
Simplification Infrastructure for an Implementation of the Chiron Logic

1 I

1

SIMPLIFICATION INFRASTRUCTURE

FOR AN IMPLEMENTATION OF THE

CHIRON LOGIC

By

HAN YIN ZHANG, B.S.

A Thesis
Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements for the Degree of

Master of Science
Department of Computing and Software

McMaster University

© Copyright by Han Yin Zhang, September 23, 2010

MASTER OF COMPUTER SCIENCE (2010)
(Department of Computing and Software)

McMaster University
Hamilton, Ontario

TITLE:

AUTHOR:

SUPERVISOR:

Simplification Infrastructure for an Implementation of
the Chiron Logic

Han Yin Zhang, B.S. (Nanjing University, Nanjing, China)

Dr. William M. Farmer

NUMBER OF PAGES: ix, 77

ii

Abstract

Simplification is an important and heavily used facility in many mathematical soft

ware systems including both computer algebra systems and computer theorem proving

systems. The objective of the MathScheme project is to develop a new generation

of mechanized mathematic systems that combines the advantages of both computer

algebra and computer theorem proving. Serving as the underlying logic of Math

Scheme, Chiron is used to formalize mathematics in our project. Therefore, we want

to build a simplifier that simplifies Chiron expressions for the MathScheme project.

This thesis presents the design and implementation of a simplification infrastructure

that allows users to build their own simplifiers. This framework can be viewed as a

customizable simplifier. It provides a set of simplification strategies and mechanisms

for managing contexts. The rules module of this framework allows future developers

to define new simplification rules and add them into the rule library. Using different

strategies and optional arguments, developers can build simplifiers that work in vari

ous ways. The ultimate goal of this framework is to provide a powerful tool with good

flexibility so that other people can use it as a handy building block or an experimental

environment in the future development and application of MathScheme.

III

Acknowledgments

I would like first extend my sincere gratitude to my supervisor, Dr. William M.

Farmer, for his support, guidance, and lots of help during my graduate studies at

McMaster. Without his inspiration and expertise, I would not have been able to

complete this thesis.

My special thanks and appreciation goes to the my examination committee mem

bers, Dr. Jacques Carette and Dr. Ridha Khedri, for their valuable comments and

advice.

Finally, I would like to thank my family, my father Xu Zhang and mother Xuexun

Xiao, for their endless love, encouragement, and support.

iv

Contents

1 Introduction 1

1.1 Simpiification in IvIathScheme 1

1.2 Organization of the Thesis 2

1.3 Fonts. 3

2 Background 5

2.1 Mechanized Mathematics System 5

2.2 MathScheme . 6

2.3 Chiron . 6

2.4 Chiron Implementation . 8

2.5 Simplification 12

3 Problem 14

3.1 Simplifier for Chiron 14

3.2 A Simplification Infrastructure . 15

4 Paths in Expressions 17

4.1 Syntax Trees of Chiron Expressions 17

4.2 Paths in Syntax Trees 18

4.3 Sub-expression or Expression Component . 19

v

CONTENTS

4.4 The Path Module

5 Contexts

5.1 Global and Local Contexts.

5.2 Calculation of a Local Context.

5.3 Use of Context .

5.4 Context Module .

6 Simplification Rules

6.1 Representation of Rule

6.2 Application of Rules .

6.2.1 Built-In Rule Table.

6.2.2 User Defined Rule List

6.3 Rule Module.

6.4 Examples of Simplification Rules

7 Simplification framework

7.1 Simplification in Chiron

7.2 Simplification Strategies

7.2.1 Bottom-Up Strategy

7.2.2 Top-Down Strategy .

7.2.3 Combination of Different Strategies

7.3 Architecture of the Simplification Framework.

7.4 Basic Simplifiers ...

7.5 Top Node Simplifiers

7.6 Deep Simplifiers. . .

7.6.1 Top-down Continue.

7.6.2 Top-down Non-Continue

vi

21

23

23

25

27

28

31

32

33

34

34

35

37

40

40

41

42

43

45

46

49

51

51

53

53

CONTENTS

7.6.3 Top-down Continue at Current Node

7.6.4 Bottom-up........

7.6.5 Top-down Backtracking

7.7 The General Simplifier

7.7.1 The Signature of General Simplifier

7.7.2 Modes of General Simplifier

7.7.3 Work of General Simplifier.

7.8 Tests

8.1 immediateSubExpressions

8.2 is-eval-free...... ...

8.3 Good Evaluation Arguments .

8.4 replace....

8.5 localContext.

9 Conclusion and Future Work

A Tables of Simplifiers

vii

54

54

55

56

56

57

59

61

63

63

64

65

66

66

68

71

List of Tables

2.1 Chiron notations for proper expressions.

2.2 Implementation of Chiron expressions.

5.1 Interfaces for context type

6.1 Interfaces for the rule type

6.2 Interfaces for the rule table module

7.1 Basic simplifiers

7.2 Top node simplifiers using built-in rule table

7.3 Deep simplifiers using built-in rule table

7.4 Deep simplifiers using user-defined rule list

A.l Basic simplifiers . . .

A.2 Top node simplifiers

A.3 Deep simplifiers using built-in rule table

A.4 Deep simplifiers using user-defined rule list

Vlll

9

11

29

36

36

47

47

48

48

71

72

73

74

List of Figures

4.1 Tree example .

4.2 Syntax trees of two existential quantifier expressions.

IX

18

20

Chapter 1

Introduction

1.1 Simplification in MathScheme

MathScheme [15], which was originated at and is being carried out by McMaster

University, is a project to mechanize mathematics and support a wide range of math

ematical activity. The objective of MathScheme is to create a mathematical software

system that is both powerful and trustworthy by combining the strengths of com

puter algebra systems and computer theorem proving systems. To achieve this goal,

we need mechanisms and tools to represent mathematical knowledge and automate

mathematical reasoning. Presently, some theories and components such as Chiron [8],

biform theories [6], Mei [23], an implementation of Chiron in OCaml [19], and a proto

type theory library have already been developed or partly developed in previous work.

The information produced by a mechanized mathematics system is often over

whelming to the user because too many details and steps are displayed. Consequently,

the user wants to simplify expressions to make them more understandable. Simpli

fication is a process that transforms one expression to another expression. The two

1

1. Introduction

expressions denote the same value, but the syntactic form of the output expression is

intended to be "simpler" than that of the input expression. Simplification is usually

intertwined with both symbolic computation and formal deduction. It is important

and pervasive in mathematics software. However, it is not easy to find a formal defi

nition of simplification because from different points of view the criteria of simplicity

are different [2]. In MathScheme, a simplifier is designed to be a tool that can be used

directly by end users or other processes of the system. Such a simplifier works on the

syntactic forms of Chiron expressions because Chiron is the underlying logic of Math

Scheme. The ideas of this thesis could be applied to expressions in other logics as well.

As part of the MathScheme project, this thesis presents the implementation of

a framework for simplifying Chiron expressions. Furthermore, this framework gives

flexibility to developers so that developers can build their own simplification rules

and combine different simplification strategies to yield their own simplifier. It is also

possible, with the right kind of user interface software, for end users to build their

own simplifiers. The source code of my work can be found at

http://imps.mcmaster.ca/hanyinzhang/.

1.2 Organization of the Thesis

The implementation of our simplifier framework divides into several modules. Thus,

this thesis is organized according to the modules of our system. The following is the

outline of the thesis.

Chapter 2 presents the background concepts for our work. A description of Math

Scheme and Chiron is found in this chapter.

2

1. Introduction

Chapter 3 gives an overview of our problem and the requirements for our framework.

Chapter 4 describes the path module. A path is a concept which assists us in navi

gating the syntax trees of expressions. Apart from a simplifier, the path module can

be used by other routines or functions in our system.

Chapter 5 is about contexts. Contexts play an important role in simplification.

Representation and management of a context are the major topics of this section.

Chapter 6 discusses simplification rules. In this chapter, we mainly illustrate the

implementation of the built-in rule tables.

Chapter 7 presents the main module of our framework. It discusses strategies for

doing simplification, the organization of our system, and the algorithms of some ma

jor functions.

Chapter 8 introduces some useful tools in our framework. These tools help people

manipulate sub-expressions and local contexts easily. Besides being used by simpli

fiers, they can be used in future development as well.

Chapter 9 is the conclusion chapter. It gives a summary of my work and proposes

some future work to help improve our framework.

1.3 Fonts

Several fonts are used in this thesis for special purposes:

• Italics - for designating the term that is being defined in a definition.

3

1. Introduction

• Sans serif - for the names of Chiron symbols such as op-app.

• Bold - for the OCaml types that represent sorts of Chiron expressions such

as sexpression.

• Typewriter - for OCaml code such as the function name replace.

4

Chapter 2

Background

2.1 Mechanized Mathematics System

In the introduction of [6], a definition of a mechanized mathematics system (MMS)

is given. An MMS is a computer software system that provides models to represent

mathematics and mathematical activities. The two major branches of MMSs are

computer algebra systems (CASs) and computer theorem proving systems (CTPSs).

CASs work well in symbolic computation. The mathematical knowledge is repre

sented procedurally as algorithms in CASso CTPSs are good at formal deduction. In

CTPSs, the mathematical knowledge is represented declaratively as axioms.

When people perform computations, they may find a CAS is convenient to use.

However, the computations in a CAS do not represent fully rigorous processes. There

fore, the results of a CAS can be incorrect sometimes. Compared with a CAS, a CTPS

is hard to use and often computationally inefficient. The soundness of the reasoning

process is the strength of a CTPS. In several ways, the features of CASs and CTPSs

are complementary.

5

2. Background

2.2 MathScheme

In [13] and [5]) a big picture of MathScheme) which is intended to be a new generation

of MMS) is presented. The first goal of MathScheme is to combine computer algebra

and computer theorem proving in a framework for mechanized mathematics. Build

ing a mathematics knowledge management (MKM) system on top of this framework

is the next goal. Our long-range goal is to use the system and its library to produce

an interactive mathematics laboratory which has the potential to change the current

way of doing mathematics.

The notion of a biform theory is the key idea for realizing the integration of

computer algebra and computer theorem proving. In a theory) we use axioms to de

fine different elements and the relationship between them. The operators which do

computation in a theory are usually represented by algorithms. In a word) axioms

describe mathematical knowledge declaratively while algorithms represent mathemat

ical knowledge procedurally. A biform theory contains both a set of axioms and a

set of algorithms. In order to formalize biform theories) we need a logic like Chiron

which gives facilities for expressing different facets of mathematics process.

More information about MathScheme project can be found at its homepage [15].

2.3 Chiron

Chiron [7) 8L designed and developed by Dr. William Farmer) is a multi-paradigm)

higher-order logic. It is designed to be a facility for mechanizing mathematics. A

logic that is intended to serve as the logical basis for an MMS needs to possess both

theoretical expressivity and practical expressivity [7]. Traditional logics like von-

6

2. Background

Neumann-Bernays-Godel (NBG) set theory and Zermelo-Fraenkel (ZF) set theory

are highly expressive in theory but they are not easy to use in practice. Chiron is de

rived from NBG set theory and supports several of the reasoning paradigms described

in [7]. By using Chiron, people can reason about both the syntax and semantics of

an expression. Chiron is ideal for formalizing biform theories [6] and is a suitable

foundation for a practical, general-purpose MMS.

In Chiron, expressions are symbols or tuples of expressions. They are essentially

the same as S-expressions in Lisp. The notation of an expression of Chiron is defined

as below:

Expr-l (Atomic expression)

sES
expr[s]

Expr-2 (Compound expression)

expr [el], ... , expr [en]
expr[(el, ... ,en)]

where n ~ O.

In these formation rules, S is a infinite set of Chiron symbols and expr[e] asserts

that e is an expression. An expression can be proper or improper. Proper expressions

denote values while improper expressions are nondenoting. Each expression has the

structure of a tree. Symbols, which are improper expressions, serve as the leaves

of the tree. A proper expression is a compound expression which consists of other

expressions. Conversely, not all compound expressions are proper expressions. In

Appendix B of the Chiron technical report [8], 19 formation rules define the notion a

proper expression. A category of proper expressions is associated with each formation

rule. The corresponding official notation and compact notation of proper expressions

7

2. Background

are listed in Table 2.1. In this thesis (as in the Chiron technical report [8]), we will use

s, t, U, v, w, x, y, z, . .. to denote symbols; 0, 0', . .. to denote operator names; 0,0', .. .

to denote operators; CY, j3, ",!, ... to denote types; a, b, c, . .. to denote terms; A, B, C, . . .

to denote formulas; and k, k', ... to denote kinds.

The compact notation is more readable and convenient to use. We mainly use

the compact notation to describe Chiron expressions and examples in the rest of this

thesis. The official notation shows the exact structures of expressions. When we

want to talk about how an expression is constituted, we will use the official notation

instead of the compact notation.

2.4 Chiron Implementation

As a component of MathScheme project, Ni Hong began an implementation of Chiron

in Objective Caml (OCaml) [1] as part of his master's research [19]. One of the most

important parts of his work is using the host programming language's type system

to implement the Chiron expression structure. OCaml was chosen to fulfill this task,

in part, because of its strong static typing. The implementation of Chiron in OCaml

uses polymorphic variant types to define overlapping algebraic data types that we

can use to represent Chiron expressions. An algebraic data type in OCaml is a type

whose values are tagged by constructors. A tagged value consists of values from other

data types. In the Chiron implementation, a set of algebraic data types are defined to

represent Chiron expressions. A value of these expression types can be a compound

value which consists the values of other expression types. Moreover, an algebraic data

type could be defined as a part of another algebraic data type. Therefore, we can

define an expression type as a subtype of another expression type.

8

2. Background

Table 2.1: Chiron notations for proper expressions

EXPRESSION SORT OFFICIAL NOTATION COMPACT NOTATION

Operator (op,o,kl , ... ,kn+l) (0 :: kl , ... ,kn+1)

Operator application (op-app,(),el,'" ,en) ()(el,' .. ,en)

Constant (con,o,k) [0:: k]

Variable (var, x, a) (x: a)

Type application (type-app, a, a) a(a)

Dependent function type (dep-fun-type, (var, x, a),,6) (Ax:a.,B)

Function application (fun-app, f, a) f(a)

Function abstraction (fun-abs, (var, x, a), b) (Ax:a.b)

Conditional term (if, A, b, c) if(A, b, c)

Existential quantification (exists, (var, x, a), B) (:::Ix: a. B)

Unique existential (uni-exists, (var, x, a), B) (:::I! x: a . B)

Universal quantification (forall, (var, x, a), B) (Vx: a. B)

Definite description (def-des, (var, x, a), B) (&x: a . B)

Indefinite description (indef-des, (var, x, a), B) (Ex:a.B)

Set Construction (set-cons,al, ... ,an) {al, ... ,an}

List Construction (list-cons, al, ... ,an) [al, ... ,an]

Class abstraction (class-abs, (var, x, a), B) (Cx:a.B)

Quotation (quote, e) 'e'

Evaluation (eval,a,k) [a]k

9

2. Background

Among several modules in the system, Types and Keywords establish the funda

mental type system of Chiron and offer interfaces for building Chiron expressions. In

the Keywords module, the key words of Chiron are defined. As we mentioned in the

last section, every S-expression corresponds to a tree structure. The polymorphic vari

ant type is ideal for representing the syntax trees of Chi ron expressions. In the Types

module, all Chiron expressions including proper expressions and improper expressions

are formalized as S-expressions by using polymorphic variant types. The definitions

of the polymorphic variant types are recursive and overlapping. In the Chiron im

plementation, proper expressions are organized into four OCaml types: operator,

ctype, term, and formula. Table 2.2 shows the corresponding expressions of four

proper expression types.

All these types are subtypes of proper and proper is a subtype of sexpression.

For example, a definite description has the form:

(def-des, (var, x, a), B)

in Chiron, and the form

DefDes (x, a, B)

in the Chiron implementation. DefDes is the constructor for a definite description.

The definite description contains three components which are the name x of the vari

able (type symbol), the type a of the variable (type ctype) and the body (type

formula). The constructors of variant types roughly correspond to the leading sym

bols of Chiron proper expressions. Every constructor is applied to a tuple of values

that represent the components of the proper expression.

The simplification infrastructure presented in this thesis works on the OCaml

implementation of Chiron expressions. It is thus natural to implement my work in

10

2. Background

Table 2.2: Implementation of Chiron expressions

I DATA TYPE I CONSTRUCTOR I DESCRIPTION

operator Operator operator

ctype TConstant type constant

TOpApp type operator application

TTypeApp type application

TDepFunType dependent function type

TEval type evaluation

term Constant term constant

OpApp term operator application

Var variable

FunApp function application

FunAbs function abstraction

If conditional term

DefDes definite description

IndefDes indefinite description

Quote quotation

Eval term evaluation

formula FConstant formula constant

FOpApp formula operator application

FExists existential quantification

FForall universal quantification

FEval formula evaluation

11

2. Background

OCaml. Besides the purpose of following the implementation of Chiron expressions,

we can make use of the advantages of OCaml programming language.

2.5 Simplification

In many computer algebra systems and computer theorem provers such as IMPS

[9, 10], Isabelle [20], Maple [4], and Mathematica [22], simplification is an impor

tant and heavily used routine. Besides mathematics software, simplification is often

used in program analysis and program transformation systems as well. A technique

for combining decision procedures to do simplification is proposed in [18]. On the

concept of simplification, some papers like [2] and [17] have good discussions. The

common ideas we find among different simplifiers have helped us design our simpli

fication infrastructure. In the MathScheme framework, a simplifier is a transformer

which maps expressions to expressions. The input expression and output expression

may have different representations but must denote the same semantic value. In the

ideal case, the output expression is simpler than the input expression. Ultimately, we

hope to obtain the simplest form of an expression. However, simplification is also con

troversial because the concept of "simpler" varies from case to case. In [2], a general

definition of simplicity is given. An expression A is simpler than an expression B (in

a theory T) if the length of the syntactic form of A (as defined in T) is shorter than

the length of the syntactic form of B (assuming A and B are semantically equivalent).

Some related topics such as the canonical form (or normal form) of an expression are

discussed in [3]. Furthermore, simplicity of syntactic form in MMS mainly refers to

two aspects of an expression. On the one hand, simplicity means an expression is easy

to comprehend by a human, and on the other hand, simplicity means an expression is

easy to be manipulated by a computer system. Sometimes these two aspects conflict

with each other.

12

2. Background

The major routine of our simplification is repeated application of simplification

rules to a given expression. Some rules that are represented by equations are called

rewrite rules. For example, we have a rewrite rule, X+X+X = 3 x x. By applying this

rule, we can simplify expression 5 + 5 + 5 to 3 x 5. Besides rewrite rules, some rules

which are designed to deal with complex tasks cannot be represented by equations.

Our framework is intended to take different kinds of simplification rules as long as

all rules are implemented in a unified way. Details about simplification rules are

discussed in chapter 6. The result of simplification also depends on the context or set

of background assumptions. In different contexts, the simplifier may produce different

results. Contexts are discussed in chapter 5.

13

Chapter 3

Problem

3.1 Simplifier for Chiron

A simplifier plays an important role in our mechanized mathematics system. It pro

vide facilities which help the end users accomplish many detailed and tedious tasks.

For example, we often need to deal with evaluation in MathScheme. In most cases,

the evaluation of a quotation can be simplified by using a simple rule. Chiron, the

core logic of MathScheme, is used to formalize mathematics in our project. On top

of the system that implements Chiron expressions, we want to build a simplifier. It

is intended to assist users, both developers and end users, in simplifying Chiron ex

pressions.

A powerful Chiron simplifier needs to be supported by a large number of rules.

In the future development of MathScheme, new components such as operators and

functions will be defined in Chiron. Consequently, new simplification rules will be

built to handle these expressions. Instead of making a fixed simplifier, we want to

create a simplification framework which can be extended in the future.

14

3. Problem

3.2 A Simplification Infrastructure

In this thesis, we will present an infrastructure for building simplifiers. It allows users

to build their own simplifier by using different strategies and optional arguments. The

ultimate goal of this framework is to provide a powerful tool with good flexibility so

that other people can use it as a handy building block or an experimental environment

in their future development. The design goals of our framework are listed as follows.

(1) To provide a mechanism for defining and using simplification rules.

Users can define their own simplifications rules to create the built-in rule library

which will be used by the simplifier. Besides built-in rules, users can also define

some temporary rules and store them in a rule list which will be used by the

simplifier in some specific modes. The built-in rule library is the default rule

source we use in many simplification modes. The user-defined rule list mode is

another option we can use to have some flexibility.

(2) To provide tools for navigating and manipulating sub-expressions.

A path is an ideal tool that helps us identify a location in an expression. By

using paths, it is easy for a user to do operations on sub-expressions and local

contexts.

(3) To provide different strategies for the simplifier to traverse the syntax trees of

expressions and apply simplification rules to these expressions.

Different strategies have their own benefits when they are used to handle dif

ferent expressions. The simplifier may run through an expression more quickly

in some strategy while the same expression can be simplified completely by ap

plying another strategy. The users can choose one strategy or combine several

strategies to meet their requirements in simplifications.

(4) To provide tools for managing and using a context of background assumptions.

15

3. Problem

The result of a simplification can be different in different contexts. By taking

global and local contexts into account, our system is capable to handling con

ditional simplification rules. Furthermore, in many cases, taking advantage of

local context can speed up the simplification process significantly.

16

Chapter 4

Paths in Expressions

4.1 Syntax Trees of Chiron Expressions

In chapter 2, we have introduced the structure of Chiron expressions and their im

plementations. To put it simply, every S-expression corresponds to a syntax tree. In

the implementation, the syntax tree of an expression is represented by a value in a

polymorphic variant type. In this kind of tree structure, when we talk about a node,

we often mean the subtree whose root is that node instead of a single node which

represents a symbol.

Our simplifier is intended to work on Chiron expressions. When we try to simplify

an expression, we need to analyze its syntax tree. Some special techniques will be

applied to deal with the syntax tree of Chiron expressions. The notion of a path is

one of the most important ideas used in our simplification process.

17

4. Paths in Expressions

4.2 Paths in Syntax Trees

A path is a simple and useful concept for navigating in a tree structure. We can go

to some specific node by using a path. We can keep track of the traversal process of

a tree by recording a path. Paths play an important role in the simplification and

calculation of a local context. It is a handy tool which is easy to use and understand.

Before we give the definition of path, we need to first number the nodes of a tree. At

every level, the nodes are numbered in a order from left to right. The leftmost node

at every level has the same number.

Definition 1 A path is a list of integers which designates a certain node in a tree.

For example, suppose we have a tree as shown in Figure 4.1. Every number in a

Figure 4.1: Tree example

path represents a node at a certain level. Let the index start from 0. At the top

level, 0 represents node A. At the second level, 0, 1 and 2 represent node B, C and

D respectively. In that way, path (0,1) denotes node C, path (0,1,1,0) denotes node

H. With paths, it is easy to talk about a certain sub-expression in a syntax tree.

18

4. Paths in Expressions

Especially in our work, paths are very useful because the data structure of Chiron

expression is fixed. We do not have any "place" to attach new information to a node.

We can use a path as an index to represent a certain node in a tree. By using a path,

we can indirectly link information such as a local context to the corresponding node.

Now, the problem is how should we calculate a path in our implementation.

4.3 Sub-expression or Expression Component

There is a small difference between the representation of Chi ron expressions in the

ory and that in implementation. In Chiron, the official notation defines the structure

of expressions. The formation rules of proper expressions are formal and recursive.

The implementation of Chirun expressions is based on the official notation, but does

not represent Chiron expressions literally. Instead the implementation introduces

certain optimizations and simplifications, using a concise fashion to represent some

expressions. However, sometimes we cannot obtain the sub-expression information

directly from a Chiron expression in the implementation. For example, existential

quantification in Chiron is written as (exists, (var,x,a),B). In our implementation,

existential quantification is represented like FExists (x, a, B). The syntax trees of

these two expressions are shown in Figure 4.2. The root node of the right tree (imple

mentation representation) has three child nodes while the root node of the left tree

(official notation) has two child nodes. The two children of the left tree root node

are a variable and a formula. They are both proper Chi ron expressions. Therefore,

acquiring a sub-expression from the left tree is straightforward. In the right tree,

the first (leftmost) child of the root node is a symbol x. The symbol x is not a sub

expression of the variable because a symbol is not a proper expression. According to

the definition of sub-expression in Chiron technical report, only a proper expression

can be a sub-expression. If we extract the first child node from an OCaml expression

19

4. Paths in Expressions

Figure 4.2: Syntax trees of two existential quantifier expressions

of an existential quantifier, we do not acquire a variable. However, the type infor

mation of the variable is indeed stored in the OCaml representation of an existential

quantification. As long as we combine the first and second child nodes, we can obtain

the first sub-expression of the existential quantification, a variable.

In the implementation, we use the compact representation of Chiron expressions.

A node which is denoted by a path is not necessarily the root of a proper expression.

We use expression components instead of sub-expressions to describe the subtrees of

a node in a syntax tree. In the example above, the existential quantifier has three

components, symbol x, ctype a, and formula B.

In the simplification process, only proper expressions can be simplified. However,

a path can point to an expression component that is not a proper expression such

as a symbol. We use another separate function to calculate the immediate sub

expressions of a given expression. Sub-expression and expression component are two

different concepts which can be used by both the simplifier and other applications.

20

4. Paths in Expressions

4.4 The Path Module

In the path module, we define a record type with one field, which is a integer list, to

store the path information. The reason why we use a record type to wrap up a list

is that we want to create a path type which is distinguished from a list. This record

type also serves as a prototype of a path type which is structural and extendable. We

can include other information in it in the future by adding new fields. In this thesis,

other new types such as rule and context are also defined as record types. The most

useful function in this module is called expressionPath which takes two arguments,

an sexpression and a path. This function returns an sexpression which is denoted

by the given path in the given expression.

A path may not denote any vertex in some cases. We say a path is in the ex

pression when this path denotes some expression component. Otherwise, we say this

path is out of the expression. If we get an expression component which is not a proper

expression, we use improper to wrap it because improper is a subtype of sexpres

sion. In the previous example of an existential quantification, FExists (x, a, B), if

we give a path (0), expressionPath will return an ISym "exists". If we give a path

(4) or (1,2), expressionPath will raise an "out of the expression" exception.

One special case for expression components is operator application. There are

three kinds of operator applications in the implementation: OpApp, FOpApp, and

TOpApp. They are of type term, formula, and ctype respectively. In Chiron, an

operator application is defined as

(op-app, (op, 0, kl"'" kn+1)' el,···, en).

In our Chiron implementation, a term operator application is written as

OpApp (s, kdl, a)

21

4. Paths in Expressions

where 8 is the symbol of operator, kdl is a kinded list, and a is a ctype.

The use of kinded lists guarantees that the operator application has the correct

number of arguments and every argument matches the corresponding kind. How

ever, when expressionPath deals with an operator application, it will work on the

official notation of the expression. The first expression component of OpApp (8, kdl, a)

is ISym OpApp. The second expression component of OpApp (8, kdl, a) is an opera

tor which contains both a name and a kind list. The third expression component of

OpApp (8, kdl, a) is the first argument of the operator application if the operator is not

O-ary. There are two reasons why we treat operator application as official notation.

One reason is that the information of the operator including the name and kind list

are closely related to each other. Another reason is that arguments usually need to

be processed separately. Thus, instead of treating a kinded list as one component, it

is better to retrieve the information of arguments from the kinded list.

22

Chapter 5

Contexts

Context is an important concept in simplification. It helps us build a more powerful

and trustable simplifier. The three major uses of contexts are

(1) Users can add their assumptions to a context.

(2) A context can speed up the simplification process because some results can be

looked up directly from the context.

(3) Contexts can be used to discharge the conditions in conditional rewrite rules.

In the following sections, we are going to introduce the main ideas about contexts

and the implementation of contexts in our work.

5.1 Global and Local Contexts

In mathematical deduction or calculation, it is natural for people to make some

background assumptions. For example, x2 > 0 simplifies to true in a context in which

x i:- o. A context is a facility for managing such assumptions. What are contexts

in our MathScheme project? In [11], a context is described as set of formulas r =

23

5. Contexts

{<Pl,'" <Pn}. The formulas in a context ordinarily serve as background assumptions

for mathematical activities. A formula <P is true in the context r if the members of

r logically imply <po In rigorous mathematical reasoning, contexts are necessary to

guarantee the correctness of our answers. The following examples show the uses of

contexts in simplification:

(1) The expression (x -l)/(x - 1) can be simplified to 1 only if x =I=- 1 is known to

be true. If we want a rule like x/x = 1, we can define it as a conditional rule

which we will present in chapter 6.

(2) The formula A V B V C V D V E can be immediately simplified to true if we

know D = T.

(3) An expression can be converted to a conditional by introducing assumptions.

Thus, Ix + 13 - xii has the same value as the conditional -
{

2X - 3 if x> 3

3 otherwise

When people do mathematical activities, they actually have a lot of implicit back

ground assumptions. These assumptions constitute a global context. A global con

text is a very large set which contains all the axioms and mathematical knowledge

we know. Regarding certain expressions or certain reasoning processes, the contexts

we are interested in here may contain some formulas in addition to a global context.

Moreover, different places in an expression, may have different contexts. That is why

the notion of a local context is introduced in [16]. A local context is a context at a

place in an expression. For example, in expression if(A, b, c), the local context of b

contains A while the local context of c contains -,A. From the view of a syntax tree,

every node of a tree has its own local context. When we traverse the syntax tree of

a given expression in simplification process, we need to know the local context of the

node we have encountered.

24

5. Contexts

5.2 Calculation of a Local Context

As we have mentioned in the previous section, a context is a set of formulas. Conse

quently, the representation and management of context focuses on expression of type

formula in Chiron. First, we use a formula to represent a background assumption in

a context. Second, we usually use and recalculate context information when we deal

with a formula or a formula involved expression such as a conditional term. Every

formula in a context is interpreted as a true assertion. In many expressions, different

places in the expression have the same local context (see the discussion below). It

is easy to calculate the local contexts in these cases. In Chiron, three types of ex

pressions have effects on the local contexts of sub-expressions. They are conditional

expressions, variable binders, and logic connectives.

Conditional Expressions

Conditional expressions have a form like if(A, b, c) where A is a formula which serves

as a condition and band c are terms which represent the two possible values. Let the

context of if(A, b, c) be r. Then the local context of A is r. The local context of b is

r U {A} and the local context of c is r U {-,A}.

Variable Binders

There are eight variable binders in our Chiron implementation.

(1) Dependent function type (A x : a . (3).

(2) Existential quantification (3 x : a . B).

(3) Unique existential quantification (3! x : a . B).

(4) Universal quantification ('II x : a . B).

25

5. Contexts

(5) Function abstraction (AX: a. b).

(6) Definite description (I-X : a . B).

(7) Indefinite description (c X : a . B).

(8) Class abstraction (C x : a . B).

In the body of a variable binder, the variable symbol x is bound and another x which

appears outside the variable binder is invisible. Let x be a bound variable. When

we calculate the local context of the body of a variable binder, we need to remove all

the formulas in which x is free from the context. For example, we have an expression

(Vx : nat. x > 5) where nat is natural number. Furthermore, suppose we also have

x > 8 in our context. If we do not remove x > 8 from our context when we deal with

the body of the universal quantification, we will conclude that the formula is true.

However, this formula is actually false.

Let the context of (*x : a . e) be f where * is A, A, 1-, c, :3, :3! , V, or C. The local

context of a is still f. The local context of e is f - {CI, ... , cn} where the Ci are the

context formulas in which x is free.

Logic Operations

Among basic logic operators, And, Or, and Implies have effects on the local contexts.

Suppose we scan an expression in a order from left to right. In conjunctions, when

we calculate the local context of some formula, all the previous formulas (formulas

on the left of the current formula) will be added into context. In implication, the

first formula will be added into context when we deal with the second formula. In

disjunction, all the negations of the previous formulas will be added into the context.

26

5. Contexts

Let the context of the logic operations be r. We have

(1) For Al 1\ A2 1\ ... 1\ An, the local context of Al is r, the local context of A2 is

r U {Ad, ... , the local context of An is r u {AI, ... ,An-I}.

(2) For Al ~ A2, the local context of Al is r, the local context of A2 is r U {AI}'

(3) For Al V A2 V ... V An, the local context of Al is r, the local context of A2 is

r U {--.AI }, .. . , the local context of An is r U {--.AI , . .. ,--.An- I }.

5.3 Use of Context

We can design different rules to make use of context. When we try to simplify a

formula F, we can first check if this formula is in the context. If F is in the context,

we can immediately simplify F to T. If the negation of F is in the context, we can

simplify F to F. We have a built-in rule called inContextRule which checks if a

formula is in a given context. This rule only checks the syntactic form of formulas.

For example, if we have a formula A 1\ A 1\ T in the context and try to simplify the

formula A in an expression by applying inContextRule, then the simplifier does not

simplify A to T although A 1\ A 1\ T being in the context means A is true.

Many simplification rules can use the context. We can have different versions of

simplification rules for the same operator. The following examples are two implication

rules written in OCaml.

(1) let implication1 (input:formula)

(c:formula context) : formula = match input with

'FOpApp (K K.lmplies, [KDFormula f1; KDFormula f2J) ->

if (f1 = C.falsef) I I (f2 = C.truef) then 'FConstant (K K.True)

27

5. Contexts

else if (f1 C.truef) then f2

else if (f2 C.falsef) then Constructors.Raw.notf f1

else if f1=f2 then 'FConstant (K K.True)

else input

I - -> input

(2) let implication2 (input:formula)

(c:formula context) : formula = match input with

'FOpApp (K K.lmplies, [KDFormula f1; KDFormula f2]) ->

if inContext f1 c then f2

else input

I _ -> input

The first function implication1 is designed for general simplification of implication.

It does not use context information in the simplification process although it takes

a context argument. The second function implication2 is relying on the context.

It simplifies the implication to the second formula if the first formula of implication

is in the context. This simplification rule is a representation of the modus ponens

inference rule.

5.4 Context Module

In the context module, a context is designed to be a record type which contains a list

of variant types. In practical use, a context type contains a list of formulas. Some

basic operations such as insertion, deletion, and searching are provided to manage

contexts. The following table lists the interface functions of context module.

For general purpose, createContext returns a context type which contains a

empty list of variant types. We can add a formula or sexpression into context.

28

5. Contexts

Table 5.1: Interfaces for context type

I FUNCTION NAME I USE

createContext create an empty context list

inContext check whether a given formula is in given context

addContext add a new formula into context

deleteContext delete one formula from context

deleteContextList delete a list of formula from context

Currently, we use a formula list to represent contexts. inContext takes two argu

ments, a formula and a context, and returns a boolean value. If the given formula is

in the given context, inContext returns Tand otherwise returns F. addContext first

checks if the given formula is in the given context. If it is not, the given formula will

be inserted into the given context. Thus, there is no duplication of formulas in our

contexts. deleteContext also first checks if the given formula is in the given context.

If it is, the given formula will be deleted from the given context. deleteContextList

allows us to delete several formulas at the same time.

We have two options when we calculate the local contexts for a syntax tree. The

first option is to calculate the local context of every node in a tree. Another way is

to calculate the local context when it is needed. We choose the first method in our

work because we need to keep track of the local context information at every node.

Therefore, in the simplifier module, every simplifier takes an argument of type context

which records the context information of the input expression. In the manipulation of

a syntax tree, we pass the context information from the current node to its children

nodes. In this way, we do not need path information to bind sub-expressions and local

contexts. Moreover, we have another function which can calculate the local context of

29

5. Contexts

given sub-expression. This function give us certain local context information without

calculating the local context for every node of a syntax tree. More details about this

function can be found in chapter 8.

30

Chapter 6

Simplification Rules

A simplification rule is a small unit of mathematical knowledge we use to simplify

expressions. Simplification rules are the core of the simplifier. A good and efficient

simplifier relies on the design of the rules it uses. This chapter is going to discuss

what a simplification rule is and how the simplifier uses these rules. Then we will

talk about some implementations of simplification rules.

First, let us introduce the notion of a transformer in Chiron. In [12J, a transformer

is defined as a function that takes expressions as input and returns an expression as

output. A transformer is an important notion in MathScheme because many useful

operations can be formalized as transformers. They are the major gears for compu

tation in our system. The algorithmic side of a biform theory is embodied in the

theory's transformers.

31

6. Simplification Rules

6.1 Representation of Rule

In simplification, rewrite rules and conditional rewrite rules are the most popular

rules. They are represented by equations and conditional equations, respectively.

The process of simplification is to change an expression which matches the form of

the left-hand side of the equation to another expression which matches the form of the

right-hand side of the equation. In our work, a simplification rule is a transformer

parameterized by the background context. Thus all the rules are implemented as

functions of type' a -> context -> 'a in OCaml where' a could be sexpression,

operator, ctype, term, or formula. The simplification framework can be equipped

with different kinds of rules. Rewrite rules, substitution rules, inference rules, and

transformers can be used as simplification rules.

For example, we have a rule for simplifying double negation, -,-,A A. This

rule is a rewrite rule. We do not need to worry about what the structure of A is. A

could be a very large expression or just a simple formula constant. Moreover, in this

example, we can do more work beyond the syntax aspect of the expression. We need

to make sure that A is a formula which denotes a truth value so that the equation

-,-,A _ A makes sense. However, the type checking of OCaml already guarantees the

well-formedness of the expressions because we cannot build an expression -,-,A in our

system unless A is a formula. In some other cases, type checking is performed by the

simplifier explicitly. This kind of type checking is performed by some specific rules

we will talk about in the example section.

At the first stage of design, the input and output of a simplification rule are both

expressions. However, we need to take context into account because some rules are

based on the context information. For example, how do we use modus ponens as

32

6. Simplification Rules

simplification rule? The modus ponens rule of inference is written in following form:

P -> Q,P
Q

We can make a simplification rule that takes both an expression and a context. When

this function acquires an expression in the form P -> Q, it will check if P is in the

context. If P is in the context, P -> Q can be simplified to Q. Another conditional

rewrite rule example is for the absolute value of a real number. We can write an

absolute value rule like this:

-x if x < 0,

Ixl = ° if x = 0,

x if x> 0.

When the simplifier takes an expression in the form of lxi, the simplifier will first

check if x < 0, x = 0, or x > ° is in the context. The simplifier can simplify Ixl to a

certain form according to the sign of x.

Therefore, the general simplification rule function has two arguments, an input

expression and a context. For the rules which have nothing to do with context, the

context argument does not have any effect in the body of function.

6.2 Application of Rules

In a complicated simplification process, a set of rules will be applied. Our framework

takes an expression and traverses the syntax tree of this expression. At every node,

the framework applies the simplification rules to the expression represented by this

node. In this procedure, the simplifier tries many rules to simplify an expression. How

33

6. Simplification Rules

does the simplifier select a rule? The easiest answer is that the simplifier tries all the

rules available. Obviously, this method is inefficient if the rule set is very large. How

does the simplifier choose rules? Where are the simplification rules stored? These

questions are related to the organization of rules. In our framework, we need some

facilities to manage rules.

6.2.1 Built-In Rule Table

Our simplification framework has a built-in rule table implemented as a hash table.

By using a hash table, we can look up rules via an index. Rules are categorized

according to the constructor used to build the expression. Every rule's index is the

keyword corresponding to its proper expression category. For example, we have a rule

for conditional expression,

If (F,a,b) ~ { :
if F = T,

if F = F.

The index of this rule is If. When we try to simplify a conditional expression, we

look up all the rules related to If and try applying them to the expression. Although

the simplifier still needs to try a list of rules, the range is narrowed down a lot. The

order of the rules taken from rule table is random. If the simplification process is

confluent, it does not matter what order we apply rules in. Otherwise, the order in

which the rules are applied may effect the final result of simplification.

6.2.2 User Defined Rule List

Apart from using the built-in rule table, users can create their own rule list and let

the simplifier use this rule list. Compared with a built-in rule table, a user defined

rule list is a flexible approach. Users can put any number of rules in this list. The

34

6. Simplification Rules

order of these rules is defined by user as well. Thus, the simplifier will apply these

rules in the particular order specified by the user. This approach is useful when the

user has a plan to simplify an expression. It allows a user to experiment with different

combinations of rules when simplifying expressions. Normally, users who define their

own rule lists want to use built-in rules as well because the built-in rules automat

ically handle the basic and "trivial" simplification processes. In the mode of using

the user-defined rule list, our framework let users to choose whether the simplifier

uses built-in rules or not. If the users choose to use both user-defined rule lists and

built-in rules, they can simplify the expressions with built-in rules before trying the

user-defined rule list, or first apply the user-defined rule list, and then use built-in

rules. The users can specify the order.

The shortcoming of a user-defined rule list is its reusability. We do not have a

good mechanism to manage these rule lists. Every rule list is designed for a certain

family of expressions and may not be suitable for others. These rule lists are defined

by the user when the simplifier is called. They are not stored in the system.

6.3 Rule Module

In our system, a simplification rule is a record type with two fields. The first field is

the key which is of type string. The second field is a function that takes an expression

and a context as input and returns an expression as output. There are three interface

functions for the rule type.

The rule table is defined as hash table from type string to type simplification

function. The key of a rule is also used as the key of this rule in hash table. We have

several rule tables because the signatures of the simplification functions differ. The

35

6. Simplification Rules

Table 6.1: Interfaces for the rule type

I FUNCTION NAME I USE

getKey returns the key of a rule

getRule returns the simplification function of a rule

createRule creates a new rule

major three rule tables are the type table, term table, and formula table which contain

rules for simplifying expressions of type ctype, term, and formula respectively. The

interface functions for the rule table module are listed as follows.

Table 6.2: Interfaces for the rule table module

I FUNCTION NAME I USE

createTable creates a empty rule table

addRule adds a rule into a rule table

deleteRule deletes one rule according the given key

deleteAll deletes all rules with the given key

findAll returns a list of rules with the given key

End users and developers can use the interface functions of rule module to manage

rule tables, create new rules, and add new rules into their corresponding rule tables.

A powerful and efficient simplifier is heavily dependant on the rules it has available.

It is hard to put all useful rules in our framework at once. At this stage, some basic

rules are defined and added into rule tables. The rule set will be gradually improved

by adding new rules.

36

6. Simplification Rules

6.4 Examples of Simplification Rules

In our framework, rules for basic logic operators are implemented. We have following

rules:

(A - A) = T

(TVA) - T

(AVT) _ T

(F V A) - A

(A V F) _ A

(A V A) _ A

(T 1\ A) - A

(A 1\ T) _ A

(F 1\ A) _ F

(A 1\ F) _ F

(A 1\ A) - A

(...,...,A) A

(F:::) A) _ T

(T:::) A) _ A

(A:::) T) T

(A:::) F) -...,A

(A:::) A) T

In the Chiron implementation, the formulas above which contain logic connectives

are formalized as formula operator applications. For example, A 1\ B is represented

as FOpApp (And, A, B) in our system, where keyword FOpApp means formula operator

application. Therefore, every A in the equations above must be defined and must

be a formula. A rule which is related to operator 1\ has a key of string type like

IFOpApp-And" in formula rule table. One rule function can apply several rewrite

37

6. Simplification Rules

rules of the same form. For example, we can write one rule to deal with all rewrite

rules related to disjunctions. Rule functions may have overlapping over some expres

sions. Moreover, some simplification can be done by using the context mechanism.

We already talked about contexts in chapter 5.

Besides formula operator applications, we have several other rules for conditional

terms, evaluations, and beta reduction.

A conditional term is represented as if(A, a, b) in Chiron. The simplification

rule for conditional expression is,

{

a if A = T,
if(A, a, b) =

b if A = F.

If we cannot judge the value of the condition, we just leave the expression in its orig

inal form. The key of a simplification rule for a conditional term is If in the term

rule table.

Evaluation is a powerful facility in Chiron. It returns the semantical meaning of

an expression that represents an expression. In the implementation of the Chiron type

system, we have three kinds of evaluations, Eval, FEval, and TEval. They are used

to represent expressions of the form (eval, a, a), (eval, a, formula), and (eval, a, type)

respectively. The compact notations of these three expressions are [all:> [a]fo, and

[a]ty. On the other hand, quotation is used to denote the syntactic construction of an

expression. In our type system, any sexpression can be quoted, written as (quote, e).

The compact notation of quotation is 'e'. The simplification rule for evaluation is,

38

6. Simplification Rules

re']k = e

where e is eval-free and (k=type and type[e]), (type[k] and term[e)), or (k=formula

and formula[e]).

When we apply this rule, we need to check if the quoted expression is eval-free and

if the kind of quoted expression matches the kind of evaluation. That an expression

is eval-free means there is no eval symbol in the expression that is not in a quotation.

The result of evaluating a non eval free expression is undefined.

Beta reduction for terms is a method we use to simplify a function application of

the form (fun-app, (fun-abs, (var, x, a), b), a) in Chiron. The simplification rule for this

kind of function application is to replace the variables (var, x, a) occurring in b with a.

For example, consider a function abstraction like (AX: nat. x), which is the identity

function on natural number. A function application (fun-app, (AX: nat. x), 11) can

be simplified to 11. The process of simplification is actually the process of beta

reduction. The simplification rule can be expressed as,

(fun-app, (AX: a . b), a) = bra f-+ x]

where bra f-+ x] means replacing the free variables x in b with the term a.

In beta reduction, substitution will be performed. Type checking and free-for checking

guarantee the soundness of the operation.

39

Chapter 7

Simplification framework

7.1 Simplification in Chiron

Similar to simplification rules we have talked about in chapter 6, a simplifier for

Chiron is a transformer parameterized by a context. Here we define what a general

simplifier is in MathScheme.

Definition 2 In MathScheme, a simplifier is a transformer that takes an expression

A and returns an expression B such that A and B are semantically equivalent. The

syntactic form of B is intended to be simpler than that of A.

A transformer has both an algorithmic meaning and an axiomatic meaning. If

we want to write a simplifier as a transformer in Chiron, the input and output of

the transformer must be quotations. However, the simplification framework only

focuses on the algorithmic aspect of the simplifier. Therefore, we do not need to

worry about the representation of simplifiers in Chiron. A simplifier is implemented

as an OCaml function which works on the original expressions instead of quotations.

Our framework is designed to be used by other developers. Some optional arguments

of the framework may be invisible to end-user while they can be useful for further

40

7. Simplification framework

development or other applications in MathScheme. In the future, it is easy to link

the representation of a simplifier and its algorithm.

A simplifier has two major tasks in our framework:

(1) Traverse the syntax tree of an expression and apply the simplification rules

according to different strategies.

(2) Calculate the local context for every node and pass the information of the local

context to simplifier rules.

7.2 Simplification Strategies

A strategy is the way in which the syntax tree of an expression is traversed during the

simplification process. At different stages, we have different choices of what the next

step is. For example, where do we start our simplification process from? Starting

from the top node (the root of syntax tree) or starting from the bottom nodes (the

leaves of syntax tree) are two options. After we have simplified some node, whether

to go down to simplify the children nodes of current node or to go up to check the

parent node of current node are two other choices. What kind of strategy we should

choose is dependant on the efficiency of the simplification and the results the user

wants.

It is hard to say that one strategy is better than another everywhere or that some

strategy is best. What is the purpose of doing simplification? Users want to find a

simpler syntactic form of an expression to replace a more complex one. Should the

system transform the expression to a representation which is as simple as possible?

Normally, the simplest representation of an expression is the best for manipulation

and comprehension. However, we cannot always find the "simplest" syntax form of

41

7. Simplification framework

an expression, and the standard of "simplest" may be controversial. Moreover, in

some cases, the "simplest" form of an expression may be preferred by the human,

but it may not be the "simplest" form for a computer system (computer algorithm).

For example, people may be willing to write a subtraction expression like x - 1 while

the computer may prefer x + (-1). There are other cases in which the simplest form

of an expression is not the best form for a computation or deduction. For example,

consider an expression like this:

((:3x : R. x2 ~ 0) ~ (A. V (B!\ F) V ((0/\ T) V (T V F)))) =

((:3x: R. x2 ~ 0) ~ (A V (B!\ F) V (CV (TV F))))

When we try to simplify it, we need to judge if the left-hand side equals the right

hand side. If we first simplify C!\ T in left-hand side to C, we will find the two sides

of equation are syntactically equivalent. Therefore, we know the whole expression

can be simplified to T. In another case, if we first simplify the left-hand side as much

as possible, we can get the simplest form of left-hand side, T. Then, we still need

to simplify the right-hand side to T so that we can conclude that the final result is

T. Apparently, in the latter situation, we do some work that is unnecessary. That

is why we need different strategies which provide flexibility and let the users control

the simplification process. A few related discussions about strategies, term rewriting,

and tree traversal can be found in [14, 21].

7.2.1 Bottom-Up Strategy

Bottom-up is a simple and straightforward strategy. When we simplify an expression

E, we first try to simplify the immediate sub-expressions of E. After all the immediate

42

1. Simplification framework

sub-expressions of E are finished, E will be changed to E'. Finally, we try to simplify

E'. The simplification functions which employ the bottom-up strategy are recursive.

For example, consider an expression

(k, El , E2 , ... , En)

where k is the keyword of the expression, and the Ei are the immediate sub-expressions.

Let the simplification function be simp and the evaluation strategy of simp be call

by-value. The bottom-up simplification process is

simp(k,simp(El),simp(E2), ... ,simp(En))

The function goes to the leaves of the syntax tree and simplifies those leaf nodes

first. Then the function goes up to simplify the nodes on upper levels until it reach

the top node of expression (i.e. the root of tree).

Compared with other strategies, the bottom-up strategy is easy to implement.

It works well in many situations and simplifies expressions exhaustively. However,

the bottom-up strategy has a major flaw: it can do a lot of unnecessary work. For

example, let if(A, b, c) be a conditional term. If we know the condition A is T, we can

go on to simplify b directly. Conversely, if we simplify A to F, we can go to c without

considering b. In the bottom-up approach, the simplifier first simplifies A, b, and c

to A', b', and C'. At the end, simplifier tries to simplify if(A', b', c/). Therefore, if b

and c are very large and complex expressions, the simplifier will waste time on some

unnecessary simplification.

7.2.2 Top-Down Strategy

In contrast to the bottom-up strategy, the top-down strategy starts the simplification

process from the top node of the expression. At every node, the simplifier tries to

43

7. Simplification framework

simplify the current expression first, then it tries to simplify the sub-expressions of

the current expression. The virtue of the top-down strategy is its efficiency of pro

cessing some kinds of expressions. For example, let A - A be an expression where A

is a large and complex formula. If we use the top-down strategy, we can immediately

simplify A - A to T. We do not need to simplify A. The situation is similar for a

conditional term. We first check the condition of an if expression and try to simplify

the condition. When the condition can be simplified to T or F, we go to different

branches directly. The major process of a top-down simplifier is represented as follows:

First, consider an expression

where k is the keyword of expression, and the Ei are the immediate sub-expressions.

Let the simplification function be simp and the result of simp((k, E l , E 2 , . .. ,En))

be (k, E~, E~, . .. ,E~). The top-down simplification process is

simp(k, E l , E 2 , ... , En); simp(EU; simp(E~); ... ; simp(E'nJ

The top-down strategy also has a major disadvantage. It may not simplify the

expression completely in one call of a top-down simplifier. For example, using the top

down strategy, we simplify if((FVA) ::J ((T /\FVA) = (T /\Fv A)), [' First']te, Second)

to if(A ::J T, First, Second). However, the final result of simplifying the example

expression is First. The top-down strategy just does a partial simplification. To

solve this problem, we can restart the simplification after each success. The place

where we restart the simplification from is decided by different strategies.

44

7. Simplification framework

7.2.3 Combination of Different Strategies

As we mentioned in previous sections, different strategies have different advantages.

Finding out a universal strategy that fits for every situation is very difficult. That

is why we implement our work as a framework that supports different strategies. By

using this framework, users have different options at different stages of simplification.

When we traverse the syntax tree, we have two major strategies, bottom-up and

top-down. After we have found an applicable rule and simplified a node, we have

several choices:

• Stop after one simplification.

• Continue at the current node.

• Continue at a lower level.

• Continue at an upper level.

The first, "non-continue" approach means the simplifier does one step of simplifica

tion, then stops. This approach is useful in some cases. For example, the user does

not want the simplifier to simplify too much, or the user wants to see the simplifica

tion step by step. The non-continue approach is also the basis for other strategies.

In other words, a "continue" strategy is a sequence of non-continue simplifications.

The continue at an upper level strategy is what we call backtracking. It is an

important complement of the top-down strategy. For instance, we have an expression

A 1\ B. We use the top-down strategy to simplify this expression. First, we check

the top node of expression, then we find rules for and. However, we can not do

anything except go deeper to check the sub-expressions because no rule is applicable

45

7. Simplification framework

at this moment. Consequently, we go to A, then we find that we can simplify A to

F. At this stage, we can go back to the top node, which is F 1\ B. The good thing

is we know the final result is F without considering what B is. Should the simplifier

always go back to the top node after some node is simplified? The answer is no. It

is hard to say how many levels the simplifier should backtrack. A proper number

of backtracking levels depends on the structure of expression and the design of the

simplification rules. If the number of backtracking levels is small, the simplifier will

go through the expression more "carefully". If the number of backtracking levels is

big, the simplifier will go back to the top node more "quickly" so that we may need

to restart the simplification several times. One level backtracking is recommended

because a node is more related to its children nodes. In other words, the changes

made to a node is more likely to have an effect on its parent node. Moreover, most

of the simplification rules are designed to deal with some simple expression patterns.

For example, a simplification rule is designed to simplify a certain kind of operator O.

This rule often just checks the operands of 0 to determine whether a given expression

can be simplified. It will not consider the sub-expressions of the operands of O.

7.3 Architecture of the Simplification Framework

The core module of our software consists of a set of simplifiers which work together to

mix different simplification strategies in one framework. The two most basic simpli

fiers are simp_once and simp..Jllulti. At a higher level, we build top node simplifiers

from basic simplifiers. Basic simplifiers and top node simplifiers are essential for the

deep simplifiers because deep simplifiers use basic simplifiers and top node simplifiers

to do actual simplification at every node they visit. Deep simplifiers can be catego

rized into different families according to strategies. The deep simplifiers in a family

use the same strategy and take different expression types as inputs. They depend

46

7. Simplification framework

on each other and work together to fulfill a certain kind of simplification strategy.

On the other hand, deep simplifiers are divided into two groups because one group

uses rules from built-in rule tables while another group also uses user-defined rule

lists. The deep simplifiers that only use built-in rule tables are built from top node

simplifiers while the deep simplifiers that only use user-defined rule list are built from

basic simplifiers. Among different top node simplifiers, simp_top--.NC is used more fre

quently because most of the deep simplifiers that depend on top node simplifiers use

the non-continue strategy. The following tables show the organization of our simplifi

cation framework. In these tables, ep is a record type which contains an sexpression

and a path. Type ep is mainly used by function findPath which we will introduce

in the later sections.

Table 7.1: Basic simplifiers

FUNCTION NAME INPUT / OUTPUT TYPE STRATEGY

simp_once 'a non-continue

simpJllul ti 'a continue at current node

Table 7.2: Top node simplifiers using built-in rule table

FUNCTION NAME INPUT / OUTPUT TYPE STRATEGY

simp_top_NC sexpression non-continue

simp_top_CO sexpression continue at current node

47

7. Simplification framework

Table 7.3: Deep simplifiers using built-in rule table

FUNCTION NAME INPUT / OUTPUT TYPE STRATEGY

simp-..NC sexpression

sexpression
top-down non-continue

simp_NC~epeat

simp_CO sexpression top-down continue at current node

simp_C sexpression top-down continue

simpJ3U sexpression
bottom-up

simpJ3U~epeat sexpression
~----

simpJ3T_once ep
top-down backtracking

simpJ3T sexpression

Table 7.4: Deep simplifiers using user-defined rule list

FUNCTION NAME INPUT / OUTPUT TYPE STRATEGY

simp_NC-RL sexpreSSlOn
top-down non-continue

simp_NC_RL_repeat sexpreSSlOn

simp_CO-RL sexpression top-down continue at current node

simp_C-RL sexpression top-down continue

simp_BU-RL sexpression
bottom-up

simp_BU-RL_repeat sexpression

simp_BLonce-RL ep
top-down backtracking

simp_BLRL sexpression

The above tables only select one representative from every simplifier family. There

are more than one simplifier in some families. Three complete tables of simplifiers

are found in appendix A.

48

7. Simplification framework

7.4 Basic Simplifiers

As the table in the previous section shows, we have two basic simplifiers. The follow

ing is OCaml source code for these two simplifiers.

let rec simp_once inputExpr c rules

let root = inputExpr in

let i = ref 0 in

begin

while !i<List.length rules && root

i := !i + 1

done;

if !i = List.length rules then

inputExpr

else (List.nth rules !i) root c

end

let rec simp_multi inputExpr c rules

let root = ref inputExpr in

for i = 0 to (List.length rules) - 1 do

root .- (List.nth rules i) !root c

done;

if inputExpr <> !root then

simp_multi !root c rules

else ! root; ;

(List.nth rules !i) root c do

These two functions have the same signatures. They take three arguments. inputExpr

is the expression we wish to simplify. c is the context that the function will use in

49

7. Simplification framework

simplification. rules is a list of simplification rules. All these arguments are of poly

morphic type so that basic simplifiers can be applied to different types of expressions

and rules. For example, if we want to simplify a formula, we can pass this formula

and a list of formula simplification rules to simp_once or simp-.lllul ti. Then the sim

plifier will return a simplified formula if some rule is applicable. The context c will be

passed directly to simplification rules because only the simplification rules can make

use of context.

The difference between simp_once and simp-.lllulti is for how many times they

simplify an expression. One time we talk about here means an expression is simplified

by applying one rule. At the beginning, simp_once tries to find an applicable rule in

a rule list. As long as simp_once finds one, it will use this rule to simplify the given

expression, then return the result. On the other hand, simp-.lllul ti always tries to

simplify the given expression as much as possible. It keeps trying other rules after

successful simplifications until no applicable rule can be found. In some situations,

simp-.lllulti could run forever.

In our framework, all other simplifiers are built on top of these two basic simpli

fiers. When we use built-in rule tables, we will look up related rules and put them in

a list. Then we will pass this rule list to simp_once or simp-.lllulti. If we use a user

defined rule list, we can pass the rule list directly to simp_once or simp-.lllulti. In

our work, most of the simplifiers are based on simp_once. At every node of a syntax

tree, the simplifier tries to simplify the sub-expression represented by this node one

time, then the simplifier will return the result or go to other nodes after a success.

The advantage of using one-step simplification is that we can have more control in

the simplification process.

50

7. Simplification framework

7.5 Top Node Simplifiers

The Top node simplifiers only try to simplify the top node (or root node) of an

expression. It means they just check the constructor of an expression at the top level

and they do not consider the sub-expressions of this expression. We have two groups

of top node simplifiers. One group uses non-continue strategy which is based on

simp_once. Another group applies continue at current node strategy which is based

on simp-IDulti. Top node simplifiers use built-in rule tables. What these simplifiers

do is to look up rules from rule tables and pass them to the basic simplifiers. Rules

in rule tables are categorized by the constructors of expressions. Since rule tables

use strings as indices, top node simplifiers convert the constructor of an expression

to a string. Then simplifiers call the searching function f indAll provided by the rule

module to obtain a rule list that contains the rules having the same index. Operator

application is a special case. We need to use both the constructor and the operator

name as the look up key.

7.6 Deep Simplifiers

Unlike top node simplifiers, deep simplifiers go through the syntax tree of a given

expression and try to simplify the sub-expressions. The three major activities of deep

simplifiers are:

(1) Traversing the syntax tree of an expression according to different strategies.

(2) Applying top node simplifiers or basic simplifiers to different nodes in a syntax

tree.

(3) Calculating local contexts for every node in a syntax tree.

51

7. Simplification framework

Depending on what the rule source is, all deep simplifiers are divided into two

groups. The simplifiers which employ the same strategy in two groups work in a

similar way except for the lower-level functions they use. The deep simplifiers that

use built-in rule tables are based on top node simplifiers. If we do not use built-in

rule tables, the deep simplifiers will not call top node simplifiers. simp_once and

simp-.lllulti will be used directly to process the user-defined rule list. In this section,

we will put emphasis on the deep simplifiers using built-in rule tables.

Before we talk about different kinds of deep simplifiers, we will introduce an

important function called findPath because it is the essential part of several deep

simplifiers. The major work of findPath is to find out the first sub-expression which

can be simplified in an expression and return the path of this sub-expression. What

does "first" mean here? The findPath traverses the syntax tree of an expression in

order from top to bottom and from left to right. It is actually a preorder in depth-first

traversal. In this order, findPath tries to apply top node simplifier to every node it

visits. As long as some node can be simplified, findPath will simplify this node and

return the simplified expression and the path of this node. This path information can

be used in backtracking and non-continue strategy. Meanwhile, f indPath calculates

the local context for every node in a syntax tree as well. We define a record type

called ep which contains two fields, expr and 11. The expr is of type sexpression.

The 11 is an integer list used to store the path. For example, consider the expression

if (A 1\ T, b, c). First we make a variable v of ep type. Let v be {expr = if(A 1\

T, b, c); 11 = []}. Passing v and an empty context to findPath, we obtain the result,

{expr = A; 11 = [1]}.1 A is the simplified equivalent of A 1\ T. [1] is the path of

A 1\ T. If no sub-expression can be simplified in the given expression, the output of

findPath is the same as input. If the top node of an expression is simplified, the

1[1] here is not a reference. It is the representation of a list containing 1 in OCaml

52

7. Simplification framework

output path is empty list. In previous example, let v = {expr = if (T, b, c); 11 = []}.

Then the result of applying findPath to v is {expr = b; 11 = []}. The empty path

represents the top node of an expression.

7.6.1 Top-down Continue

The simplifier that employs the top-down continue strategy is called simp_C. The

simp_C is based on a set of simplifiers which use the same strategy but take different

expression types as inputs. Let us use simp_term_C as an example to illustrate the

work process of this kind of simplifiers. The simp_term_C first calls top node simpli

fiers to simplify the input term. Then, simp_term_C will go to the sub-expressions of

this term and try to simplify them. Therefore, no matter whether the node can be

simplified or not, simp_term_C will continue simplifying its children nodes.

The simp_term_C takes two arguments, a term and a context, and returns a term.

In a simplification process, when simp_term_C goes to the sub-expressions of a given

term, the function will calculate the local contexts for the sub-expressions. Meanwhile

simp_term_C will recursively call itself and use the local contexts to simplify the sub

expressions. In our framework, the calculations of local contexts are done by deep

simplifiers.

7.6.2 Top-down Non-Continue

Top-down non-continue strategy means traversing the syntax tree of an expression

from the top node and stopping simplification process after some node is simplified.

simp.-NC is based on findPath. After some sub-expression is simplified by findPath,

simp_NC replaces the old sub-expression with the simplified one, then returns the

result. The following is the OCaml source code of simp_NC:

53

7. Simplification framework

let simp_NC (inputExpr: sexpression) c : sexpression

let rootep = {expr=inputExpr;ll=[]} in

let resep = findPath rootep c in

replace inputExpr {p=resep.ll} resep.expr

The simp~C does only one time simplification in one call. If we want to use it to

simplify an expression completely, we need to apply simp_NC for several times. That

is why we make simp_NC_repeat. The simp_NC_repeat use simp~C to simplify the

given expression, then pass the result to simp_NC again. Users can specify how many

times the simplification repeats for.

7.6.3 Top-down Continue at Current Node

The simp_CO starts from the top node of an expression and goes down to the children

nodes if current node cannot be simplified. As long as a node can be simplified,

simp_CO will stay at this node and try to simplify it as much as possible. The simp_CO

depends on findPath as well. Similarly, after findPath finds an applicable rule for

some sub-expression, simp_CO will use simp_top_CO to simplify this sub-expression,

then return the result. The simp_CO performs well on some kinds of expressions such

as double negations.

7.6.4 Bottom-up

The simp_BU uses the bottom-up strategy. There is a group of simplifiers which work

together to support simp_BU. These simplifiers work on different types of expres

sions and calculate local contexts for the sub-expressions. The bottom-up simplifiers

traverse syntax trees in postorder and use non-continue top node simplifiers to do

simplifications at every node.

54

7. Simplification framework

Normally, simpJ3U simplifies a given expression exhaustively. However, in some

cases, it does not because we use non-continue top-node simplifiers at a low level.

Therefore, simp_BU_repeat is provided to repeat the bottom-up simplification. The

simpJ3UJepeat works in a similar way as simp_NC_repeat does.

7.6.5 Top-down Backtracking

Backtracking is a good match for top-down strategy simplifiers. In top-down traver

sal, if some node of a syntax tree is simplified, the simplifier will go back several levels

to check its ancestor node. Some nodes may be visited by the simplifier several times

during the simplification process. Users can specify how many levels the simplifier

backtracks for. If the simplifier always go back to the top node of an expression, it

is the same as applying simp~C repeatedly. In a word, backtracking helps top-down

simplifiers simplify the given expression more.

We wrote two functions to fulfill the backtracking mechanism. One is

simpJ3Lonce and another is simp_BT. simp_BLonce takes four arguments, an

sexpression inputExpr, a context c, a path p, and an integer i. It returns an

ep type. The simp_BLonce first goes to the sub-expression e that is denoted by

the given path p and tries to simplify e. If e is simplified to e' , simp_BT _once

will return the whole expression with e replaced by e' and the path, that is i

levels up from p. If e cannot be simplified, simp_BLonce will go down and

continue trying to simplify the children nodes of e until some children node

el is simplified. Let el be simplified to el'. simp_BLonce will return the whole

expression with el replaced by el' and the path, that is i levels up from the path of el.

The simp_BT is based on findPath and simp_BLonce. It is a recursive function.

55

7. Simplification framework

The simplification process moves between different nodes in a syntax tree and stops

only if the process goes back to the top node and no sub-expression is changed. In

our framework, simp_BT is guaranteed to terminate. The simp-BT does not always

simplify expressions exhaustively. Therefore, we need to repeat it sometimes.

7.7 The General Simplifier

7.7.1 The Signature of General Simplifier

The most general simplification function is named generaLsimplifier. Its signa

ture is:

?c:context ->

?m:mode ->

?i:int ->

?path:path ->

?rl:rule list ->

?flag:flag ->

inputExpr:sexpression -> sexpression

inputExpr is the only required parameter in this function, while other parameters are

optional. The type of input and output expressions is sexpression. By passing dif

ferent values to the optional parameters, the users can customize their own simplifier.

Hence, generaLsimplifier is actually a customizable simplifier. The meanings of

parameters of generaLsimplifier are listed as follows:

• ?c, the context, is an optional argument. Its default value is an empty context.

• ?m, the mode, is an optional argument. It specifies the strategy being used

56

7. Simplification framework

in simplification. Its default value is TDNC. TDNC is the top-down non

continue mode we will talk about later.

• ?i, the count, is an optional argument. It gives the number of backtracking

levels (-1 :::;; i). In addition, ? i can be used to specify how many times for

which the user wants to apply the simplifier repeatedly in some modes (0:::;; i).

Its default value is O.

• ?path, the path, is an optional argument. It specifies where the simplifica

tion process starts from. Its default value is the empty path which means the

simplification starts from the top node of an expression.

• ?rl, the rule list, is an optional argument. It is bound to user-defined rule list.

Its default value is the empty list which means the simplifier will use only the

built-in rule tables.

• ?flag is an optional argument used to specify the use of built-in rules when the

simplifier takes user-defined rule list. Its default value is Never which means

the built-in rules will not be used at all. Two other values of flag are Before

and After. The value Before means trying built-in rules before applying user

defined rule list while After means using built-in rules after applying user

defined rule list.

• inputExpr, the input expression, which must be given, is the sexpression that

the user want to simplify.

7.7.2 Modes of General Simplifier

One of several strengths of generaLsimplifier is that different modes can be chosen

as simplification strategies. We defined 6 modes for our system. They are TN, TDC,

57

7. Simplification framework

TDNC, BU, TDNCR, and BUR .

• TN means the function only simplifies the top node of an expression. This mode

implements the non-continue approach. In other words, as long as the top node

of expression can be simplified by using some rule, the function will simplify this

expression by applying that rule once, then the simplification process will stop.

If no applicable rule can be found for the top node, the simplification process

will stop as well. Among several optional arguments, ?c, ?rl, and ?flag are

permitted in this mode .

• TDC is the top-down continue strategy. It means the simplification process

goes from the top node to the bottom nodes. When the function checks a node

(we call it n), whether n can be simplified or not, the simplification process

will continue. The next step of the function depends on the optional argument

?i. If ?i is -1, it means the function will go to check the children nodes of n.

If ?i is 0, it means the function will try to simplify n again and again until n

can not be simplified anymore. If?i is greater than 0, it means the function

will go back to check the ancestor nodes of n. If?i is 1, the function will

backtrack 1 level and check the parent node of n. If ?i is 2, the function will

backtrack 2 levels and check the grandparent node of n. If?i is infinity (in

our work, the maximum integer), it means the function will always go back to

the top node of the expression and start simplification from top node again.

Generally, if the number of backtracking levels is greater than the depth of

syntax tree representing the expression, the function will go to the top node

and start again. In our framework, ?i only takes one negative number -1. It

means that the simplification goes down level by level. If the simplification goes

down several levels every time, it will skip many nodes and stop at the bottom

nodes. Working in this way, the simplifier is random and useless. In this mode,

58

7. Simplification framework

?c, ?i, ?path, ?rl, and ?flag are legal.

• TDNC is the top-down non-continue approach. The function traverses the

syntax tree of expressions from the top node down to the bottom nodes. As

long as some node is simplified, the simplification process will stop. At most,

only one node will be simplified once in this mode. Optional arguments, ?c,

?path, ?rl, and ?flag are permitted.

• BU means the bottom-up strategy. The function first simplifies the bottom

nodes, then go up to simplify their parent node, grandparent node and so on.

At the end, the top node of expression will be simplified. Every node will be

simplified at most once. In this mode, ?c, ?path, ?rl, and ?flag are permitted.

• TDNCR is the top-down non-continue repeat strategy. It means the framework

applies top-down non-continue simplifier repeatedly to the expression intended

to be simplified. Optional argument?i means the simplifier will be applied i+l

times. If ?i is 0, the framework applies simplifier once, which is equivalent to

TDNC. In this mode, optional arguments, ?c, ?i, ?path, ?rl, and ?flag are

legal.

• BUR means bottom-up repeat strategy. It is similar to TDNCR except the

framework applies bottom-up simplifier repeatedly in this mode.

7.7.3 Work of General Simplifier

We have already introduced the signature of generaLsimplifier and the mean

ings of all arguments in the previous sections. Different combinations of optional

arguments give generaLsimplifier different tasks. In this section, we are going to

introduce what underlying simplifiers are called when different arguments are given.

59

7. Simplification framework

The work of generaLsimplifier is mainly based on mode argument ?m. The de

fault value of ?m is TDNC. When we choose to use a user-defined rule list, we need

to specify the argument ?flag to decide whether the simplifiers use the built-in rule

tables as well. Different modes and corresponding simplifiers are listed as follows. We

assume that ?flag is Never.

TN means top node only simplifier. If rule list argument ?rl is not specified,

simp_top~C is called. Otherwise, simp_once is called.

TDC mode cooperate with optional argument ?i. First, we assume ?rl is empty. If

?i is -1, simp_C is applied. simp_CO is applied when ?i is O. If ?i is greater than 0,

simp-BT is applied. In another situation, when ?rl is given, simp_C-..RL, simp_CO_RL,

and simp-BT-..RL are called.

TDNC is top-down non-continue strategy. If rule list argument ?rl is not given,

simp~C is used to do simplification. Otherwise, simp~C-..RL is used.

BU means bottom-up approach. In this mode, simp_BU is called when ?rl is not

given. Otherwise, simp_BU-..RL is called with ?rl given.

TDNCR represents top-down non-continue repeat strategy. ?i is used to specify

the times of repeating. If rule list argument is empty, simp_NC_repeat is called. The

repeat function with rule list argument is simp~C-..RLrepeat.

BUR is bottom-up repeat simplifier. It works in a similar way as TDNCR sim

plifier does. The simp_BU_repeat is applied when ?rl is not specified. Otherwise,

simp-BU-..RL--.repeat is applied.

60

7. Simplification framework

If argument ?flag is not Never in above modes, both the simplifiers that employ

the same strategy but use different rule sources are applied to the given expressions.

Let us use mode TN as an example, If ?flag is Before or After when ?rl is given,

simp_top~C is applied before or after simp_once, respectively.

If optional argument path is not specified, its default value is empty list. In this

case, the simplification process will start from the top node of a given expression.

If path is given, only the sub-expression which is denoted by the given path will be

simplified. The original sub-expression will be replaced with the simplified one.

7.8 Tests

We did some tests for our simplification framework. The goal of testing is to verify

the results of simplifications and to measure the efficiencies of different strategies.

However, at current stage, there are only a few operators and simplification rules are

defined. We do not have enough samples to do many tests. Therefore, the results of

our tests are not conclusive because of a lack of coverage. In our testing, the following

kinds of expressions were used as samples:

• Logic connectives such as 1\, V, =>, =, -'.

• Conditional terms.

• Evaluations.

• Function applications.

The results of simplification are correct in our tests. When we apply different sim

plifiers to the same expression, the results also reflect the uses of different strategies.

61

7. Simplification framework

We tested some simple cases of using contexts in simplification and the results are

correct as we expected as well. All the tests we did illustrate that our framework and

the simplification rules we designed work correctly. Furthermore, we used a timing

function to measure the running time of different simplifiers when they deal with the

same expression. First, we built some large but simply structured expressions. A

simply-structured expression here means an expression with repeated structure. In

several tests, the running time of the bottom-up strategy is less than that of the

top-down strategy even though the structures of some expressions are theoretically

suitable for top-down strategy. However, one factor we noticed is that our rules are

simple. It means the most of running time is not spent on the application of simpli

fication rules but traversal of the syntax tree of an expression. Then we made some

time consuming rules and used the same sample and testing method again. We found

that the top-down strategy beat bottom-up strategy in some cases.

62

Chapter 8

Some Tools

In this chapter, we will introduce some useful functions for our system. It is eas

ier to manage and reuse these tools if we put them in a module. This module is

called Sometools. It contains not only support tools for simplification but also some

implementations of Chiron operators.

8.1 immediateSubExpressions

In path module, we use expression components to describe the structure of a

syntax tree. We cannot obtain a sub-expression via path information sometimes.

immediateSubExpressions provides a way of deconstructing an expression that is

different from using expression components. This function retrieves the immediate

sub-expressions from a given sexpression. It returns a list of sexpression which

contains all the immediate sub-expressions in a left-to-right order. For example,

Constant S does not have any immediate sub-expressions. The conditional term

If (A, b, c) has three immediate sub-expressions, formula A, term b, and term c.

Existential quantification FExists (x, ct, B) has two immediate sub-expressions

instead of three. In the expression, x is a symbol and ct is a type. We put them

63

8. Some Tools

together to make a variable Var (x, a), which is the first immediate sub-expression.

The second immediate sub-expression is a formula B.

Improper expressions do not have sub-expressions. If we apply immediateSubExpressions

to a value of type improper, an exception will be raised.

8.2 is-eval-free

is-eval-free is a defined operator in Chiron which checks if an expression is free of

evaluations l . When we try to simplify an expression like (eval, (quote, e), k), we need

to first check whether e is eval-free, then check whether e and k are good evaluation

arguments. Let us use (eval, (quote, e), type) as an example. Only if e is eval-free and

a good evaluation argument, can (eval,(quote,e),type) be simplified to e. We will

talk about good evaluation arguments in next section.

The implementation of is-eva I-free is according to the defining axioms of eval-free

checker in [8]. The function is_evaLfree takes an sexpression as input and returns

a boolean value. It recursively checks the sub-expressions of the given expression.

Only if all the sub-expressions are eval-free, is the whole expression eval-free. For

example, we have an expression

where k is the keyword of the expression, and Ei is its immediate sub-expression.

Let the eval-free checker be is-eva I-free. The result of is-eval-free((k, E l , E 2 , . .. , En))

is

1 An expression e is eval-free if all occurrences of the symbol eval in e are within a quotation

64

8. Some Tools

• F if k = eval

• T if k = quote

• is-eval-free(E1) /\ is-eval-free(E2) /\ ... /\ is-eval-free(En) otherwise

We can not check if an improper expression is eval-free. Thus, applying is_evaLfree

to an improper expression raises an exception.

8.3 Good Evaluation Arguments

In the original definition of evaluation, we need to use a value of type kind to dif

ferentiate the types of evaluations. The expression to be evaluated must match the

kind of the evaluation operator. Therefore, a good evaluation arguments checker is

important in the simplification of evaluation.

However, in our implementation, We have three kinds of evaluations, Eval, FEval,

and TEval. They represent (eval,e,a), (eval,e,formula), and (eval,e,type) respec

tively. Therefore, we need to check whether e is a term in the simplification of

Eval (e, a), whether e is a formula in the simplification of FEval (e), and whether e

is a ctype in the simplification of TEval (e).

The function gea is a partial implementation of the Chi ron operator gea. It takes

two arguments, an sexpression and a kind. Function gea returns T if the given

sexpression matches the given kind. Now, we have is_evaLfree and gea so that

we can write the simplification rule for evaluations.

65

8. Some Tools

8.4 replace

replace is an important function that is used in simplification. It takes three argu

ments, sexpression, path, and sexpression. Let us pass el, p, and e2 as arguments

to replace. replace will replace the sub-expression which is denoted by p in el with

e2. For example, suppose we have

el = If (A,b,c)

p = (2)

e2 = d

where d is a term.

Then, replace el P e2 = If (A, d, c).

If the path we give is empty, the whole expression will be replaced. In the example

above, if p = (), el and e2 remain unchanged, then replace el P e2 = d. In the

replacing process, type checking is performed. We will use the example above again.

Let p = (1), el and e2 remain unchanged, then replace el P e2 will raise an excep

tion because d is a term and A which is denoted by (1) is a formula. Replacing a

formula with a term does not make any sense.

8.5 local Context

localContext is a function used to calculate the local context. This function takes

three arguments, an sexpression, a context, and a path. It returns the local context

of the sub-expression which is denoted by the given path in the given sexpression.

Giving an empty path means calculating the local context for the root node. In this

case, the output of localContext is the same as the input context.

In our framework, we calculate local context for every node of a syntax tree

66

8. Some Tools

during the simplification. Every simplifier takes a context argument used to store

the context information of the input expression. Therefore, most simplifiers do

not call localContext to calculate local contexts for sub-expressions. However,

localContext is a useful tool of context module. It is convenient for users who

want to obtain local context information in other operations.

67

Chapter 9

Conclusion and Future Work

We have developed a simplification infrastructure for Chiron expressions. It is a plat

form that developers can use it to experiment with different strategies and approaches

for doing simplification. It also provides several basic components that developers can

use in future developments. Based on this framework, developers can improve the

simplifier by adding new simplification rules. They also can combine different strate

gies and design the simplification process to make their own customized simplifier.

The two major elements in the design of our simplifier are rules and strategies.

We have developed some simplification rules and strategies for our framework. The

rule module is a tool we use to manage simplification rules. We can add new rules,

modify, or delete existing rules via the interfaces of rule module. Strategies refer to

how to traverse a syntax tree and perform actions after every successful simplifica

tion. Strategies are divided into two groups, top-down and bottom-up. They have

their own advantages when they deal with different expressions. Top-down is the

default strategy we use in our simplification. A backtracking mechanism improves

the capability of the top-down strategy. In practical use, end users or developers

68

9. Conclusion and Future Work

choose various strategies according to the expressions they want to simplify and the

simplification rules they use.

The path module is useful in simplification as well as in other applications. We

can easily navigate sub-expressions and manipulate sub-expressions by using paths.

Replacement of a sub-expression and the calculation of a local context rely on path

information. The same mechanism of using paths can be applied to the application

of transformers as well.

The notion of a context is an important facility that we use to make our simpli

fier more powerful. In our simplification infrastructure, local contexts are calculated

when the syntax trees of expressions are traversed. The context module provides in

terface functions that we can use to manage context information. With contexts, we

can put assumptions in our deduction and computation rules. Furthermore, contexts

help speed up simplification in some cases.

Simplification is not a new topic in MMSs. Many simplifiers have already been

implemented in other mathematical softwares. Our work is inspired by other con

temporary systems as well. Ideas like context are employed in some mathematical

software such as IMPS [10] and Isabelle [20]. The feature of our framework is its

flexibility. Several strategies are provided so that users can choose a proper one from

them. Simplification rules is another open module that users can develop in the future.

In the future, we need to design more rules and add them into our simplification

framework. Custom strategies will be designed to increase the power and efficiency

of simplifier. In the current work, rules are selected randomly from the built-in rule

table. If the simplification process is not confluent, the choice of rules or the order of

69

9. Conclusion and Future Work

applying rules may affect the final result. Therefore, a more sophisticated selector is

needed. The implementation of context module can be improved. The simplifier now

just checks whether a given formula is in the context when people try to use contexts

in simplifications. A new approach of using context should be more reasonable.

We can first simplify all formulas in context before we search. Our simplification

infrastructure is designed to be used by future developers because the rules are written

in OCaml. With a proper interface, the end users can create their own rules in the

future. For example, we can make some functions that automatically transform an

equation into a rewrite rule or transform a theory into a more complex rule. Moreover,

we hope that our simplifier can have a tracker that stores a simplification process in

some form. The tracker can display a simplification step by step when users want to

see it.

70

Appendix A

Tables of Simplifiers

Table A.1: Basic simplifiers

FUNCTION NAME INPUT / OUTPUT TYPE STRATEGY

simp_once 'a non-continue

simpJnulti 'a continue at current node

71

A. Tables of Simplifiers

Table A.2: Top node simplifiers

FUNCTION NAME INPUT / OUTPUT TYPE STRATEGY

simp_ top_ type_ NC type non-continue

simp_ top_ term_ NC term

simp_ top_ formula_ NC formula

simp_ top_ kind_ NC kind

simp_ top_ kinded_ NC kinded

simp_ top_ NC sexpression

simp_ top_ type_ CO type continue at current node

simp_ top_ term_ CO term

simp_ top_ formula_ CO formula

simp_ top_ kind_ CO kind

simp_ top_ kinded_ CO kinded

72

A. Tables of Simplifiers

Table A.3: Deep simplifiers using built-in rule table

FUNCTION NAME INPUT / OUTPUT TYPE STRATEGY

simp_ NC sexpression

simp_ NC_ repeat sexpression

I simp_ CO I sexpression

simp_ type_ C type top-down continue

simp_ term_ C term

simp_ formula_ C formula

simp_ kind_ C kind

simp_ kinded_ C kinded

simp_ operatoL C operator

simp_ C sexpression

simp_ type_ NC type bottom-up

simp_ term_ BU term

simp_ formula_ BU formula

simp_ kind_ BU kind

simp_ kind ed_ BU kinded

simp_ operatoL BU operator

simp_ BU sexpression

simp_ BU_ repeat sexpression

simp_ BT _ once something top-down backtracking

simp_ BT sexpression

73

A. Tables of Simplifiers

Table A.4: Deep simplifiers using user-defined rule list

FUNCTION NAME INPUT / OUTPUT TYPE STRATEGY I
simp_ NC_ RL sexpression

simp_ NC_ RL_ repeat sexpression

I sexpression

simp_ type_ C_ RL type top-down continue

simp_ term_ C_ RL term

simp_ formula_ C_ RL formula

simp_ kind_ C_ RL kind

simp_ kinded_ C_ RL kinded

simp_ operatoL C_ RL operator

simp_ C_ RL sexpression

simp_ type_ NC_ RL type bottom-up

simp_ term_ BU_ RL term

simp_ formula_ BU_ RL formula

simp_ kind_ BU_ RL kind

simp_ kinded_ BU_ RL kinded

simp_ operatoL BU_ RL operator

simp_ BU_ RL sexpression

simp_ BU_ RL_ repeat sexpression

simp_ BT _ once_ RL something top-down backtracking

simp_ BT_ RL sexpression

74

Bibliography

[1] Objective CamI. Home page at http://caml.inria.fr/(accessed August 26,

2010).

[2] Jacques Carette. Understanding expression simplification. In ISSAC, Santander,

Spain, 2004.

[3] Bob F. Caviness. On canonical forms and simplification. Journal of the ACM,

17(2):385-396, 1970.

[4] Bruce W. Char, Keith O. Geddes, Gaston H. Gonnet, Benton L. Leong,

Michael B. Monagan, and Stephen M. Watt. Maple V Language Reference Man

ual. Springer-Verlag, 1991.

[5] William M. Farmer. A proposal for the development of an interactive mathemat

ics laboratory for mathematics education. In CADE-17 Workshop on Deduction

Systems for Mathematics Education, page pages, 2000.

[6] William M. Farmer. Biform theories in Chiron. In Calculemus '07 / MKM

'07: Proceedings of the 14th symposium on Towards Mechanized Mathematical

Assistants, pages 66-79, Berlin, Heidelberg, 2007. Springer-Verlag.

[7] William M. Farmer. Chiron: A multi-paradigm logic. In R. Matuszewski and

A. Zalewska, editors, From Insight to Proof: Festschrift in Honour of Andrzej

75

BIBLIOGRAPHY

Trybulec, volume 10(23) of Studies in Logic, Grammar and Rhetoric, pages 1-19.

University of Bialystok, 2007.

[8] William M. Farmer. Chiron: A set theory with types, undefinedness, quotation,

and evaluation. SQRL Report 38, McMaster University, 2007. Revised 2010.

[9] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. IMPS: An

Interactive Mathematical Proof System. volume 11, pages 213-248, 1993.

[10] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. The IMPS user's

manual. Technical Report M-93B138, The MITRE Corporation, 1993. Available

at http://imps.mcmaster.ca/(accessed August 26,2010).

[11] William M. Farmer, Joshua D. Guttman, and F. Javier Thayer. Contexts in

mathematical reasoning and computation. Journal of Symbolic Computation,

19(1-3):201-216, 1995.

[12] William M. Farmer and Martin v. Mohrenschildt. Transformers for symbolic

computation and formal deduction. In Proceedings of the Workshop on the Role

of Automated Deduction in Mathematics, CADE-l1, pages 36-45, 2000.

[13] William M. Farmer and Martin v. Mohrenschildt. An overview of a formal

framework for managing mathematics. Annals of Mathematics and Artificial

Intelligence, 38(1-3):165-191, 2003.

[14] Paul Klint and Jurgen J. Vinju. Term rewriting with traversal functions. Techni

cal report, ACM Transactions on Software Engineering and Methodology, 2001.

[15] Mathscheme: An integrated framework for computer algebra and computer the

orem proving. Web site at

http://www.cas.mcmaster.ca/research/mathscheme/ (accessed August 26,

2010).

76

BIBLIOGRAPHY

[16J Leonard G. Monk. Inference rules using local contexts. Journal of Automated

Reasoning, 4(4):445-462, 1988.

[17J Joel Moses. Algebraic simplification a guide for the perplexed. In SYMSAC '71:

Proceedings of the second ACM symposium on Symbolic and algebraic manipu

lation, pages 282-304, New York, NY, USA, 1971. ACM.

[18J Greg Nelson and Derek C. Oppen. Simplification by cooperating decision pro

cedures. ACM Transactions on Programming Languages and Systems, 1(2):245-

257, 1979.

[19J Hong Ni. Chiron: Mechanizing mathematics in OCaml. Master's thesis, McMas

ter University, 2009.

[20J Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A

Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[21J Eelco Visser. A survey of strategies in rule-based program transformation sys

tems. Journal of Symbolic Computation, 40(1):831-873, 2005.

[22J Stephen Wolfram. Mathematica: A system for doing mathematics by computer

(2nd ed.). Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,

USA, 1991.

[23J Jian Xu. Mei - A Module System For Mechanized Mathematics System. PhD

thesis, McMaster University, 2008.

77 12433 81

