
IMPLEMENTATION OF FIXED AND SEQUENTIAL MULTILEVEL

ACCEPTANCE SAMPLING: THE R PACKAGE MFSAS

IMPLEMENTATION OF FIXED AND SEQUENTIAL MULTILEVEL

ACCEPTANCE SAMPLING: THE R PACKAGE MFSAS

By

YALIN CHEN, B.Sc

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

© Copyright by Yalin Chen, July 2010

MASTER OF SCIENCE (2010)

(Statistics)

McMaster University

Hamilton, Ontario

TITLE:

AUTHOR:

SUPERVISOR:

NUMBER OF PAGES:

Implementation of Fixed and Sequential Multilevel

Acceptance Sampling: The R Package M FSAS

Yalin Chen, B.Sc

(McMaster University, Canada)

Dr. Aaron Childs

x, 115

ii

Abstract

Manufacturers and consumers often use acceptance sampling to determine the acceptability

of a lot from an outgoing production or incoming shipment base on a sample. Multilevel

acceptance sampling for attributes is applied when the product has multiple levels of product

quality or multiple types of (mutually exclusive) possible defects.

The aim ofthis project is to develop an R package MFSAS which provides the tools to create,

evaluate, plot, and display multilevel acceptance sampling plans for attributes for both fixed

and sequential sampling. The Dirichlet recursive functions are used to calculate cumulative

probabilities for several common multivariate distributions which are needed in the package.

Key words: acceptance sampling; multilevel quality control; operating characteristic;

multinomial distribution; multivariate hypergeometric distribution; negative multinomial dis

tribution; negative multivariate hypergeometric distribution; Dirichlet recursive functions.

iii

Acknowledgements

Foremost, I am deeply grateful to my supervisor Dr. Aaron Childs for taking lots of time

out of his busy schedule every week to provide me guidance and help throughout the course

of my project. His great efforts to explain things clearly and simply, his inspiration, im

mense patience, good teaching, and lots of good ideas are solid foundation for this work.

Furthermore, I very much appreciate his financial support for this project.

Besides my supervisor, I would like to express my great gratitude to my thesis committee,

professors Roman Viveros-Aguilera and Abdel EI-Shaarawi, for agreeing to the task, and

taking the time to read my thesis. Their insightful comments, questions, and encouragement

are really appreciated.

I would also like to thank professors Narayanaswamy Balakrishnan and Roman Viveros

Aguilera teaching me Statistics, and giving me help and inspiration during my graduate

study.

I express my appreciation to professors SImi' Feng, Peter Macdonald, Ernie R. Mead and

Fred M. Hoppe for making my education a extremely valuable experience.

My special thanks go out to Lihua Wang, Chang Ye, Yanyuen Liu, Xiaoyi Lin, Defen

Peng, William Volterman, Icle Huh, Debanjan Mitra and Yuqing Bai for studying statistics

with me and providing the support for my thesis presentation.

IV

Last but not the least, I would like to thank my family, especially my son, for their

understanding, love and support.

v

Contents

1 Introduction

1.1

1.2

Background

Objective .

2 Multilevel Acceptance Sampling

2.1

2.2

Fixed Sampling

2.1.1

2.1.2

Multinomial Distribution

Multivariate Hypergeometric Distribution

Sequential Sampling

2.2.1

2.2.2

2.2.3

Negative Multinomial Distribution

Negative Multivariate Hypergeometric Distribution.

Expected Waiting Time

2.3 The Dirichlet Functions

2.3.1

2.3.2

The Dirichlet J Function

The Dirichlet HJ Function

vi

1

1

4

6

7

7

8

8

9

9

10

13

14

16

The Dirichlet D Function .

The Dirichlet HD Function

2.3.3

2.3.4

2.3.5 Expected Waiting Time Using Dirichlet Recursive Function

3 Implementation - The R Package MFSAS

3.1 Object Classes

3.2 Initialize and Validation Methods.

3.3 Plot Methods ...

3.4 Summary Methods

3.5 Assessing a Sampling Plan.

3.6 Finding a Sampling Plan ..

3.7 Cumulative Distribution Functions

4 Examples

4.1 Creating Ocmult Plans

4.2 Plotting Sampling Plans

Sampling Plan Summary .

Assessing a Sampling Plan.

Finding a Sampling Plan. .

4.3

4.4

4.5

4.6 Calculating Cumulative Probabilities for the Distributions

5 Discussion and Future Work

Vll

19

22

25

29

29

31

33

34

34

35

36

39

39

40

44

46

47

48

51

APPENDICES

A MFSAS Package Documentation

B MFSAS Package Code

B.1 Ocmult.R .

B.2 functions.R

B.3 cdf.R ..

B.4 assess.R

B.5 findplan.R.

E.6 Testing.R .

Bibliography

viii

53

53

69

69

80

88

91

97

106

113

List of Figures

2.1 Blue cells with common probability P for the multinomial model 14

2.2 Blue cells with probability Pi having less than Ti observations for the multino-

mial model

2.3 Blue cells with common N1 for the hypergeometric model

15

17

2.4 Blue cells with size N1i and cell quota Ti for the hypergeometric model 18

2.5 Blue cells with common probability P for the negative multinomial model 19

2.6 Blue cells with probability Pi and cell quota Ti for the negative multinomial

lllodel .. 21

2.7 Blue cells with common M for the negative hypergeometric model 22

2.8 Blue cells with size Mi and cell quota Ti for the negative hypergeometric model 24

3.1 Class structure .. 30

4.1

4.2

OC curve for the negative binomial distribution .

OC curve for fixed and sequential sampling . . .

4.3 OC surface and contour curve for the multivariate hypergeometric distribution

41

42

with N = 100, n = 15, Tn = (2,3) .. 43

ix

4.4 OC surface and contour curve for the multinomial distribution with n = 15,

rn = (2,10) .. 44

x

Chapter 1

Introduction

1.1 Background

Acceptance sampling is used to decide whether a lot from an incoming shipment or outgoing

production should be accepted or rejected by making an inference about the lot quality based

on a sample. It is an important aspect of statistical quality control.

Acceptance sampling can be dated back to the formation of the Inspection Engineering

Department of Western Electric's Bell Telephone Laboratories in 1924. The first control chart

appeared in 1924. The terminology of acceptance sampling (consumer's risk, producer's risk,

probability of acceptance, OC curves, etc.) as well as lot tolerance percent defective (LTPD)

sampling tables came out between 1925 and 1926. Average outgoing quality limit (AOQL)

sampling tables were also presented in 1928.

In the 1930s, applications of acceptance sampling were used within Western Electric and

elsewhere. The American Society of Mechanical Engineers, the American Society for Test

ing and Materials (ASTM), American Institute of Electrical Engineers, American Statistical

Association, and the American Mathematical Society formed a Joint Committee for the De-

1

velopment of Statistical Applications in Development and Manufacturing in 1930. After that,

Pearson (1935) developed British Standards Institution Standard Number 600, Application

of Statistical Methods to Industrial Standardization and Quality Control, and Jennett and

Welch (1939) published their paper on variables plans in England. In a doctoral disserta

tion called "Allowable average in sampling inspection", Romig (1939) presented the variables

sampling plans along the lines of the Dodge-Romig tables which had been in use in Western

Electric for some time in the USA.

Acceptance sampling was popularized by Dodge and Romig and originally applied by the

U.S. military to the testing of bullets during World War II. During this period, Dodge and

Romig (1941) published "Single sampling and double sampling inspection tables". These

tables provided plans based on fixed consumer risk (LTPD protection) and plans for rec

tification (AOQL protection) which guaranteed specified protection after 100% inspection

of rejected lots. In 1942, the Ordnance sampling tables of Standard Inspection Procedures

were developed by the Army's Office of the Chief of Ordnance and later they grew into the

Army Service Forces (ASF) tables of 1944 (U.S. Department of the Army, 1944). Dodge

(1943) published "A sampling plan for continuous production" which developed an accep

tance sampling plan for rectification inspection on a continuous sequence of products to

assure consumer protection based on the maximum average quality the consumer would re

ceive (AOQL protection). Statistical Research Group in Columbia University made some

outstanding contributions which consisted of advancements in variables and attributes sam

pling in addition to sequential analysis. In 1948, this group published "Sampling Inspection"

which contained a manual on sampling inspection prepared for the U.S. Navy Office of Pro

curement and Material. Bowker and Goode (1952) published a book "Sampling Inspection

by Variables" which was a milestone in the development of variables sampling plans. After

World War II many procedures have been developed, and now these statistical procedures

are widely employed in many fields such as food inspection, industry quality control, etc.

2

More details of the historical development of acceptance sampling can be found in Dodge

(1969a-c; 1970a) and in a series of papers published by the American Statistical Association

(ASA, 1950) under the title Acceptance Sampling.

Acceptance sampling is divided into two major classifications:

• Attributes sampling, in which an inspected item has two or more levels of product

quality (or multiple types of possible defects) or the number of nonconformities in an

item are counted;

• Variable sampling, in which a characteristic in the inspected item is measured on a

predetermined continuous scale.

Attributes sampling is the most common form of acceptance sampling, and will be assumed

for the rest of the sections.

An appropriate sampling plan can be used to make an inference about whether the lot

contains an acceptable proportion of each possible type of product defect; however, there is

always a possibility that an incorrect decision is made from the sample. The probability of

an incorrect decision is either

or

• the Producer's Risk (PR), which is the probability that a lot which has the Producer's

Quality Level (PQL), at which the lot should be accepted most of the time, is rejected

by the plan,

• the Consumer's Risk (CR), which is the probability that a lot which has the Consumer's

Quality Level (CQL), at which the lot should be rejected most of the time, is accepted

by the plan.

3

An effective sampling plan should be the one which can reduce both risks. Thus it should

have a specified high probability of accepting a lot that the producer considers to be of good

quality, and has a specified low probability of accepting a lot that the consumer considers to

be of poor quality.

Once a sampling plan has been determined, the probability of accepting lots can be cal

culated for various levels of lot quality to obtain the Operating Characteristic (OC) function.

For an up-to-date and complete reference on all aspects of acceptance sampling the reader

is referred to Schilling and Neubauer (2009).

Many studies focus on two level sampling plans and their properties. Only a few papers

investigate multilevel sampling plans and mainly concentrate on three level plans; see, for

example, Cassady and Nachlas (2003).

For computation purposes, Kiermeier (2008) developed the R package AcceptanceSam

pIing, which can be used when the sample size is fixed and there are k = 2 levels of product

quality.

1.2 Objective

The objective of our work is to develop an R package MFSAS, which provides functionality

for creating and evaluating acceptance sampling plans for attributes when there are k (2: 2)

levels of product quality. Plans can be multilevel fixed, or multilevel sequential.

In Chapter 2 of this thesis, we first introduce multivariate acceptance sampling and the

multivariate distributions used to calculate acceptance probabilities. Then we explain the

Dirichlet functions applied in this package, which are used for the calculation of cumulative

probabilities for the multivariate distributions. We then discuss the implementation of the

MFSAS package in Chapter 3 and give examples of its use in Chapter 4. Finally, in Chap-

4

ter 5, we briefly discuss the pros and cons of the package and possible directions for future

work.

The package documentation, including all help files, is given in Appendix A, and all of

the code can be found in Appendix B.

5

Chapter 2

Multilevel Acceptance Sampling

Whether a lot from a manufacturer should be accepted or rejected is determined by making

an inference about the lot quality based on a sample. The product quality can be described

by classifying the product using more than two discrete levels in many circumstances. For

example, a food product could be classified as good, marginal, or bad, depending on the con

centration of harmful microorganisms in the product. Products in MIL-STD-105E (1989) are

classified as critical defective, major defective, minor defective, or nondefective. Other exam

ples of three or more classifications can be found in Cassady and Nachlas (2003), Bray, Lyon,

and Burr (1973), Newcombe and Allen (1988), Thatcher and Clarke (1978), and Shapiro and

Zaheda (1990).

Multilevel acceptance sampling can be used for such a multilevel product quality measure.

In this project, multilevel acceptance sampling plans are divided into two types, fixed and

sequential. A fixed sampling plan has a fixed sample size, and allows the user to make an

accept/reject decision after inspecting a pre-specified number of items. In contrast to fixed

sampling plans, the sample size in sequential sampling plans is a random variable. Sequential

plans sample and inspect the items in the lot one at a time, and they can allow a decision

6

to be reached more quickly in many cases.

2.1 Fixed Sampling

Suppose a sample of size n is selected from the lot. Let k (~ 2) denote the number of different

levels of product quality, one of which consists of nondefective or good items, and let Xi be

the number of defectives of type i in the sample, for i = 1,2, ... ,k - 1. A fixed sampling

plan requires rejection numbers ri with the property that the lot will be rejected if Xi ~ ri

for any i in {1, 2, ... ,k - 1}. Thus, the probability of acceptance Pa is calculated as

Pa = P(Xl :::; rl - 1, X 2 :::; r2 - 1, ... , X k- l :::; rk-l - 1) .

If the sample is drawn from a population with replacement, or if the population is large

compared to the sample size, then the multinomial distribution is used to calculate the

acceptance probability. The multivariate hypergeometric distribution is used when sampling

from a finite population without replacement.

2.1.1 Multinomial Distribution

If a sample of size n is drawn from a population whose k classes have probabilities Pl, ... ,Pk-l, Pk,

let Xl, ... ,Xk-l,Xk denote the number of observations drawn from each of the k classes.

Then the cumulative probability of the multinomial distribution is given by

Xl Xk-l

P(Xl :::; Xl,···, X k- 1 :::; xk-d = I.: I.: P(Xl = Yl,···, X k- l = Yk-l)
Yl=O Yk-l=O

_ ~ ~l n! Yl Yk-l (Lk-
l

) (n-:t>i)
- L..; . .. L..; () Pl ... Pk-l * 1 - Pi ,

I I ",k-l I
Yl=O Yk_l=OYl····Yk-l· n- LJi=l Yi . i=l

(2.1)

7

k-l
where the sum is over all values of Y such that l: Yi :::; n.

i=l

2.1.2 Multivariate Hypergeometric Distribution

If a sample of size n is drawn from a population of size N which has Mi objects of type i (for

i = 1,2, ... ,k), let Xi be the number of objects of type i in the sample (for i = 1,2, ... , k).

Then the cumulative probability of the multivariate hypergeometric distribution is given by,

Xl xk-1

P(XI :::; Xl,··· ,Xk-l :::; Xk-l) = L ... L P(XI = Yl, ... ,Xk- l = Yk-l)
Y1=O Yk-1=O

(

k-l) N- L: Mi

(Nh) ... (Nh-l) i=l
Yl Yk-l k-l

Xl xk-l n- 2:: Yi - L L i=l

- Yl=O'" Yk-1=O (~) ,

k-l
where the sum is over all values of Y such that l: Yi :::; n, and Yi :::; IVh

i=l

2.2 Sequential Sampling

(2.2)

For "sequential" sampling, we require a cell quota m for the good items and cell quotas

ri for the each of the defective items, for i = 1,2, ... ,k - 1. Sampling continues until either

the number of good items or any of the k - 1 types of defectives reaches its respective quota.

If the former occurs first, then the lot is accepted; otherwise it is rejected.

Let Xi be the number of the ith type of defectives selected in a sequence of trials before

the cell quota m of good items is reached. Then, the acceptance probability Pa can be

8

calculated as

In a sequence of trials, if the sample is drawn from a population with replacement, or if the

population is large compared to the sample size, then the negative multinomial distribution

is used to calculate the acceptance probability. The negative multivariate hypergeometric

distribution is used when selecting the sample (sequentially) from a finite population without

replacement.

2.2.1 Negative Multinomial Distribution

Suppose that the population has k - 1 different types of failures, with corresponding prob-

abilities PI, ... ,Pk~l in each trial. Let Xl,"" Xk~l denote the number of failures of each

type that are selected in a sequence of trials before a target number m of successes is reached.

Then the cumulative probability of the negative multinomial distribution is:

Xl xk-l

P(XI :S Xl,···, Xk~l :S Xk~l) = L ... L P(XI = Yl,···, Xk~l = Yk~l)
YI=O Yk-I=O

(

k 1)m
1- ?=Pi

t=l

(2.3)

2.2.2 Negative Multivariate Hypergeometric Distribution

Suppose that the population of size N has k - 1 different types of failures represented

./I.lh, . .. , ./I.IIk~1 times, respectively. Let Xl,' .. , Xk~l denote the number of failures of each

type that are selected in a sequence of trials before a target number m of successes is reached.

9

Then the cumulative probability of the negative multivariate hypergeometric distribution is:

'''1 Xk-l

P(XI :::; Xl,··· , Xk-l :::; Xk-l) = L ... L P(XI = Yl,··· , Xk-l = Yk-l)
Yl=O Yk-l=O

(Nh) (Mk-l) (N - y:,l Mi) k-l
Xl Xk-l Yl· •• Yk-l t=l N - m + 1 - 2: Mi

= L ... L m-l i=l

Yl=O Yk-l=O (N
k

_
l

) N-m+1-~tlYi
m - 1 + L: Yi ,-1

i=l

(2.4)

2.2.3 Expected Waiting Time

Under "sequential" sampling, the number of units actually inspected becomes a random

variable. The expected waiting time - WT (or average sample number - ASN) for such

procedures can be determined. Suppose that the population has k - 1 different types of de-

fectives whose realizations are represented as dl , d2 , . .. , dk - l with corresponding cell quotas

rl, r2, . .. , rk-l, and good items represented as g with cell quota m. Let Xl, .. . , X k- l denote

the number of defects of each type that are selected in a sequence of trials.

Let A be the event that sampling stops as a result of the cell quota m of good items

being reached first. Let B be the event that sampling stops as a result of anyone of the cell

quotas ri of defective items being reached first (for i = 1,2, ... k - 1).

Then the expected waiting time can be calculated as:

E(WT) La P(WT=a)

La P(WT = a, A) + La P(WT = a, B)

For the negative multinomial distribution, the population has k -1 different types of failures,

10

with corresponding probabilities PI, ... ,Pk-l in each trial. Therefore,

P(WT = a, A) = P(WT = a, g last)

Tl-I Tk_l-l (_ 1)1

L L a. Xl xk-l m
= ... PI .. 'Pk Pk

Xl! ... Xk-l!(m - i)! -1'
Xl=O Xk_l=O

(2.5)

where the sum is over all values of Xl, ... ,Xk - l such that Xl + ... +Xk - l +(m-l) = a-l,

and

k-l
P(WT = a, B) = L: P(WT = a, di last)

i=l

(2.6)

k-l
where Pk = 1 - L: Pi, and the sum is over all values of Xl, ... ,Xi-I, Xi+l, ... , Xk such

i=l

that Xl + ... + X i- l + X i+l + ... + X k + (ri - 1) = a - 1.

11

For the negative multivariate hypergeometric distribution, the population of size N has

k - 1 different types of failures represented l\Ih, . .. ,l\Ih-l times. Therefore,

min(l\Ih, rl-l)

P(WT= a, A) = L
XI=O

k-l

min(MI, rk_I-1)

L
Xk_I=O

k-l
N-m+1- 'EMi

i=l
N-a+1

(2.7)

where a ::; N, a ::; m + 'E min(l\IJi , Ti - 1), and the sum is over all values of Xl, ... , Xk-l
i=l

such that Xl + ... + Xk-l + (m -1) = a -1,

min(l\Ih, rl -1)

P(WT = a, di last) = L
XI=O

min(l\Ih_l> rk-l-l)

L

min(Mi_l,ri_l- l)

L
Xi-I=O

(
k-l) min N - .2: l\IIi , Tn-I
-z.=1

L

k-l

(l\Ih) ... (Mi-l) (Mi) (Mi+l) ... (Mk-l) (N- i~l Mi)
Xl xi-l ri- l Xi+l Xk-l Xk- l Mi - Ti + 1

----------------~~~----------~~--

(N) N-a+1'
a-I

k-l k-l

(2.8)

where i = 1,2, ... , k -1, a::; N, a::; Ti +min(N - 'E M j , m -1)+ 'E min(Mj, Tj -1),
j=l j=l,ji'i

and the sum is over all values of Xl, ... , Xi-I, Xi+l, ... , Xk such that Xl + ... + Xi- l +

Then, the expected waiting time for the multinomial case can be expressed as follows:

12

k-l
m+ ~ (Ti-I)

i=l

E(WT) =
e>=m

k-I

a P(WT = a, 9 last) + 2:
i=1

k-l
m+ ~ h-I)

j=l

a=Ti

a P(WT = a, di last), (2.9)

and the expected waiting time for the multivariate hypergeometric case is given by

E(WT) =

k-l
m+ L: min(Mi,Ti-l)

i=l

e>=m

a P(WT = a, 9 last)

k-I (

k-l) k-l
Ti+min N- L: Mj,m-I + ~ min(Mj,Tj-l)

j=l j=l, joli

+2: 2: a P(WT = a, di last). (2.10)
i=1 a=Ti

2.3 The Dirichlet Functions

Sobel, Uppuluri, and Frankowski (1977) introduced and developed the Dirichlet J function

to calculate cumulative probabilities in the multinomal setting. Afterwards, the Dirichlet HJ

function (Sobel and Frankowski, 1994) was similarly developed for the multivariate hyper

geometric setting, the Dirichlet D function (Sobel, Uppuluri, and Frankowski, 1985) for the

negative multinomal, and the Dirichlet HD function (Sobel and Frankowski, 1995; Childs,

2010) for the negative multivariate hypergeometric. These functions use multiple recurrence

relations for the exact and highly efficient calculation of the cumulative probabilities for the

corresponding multivariate distribution, thus eliminating the need for direct multiple sum-

mation. They also provide explicit formules for the expected waiting time, thus eliminating

the need to compute equations (2.9) and (2.10) directly. Furthermore, it takes less time to

compute the Dirichlet recursive functions than using multiple summation to calculate the

cumulative probabilities in the R language. Therefore, we have used the Dirichlet J, HJ,

13

D, and HD functions to calculate cumulative probabilities for the multivariate distributions

instead of direct multiple summation in the package MFSAS (see Appendix B.2).

2.3.1 The Dirichlet J Function

For the multinomial model, let b blue cells correspond to b different types of items in the

population, each with the same probability p and the sink correspond to the remaining types

of items with the probability 1-bp in the population. Let J~b,j)(r, n) denoted the probability

that in a sample of size n taken from a large population, or with replacement from a finite

population, j specified blue cells have exactly r observations and the remaining b - j blue

cells have fewer than r observations. It can be illustrated as in Figure 2.1.

b-j j
/'... /'....

() (')

u D • • • DO • • • 0
1- pb ~p p p P)

Y
sink b blue cells

Figure 2.1: Blue cells with common probability p for the multinomial model

i.e., the probability J~b,j)(r, n) is defined as,

P(exactly r items in j specified blue cells and less than r items

in the remaining b - j blue cells in a sample of size n).

When j = b, we can evaluate the J function directly:

J~b, b) (r, n) = P(exactly r items in b specified cells in a sample of size n)

14

n! r r n-br
I I(-b)I P ... p (l-bp) r r. n r. '--v---"

'--v-" b
b

n! br (b)n-br d f b (r!)b(n _ br)!P 1 - P ,an is 0 or n < r. (2.11)

When n = jr, the probability can also be computed directly as

J(b,j)(r J'r) = (jr)!..-Jr and is 0 for n < J·r.
P , (r!)jf' , (2.12)

Using equations (2.11) and (2.12) as boundary conditions, the J~b,j) (r, n) can be calcu-

lated using a recurrence relation, which was developed by Sobel, Uppuluri, and Frankowski

(1977), and is given in the following equation:

(n - jr)J~b,j)(r, n) = n(l - jp)J~b,j)(r, n - 1) - (b - j)rJ~b,j+1)(r, n). (2.13)

In order to define the J function with vector arguments, suppose we have b blue cells
b

with probability Pi (for i = 1,2, ... , b) and a sink with probability 1 - L Pi. Let r =
i=l

b

(rl, r2,' .. ,rb), and Ii = (PI,P2," . ,Pb) with L Pi :::; 1. Let J~) (r; n) denote the probability
i=l

that blue cell i will have less than ri observations (for i = 1,2, ... ,b) in a sample of size n

(see Figure 2.2).

sink

u
b

1- LPi
i=l

b blue cells

-----------~~--------(,
00 0 0

PI P2 Pi Pb

Figure 2.2: Blue cells with probability Pi having less than ri observations for the multinomial
model

15

Then J~)(r; n) can be calculated as follows:

J~)(r; n) = P(< T1 type 1, < T2 type 2, ... , < Tb type b)

Tl-1

= 2.: P(= a type 1, < T2 type 2, ... , < Tb type b)

Tl-1

= 2.: P« T2 type 2, < Tb type b I = a type l)P(= a type 1)

(2.14)

where P1 = P and r1 = r with the first components removed and q1 = 1 - Pl.

Equation 2.14 allows the dimension of r to be repeatedly reduced until one of the follow

ing boundary conditions can be used, J¥)(r;n) = J~l,O)(T,n) and J~)(r; n) = J~b,O\T,n)

when Ti = T and Pi = P for i = 1,2, ... , b.

The probability of acceptance Pa is then calculated as

in the fixed sample multinomial setting, where r = (Tl, . .. ,Tk-1) and p = (p1, . .. ,Pk-1).

2.3.2 The Dirichlet HJ Function

Let b blue cells correspond to b different types of items in the population, with the same

number !vI of each item and let the sink cell correspond to the one remaining type of item

which is represented N - bM times, where N is the total number of items in population.

Let H J};',1<r(T, n) denoted the probability that in a sample of n observations, taken without

replacement, j specified blue cells have exactly T observations and the remaining b - j blue

cells have fewer than T observations (see Figure 2.3).

16

j b-j
~

(I (
~

)

U 0 • • • OtJ • • • tJ
N-bM ~M M M

Y
M)

sink b blue cells

Figure 2.3: Blue cells with common M for the hypergeometric model

i.e., the probability H J~',~(r, n) is defined as,

H J(b,j) (r n)
lvI,N ' P(exactly r items in j specified blue cells and less than r items

in the remaining b - j blue cells in a sample of size n)

The recurrence relation for the hypergeometric model with commen M and r, was developed

by Sobel and Frankowski (1994), and is given by

. (b,j) (j(M - r)) (b,j) . (b,j+1) ((n-]r)HJM N(r,n) = n 1- N HJM N(r,n-1)-(b-])rHJM N (r,n), 2.15)
, -n+1' ,

with the following boundary conditions,

eV!) b (N -bM)
H J(b, b) (r n) - r n-br and is 0 for n < br,

M,N' - (~) , (2.16)

and

(M)b
HJ(b,j) (.) 7· f

M,N r,]r = (fr)' and is 0 or n < Jr. (2.17)

In order to define the HJ function with vector arguments, suppose we have b different types

of items in the population represented Nh, NI2 , . .. ,NIb, times, respectively, and a sink of size

17

b -> b
N - z= Mi. Let r = (Tl, T2,···, Tb) , and M = (M1, M2'.·.' 1Yh) with z= Mi :::; N. Let

i=1 i=1

H J~ (r; n) denote the probability that blue cell i will have less than Ti observations (for M,N

i = 1,2, ... , b) in a sample of size n (see Figure 2.4).

b blue cells
sink ~ ________ ~)l~ ________ __

(,
u DO tJ 0

Figure 2.4: Blue cells with size Mi and cell quota Ti for the hypergeometric model

For the purpose of computing the vector form of the HJ function, we let Ml be the

vector of cell sizes with the first cell size missing and rl the r vector with the first com

ponent missing, i.e., Ml = (M2, ... , ... , Mb) and r\ = (T2, ... , Tb). Then the probability

Hit!, N (r; n) is calculated as follows:

Hit! N(r; n) = P(< Tl type 1, < T2 type 2, , < Tb type b)

min(Nh,Tl-l)

L P(= 0: type 1, < T2 type 2, < Tb type b)
0<=0

min(Nh,Tl-l)

L P(< T2 type 2 , < Tb type b 1=0: type 1) P(= 0: type 1)
0<=0

min(Nh,Tl-l) (Nh) (N-Ml)
"\"' 0< n-o< HJ(b-l) (---+ .)
~ (~) Ml,N-Ml Tt, n - 0: .

(2.18)

Equation 2.18 allows the dimension of r to be repeatedly reduced until one of the follow

ing boundary conditions can be used, H JMQ)N(r; n) = H Jr/~(T, n), and H J0} N(r; n) =
, ' NI,

H Jf;',~(T, n) for Mi = M and Ti = T for i = 1,2, ... , b.

18

The probability of acceptance Pa is then calculated as

Pa = P(Xl ::; rl - 1, X 2 ::; r2 - 1", . , Xk-l ::; rk-l - 1) = H J~-~\r; n), ,

in the fixed sample size multivariate hypergeometric setting, where r = (rl,"" rk-l) and

2.3.3 The Dirichlet D Function

In the negative multinomial setting, let b blue cells correspond to b different types of items in

the population, each with the same probability P and let the counting cell correspond to the

remaining type of item in the population, with the probability 1 - bp. In this case, we select

items one at a time until the counting cell reaches a pre-specified number m for the first

time, which is called stopping time. Let D~b,j) (r, m) denoted the probability that j specified

blue cells have exactly r observations and the remaining b - j blue cells have fewer than r

observations at stopping time, where a = :0 = l!bp' The setting is illustrated in Figure 2.5.

b-j j
A A

(') ()

L:J 0 • • • 00 • • • 0
1- pb ~p p p P)

counting Y
cell b blue cells

Figure 2.5: Blue cells with common probability p for the negative multinomial model

i.e., the probability H J~,~(r, n) is defined as,

P(j specified blue cells have exactly r observations and the remaining

b - j blue cells have < r observations at stopping time).

19

The recurrence relation for computing the D function was developed by Sobel, Uppuluri,

and Frankowski (1985), and is as follows:

D~b,j)(r, m) = ~. [m(l + ja)D~b,j)(r, m + 1) + r(b - j)D~b,j+l)(r, m)].
m Jr

The first boundary condition is for b = j,

p(u
m-l

in any order
A'-______ -...,

d1 ... d1 d2 ··· d2 db ... d;
'-v---' '-v---' '-v---'

r r r

(m - 1 + br)! m br
(r!)b(m _ 1)! Po P ,

(2.19)

where 9 represents an item in counting cell and di , an item in the ith blue cell (for i

1,2, ... , b).

Since a = :a = l!bp' then Po = l~ab and P = l;ab' therefore,

(b,b) _ r(m + br) (_a_)br (_l_)m
Da (r, m) - (r!)br(m) 1 + ba 1 + ba (2.20)

The second boundary condition is for m > r, and is given by

D(b,j)(r m) = _1_ ~ (m;~:l) D(b,j+1)(r m _ a).
a , (m-l) L....J aCi a ,

r Ci=l

(2.21)

For the vector form of the D function, the setting is as follows. Suppose we have blue

cells corresponding to b different types of items in population with probability Pi (for i =
b

1,2, ... ,b), and a counting cell of probability 1 - l: Pi. We take observations one at a
i=l

time until the counting cell reaches a pre-specified number m of observations. Let r =

20

b

(TI, T2,·· ., Tb) , and P = (PI,P2, . .. ,Pb) with L: Pi :S 1 (for i = 1,2, . .. , b). Let D~~p (r; m)
i=l ' 0

denote the probability that the blue cell i will have less than Ti observations when the counting

cell reaches m observations for the first time. The TI'S are referred to as cell quotas (See

Figure 2.6).

counting

cell

b

1- L: Pi
i=l

b blue cells
~ _________ Jl~ ______ __

(,
DODD

PI P2 Pi Pb

Figure 2.6: Blue cells with probability Pi and cell quota Ti for the negative multinomial model

Then the probability D~? (r; m) is calculated as follows, p,po

D~?PO (r; m) = P(< TI type 1, < T2 type 2, ... , < Tb type b at stopping time)

Tl-I

= L P(= a type 1, < T2 type 2, ... , < Tb type b at stopping time)

q-l

= L P(< T2 type 2, ... , < Tb type b I = a type l)P(= a type 1)

m + a - 1 . PI Po D(b-l) -to Tl-I()I()C>()m = ~. TI;m+a, ~ a!(m - 1)! PI + Po PI + Po PloPO+Pl ()

(2.22)

where PI = P and rl = r with the first components removed.

Equation 2.22 allows the dimension of r to be repeatedly reduced until one of the follow

ing boundary conditions can be used, D~pl.,)po(r; m) = D(I,O)(T m) and D~) (r· m) =
-!!o " PjPO'

D(b~O) (T, m) when Ti = T and Pi = P for i = 1,2, . .. , b.
I-bp

21

The probability of acceptance Pa is then calculated as

Pa = P(Xl ~ rl - 1, X 2 ~ r2 - 1,··· , Xk-l ~ rk-l - 1) = D~-l)(r; m),

in the negative multinomial setting, where r = (rl, ... , rk-l) and Ii = (Pl, ... , Pk-l).

2.3.4 The Dirichlet HD Function

For the negative multivariate hypergeometric model, let b blue cells correspond to b different

types of items in the population with the same number IVI of each, and the counting cell

correspond to the one remaining type of item which is represented of N - bM times, where

N is the total number of items in population. Observations are taken one at a time without

replacement until the counting cell reaches a pre-specified number m of the observations. Let

HD1~,jJv(r,m) denote the probability that j specified blue cells have exactly r observations

and the remaining b - j blue cells have fewer than r observations at stopping time.

(See Figure 2.7).

L:J
N-bM

counting
cell

(

lJ
~M

b-j
A

• • •

j

') (
A

')

lJ D • • • D
M M M)

Y
b blue cells

Figure 2.7: Blue cells with common IVI for the negative hypergeometric model

i.e., the probability HD~/Jv(r,m) is defined as ,

22

HD (b,j) ()
M,N r,m P(exactly r items in j specified cells and less than r items

in the remaining b - j blue cells at stopping time).

The recurrence relation for the HD function with common M and r was developed by Sobel

and Frankowski (1994), and is given by

HD(b,j) (r m) = 1
M,N' m+jr

{ [
j(M - r)] (b,j) . (b,j+1) }

m 1+ N-bM-m HDM,N(r,m+1)+r(b-J)HDM,N (r,m) .

The first boundary condition is for b = j, and is similar to the Dirichlet D function,

(

in any order __ ----------~A~------------_
HDY;/%(r, m) = P g ... g d1 ··· d1 d2 ··· d2 db'" d;

, '--v-' '---v--" '---v--" '-v--'"
m-l r r r

m
m+br

(~) b (N-;!:M)

(m~br)

(2.23)

(2.24)

where g represents an item in the counting cell and di is an item in the ith blue cell (for

i=1,2, ... ,b).

The second boundary condition is for m > r, and is given by

r-l (M) (N -bM)
HD(b,j) () _ ~ Tn a m HD(b,j+1) ()

M,N r,m - 0 m + a - r (M)(N-bM) M,N r,m+a-r.
a=O r m+a-r

(2.25)

23

For the vector form of the HD function, the setting is as follows. Suppose we have b

different types of items in the population represented M1, M2, ... , Mb times, respectively, and
b

counting cell of size N - L: M i , where N is total items of the population. We take observations
i=1

one at a time, without replacement, until the counting cell reaches a pre-specified number

m of the observations. Let M = (M1 , ... , Ivh) and r = (Tl,"" Tb). Then HDif};N(r; m)

is defined to be the probability that the blue cell i has less than Ti observations (for i =

1,2, ... ,b) at stopping time. The setting is illustrated as Figure 2.8.

counting

cell

b blue cells

-----------~~---------(\

00 0 tj

Figure 2.8: Blue cells with size Mi and cell quota Ti for the negative hypergeometric model

Let M 1 be the vector of cell sizes with the first cell size missing and let r 1 be the vector

of cell quotas with the first cell quota missing, i.e., Ml = (M2' ... ,lvh) and rl = (T2' ... ,Tb).

Then the probability HD¥;lN(r; m) is calculated as follows:

HD (b) (--+.)
!J'N T,m , P(< Tl type 1, < T2 type 2, "', < Tb type b at stopping time)

1"1-1

L P(= a type 1, < T2 type 2, < Tb type b at stopping time)

1"1-1

L P(< T2 type 2 , < Tb type b I = a type 1) P(= a type 1)

24

(2.26)

Equation 2.26 allows the dimension of r to be repeatedly reduced until one of the following

boundary conditions can be used, HD¥J.N(r; m) = HD\};J,'Pr(r,m), and HD';j,N(r; m) =

H D?!i,'Pr(r, m) for Mi = M and ri = r for i = 1,2, .. . , b.

The probability of acceptance Pa is then calculated as

Pa = P(XI :::; rl - 1, X 2 :::; r2 - 1,··· , X k- I :::; rk-I - 1) = HD~-~(r; m), ,

where M = (lYh, ... , Mk- I) and r = (rl, .. . , rk-I) in the negative multivariate hypergeo-

metric setting.

2.3.5 Expected Waiting Time Using Dirichlet Recursive Function

Suppose the notations for calculating the expected waiting time are the same as section 2.2.3,

and suppose that b = k - 1. Then

E(WT) = La P(WT = a),

b

P(WT = a) = P(WT = a, 9 last) + LP(WT = a, di last).
i=1

In the negative multinomial setting we can calculating the average sampling number using

the Dirichlet J function as follows;

P(WT = a, 9 last) = (a -l)p3'(l- po)a-m J~ (r; a - m),
m -1 i-po

25

where P = (Pl,P2, ... ,Pb), Pi is the vector P with the ith probability missing (for i =

1,2, . .. , b), and corresponding ri the the vector of cell quotas with the ith cell quota missing,

Then the expected waiting time is given by

E(WT) = La P(WT = a)

b
m+ L: (rj-l)

j=l

L a(a-1)pS'(1_po)a-m J~(r; a-m)
m - 1 l-po a=m

b

+L (2.27)
i=1

b
L t --+* (1 '\') d --+* () --+*. th t--+* e P = Po = - L.J Pj, PI, ... , Pb an r = ro = m, rl, ... , rb , Pi IS e vec or P

j=1

with the ith probability missing (for i = 0,1,2, .. . , b), and ri the vector of cell quotas with

the ith cell quota missing. Hence the equation (2.27) can be expressed more simply as

(2.28)

Sobel, Uppuluri, and Frankowski (1985) have shown that the above expression for the aver-

age sample number can be calculated using the Dirichlet D function as follows;

b

E(WT) = m DC;>(r; m + 1) + L r~ D~~~, Pi) ((m, ri); ri + 1)
Po PO i=1 P. Pi

b

" ri D(b) (--->* 1) = ~ - Pi r i ; ri + .
i=O Pi Pi

(2.29)

26

Equation (2.29) is used to calculate the average sample number for sequential sampling

in the multinomial setting in the package MFSAS (see Appendix B.3).

In the negative multivariate hypergeometric setting we can similarly use the Dirichlet

HJ and HD functions.

Let Mi be the vector of cell sizes with the ith cell size missing and ri the vector of

cell quotas with the ith cell quota missing, i.e., Mi = (MI , ... , Mi-I, Mi+1"" lvh) and

ri = (TI, ... , T i-I, T i+1 ... , Tb). Then the expected waiting time is given by

E(WT) = La P(WT = a)

b

N- ~Mj-m+1
x __ j...,.,=_I ____ HJ(b) b (r;a-m)

N-a+1 ~ M,L, M j
j=l

(2.30)

~ b ~
Let M* = (Mo = N - ~ M j , lviI, ... ,Mb) and r* = (TO = m,TI, ... ,Tb), Mi is the

j=1

vector M* with the ith cell size missing (for i = 0,1,2, ... , b), and ri. is the vector of cell

quotas with the ith cell quota missing. Hence the equation (2.30) can be expressed more

27

simply as

min (t {rj-I), N, N - Mi+Ti)
b j=O

E(WT) = L L
i=O a=ri

(Mi) (N-Mi)
Ti-I a-Ti Mi - ri + 1 (b) (->*.)

a (N) X N HJM~*'N_"" ri,a-ri' - a + 1 i' 1V1,
a-I

(2.31)

Childs (2010) showed that above expression for the average sample number can be calculated

using hte Dirichlet HD function as follows:

m(N + 1) (b)
E(WT) = b HDM;N+1(rjm+1)

N+1-~Mi
i=1

b

+ L ri(N + 1) HD(b) b ((m, r)j ri + 1)
. I Mi + 1 (N- ~ M· M)'N+I 't= L.J J' ,

j=l

b
= "ri(N + 1) HDCfJ (->,!,.. + 1)
~ M. + 1 M~;N+l r 2' r, .
i=O 2 ,

(2.32)

Equation (2.32) is used to calculate the average sample number for sequential sampling in

the multivariate hypergeometric setting in the package MFSAS (see Appendix B.3).

28

Chapter 3

Implementation - The R Package

MFSAS

The MFSAS package is based on formal 84 classes and methods. It provides functionality for

creating, evaluating, and plotting k-level acceptance sampling plans for attributes according

to different distributional assumptions.

3.1 Object Classes

The package consists of a virtual class, Ocmult. In this class the two parameters are type

(the type of distribution) and stype (the type of sampling). The distributions that can be

specified for type are

• multinomial which is used if the number of items in the lot is assumed to be large

relative to the sample size, or if the sample is taken with replacement .

• hypergeom which is used when the lot is finite and the sample is taken without replace

ment.

29

The types of sampling that can be specified with stype are

• fixed for fixed sampling, in which a sample of size n is selected from the lot. For

this type of sampling, calculations are based on either the multinomial or multivariate

hypergeometric distribution, depending on the value specified for type .

• sequential for sequential sampling, in which items are selected one at a time for

inspection. Here calculations are based on either the negative multinomial or negative

multivariate hypergeometric distribution, depending on the value specified for type.

The two actual classes, Oernul t . multinomial and Oernul t . hypergeorn are derived from

Oernult (see Figure 3.1).

Figure 3.1: Class structure

Both classes contain the Oernul t virtual class, hence its slots. Objects of the two classes

can be generated by the o ernul t function which takes the following arguments.

rn: A vector of length k-1 consisting of rejection numbers for fixed sampling, or cell quotas

for the defective items for sequential sampling.

pd: A matrix with k-1 columns, whose rows contain the proportions of each type of defective

in the population.

stype: The type of sampling.

30

type: The type of distribution on which the plans are based.

Additional arguments which depend on the distribution to be used and the type of

sampling. When type="hypergeorn" the lot size N needs to be specified. Since pd*N is

a matrix containing the actual number of each type of defective in the lot, its entries

must be nonnegative integers. The stype="fixed" needs n (the sample size), and for

stype="sequential" rn (the cell quota for good items) must be provided.

The new object is created and returned after the arguments are initialized and validated by

the initialize and validation functions which are part of the class building.

The R code to create all of the above mentioned classes, as well as the initialization,

validation, plot and summary methods discussed in the following sections can be found in

Appendix B.l.

3.2 Initialize and Validation Methods

When creating an object, the initialize function creates the value for each argument according

to the assumed distribution. Then the validation functions for the virtual class and actual

classes validate if the sampling plan makes sense for the specific distribution. The validation

functions for the virtual class applies to both actual classes because of inheritance.

The checks in the validation function for the virtual class o ernul tare:

• The vector rn contains no NA'sj

• The values in the vector rn are greater than zeroj

• The matrix pd contains no NA's;

• None of the entries in the matrix pd are less than OJ

31

• The sum of the values in each row of the matrix pd is not greater than 1;

• The length of the vector rn is equal to the number of columns in the matrix pd.

In the validation functions for the actual class Ocmul t. mul tinomial, the arguments are

validated as follows:

• For fixed sampling, the checks are

- The sample size n contains no NA;

- The value of n is greater than 1;

- None of the values in rn are greater than n.

• For sequential sampling, the additional checks are

- The cell quota m for good items contains no NA;

- The cell quota m for good items is greater than O.

In addition to the above, the validation function for the actual class Ocmul t . hypergeom

checks the following:

• The population size N contains no NA;

• The value of N is greater than 0;

• The length of N is equal to 1;

• The entries in the matrix of pd*N are all integers;

• The length of the vector rn is less then N.

32

3.3 Plot Methods

The operating characteristic (OC) function behavior of 2-level acceptance sampling plans can

be presented by plotting the 2-dimensional OC curve corresponding to the sampling plans.

In this package plot methods have been created for the actual classes with the proportion

of defectives pd on the horizontal axis and the probabilities of acceptance pa on the vertical

axis in the graph. The signatures in the plot methods are

• signature(x "Ocmult.multinomial", y "missing") j

• signature(x = "Ocmult.hypergeom", y = "missing")j

• signature(x="numeric", y="Ocmult.multinomial")j

• signature (x="numeric", y="Ocmult .hypergeom").

For the latter two signatures, the plot is of the probabilities of acceptance pa against a

numerical variable, which can be supplied by the user, instead of the proportion of defectives

pd.

To plot the OC curve corresponding to the sampling plan, only an object of the particular

class needs to be specified and all relevant details are extracted from the object (see Chapter 4

for examples).

The OC function behavior of 3-level acceptance sampling plans can be presented by

two types of plots, prosp and contour. In the prosp methods for the actual classes, the

proportions of defectives pd are on the two horizontal axes x, y and the probabilities of

acceptance pa are on the vertical axis z in the graph. The signatures in the prosp methods

are

• signature(x "Ocmult.multinomial")j

33

• signatureCx "Ocmul t . hypergeom") .

In the contour methods for the actual classes, the signatures are the same as the prosp

method. In the contour graph, the curves represent the probabilities of acceptance pa for

specific values corresponding the proportions of defectives pd on the two axes x, y. An

example is provided in Chapter 4.

3.4 Summary Methods

The generic summary method is used to summarize the object. The show method gives a

brief summary of the supplied object. For fixed sampling it displays the type of distribution,

the sample size n, and the rejection number(s) rn. For sequential sampling, it displays the

type of distribution and the cell quotas m and rn for the good and the defective item(s). If

the type of distribution is hypergeometric, then the population size N is also shown.

The summary method shows the same detail as the show method by default, but provides

the additional logical argument detail. If detail=TRUE, then all the information for the

object is printed, including all values of pd and the corresponding values of pa as well as

ASN (average sampling number) for sequential sampling. Examples of these methods are

given in Chapter 4.

3.5 Assessing a Sampling Plan

The function assess. mul ti can be used to assess whether a sampling plan can meet specific

criteria, and is given in Appendix B.4. The two types of criteria, the Producer's Risk Point

(PRP) and the Consumer's Risk Point (CRP), can be specified singly or together by the

arguments PRP and eRP, respectively. The parameters of the plan are consistent with the

34

classes (see Section 3.1).

Both risk points are vectors of length k which contain two parts. The first part consists of

k-1 elements which represent the quality level (equivalent to a row of pd). The second part

is the kth element which represents the corresponding probability of acceptance (equivalent

to pa).

For the Producer's Risk Point to be met, the probability of acceptance of the plan must

be at least equal to the value specified by the user in PRP [k] corresponding to the PQL, the

producer's quality level (PRP [-k]). Note that the producers's risk is at most 1- PRP [k].

For the Consumer's Risk Point to be met, the probability of acceptance of the plan must

be at most equal to the value specified by the user in CRP [k] corresponding to the CQL, the

consumer's quality level (CRP [-k]).

The argument print in the function assess. mul ti indicates whether a summary of the

assessment should be printed. The default value is print=TRUE.

3.6 Finding a Sampling Plan

The function find. mul t i . plan allows the user to find a multilevel acceptance sampling plan

which meets specified producer and consumer risk points (see Section 3.5), and can be found

in Appendix B.5. Both points must be specified in the function and the CRP must have

worse quality than the PRP.

In the case of type="multinomial", only the PRP and CRP need to be specified. For type

="hypergeom", the additional argument N (the lot size) must be provided.

For fixed sampling, the function finds the smallest sample size n and the corresponding

rejection numbers for each type of defective which will meet the PRP and CRP requirements.

35

The process of find plan is through trial starting with n = 1 and increasing n until the

appropriate plan is found. The rejection numbers for the defectives change appropriately at

each step. For the sequential sampling, the function finds the smallest quota m for the

good items and the corresponding cell quotas for each type of defective, which will meet the

PRP and CRP requirements. The process is through trial starting with m = 1 and increasing

m until the appropriate plan is found. The cell quotas for defectives change appropriately

at each step but do not exceed the quota for the good items.

3.7 Cumulative Distribution Functions

The MFSAS package also includes functions to calculate the cumulative distribution func

tions (CDFs) for the multinomial, negative multinomial, multivariate hypergeometric, and

negative multivariate hypergeometric distributions which are required for the calculation of

acceptance probabilities for the multilevel sampling plans in this package. Chapter 2 contains

a brief description, and the reader is referred to Johnson, Kotz, and Balakrishnan (1997) for

further details about these distributions. The R code for all of the CDF's can be found in

Appendix B.3, and is briefly described below .

• prnultinom - The multinomial CDF

prnultinom(x, size = n, prob = p) is a function for the calculation of cumulative

probabilities [equation (2.1)] for the multinomial distribution when a sample of size n

is drawn from a population whose k classes have probabilities PI, ... ,Pk-I,Pk.

Here x is a vector of length k - 1 containing the number of observations drawn from

k -1 of the classes and p is a vector of length k -1 specifying the probability for k-1

of the classes.

prnul tinorn is computed using recursive algorithms for the Dirichlet J function in this

36

package. Section 2.3.1 gives a short explanation; for further details, see Sobel, Uppuluri,

and Frankowski (1977) and Sobel and Frankowski (2004).

• pnmultinom - The negative multinomial CDF

pnmultinom(x, m, prob = p) is a function for calculating cumulative probabilities

for the negative multinomial distribution [equation (2.3)]. The vector x of length k-1

contains the number of failures of each type, with corresponding probabilities in each

trial given in the p vector, that are selected in a sequence of trials before a target

number m of successes is reached.

pnmul tinom is computed using recursive algorithms for the Dirichlet D function de

scribed in section 2.3.3, and developed by Sobel, Uppuluri, and Frankowski (1985) and

Sobel and Frankowski (2004).

• pmul tihyper - The multivariate hypergeometric CDF

pmultihyper(x, n, M, N) is a function to calculate cumulative probabilities for the

multivariate hypergeometric distribution [equation (2.2)] when a sample of size n is

drawn from a population of size N, which has lVIi objects of type i (for i = 1,2, ... ,k),

without replacement. Here x is a vector of length k - 1 containing the number of

objects of type i in the sample for i = 1,2, ... ,k - 1, and M is a vector of length k - 1

containing the total number of objects in each of k - 1 of the classes.

pmultihyper is computed using recursive algorithms for the Dirichlet HJ function

described in section 2.3.2 and developed by Sobel and Frankowski (1994).

• pnmultihyper - The negative multivariate hypergeometric CDF

pnmul tihyper (x, m, M, N) is a function for calculating cumulative probabilities for

the negative multivariate hypergeometric distribution [equation 2.4]. The vector x of

length of k-l contains the number of failures of each type that are selected in a sequence

of trials without replacement from a population of size N, which has lVIi failures of type

37

i (for i = 1,2, ... ,k - 1), before a target number m of successes is reached.

pnmultihyper is computed using recursive algorithms for the Dirichlet HD function

described in section 2.3.4, and developed by Childs (2010) and Sobel and Frankowski

(1995).

38

Chapter 4

Examples

The package can be loaded as

> library(MFSAS)

4.1 Creating Ocmult Plans

After the package is loaded, a new object of the sampling plan can be created by using the

Ocmul t function. For example, a sampling plan with n = 30 and rn = (2,4,3) for a large lot

size can be obtained as follows:

> p.mn <- Ocmult(rn=c(2,4,3), n=30)

> p.mn

4-Level Acceptance Sampling Plan Multinomial:

Sample size: 30

Rej. Number(s): 243

39

For a finite population of size N = 100, type="h" should be specified. If the sample size is

n = 15 and rn = (2,3), then, the sampling plan is obtained as:

> p.mh<- Ocmult(rn=c(2,3) , n=15, N=100, type="h")

> p.mh

3-Level Acceptance Sampling Plan Multivariate Hypergeom: N 100

Sample size: 15

Rej. Number(s): 2 3

When stype="s" is given, the target number m of good items must be specified. If k = 2,

and we continue to sample until we obtain either 5 good items or 3 defectives then the

sequential sampling plan can be created as follows:

> p.nmn <- Ocmult(rn=3, m=5, stype="s", pd=seq(O, 1, 0.01))

> p.nmn

2-Level Sequential Acceptance Sampling Plan Negative Multinomial:

Acc. Number: 5

Rej. Number(s): 3

4.2 Plotting Sampling Plans

The OC curve or surface can be plotted when the sampling plans are 2-level or 3-level.

For the 2-level sequential sampling plan with type="multinomial" given in the example

above, the plot is shown in Figure 4.1:

> plot(p.nmn)

40

~

ro
ci

li
<D
ci

Q)
()
()
ro

'<t a::- ci

C\J
ci

0
ci

0.0

Negative Binomial OC Curve with
m = 5, rn = 3

0.2 0.4 0.6 0.8

Proportion Defective

1.0

Figure 4.1: OC curve for the negative binomial distribution

All arguments for the standard plot method can be passed directly to the generic plot

method in this package. type="o" in the standard plot type is the default value to show the

OC curve using both lines and points for the binomial and negative binomial distributions.

type="p" is the default value used in order to show the OC curve using only points for the

hypergeometric and negative hypergeometric distributions.

The following example produces the graphs given in Figure 4.2.

x.mn <- Ocmult(n=8, rn=3, pd=seq(O, 0.22, 0.01))

x.mh <- Ocmult(n=8, rn=3, N=50, type="h", pd=seq(O, 0.2, 0.02))

x.nmn <- Ocmult (rn=2 ,m=4, stype="s", pd=seq(O, 0.22, 0.01))

x.nmh <- Ocmult(rn=2, m=4, N=50, type="h", stype="s", pd=seq(O, 0.2, 0.02))

main = "Fixed Sampling Plan \nn = 8, rn = 3"

plot(x.mn, type="l", xlim=c(O, 0.2), ylim=c(0.75, 1), main=main)

41

grid(lty="solid")

points(x.mh@pd, x.mh@pa, col = 3)

legend(O.01, 0.81, c("binomial", "hypergeometric"), col c(1,3),

lty = c(1, -1), pch = c(-1, 1), bg = 'gray95')

main = "Sequential Sampling Plan \nm = 4, rn = 2"

plot(x.nmn, type="l", xlim=c(O, 0.2), ylim=c(0.7, 1), main=main)

grid(lty="solid")

points(x.nmh@pd, x.nmh@pa, col= 3)

legend(O.01, 0.77, c("negative binomial", "negative hypergeometric"),

col = c(1,3), lty = c(1,-1),

o
CO!

to
~ -
o

o co
c:i

to r-
c:i

0.00

Fixed Sampling Plan
n = 8, rn = 3

1·- binomial I
1 hypergeometric

0.05 0.10 0.15

Proportion Defective

pch = c(-1, 1), bg = 'gray96')

0
CO!

to
Ol
c:i

0
Ol

a c:i

Ql to
0 co
~ c:i
G- o co

c:i

to r--
c:i

0 r--
c:i

0.20 0.00

Sequential Sampling Plan
m = 4, rn = 2

negative binomial
negative hypergeometric

0.05 0.10 0.15

Proportion Defective

Figure 4.2: OC curve for fixed and sequential sampling

0.20

Using the 3-level sampling plan p.mh from Section 4.1, the plots for fixed sampling with

type="hypergeom" are given in Figure 4.3, and are obtained as follows:

> persp(p.mh, cex.main 1)

42

> contour(p.mh, cex.main 1)

Multivariate Hypergeometric OC Surface with
n = 15, N = 100, rn = (2,3)

Multivariate Hypergeometric OC Contour with
n = 15, N = 100, rn = (2,3)

a
0 0.85

«> a
0

CD a 0.95

0
C\J
0.

-r a
0

C\J a
0

a a
0

0.00 0.02 0.04 0.06 0.08

p1

Figure 4.3: OC surface and contour curve for the multivariate hypergeometric distribution
with N = 100, n = 15, rn = (2,3)

All arguments for the persp and contour methods can be passed directly to the generic

persp and contour methods in this package, respectively. For example in Figure 4.4 we use

light blue color for the surface, and 4 contours levels for the contour plot,

> px <- as.matrix(expand.grid(seq(0,0.2, 0.01),seq(0, 0.8, 0.04)))

> p.multinom <- Ocmult(n=15,rn=c(2,10) , pd=px)

> persp(p.multinom, col="light blue")

> contour(p.multinom, nlevel=4)

43

Multinomial OC Surface with
n = 15, rn = (2,10)

to
o

o
o

0.00

Multinomial OC Contour with
n = 15, rn = (2,10)

0.05 0.10 0.15

p1

0.20

Figure 4.4: OC surface and contour curve for the multinomial distribution with n = 15,
Tn = (2,10)

4.3 Sampling Plan Summary

The summary method gives a summary of the sampling plan with an option for detailed

output, as in the following example.

> px <- matrix(c(seq(O, 0.5, 0.1), seq(O, 0.2, 0.04)), ncol=2)

> p.multinom <- Ocmult(n=30,rn=c(3,4), pd=px)

> summary(p.multinom ,detail=TRUE)

3-Level Acceptance Sampling Plan Multinomial:

Sample size: 30

Rej. Number(s): 3 4

Detailed acceptance probabilities:

type 1 type 2 P.nondef P(accept)

0.0 0.00 1.00 1.0000000

44

0.1

0.2

0.3

0.4

0.5

0.04

0.08

0.12

0.16

0.20

0.86

0.72

0.58

0.44

0.30

0.3963991

0.0304085

0.0005591

0.0000017

0.0000000

Note that pd is a matrix with k-l columns, where each row contains the proportions for each

type of defective in the population. However, if a vector is provided, then it is converted to a

matrix by row according to the length of rn. The vector will be truncated (with a warning)

if its length is not an integer multiple of the length of rn. An example follows:

> px <-c(0.02,0.06,0.04,0.06,0.OS,0.02,0.02,0.OS,0.04,0.10)

> pmh <_ Ocmult(rn=c(2,3,2,4), n=20, N=100, pd=px, type="h")

Warning message:

In .1ocal(.Object, ...) :

The length of the pd vector should be an integer

multiple of the length of the rn vector.

The truncated pd in use is:

0.02 0.06 0.04 0.06 O.OS 0.02 0.02 O.OS

> summary(pmh ,detail=TRUE)

5-Level Acceptance Sampling Plan Multivariate Hypergeom: N 100

Sample size: 20

Rej. Number(s): 2 3 2 4

Detailed acceptance probabilities:

type 1

0.02

type 2

0.06

type 3

0.04

type 4

0.06

P.nondef

0.S2

45

P(accept)

0.7023403

0.08 0.02 0.02 0.08 0.80 0.4485896

4.4 Assessing a Sampling Plan

The assess .multi function is used to assess a sampling plan given the PRP and/or CRP

(see Section 3.5 for a description). For example, suppose we want a 3-level plan to meet

the producer's risk point which has an acceptance probability of at least 0.95 when the

proportions of the 2 types of defectives are equal to 0.05 and 0.06, and for the plan to also

meet the consumer's risk point, which has an acceptance probability at most 0.1 when the

proportions of the 2 types of defectives are equal to 0.14, and 0.18. We can assess whether

the sequential plan with cell quotas of m = 5 good items and rn = (2,3) defectives meets

the given PRP and CRP as follows:

> assess.multi(rn=c(2,3), m=5, PRP c(0.05,0.06, 0.95), CRP

+ stype="s")

3-Level Acceptance Sampling Plan Negative Multinomial:

Acc. Number: m = 5

Rej. Number(s): 2 3

Plan CANNOT meet desired risk point(s):

type 1 type 2 RP P(accept) Plan P(accept) ASN

PRP 0.05 0.06 0.95 0.95649354 5.5020476

CRP 0.14 0.18 0.1 0.62784922 5.92261962

c(0.14,0.18, 0.1),

The output shows that the plan cannot meet both risk points. Although the PRP is satisfied

since the actual value for P(accept) is 0.956, which exceeds minimum desired level of 0.95,

the value of P(accept) for CRP is 0.628 which is greater than the maximum allowable level of

46

0.1. For sequential sampling, the output also displays the average sampling number(s) ASN

for the risk point(s).

4.5 Finding a Sampling Plan

The find. mul t i . plan function provides a method to find a plan which will meet the specified

risk points PRP and CRP. For example, the implementation of finding a plan for sequential

sampling from a lot of size 100 is:

> find.multi.plan(PRP=c(0.06, 0.04, 0.06, 0.8), CRP=c(0.14, 0.16, 0.2, 0.1),

+ N= 100,type = "h", stype="seq")

The optimal plan is:

$m [1J 7

$rn [1J 2 2 2

$p.PRP [1J 0.8056496

$p.CRP [1J 0.08147094

$ASNp [1J 7.589796

$ASNc [1J 5.510192

This shows that, in order to meet both risk points, we should take observations one at a time

until we get either 7 good items, or 2 of any type of defective. If the former occurs first then

the lot should be accepted; otherwise it is rejected. The average sampling number is 7.6 at

the producer's quality level, and 5.5 at the consumer's quality level.

We can also find a plan with the same risk points PRP, CRP, and lot size as above but

for fixed sampling:

> find.multi.plan(PRP=c(0.06, 0.04, 0.06, 0.8), CRP=c(0.14, 0.16, 0.2, 0.1),

47

+ N= 100, type = "h")

The optimal plan is:

$n [1] 11

$rn [1] 2 2 3

$p.PRP [1] 0.8023994

$p.CRP [1] 0.09043282

The above output shows that if we want to meet both risk points, we need a sample of size

n=l1. The lot is rejected if the sample contains at least 2 of either of the first two types of

defectives, or at least 3 of the third type of defective. Hence to meet both risk points, the

sequential sampling procedure requires on average a smaller sample size (ASN=7 . 6) than the

corresponding fixed sample size procedure (n=11).

4.6 Calculating Cumulative Probabilities for the Distribu

tions

The following are examples of how to calculate the lower tail cumulative probabilities for the

distributions which are provided in the MFSAS package .

• Multivariate hypergeometric distribution:

Suppose that a lot of size N = 100 contains products which are classified according to

4 levels of product quality, one of which is good items. If IV! = (8, 10, 14) is the number

of items in the lot which fall into each of the three categories of defectives, and we draw

a sample of size n = 15 (without replacement) from the lot, then the probability that

the sample contains no more than 1 item with the first type of defect, no more than 3

items with the second type of defect, and no more than 4 items with the third type of

defect is calculated as follows:

48

> X <- e(1,3,4)

> n <- 15

> M <- d8, 10,

> N <- lOa

14)

> pr <- pmultihyper(X,

> pr

[1] 0.599595

• Multinomial distribution:

n, M, N)

In the same setting as above, if the sampling is done with replacement, or equivalently

if the lot size is large and the proportions of each of the 3 types of defects in the lot is

given by p = (0.08,0.10,0.14), then the corresponding probability is calculated using

the multinomial CDF:

> X <- e(l, 3, 4)

> n <- 15

> pr <- e(0.08, 0.10, 0.14)

> edf <- pmultinom(x = X, size n, prob pr)

> edf

[1] 0.5816256

• Negative multivariate hypergeometric distribution:

Suppose that a lot of size N = 130 contains items with 4 different types of product

defects with M = (5,7,8,3) of each type. If we select and inspect items one at a time

(without replacement) until we obtain 5 good items then the probability that we end

up with no more than X = (2,3,4,1) items with each type of defect (at the time when

the 5th good item is selected) is calculated as follows:

49

> X <- e(2,3,4,1)

> m <- 5

> M <-e(5,7,8,3)

> N <-130

> edf <- pnmultihyper(X, m, M, N)

> edf

[1] 0.990882

• Negative multinomial distribution:

In the same setting as above, if the sampling is done with replacement then the corre

sponding probability requires the negative multinomial distribution:

> X <- e(2,3,4,1)

> m <-5

> pr <-e(5/130, 7/130, 8/130, 3/130)

> pnmultinom(x = X, m = m, prob = pr)

[1] 0.9860325

50

Chapter 5

Discussion and Future Work

The MFSAS package provides the user with the tools to create, evaluate, and plot multilevel

acceptance sampling plans for both fixed and sequential sampling. We have also provided

cumulative distribution functions for several discrete multivariate distributions.

However, the MFSAS package is restricted to single stage sampling for attributes,

whereas the AcceptanceSampling package allows the sampling to be multi-stage fixed

sampling plans for two levels of product quality and provides functionality for sampling in

spection by variables, in addition to attributes. Multi-stage sampling may be incorporated

into future versions of the package.

It should also be noted that all of the procedures used for the calculations in this package

are exact (aside from possible rounding errors). As a result there is the potential for the

calculations to be slow for large values of k, m, or n. Consequently the find.multi . plan

routine can be slow if the probability given in the producer's risk point PRP [k] is too close

to 1 or if eRP [k] is too close to o. Therefore the package could be improved by developing

and incorporating asymptotic approximations into the calculations.

In this project, the cumulative distribution functions only include the option for calculat-

51

ing lower tail probabilities. The option to calculate for upper tail probabilities is available for

most (if not all) of the currently available R functions for discrete univariate CDFs. However,

the relationship between upper and lower tail probabilities is not as straight forward in the

multivariate case. Efficient calculation of upper tail probabilities would require a different

(but related) set of recursive algorithms. As a result of this, and the fact that upper tail

probabilities are not needed in this package, our CDFs do not currently have this functional

ity. Since upper tail probabilities may be useful in other applications, this is another area in

which the package can be improved.

52

Appendix A

MFSAS Package Documentation

R objects are documented in files written in "R documentation" (Rd) format, a simple

markup language much of which closely resembles the :g\TgX., which can be processed into a

variety of formats, including LATEX, HTML and plain text.

An 'Rd' file consists of three parts.

• The header, which gives basic information about the name of the file, the topics doc

umented, a title, a short textual description and R usage information for the objects

documented (the header is mandatory);

• The body gives further information (for example, on the function's arguments and

return value);

• Finally, there is an optional footer with keyword information.

The compiled MFSAS package documentation is given on the following pages.

53

Package'MFSAS'

June 3, 2010

Type Package

Title Creation and Evaluation of Multilevel Fixed and Sequential Sampling Plans

Version 1.0-\

Date 20 I 0-03-07

Author Aaron Childs and Yalin Chen

Maintainer Aaron Childs <childsa@mcmaster. ca>

Description This package provides functionality for creating and evaluating acceptance sampling
plans for attributes when there are k (>=2) levels of product quality. Plans can be multilevel
fixed, or multilevel sequential.

Depends methods, R(>= 2.9.2), stats

Imports graphics

License GPL (>= 3)

LazyLoad yes

R topics documented:

Index

assess.multi ..

find.multLplan .
Ocmult ...
Ocmult-class

pmultihyper .

pmultinom ..
pnmultihyper

pnmultinom .

2

4
6

7

9
10

12

13

15

2 assess.multi

assess.multi Utility Functionfor Assessing Multilevel Sampling Plans

Description

Assess whether the k-Ievel fixed or sequential sampling plan can meet the specified Producer's Risk
Point (PRP) and/or Consumer's Risk Point (CRP).

Usage

assess.multi(rn, n = 30, m, N = 100, PRP, CRP, type=c("multinomial",
"hypergeom"), stype=c("fixed", "sequential"), print = TRUE)

Arguments

rn

n

m

N

PRP

CRP

type

stype

print

Details

Typical usages are:

A vector of length k -1 of rejection numbers for fixed sampling, or cell quotas
for the defective items in sequential sampling.

Sample size; applicable for stype=" fixed".

The cell quota for good items; applicable for stype=" sequential".

The population (lot) size from which the sample is drawn; applicable for t ype=" hypergeom" .

The Producer's Risk Point in the form of a two part numeric vector (pd, pa).
The first part pd, a vector of length k -1, specifies the quality level at which
to evaluate the plan. The second part pa, indicates the minimum probability of
acceptance to be achieved by the plan.

The Consumer's Risk Point in the form of a two part numeric vector (pd,
pa). The first part pd, a vector of length k-1, specifies the quality level at
which to evaluate the plan. The second part pa, indicates the maximum proba
bility of acceptance to be achieved by the plan.

The type of distribution on which the sampling plan is based. Possible values are
"multinomial" and "hypergeom". The default is "multinomial".

The type of sampling. Possible values are "fixed" and "sequential".
The default is "fixed".

Logical, indicating whether or not a summary of the assessment should be printed.

assess.multi(rn, n, PRP, CRP)
assess.multi(rn, m, PRP, CRP, stype ="sequential")
assess.multi(rn, n, N, PRP, CRP, type="hypergeom")
assess.multi(rn, m, N, PRP, CRP, type = "hypergeom", stype="sequential")

In the first form, the default type "mul tinom" and the default stype "fixed" are used.

The second form is based on the negative multinomial distribution.

The third form uses a default st ype of "f ixed" and is based on the multivariate hypergeometric
distribution.

assess. multi

The fourth form is based on the negative multivariate hypergeometric distribution.

The cell quota m for the good items must be provided in both second and fourth forms.

3

In both third and fourth cases, the population size N needs to be specified, and pd in PRP and CRP

is the vector of the proportions of population defectives. Since pd * N gives a vector containing the
actual numbers of each type of defective in the population, all of its entries must be integers.

Value

The function will return the result of whether the plan meets the acceptance requirement(s), along
with the actual acceptance probability achieved by the sampling plan. In the case of sequential
sampling, average sampling numbers ASNp and ASNc for the quality levels in PRP and CRP are
also returned.

Source

For sequential sampling, the average sampling number ASN is computed using algorithms for the
Dirichlet 0 function (for type="multinomial") or HD function (for type="hypergeom"),
together with equation (5.30) in Sobel and Frankowski (1985) (for type="multinomial "), or
equation (5.3) in Childs (2010) (for type="hypergeom").

Childs, A. (20 I 0). Vector extensions of the Dirichlet HC and HD functions, with applications to the
sharing problem. Methodology and Computing in Applied Pmbability 12, 91-109.

Sobel, M. and Frankowski, K. (1985), Dirichlet integrals oftype-2 and their application. In Selected
Tables in Mathematical Statistics 9, American Mathematical Society, Providence, Rhode Island.

Author(s)

Aaron Childs and Yalin Chen

References

Schilling, E. G. and Neubauer, D. V. (2009). Acceptance Sampling in Quality Colltml, Second
Edition, CRC Press, New York.

See Also

find.multi.plan,Ocmult-class

Examples

assess.multi(n=30, rn=c(2,2,3), PRP = c(0.05,0.06, 0.08, 0.95),
CRP = c(0.15,0.18, 0.20, 0.075»

assess.multi(rn=c(7,8), m=5, PRP = c(0.1,0.05, 0.95), CRP = c(0.2,O.15, 0.075),
type="multinomial", stype="seq")

4 find.multi.plan

find.multi.plan Utility Functionfor Finding Multilevel Sampling Plans

Description

Find the k-level sampling plan with the smallest (expected) sample size such that the specified
PIVducer's Risk Point (PRP) and Consumer's Risk Point (CRP) are met.

Usage

find.multi.plan(PRP, eRP, N=lOO, type=c("multinomial", "hypergeom"),
stype=c("fixed", "sequential"))

Arguments

PRP

eRP

N

type

stype

Details

The Producer's Risk Point in the form of a two part numeric vector of the form
(pd, pa). The first part pd, a vector of length k-l, specifies the quality
level at which to evaluate the plan. The second part pa, indicates the minimum
probability of acceptance to be achieved by the plan.

The Consumer's Risk Point in the form of a two part numeric vector of the form
(pd, pa). The first part pd, a vector of length k-l, specifies the quality

level at which to evaluate the plan. The second part pa, indicates the maximum
probability of acceptance to be achieved by the plan.

The population (lot) size from which the sample is drawn; applicable for t ype= II hypergeom".

The distribution on which the sampling plan is hased. Possihle values are "mul tinomial"
and "hypergeom". The default is "multinomial".

The type of sampling. Possible values are II fixed" and" sequential".
The default is "fixed ".

Typical usages are:

find.multi.plan(PRP, eRP)
find.multi.plan(PRP, eRP, stype ="sequential")
find.multi.plan(PRP, eRP, N, type="hypergeom")
find.multi.plan(PRP, eRP, N, type="hypergeom", stype="sequential")

In the first form, the default type "mul tinomial" and the default stype "fixed" are used.

The second form is based on the negative multinomial distribution.

The third form uses a default st ype of "f ixed" and is based on the multivariate hypergeometric
distribution.

The fourth form is based on the negative multivariate hypergeometric distribution.

In both third and fourth cases, the population size N needs to be specified, and pd in PRP and eRP
is the vector of the proportions of population defectives. Since pd * N gives a vector containing the
actual numbers of each type of defective in the population, all of its entries must be integers.

find.mufti.pIan 5

Value

The values returned are

n

rn

m

p.PRP

p.CRP

ASNp

ASNc

Source

The smallest possible sample size for st ype= II fixed ".

Vector of length k -1 of rejection numbers for fixed sampling, or cell quotas for
the defective items in sequential sampling.

The smallest possible number of good items for stype=" sequential ".

The actual probability of acceptance at the producer's quality level for the sam
pling plan.

The actual probability of acceptance at the consumer's quality level for the sam
pling plan.

The average sampling number at the producer's quality level for stype=" sequential ".

The average sampling number at the consumer's quality level for st ype= II sequential ".

For sequential sampling, the average sampling numbers ASNp and ASNc are computed using algo-
rithms for the Dirichlet 0 function (for t ype= "mu l t inomial ") or HD function (for t ype= II hypergeom "),
together with equation (5.30) in Sobel, Uppuluri, and Frankowski (1985) (for t ype= "mult inomial "),
or equation (5.3) in Childs (2010) (for type="hypergeom").

Childs, A. (20 I 0). Vector extensions of the Dirichlet HC and HD functions, with applications to the
sharing problem. Methodology and Computing in Applied Probability 12, 91 - 109.

Sobel, M., Uppuluri, V. R. R., and Frankowski, K. (1985). Dirichlet integrals of type-2 and their
application. In Selected Tables in Mathematical Statistics 9, American Mathematical Society, Prov
idence, Rhode Island.

Author(s)

Aaron Childs and Yalin Chen

References

Schilling, E. G. and Neubauer, D. V. (2009). Acceptance Sampling in Quality Control, Second
Edition, CRC Press, New York.

See Also

Ocmult class, Ocmult, assess .multi.

Examples

find.multi.plan(PRP=c(0.03,0.05, 0.8), CRP=c(0.15, 0.16, 0.1), stype="seq")

find.multi.plan(PRP=c(0.06, 0.04, 0.06, 0.8), CRP=c(0.14, 0.16, 0.2, 0.1),
N= 100,type = "h", stype="seq")

6 OcmuIt

Ocmult Operating Characteristics of Multilevel Acceptance Sampling Plans

Description

Creating new objects from the" Ocmul t" classes.

Usage

Ocmult (rn, type=c ("multinomial", "hypergeom"),
stype=c("fixed", "sequential"), ...)

Arguments

rn

type

stype

Details

A vector of length k-1 of rejection numbers for k-Ievel (k different types of
items in the population) fixed sampling, or a vector of length k -1 of cell quotas
for the defective items in k-Ievel sequential sampling.

The type of distribution on which the plan is based. Possible values are "multinomial"
and "hypergeom". The default is "multinomial".

The type of sampling. Possible values are "fixed" and "sequential".
The default is "fixed".

Additional arguments to be passed to the class generating function for each type.
See Details for options.

Typical usages are:

Ocmult(rn, n)
Ocmult(rn, n, pd)
Ocmult(rn, n, N, pd, type="hypergeom")
Ocmult(rn, m, stype="sequential", pd)
Ocmult(rn, m, N, pd, type="hypergeom" , stype="sequential")

In the first and second forms, the default type "multinomial" and the default st ype "fixed"
are used. The OC function is calculated based on the proportion of defectives pd, whose default
values are used in the first form (and depend on the length of rn).

The third form is the OC function based on the multivariate hypergeometric distribution. In this
case, the population size N needs to be specified, and pd is a matrix whose rows are vectors con
taining the proportions of each type of defective. Since pd*N is a matrix containing the actual
numbers of each type of defective in the population, all of its entries must be integers. If N is not
specified, it takes a default value of N= 1 0 o.

The fourth form uses a default type of "mul t inomial ". Its OC function is based on the negative
multinomial distribution, hence the cell quota m for good items must be specified.

In the fifth form, the OC function is based on the negative multivariate hypergeometric distribution.
The cell quota m for good items and the population size N need to be specified.

Ocmult-c1ass 7

Value

An object from Ocmult-class returns the class Ocmult .multinomial orOcmult . hypergeom.
There is a logic argument detail in the function summary. If detail=TRUE, all of the infor
mation for the object is shown. For sequential sampling the average sampling number (ASN) is also
provided. The default value for this argument is detail=FALSE.

Author(s)

Aaron Childs and Yalin Chen

See Also

Ocmult-class, find.multi.plan,assess.multi.

Examples

px <- as.matrix(expand.grid(seq(O,O.5, 0.1),seq(O,O.5, 0.1»)
p.multinom <- Ocmult(n=30,rn=c(3,4), pd=px)
summary(p.multinom ,detail=TRUE)

p.multih<- Ocmu1t(c(3,4),n=15, N=100, type="h")
summary (p.multih,detail=TRUE)
persp(p.multih)

p.nmultinom <- Ocmult(c(3,4), m=5, stype="s")
p.nmultinom
summary(p.nmultinom ,detail=TRUE)
persp(p.nmu1tinom)

Ocmult-class Class "Ocmult"

Description

"Operating Characteristic" function of the class" Ocmul t " provides methods for creating, plotting
and printing k-Ievel acceptance sampling plans based on the Multinomial, Negative Multinomial
("Ocmult .multinomial"), Multivariate Hypergeometric and Negative Multivariate Hyperge
ometric ("Ocmult. hypergeom") distributions.

Objects from the Class

The" Ocmul t" class is a virtual class: No objects may be created from it.

However, objects from the derived classes Ocmult. multinomial and Ocmult. hypergeom
can be created using the create function Ocmul t.

Slots

n: Object of class "numeric". The sample size; applicable for stype=" fixed".

m: Object of class" numeric". The cell quota for good items; applicable for st ype=" sequential".

rn: Object of class" nume ric". A vector of length k -1 of rejection numbers for fixed sampling,
or cell quotas for the defective items in sequential sampling.

8 Ocmult-c1ass

pd: Object of class "matrix". A matrix whose rows are vectors containing the proportions of
each type of defective.

pa: Object of class "numeric". A numeric vector contains the probabilities of acceptance ac
cording to the proportion of defectives in the rows of pd.

ASN: Object of class "numeric". Only for sequential sampling. A numeric vector containing
average sampling numbers according to the proportion of defectives in the rows of pd.

stype: Object of class" character". The type of sampling. Possible values are" fixed"
and" sequential".

type: Object of class "character". The type of distribution on which the plans are based.
Possible values are "multinomial" and "hypergeom".

N: Object of class "numeric". Only for class "Ocmult. hypergeom". A number giving the
population (lot) size from which the sample is drawn.

Methods

show signature (object = "Ocmult"): Show the details of the sampling plan.

summary signature (object = "Ocmult"): Summarize the sampling plan. Optional ar
gument "full" (defaults to FALSE) will show the details at all quality values "pd" supplied
when the object was created.

plot signature (x
signature (x
signature (x

"Ocmult.multinomial", y = "missing"),
"numeric", y = "Ocmult.multinomial"),
"Ocmult.hypergeom", y = "missing"):

signature (x "numeric", y = "Ocmult.hypergeom"):
Plot the OC curve for 2-level sampling plans.

persp signature (x = "Ocmult. multinomial") ,
signature (x = "Ocmult.hypergeom"):
Plot the OC surface for 3-level sampling plans.

contour signature (x = "Ocmult.multinomial"),
signature (x = "Ocmult. hypergeom"):
Plot the OC contour curve for 3-level sampling plans.

Author(s)

Aaron Childs and Yalin Chen

References

Schilling, E. O. and Neubauer, D. V. (2009). Acceptance sampling in quality contlV!, Second Edi
tion, CRC Press, New York.

See Also

Ocmult, find.multi.plan,assess.mulLi.

pmuItihyper

pmultihyper

Description

The Cumulative Distribution Functionfor the Multivariate Hypergeo
metric Distribution

9

Compute cumulative probability for the multivariate hypergeometric distribution.

Usage

pmultihyper(x, n, M, N)

Arguments

x

n

M

N

Details

Vector of length k -1 of non-negative integers where k is the number of classes.

The sample size.

Vector of length k -1 containing the total number of objects in each of k -1 of
the classes.

The size of the population from which the sample is drawn.

The multivariate hypergeometric distribution is used for sampling from a finite population with
out replacement. If a sample of size n is drawn from a population of size N which has NI[i] ob
jects of type i (for i = 1,2, ... , k), let Xli] be the number of objects of type i in the samplc (for
i = 1,2, ... , k). Then the cumulative probability pmultihyper (x, n, M, N) is given by,

P(X[I] <= x[l], ... ,X[k -1] <= x[k -1])

x[1] x[k-1]

= 2: ... 2: P(X[l] = y[l], ... ,X[k - 1] = y[k - 1])
y[1]=O y[k-1]=O

k-l

N- 2: Mli)

e:IW) ... C::I\:-=-N)(~11)

x[1] x[k-1] n- Evlil

2:
y[1]=O

2:
y[k-1]=O

i-I

(~)

where the sum is over all values of y such that y[l] + y[2] + ... + y[k - 1] <= nand n - (y[l] +
y[2] + ... + y[k - 1]) <= N - (M[l] + M[2] + ... + M[k - 1]).

Value

pmul t ih ype r gives the value of the cumulative distribution function. Invalid arguments will stop
running.

10 pmultinom

Source

pmultihyper is computed using recursive algorithms for the Dirichlet HJ function given in

Sobel, M. and Frankowski, K. (1994). Hypergeometric analogues of multinomial type-l Dirichlet
problems. Congressus NlIInerantium 101, 65-82.

Author(s)

Aaron Childs and Yalin Chen

References

Johnson, N. L., Katz, S., and Balakrishnan, N. (1997). Discrete Multivariate Distributions, Wiley,
New York.

See Also

pmultinom,pnmultinom,pnmultihyper.

Examples

X <- c(l,3,4)
n <- 15
M <- c (8, 10, 14)
N <- 50
pr <- pmultihyper(X, n, M, N)
pr

pmultinom

Description

The CUlIlulative Distribution Function for the Multinomial Distribu
tion

Compute cumulative probability for the multinomial distribution.

Usage

pmultinom(x, size, probl

Arguments

x

size

prob

Vector of length k -1 of non-negative integers where k is the number of classes.

The sample size

Numeric non-negative vector of length k-1 specifying the probability for k-1
of the classes.

pmultinom 11

Details

The multinomial distribution is used for sampling with replacement, or if the population is large
compared to the sample size. If a sample of size n is drawn from a population whose k classes have
probabilities p[l], ... ,p[k - l],p[kJ, let X[l], ... , X[k -1], X[k] denote the number of observations
drawn from each of the k classes. Then the cumulative probability pmultinom (x, size=n,
prob=p) is given by

P(X[l] <= x [1], ... ,X[k - 1] <= x[k - 1])

x[I] x[k-I]
= 2:= ... 2:= P(X[l] = y[l], .. . , X[k - 1] = y[k - 1])

y[I]=O y[k-I]=O

x[I] :E[k-I]
= 2:= ... 2:= n! k-l p[l]Y[I] ... p[k - l]y[k-I]

y[I]=O y[k-I]=O Y[I)! ... y[k-I]! (n-~ Y[i])!

where the sum is over all values of y such that y[l] + y[2] + ... + y[k - 1] <= n.

Value

pmul t inom gives the value of the cumulative distribution function. Invalid arguments will stop
running.

Source

pmul t inom is computed using recursive algorithms for the Dirichlet J function given in

Sobel, M., Uppuluri, V. R. R., and Frankowski, K. (1977). Dirichlet distributions type-I. In Selected
Tables in Mathematical Statistics 4, American Mathematical Society, Providence, Rhode Island.

Sobel, M. and Frankowski, K. (2004). Extensions of Dirichlet integrals: their computation and
probability applications. In Gupta, A.K. and Nadarajah, S. (eds) Handbook of Beta Distribution
alld its applications, 319-360, Marcel Dekker, New York.

Author(s)

Aaron Childs and Yalin Chen

References

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1997). Discrete Multivariate Distributions, Wiley,
New York.

See Also

pmultihyper,pnmultino~pnmultihyper

12 pnmultihyper

Examples

X <- c(2,3)
n <- 20
pr <- e(0.12, 0.15)
edf <- pmultinom(x = X, size
edf

n, prob pr)

pnmultihyper

Description

The Cumulative Distribution Function for the Negative Multivariate
Hypergeometric Distribution

Compute cumulative probability for the negative multivariate hypergeometric distribution.

Usage

pnmultihyper(x, m, M, N}

Arguments

x

m

M

N

Details

Vector of length k-l for the failures where k is the number of classes.

The target number of successful trials. Must be a strictly positive integer.

Vector of length k -1 containing the total number of each type of failure in the
population.

Total population size from which the sample is drawn.

The negative multivariate hypergeometric distribution is used for sequential sampling from a finite
population without replacement. Suppose that the population of size N has k-1 different types
offailuresrepresentedM[l), ... , M[k-1) times. LetX[l), ... , X[k-1) denote the
number of failures of each type that are selected in a sequence of trials before a target number m of
successes is reached. Then pnmultihyper (x, m, M, N) is the cumulative probability:

P(X[l] <= x[l], .. . , X[k - 1] <= x[k - 1])

x[lJ x[k-1J

= L ... L P(X[l] = y[l], ... ,X[k -1] = y[k -1])
y[lJ=O y[k-1J=O

k-l

x[lJ

L
y[lJ=O

N- '" M('I k-1
'[k-1J (M(11) ... (M(k-11)(~) N-m+1- '" M[iJ x yl!] v(k-l) 1-1 L.J

'"" tn-I i-I
6 N k 1

y[k-lJ=O (k-1) N-m+1- '" y[iJ
m-l+ L yli] L.J

1=1
i=1

pnmultinom 13

Value

pnmul tihyper gives the value of the cumulative distribution function. Invalid M or N will stop
running with a warning.

Source

pnmul tihyper is computed using recursive algorithms for the Dirichlet HD function given in

Childs, A. (20 I 0). Vector extensions of the Dirichlet HC and HD functions, with applications to the
sharing problem. Methodology and Computing in Applied Probability 12, 91-109.

Sobel, M. and Frankowski, K. (1995). Hypergeometric analogues of multinomial type-2 problems
via Dirichlet methodology. CongresslIs NlImerantilllll 106, 171-191.

Author(s)

Aaron Childs and Yalin Chen

References

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1997). Discrete Multivariate Distributions, Wiley,
New York.

See Also

pmultino~pmultihyper,pnmultino~

Examples

X <- e(2,3,4,l)
m <- 5
M <-e(5,7,8,3)
N <-30

edf <- pnmultihyper(X, m, M, N)
edf

pnmultinom

Description

The CUlllulative Distribution Function for the Negative Multinomial
Distribution

Compute cumulative probability for the negative multinomial distribution.

Usage

pnmultinom(x, m, probl

Arguments

x

m

prob

Vector of length k-l for the failures where k is the number of classes.

The target number of successful trials. Must be a strictly positive integer.

Numeric non-negative vector of length k-l specifying the probability for the
k-l classes of failures.

14 pnmultinom

Details

The negative multinomial distribution is used for sequential sampling with replacement. Suppose
that the population has k-l different types of failures, with corresponding probabilities p [1],
... , p [k -1] in each trial. Let X [1], ... , X [k -1] denote the number of failures of each
type that are selected in a sequence of trials before a target number m of successes is reached. Then
pnmultinom (x, m, prob = p) is the cumulative probability:

P(X[l] <= x[l]' ... , X[k - 1] <= x[k - 1])

x[I] x[k-I]

= 2: ... 2: P(X[l] = y[l], .. . , X[k - 1] = y[k - 1])
y[I]=O y[k-I]=O

x[I] x[k-I] (~ y[i]+m-I) i (k-I) m
_ '=1 y[I] y[k-I] . - 2: ... 2: (m-I)iy[I]i ... y[k-I]!P[l] .. . p[k - 1] 1 - 2: p[~]

y[I]=O y[k-I]=O 1=1

Value

pnmul tinom gives the value of the cumulative distribution function. Invalid m or prob will stop
running with a warning.

Source

pnmul t inom is computed using recursive algorithms for the Dirichlet D function given in

Sobel, M. and Frankowski, K. (1985). Dirichlet integrals oftype-2 and their application. In Selected
Tables in Mathematical Statistics 9, American Mathematical Society, Providence, Rhode Island.

Sobel, M. and Frankowski, K. (2004). Extensions of Dirichlet integrals: their computation and
probability applications. In Gupta, A. K. and Nadarajah, S. (eds) Handbook of Beta Distribution
alld its applications, 319-360, Marcel Dekker, New York.

Author(s)

Aaron Childs and Yalin Chen

References

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1997). Discrete Multivariate Distributions, Wiley,
New York.

See Also

pmultinom,pmultihyper,pnmultihyper

Examples

X <- c(4,5,6)
m <-3
pr <-c(O.lO,O.15,O.18)
pnmultinom(x = X, m = m, prob prj

Index

* Topic classes
Ocmult,5
Ocmult-class,7

*Topic methods
assess. multi, I
find.multi.plan,3
Ocmult,5
pmultihyper,8
pmultinom,1O
pnmultihyper, II
pnmultinom, D

assess.multi,I,5,6,8

contour,Ocmult.hypergeom-method
(Ocmult),5

contour,Ocmult.multinomial-method
(Ocmult),5

find. multi .plan, 3, 3, 6, 8

Ocmul t, 5, 5, 7, 8
Ocmult-class,3,~6

Ocmult-class,7
Ocmult.hypergeom-class

(Ocmult-class),7
Ocmult.multinomial-class

(Ocmult-class),7

show, Ocmult-method (Ocmult), 5
summary, Ocmult-method (Ocmult), 5

persp,Ocmult.hypergeom-method
(Ocmult),5

persp,Ocmult.multinomial-method
(Ocmult),5

plot,numeric,Ocmult.hypergeom-method
(Ocmult),5

plot,numeric,Ocmult.multinomial-method
(Ocmult),5

plot,Ocmult.hypergeom,missing-method
(Ocmult),5

plot,Ocmult.multinomial,missing-method
(Ocmult),5

pmultihyper, 8, 11, 13, 14
pmultinom,9, 10,13,14
pnmultihyper,9, 11,11,14
pnmultinom, 9,11, D,13

15

Appendix B

MFSAS Package Code

The MFSAS package code is divided into five parts III following five files: Ocmul t . R,

functions.R, cdf.R, assess.R, and findplan.R.

B.l Ocmult.R

This part uses the setClass function to create a virtual class and two actual classes. The

function new is called to create an object and the setMethod function is applied to generate

the generic function show, summary, plot, persp, and contour for the object. This file

also contains small functions for the titles of the plots.

Class definitions
Create a virtual class
setClass (" Ocmul t" ,

representation(
n="numeric",

An integer the sample size for fixed sampling
m="numeric",

An integer - cell quota of good items for sequential sampling
rn="numeric" ,

A vector of rejection numbers for fixed sampling or cell quotas
#of defectives for sequential sampling

69

pd="matrix" ,
The proportions of each type of defective in the population (by row)

pa="numericII , # Probability of acceptance
asn="numeric", # Average sampling number
stype="character", # Type of sampling
type="character", # Distribution type
"VIRTUAL"),

validity=function(object){
if(any(is.na(object@rn)))

}

return(IIThe 'rn' vector is not allowed to contain missing values. II)
Check that the rejection numbers are reasonable
if(any(object@rn < 1))

return(lIrejection number(s) 'rn' must be greater than 0.")
if(any(is.na(object@pd)))

return("'pd' is not allowed to contain missing values. ")
l=ncol(object@pd)
Check that the rows of pd have the same length as rn
if(length(object@rn)!=l)

return(IIThe number of columns in 'pd' must be the same as the length of 'rn'.")
Check that the proportions of defectives are reasonable
if(any(object@pd < 0))

return(IIThe entries in 'pd' must be greater than or equal to 0.")
if(any(apply(object@pd,l,sum) > 1))

return(IIThe row sums of 'pd' must be less than or equal to 1.")
return (TRUE)

Create two classes
setClass(IOcmult.multinomial",

representation(IOcmult"
) ,

prototype=list(IOcmult",
stype="fixed",
type="multinomial",
n=30,
pd=as.matrix(seq(O, 0.1, by=O.Ol),nrow=l)
) ,

contains=IOcmult" ,
validity=function(object){

fixed sampling plan
if(object@stype=="fixed"){

if(is.na(object@n))
return(IIThe 'n' is not allowed to contain missing value. ")

if(length(object@n)!= 1)
return(IIThe length of sample size 'n' should be equal to 1")

Check that the sample size is reasonable
if(object@n <= 0)

return("Sample size 'n' should be greater than 0.")
Check that the rejection numbers are reasonable
if(any(object@rn-l > object@n))

70

return(IIEach rejection number in the vector 'rn' must be less than 'n+1'.")
}

Check that the length of acceptance is reasonable for sequential sampling plan
if (obj ect<ilstype=="sequential") {

if(is.na(object@m))
return(IIThe 'm' is not allowed to contain missing value. ")

if(length(object@m)!= 1)
return(IIThe length of cell quota of good item 'm' should be equal to 1")

Check that the cell quota is reasonable
if(object@m <= 0)

return(IIcell quota 'm' should be greater than 0.")
}

return (TRUE)
}

setClass("Ocmult .hypergeom",
representation("Ocmult" ,

N= II numeric II # An integer - the population size
) ,

prototype = list("Ocmult",
stype="fixed",
type="hypergeom" ,
N=100,
n=30,
pd=as.matrix(seq(O, 0.1, by=0.01),nrow=1)
) ,

contains="Ocmult",
validity=function(object){

if(is.na(object@N)) return(IIN contains NA. ")
Check that the population size is reasonable
if(length(object@N»1) return(IIN must be of length 1. ")
if(object@N < 1) return(IIN is less than 1. ")
if(length(object@rn) >= object@N)

return(IIThe length of 'rn' must be less than 'N'. ")
Check that the numbers of defectives for each type are integers
if(any«object@N*object@pd < round(object@N*object@pd

ject@pd > round(object@N*object@pd
)+1e-6)))
return(IIN times pd must be integer numbers. ")

fixed sampling plan
if(object@stype=="fixed"){

if(is.na(object@n))
return(IIThe 'n' is not allowed to contain missing value. ")

if(length(object@n)!= 1)
return(IIThe length of sample size 'n' should be equal to 1")

Check that the sample size is reasonable
if(object@n <= 0)

return("Sample size 'n' should be greater than 0.")
Check that the rejection numbers are reasonable
if(any(object@rn-1 > object@n))

71

return("Any rejection number in 'rn' must be less than 'n+1'.")
Check that the population size and sample size are reasonable
if(object@N <= object@n)

return("N must be greater than n. ")
}

Check that the length of acceptance is reasonable for sequential sampling plan
if(object@stype=="sequential")

{

if(is.na(object@m))
return("The 'm' is not allowed to contain missing value.")

if(length(object@m)!= 1)
return("The length of cell quota 'm' should be equal to 1")

Check that the cell quota of good item is reasonable
if(object@m <= 0)

return("Cell quota 'm' should be greater than 0.")
Check that the population size and cell quota are reasonable
if(object@N <= object@m)

return("N must be no less than m. ")
}

return (TRUE)
}

Creation of the object
Ocmult <- function(rn, type=c("multinomial" , "hypergeom"),

stype=c("fixed", "sequential"), ...)
{

Choose what 'type' to use
type <- match.arg(type)
stype <- match.arg(stype)

Get type, defaut is multinomial
Get type, defaut is fixed

invoke a new object of that
switch(type,

multinomial={

type

obj <- new("Ocmult.multinomial", rn=rn, type="multinomial" , stype=stype, ...)
switch(stype,

fixed={
obj@pa <- pmultinom(x=obj@rn-1, size=obj@n, prob=obj@pd)

},

sequential={

}

obj@pa <- calc.pnmultinom(pd=obj@pd, rn=obj@rn, m=obj@m)
obj@asn <- EWT(pd=obj@pd, rn=obj@rn, m=obj@m)

},

hypergeom={
obj <- new("Ocmult.hypergeom", rn=rn, type="hypergeom", stype=stype, ...)
switch(stype,

fixed={
obj@pa <- calc.pmultihyper(obj@pd, rn=obj@rn, n=obj@n, N=obj@N)

},

sequential={

72

}

}

)

}

obj@pa <- calc.pnmultihyper(pd=obj@pd, rn=obj@rn, m=obj@m, N=obj@N)
obj@asn <- EWTH(pd=obj@pd, rn=obj@rn, m=obj@m, N=obj@N)

return (obj)

##Initialization of the class
setMethod("initialize", "Ocmult.multinomial",

function(.Object, rn, n=.Object@n, m, pd, stype=.Object@stype, ...)
{

lrn <- length(rn)
if (missing(pd))

{

if (lrn==2)
{

.Object@pd <- as.matrix(expand.grid(seq(O, 0.1, 0.01), seq(O, 0.1, 0.01)))
}

else
if (lrn > 2)

{

}

if (lrn < 11)
.Object@pd <- as.matrix(t(combn(seq(O.01, 0.1, O.01),lrn)))

else
{

lrnpd <- seq(0.1/1rn, 0.1, 0.1/1rn)
if(sum(lrnpd) < 1)

.Object@pd <- as.matrix(t(lrnpd))
else

}

.Object@pd <- as.matrix(t(rep(1/(2*lrn), lrn)))
}

else if(is.vector(pd))
{

if (lrn > 1)
{

l.row <- length(pd)/lrn
if (1. row < 1)

stop(IIThe length of 'rn' must less than or equal to length of 'pd'.")
if(l.row > floor(l.row))

{

l.row <- floor(l.row)
l.pd <- lrn*l.row
pd <- pd[1:1.pd]
warning (
paste("The length of the pd vector should be an integer",

"multiple of the length of the rn vector. II ,
"\nThe truncated pd in use is: II), t(paste(pd, II ")))

73

)

}
}

if (lrn==2) {
pdtemp <- matrix(pd, ncol=lrn, byrow=TRUE)

.Object@pd <- as.matrix(expand.grid(unique(sort(pdtemp[, 1])),
unique (sort (pdtemp [, 2]))))
}

else
.Object@pd <- matrix(pd, ncol=lrn, byrow=TRUE)
}

else
if (lrn==2)

.Object@pd <- as.matrix(expand.grid(unique(sort(pd[, 1])),
unique(sort(pd[, 2]))))

else
.Object@pd <- pd

if (stype=="fixed")
.Object@n <- n

else
.Object@m <- m

.Object@rn <- rn

.Object@stype <- stype
callNextMethod(.Object, ...)## Return to object
}

setMethod (" ini tialize", "Ocmul t . hypergeom" ,
function(.Object, rn, n=.Object@n, m, pd, N=.Object@N,

stype=.Object@stype, ...)
{

lrn <- length(rn)
if (missing (pd))

{

if (lrn==2)
{

.Object@pd <- as.matrix(expand.grid(seq(O, 0.1, 0.01), seq(O, 0.1, 0.01)))
}

else
if(lrn > 2

{

if(lrn < 11)
.Object@pd <- as.matrix(t(combn(seq(O.01, 0.1, O.01),lrn)))

else{
lrnpd <- seq(1/N, lrn/N, 1/N)
if(sum(lrnpd) < 1)

.Object@pd <- as.matrix(t(lrnpd))
else

}

}

.Object@pd <- as.matrix(t(rep(1/N, lrn)))
}

74

else if(is.vector(pd))
{

if (lrn > 1)
{

l.row <- length(pd)/lrn
l.row <- length(pd)/lrn
if (1. row < 1)

stop(IIThe length of 'rn' must less than or equal to length of 'pd'.")
if(l.row > floor(l.row))

{

l.row <- floor(l.row)
l.pd <- lrn*l.row
pd <- pd[1:1.pd]
warning (
paste("The length of the pd vector should be an integer",

"\nmultiple of the length of the rn vector. ",
"\nThe truncated pd in use is: \n"), t (paste (pd, II ")))

}

}

if (lrn==2) {
pdtemp <- matrix (pd, ncol=lrn, byrow=TRUE)
.Object@pd <- as.matrix(expand.grid(unique(sort(pdtemp[, 1])),

unique(sort(pdtemp[, 2]))))
}

else
.Object@pd <- matrix(pd, ncol=lrn, byrow=TRUE)

}

else
if (lrn==2)

.Object@pd <- as.matrix(expand.grid(unique(sort(pd[, 1])),
unique(sort(pd[, 2]))))

else
.Object@pd <- pd

if (stype=="fixed")
.Object@n <- n

else
.Object@m <- m

.Object@rn <- rn

.Object@N <- N

.Object@stype <- stype
callNextMethod(.Object, ...)
}

Create show function
setMethod ("show" , II Ocmult II ,

function(object)
{

if(object@stype=="fixed")
{

switch(object@type,

75

}

multinomial=cat(1I ", paste(length(object@rn)+1,
II-Level Acceptance Sampling Plan Multinomial: ", sep="") , "\n") ,

hypergeom=cat(1I ", paste(length(object@rn)+1,
II-Level Acceptance Sampling Plan Multivariate Hypergeom: N = II

object@N, sep="") , "\n")

cat (" Sample size:
cat(1I Rej. Number(s):",
cat("\n")

paste(object@n), "\n")
paste(object@rn), "\n")

}

else {
switch(object@type,

}

multinomial=cat(" II paste(length(object@rn)+1,
II-Level Sequential Acceptance Sampling Plan",
II Negative Multinomial: II , sep="") , "\n") ,

hypergeom=cat(1I ", paste(length(object@rn)+1,
II-Level Sequential Acceptance Sampling Plan",
II Negative Multivariate Hypergeom: N = II
object@N, sep="") , "\n")

cat(1I Acc. Number: paste(object@m), "\n")
cat(1I Rej. Number(s):", paste(object@rn), "\n")
cat("\n")

Create summary function
setMethod(lsummary", signature (object=IOcmult"),

function(object, detail=FALSE)
{

if(ncol(object@pd)==1) p.nondef <- 1- object@pd
else p.nondef <- 1-rowSums(object@pd)
pa <- round(object@pa,7)
prop <- cbind(object@pd, p.nondef ,pa)
l=ncol(object@pd)
defname = as.vector(sapply(" type II , FUN = paste, (1:1)))
rownames(prop) <- rep(1I ", length(object@pa))
if(object@stype=="fixed")

colnames(prop) <- c(defname, II P.nondef", II P(accept)lI)
else

{

asn <- round(object@asn,7)
prop <- cbind(prop, asn)
colnames (prop) <- c (defname, liP. nondef ", II P (accept) ", II

}

show(object)
if (detail) {

cat(lI\n Detailed acceptance probabilities: \n")
show(prop)

}

76

ASN")

if(object@stype=="fixed")
return(invisible(c(list(n=object@n, rn=object@rn, P= prop))))

else
return(invisible(c(list(m=object@m, rn=object@rn, P= prop))))

}

Creating a new generic function for plot
setMethod("plot" , c(x = "Ocmult.multinomial", y = "missing"),

function(x, y, type="o", xlab="Proportion Defective", ylab="P(accept) " ,
main = main.2dp(x) , ...)
{

if(length(x@rn)!=i)

}

stop ("The plot for 2-Level acceptance sampling plan only")
plot(x@pd, x@pa, type=type, xlab=xlab, ylab=ylab, main=main, ...)

setMethod("plot", signature(x="numeric", y="Ocmult.multinomial"),
function(x, y, type="o", ylab="P(accept) " , main = main.2dp(y), ...)

{

plot(x, y@pa, type=type, ylab=ylab, main=main, ...)
}

setMethod("plot", c(x = "Ocmult.hypergeom", y = "missing"),

)

function(x, y, type="p", xlab="Proportion Defective", ylab="P(accept) " ,
main = main.2dp(x) , ...)

}

{

if(length(x@rn)!=i)
stop ("The plot for 2-Level acceptance sampling plan only")

plot(x@pd, x@pa, type=type, xlim=xlim, ylab=ylab, main=main, ...)

setMethod("plot" , signature(x="numeric", y="Ocmult.hypergeom"),
function(x, y, type="p", ylab="P(accept) " , main = main.2dp(y), ...)

{

plot(x, y@pa, type=type, xlim=xlim, ylab=ylab, ylim=ylim, main=main, ...)
}

setMethod("persp", c(x = "Ocmult.multinomial"),
function (x, y, zlab="P (accept) ", xlab="pi", ylab="p2",

main = main. 3dp (x), ticktype = "detailed", ...)
{

if(length(x@rn)!=2)
stop("The persp plot is only for 3-Level acceptance sampling.")

pi <- unique(sort(x@pd[,i]))
p2 <- unique(sort(x@pd[,2]))
pa <- matrix(x@pa, nrow=length(pi))
Create three dimension plot
persp(pi, p2, pa, theta = 20, phi = 30,d=4, expand=O.5,

zlab=zlab, xlab=xlab, ylab=ylab, main=main, ticktype = ticktype, ...)

77

}

setMethod("persp", c(x = "Dcmult.hypergeom"),
function(x, y, zlab="P(accept)", xlab="p1", ylab="p2",

main = main. 3dp (x), ticktype = "detailed", ...)

}

{

if(length(x©rn)!=2)
stop("The persp plot is only for 3-Level acceptance sampling.")

p1 <- unique(sort(x©pd[,1]))
p2 <- unique(sort(x©pd[,2]))
pa <- matrix(x©pa, nrow=length(p1))
Create three dimension plot
persp(p1, p2, pa, theta = 20, phi = 30,d=4, expand=0.5,

zlab=zlab, xlab=xlab, ylab=ylab, main=main,
ticktype = ticktype, ...)

Creating a new generic function for contour plot
setMethod("contour", c(x = "Dcmult.multinomial"),

function(x, y, nlevel=8, main = main.3dc(x), xlab="p1", ylab="p2", ...)
{

if(length(x©rn)!=2)
stop("The contour plot is only for 3-Level acceptance sampling.")

p1 <- unique(sort(x©pd[,1]))
p2 <- unique(sort(x©pd[,2]))
pa <- matrix (x©pa, nrow=length(p1))
contour(p1, p2, pa, nlevel=nlevel, main=main, xlab=xlab, ylab=ylab, ...)
}

setMethod("contour", c(x = "Dcmult.hypergeom"),
function(x, y, nlevel=8, main = main.3dc(x), xlab="p1", ylab="p2", ...)

}

)

{

if(length(x©rn)!=2)
stop ("The contour plot is only for 3-Level acceptance sampling.")

p1 <- unique(sort(x©pd[,1]))
p2 <- unique(sort(x©pd[,2]))
pa <- matrix(x©pa, nrow=length(p1))
contour(p1, p2, pa, nlevel=nlevel, main=main, xlab=xlab, ylab=ylab, ...)

##The function for plot title
main.3dp <- function(obj)

{

if (obj©type=="multinomial")
{

if (obj©stype=="fixed")
return(paste("Multinomial DC Surface with

", rn = (", obj©rn[1], ",", obj©rn[2],
else

\nn = ", obj©n,
")", sep=""))

return(paste("Negative Multinomial DC Surface with \nm = "

78

obj@m, II rn (II, obj@rn[1], II II obj@rn[2],I)", sep=""))
}

else

}

{

if(obj@stype=="fixed")
return(paste("Multivariate Hypergeometric DC Surface with \nn

obj@n, ", N = ", obj@N, ", rn = (II,
obj@rn[1], ",", obj@rn[2],I)", sep=·II.))

else

}

return(paste("Negative Multivariate Hypergeometric
obj@m, ", N = ", obj@N, ", rn = (II, obj@rn[1],
obj@rn[2],I)", sep=""))

DC Surface with \nm
II II

main.3dc <- function(obj)
{

if(obj@type=="multinomial")
{

if(obj@stype=="fixed")
return(paste("Multinomial DC Contour with \nn = ",
obj@n, ", rn = (II, obj@rn[1], ",", obj@rn[2],")", sep="II))

else

}

return(paste("Negative Multinomial DC Contour with \nm = ",
obj@m, ", rn = (II, obj@rn[1], ",", obj@rn[2],I)", sep=""))

else
{

}

if (obj@stype=="fixed")
return(paste("Multivariate Hypergeometric DC Contour with \nn = ", obj@n,

", N = ", obj@N, ", rn = (II, obj@rn[1], ",", obj@rn[2], 11)11, sep="II))
else

}

return(paste("Negative Multivariate Hypergeometric DC Contour with \nm = ",
obj@m, ", N = ", obj@N, ", rn = (", obj@rn[1], ",", obj@rn[2],1)", sep="I1))

main.2dp <- function(obj)
{

if(obj@type=="multinomial")
{

else

if (obj@stype=="fixed")
return(paste("Binomial DC Curve with \nn

obj@n, ", rn = ", obj@rn, sep=""))

return(paste("Negative Binomial DC Curve with \nm
obj@m, ", rn = ", obj@rn[1], sep="II))
}

else
{

if(obj@stype=="fixed")
return(paste("Hypergeometric DC Curve with \nn

79

obj@n,

}

B.2

else

}

N = ", obj@N, ", rn = ", obj@rn, sep='"'))

return(paste("Negative Hypergeometric DC Curve with \nm
", N = ", obj@N, ", rn = ", obj@rn[l], sep=""))

functions.R

obj@m,

The following are the functions for calculating the cumulative probabilities of the multivariate

distributions, and average sampling number using the Dirichlet recursive functions. They

include the Dirichlet J , HJ , D , and HD functions.

calculate the cumulative distribution function for multinomial
using recursive algorithms for the Dirichlet J function.
x is a non-negative integer vector.
prob is a vector or matrix.
size is a positive integer.
pmultinom <- function(x, size , prob)

{

if(any(x < 0))
stop("'X' must be non-negative ll

)

if (size <=0)
stop (" 'size' must be greater than 1. ")

if(sum(x) > size)
stop("Sum of 'x' must be not greater than size. ")

if(any(prob>l)lany(prob<O))
stop('''prob' is out of range (0,1)11)

b=length(x)
if (b==l)

{

if (length(prob)==l)
cdf <- JV(x+l, size, prob)

else
cdf <-sapply(prob, function(P) JV(x+l, size, P))

}

else
{

if (is.matrix(prob))
{

if(ncol(prob)!=b)
return(strwrap("The length of 'x' and the number columns

of 'prob' must be equal. II), width = 60)

80

cdf <-apply (prob, 1, function(P) JV(x+1, size, P»
}

else
{

if(length(prob)!=b)
return("'x' and 'prob' must be equal length vectors. ")

cdf <- JV(x+1, size, prob)

}

}

}

return(cdf)

##Dirichlet J vector function:
JV function is used to check if the input is valid.
RJV is recursive function for Dirichlet J function.
JV <- function(R, n, P)

{

if (sum(P) > 1)
stop(IISum of 'P' must be not greater than 1. ")

if(any(R<=O »return(O)
if (all(P==O»return(1)
if (sum(P)==1)return(O)
R <- R[P!=O]
P <- P[P!=O]
b <- length(R)
jv <- RJV(b, R, n, P)
return(jv)
}

RJV <- function(b, R, n, P)
{

if«max(P)== min(P» & (max(R)== mineR»~)

}

Check if all the values in vector P are the same and if all
the values in vector R are the same

{

pj = J(b, 0, R[1], n, P[1])
return(pj)

}

sump=O
if(R[1] <=0) return (sump)
else {r1 <- R[1]-1}
R1 <- R[-1]
pi <- P [1]
Pi <- P[-1]/(1-p1)
P1[P1>1]=1
for(i in (O:r1»

{

sump <- sump + (choose(n,i»*(p1-i)*«1-p1)-(n-i»*RJV(b-1, R1, n-i, Pi)
}

return (sump)

J function for the same r and same p.

81

It is part of Dirichlet J recursive function.
J <- function(b,j,r,n,p)

{

if«j*r) > n)return(O)
if«j*r)==n)

{

pj=(factorial(n)/(factorial(r))-j)*(p-n)
return(pj)
}

if (j==b){
pj <- (factorial(n)/«(factorial(r))-b)*factorial(n-b*r)))*(p-(b*r))*«1-b*p)-(n-b*r))
return(pj)
}

pj <- (1/(n-j*r))*(n*(1-j*p) *J(b,j,r,n-1,p)-r*(b-j)*J(b,j+1,r,n,p))
return(pj)

}

calculate the cumulative distribution function for multivariate hypergeometric
using recursive algorithms for the Dirichlet HJ function.
n, N are positive integers. # # x is a vector of non-negative integers.
M is a vector or matrix of non-negative integers.
pmultihyper <- function (x , n, M, N) ##what if any x > M ?

{

if(any(x < 0))
stop("'x' must be non-negative")

if (any(M < 0))
stop(" 'M' must be non-negative")

if (n <=0)
stop(" 'n' must be greater than O. ")

if (sum (x) >n)
stop("'n' must be no less than the

if (N<=O)
stop("'N' must be greater than O. ")

if (n > N)
stop("'N' must be no less than than

b=length(x)
if (b==1)

{

if (length(M)==1)
cdf <- HJV(b, x+1, n, M, N)

else

sum of 'x'. ")

'n'. ")

cdf <-sapply(M, function(y) HJV(b, x+1, n, y, N))
}

else
{

if (is.matrix(M))
{

if(ncol(M)!=b)
stop(strwrap("The length of 'x' and the

number columns of 'M' must be equal.") ,width 60)
cdf <-apply(M, 1, function(y) HJV(b, x+1, n, y, N))

82

}

}

else

}

{

if(length(M)!=b)
stop("'x' and 'M' must be equal length vectors.")

cdf <- HJV(b, x+1, n, M, N)
}

return (cdf)

Dirichlet HJ vector function:
HJV function is used to check if the input is valid.
RHJV is recursive function for Dirichlet HJ function.
HJV <- function(b, R, n, M, N)

{

if (sum(M»N)
stop(" 'N' must be no less than the sum of 'M'.")

if(n < 0) return(1)
if(any(R<=O))return(O)
hjv <- RHJV(b, R, n, M, N)
return (hjv)
}

RHJV <- function(b, R, n, M, N)

}

{

if(n >= N)return(O)
if«max(M)== min(M)) & (max(R)== min(R)))

{

check if all the values in vector M are the same and
if all the values in vector R are the same

phj = HJ(b, 0, R[1], n, M[1], N)
return(phj)
}

sump=O
if(R[1] <1)return(sump)
else {r1 <- R[1]-1}
R1 <- R[-1]
m1 <- M[1]
M1 <- M [-1]
for(i in (O:min(m1,r1)))

{

sump <- sump + «(choose(m1,i))*
(choose(N-m1,n-i)))/(choose(N, n)))*RHJV(b-1, R1, n-i, M1, N-m1)

}

return (sump)

#HJ function for the same r and same M.
It is part of Dirichlet HJ recursive function.
HJ <- function(b, j, r, n, M, N)

{

83

if(n >= N)return(O)
if(r <= O)return(O)
if(r >= M)return(1)
if«n-b*r) >= (N-b*M))return(O) #add this
if«j*r) > n)return(O)

}

if ((j *r) ==n)
{

ph <- «choose(M, r))-j)/(choose(N, n))
return (ph)
}

if (j==b){
ph <- «choose(M, r))-b)*(choose«N-b*M), (n-b*r)))/(choose(N, n))
return (ph)
}

ph <- (1/(n-j*r))*(n*(1-«j*(M-r))/(N-n+1)))*HJ(b,j,r,
n-1,M,N)-r*(b-j)*HJ(b,j+1,r,n,M,N))

return (ph)

calculate the cumulative distribution function for negative multinomial
using recursive algorithms for the Dirichlet D function.
m is a positive integer.
x is a vector of positive integers.
prob is a vector or matrix.
pnmultinom <- function(x, m, prob)

{

if(any(x < 0))
stop("'X' must be non-negative ll

)

if (m <=0)
stop (" 'm' must be greater than 1. ")

if (any(prob>1) lany(prob<O))
stop(1I 'prob' is out of range (0,1) ")

R=x+1
b=length(x)
if (b==1)

{

if (length(prob) ==1)
cdf <- DV(b, R, m, prob)

else
cdf <-sapply(prob,function(P) DV(b, R, m, P))

}

else
{

if(is.matrix(prob))
{

if (ncol(prob) !=b)
stop(strwrap("The length of 'x' and the number columns

of 'prob' must be equal. II), width = 60)
cdf <-apply (prob , 1, function(P) DV(b, R, m, P))
}

else

84

{

if(length(prob)l=b)
stop("'X' and 'prob' must be equal length vectors. ")

cdf <- DV(b, R, m, prob)

}

}

}

return(cdf)

Dirichlet D vector function:
DV function is used to check if the input is valid.
RDV is recursive function for Dirichlet D function.
DV <- function(b, R, m, P)

{

if (sum(P»1)
stop(IISum of 'P' must be not great than 1. ")

if(any(R<=O))return(O)
pO <- 1-sum(P)
P1 <- P
dv <- RDV(b, R, m, P1, pO)
return (dv)
}

RDV <- function(b, R, m, P1, pO)
{

if(pO==O) return(O)
if(pO==1) return(1)
if((max(P1)== min(P1)) & (max(R)== mineR)))

check if all the values in vector P are the same and
if all the values in vector R are the same

{

a=P1 [1] /pO
rdv = D(b, 0, R[1], m, a)
return (rdv)
}

sump=O
r1 <- R[1]-1
R1 <- R[-1]
p1=P1 [1]
P1 <- P1 [-1]
for(i in 0:r1)

{

sump <- sump + choose((m+i-1),i)*((p1/(pO+p1))-i)*((pO/(pO+p1
)-m)*RDV(b-1, R1, m+i, P1, pO+p1)

}

return(sump)
}

D function for the same r and same p.
It is part of Dirichlet D recursive function.

D <- function(b, j, r, m, a)
{

if(m <= 0) return (0)

85

if (j==b)
{

}

sump <- (factorial(m+r*b-1)/«(factorial(r))~b)*factorial(m-1))

)*«1/(1+a*b))~m)*«a/(1+a*b))~(b*r))

return (sump)

if (m > r)
{

temp=O

}

for(i in 1:r)
{

temp <- temp + (choose«m-i-1),(r-i))/(a~i))*D(b, j+1, r, m-i, a)
}

sump <- (1/choose«m-1), r))*temp
return (sump)
}

sump <- (1/(m+j*r))*(m*(1+j*a)*D(b, j, r, m+1, a)+r*(b-j)*D(b, j+1, r, m, a))
return (sump)

calculate the cumulative distribution function for negative multivariate
hypergeometric using recursive algorithms for the Dirichlet HD function.
b, m, N are positive integers.
M, R are vector arguments.
pnmultihyper <- function (x , m, M, N)

{

if(any(x < 0))
stop(" 'x' must be non-negative")

if(any(M < 0))
stop("'M' must be non-negative")

if(m <= 0) stop("'m' must be great than 0.")
R=x+1
b=length(x)
if (b==1)

{

if (length(M)==1)
cdf <- HDV(b, R, m, M, N)

else
cdf <-sapply(M,function(y) HDV(b, R, m, y, N))

}

else
{

if(is.matrix(M))
{

if (ncol(M) ! =b)
stop(strwrap("The length of 'x' and the number columns

of 'M' must be equaL"), width = 60)
cdf <-apply(M, 1, function(y) HDV(b, R, m, y, N))
}

else
{

86

}

}

if(length(M)!=b)
stop("'X' and 'M' must be equal length vectors. ")

cdf <- HDV(b, R, m, M, N)

}

return(cdf)

##Dirichlet HD vector function:
HDV function is used to check if the input is valid.
RHDV is recursive function for Dirichlet HD function.
HDV <- function(b, R, m, M, N)

{

if(any(R<=O))return(O)
hdv <- RHDV(b, R, m, M, N)
return (hdv)
}

RHDV <- function(b, R, m, M, N)

}

{

if((max(M)== min(M)) & (max(R)== mineR)))

{

check if all the values in vector M are the same and
if all the values in vector R are the same

rhdv = HD(b, 0, R[1], m, M[1], N)
return (rhdv)
}

r1 <- R[1]-1
R1 <- R[-1]
m1 <- M[1]
Mm <- N-sum(M)
if(Mm <= m)return(O)
M1 <- M[-1]
sump=O
for(i in (0:r1))

{

sump <- sump + (choose(m1,i)/((choose((N-sum(M1)), (m+i)))*(m+i))
)*RHDV(b-1, R1, (m+i), M1, N)

}

rhdv <- (choose(Mm, m))*m*sump
return (rhdv)

HD function for the same r and same M.
It is part of Dirichlet HD recursive function.
HD <- function(b, j, r, m, M, N)

{

if(r > M) return(1)
if(N <= m+b*r)return(O)
Mm <- N-b*M
if(Mm <= m)return(O)
if (j==b)

{

87

}

phd <- (m/(m+b*r))*(((choose(M,r))-b)*(choose(Mm, m))/choose(N, (m+b*r)))
return (phd)
}

if (m > r)
{

temp=O

}

for(i in O:(r-1))
{

temp <- temp +
(m/(m+i-r))*(choose(M,i)/choose(Mm, (m+i-r)))*HD(b, j+1, r, m+i-r, M, N)

}

phd <- (choose(Mm, m)/choose(M,r))*temp
return (phd)

phd <- (1/(m+j*r))*(m*(1+((j*(M-r))/(Mm-m)))
HD(b, j, r, m+1, M, N)+ r(b-j)*HD(b, j+1, r, m, M, N))

return (phd)

B.3 cdf.R

This section contains the functions that call the probability functions in the previous section

in order to calculate the probabilities of acceptance and expected waiting time (for sequential

sampling) of the object.

Calculate the pa (the acceptance probabilities) functions.
They are used in the initialzation function when creating the object.
calc.pmultihyper is used for fixed sampling with multivariate
hypergeometric distribution.
calc.pnmultinom is used for sequential sampling with negative
multinomial distribution.
calc.pnmultihyper is used for sequential sampling with negative
multivariate hypergeometric distribution.
calc.pmultihyper <- function(pd, rn, n, N)

}

{

M <- round(N*pd)
if(((N*pd) < (M-1e-6))I I ((N*pd) > (M+1e-6)))

stop("'N' times 'pd' must be integer numbers. ")
pa <- pmultihyper(rn-1, n, M, N)
return (pa)

calc.pnmultinom <- function(pd, rn, m)
{

88

}

R <- rn-1
pa <- pnmultinom(R, m, prob=pd)
return (pa)

calc.pnmultihyper <- function(pd, rn, m, N)
{

M=round(N*pd)

}

if « (N*pd) < (M-1e-6)) II «N*pd) > (M+1e-6)))
stop("'N' times 'pd' must be integer numbers. ")

R=rn-1
pa <- pnmultihyper(R, m, M, N)
return (pa)

Calculate the expected sample size (average sampling number) using
the D function for the arguments matching the ones in the classes.
pd is a vector or matix.
rn is a nonnegtive vector.
EWT <- function (pd, rn, m)

}

{

b=length(rn)
R=rn
if(is.matrix(pd))

{

if (ncol (pd) ! =b)
return(strwrap("The number of columns in pd must be equal to

the length of rn. ", width = 60))
ewt <- apply(pd, 1, function(x) EWTD(b, R, m, x))
}

else
{

if(length(pd)!=b)
return(strwrap("The length of pd must be equal to the

length of rn. ", width = 60))
ewt <- EWTD(b, R, m, pd)
}

return (ewt)

Calculate the expected sample size (average sampling number) using
the HD function for the arguments matching the ones in the classes.
pd is a vector or matix.
rn is a nonnegtive vector
EWTH <- function(pd, rn, m, N)

{

b=length(rn)
R=rn
if(is.matrix(pd))

{

if(ncol(pd)!=b)
return(strwrap("The number of columns in pd must be equal to

the length of rn. ", width = 60))

89

}

M <- round(pd*N)
ewt <- apply(M, 1, function(x) EWTHD(b, R, m, x, N))
}

else
{

if(length(pd)!=b)
return(strwrap("The length

length of rn.", width
M <- round(pd*N)
ewt <- EWTHD(b, R, m, M, N)
}

return (ewt)

of pd must be equal to the
60))

Calculate the expected sample size (average sampling number) using
the D function for the arguments defined as Dirichlet D function.
b, m are positive integers.
R, P are vector arguments.
EWTD <- function(b, R, m, p)

{

if(length(P)!= b I length(R)!= b)
stop (liThe length of 'Pi' and 'R' must be equal to 'b'. ")

if(any(P>1)lany(P<O))stop("'p' is out of range (0,1)11)
if(sum(P»1)stop("Sum of 'P' must not be greater than 1.")
if(any(R<=O))return(O)
pO <- 1-sum(P)
if(all(P==O)) return(m)
else

{

RR <- c(m, R)
PP <- cepo, p)
R <- RR[PP!=O]
P <- PP[PP!=O]
b <- length(R)

EPWT <- 0
for(i in 1:b)

{

ri <- R[i]
Ri <- R[-i]
pi <- P [i]
Pi <- P [-i]
EPWT <- EPWT+(ri/pi)*RDV(b-1, Ri, ri+1, Pi, pi)
}

}

return (EPWT)
}

Calculate the expected sample size (average sampling number) using
the HD function for the arguments defined as Dirichlet HD function.
b, m, N are positive integers.
R, M are vector arguments.
EWTHD <- function(b, R, m, M, N)

90

}

{

if(m <= °) stop("'m' must be greater than 0.")
if(length(M)!= b I length(R)!= b)

stop (liThe length of ' M' and ' R' must be equal to ' b' . ")
EPWT <- °
Mg <- N-sum(M)
Rm <- c(m, R)
MM <- c(Mg, M)
for(i in 1:(b+1»

{

ri <- Rm[i]
Ri <- Rm[-i]
mi <- MM [i]
Mi <- MM[-i]
EPWT <-EPWT+(ri*(N+1)/(mi+1»*RHDV(b, Ri, ri+1, Mi, N+1)
}

return (EPWT)

B.4 assess.R

The following code is for assessing whether the given plan can meet the criteria specified in

PRP(Producer Risk Point) and/or CRP (Consumer Risk Pint).

Assessment function is used to assess whether the given plan can meet the criteria
specified in PRP(Producer Risk Point) and/or CRP (Consumer Risk Pint).
assess.multi <- function(rn, n=30, m, N=100, PRP, CRP, type=c("multinomial", "hypergeom"),

stype=c("fixed", "sequential"), print=TRUE)
{

if(any(rn < 1»
stop (liThe values in 'rn' must not be less than 1.")

if(missing(PRP) & missing(CRP»
stop(IIAt least one risk point, PRP or CRP, must be specified")

type <- match.arg(type)
stype <- match.arg(stype)
if (stype=="sequential") {

if (missing(m»
stop("'m' is missing. ")

if(m < 1)
stop (" 'm' must be greater than 0.")

}

if (missing(PRP»
{

1 <- length(CRP)

91

if(any(CRP < 0) I any (CRP > 1))
stop('IJCRP' is out of range (0,1).")

if (1)2)

{

if(sum(CRP[-1))>1)
stop ("Sum of risk point must not be greater than 1.")

}

PRP <- rep(NA,l)
if (stype=="fixed")

{

if (type=="multinomial")
peons <- pmultinom(rn-1, n, CRP[-l))

else
peons <- calc.pmultihyper(CRP[-l) , rn, n, N)

}

else
{

if (type=="multinomial")
{

peons <- calc.pnmultinom(CRP[-l) , rn, m)
asncons <- EWT(CRP[-l) , rn, m)
}

else
{

peons <- calc.pnmultihyper(CRP[-l) , rn, m, N)
asncons <- EWTH(CRP[-l) , rn, m, N)
}

}

if (stype=="fixed")
result2 <- c(CRP, peons)

else
result2 <- c(CRP, peons, asncons)

if(pcons >= CRP[l))
plan.meet <- FALSE

else
plan.meet <- TRUE

result <- as.matrix(t(result2))
defname = as.vector(sapply("type", FUN paste, (1:(1-1))))
if (stype==" fixed")

dimnames(result) <- list("CRP",
c(defname,
"RP P(accept) " "Plan P(accept)"))

else
dimnames(result) <- list("CRP",

}

else if(missing(CRP))
{

1 <- length(PRP)

c (defname, "RP P (accept) ",
"Plan P (accept) ", "ASN"))

92

}

else
{

if(any(PRP < 0)1 any(PRP[l]>l))
stop("'PRP' is out of range (0,1).")

if (1)2)
{

if(sum(PRP[-l]»l)
stop("Sum of risk point must not be greater than 1. ")

}

eRP <- rep(NA,l)
if (stype=="fixed")

{

if (type=="multinomial")
pprod <- pmultinom(rn-l, n, PRP[-l])

else
pprod <- calc.pmultihyper(PRP[-l], rn, n, N)

}

else
{

if (type== "multinomial")
{

pprod <- calc.pnmultinom(PRP[-l], rn, m)
asnprod <- EWT(PRP[-l] , rn, m)
}

else
{

pprod <- calc.pnmultihyper(PRP[-l] , rn, m, N)
asnprod <- EWTH(PRP[-l] , rn, m, N)
}

}

if (stype==" fixed")
resultl <- c(PRP, pprod)

else
resultl <- c(PRP, pprod, asnprod)

if(pprod <= PRP[l])
plan.meet <- FALSE

else
plan.meet <- TRUE

result <- as.matrix(t(resultl))
defname = as.vector(sapply("type", FUN paste, (1:(1-1))))
if (stype=="fixed")

dimnames(result) <- list("PRP",
c(defname,

"RP P(accept) " "Plan P(accept)"))
else

dimnames(result) <- list("PRP",
c(defname, "RP P(accept) ",
"Plan P(accept) ", "ASN"))

1 <- length(PRP)

93

if (any (CRP [-1] <= PRP[-l]))
stope "Consumer Risk Point quality must be greater than Producer

Risk Point quality. ")
if(any(PRP < 0)1 any(PRP> 1))

stop("'PRP' is out of range (0,1).")
if(any(CRP < 0) 1 any (CRP > 1))

stop("'CRP' is out of range (0,1).")
if(1)2){if(sum(PRP[-1])>1Isum(CRP[-1])>1)

stop(IISum of risk point must not be greater than 1. ")}
if (stype=="fixed")

{

if (type=="multinomial")
{

pprod <- pmultinom(rn-1, n, PRP[-l])
peons <- pmultinom(rn-1, n, CRP[-l])
}

else

}

else
{

{

pprod <- eale.pmultihyper(PRP[-l] , rn, n, N)
peons <- eale.pmultihyper(CRP[-l] , rn, n, N)
}

if (type=="multinomial")
{

pprod <- eale.pnmultinom(PRP[-l], rn, m)
peons <- eale.pnmultinom(CRP[-l] , rn, m)
asnprod <- EWT(PRP[-l] , rn, m)
asneons <- EWT(CRP[-l] , rn, m)
}

else
{

pprod <- eale.pnmultihyper(PRP[-l] , rn, m, N)
peons <- eale.pnmultihyper(CRP[-l] , rn, m, N)
asnprod <- EWTH(PRP[-l] , rn, m, N)
asneons <- EWTH(CRP[-l] , rn, m, N)

}

}

if (stype=="fixed")
{

result1 <- e(PRP,
result2 <- e(CRP,
}

else
{

result1 <- e(PRP,
result2 <- c(CRP,
}

if(pprod <= PRP[l] 1

pprod)
peons)

pprod, asnprod)
peons, asneons)

peons >= CRP[l])

94

plan.meet <- FALSE
else

plan.meet <- TRUE
result <- rbind(result1, result2)
defname = as.vector(sapply("type", FUN = paste, (1:(1-1))))
if (stype=="fixed")

dimnames(result) <- list(c("PRP", "CRP"),
c(defname,
"RP P(accept)" "Plan P(accept)"))

else

}

dimnames(result) <- list(c("PRP", "CRP"),
c(defname, "RP P(accept) "

"Plan P(accept) ", "ASN"))

if (print)
{

if (stype=="fixed")
{

}

else
{

if (type=="multinomial")
{

cat(" ", paste(l,
"-Level Acceptance Sampling Plan Multinomial:", sep=""), "\n")

cat(" Sample size: ", paste(n), "\n")
cat(" Rej. Number(s): ", paste (rn) , "\n")
cat("\n")
}

else

}

{

cat("" paste(l,
"-Level Acceptance Sampling Plan Multivariate Hypergeometric: N ="

N, sep=""), "\n")
cat (" Sample size: ", paste (n), "\n"
cat(" Rej. Number(s): ", paste (rn), "\n")
cat("\n")

if (type=="multinomial")
{

cat(" ", paste(l,
"-Level Acceptance Sampling Plan Negative Multinomial:", sep=""), "\n")

cat(" Acc. Number: m =" paste(m), "\n")
cat(" Rej. Number(s): ", paste (rn) , "\n")
cat("\n")
}

else
{

cat(" " paste(l,
"-Level Acceptance Sampling Plan Negative Multivariate Hypergeometric: N ="

95

}

}

}

}

N, sep="") , "\n")
cat (" Ace. Number: m = II paste (m), "\n")
cat(1I Rej. Number(s): ", paste(rn), "\n")
cat("\n")

if (plan.meet)
{

cat(1I Plan CAN meet desired risk point(s): \n")}
else

{

cat(1I Plan CANNOT meet desired risk point(s): \n")
}

print (formatC(result , digits = 8, format = IIfll, dropOtrailing=TRUE),quote FALSE)
}

if (stype=="fixed")
{

if (type=="multinomial")
{

return(invisible(c(list(n=n, rn=rn,
result=result, plan.meet=plan.meet»»

}

else

}

{

return(invisible(c(list(N=N, n=n, rn=rn,
result=result, plan.meet=plan.meet»»

}

else
{

if (type=="multinomial")
{

}

return (invisible (c (list (rn=rn, m=m,
result=result, plan.meet=plan.meet»»

else

}

{

return(invisible(c(list(N=N, rn=rn, m=m,
result=result, plan.meet=plan.meet»»

96

B.5 findplan.R

The following code is to find the best plan that meets the criteria specified in PRP(Producer

Risk Point) and CRP (Consumer Risk Pint).

find.multi.plan <- funetion(PRP, CRP, N=100, type= e("multinomial", "hypergeom"),
stype= e("fixed", "sequential"))
{

type <- mateh.arg(type)
stype <- mateh.arg(stype)
l=length(PRP)
k=1-1
done=O
if (stype=="fixed")

{

if (type=="multinomial")
{

n <- 0
while (done==O)

{

n=n+1
rn=rep(1, k)
peons <- pmultinom(rn-1, n, CRP[-l])
if(peons <= CRP[l])

}

{

pprod <- pmultinom(rn-1, n, PRP[-l])
if(pprod >= PRP[l])

{

done=1
break
}

else
{

fune=n.plan(k, rn, n, PRP, CRP, peons)
done=fune$done
if (done==1)

{

pprod=fune$pprod
peons=fune$peons
rn=fune$rn
}

}

}

}

else
{

97

}

n <- 0
while (done==O)

{

}

n=n+1
rn=rep(1, k)
peons <- eale.pmultihyper(CRP[-l], rn, n, N)
if(peons <= CRP[l])

}

{

pprod <- eale.pmultihyper(PRP[-l] , rn, n, N)
if(pprod >= PRP[l])

{

done=1
break
}

else

}

{

fune=h.plan(k, rn, n, N, PRP, CRP, peons)
done=fune$done
if (done==1)

}

{

pprod=fune$pprod
peons=fune$peons
rn=fune$rn
}

else
{

if (type=="multinomial")
{

m <- 0
while (done==O)

{

m=m+1
rn=rep(1, k)
pprod <- eale.pnmultinom(PRP[-l], rn, m)
peons <- eale.pnmultinom(CRP[-l] , rn, m)
if(peons <= CRP[l] & pprod >= PRP[l])

{

done=1
break
}

else
{

if(peons <= CRP[l])
{

fune=nm.plan(k, rn, m, PRP, CRP, peons)

98

}

}

}

done=fune$done
if (done==l)

}

{

pprod=fune$pprod
peons=fune$peons
rn=fune$rn
m=fune$m
}

asnprod <- EWT(PRP[-l] , rn, m)
asneons <- EWT(CRP[-l] , rn, m)

else

}

{

m <- 0
while (done==O)

{

}

m=m+l
rn=rep (1, k)
peons <- eale.pnmultihyper(CRP[-l] , rn, m, N)
if(peons <= CRP[l])

}

{

pprod <- eale.pnmultihyper(PRP[-l] , rn, m, N)
if(pprod >= PRP[l])

{

}

done=l
break

else

}

{

fune=nh.plan(k, rn, m, PRP, CRP, N, peons)
done=fune$done
if (done==l)

}

{

pprod=fune$pprod
peons=fune$peons
rn=fune$rn
m=fune$m
}

asnprod <- EWTH(PRP[-l] ,
asneons <- EWTH(CRP[-l] ,

fune$rn, fune$m, N)
fune$rn, fune$m, N)

if (stype=="fixed")
result <- list (n=fune$n, rn=fune$rn, p.PRP=fune$pprod, p.CRP=fune$peons)

99

else
result <- list (m=m, rn=rn, p.PRP=pprod, p.CRP=peons,

ASNp=asnprod, ASNe=asneons)
eat(II The optimal plan is: \n")
show (result)
return(invisible(result))
}

recursive find plan function for multinomial distribution
n.plan <- funetion(b, rn, n, PRP, CRP, peons)

{

l=length(PRP)
k=1-1
done=O
if (b==1)

{

while(peons <= CRP[l])
{

pprod <- pmultinom(rn-1, n, PRP[-l])
peons <- pmultinom(rn-1, n, CRP[-l])
if(peons <= CRP[l] & pprod >= PRP[l])

{

done=1
break
}

if(sum(rn-1»= n)
break

else
rn[k]=rn[k]+1

}

if (done==1)
return(list(n=n, rn=rn, pprod=pprod, peons=peons, done=done))

else
{

if (k!=b)
{

}

}

rn[k] =1
rn[k-1] =rn[k-1] +1
pprod <- pmultinom(rn-1, n, PRP[-l])
peons <- pmultinom(rn-1, n, CRP[-l])

return(list(n=n, rn=rn, pprod=pprod, peons=peons, done=done))
}

else
while(peons <= CRP[l])

{

fue=n.plan(b-1, rn, n, PRP, CRP, peons)
done = fue$done
pprod=fue$pprod
peons=fue$peons

100

}

if (done==1)
{

rn=fuc$rn
break
}

else
{

rn[k-b+1] <-rn[k-b+1]+1
rn[(k-b+2):k] <- 1
if(pcons <= CRP[l] & pprod >= PRP[l])

{

done=1
break
}

}

if(sum(rn-1»= n)
break

}

if (done==1)
return(list(n=n, rn=rn, pprod=pprod, pcons=pcons, done=done))

else
{

if (k! =b)
{

rn[(k-b+1):k] <-1
rn[k-b]=rn[k-b]+1
pprod <- pmultinom(rn-1, n, PRP[-l])
peons <- pmultinom(rn-1, n, CRP[-l])
}

return(list(n=n, rn=rn, pprod=pprod, pcons=pcons, done=done))
}

recursive find plan function for multivariate hypergeometric distribution
h.plan <- function(b, rn, n, N, PRP, CRP, peons)

{

l=length(PRP)
k=1-1
done=O
if (b==1)

{

while(pcons <= CRP[l])
{

pprod <- calc.pmultihyper(PRP[-l] , rn, n, N)
peons <- calc.pmultihyper(CRP[-l], rn, n, N)
if(pcons <= CRP[l] & pprod >= PRP[l])

{

done=1
break
}

101

if(sum(rn-1»= n)
break

else
rn [k] =rn [k] + 1

}

if (done==l)
return(list(n=n, rn=rn, pprod=pprod, peons=peons, done=done))

else

}

else

{

if(k!=b)
{

}

rn [k] =1
rn[k-l]=rn[k-l]+1
pprod <- eale.pmultihyper(PRP[-l] , rn, n, N)
peons <- eale.pmultihyper(CRP[-l] , rn, n, N)
}

return(list(n=n, rn=rn, pprod=pprod, peons=peons, done=done))

while(peons <= CRP[l])
{

fue=fue=h.plan(b-l, rn, n, N, PRP, CRP, peons)
done = fue$done
pprod=fue$pprod
peons=fue$peons
if (done==l)

{

rn=fue$rn
break
}

else
{

rn[k-b+l] <-rn[k-b+l]+l
rn[(k-b+2):k] <- 1
if(peons <= CRP[l] & pprod >= PRP[l])

{

done=l
break
}

}

if(sum(rn-l»= n)
break

}

if (done==l)
return (list (n=n, rn=rn, pprod=pprod, peons=peons, done=done))

else
{

if(k!=b)
{

102

}

}

rn[(k-b+1):k] <-1
rn[k-b]=rn[k-b]+1
pprod <- calc.pmultihyper(PRP[-l] , rn, n, N)
pcons <- calc.pmultihyper(CRP[-l] , rn, n, N)
}

return(list(n=n, rn=rn, pprod=pprod, pcons=pcons, done=done»

recursive find plan function for negative multinomial distribution
nm.plan <- function(b, rn, m, PRP, CRP, pcons)

{

l=length(PRP)
k=1-1
done=Q
if (b==1)

{

while(pcons <= CRP[l])
{

pprod <- calc.pnmultinom(PRP[-l] , rn, m)
pcons <- calc.pnmultinom(CRP[-l], rn, m)
if(pcons <= CRP[l] & pprod >= PRP[l])

{

done=1
break
}

if(rn[k] > m)
break

else
rn [k] =rn [k] + 1

}

if (done==1)
return(list(m=m, rn=rn, pprod=pprod, pcons=pcons, done=done»

else
{

if(k!=b)
{

}

rn [k] =1
rn[k-1]=rn[k-1]+1
pprod <- calc.pnmultinom(PRP[-l], rn, m)
pcons <- calc.pnmultinom(CRP[-l], rn, m)
}

return(list(m=m, rn=rn, pprod=pprod, pcons=pcons, done=done»
}

else
while(pcons <= CRP[l])

{

fuc=nm.plan(b-1, rn, m, PRP, CRP, pcons)
done = fuc$done
pprod=fuc$pprod

103

}

peons=fue$peons
if (done==!)

{

rn=fue$rn
break
}

else
{

rn[k-b+1] <-rn[k-b+1]+1
rn[(k-b+2):k] <- 1
if(peons <= CRP[l] & pprod >= PRP[l])

{

}

done=1
break
}

if(rn[k-b+1] > m)
break

}

if (done==1)
return(list(m=m, rn=rn, pprod=pprod, peons=peons, done=done»

else

}

{

if(k!=b)
{

rn[(k-b+1):k] <-1
rn[k-b]=rn[k-b]+1
pprod <- eale.pnmultinom(PRP[-l], rn, m)
peons <- eale.pnmultinom(CRP[-l], rn, m)
}

return(list(m=m, rn=rn, pprod=pprod, peons=peons, done=done»

recursive find plan function for negative multivariate hypergeometrie distribution
nh.plan <- funetion(b, rn, m, PRP, CRP, N, peons)

{

l=length(PRP)
k=1-1
done=O
if (b==1)

{

while(peons <= CRP[l])
{

pprod <- eale.pnmultihyper(PRP[-l] , rn, m, N)
peons <- eale.pnmultihyper(CRP[-l], rn, m, N)
if(peons <= CRP[l] & pprod >= PRP[l])

{

done=1
break

104

}

else

}

if (rn [k] > m)

break
else

rn [k) =rn [k] +1
}

if (done==1)
return(list(m=m, rn=rn, pprod=pprod, peons=peons, done=done))

else
{

if(k!=b)
{

}

rn[k] =1
rn[k-1]=rn[k-1]+1
pprod <- eale.pnmultihyper(PRP[-l], rn, m, N)
peons <- eale.pnmultihyper(CRP[-l], rn, m, N)
}

return(list(m=m, rn=rn, pprod=pprod, peons=peons, done=done))

while(peons <= CRP[l))
{

fue=nh.plan(b-1, rn, m, PRP, CRP, N, peons)
pprod=fue$pprod
peons=fue$peons
done = fue$done
if (done==1)

{

rn=fue$rn
break
}

else
{

rn[k-b+1] <-rn[k-b+1]+1
rn[(k-b+2):k] <- 1
if(peons <= CRP[l) & pprod >= PRP[l])

{

}

done=1
break
}

if(rn[k-b+1) > m)
break

}

if (done==1)
return (list (m=m, rn=rn, pprod=pprod, peons=peons, done=done))

else
{

if(k!=b)

105

}

}

{

rn[(k-b+l):k] <- 1
rn[k-b]=rn[k-b]+1
pprod <- calc.pnmultihyper(PRP[-l] , rn, m, N)
pcons <- calc.pnmultihyper(CRP[-l] , rn, m, N)
}

return(list(m=m, rn=rn, pprod=pprod, pcons=pcons, done=done))

B.6 Testing.R

The following code contains the functions for calculating the cumulative probabilities for the

multivariate distributions using multiple summation [equation (2.1) - (2.4)], and the functions

for calculating the expected waiting time for sequential sampling using the Dirichlet J-

functions and HJ-functions [equation (2.28) and (2.31)]. These functions, which are excluded

in the package, were used to check the corresponding functiom; uRed in the package.

Function for calculating proberbility for multnomial distribution
ac is vector of acceptance number (ac = rn - 1)
pmultbinom <- function(pd, n, ac)

{

if (any (pd>l) !any(pd<O))return("'p' is out of range (0,1)")
if(any(ac>n)!any(ac<O))return("'ac' is out of range (O,n)")
expand ac(a vector of acceptance number)
x=c(l,ac+l)
l<-length(x)
y=NULL
for(i in 2:1)

{

y=cbind(y,rep(O:(x[i]-l), each=prod(x[-(2:i)]) ,
times=prod(x[(l:(i-l))])))
}

remove defective number exceed sample size
X <- y[rowSums(y)<= n,]
X <- cbind(X, n-rowSums(X))
if (is.matrix(pd))

{

p <- cbind(pd, l-rowSums(pd))
pa=NULL
for(k in c(l:dim(p) [1]))

{

106

}

}

pa[k]=sum(apply(X, 1, function(x) dmultinom(x, prob =p[k,])))
}

else
{

p <- c(pd, l-sum(pd))
pa = sum(apply(X, 1, function(x) dmultinom(x, prob =p)))

}

return (pa)

Function for calculating the density for multivariate hypergeometric distribution
dmultihyper <- function(x, M)

{

#if(any(M < x))return(" 'x' must be less than 'M'.")
prod(choose(M, x))/choose(sum(M), sum(x))

}

Function for calculating the probability for multivariate hypergeometric distribution
pmultihyper <- function(pd, N, n, ac)

{

if(any(pd>1)lany(pd<O))return('''p' is out of range (0,1)")
if(any(ac>n)lany(ac<O))return("'ac' is out of range (O,n)")
if(N < n)return(" 'n' must be less than 'N' .")
expand ac(a vector of acceptance number)
x=c (1 ,ac+l)
l<-length(x)
y=NULL
for(i in 2:1)

{

y=cbind(y,rep(O:(x[i]-l), each=prod(x[-(2:i)]),
times=prod(x[(l:(i-l))])))

}

remove defective number exceed sample size
X <- y[rowSums(y)<=n,]
X <- cbind(X, n-rowSums(X))
get a matrix of type defective numbers in population
MN <- N*pd
if(is.matrix(pd))

{

MN <- cbind(MN, N-rowSums(MN))
pa=NULL
#print(dim(X))
#print(l)
for(k in c(l:dim(MN) [1]))

{

remove any type defective number exceed the population size
flag <-apply(X, 1 ,function(x){return(all(x <= MN[k,]))})
xn <- X[flag,]
if(is.matrix(xn)){
pa[k] =sum (apply (xn , 1, function(x) dmultihyper (x, M = MN[k,])))

}

107

}

}

else
{

else {

}

pa[k]= dmultihyper (xn, M MN[k,])
}

MN <- c(MN, N-sum(MN))
remove any type defective number exceed the population size
flag <- apply(X,1,function(x){return(all(x <= MN)) })
xn <- X [flag,]
pa=sum(apply(xn, 1, function(x) dmultihyper (x, M = MN)))
}

return (pa)

#calculate the pdf for negative multinomial distribution
#x is a veactor of the number of failures
#m is a target number of successes
#prob is a vector of probabilities include last successe probability in vector
dnmultinom <- function (x, m, prob, log = FALSE)

{

}

K <- length(prob)-1
if (length(x) != K)

stop("1+ length of vector 'x' must be equal length vector 'prob'. ")
if (any(prob < 0) II (s <- sum(prob)) == 0)

stop ("probabili ties cannot be negative nor all 0.")
if (s > 1)

stop ("probabilities cannot be greater than 1.")
y <- X

X <- c(x, m)
if (any(x < 0))

stop(" 'x', 'm' must be non-negative")
x <- as.integer(x + 0.5)
N <- sum(x)
iO <- prob == 0
if (any(iO))

{

if (any(x[iO] != 0))

return(if (log) -Inf else 0)

x <- X [! iO]
prob <- prob [! iO]
}

r <- 19amma(N) + sum(x * log(prob)) - sum(lgamma(y + 1)) - 19amma(m)
if (log)

r
else exp(r)

#calculate the cdf for negative multinomial distribution
#pd is a marix or a vector of probabilities of failures
#m is ac is a veactor of a target number of successes and the numbers of failures

108

pnmultinom <- function(pd, ac)
{

}

if(any(pd>1)lany(pd<0))
stop(" 'p' is out of range (0,1). ")
m=ac [1]
expand ac(a vector of acceptance number)
x=c (1, ac [-1] +1)
l<-length(x)
y=NULL
for(i in 2:1)

{

y=cbind(y,rep(0:(x[i]-1), each=prod(x[-(2:i)]),
times=prod(x[(1:(i-1))]))) #repeat numbers

##from 0 to x[i]-1, each number repeat the mutiplication of x[-(2:i)] times,
##repeat the mutiplication of x[(1:(i-1))] times.

}

#calculate the probability for matix(pd)
if(is.matrix(pd))

{

p <- cbind(pd, 1-rowSums(pd))
pa=NULL
for(k in c(1:nrow(p)))

{

}

else

pa[k]=sum(apply(y, 1, function(x) dnmultinom(x, m, prob =p[k,])))
}

#calculate the probability for vector(pd)
{

p <- c(pd, 1-sum(pd))
pa = sum(apply(y, 1, function(x) dnmultinom(x, m, prob =p)))
}

return (pa)

calculate the density for negative multivariate hypergeometric distribution
dnmultihyper <- function(x, m, M, N)

{

if(m > (N-sum(M)))
return(O)

else
pmf <- ((choose((N-sum(M)), (m-1))*prod(choose(M,x)))/choose(N,(m+sum(x)-1))

)*((N-sum(M)-m+1)/(N-m-sum(x)+1))
return (pmf)

}

calculate the probability cdf for negative hypergeometric distribution
pnmultihyper <- function(pd, ac, N)

{

if(any(pd>1)lany(pd<0))
stop("'p' is out of range (0,1)")

if(any(ac>N)lany(ac<O))

109

stop('''ac' is out of range (0, N)")
m=ac [1]
expand ac(a vector of acceptance number)
x=c (1, ac[-1] +1)
l<-length(x)
y=NULL
forCi in 2:1)

{

y=cbind(y,rep(0:(x[i]-1), each=prod(x[-(2:i)]), times=prod(x[(1:(i-1))])))
#repeat numbers from ° to x[i]-1, each number repeat the multiplication of
x[-(2:i)] times, repeat the multiplication of x[(1:(i-1))] times.
}

remove defective number exceed population size
X <- y[(rowSums(y)+m)<N,]

get a matrix of type defective numbers in population
MN <- round(N*pd)
#calculate the probability for matix(pd)
if(is.matrix(pd))

{

#MN <- cbind(MN, N-rowSums(MN))
pa=NULL
for(k in c(1:nrow(MN)))

{

}

#remove any type defective number exceed the population size
flag <-apply(X,1,function(x){return(all(x <= MN[k,]))})
xn <- X[flag,]
if(is.matrix(xn))

{

pa[k]=sum(apply(xn, 1, function(x) dnmultihyper (x, m, M = MN[k,] ,N)))
}

else

}

{

pa[k]= dnmultihyper (xn,m, M MN[k,],N)
}

else
#calculate the probability for vector(pd)

{

MN <- c(MN, N-sum(MN))
#remove any type defective number exceed the population size
flag <- apply(X,1,function(x){return(all(x <= MN)) })

xn <- X [flag,]
if(is.matrix(xn))

{

pa=sum (apply (xn, 1, function(x) dnmultihyper (x,m, M = MN, N)))
}

else
{

pa= dnmultihyper (xn, m, M = MN, N)

110

}

}

return (pa)
}

calculate the expected sample size using J function
b, m are positive integers # # R, P are vector arguments
EWTJ <- function(b, R, m, P)

}

{

if(length(P)!= b I length(R)!= b)
stop("The length of 'Pl' and 'R' must be equal to 'b'. ")
if (any(P>l) lany(P<O))stop("'p' is out of range (0,1)")
if(sum(P»l)return("Sum of 'P' must be not great than 1.")
if(any(R<=O))return(O)
pO <- 1-sum(P)
PO <- P/O-pO)
wtg <- 0
for(i in m:(m+sum(R)-b))

{

wtg <- wtg + i*(choose«i-l), (m-l)))*(pO~m)*«l-pO)~(i-m))*RJV(b, R, i-m, PO)
}

wtd <- 0
for(i in 1 :b)

{

}

ri <- R[i]
Ri <- c(m, R [-i])
pi <- P [i]
Pi <- c(pO, P [-i])
PI <- Pi/ (i-pi)
wtdi <- 0
for(j in ri:(m+sum(R)-b))

{

wtdi <- wtdi
+ j*(choose«j-l),(ri-l)))*(pi~ri)*«l-pi)~(j-ri))*RJV(b, Ri, j-ri, PI)

}

wtd <- wtd + wtdi

EPWT <- wtg + wtd
return (EPWT)

calculate the expected sample size using HJ function
b, m, N are positive integers
R M are vector arguments
ETWHJ <- function(b, R, m, M, N)

{

if(m <= 0) stop("'m' must be great than 0.")
if(length(M)!= b I length(R)!= b)

stop ("The length of 'M' and 'R' must be equal to 'b'.")
if«N-sum(M)) < m)

stop("'m' must be less or equal than the number of good item in the population.")
if(any(R<=O))return(O)

111

}

sm <- sum(M)
sr <- sum(R)
EWTG <- 0
for(i in (m :min(N,(sm+m),(m+sr-b))))

{

EWTG <- EWTG + i*(choose«N-sm),(m-1))*choose(sm, (i-m))
/choose(N, (i-1)))*«N-sm-m+1)/(N-i+1))*RHJV(b, R, i-m, M, sm)

}

EWTD <- 0
MG <- N-sm
for(i in 1:b)

{

mi <- M[i]
Mi <- c(MG, M[-i])
ri <- R[i]
Ri <- c(m, R[-i])
for(j in (ri : min(N, N-mi+ri, m+sr-b)))

{

}

EWTD <- EWTD + j*(choose(mi, (ri-1)*choose«N-mi), (j-ri))
/choose(N, (j-1)))*«mi-ri+1)/(N-j+1))*RHJV(b, Ri, j-ri, Mi, N-mi)
}

EPWT <- EWTG + EWTD
return (EPWT)

112

Bibliography

ASA (1950). Acceptance Sampling - A Symposium. American Statistical Association, Wash

ington, DC.

Bowker AH, Goode HP (1952). Sampling Inspection by Variables. McGraw-Hill, New York.

Bray D, Lyon D, Burr I (1973). "Three class attributes plans in acceptance sampling."

Technometrics, 15(3), 575-585.

Cassady CR, Nachlas AJ (2003). "Evaluating and implementing 3-level acceptance sampling

plans." Quality Engineering, 15(3), 361-369.

Childs A (2010). "Vector extensions of the Dirichlet HC and HD functions, with applications

to the sharing problem." Methodology and Computing in Applied Probability, 12,91 - 109.

Dodge HF (1943). "A sampling plan for continuous production." Annals of Mathematical

Statistics, 14(3), 264-279.

Dodge HF (1969a-c; 1970a). "Notes on the evolution of acceptance sampling plans." Journal

of Quality Technology, pp. Part I 1(2) 77-88; Part II 1(3) 155-162; Part III 1(4) 225-232;

Part IV 2(1) 1-8.

Dodge HF, Romig HG (1941). "Single sampling and double sampling inspection tables."

The Bell System Technical Journal, 20(1), 1-61.

113

Jennett WJ, Welch BL (1939). "The control of proportion defective as judged by a single

quality characteristic varying on a continuous scale." Supplement to the Journal of the

Royal Statistical Society, 6, 80-88.

Johnson NL, Kotz S, Balakrishnan N (1997). Discrete Multivariate Distributions. Wiley

Series in Probability and Statistics. Wiley, New York.

Kiermeier A (2008). "Visualizing and Assessing Acceptance Sampling Plans: The

R Package AcceptanceSampling." Journal of Statistical Software, 26(6). URL

http://www.jstatsoft.org/v26/i06/.

MIL-STD-105E (1989). Sampling procedures and tables for inspection by attributes. Depart

ment of defense, Washington, DC.

Newcombe P, Allen 0 (1988). "A three-class procedure for acceptance sampling by variables."

Technometrics, 30(4), 415-421.

Pearson ES (1935). The Application of Statistical Methods to Industrial Standardization and

Quality Control. British Standard 600:1935, British Standards Institution, London.

Romig HG (1939). Allowable average in sampling inspection. Ph.D. thesis, Columbia Uni

versity, New York.

Schilling EG, Neubauer DV (2009). Acceptance Sampling in Quality Control. CRC Press,

New York, second edition.

Shapiro S, Zaheda H (1990). "Bernoulli trials and discrete distributions." Journal of Quality

Technology, 22(3), 193-205.

Sobel M, Frankowski K (1994). "Hypergeometric analogues of multinomial type-1 Dirichlet

problems." Congressus Numerantium, 101, 65-82.

114

Sobel M, Frankowski K (1995). "Hypergeometric analogues of multinomial type-2 problems

via Dirichlet methodology." Congressus Numerantium, 106, 171-191.

Sobel M, Frankowski K (2004). Handbook of Beta Distribution and its applications, chapter

Extensions of Dirichlet integrals: their computation and probability applications, pp. 319-

360. Marcel Dekker, New York.

Sobel M, Uppuluri VRR, Frankowski K (1977). Dirichlet integrals of type-l and their ap

plication, volume 4 of Selected Tables in Mathematical Statistics. American Mathematical

Society, Providence, Rhode Island.

Sobel M, Uppuluri VRR, Frankowski K (1985). Dirichlet integrals of type-2 and their ap

plication, volume 9 of Selected Tables in Mathematical Statistics. American Mathematical

Society, Providence, Rhode Island.

Thatcher FS, Clarke DS (1978). "Micro-organisms in food 2: Sampling for Microbiological

Analysis, Principles and Specific Applications." University of Toronto Press.

115

