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Abstract 

Manufacturers and consumers often use acceptance sampling to determine the acceptability 

of a lot from an outgoing production or incoming shipment base on a sample. Multilevel 

acceptance sampling for attributes is applied when the product has multiple levels of product 

quality or multiple types of (mutually exclusive) possible defects. 

The aim ofthis project is to develop an R package MFSAS which provides the tools to create, 

evaluate, plot, and display multilevel acceptance sampling plans for attributes for both fixed 

and sequential sampling. The Dirichlet recursive functions are used to calculate cumulative 

probabilities for several common multivariate distributions which are needed in the package. 

Key words: acceptance sampling; multilevel quality control; operating characteristic; 

multinomial distribution; multivariate hypergeometric distribution; negative multinomial dis

tribution; negative multivariate hypergeometric distribution; Dirichlet recursive functions. 
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Chapter 1 

Introduction 

1.1 Background 

Acceptance sampling is used to decide whether a lot from an incoming shipment or outgoing 

production should be accepted or rejected by making an inference about the lot quality based 

on a sample. It is an important aspect of statistical quality control. 

Acceptance sampling can be dated back to the formation of the Inspection Engineering 

Department of Western Electric's Bell Telephone Laboratories in 1924. The first control chart 

appeared in 1924. The terminology of acceptance sampling (consumer's risk, producer's risk, 

probability of acceptance, OC curves, etc.) as well as lot tolerance percent defective (LTPD) 

sampling tables came out between 1925 and 1926. Average outgoing quality limit (AOQL) 

sampling tables were also presented in 1928. 

In the 1930s, applications of acceptance sampling were used within Western Electric and 

elsewhere. The American Society of Mechanical Engineers, the American Society for Test

ing and Materials (ASTM), American Institute of Electrical Engineers, American Statistical 

Association, and the American Mathematical Society formed a Joint Committee for the De-
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velopment of Statistical Applications in Development and Manufacturing in 1930. After that, 

Pearson (1935) developed British Standards Institution Standard Number 600, Application 

of Statistical Methods to Industrial Standardization and Quality Control, and Jennett and 

Welch (1939) published their paper on variables plans in England. In a doctoral disserta

tion called "Allowable average in sampling inspection", Romig (1939) presented the variables 

sampling plans along the lines of the Dodge-Romig tables which had been in use in Western 

Electric for some time in the USA. 

Acceptance sampling was popularized by Dodge and Romig and originally applied by the 

U.S. military to the testing of bullets during World War II. During this period, Dodge and 

Romig (1941) published "Single sampling and double sampling inspection tables". These 

tables provided plans based on fixed consumer risk (LTPD protection) and plans for rec

tification (AOQL protection) which guaranteed specified protection after 100% inspection 

of rejected lots. In 1942, the Ordnance sampling tables of Standard Inspection Procedures 

were developed by the Army's Office of the Chief of Ordnance and later they grew into the 

Army Service Forces (ASF) tables of 1944 (U.S. Department of the Army, 1944). Dodge 

(1943) published "A sampling plan for continuous production" which developed an accep

tance sampling plan for rectification inspection on a continuous sequence of products to 

assure consumer protection based on the maximum average quality the consumer would re

ceive (AOQL protection). Statistical Research Group in Columbia University made some 

outstanding contributions which consisted of advancements in variables and attributes sam

pling in addition to sequential analysis. In 1948, this group published "Sampling Inspection" 

which contained a manual on sampling inspection prepared for the U.S. Navy Office of Pro

curement and Material. Bowker and Goode (1952) published a book "Sampling Inspection 

by Variables" which was a milestone in the development of variables sampling plans. After 

World War II many procedures have been developed, and now these statistical procedures 

are widely employed in many fields such as food inspection, industry quality control, etc. 
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More details of the historical development of acceptance sampling can be found in Dodge 

(1969a-c; 1970a) and in a series of papers published by the American Statistical Association 

(ASA, 1950) under the title Acceptance Sampling. 

Acceptance sampling is divided into two major classifications: 

• Attributes sampling, in which an inspected item has two or more levels of product 

quality (or multiple types of possible defects) or the number of nonconformities in an 

item are counted; 

• Variable sampling, in which a characteristic in the inspected item is measured on a 

predetermined continuous scale. 

Attributes sampling is the most common form of acceptance sampling, and will be assumed 

for the rest of the sections. 

An appropriate sampling plan can be used to make an inference about whether the lot 

contains an acceptable proportion of each possible type of product defect; however, there is 

always a possibility that an incorrect decision is made from the sample. The probability of 

an incorrect decision is either 

or 

• the Producer's Risk (PR), which is the probability that a lot which has the Producer's 

Quality Level (PQL), at which the lot should be accepted most of the time, is rejected 

by the plan, 

• the Consumer's Risk (CR), which is the probability that a lot which has the Consumer's 

Quality Level (CQL), at which the lot should be rejected most of the time, is accepted 

by the plan. 
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An effective sampling plan should be the one which can reduce both risks. Thus it should 

have a specified high probability of accepting a lot that the producer considers to be of good 

quality, and has a specified low probability of accepting a lot that the consumer considers to 

be of poor quality. 

Once a sampling plan has been determined, the probability of accepting lots can be cal

culated for various levels of lot quality to obtain the Operating Characteristic (OC) function. 

For an up-to-date and complete reference on all aspects of acceptance sampling the reader 

is referred to Schilling and Neubauer (2009). 

Many studies focus on two level sampling plans and their properties. Only a few papers 

investigate multilevel sampling plans and mainly concentrate on three level plans; see, for 

example, Cassady and Nachlas (2003). 

For computation purposes, Kiermeier (2008) developed the R package AcceptanceSam

pIing, which can be used when the sample size is fixed and there are k = 2 levels of product 

quality. 

1.2 Objective 

The objective of our work is to develop an R package MFSAS, which provides functionality 

for creating and evaluating acceptance sampling plans for attributes when there are k (2: 2) 

levels of product quality. Plans can be multilevel fixed, or multilevel sequential. 

In Chapter 2 of this thesis, we first introduce multivariate acceptance sampling and the 

multivariate distributions used to calculate acceptance probabilities. Then we explain the 

Dirichlet functions applied in this package, which are used for the calculation of cumulative 

probabilities for the multivariate distributions. We then discuss the implementation of the 

MFSAS package in Chapter 3 and give examples of its use in Chapter 4. Finally, in Chap-
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ter 5, we briefly discuss the pros and cons of the package and possible directions for future 

work. 

The package documentation, including all help files, is given in Appendix A, and all of 

the code can be found in Appendix B. 
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Chapter 2 

Multilevel Acceptance Sampling 

Whether a lot from a manufacturer should be accepted or rejected is determined by making 

an inference about the lot quality based on a sample. The product quality can be described 

by classifying the product using more than two discrete levels in many circumstances. For 

example, a food product could be classified as good, marginal, or bad, depending on the con

centration of harmful microorganisms in the product. Products in MIL-STD-105E (1989) are 

classified as critical defective, major defective, minor defective, or nondefective. Other exam

ples of three or more classifications can be found in Cassady and Nachlas (2003), Bray, Lyon, 

and Burr (1973), Newcombe and Allen (1988), Thatcher and Clarke (1978), and Shapiro and 

Zaheda (1990). 

Multilevel acceptance sampling can be used for such a multilevel product quality measure. 

In this project, multilevel acceptance sampling plans are divided into two types, fixed and 

sequential. A fixed sampling plan has a fixed sample size, and allows the user to make an 

accept/reject decision after inspecting a pre-specified number of items. In contrast to fixed 

sampling plans, the sample size in sequential sampling plans is a random variable. Sequential 

plans sample and inspect the items in the lot one at a time, and they can allow a decision 
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to be reached more quickly in many cases. 

2.1 Fixed Sampling 

Suppose a sample of size n is selected from the lot. Let k (~ 2) denote the number of different 

levels of product quality, one of which consists of nondefective or good items, and let Xi be 

the number of defectives of type i in the sample, for i = 1,2, ... ,k - 1. A fixed sampling 

plan requires rejection numbers ri with the property that the lot will be rejected if Xi ~ ri 

for any i in {1, 2, ... ,k - 1}. Thus, the probability of acceptance Pa is calculated as 

Pa = P(Xl :::; rl - 1, X 2 :::; r2 - 1, ... , X k- l :::; rk-l - 1) . 

If the sample is drawn from a population with replacement, or if the population is large 

compared to the sample size, then the multinomial distribution is used to calculate the 

acceptance probability. The multivariate hypergeometric distribution is used when sampling 

from a finite population without replacement. 

2.1.1 Multinomial Distribution 

If a sample of size n is drawn from a population whose k classes have probabilities Pl, ... ,Pk-l, Pk, 

let Xl, ... ,Xk-l,Xk denote the number of observations drawn from each of the k classes. 

Then the cumulative probability of the multinomial distribution is given by 

Xl Xk-l 

P(Xl :::; Xl,···, X k- 1 :::; xk-d = I.: I.: P(Xl = Yl,···, X k- l = Yk-l) 
Yl=O Yk-l=O 

_ ~ ~l n! Yl Yk-l ( Lk-
l

) (n-:t>i) 
- L..; . .. L..; ( ) Pl ... Pk-l * 1 - Pi , 

I I ",k-l I 
Yl=O Yk_l=OYl····Yk-l· n- LJi=l Yi . i=l 

(2.1) 
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k-l 
where the sum is over all values of Y such that l: Yi :::; n. 

i=l 

2.1.2 Multivariate Hypergeometric Distribution 

If a sample of size n is drawn from a population of size N which has Mi objects of type i (for 

i = 1,2, ... ,k), let Xi be the number of objects of type i in the sample (for i = 1,2, ... , k). 

Then the cumulative probability of the multivariate hypergeometric distribution is given by, 

Xl xk-1 

P(XI :::; Xl,··· ,Xk-l :::; Xk-l) = L ... L P(XI = Yl, ... ,Xk- l = Yk-l) 
Y1=O Yk-1=O 

( 

k-l ) N- L: Mi 

(Nh) ... (Nh-l) i=l 
Yl Yk-l k-l 

Xl xk-l n- 2:: Yi - L L i=l 

- Yl=O'" Yk-1=O (~) , 

k-l 
where the sum is over all values of Y such that l: Yi :::; n, and Yi :::; IVh 

i=l 

2.2 Sequential Sampling 

(2.2) 

For "sequential" sampling, we require a cell quota m for the good items and cell quotas 

ri for the each of the defective items, for i = 1,2, ... ,k - 1. Sampling continues until either 

the number of good items or any of the k - 1 types of defectives reaches its respective quota. 

If the former occurs first, then the lot is accepted; otherwise it is rejected. 

Let Xi be the number of the ith type of defectives selected in a sequence of trials before 

the cell quota m of good items is reached. Then, the acceptance probability Pa can be 

8 



calculated as 

In a sequence of trials, if the sample is drawn from a population with replacement, or if the 

population is large compared to the sample size, then the negative multinomial distribution 

is used to calculate the acceptance probability. The negative multivariate hypergeometric 

distribution is used when selecting the sample (sequentially) from a finite population without 

replacement. 

2.2.1 Negative Multinomial Distribution 

Suppose that the population has k - 1 different types of failures, with corresponding prob-

abilities PI, ... ,Pk~l in each trial. Let Xl,"" Xk~l denote the number of failures of each 

type that are selected in a sequence of trials before a target number m of successes is reached. 

Then the cumulative probability of the negative multinomial distribution is: 

Xl xk-l 

P(XI :S Xl,···, Xk~l :S Xk~l) = L ... L P(XI = Yl,···, Xk~l = Yk~l) 
YI=O Yk-I=O 

( 

k 1 )m 
1- ?=Pi 

t=l 

(2.3) 

2.2.2 Negative Multivariate Hypergeometric Distribution 

Suppose that the population of size N has k - 1 different types of failures represented 

./I.lh, . .. , ./I.IIk~1 times, respectively. Let Xl,' .. , Xk~l denote the number of failures of each 

type that are selected in a sequence of trials before a target number m of successes is reached. 
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Then the cumulative probability of the negative multivariate hypergeometric distribution is: 

'''1 Xk-l 

P(XI :::; Xl,··· , Xk-l :::; Xk-l) = L ... L P(XI = Yl,··· , Xk-l = Yk-l) 
Yl=O Yk-l=O 

(Nh) (Mk-l) ( N - y:,l Mi ) k-l 
Xl Xk-l Yl· •• Yk-l t=l N - m + 1 - 2: Mi 

= L ... L m-l i=l 

Yl=O Yk-l=O ( N
k

_
l

) N-m+1-~tlYi 
m - 1 + L: Yi ,-1 

i=l 

(2.4) 

2.2.3 Expected Waiting Time 

Under "sequential" sampling, the number of units actually inspected becomes a random 

variable. The expected waiting time - WT (or average sample number - ASN) for such 

procedures can be determined. Suppose that the population has k - 1 different types of de-

fectives whose realizations are represented as dl , d2 , . .. , dk - l with corresponding cell quotas 

rl, r2, . .. , rk-l, and good items represented as g with cell quota m. Let Xl, .. . , X k- l denote 

the number of defects of each type that are selected in a sequence of trials. 

Let A be the event that sampling stops as a result of the cell quota m of good items 

being reached first. Let B be the event that sampling stops as a result of anyone of the cell 

quotas ri of defective items being reached first (for i = 1,2, ... k - 1). 

Then the expected waiting time can be calculated as: 

E(WT) La P(WT=a) 

La P(WT = a, A) + La P(WT = a, B) 

For the negative multinomial distribution, the population has k -1 different types of failures, 
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with corresponding probabilities PI, ... ,Pk-l in each trial. Therefore, 

P(WT = a, A) = P(WT = a, g last) 

Tl-I Tk_l-l (_ 1)1 

L L a. Xl xk-l m 
= ... PI .. 'Pk Pk 

Xl! ... Xk-l!(m - i)! -1' 
Xl=O Xk_l=O 

(2.5) 

where the sum is over all values of Xl, ... ,Xk - l such that Xl + ... +Xk - l +(m-l) = a-l, 

and 

k-l 
P(WT = a, B) = L: P(WT = a, di last) 

i=l 

(2.6) 

k-l 
where Pk = 1 - L: Pi, and the sum is over all values of Xl, ... ,Xi-I, Xi+l, ... , Xk such 

i=l 

that Xl + ... + X i- l + X i+l + ... + X k + (ri - 1) = a - 1. 
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For the negative multivariate hypergeometric distribution, the population of size N has 

k - 1 different types of failures represented l\Ih, . .. ,l\Ih-l times. Therefore, 

min(l\Ih, rl-l) 

P(WT= a, A) = L 
XI=O 

k-l 

min(MI, rk_I-1) 

L 
Xk_I=O 

k-l 
N-m+1- 'EMi 

i=l 
N-a+1 

(2.7) 

where a ::; N, a ::; m + 'E min(l\IJi , Ti - 1), and the sum is over all values of Xl, ... , Xk-l 
i=l 

such that Xl + ... + Xk-l + (m -1) = a -1, 

min(l\Ih, rl -1) 

P(WT = a, di last) = L 
XI=O 

min(l\Ih_l> rk-l-l) 

L 

min(Mi_l,ri_l- l ) 

L 
Xi-I=O 

(
k-l ) min N - .2: l\IIi , Tn-I 
-z.=1 

L 

k-l 

( l\Ih) ... (Mi-l) ( Mi ) (Mi+l) ... (Mk-l) (N- i~l Mi) 
Xl xi-l ri- l Xi+l Xk-l Xk- l Mi - Ti + 1 

----------------~~~----------~~--

( N) N-a+1' 
a-I 

k-l k-l 

(2.8) 

where i = 1,2, ... , k -1, a::; N, a::; Ti +min(N - 'E M j , m -1)+ 'E min(Mj, Tj -1), 
j=l j=l,ji'i 

and the sum is over all values of Xl, ... , Xi-I, Xi+l, ... , Xk such that Xl + ... + Xi- l + 

Then, the expected waiting time for the multinomial case can be expressed as follows: 
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k-l 
m+ ~ (Ti-I) 

i=l 

E(WT) = 
e>=m 

k-I 

a P(WT = a, 9 last) + 2: 
i=1 

k-l 
m+ ~ h-I) 

j=l 

a=Ti 

a P(WT = a, di last), (2.9) 

and the expected waiting time for the multivariate hypergeometric case is given by 

E(WT) = 

k-l 
m+ L: min(Mi,Ti-l) 

i=l 

e>=m 

a P(WT = a, 9 last) 

k-I ( 

k-l ) k-l 
Ti+min N- L: Mj,m-I + ~ min(Mj,Tj-l) 

j=l j=l, joli 

+2: 2: a P(WT = a, di last). (2.10) 
i=1 a=Ti 

2.3 The Dirichlet Functions 

Sobel, Uppuluri, and Frankowski (1977) introduced and developed the Dirichlet J function 

to calculate cumulative probabilities in the multinomal setting. Afterwards, the Dirichlet HJ 

function (Sobel and Frankowski, 1994) was similarly developed for the multivariate hyper

geometric setting, the Dirichlet D function (Sobel, Uppuluri, and Frankowski, 1985) for the 

negative multinomal, and the Dirichlet HD function (Sobel and Frankowski, 1995; Childs, 

2010) for the negative multivariate hypergeometric. These functions use multiple recurrence 

relations for the exact and highly efficient calculation of the cumulative probabilities for the 

corresponding multivariate distribution, thus eliminating the need for direct multiple sum-

mation. They also provide explicit formules for the expected waiting time, thus eliminating 

the need to compute equations (2.9) and (2.10) directly. Furthermore, it takes less time to 

compute the Dirichlet recursive functions than using multiple summation to calculate the 

cumulative probabilities in the R language. Therefore, we have used the Dirichlet J, HJ, 
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D, and HD functions to calculate cumulative probabilities for the multivariate distributions 

instead of direct multiple summation in the package MFSAS (see Appendix B.2). 

2.3.1 The Dirichlet J Function 

For the multinomial model, let b blue cells correspond to b different types of items in the 

population, each with the same probability p and the sink correspond to the remaining types 

of items with the probability 1-bp in the population. Let J~b,j)(r, n) denoted the probability 

that in a sample of size n taken from a large population, or with replacement from a finite 

population, j specified blue cells have exactly r observations and the remaining b - j blue 

cells have fewer than r observations. It can be illustrated as in Figure 2.1. 

b-j j 
/'... /'.... 

( ) ( ') 

u D • • • DO • • • 0 
1- pb ~p p p P) 

Y 
sink b blue cells 

Figure 2.1: Blue cells with common probability p for the multinomial model 

i.e., the probability J~b,j)(r, n) is defined as, 

P( exactly r items in j specified blue cells and less than r items 

in the remaining b - j blue cells in a sample of size n). 

When j = b, we can evaluate the J function directly: 

J~b, b) (r, n) = P( exactly r items in b specified cells in a sample of size n) 
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n! r r n-br 
I I( -b )I P ... p (l-bp) r . ... r. n r. '--v---" 

'--v-" b 
b 

n! br ( b )n-br d f b (r!)b(n _ br)!P 1 - P ,an is 0 or n < r. (2.11) 

When n = jr, the probability can also be computed directly as 

J(b,j)(r J'r) = (jr)!..-Jr and is 0 for n < J·r. 
P , (r!)jf' , (2.12) 

Using equations (2.11) and (2.12) as boundary conditions, the J~b,j) (r, n) can be calcu-

lated using a recurrence relation, which was developed by Sobel, Uppuluri, and Frankowski 

(1977), and is given in the following equation: 

(n - jr)J~b,j)(r, n) = n(l - jp)J~b,j)(r, n - 1) - (b - j)rJ~b,j+1)(r, n). (2.13) 

In order to define the J function with vector arguments, suppose we have b blue cells 
b 

with probability Pi (for i = 1,2, ... , b) and a sink with probability 1 - L Pi. Let r = 
i=l 

b 

(rl, r2,' .. ,rb), and Ii = (PI,P2," . ,Pb) with L Pi :::; 1. Let J~) (r; n) denote the probability 
i=l 

that blue cell i will have less than ri observations (for i = 1,2, ... ,b) in a sample of size n 

(see Figure 2.2). 

sink 

u 
b 

1- LPi 
i=l 

b blue cells 

-----------~~--------( , 
00 0 0 

PI P2 Pi Pb 

Figure 2.2: Blue cells with probability Pi having less than ri observations for the multinomial 
model 
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Then J~)(r; n) can be calculated as follows: 

J~)(r; n) = P( < T1 type 1, < T2 type 2, ... , < Tb type b) 

Tl-1 

= 2.: P(= a type 1, < T2 type 2, ... , < Tb type b) 

Tl-1 

= 2.: P« T2 type 2, < Tb type b I = a type l)P(= a type 1) 

(2.14) 

where P1 = P and r1 = r with the first components removed and q1 = 1 - Pl. 

Equation 2.14 allows the dimension of r to be repeatedly reduced until one of the follow

ing boundary conditions can be used, J¥)(r;n) = J~l,O)(T,n) and J~)(r; n) = J~b,O\T,n) 

when Ti = T and Pi = P for i = 1,2, ... , b. 

The probability of acceptance Pa is then calculated as 

in the fixed sample multinomial setting, where r = (Tl, . .. ,Tk-1) and p = (p1, . .. ,Pk-1). 

2.3.2 The Dirichlet HJ Function 

Let b blue cells correspond to b different types of items in the population, with the same 

number !vI of each item and let the sink cell correspond to the one remaining type of item 

which is represented N - bM times, where N is the total number of items in population. 

Let H J};',1<r(T, n) denoted the probability that in a sample of n observations, taken without 

replacement, j specified blue cells have exactly T observations and the remaining b - j blue 

cells have fewer than T observations (see Figure 2.3). 
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Figure 2.3: Blue cells with common M for the hypergeometric model 

i.e., the probability H J~',~(r, n) is defined as, 

H J(b,j) (r n) 
lvI,N ' P( exactly r items in j specified blue cells and less than r items 

in the remaining b - j blue cells in a sample of size n) 

The recurrence relation for the hypergeometric model with commen M and r, was developed 

by Sobel and Frankowski (1994), and is given by 

. (b,j) (j(M - r) ) (b,j) . (b,j+1) ( (n-]r)HJM N(r,n) = n 1- N HJM N(r,n-1)-(b-])rHJM N (r,n), 2.15) 
, -n+1' , 

with the following boundary conditions, 

eV!) b (N -bM) 
H J(b, b) (r n) - r n-br and is 0 for n < br, 

M,N' - (~) , (2.16) 

and 

(M)b 
HJ(b,j) ( .) 7· f 

M,N r,]r = (fr)' and is 0 or n < Jr. (2.17) 

In order to define the HJ function with vector arguments, suppose we have b different types 

of items in the population represented Nh, NI2 , . .. ,NIb, times, respectively, and a sink of size 
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b -> b 
N - z= Mi. Let r = (Tl, T2,···, Tb) , and M = (M1, M2'.·.' 1Yh) with z= Mi :::; N. Let 

i=1 i=1 

H J~ (r; n) denote the probability that blue cell i will have less than Ti observations (for M,N 

i = 1,2, ... , b) in a sample of size n (see Figure 2.4). 

b blue cells 
sink ~ ________ ~)l~ ________ __ 

( , 
u DO tJ 0 

Figure 2.4: Blue cells with size Mi and cell quota Ti for the hypergeometric model 

For the purpose of computing the vector form of the HJ function, we let Ml be the 

vector of cell sizes with the first cell size missing and rl the r vector with the first com

ponent missing, i.e., Ml = (M2, ... , ... , Mb) and r\ = (T2, ... , Tb). Then the probability 

Hit!, N (r; n) is calculated as follows: 

Hit! N(r; n) = P( < Tl type 1, < T2 type 2, , < Tb type b) 

min(Nh,Tl-l) 

L P( = 0: type 1, < T2 type 2, < Tb type b) 
0<=0 

min(Nh,Tl-l) 

L P( < T2 type 2 , < Tb type b 1=0: type 1) P(= 0: type 1) 
0<=0 

min(Nh,Tl-l) (Nh) (N-Ml) 
"\"' 0< n-o< HJ(b-l) (---+ . ) 
~ (~) Ml,N-Ml Tt, n - 0: . 

(2.18) 

Equation 2.18 allows the dimension of r to be repeatedly reduced until one of the follow

ing boundary conditions can be used, H JMQ)N(r; n) = H Jr/~(T, n), and H J0} N(r; n) = 
, ' NI, 

H Jf;',~(T, n) for Mi = M and Ti = T for i = 1,2, ... , b. 
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The probability of acceptance Pa is then calculated as 

Pa = P(Xl ::; rl - 1, X 2 ::; r2 - 1", . , Xk-l ::; rk-l - 1) = H J~-~\r; n), , 

in the fixed sample size multivariate hypergeometric setting, where r = (rl,"" rk-l) and 

2.3.3 The Dirichlet D Function 

In the negative multinomial setting, let b blue cells correspond to b different types of items in 

the population, each with the same probability P and let the counting cell correspond to the 

remaining type of item in the population, with the probability 1 - bp. In this case, we select 

items one at a time until the counting cell reaches a pre-specified number m for the first 

time, which is called stopping time. Let D~b,j) (r, m) denoted the probability that j specified 

blue cells have exactly r observations and the remaining b - j blue cells have fewer than r 

observations at stopping time, where a = :0 = l!bp' The setting is illustrated in Figure 2.5. 

b-j j 
A A 

( ') ( ) 

L:J 0 • • • 00 • • • 0 
1- pb ~p p p P) 

counting Y 
cell b blue cells 

Figure 2.5: Blue cells with common probability p for the negative multinomial model 

i.e., the probability H J~,~(r, n) is defined as, 

P(j specified blue cells have exactly r observations and the remaining 

b - j blue cells have < r observations at stopping time). 
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The recurrence relation for computing the D function was developed by Sobel, Uppuluri, 

and Frankowski (1985), and is as follows: 

D~b,j)(r, m) = ~. [m(l + ja)D~b,j)(r, m + 1) + r(b - j)D~b,j+l)(r, m)]. 
m Jr 

The first boundary condition is for b = j, 

p(u 
m-l 

in any order 
A'-______ -..., 

d1 ... d1 d2 ··· d2 db ... d; 
'-v---' '-v---' '-v---' 

r r r 

(m - 1 + br)! m br 
(r!)b(m _ 1)! Po P , 

(2.19) 

where 9 represents an item in counting cell and di , an item in the ith blue cell (for i 

1,2, ... , b). 

Since a = :a = l!bp' then Po = l~ab and P = l;ab' therefore, 

(b,b) _ r(m + br) (_a_)br (_l_)m 
Da (r, m) - (r!)br(m) 1 + ba 1 + ba (2.20) 

The second boundary condition is for m > r, and is given by 

D(b,j)(r m) = _1_ ~ (m;~:l) D(b,j+1)(r m _ a). 
a , (m-l) L....J aCi a , 

r Ci=l 

(2.21 ) 

For the vector form of the D function, the setting is as follows. Suppose we have blue 

cells corresponding to b different types of items in population with probability Pi (for i = 
b 

1,2, ... ,b), and a counting cell of probability 1 - l: Pi. We take observations one at a 
i=l 

time until the counting cell reaches a pre-specified number m of observations. Let r = 
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b 

(TI, T2,·· ., Tb) , and P = (PI,P2, . .. ,Pb) with L: Pi :S 1 (for i = 1,2, . .. , b). Let D~~p (r; m) 
i=l ' 0 

denote the probability that the blue cell i will have less than Ti observations when the counting 

cell reaches m observations for the first time. The TI'S are referred to as cell quotas (See 

Figure 2.6). 

counting 

cell 

b 

1- L: Pi 
i=l 

b blue cells 
~ _________ Jl~ ______ __ 

( , 
DODD 

PI P2 Pi Pb 

Figure 2.6: Blue cells with probability Pi and cell quota Ti for the negative multinomial model 

Then the probability D~? (r; m) is calculated as follows, p,po 

D~?PO (r; m) = P( < TI type 1, < T2 type 2, ... , < Tb type b at stopping time) 

Tl-I 

= L P(= a type 1, < T2 type 2, ... , < Tb type b at stopping time) 

q-l 

= L P( < T2 type 2, ... , < Tb type b I = a type l)P(= a type 1) 

m + a - 1 . PI Po D(b-l) -to Tl-I( )I( )C>( )m = ~. TI;m+a, ~ a!(m - 1)! PI + Po PI + Po PloPO+Pl ( ) 

(2.22) 

where PI = P and rl = r with the first components removed. 

Equation 2.22 allows the dimension of r to be repeatedly reduced until one of the follow

ing boundary conditions can be used, D~pl.,)po(r; m) = D(I,O)(T m) and D~) (r· m) = 
-!!o " PjPO' 

D(b~O) (T, m) when Ti = T and Pi = P for i = 1,2, . .. , b. 
I-bp 
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The probability of acceptance Pa is then calculated as 

Pa = P(Xl ~ rl - 1, X 2 ~ r2 - 1,··· , Xk-l ~ rk-l - 1) = D~-l)(r; m), 

in the negative multinomial setting, where r = (rl, ... , rk-l) and Ii = (Pl, ... , Pk-l). 

2.3.4 The Dirichlet HD Function 

For the negative multivariate hypergeometric model, let b blue cells correspond to b different 

types of items in the population with the same number IVI of each, and the counting cell 

correspond to the one remaining type of item which is represented of N - bM times, where 

N is the total number of items in population. Observations are taken one at a time without 

replacement until the counting cell reaches a pre-specified number m of the observations. Let 

HD1~,jJv(r,m) denote the probability that j specified blue cells have exactly r observations 

and the remaining b - j blue cells have fewer than r observations at stopping time. 

(See Figure 2.7). 

L:J 
N-bM 

counting 
cell 

( 

lJ 
~M 

b-j 
A 

• • • 

j 

') ( 
A 

') 

lJ D • • • D 
M M M) 

Y 
b blue cells 

Figure 2.7: Blue cells with common IVI for the negative hypergeometric model 

i.e., the probability HD~/Jv(r,m) is defined as , 
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HD (b,j) ( ) 
M,N r,m P( exactly r items in j specified cells and less than r items 

in the remaining b - j blue cells at stopping time). 

The recurrence relation for the HD function with common M and r was developed by Sobel 

and Frankowski (1994), and is given by 

HD(b,j) (r m) = 1 
M,N' m+jr 

{ [ 
j(M - r)] (b,j) . (b,j+1) } 

m 1+ N-bM-m HDM,N(r,m+1)+r(b-J)HDM,N (r,m) . 

The first boundary condition is for b = j, and is similar to the Dirichlet D function, 

(

in any order __ ----------~A~------------_ 
HDY;/%(r, m) = P g ... g d1 ··· d1 d2 ··· d2 db'" d; 

, '--v-' '---v--" '---v--" '-v--'" 
m-l r r r 

m 
m+br 

(~) b (N-;!:M) 

(m~br) 

(2.23) 

(2.24) 

where g represents an item in the counting cell and di is an item in the ith blue cell (for 

i=1,2, ... ,b). 

The second boundary condition is for m > r, and is given by 

r-l (M) (N -bM) 
HD(b,j) ( ) _ ~ Tn a m HD(b,j+1) ( ) 

M,N r,m - 0 m + a - r (M)(N-bM) M,N r,m+a-r. 
a=O r m+a-r 

(2.25) 
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For the vector form of the HD function, the setting is as follows. Suppose we have b 

different types of items in the population represented M1, M2, ... , Mb times, respectively, and 
b 

counting cell of size N - L: M i , where N is total items of the population. We take observations 
i=1 

one at a time, without replacement, until the counting cell reaches a pre-specified number 

m of the observations. Let M = (M1 , ... , Ivh) and r = (Tl,"" Tb). Then HDif};N(r; m) 

is defined to be the probability that the blue cell i has less than Ti observations (for i = 

1,2, ... ,b) at stopping time. The setting is illustrated as Figure 2.8. 

counting 

cell 

b blue cells 

-----------~~---------( \ 

00 0 tj 

Figure 2.8: Blue cells with size Mi and cell quota Ti for the negative hypergeometric model 

Let M 1 be the vector of cell sizes with the first cell size missing and let r 1 be the vector 

of cell quotas with the first cell quota missing, i.e., Ml = (M2' ... ,lvh) and rl = (T2' ... ,Tb). 

Then the probability HD¥;lN(r; m) is calculated as follows: 

HD (b) (--+. ) 
!J'N T,m , P( < Tl type 1, < T2 type 2, "', < Tb type b at stopping time) 

1"1-1 

L P(= a type 1, < T2 type 2, < Tb type b at stopping time) 

1"1-1 

L P( < T2 type 2 , < Tb type b I = a type 1) P(= a type 1) 

24 



(2.26) 

Equation 2.26 allows the dimension of r to be repeatedly reduced until one of the following 

boundary conditions can be used, HD¥J.N(r; m) = HD\};J,'Pr(r,m), and HD';j,N(r; m) = 

H D?!i,'Pr(r, m) for Mi = M and ri = r for i = 1,2, .. . , b. 

The probability of acceptance Pa is then calculated as 

Pa = P(XI :::; rl - 1, X 2 :::; r2 - 1,··· , X k- I :::; rk-I - 1) = HD~-~(r; m), , 

where M = (lYh, ... , Mk- I) and r = (rl, .. . , rk-I) in the negative multivariate hypergeo-

metric setting. 

2.3.5 Expected Waiting Time Using Dirichlet Recursive Function 

Suppose the notations for calculating the expected waiting time are the same as section 2.2.3, 

and suppose that b = k - 1. Then 

E(WT) = La P(WT = a), 

b 

P(WT = a) = P(WT = a, 9 last) + LP(WT = a, di last). 
i=1 

In the negative multinomial setting we can calculating the average sampling number using 

the Dirichlet J function as follows; 

P(WT = a, 9 last) = (a -l)p3'(l- po)a-m J~ (r; a - m), 
m -1 i-po 
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where P = (Pl,P2, ... ,Pb), Pi is the vector P with the ith probability missing (for i = 

1,2, . .. , b), and corresponding ri the the vector of cell quotas with the ith cell quota missing, 

Then the expected waiting time is given by 

E(WT) = La P(WT = a) 

b 
m+ L: (rj-l) 

j=l 

L a(a-1)pS'(1_po)a-m J~(r; a-m) 
m - 1 l-po a=m 

b 

+L (2.27) 
i=1 

b 
L t --+* ( 1 '\' ) d --+* ( ) --+*. th t--+* e P = Po = - L.J Pj, PI, ... , Pb an r = ro = m, rl, ... , rb , Pi IS e vec or P 

j=1 

with the ith probability missing (for i = 0,1,2, .. . , b), and ri the vector of cell quotas with 

the ith cell quota missing. Hence the equation (2.27) can be expressed more simply as 

(2.28) 

Sobel, Uppuluri, and Frankowski (1985) have shown that the above expression for the aver-

age sample number can be calculated using the Dirichlet D function as follows; 

b 

E(WT) = m DC;>(r; m + 1) + L r~ D~~~, Pi) ((m, ri); ri + 1) 
Po PO i=1 P. Pi 

b 

" ri D(b) (--->* 1) = ~ - Pi r i ; ri + . 
i=O Pi Pi 

(2.29) 
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Equation (2.29) is used to calculate the average sample number for sequential sampling 

in the multinomial setting in the package MFSAS (see Appendix B.3). 

In the negative multivariate hypergeometric setting we can similarly use the Dirichlet 

HJ and HD functions. 

Let Mi be the vector of cell sizes with the ith cell size missing and ri the vector of 

cell quotas with the ith cell quota missing, i.e., Mi = (MI , ... , Mi-I, Mi+1"" lvh) and 

ri = (TI, ... , T i-I, T i+1 ... , Tb). Then the expected waiting time is given by 

E(WT) = La P(WT = a) 

b 

N- ~Mj-m+1 
x __ j...,.,=_I ____ HJ(b) b (r;a-m) 

N-a+1 ~ M,L, M j 
j=l 

(2.30) 

~ b ~ 
Let M* = (Mo = N - ~ M j , lviI, ... ,Mb) and r* = (TO = m,TI, ... ,Tb), Mi is the 

j=1 

vector M* with the ith cell size missing (for i = 0,1,2, ... , b), and ri. is the vector of cell 

quotas with the ith cell quota missing. Hence the equation (2.30) can be expressed more 
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simply as 

min ( t {rj-I), N, N - Mi+Ti) 
b j=O 

E(WT) = L L 
i=O a=ri 

( Mi) (N-Mi) 
Ti-I a-Ti Mi - ri + 1 (b) (->*. ) 

a (N) X N HJM~*'N_"" ri,a-ri' - a + 1 i' 1V1, 
a-I 

(2.31) 

Childs (2010) showed that above expression for the average sample number can be calculated 

using hte Dirichlet HD function as follows: 

m(N + 1) (b) 
E(WT) = b HDM;N+1(rjm+1) 

N+1-~Mi 
i=1 

b 

+ L ri(N + 1) HD(b) b ((m, r)j ri + 1) 
. I Mi + 1 (N- ~ M· M)'N+I 't= L.J J' , 

j=l 

b 
= "ri(N + 1) HDCfJ (->,!,.. + 1) 
~ M. + 1 M~;N+l r 2' r, . 
i=O 2 , 

(2.32) 

Equation (2.32) is used to calculate the average sample number for sequential sampling in 

the multivariate hypergeometric setting in the package MFSAS (see Appendix B.3). 
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Chapter 3 

Implementation - The R Package 

MFSAS 

The MFSAS package is based on formal 84 classes and methods. It provides functionality for 

creating, evaluating, and plotting k-level acceptance sampling plans for attributes according 

to different distributional assumptions. 

3.1 Object Classes 

The package consists of a virtual class, Ocmult. In this class the two parameters are type 

(the type of distribution) and stype (the type of sampling). The distributions that can be 

specified for type are 

• multinomial which is used if the number of items in the lot is assumed to be large 

relative to the sample size, or if the sample is taken with replacement . 

• hypergeom which is used when the lot is finite and the sample is taken without replace

ment. 
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The types of sampling that can be specified with stype are 

• fixed for fixed sampling, in which a sample of size n is selected from the lot. For 

this type of sampling, calculations are based on either the multinomial or multivariate 

hypergeometric distribution, depending on the value specified for type . 

• sequential for sequential sampling, in which items are selected one at a time for 

inspection. Here calculations are based on either the negative multinomial or negative 

multivariate hypergeometric distribution, depending on the value specified for type. 

The two actual classes, Oernul t . multinomial and Oernul t . hypergeorn are derived from 

Oernult (see Figure 3.1). 

Figure 3.1: Class structure 

Both classes contain the Oernul t virtual class, hence its slots. Objects of the two classes 

can be generated by the o ernul t function which takes the following arguments. 

rn: A vector of length k-1 consisting of rejection numbers for fixed sampling, or cell quotas 

for the defective items for sequential sampling. 

pd: A matrix with k-1 columns, whose rows contain the proportions of each type of defective 

in the population. 

stype: The type of sampling. 
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type: The type of distribution on which the plans are based. 

Additional arguments which depend on the distribution to be used and the type of 

sampling. When type="hypergeorn" the lot size N needs to be specified. Since pd*N is 

a matrix containing the actual number of each type of defective in the lot, its entries 

must be nonnegative integers. The stype="fixed" needs n (the sample size), and for 

stype="sequential" rn (the cell quota for good items) must be provided. 

The new object is created and returned after the arguments are initialized and validated by 

the initialize and validation functions which are part of the class building. 

The R code to create all of the above mentioned classes, as well as the initialization, 

validation, plot and summary methods discussed in the following sections can be found in 

Appendix B.l. 

3.2 Initialize and Validation Methods 

When creating an object, the initialize function creates the value for each argument according 

to the assumed distribution. Then the validation functions for the virtual class and actual 

classes validate if the sampling plan makes sense for the specific distribution. The validation 

functions for the virtual class applies to both actual classes because of inheritance. 

The checks in the validation function for the virtual class o ernul tare: 

• The vector rn contains no NA'sj 

• The values in the vector rn are greater than zeroj 

• The matrix pd contains no NA's; 

• None of the entries in the matrix pd are less than OJ 
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• The sum of the values in each row of the matrix pd is not greater than 1; 

• The length of the vector rn is equal to the number of columns in the matrix pd. 

In the validation functions for the actual class Ocmul t. mul tinomial, the arguments are 

validated as follows: 

• For fixed sampling, the checks are 

- The sample size n contains no NA; 

- The value of n is greater than 1; 

- None of the values in rn are greater than n. 

• For sequential sampling, the additional checks are 

- The cell quota m for good items contains no NA; 

- The cell quota m for good items is greater than O. 

In addition to the above, the validation function for the actual class Ocmul t . hypergeom 

checks the following: 

• The population size N contains no NA; 

• The value of N is greater than 0; 

• The length of N is equal to 1; 

• The entries in the matrix of pd*N are all integers; 

• The length of the vector rn is less then N. 
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3.3 Plot Methods 

The operating characteristic (OC) function behavior of 2-level acceptance sampling plans can 

be presented by plotting the 2-dimensional OC curve corresponding to the sampling plans. 

In this package plot methods have been created for the actual classes with the proportion 

of defectives pd on the horizontal axis and the probabilities of acceptance pa on the vertical 

axis in the graph. The signatures in the plot methods are 

• signature(x "Ocmult.multinomial", y "missing") j 

• signature(x = "Ocmult.hypergeom", y = "missing")j 

• signature(x="numeric", y="Ocmult.multinomial")j 

• signature (x="numeric", y="Ocmult .hypergeom"). 

For the latter two signatures, the plot is of the probabilities of acceptance pa against a 

numerical variable, which can be supplied by the user, instead of the proportion of defectives 

pd. 

To plot the OC curve corresponding to the sampling plan, only an object of the particular 

class needs to be specified and all relevant details are extracted from the object (see Chapter 4 

for examples). 

The OC function behavior of 3-level acceptance sampling plans can be presented by 

two types of plots, prosp and contour. In the prosp methods for the actual classes, the 

proportions of defectives pd are on the two horizontal axes x, y and the probabilities of 

acceptance pa are on the vertical axis z in the graph. The signatures in the prosp methods 

are 

• signature(x "Ocmult.multinomial")j 
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• signatureCx "Ocmul t . hypergeom") . 

In the contour methods for the actual classes, the signatures are the same as the prosp 

method. In the contour graph, the curves represent the probabilities of acceptance pa for 

specific values corresponding the proportions of defectives pd on the two axes x, y. An 

example is provided in Chapter 4. 

3.4 Summary Methods 

The generic summary method is used to summarize the object. The show method gives a 

brief summary of the supplied object. For fixed sampling it displays the type of distribution, 

the sample size n, and the rejection number(s) rn. For sequential sampling, it displays the 

type of distribution and the cell quotas m and rn for the good and the defective item(s). If 

the type of distribution is hypergeometric, then the population size N is also shown. 

The summary method shows the same detail as the show method by default, but provides 

the additional logical argument detail. If detail=TRUE, then all the information for the 

object is printed, including all values of pd and the corresponding values of pa as well as 

ASN (average sampling number) for sequential sampling. Examples of these methods are 

given in Chapter 4. 

3.5 Assessing a Sampling Plan 

The function assess. mul ti can be used to assess whether a sampling plan can meet specific 

criteria, and is given in Appendix B.4. The two types of criteria, the Producer's Risk Point 

(PRP) and the Consumer's Risk Point (CRP), can be specified singly or together by the 

arguments PRP and eRP, respectively. The parameters of the plan are consistent with the 
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classes (see Section 3.1). 

Both risk points are vectors of length k which contain two parts. The first part consists of 

k-1 elements which represent the quality level (equivalent to a row of pd). The second part 

is the kth element which represents the corresponding probability of acceptance (equivalent 

to pa). 

For the Producer's Risk Point to be met, the probability of acceptance of the plan must 

be at least equal to the value specified by the user in PRP [k] corresponding to the PQL, the 

producer's quality level (PRP [-k]). Note that the producers's risk is at most 1- PRP [k]. 

For the Consumer's Risk Point to be met, the probability of acceptance of the plan must 

be at most equal to the value specified by the user in CRP [k] corresponding to the CQL, the 

consumer's quality level (CRP [-k]). 

The argument print in the function assess. mul ti indicates whether a summary of the 

assessment should be printed. The default value is print=TRUE. 

3.6 Finding a Sampling Plan 

The function find. mul t i . plan allows the user to find a multilevel acceptance sampling plan 

which meets specified producer and consumer risk points (see Section 3.5), and can be found 

in Appendix B.5. Both points must be specified in the function and the CRP must have 

worse quality than the PRP. 

In the case of type="multinomial", only the PRP and CRP need to be specified. For type 

="hypergeom", the additional argument N (the lot size) must be provided. 

For fixed sampling, the function finds the smallest sample size n and the corresponding 

rejection numbers for each type of defective which will meet the PRP and CRP requirements. 
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The process of find plan is through trial starting with n = 1 and increasing n until the 

appropriate plan is found. The rejection numbers for the defectives change appropriately at 

each step. For the sequential sampling, the function finds the smallest quota m for the 

good items and the corresponding cell quotas for each type of defective, which will meet the 

PRP and CRP requirements. The process is through trial starting with m = 1 and increasing 

m until the appropriate plan is found. The cell quotas for defectives change appropriately 

at each step but do not exceed the quota for the good items. 

3.7 Cumulative Distribution Functions 

The MFSAS package also includes functions to calculate the cumulative distribution func

tions (CDFs) for the multinomial, negative multinomial, multivariate hypergeometric, and 

negative multivariate hypergeometric distributions which are required for the calculation of 

acceptance probabilities for the multilevel sampling plans in this package. Chapter 2 contains 

a brief description, and the reader is referred to Johnson, Kotz, and Balakrishnan (1997) for 

further details about these distributions. The R code for all of the CDF's can be found in 

Appendix B.3, and is briefly described below . 

• prnultinom - The multinomial CDF 

prnultinom(x, size = n, prob = p) is a function for the calculation of cumulative 

probabilities [equation (2.1)] for the multinomial distribution when a sample of size n 

is drawn from a population whose k classes have probabilities PI, ... ,Pk-I,Pk. 

Here x is a vector of length k - 1 containing the number of observations drawn from 

k -1 of the classes and p is a vector of length k -1 specifying the probability for k-1 

of the classes. 

prnul tinorn is computed using recursive algorithms for the Dirichlet J function in this 
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package. Section 2.3.1 gives a short explanation; for further details, see Sobel, Uppuluri, 

and Frankowski (1977) and Sobel and Frankowski (2004). 

• pnmultinom - The negative multinomial CDF 

pnmultinom(x, m, prob = p) is a function for calculating cumulative probabilities 

for the negative multinomial distribution [equation (2.3)]. The vector x of length k-1 

contains the number of failures of each type, with corresponding probabilities in each 

trial given in the p vector, that are selected in a sequence of trials before a target 

number m of successes is reached. 

pnmul tinom is computed using recursive algorithms for the Dirichlet D function de

scribed in section 2.3.3, and developed by Sobel, Uppuluri, and Frankowski (1985) and 

Sobel and Frankowski (2004). 

• pmul tihyper - The multivariate hypergeometric CDF 

pmultihyper(x, n, M, N) is a function to calculate cumulative probabilities for the 

multivariate hypergeometric distribution [equation (2.2)] when a sample of size n is 

drawn from a population of size N, which has lVIi objects of type i (for i = 1,2, ... ,k), 

without replacement. Here x is a vector of length k - 1 containing the number of 

objects of type i in the sample for i = 1,2, ... ,k - 1, and M is a vector of length k - 1 

containing the total number of objects in each of k - 1 of the classes. 

pmultihyper is computed using recursive algorithms for the Dirichlet HJ function 

described in section 2.3.2 and developed by Sobel and Frankowski (1994). 

• pnmultihyper - The negative multivariate hypergeometric CDF 

pnmul tihyper (x, m, M, N) is a function for calculating cumulative probabilities for 

the negative multivariate hypergeometric distribution [equation 2.4]. The vector x of 

length of k-l contains the number of failures of each type that are selected in a sequence 

of trials without replacement from a population of size N, which has lVIi failures of type 
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i (for i = 1,2, ... ,k - 1), before a target number m of successes is reached. 

pnmultihyper is computed using recursive algorithms for the Dirichlet HD function 

described in section 2.3.4, and developed by Childs (2010) and Sobel and Frankowski 

(1995). 
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Chapter 4 

Examples 

The package can be loaded as 

> library(MFSAS) 

4.1 Creating Ocmult Plans 

After the package is loaded, a new object of the sampling plan can be created by using the 

Ocmul t function. For example, a sampling plan with n = 30 and rn = (2,4,3) for a large lot 

size can be obtained as follows: 

> p.mn <- Ocmult(rn=c(2,4,3), n=30) 

> p.mn 

4-Level Acceptance Sampling Plan Multinomial: 

Sample size: 30 

Rej. Number(s): 243 
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For a finite population of size N = 100, type="h" should be specified. If the sample size is 

n = 15 and rn = (2,3), then, the sampling plan is obtained as: 

> p.mh<- Ocmult(rn=c(2,3) , n=15, N=100, type="h") 

> p.mh 

3-Level Acceptance Sampling Plan Multivariate Hypergeom: N 100 

Sample size: 15 

Rej. Number(s): 2 3 

When stype="s" is given, the target number m of good items must be specified. If k = 2, 

and we continue to sample until we obtain either 5 good items or 3 defectives then the 

sequential sampling plan can be created as follows: 

> p.nmn <- Ocmult(rn=3, m=5, stype="s", pd=seq(O, 1, 0.01)) 

> p.nmn 

2-Level Sequential Acceptance Sampling Plan Negative Multinomial: 

Acc. Number: 5 

Rej. Number(s): 3 

4.2 Plotting Sampling Plans 

The OC curve or surface can be plotted when the sampling plans are 2-level or 3-level. 

For the 2-level sequential sampling plan with type="multinomial" given in the example 

above, the plot is shown in Figure 4.1: 

> plot(p.nmn) 
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Figure 4.1: OC curve for the negative binomial distribution 

All arguments for the standard plot method can be passed directly to the generic plot 

method in this package. type="o" in the standard plot type is the default value to show the 

OC curve using both lines and points for the binomial and negative binomial distributions. 

type="p" is the default value used in order to show the OC curve using only points for the 

hypergeometric and negative hypergeometric distributions. 

The following example produces the graphs given in Figure 4.2. 

x.mn <- Ocmult(n=8, rn=3, pd=seq(O, 0.22, 0.01)) 

x.mh <- Ocmult(n=8, rn=3, N=50, type="h", pd=seq(O, 0.2, 0.02)) 

x.nmn <- Ocmult (rn=2 ,m=4, stype="s", pd=seq(O, 0.22, 0.01)) 

x.nmh <- Ocmult(rn=2, m=4, N=50, type="h", stype="s", pd=seq(O, 0.2, 0.02)) 

main = "Fixed Sampling Plan \nn = 8, rn = 3" 

plot(x.mn, type="l", xlim=c(O, 0.2), ylim=c(0.75, 1), main=main) 
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grid(lty="solid") 

points(x.mh@pd, x.mh@pa, col = 3) 

legend(O.01, 0.81, c("binomial", "hypergeometric"), col c(1,3), 

lty = c(1, -1), pch = c(-1, 1), bg = 'gray95') 

main = "Sequential Sampling Plan \nm = 4, rn = 2" 

plot(x.nmn, type="l", xlim=c(O, 0.2), ylim=c(0.7, 1), main=main) 

grid(lty="solid") 

points(x.nmh@pd, x.nmh@pa, col= 3 ) 

legend(O.01, 0.77, c("negative binomial", "negative hypergeometric"), 

col = c(1,3), lty = c(1,-1), 
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Figure 4.2: OC curve for fixed and sequential sampling 
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Using the 3-level sampling plan p.mh from Section 4.1, the plots for fixed sampling with 

type="hypergeom" are given in Figure 4.3, and are obtained as follows: 

> persp(p.mh, cex.main 1) 
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> contour(p.mh, cex.main 1) 

Multivariate Hypergeometric OC Surface with 
n = 15, N = 100, rn = (2,3) 

Multivariate Hypergeometric OC Contour with 
n = 15, N = 100, rn = (2,3) 
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Figure 4.3: OC surface and contour curve for the multivariate hypergeometric distribution 
with N = 100, n = 15, rn = (2,3) 

All arguments for the persp and contour methods can be passed directly to the generic 

persp and contour methods in this package, respectively. For example in Figure 4.4 we use 

light blue color for the surface, and 4 contours levels for the contour plot, 

> px <- as.matrix(expand.grid(seq(0,0.2, 0.01),seq(0, 0.8, 0.04))) 

> p.multinom <- Ocmult(n=15,rn=c(2,10) , pd=px) 

> persp(p.multinom, col="light blue") 

> contour(p.multinom, nlevel=4) 
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Figure 4.4: OC surface and contour curve for the multinomial distribution with n = 15, 
Tn = (2,10) 

4.3 Sampling Plan Summary 

The summary method gives a summary of the sampling plan with an option for detailed 

output, as in the following example. 

> px <- matrix(c(seq(O, 0.5, 0.1), seq(O, 0.2, 0.04)), ncol=2) 

> p.multinom <- Ocmult(n=30,rn=c(3,4), pd=px) 

> summary(p.multinom ,detail=TRUE ) 

3-Level Acceptance Sampling Plan Multinomial: 

Sample size: 30 

Rej. Number(s): 3 4 

Detailed acceptance probabilities: 

type 1 type 2 P.nondef P(accept) 

0.0 0.00 1.00 1.0000000 
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0.1 

0.2 

0.3 

0.4 

0.5 

0.04 

0.08 

0.12 

0.16 

0.20 

0.86 

0.72 

0.58 

0.44 

0.30 

0.3963991 

0.0304085 

0.0005591 

0.0000017 

0.0000000 

Note that pd is a matrix with k-l columns, where each row contains the proportions for each 

type of defective in the population. However, if a vector is provided, then it is converted to a 

matrix by row according to the length of rn. The vector will be truncated (with a warning) 

if its length is not an integer multiple of the length of rn. An example follows: 

> px <-c(0.02,0.06,0.04,0.06,0.OS,0.02,0.02,0.OS,0.04,0.10) 

> pmh <_ Ocmult(rn=c(2,3,2,4), n=20, N=100, pd=px, type="h") 

Warning message: 

In .1ocal(.Object, ... ) : 

The length of the pd vector should be an integer 

multiple of the length of the rn vector. 

The truncated pd in use is: 

0.02 0.06 0.04 0.06 O.OS 0.02 0.02 O.OS 

> summary(pmh ,detail=TRUE ) 

5-Level Acceptance Sampling Plan Multivariate Hypergeom: N 100 

Sample size: 20 

Rej. Number(s): 2 3 2 4 

Detailed acceptance probabilities: 

type 1 

0.02 

type 2 

0.06 

type 3 

0.04 

type 4 

0.06 

P.nondef 

0.S2 
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P(accept) 

0.7023403 



0.08 0.02 0.02 0.08 0.80 0.4485896 

4.4 Assessing a Sampling Plan 

The assess .multi function is used to assess a sampling plan given the PRP and/or CRP 

(see Section 3.5 for a description). For example, suppose we want a 3-level plan to meet 

the producer's risk point which has an acceptance probability of at least 0.95 when the 

proportions of the 2 types of defectives are equal to 0.05 and 0.06, and for the plan to also 

meet the consumer's risk point, which has an acceptance probability at most 0.1 when the 

proportions of the 2 types of defectives are equal to 0.14, and 0.18. We can assess whether 

the sequential plan with cell quotas of m = 5 good items and rn = (2,3) defectives meets 

the given PRP and CRP as follows: 

> assess.multi(rn=c(2,3), m=5, PRP c(0.05,0.06, 0.95), CRP 

+ stype="s") 

3-Level Acceptance Sampling Plan Negative Multinomial: 

Acc. Number: m = 5 

Rej. Number(s): 2 3 

Plan CANNOT meet desired risk point(s): 

type 1 type 2 RP P(accept) Plan P(accept) ASN 

PRP 0.05 0.06 0.95 0.95649354 5.5020476 

CRP 0.14 0.18 0.1 0.62784922 5.92261962 

c(0.14,0.18, 0.1), 

The output shows that the plan cannot meet both risk points. Although the PRP is satisfied 

since the actual value for P(accept) is 0.956, which exceeds minimum desired level of 0.95, 

the value of P(accept) for CRP is 0.628 which is greater than the maximum allowable level of 
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0.1. For sequential sampling, the output also displays the average sampling number(s) ASN 

for the risk point(s). 

4.5 Finding a Sampling Plan 

The find. mul t i . plan function provides a method to find a plan which will meet the specified 

risk points PRP and CRP. For example, the implementation of finding a plan for sequential 

sampling from a lot of size 100 is: 

> find.multi.plan(PRP=c(0.06, 0.04, 0.06, 0.8), CRP=c(0.14, 0.16, 0.2, 0.1), 

+ N= 100,type = "h", stype="seq") 

The optimal plan is: 

$m [1J 7 

$rn [1J 2 2 2 

$p.PRP [1J 0.8056496 

$p.CRP [1J 0.08147094 

$ASNp [1J 7.589796 

$ASNc [1J 5.510192 

This shows that, in order to meet both risk points, we should take observations one at a time 

until we get either 7 good items, or 2 of any type of defective. If the former occurs first then 

the lot should be accepted; otherwise it is rejected. The average sampling number is 7.6 at 

the producer's quality level, and 5.5 at the consumer's quality level. 

We can also find a plan with the same risk points PRP, CRP, and lot size as above but 

for fixed sampling: 

> find.multi.plan(PRP=c(0.06, 0.04, 0.06, 0.8), CRP=c(0.14, 0.16, 0.2, 0.1), 
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+ N= 100, type = "h") 

The optimal plan is: 

$n [1] 11 

$rn [1] 2 2 3 

$p.PRP [1] 0.8023994 

$p.CRP [1] 0.09043282 

The above output shows that if we want to meet both risk points, we need a sample of size 

n=l1. The lot is rejected if the sample contains at least 2 of either of the first two types of 

defectives, or at least 3 of the third type of defective. Hence to meet both risk points, the 

sequential sampling procedure requires on average a smaller sample size (ASN=7 . 6) than the 

corresponding fixed sample size procedure (n=11). 

4.6 Calculating Cumulative Probabilities for the Distribu

tions 

The following are examples of how to calculate the lower tail cumulative probabilities for the 

distributions which are provided in the MFSAS package . 

• Multivariate hypergeometric distribution: 

Suppose that a lot of size N = 100 contains products which are classified according to 

4 levels of product quality, one of which is good items. If IV! = (8, 10, 14) is the number 

of items in the lot which fall into each of the three categories of defectives, and we draw 

a sample of size n = 15 (without replacement) from the lot, then the probability that 

the sample contains no more than 1 item with the first type of defect, no more than 3 

items with the second type of defect, and no more than 4 items with the third type of 

defect is calculated as follows: 
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> X <- e(1,3,4) 

> n <- 15 

> M <- d8, 10, 

> N <- lOa 

14) 

> pr <- pmultihyper(X, 

> pr 

[1] 0.599595 

• Multinomial distribution: 

n, M, N) 

In the same setting as above, if the sampling is done with replacement, or equivalently 

if the lot size is large and the proportions of each of the 3 types of defects in the lot is 

given by p = (0.08,0.10,0.14), then the corresponding probability is calculated using 

the multinomial CDF: 

> X <- e(l, 3, 4) 

> n <- 15 

> pr <- e(0.08, 0.10, 0.14) 

> edf <- pmultinom(x = X, size n, prob pr) 

> edf 

[1] 0.5816256 

• Negative multivariate hypergeometric distribution: 

Suppose that a lot of size N = 130 contains items with 4 different types of product 

defects with M = (5,7,8,3) of each type. If we select and inspect items one at a time 

(without replacement) until we obtain 5 good items then the probability that we end 

up with no more than X = (2,3,4,1) items with each type of defect (at the time when 

the 5th good item is selected) is calculated as follows: 
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> X <- e(2,3,4,1) 

> m <- 5 

> M <-e(5,7,8,3) 

> N <-130 

> edf <- pnmultihyper(X, m, M, N) 

> edf 

[1] 0.990882 

• Negative multinomial distribution: 

In the same setting as above, if the sampling is done with replacement then the corre

sponding probability requires the negative multinomial distribution: 

> X <- e(2,3,4,1) 

> m <-5 

> pr <-e(5/130, 7/130, 8/130, 3/130) 

> pnmultinom(x = X, m = m, prob = pr) 

[1] 0.9860325 
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Chapter 5 

Discussion and Future Work 

The MFSAS package provides the user with the tools to create, evaluate, and plot multilevel 

acceptance sampling plans for both fixed and sequential sampling. We have also provided 

cumulative distribution functions for several discrete multivariate distributions. 

However, the MFSAS package is restricted to single stage sampling for attributes, 

whereas the AcceptanceSampling package allows the sampling to be multi-stage fixed 

sampling plans for two levels of product quality and provides functionality for sampling in

spection by variables, in addition to attributes. Multi-stage sampling may be incorporated 

into future versions of the package. 

It should also be noted that all of the procedures used for the calculations in this package 

are exact (aside from possible rounding errors). As a result there is the potential for the 

calculations to be slow for large values of k, m, or n. Consequently the find.multi . plan 

routine can be slow if the probability given in the producer's risk point PRP [k] is too close 

to 1 or if eRP [k] is too close to o. Therefore the package could be improved by developing 

and incorporating asymptotic approximations into the calculations. 

In this project, the cumulative distribution functions only include the option for calculat-
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ing lower tail probabilities. The option to calculate for upper tail probabilities is available for 

most (if not all) of the currently available R functions for discrete univariate CDFs. However, 

the relationship between upper and lower tail probabilities is not as straight forward in the 

multivariate case. Efficient calculation of upper tail probabilities would require a different 

(but related) set of recursive algorithms. As a result of this, and the fact that upper tail 

probabilities are not needed in this package, our CDFs do not currently have this functional

ity. Since upper tail probabilities may be useful in other applications, this is another area in 

which the package can be improved. 
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Appendix A 

MFSAS Package Documentation 

R objects are documented in files written in "R documentation" (Rd) format, a simple 

markup language much of which closely resembles the :g\TgX., which can be processed into a 

variety of formats, including LATEX, HTML and plain text. 

An 'Rd' file consists of three parts. 

• The header, which gives basic information about the name of the file, the topics doc

umented, a title, a short textual description and R usage information for the objects 

documented (the header is mandatory); 

• The body gives further information (for example, on the function's arguments and 

return value); 

• Finally, there is an optional footer with keyword information. 

The compiled MFSAS package documentation is given on the following pages. 

53 



Package'MFSAS' 

June 3, 2010 

Type Package 

Title Creation and Evaluation of Multilevel Fixed and Sequential Sampling Plans 

Version 1.0-\ 

Date 20 I 0-03-07 

Author Aaron Childs and Yalin Chen 

Maintainer Aaron Childs <childsa@mcmaster. ca> 

Description This package provides functionality for creating and evaluating acceptance sampling 
plans for attributes when there are k (>=2) levels of product quality. Plans can be multilevel 
fixed, or multilevel sequential. 

Depends methods, R(>= 2.9.2), stats 

Imports graphics 

License GPL (>= 3) 

LazyLoad yes 

R topics documented: 

Index 

assess.multi .. 

find.multLplan . 
Ocmult ... 
Ocmult-class 

pmultihyper . 

pmultinom .. 
pnmultihyper 

pnmultinom . 
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2 assess.multi 

assess.multi Utility Functionfor Assessing Multilevel Sampling Plans 

Description 

Assess whether the k-Ievel fixed or sequential sampling plan can meet the specified Producer's Risk 
Point (PRP) and/or Consumer's Risk Point (CRP). 

Usage 

assess.multi(rn, n = 30, m, N = 100, PRP, CRP, type=c("multinomial", 
"hypergeom"), stype=c("fixed", "sequential"), print = TRUE) 

Arguments 

rn 

n 

m 

N 

PRP 

CRP 

type 

stype 

print 

Details 

Typical usages are: 

A vector of length k -1 of rejection numbers for fixed sampling, or cell quotas 
for the defective items in sequential sampling. 

Sample size; applicable for stype=" fixed". 

The cell quota for good items; applicable for stype=" sequential". 

The population (lot) size from which the sample is drawn; applicable for t ype=" hypergeom" . 

The Producer's Risk Point in the form of a two part numeric vector (pd, pa). 
The first part pd, a vector of length k -1, specifies the quality level at which 
to evaluate the plan. The second part pa, indicates the minimum probability of 
acceptance to be achieved by the plan. 

The Consumer's Risk Point in the form of a two part numeric vector (pd, 
pa). The first part pd, a vector of length k-1, specifies the quality level at 
which to evaluate the plan. The second part pa, indicates the maximum proba
bility of acceptance to be achieved by the plan. 

The type of distribution on which the sampling plan is based. Possible values are 
"multinomial" and "hypergeom". The default is "multinomial". 

The type of sampling. Possible values are "fixed" and "sequential". 
The default is "fixed". 

Logical, indicating whether or not a summary of the assessment should be printed. 

assess.multi(rn, n, PRP, CRP) 
assess.multi(rn, m, PRP, CRP, stype ="sequential") 
assess.multi(rn, n, N, PRP, CRP, type="hypergeom") 
assess.multi(rn, m, N, PRP, CRP, type = "hypergeom", stype="sequential") 

In the first form, the default type "mul tinom" and the default stype "fixed" are used. 

The second form is based on the negative multinomial distribution. 

The third form uses a default st ype of "f ixed" and is based on the multivariate hypergeometric 
distribution. 



assess. multi 

The fourth form is based on the negative multivariate hypergeometric distribution. 

The cell quota m for the good items must be provided in both second and fourth forms. 

3 

In both third and fourth cases, the population size N needs to be specified, and pd in PRP and CRP 

is the vector of the proportions of population defectives. Since pd * N gives a vector containing the 
actual numbers of each type of defective in the population, all of its entries must be integers. 

Value 

The function will return the result of whether the plan meets the acceptance requirement(s), along 
with the actual acceptance probability achieved by the sampling plan. In the case of sequential 
sampling, average sampling numbers ASNp and ASNc for the quality levels in PRP and CRP are 
also returned. 

Source 

For sequential sampling, the average sampling number ASN is computed using algorithms for the 
Dirichlet 0 function (for type="multinomial") or HD function (for type="hypergeom"), 
together with equation (5.30) in Sobel and Frankowski (1985) (for type="multinomial "), or 
equation (5.3) in Childs (2010) (for type="hypergeom"). 

Childs, A. (20 I 0). Vector extensions of the Dirichlet HC and HD functions, with applications to the 
sharing problem. Methodology and Computing in Applied Pmbability 12, 91-109. 

Sobel, M. and Frankowski, K. (1985), Dirichlet integrals oftype-2 and their application. In Selected 
Tables in Mathematical Statistics 9, American Mathematical Society, Providence, Rhode Island. 

Author(s) 

Aaron Childs and Yalin Chen 

References 

Schilling, E. G. and Neubauer, D. V. (2009). Acceptance Sampling in Quality Colltml, Second 
Edition, CRC Press, New York. 

See Also 

find.multi.plan,Ocmult-class 

Examples 

assess.multi(n=30, rn=c(2,2,3), PRP = c(0.05,0.06, 0.08, 0.95), 
CRP = c(0.15,0.18, 0.20, 0.075» 

assess.multi(rn=c(7,8), m=5, PRP = c(0.1,0.05, 0.95), CRP = c(0.2,O.15, 0.075), 
type="multinomial", stype="seq") 



4 find.multi.plan 

find.multi.plan Utility Functionfor Finding Multilevel Sampling Plans 

Description 

Find the k-level sampling plan with the smallest (expected) sample size such that the specified 
PIVducer's Risk Point (PRP) and Consumer's Risk Point (CRP) are met. 

Usage 

find.multi.plan(PRP, eRP, N=lOO, type=c("multinomial", "hypergeom"), 
stype=c("fixed", "sequential")) 

Arguments 

PRP 

eRP 

N 

type 

stype 

Details 

The Producer's Risk Point in the form of a two part numeric vector of the form 
(pd, pa). The first part pd, a vector of length k-l, specifies the quality 
level at which to evaluate the plan. The second part pa, indicates the minimum 
probability of acceptance to be achieved by the plan. 

The Consumer's Risk Point in the form of a two part numeric vector of the form 
(pd, pa). The first part pd, a vector of length k-l, specifies the quality 

level at which to evaluate the plan. The second part pa, indicates the maximum 
probability of acceptance to be achieved by the plan. 

The population (lot) size from which the sample is drawn; applicable for t ype= II hypergeom". 

The distribution on which the sampling plan is hased. Possihle values are "mul tinomial" 
and "hypergeom". The default is "multinomial". 

The type of sampling. Possible values are II fixed" and" sequential". 
The default is "fixed ". 

Typical usages are: 

find.multi.plan(PRP, eRP) 
find.multi.plan(PRP, eRP, stype ="sequential") 
find.multi.plan(PRP, eRP, N, type="hypergeom") 
find.multi.plan(PRP, eRP, N, type="hypergeom", stype="sequential") 

In the first form, the default type "mul tinomial" and the default stype "fixed" are used. 

The second form is based on the negative multinomial distribution. 

The third form uses a default st ype of "f ixed" and is based on the multivariate hypergeometric 
distribution. 

The fourth form is based on the negative multivariate hypergeometric distribution. 

In both third and fourth cases, the population size N needs to be specified, and pd in PRP and eRP 
is the vector of the proportions of population defectives. Since pd * N gives a vector containing the 
actual numbers of each type of defective in the population, all of its entries must be integers. 
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Value 

The values returned are 

n 

rn 

m 

p.PRP 

p.CRP 

ASNp 

ASNc 

Source 

The smallest possible sample size for st ype= II fixed ". 

Vector of length k -1 of rejection numbers for fixed sampling, or cell quotas for 
the defective items in sequential sampling. 

The smallest possible number of good items for stype=" sequential ". 

The actual probability of acceptance at the producer's quality level for the sam
pling plan. 

The actual probability of acceptance at the consumer's quality level for the sam
pling plan. 

The average sampling number at the producer's quality level for stype=" sequential ". 

The average sampling number at the consumer's quality level for st ype= II sequential ". 

For sequential sampling, the average sampling numbers ASNp and ASNc are computed using algo-
rithms for the Dirichlet 0 function (for t ype= "mu l t inomial ") or HD function (for t ype= II hypergeom "), 
together with equation (5.30) in Sobel, Uppuluri, and Frankowski (1985) (for t ype= "mult inomial "), 
or equation (5.3) in Childs (2010) (for type="hypergeom"). 

Childs, A. (20 I 0). Vector extensions of the Dirichlet HC and HD functions, with applications to the 
sharing problem. Methodology and Computing in Applied Probability 12, 91 - 109. 

Sobel, M., Uppuluri, V. R. R., and Frankowski, K. (1985). Dirichlet integrals of type-2 and their 
application. In Selected Tables in Mathematical Statistics 9, American Mathematical Society, Prov
idence, Rhode Island. 

Author(s) 

Aaron Childs and Yalin Chen 

References 

Schilling, E. G. and Neubauer, D. V. (2009). Acceptance Sampling in Quality Control, Second 
Edition, CRC Press, New York. 

See Also 

Ocmult class, Ocmult, assess .multi. 

Examples 

find.multi.plan(PRP=c(0.03,0.05, 0.8), CRP=c(0.15, 0.16, 0.1), stype="seq") 

find.multi.plan(PRP=c(0.06, 0.04, 0.06, 0.8), CRP=c(0.14, 0.16, 0.2, 0.1), 
N= 100,type = "h", stype="seq") 
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Ocmult Operating Characteristics of Multilevel Acceptance Sampling Plans 

Description 

Creating new objects from the" Ocmul t" classes. 

Usage 

Ocmult (rn, type=c ("multinomial", "hypergeom"), 
stype=c("fixed", "sequential"), ... ) 

Arguments 

rn 

type 

stype 

Details 

A vector of length k-1 of rejection numbers for k-Ievel (k different types of 
items in the population) fixed sampling, or a vector of length k -1 of cell quotas 
for the defective items in k-Ievel sequential sampling. 

The type of distribution on which the plan is based. Possible values are "multinomial" 
and "hypergeom". The default is "multinomial". 

The type of sampling. Possible values are "fixed" and "sequential". 
The default is "fixed". 

Additional arguments to be passed to the class generating function for each type. 
See Details for options. 

Typical usages are: 

Ocmult(rn, n) 
Ocmult(rn, n, pd) 
Ocmult(rn, n, N, pd, type="hypergeom" ) 
Ocmult(rn, m, stype="sequential", pd) 
Ocmult(rn, m, N, pd, type="hypergeom" , stype="sequential") 

In the first and second forms, the default type "multinomial" and the default st ype "fixed" 
are used. The OC function is calculated based on the proportion of defectives pd, whose default 
values are used in the first form (and depend on the length of rn). 

The third form is the OC function based on the multivariate hypergeometric distribution. In this 
case, the population size N needs to be specified, and pd is a matrix whose rows are vectors con
taining the proportions of each type of defective. Since pd*N is a matrix containing the actual 
numbers of each type of defective in the population, all of its entries must be integers. If N is not 
specified, it takes a default value of N= 1 0 o. 

The fourth form uses a default type of "mul t inomial ". Its OC function is based on the negative 
multinomial distribution, hence the cell quota m for good items must be specified. 

In the fifth form, the OC function is based on the negative multivariate hypergeometric distribution. 
The cell quota m for good items and the population size N need to be specified. 
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Value 

An object from Ocmult-class returns the class Ocmult .multinomial orOcmult . hypergeom. 
There is a logic argument detail in the function summary. If detail=TRUE, all of the infor
mation for the object is shown. For sequential sampling the average sampling number (ASN) is also 
provided. The default value for this argument is detail=FALSE. 

Author(s) 

Aaron Childs and Yalin Chen 

See Also 

Ocmult-class, find.multi.plan,assess.multi. 

Examples 

px <- as.matrix(expand.grid(seq(O,O.5, 0.1),seq(O,O.5, 0.1») 
p.multinom <- Ocmult(n=30,rn=c(3,4), pd=px) 
summary(p.multinom ,detail=TRUE ) 

p.multih<- Ocmu1t(c(3,4),n=15, N=100, type="h") 
summary (p.multih,detail=TRUE) 
persp(p.multih) 

p.nmultinom <- Ocmult(c(3,4), m=5, stype="s") 
p.nmultinom 
summary(p.nmultinom ,detail=TRUE) 
persp(p.nmu1tinom) 

Ocmult-class Class "Ocmult" 

Description 

"Operating Characteristic" function of the class" Ocmul t " provides methods for creating, plotting 
and printing k-Ievel acceptance sampling plans based on the Multinomial, Negative Multinomial 
("Ocmult .multinomial"), Multivariate Hypergeometric and Negative Multivariate Hyperge
ometric ("Ocmult. hypergeom") distributions. 

Objects from the Class 

The" Ocmul t" class is a virtual class: No objects may be created from it. 

However, objects from the derived classes Ocmult. multinomial and Ocmult. hypergeom 
can be created using the create function Ocmul t. 

Slots 

n: Object of class "numeric". The sample size; applicable for stype=" fixed". 

m: Object of class" numeric". The cell quota for good items; applicable for st ype=" sequential". 

rn: Object of class" nume ric". A vector of length k -1 of rejection numbers for fixed sampling, 
or cell quotas for the defective items in sequential sampling. 
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pd: Object of class "matrix". A matrix whose rows are vectors containing the proportions of 
each type of defective. 

pa: Object of class "numeric". A numeric vector contains the probabilities of acceptance ac
cording to the proportion of defectives in the rows of pd. 

ASN: Object of class "numeric". Only for sequential sampling. A numeric vector containing 
average sampling numbers according to the proportion of defectives in the rows of pd. 

stype: Object of class" character". The type of sampling. Possible values are" fixed" 
and" sequential". 

type: Object of class "character". The type of distribution on which the plans are based. 
Possible values are "multinomial" and "hypergeom". 

N: Object of class "numeric". Only for class "Ocmult. hypergeom". A number giving the 
population (lot) size from which the sample is drawn. 

Methods 

show signature (object = "Ocmult"): Show the details of the sampling plan. 

summary signature (object = "Ocmult"): Summarize the sampling plan. Optional ar
gument "full" (defaults to FALSE) will show the details at all quality values "pd" supplied 
when the object was created. 

plot signature (x 
signature (x 
signature (x 

"Ocmult.multinomial", y = "missing"), 
"numeric", y = "Ocmult.multinomial"), 
"Ocmult.hypergeom", y = "missing"): 

signature (x "numeric", y = "Ocmult.hypergeom"): 
Plot the OC curve for 2-level sampling plans. 

persp signature (x = "Ocmult. multinomial") , 
signature (x = "Ocmult.hypergeom"): 
Plot the OC surface for 3-level sampling plans. 

contour signature (x = "Ocmult.multinomial"), 
signature (x = "Ocmult. hypergeom"): 
Plot the OC contour curve for 3-level sampling plans. 

Author(s) 

Aaron Childs and Yalin Chen 

References 

Schilling, E. O. and Neubauer, D. V. (2009). Acceptance sampling in quality contlV!, Second Edi
tion, CRC Press, New York. 

See Also 

Ocmult, find.multi.plan,assess.mulLi. 
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pmultihyper 

Description 

The Cumulative Distribution Functionfor the Multivariate Hypergeo
metric Distribution 

9 

Compute cumulative probability for the multivariate hypergeometric distribution. 

Usage 

pmultihyper(x, n, M, N) 

Arguments 

x 

n 

M 

N 

Details 

Vector of length k -1 of non-negative integers where k is the number of classes. 

The sample size. 

Vector of length k -1 containing the total number of objects in each of k -1 of 
the classes. 

The size of the population from which the sample is drawn. 

The multivariate hypergeometric distribution is used for sampling from a finite population with
out replacement. If a sample of size n is drawn from a population of size N which has NI[i] ob
jects of type i (for i = 1,2, ... , k), let Xli] be the number of objects of type i in the samplc (for 
i = 1,2, ... , k). Then the cumulative probability pmultihyper (x, n, M, N) is given by, 

P(X[I] <= x[l], ... ,X[k -1] <= x[k -1]) 

x[1] x[k-1] 

= 2: ... 2: P(X[l] = y[l], ... ,X[k - 1] = y[k - 1]) 
y[1]=O y[k-1]=O 

k-l 

N- 2: Mli) 

e:IW) ... C::I\:-=-N)( ~11 ) 

x[1] x[k-1] n- Evlil 

2: 
y[1]=O 

2: 
y[k-1]=O 

i-I 

(~) 

where the sum is over all values of y such that y[l] + y[2] + ... + y[k - 1] <= nand n - (y[l] + 
y[2] + ... + y[k - 1]) <= N - (M[l] + M[2] + ... + M[k - 1]). 

Value 

pmul t ih ype r gives the value of the cumulative distribution function. Invalid arguments will stop 
running. 
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Source 

pmultihyper is computed using recursive algorithms for the Dirichlet HJ function given in 

Sobel, M. and Frankowski, K. (1994). Hypergeometric analogues of multinomial type-l Dirichlet 
problems. Congressus NlIInerantium 101, 65-82. 

Author(s) 

Aaron Childs and Yalin Chen 

References 

Johnson, N. L., Katz, S., and Balakrishnan, N. (1997). Discrete Multivariate Distributions, Wiley, 
New York. 

See Also 

pmultinom,pnmultinom,pnmultihyper. 

Examples 

X <- c(l,3,4) 
n <- 15 
M <- c (8, 10, 14) 
N <- 50 
pr <- pmultihyper(X, n, M, N) 
pr 

pmultinom 

Description 

The CUlIlulative Distribution Function for the Multinomial Distribu
tion 

Compute cumulative probability for the multinomial distribution. 

Usage 

pmultinom(x, size, probl 

Arguments 

x 

size 

prob 

Vector of length k -1 of non-negative integers where k is the number of classes. 

The sample size 

Numeric non-negative vector of length k-1 specifying the probability for k-1 
of the classes. 
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Details 

The multinomial distribution is used for sampling with replacement, or if the population is large 
compared to the sample size. If a sample of size n is drawn from a population whose k classes have 
probabilities p[l], ... ,p[k - l],p[kJ, let X[l], ... , X[k -1], X[k] denote the number of observations 
drawn from each of the k classes. Then the cumulative probability pmultinom (x, size=n, 
prob=p) is given by 

P(X[l] <= x [1], ... ,X[k - 1] <= x[k - 1]) 

x[I] x[k-I] 
= 2:= ... 2:= P(X[l] = y[l], .. . , X[k - 1] = y[k - 1]) 

y[I]=O y[k-I]=O 

x[I] :E[k-I] 
= 2:= ... 2:= n! k-l p[l]Y[I] ... p[k - l]y[k-I] 

y[I]=O y[k-I]=O Y[I)! ... y[k-I]! (n-~ Y[i])! 

where the sum is over all values of y such that y[l] + y[2] + ... + y[k - 1] <= n. 

Value 

pmul t inom gives the value of the cumulative distribution function. Invalid arguments will stop 
running. 

Source 

pmul t inom is computed using recursive algorithms for the Dirichlet J function given in 

Sobel, M., Uppuluri, V. R. R., and Frankowski, K. (1977). Dirichlet distributions type-I. In Selected 
Tables in Mathematical Statistics 4, American Mathematical Society, Providence, Rhode Island. 

Sobel, M. and Frankowski, K. (2004). Extensions of Dirichlet integrals: their computation and 
probability applications. In Gupta, A.K. and Nadarajah, S. (eds) Handbook of Beta Distribution 
alld its applications, 319-360, Marcel Dekker, New York. 

Author(s) 

Aaron Childs and Yalin Chen 

References 

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1997). Discrete Multivariate Distributions, Wiley, 
New York. 

See Also 

pmultihyper,pnmultino~pnmultihyper 
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Examples 

X <- c(2,3) 
n <- 20 
pr <- e(0.12, 0.15) 
edf <- pmultinom(x = X, size 
edf 

n, prob pr) 

pnmultihyper 

Description 

The Cumulative Distribution Function for the Negative Multivariate 
Hypergeometric Distribution 

Compute cumulative probability for the negative multivariate hypergeometric distribution. 

Usage 

pnmultihyper(x, m, M, N} 

Arguments 

x 

m 

M 

N 

Details 

Vector of length k-l for the failures where k is the number of classes. 

The target number of successful trials. Must be a strictly positive integer. 

Vector of length k -1 containing the total number of each type of failure in the 
population. 

Total population size from which the sample is drawn. 

The negative multivariate hypergeometric distribution is used for sequential sampling from a finite 
population without replacement. Suppose that the population of size N has k-1 different types 
offailuresrepresentedM[l), ... , M[k-1) times. LetX[l), ... , X[k-1) denote the 
number of failures of each type that are selected in a sequence of trials before a target number m of 
successes is reached. Then pnmultihyper (x, m, M, N) is the cumulative probability: 

P(X[l] <= x[l], .. . , X[k - 1] <= x[k - 1]) 

x[lJ x[k-1J 

= L ... L P(X[l] = y[l], ... ,X[k -1] = y[k -1]) 
y[lJ=O y[k-1J=O 

k-l 

x[lJ 

L 
y[lJ=O 

N- '" M('I k-1 
'[k-1J (M(11) ... (M(k-11)( ~ ) N-m+1- '" M[iJ x yl!] v(k-l) 1-1 L.J 

'"" tn-I i-I 
6 N k 1 

y[k-lJ=O (k-1) N-m+1- '" y[iJ 
m-l+ L yli] L.J 

1=1 
i=1 
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Value 

pnmul tihyper gives the value of the cumulative distribution function. Invalid M or N will stop 
running with a warning. 

Source 

pnmul tihyper is computed using recursive algorithms for the Dirichlet HD function given in 

Childs, A. (20 I 0). Vector extensions of the Dirichlet HC and HD functions, with applications to the 
sharing problem. Methodology and Computing in Applied Probability 12, 91-109. 

Sobel, M. and Frankowski, K. (1995). Hypergeometric analogues of multinomial type-2 problems 
via Dirichlet methodology. CongresslIs NlImerantilllll 106, 171-191. 

Author(s) 

Aaron Childs and Yalin Chen 

References 

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1997). Discrete Multivariate Distributions, Wiley, 
New York. 

See Also 

pmultino~pmultihyper,pnmultino~ 

Examples 

X <- e(2,3,4,l) 
m <- 5 
M <-e(5,7,8,3) 
N <-30 

edf <- pnmultihyper(X, m, M, N) 
edf 

pnmultinom 

Description 

The CUlllulative Distribution Function for the Negative Multinomial 
Distribution 

Compute cumulative probability for the negative multinomial distribution. 

Usage 

pnmultinom(x, m, probl 

Arguments 

x 

m 

prob 

Vector of length k-l for the failures where k is the number of classes. 

The target number of successful trials. Must be a strictly positive integer. 

Numeric non-negative vector of length k-l specifying the probability for the 
k-l classes of failures. 
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Details 

The negative multinomial distribution is used for sequential sampling with replacement. Suppose 
that the population has k-l different types of failures, with corresponding probabilities p [1], 
... , p [k -1] in each trial. Let X [1], ... , X [k -1] denote the number of failures of each 
type that are selected in a sequence of trials before a target number m of successes is reached. Then 
pnmultinom (x, m, prob = p) is the cumulative probability: 

P(X[l] <= x[l]' ... , X[k - 1] <= x[k - 1]) 

x[I] x[k-I] 

= 2: ... 2: P(X[l] = y[l], .. . , X[k - 1] = y[k - 1]) 
y[I]=O y[k-I]=O 

x[I] x[k-I] (~ y[i]+m-I) i ( k-I ) m 
_ '=1 y[I] y[k-I] . - 2: ... 2: (m-I)iy[I]i ... y[k-I]!P[l] .. . p[k - 1] 1 - 2: p[~] 

y[I]=O y[k-I]=O 1=1 

Value 

pnmul tinom gives the value of the cumulative distribution function. Invalid m or prob will stop 
running with a warning. 

Source 

pnmul t inom is computed using recursive algorithms for the Dirichlet D function given in 

Sobel, M. and Frankowski, K. (1985). Dirichlet integrals oftype-2 and their application. In Selected 
Tables in Mathematical Statistics 9, American Mathematical Society, Providence, Rhode Island. 

Sobel, M. and Frankowski, K. (2004). Extensions of Dirichlet integrals: their computation and 
probability applications. In Gupta, A. K. and Nadarajah, S. (eds) Handbook of Beta Distribution 
alld its applications, 319-360, Marcel Dekker, New York. 

Author(s) 

Aaron Childs and Yalin Chen 

References 

Johnson, N. L., Kotz, S., and Balakrishnan, N. (1997). Discrete Multivariate Distributions, Wiley, 
New York. 

See Also 

pmultinom,pmultihyper,pnmultihyper 

Examples 

X <- c(4,5,6) 
m <-3 
pr <-c(O.lO,O.15,O.18) 
pnmultinom(x = X, m = m, prob prj 
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Appendix B 

MFSAS Package Code 

The MFSAS package code is divided into five parts III following five files: Ocmul t . R, 

functions.R, cdf.R, assess.R, and findplan.R. 

B.l Ocmult.R 

This part uses the setClass function to create a virtual class and two actual classes. The 

function new is called to create an object and the setMethod function is applied to generate 

the generic function show, summary, plot, persp, and contour for the object. This file 

also contains small functions for the titles of the plots. 

## Class definitions 
## Create a virtual class 
setClass (" Ocmul t" , 

representation( 
n="numeric", 

# An integer the sample size for fixed sampling 
m="numeric", 

# An integer - cell quota of good items for sequential sampling 
rn="numeric" , 

# A vector of rejection numbers for fixed sampling or cell quotas 
#of defectives for sequential sampling 

69 



pd="matrix" , 
# The proportions of each type of defective in the population (by row) 

pa="numericII , # Probability of acceptance 
asn="numeric", # Average sampling number 
stype="character", # Type of sampling 
type="character", # Distribution type 
"VIRTUAL"), 

validity=function(object){ 
if(any(is.na(object@rn))) 

} 

return(IIThe 'rn' vector is not allowed to contain missing values. II) 
# Check that the rejection numbers are reasonable 
if(any(object@rn < 1)) 

return(lIrejection number(s) 'rn' must be greater than 0.") 
if(any(is.na(object@pd))) 

return("'pd' is not allowed to contain missing values. ") 
l=ncol(object@pd) 
# Check that the rows of pd have the same length as rn 
if(length(object@rn)!=l) 

return(IIThe number of columns in 'pd' must be the same as the length of 'rn'.") 
# Check that the proportions of defectives are reasonable 
if(any(object@pd < 0)) 

return(IIThe entries in 'pd' must be greater than or equal to 0.") 
if(any(apply(object@pd,l,sum) > 1)) 

return(IIThe row sums of 'pd' must be less than or equal to 1.") 
return (TRUE) 

## Create two classes 
setClass(IOcmult.multinomial", 

representation(IOcmult" 
) , 

prototype=list(IOcmult", 
stype="fixed", 
type="multinomial", 
n=30, 
pd=as.matrix(seq(O, 0.1, by=O.Ol),nrow=l) 
) , 

contains=IOcmult" , 
validity=function(object){ 

## fixed sampling plan 
if(object@stype=="fixed"){ 

if(is.na(object@n) ) 
return(IIThe 'n' is not allowed to contain missing value. ") 

if(length(object@n)!= 1) 
return(IIThe length of sample size 'n' should be equal to 1") 

# Check that the sample size is reasonable 
if(object@n <= 0) 

return("Sample size 'n' should be greater than 0.") 
# Check that the rejection numbers are reasonable 
if(any(object@rn-l > object@n)) 

70 



return(IIEach rejection number in the vector 'rn' must be less than 'n+1'.") 
} 

# Check that the length of acceptance is reasonable for sequential sampling plan 
if (obj ect<ilstype=="sequential") { 

if(is.na(object@m) ) 
return(IIThe 'm' is not allowed to contain missing value. ") 

if(length(object@m)!= 1) 
return(IIThe length of cell quota of good item 'm' should be equal to 1") 

# Check that the cell quota is reasonable 
if(object@m <= 0) 

return(IIcell quota 'm' should be greater than 0.") 
} 

return (TRUE) 
} 

setClass("Ocmult .hypergeom", 
representation("Ocmult" , 

N= II numeric II # An integer - the population size 
) , 

prototype = list("Ocmult", 
stype="fixed", 
type="hypergeom" , 
N=100, 
n=30, 
pd=as.matrix(seq(O, 0.1, by=0.01),nrow=1) 
) , 

contains="Ocmult", 
validity=function(object){ 

if(is.na(object@N)) return(IIN contains NA. ") 
# Check that the population size is reasonable 
if(length(object@N»1) return(IIN must be of length 1. ") 
if(object@N < 1) return(IIN is less than 1. ") 
if(length(object@rn) >= object@N) 

return(IIThe length of 'rn' must be less than 'N'. ") 
# Check that the numbers of defectives for each type are integers 
if(any«object@N*object@pd < round(object@N*object@pd 

ject@pd > round(object@N*object@pd 
)+1e-6))) 
return(IIN times pd must be integer numbers. ") 

## fixed sampling plan 
if(object@stype=="fixed"){ 

if(is.na(object@n) ) 
return(IIThe 'n' is not allowed to contain missing value. ") 

if(length(object@n)!= 1) 
return(IIThe length of sample size 'n' should be equal to 1") 

# Check that the sample size is reasonable 
if( object@n <= 0) 

return("Sample size 'n' should be greater than 0.") 
# Check that the rejection numbers are reasonable 
if(any(object@rn-1 > object@n)) 
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return("Any rejection number in 'rn' must be less than 'n+1'.") 
# Check that the population size and sample size are reasonable 
if(object@N <= object@n) 

return("N must be greater than n. ") 
} 

# Check that the length of acceptance is reasonable for sequential sampling plan 
if(object@stype=="sequential") 

{ 

if(is.na(object@m)) 
return("The 'm' is not allowed to contain missing value.") 

if(length(object@m)!= 1) 
return("The length of cell quota 'm' should be equal to 1") 

# Check that the cell quota of good item is reasonable 
if( object@m <= 0) 

return("Cell quota 'm' should be greater than 0.") 
# Check that the population size and cell quota are reasonable 
if(object@N <= object@m) 

return("N must be no less than m. ") 
} 

return (TRUE) 
} 

## Creation of the object 
Ocmult <- function(rn, type=c("multinomial" , "hypergeom"), 

stype=c("fixed", "sequential"), ... ) 
{ 

# Choose what 'type' to use 
type <- match.arg(type) 
stype <- match.arg(stype) 

## Get type, defaut is multinomial 
## Get type, defaut is fixed 

# invoke a new object of that 
switch(type, 

multinomial={ 

type 

obj <- new("Ocmult.multinomial", rn=rn, type="multinomial" , stype=stype, ... ) 
switch(stype, 

fixed={ 
obj@pa <- pmultinom(x=obj@rn-1, size=obj@n, prob=obj@pd) 

}, 

sequential={ 

} 

obj@pa <- calc.pnmultinom(pd=obj@pd, rn=obj@rn, m=obj@m) 
obj@asn <- EWT(pd=obj@pd, rn=obj@rn, m=obj@m) 

}, 

hypergeom={ 
obj <- new("Ocmult.hypergeom", rn=rn, type="hypergeom", stype=stype, ... ) 
switch(stype, 

fixed={ 
obj@pa <- calc.pmultihyper(obj@pd, rn=obj@rn, n=obj@n, N=obj@N) 

}, 

sequential={ 
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} 

} 

) 

} 

obj@pa <- calc.pnmultihyper(pd=obj@pd, rn=obj@rn, m=obj@m, N=obj@N) 
obj@asn <- EWTH(pd=obj@pd, rn=obj@rn, m=obj@m, N=obj@N) 

return (obj) 

##Initialization of the class 
setMethod("initialize", "Ocmult.multinomial", 

function(.Object, rn, n=.Object@n, m, pd, stype=.Object@stype, ... ) 
{ 

lrn <- length(rn) 
if (missing(pd)) 

{ 

if (lrn==2) 
{ 

.Object@pd <- as.matrix(expand.grid(seq(O, 0.1, 0.01), seq(O, 0.1, 0.01))) 
} 

else 
if (lrn > 2) 

{ 

} 

if (lrn < 11) 
.Object@pd <- as.matrix(t(combn(seq(O.01, 0.1, O.01),lrn))) 

else 
{ 

lrnpd <- seq(0.1/1rn, 0.1, 0.1/1rn) 
if(sum(lrnpd) < 1) 

.Object@pd <- as.matrix(t(lrnpd)) 
else 

} 

.Object@pd <- as.matrix(t(rep(1/(2*lrn), lrn))) 
} 

else if(is.vector(pd)) 
{ 

if (lrn > 1) 
{ 

l.row <- length(pd)/lrn 
if (1. row < 1) 

stop(IIThe length of 'rn' must less than or equal to length of 'pd'.") 
if(l.row > floor(l.row)) 

{ 

l.row <- floor(l.row) 
l.pd <- lrn*l.row 
pd <- pd[1:1.pd] 
warning ( 
paste("The length of the pd vector should be an integer", 

"multiple of the length of the rn vector. II , 
"\nThe truncated pd in use is: II), t(paste(pd, II "))) 
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) 

} 
} 

if (lrn==2) { 
pdtemp <- matrix(pd, ncol=lrn, byrow=TRUE) 

.Object@pd <- as.matrix(expand.grid(unique(sort(pdtemp[, 1])), 
unique (sort (pdtemp [, 2])))) 
} 

else 
.Object@pd <- matrix(pd, ncol=lrn, byrow=TRUE) 
} 

else 
if (lrn==2) 

.Object@pd <- as.matrix(expand.grid(unique(sort(pd[, 1])), 
unique(sort(pd[, 2])))) 

else 
.Object@pd <- pd 

if (stype=="fixed") 
.Object@n <- n 

else 
.Object@m <- m 

.Object@rn <- rn 

.Object@stype <- stype 
callNextMethod(.Object, ... )## Return to object 
} 

setMethod (" ini tialize", "Ocmul t . hypergeom" , 
function(.Object, rn, n=.Object@n, m, pd, N=.Object@N, 

stype=.Object@stype, ... ) 
{ 

lrn <- length(rn) 
if (missing (pd) ) 

{ 

if (lrn==2) 
{ 

.Object@pd <- as.matrix(expand.grid(seq(O, 0.1, 0.01), seq(O, 0.1, 0.01))) 
} 

else 
if(lrn > 2 

{ 

if(lrn < 11) 
.Object@pd <- as.matrix(t(combn(seq(O.01, 0.1, O.01),lrn))) 

else{ 
lrnpd <- seq(1/N, lrn/N, 1/N) 
if(sum(lrnpd) < 1) 

.Object@pd <- as.matrix(t(lrnpd)) 
else 

} 

} 

.Object@pd <- as.matrix(t(rep(1/N, lrn))) 
} 

74 



else if(is.vector(pd)) 
{ 

if (lrn > 1) 
{ 

l.row <- length(pd)/lrn 
l.row <- length(pd)/lrn 
if (1. row < 1) 

stop(IIThe length of 'rn' must less than or equal to length of 'pd'.") 
if(l.row > floor(l.row)) 

{ 

l.row <- floor(l.row) 
l.pd <- lrn*l.row 
pd <- pd[1:1.pd] 
warning ( 
paste("The length of the pd vector should be an integer", 

"\nmultiple of the length of the rn vector. ", 
"\nThe truncated pd in use is: \n"), t (paste (pd, II "))) 

} 

} 

if (lrn==2) { 
pdtemp <- matrix (pd, ncol=lrn, byrow=TRUE) 
.Object@pd <- as.matrix(expand.grid(unique(sort(pdtemp[, 1])), 

unique(sort(pdtemp[, 2])))) 
} 

else 
.Object@pd <- matrix(pd, ncol=lrn, byrow=TRUE) 

} 

else 
if (lrn==2) 

.Object@pd <- as.matrix(expand.grid(unique(sort(pd[, 1])), 
unique(sort(pd[, 2])))) 

else 
.Object@pd <- pd 

if (stype=="fixed") 
.Object@n <- n 

else 
.Object@m <- m 

.Object@rn <- rn 

.Object@N <- N 

.Object@stype <- stype 
callNextMethod(.Object, ... ) 
} 

## Create show function 
setMethod ("show" , II Ocmult II , 

function(object) 
{ 

if(object@stype=="fixed") 
{ 

switch(object@type, 
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} 

multinomial=cat(1I ", paste(length(object@rn)+1, 
II-Level Acceptance Sampling Plan Multinomial: ", sep="") , "\n") , 

hypergeom=cat(1I ", paste(length(object@rn)+1, 
II-Level Acceptance Sampling Plan Multivariate Hypergeom: N = II 

object@N, sep="") , "\n" ) 

cat (" Sample size: 
cat(1I Rej. Number(s):", 
cat("\n" ) 

paste(object@n), "\n" ) 
paste(object@rn), "\n" ) 

} 

else { 
switch(object@type, 

} 

multinomial=cat(" II paste(length(object@rn)+1, 
II-Level Sequential Acceptance Sampling Plan", 
II Negative Multinomial: II , sep="") , "\n") , 

hypergeom=cat(1I ", paste(length(object@rn)+1, 
II-Level Sequential Acceptance Sampling Plan", 
II Negative Multivariate Hypergeom: N = II 
object@N, sep="") , "\n") 

cat(1I Acc. Number: paste(object@m), "\n" ) 
cat(1I Rej. Number(s):", paste(object@rn), "\n" ) 
cat("\n" ) 

## Create summary function 
setMethod(lsummary", signature (object=IOcmult"), 

function(object, detail=FALSE) 
{ 

if(ncol(object@pd)==1) p.nondef <- 1- object@pd 
else p.nondef <- 1-rowSums(object@pd) 
pa <- round(object@pa,7) 
prop <- cbind(object@pd, p.nondef ,pa) 
l=ncol(object@pd) 
defname = as.vector(sapply(" type II , FUN = paste, (1:1))) 
rownames(prop) <- rep(1I ", length(object@pa)) 
if(object@stype=="fixed") 

colnames(prop) <- c(defname, II P.nondef", II P(accept)lI) 
else 

{ 

asn <- round(object@asn,7) 
prop <- cbind(prop, asn) 
colnames (prop) <- c (defname, liP. nondef ", II P (accept) ", II 

} 

show(object) 
if (detail) { 

cat(lI\n Detailed acceptance probabilities: \n") 
show(prop) 

} 
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if(object@stype=="fixed") 
return(invisible(c(list(n=object@n, rn=object@rn, P= prop)))) 

else 
return(invisible(c(list(m=object@m, rn=object@rn, P= prop)))) 

} 

## Creating a new generic function for plot 
setMethod("plot" , c(x = "Ocmult.multinomial", y = "missing"), 

function(x, y, type="o", xlab="Proportion Defective", ylab="P(accept) " , 
main = main.2dp(x) , ... ) 
{ 

if(length(x@rn)!=i) 

} 

stop ("The plot for 2-Level acceptance sampling plan only") 
plot(x@pd, x@pa, type=type, xlab=xlab, ylab=ylab, main=main, ... ) 

setMethod("plot", signature(x="numeric", y="Ocmult.multinomial"), 
function(x, y, type="o", ylab="P(accept) " , main = main.2dp(y), ... ) 

{ 

plot(x, y@pa, type=type, ylab=ylab, main=main, ... ) 
} 

setMethod("plot", c(x = "Ocmult.hypergeom", y = "missing"), 

) 

function(x, y, type="p", xlab="Proportion Defective", ylab="P(accept) " , 
main = main.2dp(x) , ... ) 

} 

{ 

if(length(x@rn)!=i) 
stop ("The plot for 2-Level acceptance sampling plan only") 

plot(x@pd, x@pa, type=type, xlim=xlim, ylab=ylab, main=main, ... ) 

setMethod("plot" , signature(x="numeric", y="Ocmult.hypergeom"), 
function(x, y, type="p", ylab="P(accept) " , main = main.2dp(y), ... ) 

{ 

plot(x, y@pa, type=type, xlim=xlim, ylab=ylab, ylim=ylim, main=main, ... ) 
} 

setMethod("persp", c(x = "Ocmult.multinomial"), 
function (x, y, zlab="P (accept) ", xlab="pi", ylab="p2", 

main = main. 3dp (x), ticktype = "detailed", ... ) 
{ 

if(length(x@rn)!=2) 
stop("The persp plot is only for 3-Level acceptance sampling.") 

pi <- unique(sort(x@pd[,i])) 
p2 <- unique(sort(x@pd[,2])) 
pa <- matrix(x@pa, nrow=length(pi)) 
## Create three dimension plot 
persp(pi, p2, pa, theta = 20, phi = 30,d=4, expand=O.5, 

zlab=zlab, xlab=xlab, ylab=ylab, main=main, ticktype = ticktype, ... ) 
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} 

setMethod("persp", c(x = "Dcmult.hypergeom"), 
function(x, y, zlab="P(accept)", xlab="p1", ylab="p2", 

main = main. 3dp (x), ticktype = "detailed", ... ) 

} 

{ 

if(length(x©rn)!=2) 
stop("The persp plot is only for 3-Level acceptance sampling.") 

p1 <- unique(sort(x©pd[,1])) 
p2 <- unique(sort(x©pd[,2])) 
pa <- matrix(x©pa, nrow=length(p1)) 
## Create three dimension plot 
persp(p1, p2, pa, theta = 20, phi = 30,d=4, expand=0.5, 

zlab=zlab, xlab=xlab, ylab=ylab, main=main, 
ticktype = ticktype, ... ) 

## Creating a new generic function for contour plot 
setMethod("contour", c(x = "Dcmult.multinomial"), 

function(x, y, nlevel=8, main = main.3dc(x), xlab="p1", ylab="p2", ... ) 
{ 

if(length(x©rn)!=2) 
stop("The contour plot is only for 3-Level acceptance sampling.") 

p1 <- unique(sort(x©pd[,1])) 
p2 <- unique(sort(x©pd[,2])) 
pa <- matrix (x©pa, nrow=length(p1)) 
contour(p1, p2, pa, nlevel=nlevel, main=main, xlab=xlab, ylab=ylab, ... ) 
} 

setMethod("contour", c(x = "Dcmult.hypergeom"), 
function(x, y, nlevel=8, main = main.3dc(x), xlab="p1", ylab="p2", ... ) 

} 

) 

{ 

if(length(x©rn)!=2) 
stop ("The contour plot is only for 3-Level acceptance sampling.") 

p1 <- unique(sort(x©pd[,1])) 
p2 <- unique(sort(x©pd[,2])) 
pa <- matrix(x©pa, nrow=length(p1)) 
contour(p1, p2, pa, nlevel=nlevel, main=main, xlab=xlab, ylab=ylab, ... ) 

##The function for plot title 
main.3dp <- function(obj) 

{ 

if (obj©type=="multinomial") 
{ 

if (obj©stype=="fixed") 
return(paste("Multinomial DC Surface with 

", rn = (", obj©rn[1], ",", obj©rn[2], 
else 

\nn = ", obj©n, 
")", sep="")) 

return(paste("Negative Multinomial DC Surface with \nm = " 
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obj@m, II rn (II, obj@rn[1], II II obj@rn[2],I)", sep="")) 
} 

else 

} 

{ 

if(obj@stype=="fixed") 
return(paste("Multivariate Hypergeometric DC Surface with \nn 

obj@n, ", N = ", obj@N, ", rn = (II, 
obj@rn[1], ",", obj@rn[2],I)", sep=·II.)) 

else 

} 

return(paste("Negative Multivariate Hypergeometric 
obj@m, ", N = ", obj@N, ", rn = (II, obj@rn[1], 
obj@rn[2],I)", sep="")) 

DC Surface with \nm 
II II 

main.3dc <- function(obj) 
{ 

if(obj@type=="multinomial") 
{ 

if(obj@stype=="fixed") 
return(paste("Multinomial DC Contour with \nn = ", 
obj@n, ", rn = (II, obj@rn[1], ",", obj@rn[2],")", sep="II)) 

else 

} 

return(paste("Negative Multinomial DC Contour with \nm = ", 
obj@m, ", rn = (II, obj@rn[1], ",", obj@rn[2],I)", sep="")) 

else 
{ 

} 

if (obj@stype=="fixed") 
return(paste("Multivariate Hypergeometric DC Contour with \nn = ", obj@n, 

", N = ", obj@N, ", rn = (II, obj@rn[1], ",", obj@rn[2], 11)11, sep="II)) 
else 

} 

return(paste("Negative Multivariate Hypergeometric DC Contour with \nm = ", 
obj@m, ", N = ", obj@N, ", rn = (", obj@rn[1], ",", obj@rn[2],1)", sep="I1)) 

main.2dp <- function(obj) 
{ 

if(obj@type=="multinomial") 
{ 

else 

if (obj@stype=="fixed") 
return(paste("Binomial DC Curve with \nn 

obj@n, ", rn = ", obj@rn, sep="")) 

return(paste("Negative Binomial DC Curve with \nm 
obj@m, ", rn = ", obj@rn[1], sep="II)) 
} 

else 
{ 

if(obj@stype=="fixed") 
return(paste("Hypergeometric DC Curve with \nn 
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} 

B.2 

else 

} 

N = ", obj@N, ", rn = ", obj@rn, sep='"')) 

return(paste("Negative Hypergeometric DC Curve with \nm 
", N = ", obj@N, ", rn = ", obj@rn[l], sep="")) 

functions.R 

obj@m, 

The following are the functions for calculating the cumulative probabilities of the multivariate 

distributions, and average sampling number using the Dirichlet recursive functions. They 

include the Dirichlet J , HJ , D , and HD functions. 

## calculate the cumulative distribution function for multinomial 
## using recursive algorithms for the Dirichlet J function. 
## x is a non-negative integer vector. 
## prob is a vector or matrix. 
## size is a positive integer. 
pmultinom <- function(x, size , prob) 

{ 

if(any(x < 0)) 
stop("'X' must be non-negative ll

) 

if (size <=0) 
stop (" 'size' must be greater than 1. ") 

if(sum(x) > size) 
stop("Sum of 'x' must be not greater than size. ") 

if(any(prob>l)lany(prob<O)) 
stop('''prob' is out of range (0,1)11) 

b=length(x) 
if (b==l) 

{ 

if (length(prob)==l) 
cdf <- JV(x+l, size, prob) 

else 
cdf <-sapply(prob, function(P) JV(x+l, size, P)) 

} 

else 
{ 

if (is.matrix(prob)) 
{ 

if(ncol(prob)!=b) 
return(strwrap("The length of 'x' and the number columns 

of 'prob' must be equal. II), width = 60) 
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cdf <-apply (prob, 1, function(P) JV(x+1, size, P» 
} 

else 
{ 

if(length(prob)!=b) 
return("'x' and 'prob' must be equal length vectors. ") 

cdf <- JV(x+1, size, prob) 

} 

} 

} 

return(cdf) 

##Dirichlet J vector function: 
## JV function is used to check if the input is valid. 
## RJV is recursive function for Dirichlet J function. 
JV <- function(R, n, P) 

{ 

if (sum(P) > 1) 
stop(IISum of 'P' must be not greater than 1. ") 

if(any( R<=O »return(O) 
if (all(P==O»return(1) 
if (sum(P)==1)return(O) 
R <- R[P!=O] 
P <- P[P!=O] 
b <- length(R) 
jv <- RJV(b, R, n, P) 
return(jv) 
} 

RJV <- function(b, R, n, P) 
{ 

if«max(P)== min(P» & (max(R)== mineR»~) 

} 

## Check if all the values in vector P are the same and if all 
## the values in vector R are the same 

{ 

pj = J(b, 0, R[1], n, P[1]) 
return(pj) 

} 

sump=O 
if(R[1] <=0) return (sump) 
else {r1 <- R[1]-1} 
R1 <- R[ -1] 
pi <- P [1] 
Pi <- P[-1]/(1-p1) 
P1[P1>1]=1 
for(i in (O:r1» 

{ 

sump <- sump + (choose(n,i»*(p1-i)*«1-p1)-(n-i»*RJV(b-1, R1, n-i, Pi) 
} 

return (sump) 

## J function for the same r and same p. 
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## It is part of Dirichlet J recursive function. 
J <- function(b,j,r,n,p) 

{ 

if«j*r) > n)return(O) 
if«j*r)==n) 

{ 

pj=(factorial(n)/(factorial(r))-j)*(p-n) 
return(pj) 
} 

if (j==b){ 
pj <- (factorial(n)/«(factorial(r))-b)*factorial(n-b*r)))*(p-(b*r))*«1-b*p)-(n-b*r)) 
return(pj) 
} 

pj <- (1/(n-j*r))*(n*(1-j*p) *J(b,j,r,n-1,p)-r*(b-j)*J(b,j+1,r,n,p)) 
return(pj) 

} 

## calculate the cumulative distribution function for multivariate hypergeometric 
## using recursive algorithms for the Dirichlet HJ function. 
## n, N are positive integers. # # x is a vector of non-negative integers. 
## M is a vector or matrix of non-negative integers. 
pmultihyper <- function (x , n, M, N) ##what if any x > M ? 

{ 

if(any(x < 0)) 
stop("'x' must be non-negative") 

if (any(M < 0)) 
stop(" 'M' must be non-negative") 

if (n <=0) 
stop(" 'n' must be greater than O. ") 

if (sum (x) >n) 
stop("'n' must be no less than the 

if (N<=O) 
stop("'N' must be greater than O. ") 

if (n > N) 
stop("'N' must be no less than than 

b=length(x) 
if (b==1) 

{ 

if (length(M)==1) 
cdf <- HJV(b, x+1, n, M, N) 

else 

sum of 'x'. ") 

'n'. ") 

cdf <-sapply(M, function(y) HJV(b, x+1, n, y, N)) 
} 

else 
{ 

if (is.matrix(M)) 
{ 

if(ncol(M)!=b) 
stop(strwrap("The length of 'x' and the 

number columns of 'M' must be equal.") ,width 60) 
cdf <-apply(M, 1, function(y) HJV(b, x+1, n, y, N)) 
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} 

} 

else 

} 

{ 

if(length(M)!=b) 
stop("'x' and 'M' must be equal length vectors.") 

cdf <- HJV(b, x+1, n, M, N) 
} 

return (cdf) 

## Dirichlet HJ vector function: 
## HJV function is used to check if the input is valid. 
## RHJV is recursive function for Dirichlet HJ function. 
HJV <- function(b, R, n, M, N) 

{ 

if (sum(M»N) 
stop(" 'N' must be no less than the sum of 'M'.") 

if(n < 0) return(1) 
if(any( R<=O ))return(O) 
hjv <- RHJV(b, R, n, M, N) 
return (hjv) 
} 

RHJV <- function(b, R, n, M, N) 

} 

{ 

if(n >= N)return(O) 
if«max(M)== min(M)) & (max(R)== min(R))) 

{ 

## check if all the values in vector M are the same and 
## if all the values in vector R are the same 

phj = HJ(b, 0, R[1], n, M[1], N) 
return(phj) 
} 

sump=O 
if(R[1] <1)return(sump) 
else {r1 <- R[1]-1} 
R1 <- R[ -1] 
m1 <- M[1] 
M1 <- M [-1] 
for(i in (O:min(m1,r1))) 

{ 

sump <- sump + «(choose(m1,i))* 
(choose(N-m1,n-i)))/(choose(N, n)))*RHJV(b-1, R1, n-i, M1, N-m1) 

} 

return (sump) 

## #HJ function for the same r and same M. 
## It is part of Dirichlet HJ recursive function. 
HJ <- function(b, j, r, n, M, N) 

{ 
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if(n >= N)return(O) 
if(r <= O)return(O) 
if(r >= M)return(1) 
if«n-b*r) >= (N-b*M))return(O) #add this 
if«j*r) > n)return(O) 

} 

if ( (j *r) ==n) 
{ 

ph <- «choose(M, r))-j)/(choose(N, n)) 
return (ph) 
} 

if (j==b){ 
ph <- «choose(M, r))-b)*(choose«N-b*M), (n-b*r)))/(choose(N, n)) 
return (ph) 
} 

ph <- (1/(n-j*r))*(n*(1-«j*(M-r))/(N-n+1)))*HJ(b,j,r, 
n-1,M,N)-r*(b-j)*HJ(b,j+1,r,n,M,N)) 

return (ph) 

## calculate the cumulative distribution function for negative multinomial 
## using recursive algorithms for the Dirichlet D function. 
## m is a positive integer. 
## x is a vector of positive integers. 
## prob is a vector or matrix. 
pnmultinom <- function(x, m, prob) 

{ 

if(any(x < 0)) 
stop("'X' must be non-negative ll

) 

if (m <=0) 
stop (" 'm' must be greater than 1. ") 

if (any(prob>1) lany(prob<O)) 
stop(1I 'prob' is out of range (0,1) ") 

R=x+1 
b=length(x) 
if (b==1) 

{ 

if (length(prob) ==1) 
cdf <- DV(b, R, m, prob) 

else 
cdf <-sapply(prob,function(P) DV(b, R, m, P)) 

} 

else 
{ 

if(is.matrix(prob)) 
{ 

if (ncol(prob) !=b) 
stop(strwrap("The length of 'x' and the number columns 

of 'prob' must be equal. II), width = 60) 
cdf <-apply (prob , 1, function(P) DV(b, R, m, P)) 
} 

else 
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{ 

if(length(prob)l=b) 
stop("'X' and 'prob' must be equal length vectors. ") 

cdf <- DV(b, R, m, prob) 

} 

} 

} 

return(cdf) 

## Dirichlet D vector function: 
## DV function is used to check if the input is valid. 
## RDV is recursive function for Dirichlet D function. 
DV <- function(b, R, m, P) 

{ 

if (sum(P»1) 
stop(IISum of 'P' must be not great than 1. ") 

if(any( R<=O ))return(O) 
pO <- 1-sum(P) 
P1 <- P 
dv <- RDV(b, R, m, P1, pO) 
return (dv) 
} 

RDV <- function(b, R, m, P1, pO) 
{ 

if(pO==O) return(O) 
if(pO==1) return(1) 
if((max(P1)== min(P1)) & (max(R)== mineR))) 

## check if all the values in vector P are the same and 
## if all the values in vector R are the same 

{ 

a=P1 [1] /pO 
rdv = D(b, 0, R[1], m, a) 
return (rdv) 
} 

sump=O 
r1 <- R[1]-1 
R1 <- R[ -1] 
p1=P1 [1] 
P1 <- P1 [-1] 
for(i in 0:r1) 

{ 

sump <- sump + choose((m+i-1),i)*((p1/(pO+p1))-i)*((pO/(pO+p1 
)-m)*RDV(b-1, R1, m+i, P1, pO+p1) 

} 

return(sump) 
} 

## D function for the same r and same p. 
## It is part of Dirichlet D recursive function. 

D <- function(b, j, r, m, a) 
{ 

if( m <= 0 ) return (0) 
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if (j==b) 
{ 

} 

sump <- (factorial(m+r*b-1)/«(factorial(r))~b)*factorial(m-1)) 

)*«1/(1+a*b))~m)*«a/(1+a*b))~(b*r)) 

return (sump) 

if (m > r) 
{ 

temp=O 

} 

for(i in 1:r) 
{ 

temp <- temp + (choose«m-i-1),(r-i))/(a~i))*D(b, j+1, r, m-i, a) 
} 

sump <- (1/choose«m-1), r))*temp 
return (sump) 
} 

sump <- (1/(m+j*r))*(m*(1+j*a)*D(b, j, r, m+1, a)+r*(b-j)*D(b, j+1, r, m, a)) 
return (sump) 

## calculate the cumulative distribution function for negative multivariate 
## hypergeometric using recursive algorithms for the Dirichlet HD function. 
## b, m, N are positive integers. 
## M, R are vector arguments. 
pnmultihyper <- function (x , m, M, N) 

{ 

if(any(x < 0)) 
stop(" 'x' must be non-negative") 

if(any(M < 0)) 
stop("'M' must be non-negative") 

if( m <= 0) stop("'m' must be great than 0.") 
R=x+1 
b=length(x) 
if (b==1) 

{ 

if (length(M)==1) 
cdf <- HDV(b, R, m, M, N) 

else 
cdf <-sapply(M,function(y) HDV(b, R, m, y, N)) 

} 

else 
{ 

if(is.matrix(M)) 
{ 

if (ncol(M) ! =b) 
stop(strwrap("The length of 'x' and the number columns 

of 'M' must be equaL"), width = 60) 
cdf <-apply(M, 1, function(y) HDV(b, R, m, y, N)) 
} 

else 
{ 
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} 

} 

if(length(M)!=b) 
stop("'X' and 'M' must be equal length vectors. ") 

cdf <- HDV(b, R, m, M, N) 

} 

return(cdf) 

##Dirichlet HD vector function: 
## HDV function is used to check if the input is valid. 
## RHDV is recursive function for Dirichlet HD function. 
HDV <- function(b, R, m, M, N) 

{ 

if(any( R<=O ))return(O) 
hdv <- RHDV(b, R, m, M, N) 
return (hdv) 
} 

RHDV <- function(b, R, m, M, N) 

} 

{ 

if((max(M)== min(M)) & (max(R)== mineR))) 

{ 

## check if all the values in vector M are the same and 
## if all the values in vector R are the same 

rhdv = HD(b, 0, R[1], m, M[1], N) 
return (rhdv) 
} 

r1 <- R[1]-1 
R1 <- R[ -1] 
m1 <- M[1] 
Mm <- N-sum(M) 
if(Mm <= m)return(O) 
M1 <- M[-1] 
sump=O 
for(i in (0:r1)) 

{ 

sump <- sump + (choose(m1,i)/((choose((N-sum(M1)), (m+i)))*(m+i)) 
)*RHDV(b-1, R1, (m+i), M1, N) 

} 

rhdv <- (choose(Mm, m))*m*sump 
return (rhdv) 

## HD function for the same r and same M. 
## It is part of Dirichlet HD recursive function. 
HD <- function(b, j, r, m, M, N) 

{ 

if(r > M) return(1) 
if(N <= m+b*r)return(O) 
Mm <- N-b*M 
if(Mm <= m)return(O) 
if (j==b) 

{ 
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} 

phd <- (m/(m+b*r))*(((choose(M,r))-b)*(choose(Mm, m))/choose(N, (m+b*r))) 
return (phd) 
} 

if (m > r) 
{ 

temp=O 

} 

for(i in O:(r-1)) 
{ 

temp <- temp + 
(m/(m+i-r))*(choose(M,i)/choose(Mm, (m+i-r)))*HD(b, j+1, r, m+i-r, M, N) 

} 

phd <- (choose(Mm, m)/choose(M,r))*temp 
return (phd) 

phd <- (1/(m+j*r))*(m*(1+((j*(M-r))/(Mm-m))) 
*HD(b, j, r, m+1, M, N)+ r*(b-j)*HD(b, j+1, r, m, M, N)) 

return (phd) 

B.3 cdf.R 

This section contains the functions that call the probability functions in the previous section 

in order to calculate the probabilities of acceptance and expected waiting time (for sequential 

sampling) of the object. 

## Calculate the pa (the acceptance probabilities) functions. 
## They are used in the initialzation function when creating the object. 
## calc.pmultihyper is used for fixed sampling with multivariate 
## hypergeometric distribution. 
## calc.pnmultinom is used for sequential sampling with negative 
## multinomial distribution. 
## calc.pnmultihyper is used for sequential sampling with negative 
## multivariate hypergeometric distribution. 
calc.pmultihyper <- function(pd, rn, n, N) 

} 

{ 

M <- round(N*pd) 
if(((N*pd) < (M-1e-6))I I ((N*pd) > (M+1e-6))) 

stop("'N' times 'pd' must be integer numbers. ") 
pa <- pmultihyper(rn-1, n, M, N) 
return (pa) 

calc.pnmultinom <- function(pd, rn, m) 
{ 
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} 

R <- rn-1 
pa <- pnmultinom(R, m, prob=pd) 
return (pa) 

calc.pnmultihyper <- function(pd, rn, m, N) 
{ 

M=round(N*pd) 

} 

if « (N*pd) < (M-1e-6)) II «N*pd) > (M+1e-6))) 
stop("'N' times 'pd' must be integer numbers. ") 

R=rn-1 
pa <- pnmultihyper(R, m, M, N) 
return (pa) 

## Calculate the expected sample size (average sampling number) using 
## the D function for the arguments matching the ones in the classes. 
## pd is a vector or matix. 
## rn is a nonnegtive vector. 
EWT <- function (pd, rn, m) 

} 

{ 

b=length(rn) 
R=rn 
if(is.matrix(pd)) 

{ 

if (ncol (pd) ! =b) 
return(strwrap("The number of columns in pd must be equal to 

the length of rn. ", width = 60)) 
ewt <- apply(pd, 1, function(x) EWTD(b, R, m, x)) 
} 

else 
{ 

if(length(pd)!=b) 
return(strwrap("The length of pd must be equal to the 

length of rn. ", width = 60)) 
ewt <- EWTD(b, R, m, pd) 
} 

return (ewt) 

## Calculate the expected sample size (average sampling number) using 
## the HD function for the arguments matching the ones in the classes. 
## pd is a vector or matix. 
## rn is a nonnegtive vector 
EWTH <- function(pd, rn, m, N) 

{ 

b=length(rn) 
R=rn 
if(is.matrix(pd)) 

{ 

if(ncol(pd)!=b) 
return(strwrap("The number of columns in pd must be equal to 

the length of rn. ", width = 60)) 
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} 

M <- round(pd*N) 
ewt <- apply(M, 1, function(x) EWTHD(b, R, m, x, N)) 
} 

else 
{ 

if(length(pd)!=b) 
return(strwrap("The length 

length of rn.", width 
M <- round(pd*N) 
ewt <- EWTHD(b, R, m, M, N) 
} 

return (ewt) 

of pd must be equal to the 
60)) 

## Calculate the expected sample size (average sampling number) using 
## the D function for the arguments defined as Dirichlet D function. 
## b, m are positive integers. 
## R, P are vector arguments. 
EWTD <- function(b, R, m, p) 

{ 

if(length(P)!= b I length(R)!= b) 
stop (liThe length of 'Pi' and 'R' must be equal to 'b'. ") 

if(any(P>1)lany(P<O))stop("'p' is out of range (0,1)11) 
if(sum(P»1)stop("Sum of 'P' must not be greater than 1.") 
if(any( R<=O ))return(O) 
pO <- 1-sum(P) 
if(all(P==O)) return(m) 
else 

{ 

RR <- c(m, R) 
PP <- cepo, p) 
R <- RR[PP!=O] 
P <- PP[PP!=O] 
b <- length(R) 

EPWT <- 0 
for(i in 1:b) 

{ 

ri <- R[i] 
Ri <- R[ -i] 
pi <- P [i] 
Pi <- P [-i] 
EPWT <- EPWT+(ri/pi)*RDV(b-1, Ri, ri+1, Pi, pi) 
} 

} 

return (EPWT) 
} 

## Calculate the expected sample size (average sampling number) using 
## the HD function for the arguments defined as Dirichlet HD function. 
## b, m, N are positive integers. 
## R, M are vector arguments. 
EWTHD <- function(b, R, m, M, N) 
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} 

{ 

if( m <= ° ) stop("'m' must be greater than 0.") 
if(length(M)!= b I length(R)!= b) 

stop (liThe length of ' M' and ' R' must be equal to ' b' . ") 
EPWT <- ° 
Mg <- N-sum(M) 
Rm <- c(m, R) 
MM <- c(Mg, M) 
for(i in 1:(b+1» 

{ 

ri <- Rm[i] 
Ri <- Rm[ -i] 
mi <- MM [i] 
Mi <- MM[ -i] 
EPWT <-EPWT+(ri*(N+1)/(mi+1»*RHDV(b, Ri, ri+1, Mi, N+1) 
} 

return (EPWT) 

B.4 assess.R 

The following code is for assessing whether the given plan can meet the criteria specified in 

PRP(Producer Risk Point) and/or CRP (Consumer Risk Pint). 

## Assessment function is used to assess whether the given plan can meet the criteria 
## specified in PRP(Producer Risk Point) and/or CRP (Consumer Risk Pint). 
assess.multi <- function(rn, n=30, m, N=100, PRP, CRP, type=c("multinomial", "hypergeom"), 

stype=c("fixed", "sequential"), print=TRUE) 
{ 

if(any(rn < 1» 
stop (liThe values in 'rn' must not be less than 1.") 

if(missing(PRP) & missing(CRP» 
stop(IIAt least one risk point, PRP or CRP, must be specified") 

type <- match.arg(type) 
stype <- match.arg(stype) 
if (stype=="sequential") { 

if (missing(m» 
stop("'m' is missing. ") 

if(m < 1) 
stop (" 'm' must be greater than 0.") 

} 

if (missing(PRP» 
{ 

1 <- length(CRP) 
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if(any(CRP < 0) I any (CRP > 1)) 
stop('IJCRP' is out of range (0,1).") 

if (1)2) 

{ 

if(sum(CRP[-1))>1) 
stop ("Sum of risk point must not be greater than 1.") 

} 

PRP <- rep(NA,l) 
if (stype=="fixed") 

{ 

if (type=="multinomial") 
peons <- pmultinom(rn-1, n, CRP[-l)) 

else 
peons <- calc.pmultihyper(CRP[-l) , rn, n, N) 

} 

else 
{ 

if (type=="multinomial") 
{ 

peons <- calc.pnmultinom(CRP[-l) , rn, m) 
asncons <- EWT(CRP[-l) , rn, m) 
} 

else 
{ 

peons <- calc.pnmultihyper(CRP[-l) , rn, m, N) 
asncons <- EWTH(CRP[-l) , rn, m, N) 
} 

} 

if (stype=="fixed") 
result2 <- c(CRP, peons) 

else 
result2 <- c(CRP, peons, asncons) 

if(pcons >= CRP[l)) 
plan.meet <- FALSE 

else 
plan.meet <- TRUE 

result <- as.matrix(t(result2)) 
defname = as.vector(sapply("type", FUN paste, (1:(1-1)))) 
if (stype==" fixed") 

dimnames(result) <- list("CRP", 
c(defname, 
"RP P(accept) " "Plan P(accept)")) 

else 
dimnames(result) <- list("CRP", 

} 

else if(missing(CRP)) 
{ 

1 <- length(PRP) 

c (defname, "RP P (accept) ", 
"Plan P (accept) ", "ASN")) 
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} 

else 
{ 

if(any(PRP < 0)1 any(PRP[l]>l)) 
stop("'PRP' is out of range (0,1).") 

if (1)2) 
{ 

if(sum(PRP[-l]»l) 
stop("Sum of risk point must not be greater than 1. ") 

} 

eRP <- rep(NA,l) 
if (stype=="fixed") 

{ 

if (type=="multinomial") 
pprod <- pmultinom(rn-l, n, PRP[-l]) 

else 
pprod <- calc.pmultihyper(PRP[-l], rn, n, N) 

} 

else 
{ 

if ( type== "multinomial") 
{ 

pprod <- calc.pnmultinom(PRP[-l], rn, m) 
asnprod <- EWT(PRP[-l] , rn, m) 
} 

else 
{ 

pprod <- calc.pnmultihyper(PRP[-l] , rn, m, N) 
asnprod <- EWTH(PRP[-l] , rn, m, N) 
} 

} 

if (stype==" fixed") 
resultl <- c(PRP, pprod) 

else 
resultl <- c(PRP, pprod, asnprod) 

if(pprod <= PRP[l]) 
plan.meet <- FALSE 

else 
plan.meet <- TRUE 

result <- as.matrix(t(resultl)) 
defname = as.vector(sapply("type", FUN paste, (1:(1-1)))) 
if (stype=="fixed") 

dimnames(result) <- list("PRP", 
c(defname, 

"RP P(accept) " "Plan P(accept)")) 
else 

dimnames(result) <- list("PRP", 
c(defname, "RP P(accept) ", 
"Plan P(accept) ", "ASN")) 

1 <- length(PRP) 
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if (any (CRP [-1] <= PRP[-l])) 
stope "Consumer Risk Point quality must be greater than Producer 

Risk Point quality. ") 
if(any(PRP < 0)1 any(PRP> 1)) 

stop("'PRP' is out of range (0,1).") 
if(any(CRP < 0) 1 any ( CRP > 1)) 

stop("'CRP' is out of range (0,1).") 
if(1)2){if(sum(PRP[-1])>1Isum(CRP[-1])>1) 

stop(IISum of risk point must not be greater than 1. ")} 
if (stype=="fixed") 

{ 

if (type=="multinomial") 
{ 

pprod <- pmultinom(rn-1, n, PRP[-l]) 
peons <- pmultinom(rn-1, n, CRP[-l]) 
} 

else 

} 

else 
{ 

{ 

pprod <- eale.pmultihyper(PRP[-l] , rn, n, N) 
peons <- eale.pmultihyper(CRP[-l] , rn, n, N) 
} 

if (type=="multinomial") 
{ 

pprod <- eale.pnmultinom(PRP[-l], rn, m) 
peons <- eale.pnmultinom(CRP[-l] , rn, m) 
asnprod <- EWT(PRP[-l] , rn, m) 
asneons <- EWT(CRP[-l] , rn, m) 
} 

else 
{ 

pprod <- eale.pnmultihyper(PRP[-l] , rn, m, N) 
peons <- eale.pnmultihyper(CRP[-l] , rn, m, N) 
asnprod <- EWTH(PRP[-l] , rn, m, N) 
asneons <- EWTH(CRP[-l] , rn, m, N) 

} 

} 

if (stype=="fixed") 
{ 

result1 <- e(PRP, 
result2 <- e(CRP, 
} 

else 
{ 

result1 <- e(PRP, 
result2 <- c(CRP, 
} 

if(pprod <= PRP[l] 1 

pprod) 
peons ) 

pprod, asnprod) 
peons, asneons) 

peons >= CRP[l] ) 
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plan.meet <- FALSE 
else 

plan.meet <- TRUE 
result <- rbind(result1, result2) 
defname = as.vector(sapply("type", FUN = paste, (1:(1-1)))) 
if (stype=="fixed") 

dimnames(result) <- list(c("PRP", "CRP" ), 
c(defname, 
"RP P(accept)" "Plan P(accept)")) 

else 

} 

dimnames(result) <- list(c("PRP", "CRP" ), 
c(defname, "RP P(accept) " 

"Plan P(accept) ", "ASN")) 

if (print) 
{ 

if (stype=="fixed") 
{ 

} 

else 
{ 

if (type=="multinomial") 
{ 

cat(" ", paste(l, 
"-Level Acceptance Sampling Plan Multinomial:", sep=""), "\n") 

cat(" Sample size: ", paste(n), "\n" ) 
cat(" Rej. Number(s): ", paste (rn) , "\n") 
cat("\n" ) 
} 

else 

} 

{ 

cat("" paste(l, 
"-Level Acceptance Sampling Plan Multivariate Hypergeometric: N =" 

N, sep=""), "\n") 
cat (" Sample size: ", paste (n), "\n" 
cat(" Rej. Number(s): ", paste (rn), "\n") 
cat("\n" ) 

if (type=="multinomial") 
{ 

cat(" ", paste(l, 
"-Level Acceptance Sampling Plan Negative Multinomial:", sep=""), "\n") 

cat(" Acc. Number: m =" paste(m), "\n" ) 
cat(" Rej. Number(s): ", paste (rn) , "\n") 
cat("\n" ) 
} 

else 
{ 

cat(" " paste(l, 
"-Level Acceptance Sampling Plan Negative Multivariate Hypergeometric: N =" 
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} 

} 

} 

} 

N, sep="") , "\n") 
cat (" Ace. Number: m = II paste (m), "\n" ) 
cat(1I Rej. Number(s): ", paste(rn), "\n") 
cat("\n" ) 

if (plan.meet) 
{ 

cat(1I Plan CAN meet desired risk point(s): \n")} 
else 

{ 

cat(1I Plan CANNOT meet desired risk point(s): \n") 
} 

print (formatC(result , digits = 8, format = IIfll, dropOtrailing=TRUE),quote FALSE) 
} 

if (stype=="fixed") 
{ 

if (type=="multinomial") 
{ 

return(invisible(c(list(n=n, rn=rn, 
result=result, plan.meet=plan.meet»» 

} 

else 

} 

{ 

return(invisible(c(list(N=N, n=n, rn=rn, 
result=result, plan.meet=plan.meet»» 

} 

else 
{ 

if (type=="multinomial") 
{ 

} 

return (invisible (c (list (rn=rn, m=m, 
result=result, plan.meet=plan.meet»» 

else 

} 

{ 

return(invisible(c(list(N=N, rn=rn, m=m, 
result=result, plan.meet=plan.meet»» 
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B.5 findplan.R 

The following code is to find the best plan that meets the criteria specified in PRP(Producer 

Risk Point) and CRP (Consumer Risk Pint). 

find.multi.plan <- funetion(PRP, CRP, N=100, type= e("multinomial", "hypergeom"), 
stype= e("fixed", "sequential")) 
{ 

type <- mateh.arg(type) 
stype <- mateh.arg(stype) 
l=length(PRP) 
k=1-1 
done=O 
if (stype=="fixed") 

{ 

if (type=="multinomial") 
{ 

n <- 0 
while (done==O) 

{ 

n=n+1 
rn=rep(1, k) 
peons <- pmultinom(rn-1, n, CRP[-l]) 
if(peons <= CRP[l]) 

} 

{ 

pprod <- pmultinom(rn-1, n, PRP[-l]) 
if(pprod >= PRP[l]) 

{ 

done=1 
break 
} 

else 
{ 

fune=n.plan(k, rn, n, PRP, CRP, peons) 
done=fune$done 
if (done==1) 

{ 

pprod=fune$pprod 
peons=fune$peons 
rn=fune$rn 
} 

} 

} 

} 

else 
{ 
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} 

n <- 0 
while (done==O) 

{ 

} 

n=n+1 
rn=rep(1, k) 
peons <- eale.pmultihyper(CRP[-l], rn, n, N) 
if(peons <= CRP[l]) 

} 

{ 

pprod <- eale.pmultihyper(PRP[-l] , rn, n, N) 
if(pprod >= PRP[l]) 

{ 

done=1 
break 
} 

else 

} 

{ 

fune=h.plan(k, rn, n, N, PRP, CRP, peons) 
done=fune$done 
if (done==1) 

} 

{ 

pprod=fune$pprod 
peons=fune$peons 
rn=fune$rn 
} 

else 
{ 

if (type=="multinomial") 
{ 

m <- 0 
while (done==O) 

{ 

m=m+1 
rn=rep(1, k) 
pprod <- eale.pnmultinom(PRP[-l], rn, m) 
peons <- eale.pnmultinom(CRP[-l] , rn, m) 
if(peons <= CRP[l] & pprod >= PRP[l]) 

{ 

done=1 
break 
} 

else 
{ 

if(peons <= CRP[l]) 
{ 

fune=nm.plan(k, rn, m, PRP, CRP, peons) 
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} 

} 

} 

done=fune$done 
if (done==l) 

} 

{ 

pprod=fune$pprod 
peons=fune$peons 
rn=fune$rn 
m=fune$m 
} 

asnprod <- EWT(PRP[-l] , rn, m) 
asneons <- EWT(CRP[-l] , rn, m) 

else 

} 

{ 

m <- 0 
while (done==O) 

{ 

} 

m=m+l 
rn=rep (1, k) 
peons <- eale.pnmultihyper(CRP[-l] , rn, m, N) 
if(peons <= CRP[l]) 

} 

{ 

pprod <- eale.pnmultihyper(PRP[-l] , rn, m, N) 
if( pprod >= PRP[l]) 

{ 

} 

done=l 
break 

else 

} 

{ 

fune=nh.plan(k, rn, m, PRP, CRP, N, peons) 
done=fune$done 
if (done==l) 

} 

{ 

pprod=fune$pprod 
peons=fune$peons 
rn=fune$rn 
m=fune$m 
} 

asnprod <- EWTH(PRP[-l] , 
asneons <- EWTH(CRP[-l] , 

fune$rn, fune$m, N) 
fune$rn, fune$m, N) 

if (stype=="fixed") 
result <- list (n=fune$n, rn=fune$rn, p.PRP=fune$pprod, p.CRP=fune$peons) 
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else 
result <- list (m=m, rn=rn, p.PRP=pprod, p.CRP=peons, 

ASNp=asnprod, ASNe=asneons) 
eat(II The optimal plan is: \n") 
show (result) 
return(invisible(result)) 
} 

## recursive find plan function for multinomial distribution 
n.plan <- funetion(b, rn, n, PRP, CRP, peons) 

{ 

l=length(PRP) 
k=1-1 
done=O 
if (b==1) 

{ 

while(peons <= CRP[l]) 
{ 

pprod <- pmultinom(rn-1, n, PRP[-l]) 
peons <- pmultinom(rn-1, n, CRP[-l]) 
if(peons <= CRP[l] & pprod >= PRP[l]) 

{ 

done=1 
break 
} 

if(sum(rn-1»= n) 
break 

else 
rn[k]=rn[k]+1 

} 

if (done==1) 
return(list(n=n, rn=rn, pprod=pprod, peons=peons, done=done)) 

else 
{ 

if (k!=b) 
{ 

} 

} 

rn[k] =1 
rn[k-1] =rn[k-1] +1 
pprod <- pmultinom(rn-1, n, PRP[-l]) 
peons <- pmultinom(rn-1, n, CRP[-l]) 

return(list(n=n, rn=rn, pprod=pprod, peons=peons, done=done)) 
} 

else 
while(peons <= CRP[l]) 

{ 

fue=n.plan(b-1, rn, n, PRP, CRP, peons) 
done = fue$done 
pprod=fue$pprod 
peons=fue$peons 
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} 

if (done==1) 
{ 

rn=fuc$rn 
break 
} 

else 
{ 

rn[k-b+1] <-rn[k-b+1]+1 
rn[(k-b+2):k] <- 1 
if(pcons <= CRP[l] & pprod >= PRP[l]) 

{ 

done=1 
break 
} 

} 

if(sum(rn-1»= n) 
break 

} 

if (done==1) 
return(list(n=n, rn=rn, pprod=pprod, pcons=pcons, done=done)) 

else 
{ 

if (k! =b) 
{ 

rn[(k-b+1):k] <-1 
rn[k-b]=rn[k-b]+1 
pprod <- pmultinom(rn-1, n, PRP[-l]) 
peons <- pmultinom(rn-1, n, CRP[-l]) 
} 

return(list(n=n, rn=rn, pprod=pprod, pcons=pcons, done=done)) 
} 

## recursive find plan function for multivariate hypergeometric distribution 
h.plan <- function(b, rn, n, N, PRP, CRP, peons) 

{ 

l=length(PRP) 
k=1-1 
done=O 
if (b==1) 

{ 

while(pcons <= CRP[l]) 
{ 

pprod <- calc.pmultihyper(PRP[-l] , rn, n, N) 
peons <- calc.pmultihyper(CRP[-l], rn, n, N) 
if(pcons <= CRP[l] & pprod >= PRP[l]) 

{ 

done=1 
break 
} 
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if(sum(rn-1»= n) 
break 

else 
rn [k] =rn [k] + 1 

} 

if (done==l) 
return(list(n=n, rn=rn, pprod=pprod, peons=peons, done=done)) 

else 

} 

else 

{ 

if(k!=b) 
{ 

} 

rn [k] =1 
rn[k-l]=rn[k-l]+1 
pprod <- eale.pmultihyper(PRP[-l] , rn, n, N) 
peons <- eale.pmultihyper(CRP[-l] , rn, n, N) 
} 

return(list(n=n, rn=rn, pprod=pprod, peons=peons, done=done)) 

while(peons <= CRP[l]) 
{ 

fue=fue=h.plan(b-l, rn, n, N, PRP, CRP, peons) 
done = fue$done 
pprod=fue$pprod 
peons=fue$peons 
if (done==l) 

{ 

rn=fue$rn 
break 
} 

else 
{ 

rn[k-b+l] <-rn[k-b+l]+l 
rn[(k-b+2):k] <- 1 
if(peons <= CRP[l] & pprod >= PRP[l]) 

{ 

done=l 
break 
} 

} 

if(sum(rn-l»= n) 
break 

} 

if (done==l) 
return (list (n=n, rn=rn, pprod=pprod, peons=peons, done=done)) 

else 
{ 

if(k!=b) 
{ 
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} 

} 

rn[(k-b+1):k] <-1 
rn[k-b]=rn[k-b]+1 
pprod <- calc.pmultihyper(PRP[-l] , rn, n, N) 
pcons <- calc.pmultihyper(CRP[-l] , rn, n, N) 
} 

return(list(n=n, rn=rn, pprod=pprod, pcons=pcons, done=done» 

## recursive find plan function for negative multinomial distribution 
nm.plan <- function(b, rn, m, PRP, CRP, pcons) 

{ 

l=length(PRP) 
k=1-1 
done=Q 
if (b==1) 

{ 

while(pcons <= CRP[l]) 
{ 

pprod <- calc.pnmultinom(PRP[-l] , rn, m) 
pcons <- calc.pnmultinom(CRP[-l], rn, m) 
if(pcons <= CRP[l] & pprod >= PRP[l]) 

{ 

done=1 
break 
} 

if(rn[k] > m) 
break 

else 
rn [k] =rn [k] + 1 

} 

if (done==1) 
return(list(m=m, rn=rn, pprod=pprod, pcons=pcons, done=done» 

else 
{ 

if(k!=b) 
{ 

} 

rn [k] =1 
rn[k-1]=rn[k-1]+1 
pprod <- calc.pnmultinom(PRP[-l], rn, m) 
pcons <- calc.pnmultinom(CRP[-l], rn, m) 
} 

return(list(m=m, rn=rn, pprod=pprod, pcons=pcons, done=done» 
} 

else 
while(pcons <= CRP[l]) 

{ 

fuc=nm.plan(b-1, rn, m, PRP, CRP, pcons) 
done = fuc$done 
pprod=fuc$pprod 
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} 

peons=fue$peons 
if (done==!) 

{ 

rn=fue$rn 
break 
} 

else 
{ 

rn[k-b+1] <-rn[k-b+1]+1 
rn[(k-b+2):k] <- 1 
if(peons <= CRP[l] & pprod >= PRP[l]) 

{ 

} 

done=1 
break 
} 

if(rn[k-b+1] > m) 
break 

} 

if (done==1) 
return(list(m=m, rn=rn, pprod=pprod, peons=peons, done=done» 

else 

} 

{ 

if(k!=b) 
{ 

rn[(k-b+1):k] <-1 
rn[k-b]=rn[k-b]+1 
pprod <- eale.pnmultinom(PRP[-l], rn, m) 
peons <- eale.pnmultinom(CRP[-l], rn, m) 
} 

return(list(m=m, rn=rn, pprod=pprod, peons=peons, done=done» 

## recursive find plan function for negative multivariate hypergeometrie distribution 
nh.plan <- funetion(b, rn, m, PRP, CRP, N, peons) 

{ 

l=length(PRP) 
k=1-1 
done=O 
if (b==1) 

{ 

while(peons <= CRP[l]) 
{ 

pprod <- eale.pnmultihyper(PRP[-l] , rn, m, N) 
peons <- eale.pnmultihyper(CRP[-l], rn, m, N) 
if(peons <= CRP[l] & pprod >= PRP[l]) 

{ 

done=1 
break 
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} 

else 

} 

if (rn [k] > m) 

break 
else 

rn [k) =rn [k] +1 
} 

if (done==1) 
return(list(m=m, rn=rn, pprod=pprod, peons=peons, done=done)) 

else 
{ 

if(k!=b) 
{ 

} 

rn[k] =1 
rn[k-1]=rn[k-1]+1 
pprod <- eale.pnmultihyper(PRP[-l], rn, m, N) 
peons <- eale.pnmultihyper(CRP[-l], rn, m, N) 
} 

return(list(m=m, rn=rn, pprod=pprod, peons=peons, done=done)) 

while(peons <= CRP[l)) 
{ 

fue=nh.plan(b-1, rn, m, PRP, CRP, N, peons) 
pprod=fue$pprod 
peons=fue$peons 
done = fue$done 
if (done==1) 

{ 

rn=fue$rn 
break 
} 

else 
{ 

rn[k-b+1] <-rn[k-b+1]+1 
rn[(k-b+2):k] <- 1 
if(peons <= CRP[l) & pprod >= PRP[l]) 

{ 

} 

done=1 
break 
} 

if(rn[k-b+1) > m) 
break 

} 

if (done==1) 
return (list (m=m, rn=rn, pprod=pprod, peons=peons, done=done)) 

else 
{ 

if(k!=b) 
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} 

} 

{ 

rn[(k-b+l):k] <- 1 
rn[k-b]=rn[k-b]+1 
pprod <- calc.pnmultihyper(PRP[-l] , rn, m, N) 
pcons <- calc.pnmultihyper(CRP[-l] , rn, m, N) 
} 

return(list(m=m, rn=rn, pprod=pprod, pcons=pcons, done=done)) 

B.6 Testing.R 

The following code contains the functions for calculating the cumulative probabilities for the 

multivariate distributions using multiple summation [equation (2.1) - (2.4)], and the functions 

for calculating the expected waiting time for sequential sampling using the Dirichlet J-

functions and HJ-functions [equation (2.28) and (2.31)]. These functions, which are excluded 

in the package, were used to check the corresponding functiom; uRed in the package. 

# Function for calculating proberbility for multnomial distribution 
# ac is vector of acceptance number (ac = rn - 1) 
pmultbinom <- function(pd, n, ac) 

{ 

if (any (pd>l) !any(pd<O))return("'p' is out of range (0,1)") 
if(any(ac>n)!any(ac<O))return("'ac' is out of range (O,n)") 
# expand ac(a vector of acceptance number) 
x=c(l,ac+l) 
l<-length(x) 
y=NULL 
for(i in 2:1) 

{ 

y=cbind(y,rep(O:(x[i]-l), each=prod(x[-(2:i)]) , 
times=prod(x[(l:(i-l))]))) 
} 

# remove defective number exceed sample size 
X <- y[rowSums(y)<= n, ] 
X <- cbind(X, n-rowSums(X)) 
if (is.matrix(pd)) 

{ 

p <- cbind(pd, l-rowSums(pd)) 
pa=NULL 
for(k in c(l:dim(p) [1])) 

{ 
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} 

} 

pa[k]=sum(apply(X, 1, function(x) dmultinom(x, prob =p[k, ]))) 
} 

else 
{ 

p <- c(pd, l-sum(pd)) 
pa = sum(apply(X, 1, function(x) dmultinom(x, prob =p))) 

} 

return (pa) 

## Function for calculating the density for multivariate hypergeometric distribution 
dmultihyper <- function(x, M) 

{ 

#if(any(M < x))return(" 'x' must be less than 'M'.") 
prod(choose(M, x))/choose(sum(M), sum(x)) 

} 

## Function for calculating the probability for multivariate hypergeometric distribution 
pmultihyper <- function(pd, N, n, ac) 

{ 

if(any(pd>1)lany(pd<O))return('''p' is out of range (0,1)") 
if(any(ac>n)lany(ac<O))return("'ac' is out of range (O,n)") 
if(N < n)return(" 'n' must be less than 'N' .") 
# expand ac(a vector of acceptance number) 
x=c (1 ,ac+l) 
l<-length(x) 
y=NULL 
for(i in 2:1) 

{ 

y=cbind(y,rep(O:(x[i]-l), each=prod(x[-(2:i)]), 
times=prod(x[(l:(i-l))]))) 

} 

# remove defective number exceed sample size 
X <- y[rowSums(y)<=n, ] 
X <- cbind(X, n-rowSums(X)) 
# get a matrix of type defective numbers in population 
MN <- N*pd 
if(is.matrix(pd)) 

{ 

MN <- cbind(MN, N-rowSums(MN)) 
pa=NULL 
#print(dim(X)) 
#print(l) 
for(k in c(l:dim(MN) [1])) 

{ 

# remove any type defective number exceed the population size 
flag <-apply(X, 1 ,function(x){return(all(x <= MN[k, ]))}) 
xn <- X[flag, ] 
if(is.matrix(xn)){ 
pa[k] =sum (apply (xn , 1, function(x) dmultihyper (x, M = MN[k, ]))) 

} 

107 



} 

} 

else 
{ 

else { 

} 

pa[k]= dmultihyper (xn, M MN[k,]) 
} 

MN <- c(MN, N-sum(MN)) 
# remove any type defective number exceed the population size 
flag <- apply(X,1,function(x){return(all(x <= MN)) }) 
xn <- X [flag, ] 
pa=sum(apply(xn, 1, function(x) dmultihyper (x, M = MN))) 
} 

return (pa) 

#calculate the pdf for negative multinomial distribution 
#x is a veactor of the number of failures 
#m is a target number of successes 
#prob is a vector of probabilities include last successe probability in vector 
dnmultinom <- function (x, m, prob, log = FALSE) 

{ 

} 

K <- length(prob)-1 
if (length(x) != K) 

stop("1+ length of vector 'x' must be equal length vector 'prob'. ") 
if (any(prob < 0) II (s <- sum(prob)) == 0) 

stop ("probabili ties cannot be negative nor all 0.") 
if (s > 1) 

stop ( "probabilities cannot be greater than 1.") 
y <- X 

X <- c(x, m) 
if (any(x < 0)) 

stop(" 'x', 'm' must be non-negative") 
x <- as.integer(x + 0.5) 
N <- sum(x) 
iO <- prob == 0 
if (any(iO)) 

{ 

if (any(x[iO] != 0)) 

return(if (log) -Inf else 0) 

x <- X [! iO] 
prob <- prob [! iO] 
} 

r <- 19amma(N) + sum(x * log(prob)) - sum(lgamma(y + 1)) - 19amma(m) 
if (log) 

r 
else exp(r) 

#calculate the cdf for negative multinomial distribution 
#pd is a marix or a vector of probabilities of failures 
#m is ac is a veactor of a target number of successes and the numbers of failures 
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pnmultinom <- function(pd, ac) 
{ 

} 

if(any(pd>1)lany(pd<0)) 
stop(" 'p' is out of range (0,1). ") 
m=ac [1] 
# expand ac(a vector of acceptance number) 
x=c (1, ac [-1] +1) 
l<-length(x) 
y=NULL 
for(i in 2:1) 

{ 

y=cbind(y,rep(0:(x[i]-1), each=prod(x[-(2:i)]), 
times=prod(x[(1:(i-1))]))) #repeat numbers 

##from 0 to x[i]-1, each number repeat the mutiplication of x[-(2:i)] times, 
##repeat the mutiplication of x[(1:(i-1))] times. 

} 

#calculate the probability for matix(pd) 
if(is.matrix(pd)) 

{ 

p <- cbind(pd, 1-rowSums(pd)) 
pa=NULL 
for(k in c(1:nrow(p))) 

{ 

} 

else 

pa[k]=sum(apply(y, 1, function(x) dnmultinom(x, m, prob =p[k, ]))) 
} 

#calculate the probability for vector(pd) 
{ 

p <- c(pd, 1-sum(pd)) 
pa = sum(apply(y, 1, function(x) dnmultinom(x, m, prob =p))) 
} 

return (pa) 

# calculate the density for negative multivariate hypergeometric distribution 
dnmultihyper <- function(x, m, M, N) 

{ 

if(m > (N-sum(M))) 
return(O) 

else 
pmf <- ((choose((N-sum(M)), (m-1))*prod(choose(M,x)))/choose(N,(m+sum(x)-1)) 

)*((N-sum(M)-m+1)/(N-m-sum(x)+1)) 
return (pmf) 

} 

# calculate the probability cdf for negative hypergeometric distribution 
pnmultihyper <- function(pd, ac, N) 

{ 

if(any(pd>1)lany(pd<0)) 
stop("'p' is out of range (0,1)") 

if(any(ac>N)lany(ac<O)) 
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stop('''ac' is out of range (0, N)") 
m=ac [1] 
# expand ac(a vector of acceptance number) 
x=c (1, ac[ -1] +1) 
l<-length(x) 
y=NULL 
forCi in 2:1) 

{ 

y=cbind(y,rep(0:(x[i]-1), each=prod(x[-(2:i)]), times=prod(x[(1:(i-1))]))) 
#repeat numbers from ° to x[i]-1, each number repeat the multiplication of 
# x[-(2:i)] times, repeat the multiplication of x[(1:(i-1))] times. 
} 

# remove defective number exceed population size 
X <- y[(rowSums(y)+m)<N, ] 

# get a matrix of type defective numbers in population 
MN <- round(N*pd) 
#calculate the probability for matix(pd) 
if(is.matrix(pd)) 

{ 

#MN <- cbind(MN, N-rowSums(MN)) 
pa=NULL 
for(k in c(1:nrow(MN))) 

{ 

} 

#remove any type defective number exceed the population size 
flag <-apply(X,1,function(x){return(all(x <= MN[k, ]))}) 
xn <- X[flag, ] 
if(is.matrix(xn)) 

{ 

pa[k]=sum(apply(xn, 1, function(x) dnmultihyper (x, m, M = MN[k, ] ,N))) 
} 

else 

} 

{ 

pa[k]= dnmultihyper (xn,m, M MN[k, ],N) 
} 

else 
#calculate the probability for vector(pd) 

{ 

# MN <- c(MN, N-sum(MN)) 
#remove any type defective number exceed the population size 
flag <- apply(X,1,function(x){return(all(x <= MN)) }) 

xn <- X [flag, ] 
if(is.matrix(xn)) 

{ 

pa=sum (apply (xn, 1, function(x) dnmultihyper (x,m, M = MN, N))) 
} 

else 
{ 

pa= dnmultihyper (xn, m, M = MN, N) 
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} 

} 

return (pa) 
} 

# calculate the expected sample size using J function 
# b, m are positive integers # # R, P are vector arguments 
EWTJ <- function(b, R, m, P) 

} 

{ 

if(length(P)!= b I length(R)!= b) 
stop("The length of 'Pl' and 'R' must be equal to 'b'. ") 
if (any(P>l) lany(P<O))stop("'p' is out of range (0,1)") 
if(sum(P»l)return("Sum of 'P' must be not great than 1.") 
if(any( R<=O ))return(O) 
pO <- 1-sum(P) 
PO <- P/O-pO) 
wtg <- 0 
for(i in m:(m+sum(R)-b)) 

{ 

wtg <- wtg + i*(choose«i-l), (m-l)))*(pO~m)*«l-pO)~(i-m))*RJV(b, R, i-m, PO) 
} 

wtd <- 0 
for(i in 1 :b) 

{ 

} 

ri <- R[i] 
Ri <- c(m, R [-i]) 
pi <- P [i] 
Pi <- c(pO, P [-i]) 
PI <- Pi/ (i-pi) 
wtdi <- 0 
for(j in ri:(m+sum(R)-b)) 

{ 

wtdi <- wtdi 
+ j*(choose«j-l),(ri-l)))*(pi~ri)*«l-pi)~(j-ri))*RJV(b, Ri, j-ri, PI) 

} 

wtd <- wtd + wtdi 

EPWT <- wtg + wtd 
return (EPWT) 

# calculate the expected sample size using HJ function 
# b, m, N are positive integers 
# R M are vector arguments 
ETWHJ <- function(b, R, m, M, N) 

{ 

if( m <= 0 ) stop("'m' must be great than 0.") 
if(length(M)!= b I length(R)!= b) 

stop ("The length of 'M' and 'R' must be equal to 'b'.") 
if«N-sum(M)) < m ) 

stop("'m' must be less or equal than the number of good item in the population.") 
if(any( R<=O ))return(O) 
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} 

sm <- sum(M) 
sr <- sum(R) 
EWTG <- 0 
for(i in (m :min(N,(sm+m),(m+sr-b)))) 

{ 

EWTG <- EWTG + i*(choose«N-sm),(m-1))*choose(sm, (i-m)) 
/choose(N, (i-1)))*«N-sm-m+1)/(N-i+1))*RHJV(b, R, i-m, M, sm) 

} 

EWTD <- 0 
MG <- N-sm 
for(i in 1:b) 

{ 

mi <- M[i] 
Mi <- c(MG, M[-i]) 
ri <- R[i] 
Ri <- c(m, R[-i]) 
for(j in ( ri : min(N, N-mi+ri, m+sr-b))) 

{ 

} 

EWTD <- EWTD + j*(choose(mi, (ri-1)*choose«N-mi), (j-ri)) 
/choose(N, (j-1)))*«mi-ri+1)/(N-j+1))*RHJV(b, Ri, j-ri, Mi, N-mi) 
} 

EPWT <- EWTG + EWTD 
return (EPWT) 
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