comments can also be nested. They can contain any character. 

Comments are treated as blank characters. 

(@* This is a single-line comment. *@) 

(@* This should be a multi-line comment, but breaks line-counting. *@) 

(@* (@* This is a nested comment *@) *@) 
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A.3 Identifiers 

Identifiers, written ident, are sequences of alphabets, digits, _ and \, shown as 

Table A.I. Identifiers are case-sensitive. They are recognized by the following 

lexical class: (in ocamllex syntax) 

alpha := ['a'-'z' 'A'-'Z'] 

digit := ['0'-'9'] 

goodchars := (alpha I digit I - I \) 
ident := goodchars+ 

Table A.l: Identifiers 
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Appendix B 

Representation of Theory 

Library 

This appendix represents the implementation of a collection of basic algebraic 

structures in our theory library. The contents are directly extracted from 

"MS-lib.tex" , a :01E;X version of MathScheme theory library. 

CarrierType 

Definition 2 A Carrier Type is a type to represent a carrier set. It is the 

fundamental algebraic structure served in the library. 

CarrierType = Theory 

{ 

carrier:type 

}; ; 

Carrier 

Definition 3 A carrier is a set of universal objects that is dependent on a 

carrier type. We need it as a basic data type. 

60 



Carrier CarrierType extended by 

{ 

U:carrier 

}; ; 

Pointed Carrier 

Definition 4 A Pointed Carrier is a carrier set having distinguish elements 0 

and 1 that is dependent on a carrier set. We will use it to define PointedBi

nary Operation. 

PointedCarrier Carrier extended by 

{ 

e:U 

}; ; 

Singular 

Definition 5 A Singular is a pointed carrier C with a singular property. 

Singular 

{ 

Theory 

property singular(x,V) := forall y in V. x y 

}; ; 

One 

Definition 6 A One is a one-pointed carrier C, i.e. the theory of Singular 

where the property is made into an axiom. 
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One PointedCarrier extended by 

{ 

import Singular; 

axiom singularCe,U) 

}; ; 

Two 

Definition 7 A Two is a two-pointed carrier C, i.e. the co-product of One 

with itself, along Carrier. 

Two = Theory 

{ 

T := One with e = e1; 

combines One, T along CarrierType 

}; ; 

Binary Operation 

Definition 8 A BinaryOperation ** on a carrier U is a binary function that 

maps elements of (U, U) to U. Binary operations are the keystone of algebraic 

structures studied in abstract algebra: they form part of groups, monoids, 

semigroups, rings, and more. Most generally, a magma is a set together with 

any binary operation defined on it. 

BinaryOperation = Carrier extended by 

{ 

**: CU, U)->U 

} .. , , 
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Pointed Binary Operation 

Definition 9 A PointedBinaryOperation is a pointed carrier set having a bi

nary operation. It is the supporting element of algebraic structures such as 

Identity and Inverse. 

PointedBinaryOperation Theory 

{ 

combines BinaryOperation, PointedCarrier along Carrier 

}; ; 

Boolean 

Definition 10 A Boolean is defined as theory instantiation of a Two with two 

renamed elements true and false. It is served as a basis algebraic structure. 

Boolean = Theory 

{ 

Two with e true, e1 false, U Boole 

}; ; 

Binary Relation 

Definition 11 A BinaryRelation on two carriers U and V is represented as 

a function (U, V) ~ Baal. Binary relations are heavily used in many other 

theories as a fundamental theory. 

BinaryRelation = CarrierType extended by 

{ 
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U:carrier; 

V: carrier; 

R:(U, V)->Boole 

}; ; 

U nary Relation 

Definition 12 A UnaryRelation on a carrier U is represented as a function 

R : (U, U) ~ Baal. This is really a special case of a BinaryRelation where 

U = V, but is here axiomatized separately. 

UnaryRelation = BinaryRelation extended by 

{ 

axiom U=V 

}; ; 

Associat i vity 

Definition 13 A binary operation ** on a carrier U is said to be associative 

if: 

Associativity Theory 

{ 

property assoc(**) 

forall x,y,z in U. (x**(y**z»=(x**y)**z 

}; ; 

Commutativity 
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Definition 14 A binary operation T on a carrier S is said to be commutative 

if: 

Commutativity Theory 

{ 

property comm(**) 

}; ; 

Idempotency 

forall x,y in U. (x**y)=y**x 

Definition 15 A binary operation T on a carrier S is said to be idempotent 

if: 

Idempotency Theory 

{ 

property idem(**) 

}; ; 

Left Absorption 

forall x in U. (x**x)=x 

Definition 16 Given a carrier U and two binary operations ** and ++ on 

U, then the operation is said to be left-absorptive over ++ if: 

LeftAbsorption = Theory 

{ 

property labsor(**, ++) 

forall x,y in U. ((x**(x++y))=x) and ((x++(x**y))=x) 

}; ; 
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Right Absorption 

Definition 17 Given a carrier U and two binary operations ** and ++ on 

U, then the operation is said to be right-absorptive over ++ if: 

RightAbsorption = Theory 

{ 

property rabsor(**, ++) 

forall x,y in U. (((x++y)**y)=y) and (((x**y)++y)=y) 

}; ; 

Absorption 

Definition 18 Given a carrier and two binary operations, then the opera

tion is said to be absorptive over ++ if it is both left-absorptive and right

absorptive. 

Absorption Theory 

{ 

import LeftAbsorption, RightAbsorption; 

property absorption(**, ++) 

(labsor(**,++)) and (rabsor(**,++)) 

}; ; 

Left Distributivity 

Definition 19 Given a carrier U and two binary operations ** and ++ on 

U, then the operation is said to be left-distributive over ++ if: 
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LeftDistributivity Theory 

{ 

property ldistri(**, ++) 

forall x,y,z in U. (x**(y++z))=(x**y)++(x**z) 

}; ; 

Right Distributivity 

Definition 20 Given a carrier U and two binary operations ** and ++ on 

U, then the operation is said to be right-distributive over ++ if: 

RightDistributivity = Theory 

{ 

property rdistri(**, ++) 

forall x,y,z in U. ((y++z)**x)=(y**x)++(z**x) 

}; ; 

Distributivity 

Definition 21 Given a carrier and two binary operations, then the opera

tion is said to be distributive over ++ if it is both left-distributive and right

distributive. 

Distributivity Theory 

{ 

import LeftDistributivity, RightDistributivity; 

property distri(**, ++) 

:= (ldistri(**, ++)) and (rdistri(**, ++)) 

}; ; 
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Unipotency 

Definition 22 A binary operation T on a carrier U is said to be unipotent if: 

Unipotency = Theory 

{ 

property unipot(**) 

}; ; 

Left Identity 

forall x,y in U. (x**x)=y**y 

Definition 23 An element e of a pointed carrier U with a binary operation 

T is called a left identity if: 

Leftldentity = Theory 

{ 

property lident(e,(**)) 

}; ; 

Right Identity 

forall x in U. (e**x)=x 

Definition 24 An element e of a pointed carrier U with a binary operation 

T is called a right identity if: 

Rightldentity = Theory 

{ 

property rident(e,(**)) 

}; ; 

Identity 

forall x in U. (x**e)=x 
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Definition 25 A binary operation T on a carrier U is said to be idempotent 

if: An element e of a pointed carrier U with a binary operation T is called a 

two-sided identity, or simply an identity if: 

Identity = Theory 

{ 

import LeftIdentity, RightIdentity; 

property identity(a, (++)) 

(lident(a, (++))) and (rident(a, (++))) 

}; ; 

Left Inverse 

Definition 26 Let U be a pointed carrier with a binary operations T, then 

an element x is said to be a left inverse if: 

LeftInverse = Theory 

{ 

property linv(a, (**)) 

}; ; 

Right Inverse 

forall x,y in U. (x**y)=a 

Definition 27 Let U be a pointed carrier with a binary operations T, then 

an element x is said to be a right inverse if: 

RightInverse = Theory 

{ 

property rinv(a, (**)) 

}; ; 

forall x,y in U. (y**x)=a 

69 



Inverse 

Definition 28 Let S be a pointed carrier with a binary operations T, if an 

element x is both a left inverse and a right inverse of y, then x is said to be 

a two-sided inverse, or simply an inverse, of y if: 

Inverse = Theory 

{ 

import LeftInverse, RightInverse; 

property inverse (a, (**)) 

(linv(a, (**))) and (rinv(a, (**))) 

}; ; 

Antisymmetry 

Definition 29 We say a relation R on a carrier U is antisymmetric if: 

Antisymmetry = Theory 

{ 

property antisym(R) 

forall x,y in U.((x 'R y) and (y 'R x)) implies (x y) 

}; ; 

Asymmetry 

Definition 30 We say a relation R on a carrier U is asymmetric if: 

Asymmetry = Theory 

{ 
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property asym(R) 

forall x,y in U. not(x 'R y implies y 'R x) 

}; ; 

Symmetry 

Definition 31 We say a relation R on a carrier U is symmetric if: 

Symmetry = Theory 

{ 

property sym(R) forall x,y in U. x 'R y implies y 'R x 

} .. , , 

Transitivity 

Definition 32 We say a unary relation R on a carrier U is transitive if: 

Transitivity = Theory 

{ 

property trans(R) 

:= forall x,y,z in U. 

((x 'R y) and (y 'R z)) implies x 'R z 

}; ; 

Function 

Definition 33 A Function on two earners U and V is a mapping f from 

elements of U to elements of V. 
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Function CarrierType extended by 

{ 

U:carrier; 

B:carrier; 

f:U->V 

}; ; 

Reflexivity 

Definition 34 We say a relation R on a carrier U is reflexive if: 

Reflexivity = Theory 

{ 

property refl(R) := forall x in U. x 'R x 

}; ; 

Irreflexivity 

Definition 35 We say a relation R on a carrier U is irreflexive if: 

Irreflexivity = Theory 

{ 

property irrefl(R) 

}; ; 

Magma 

forall x in U. not(x 'R x) 

Definition 36 A Magma consists of a carrier S equipped with a single binary 

operation T. A binary operation is closed by definition, but no other axioms 

are imposed on the operation. In abstract algebra, a magma is a basic and 

very important kind of algebraic structure. 
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Magma Theory 

{ 

BinaryOperation with ** * 

}; ; 

PointedMagma 

Definition 37 A PointedMagma consists of a magma and a pointed carrier 

along with a supported carrier. 

PointedMagma = Theory 

{ 

combines Magma, PointedCarrier along Carrier 

} .. , , 

Left Cancellative 

Definition 38 Let U be a carrier with a binary operations T, an element z 

is left cancellative if: 

LeftCancellative Theory 

{ 

property lcancel(**) 

forall x,y,z in U. «z**x)=z**y) implies x=y 

}; ; 

Right Cancellative 

Definition 39 Let U be a carrier with a binary operations T, an element z 

is right-cancellative if: 
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RightCancellative Theory 

{ 

property rcancel(**) 

forall x,y,z in U. «x**z)=y**z) implies x=y 

}; ; 

Cancellative 

Definition 40 Let S be a carrier with a binary operations T, i.e. a Magma, 

an element z is cancellative if it is both left-cancellative and right-cancellative. 

Cancellative = Theory 

{ 

import LeftCancellative, RightCancellative; 

property cancellative(**) := (lcancel(**)) and (rcancel(**)) 

}; ; 

Unital 

Definition 41 A Unital is a magma with an identity element. 

Unital = PointedMagma extended by 

{ 

import Identity; 

axiom identity(e,(*)) 

}; ; 

QuasiGroup 
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Definition 42 A QuasiGroup is a cancellative magma. 

QuasiGroup = Magma extended by 

{ 

import Cancellative; 

axiom cancellative(*) 

}; ; 

Loop 

Definition 43 A Loop is a quasigroup with an identity element. 

Loop = Theory 

{ 

combines Unital, QuasiGroup along Magma 

}; ; 

SemiGroup 

Definition 44 A Semigroup is an associative magma. 

Semi Group = Magma extended by 

{ 

import Associativity; 

axiom assoc( *) 

}; ; 

Band 

Definition 45 A Band is a semigroup of idempotents. 
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Band SemiGroup extended by 

{ 

import Idempotency; 

axiom idem(*) 

}; ; 

Group 

Definition 46 A Group is a loop with associative magma. 

Group = Loop extended by 

{ 

import Associativity; 

axiom assoc(*) 

}; ; 

Abelian Group 

Definition 47 An AbelianGroup is a commutative group. 

AbelianGroup = Theory 

{ 

Group with * = +, e = 0; 

import Commutativity; 

axiom comm(+) 

}; ; 

Monoid 
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Definition 48 A Monoid is a unital semigroup. 

Monoid = Theory 

{ 

combines Unital, 8emiGroup along Magma 

}; ; 

Commutative Monoid 

Definition 49 A CommutativeMonoid is a monoid whose operation is com

mutative. 

CommutativeMonoid Monoid extended by 

{ 

import Commutativity; 

axiom comm(*) 

}; ; 

Ring 

Definition 50 A Ring is a carrier equipped with an Abelian group under 

addition; a Monoid under multiplication; and satisfying the Distributivity law 

of multiplication over addition. 

Ring = Theory 

{ 

Import Distributivity; 

81 AbelianGroup; 

82 Monoid with e l' , 

77 



combines 81, 82 along 82; 

axiom distri( *, + ); 

}; ; 

Commutative Ring 

Definition 51 A CommutativeRing is a ring with commutative multiplica

tion. 

CommutativeRing Ring extended by 

{ 

import Commutativity; 

axiom comm(*) 

}; ; 
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