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Abstract 

During the past two decades, there has been an increasing demand for medical image 

registration. Deformable image registration has a great importance, because the 

majority of the registration applications deal with the conditions in which the rigid 

assumption would not create accurate results. Soft tissue organs (e.g. liver, kidney, 

and prostate) can change in shape during an intervention. Therefore, a sophisticated 

registration essentially needs to take into account the geometrical deformations. 

In this thesis, we study the problem of deformable liver image registration between 

Magnetic Resonance (MR) and Ultrasound (US) images of the liver. In our approach, 

a tracking system is proposed to acquire and rigidly register a 2D US image (Ius) 

with the previously taken MR volume. According to the information obtained from 

the tracking system, a 2D MR image (IMR) is reconstructed as the match of Ius. 

Mutual information is chosen as the similarity measure between the two modalities 

in our rigid registration problem. A search optimization problem on the registration 

parameters is then performed, to provide us with a fine tuned reconstructed I MR . 

Our proposed strategy begins with visually identifying corresponding anatomical 

landmarks on Ius and IMR. These landmarks are the inputs of the two proposed 

methods of deformation in this thesis. The first method, Finite Element Modeling 

(FEM) approach, produces the deformed images based on the linear elasticity and 
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the static analysis assumptions. This method uses the positions of landmarks to solve 

a linear system of equations, in order to generate the final deformations of the MR 

images. The second method of deformation is the Moving Least Squares (MLS). To 

the best of our knowledge, MLS has never been used in medical image registration. 

This technique analytically solves a number of least squares problems to find the local 

rigid transformations. Applying these local rigid transformations on the MR volume 

creates the deformations throughout the MR images. 

In our experiments, Root Mean Square Target Registration Error (RMS TRE) 

is used as the quantitative measure for the evaluation of performance. FEM-based 

method produces the best result with an RMS TRE of 7.2mm, while MLS-based 

method creates an RMS TRE of 8.9mm. According to the literature, an accuracy 

of 7.2mm is acceptable for most intra-operative abdominal procedures, particularly 

those involving the liver. The drawback of FEM-based method is its higher computa­

tional complexity. Our implementation of the MLS-based method could be executed 

at least 20 times faster than that of the FEM-based method. Therefore, in appli­

cations, where the accuracy is critical, FEM-based method should be used. The 

MLS-based method is more suitable of the applications demanding higher speed or a 

parallel implementation of the FEM-based method can solve the computation speed 

problem. 
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Notation and abbreviations 

US : Ultrasound 

Magnetic Resonance Imaging : MRl 

Radiation Therapy : RT 

Computed Tomography : CT 

Root Mean Square : RMS 

Target Registration Error : TRE 

Correlation Ratio : CC 

Finite Element Modelin : FEM 

Finite Element : FE 

Moving Least Squares : MLS 

2D US image : Ius 

2D MR image : IMR 

Conjugate Gradient : CG 

Singular Value Decomposition : SVD 

Field Programmable Gate Array : FPGA 

Poly Vinyle Alcohol : PYA 
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Chapter 1 

Introduction 

Image registration is the process of finding the mapping for every pair of points in two 

or more different images. Images can be taken in various times, with different sensors 

and from multiple viewpoints. During the past three decades many researchers have 

focused on this field of study. They have introduced various applications, such as, 

environmental monitoring, change detection, image mosaicing, weather forecasting, 

creating super-resolution images, treatment verification in medicine (comparison of 

the patients data with anatomical atlases), cartography applications (map updating), 

and computer vision development (target localization, automatic quality control) [35J. 

In this thesis, we will focus on medical applications of image registration. 

Almost one-quarter of all deaths are caused by cancer in the developed coun­

tries [2J. Surgery and Radiation Therapy (RT) are the two most popular cancer 

therapy treatments, while biopsy is of a great importance in diagnosis of cancer tis­

sues. The principle goal in the surgery is to resect cancer cells without any damage to 

healthy Organs At Risk (OAR). Similarly, in RT, the goal is to deliver the prescribed 

dose to the target, while minimizing the damage to the neighboring tissues. In the 
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majority of the biopsy procedures, a needle-shape tool must be inserted into the sus­

pected area of the body to extract cell samples. Hence, there should be an estimate 

of the current location of the target because of deformations and movements caused 

by intervention (Figure 1.1). 

Figure 1.1: Radio-frequency ablation of a liver mass guided by ultrasound imaging in 
the CT suite. (picture from [33]) 

Planning surgery needs information provided by Magnetic Resonance Imaging 

(MRI) or Computed Tomography (CT) scan. However, these imaging modalities 

are rarely used intra-operatively. The only modality which has been widely used 

during the surgery is the Ultrasound (US). Patient's movements during the acquisi-

tion, breathing, and heart beat are the main reasons for intra-operative images to 

be spatially different from pre-operative images. To optimize the so-called image­

guided surgery, surgeons should be able to access as much information as possible 

from patient's anatomy and structure during the operation (Figure 1.2). An optimal 

image-guided surgery is clinically determined by the amount of bleeding during the 
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operation. Therefore, the idea of combining pre- and intra-operative modalities is 

developed. This integration, must be able to introduce geometric differences while 

keeping modality-specific information content [18]. 

Figure 1.2: Image Guided Surgery. Courtesy of Vanderbilt University 

From a different clinical point of view, image registration has a great role not 

only in treatments but also in diagnosis. A challenging problem in abdominal soft 

tissue organs such as liver and kidney, is the diagnosis of an intermediate lesion. MRI 

and CT can usually identify the lesion. However, further clinical investigation on 

the lesion often involves the use of US to determine whether the lesion is benign or 

malignant. Throughout this procedure, motion or deformation of the organ can lead 

to a wrong localization of lesion between the two modalities. This can result in a 

false diagnosis. It is difficult to correlate US images to MR or CT images due to 

many reasons. Some of the US limitations include: limited field of view, speckle and 

convolutional noise, and operator-based image acquisition [33]. The main focus of 
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this thesis is on the deformable and the rigid registration of MRI and US of the liver. 

Liver is one of the largest organs in our body, and it plays many important and vital 

roles. However, our proposed techniques can be applied to other soft tissue organs 

such as kidney, prostate, and breast. This is due to the fact that our assumptions 

about liver are sufficiently general to be extended to other deformable organs. 

There are many ways to combine pre-operatively taken set of images with the on­

line data during the operation. To solve this problem, one must consider what types 

of transformation can map pre- and intra-operative images. In general, transforma-

tions can be divided into three groups; rigid, affine, and nonrigid transformations. 

In rigid transformations only translational and rotational parameters exist. Affine 

transformations have two more components; scaling and shearing. Rigid and affine 

transformations can be represented using homogeneous matrices; 4 x 4 matrices for 3D 

to 3D mappings. In the literature, affine transformations are sometimes referred as a 

subcategory of nonrigid transformations. Nonrigid transformations map straight lines 

to curves, and therefore, they can cause deformation. This class of transformations 

is also known as deformable transformations. 

1.1 Problem Definition 

In this thesis, we mainly concentrate on deformable image registration for liver appli-

cation. For our problem, we are equipped with pre-operative MR images, while US 

images are acquired intra-operatively. 

The purpose of deformable image registration is to find the relation (transforma­

tion) between volume elements (voxels) of different image modalities in the entire 

image data sets. There are various types of techniques to model the deformations. 
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Generally, deformation models are divided into two main categories; 

• parametric: A set of parameters, which represent a priori knowledge of the 

shape structure, is used to model the deformation. There are many paramet­

ric transformations that can be employed for deformable registration, for in­

stance, B-Splines, radial basis functions, or the newly developed technique of 

the Moving Least Squares (MLS) by Schaefer et al. [28J. MLS is chosen as the 

parametric method of deformation for this thesis. We will elaborate more on 

MLS-based technique in Chapter 3 . 

• non-parametric: Based on physical properties, the deformation can be deter­

mined by solving Partial Differential Equations (PDEs). For the purpose of this 

thesis, we have selected the static linear elastic modeling and Finite Element 

Method (FEM) to solve the underlying PDE equations. In fact, we use a Mat­

lab implementation of the Conjugate Gradient (CG) algorithm to solve a linear 

system of equations arising from Finite Element (FE) models of deformation 

(as described by Mafi et al. [24]). FEM-based image registration method will 

be introduced in more detail in Chapter 3. 

A comprehensive overview of deformation techniques will be discussed in Chapter 2. 

In our research, it is desired to solve two registration problems. The first one is, 

to find the initial rigid registration between the US image (Ius) and the MR volume 

(VlvIR). This step involves finding six parameters; three translational parameters and 

three rotational parameters. The next step, where the main contributions of this 

thesis lie in, is to find the deformation to be applied on the MR image (IMR) to best 

match with the Ius. 
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Rigid registration arises in many registration problems. In our work, we add the 

"initial" term to emphasize the fact that rigid registration is distinct from deformable 

registration in our framework. The registration problem between Ius and VMR can 

be expressed as an optimization problem. The objective function of the optimiza-

tion problem is the "similarity measure". There has been a tremendous amount 

of research in this field and various similarity measure functions and optimization 

methods are available to solve this problem for various purposes. Providing the opti­

mization algorithm of choice with a proper initial value plays a great role in finding a 

global optimum. Otherwise, the algorithm can easily get trapped in a close by local 

minimum. A brief overview of the similarity measures is given in Chapter 2. 

A common method to find the initial values for the six parameters in our rigid 

registration problem is to use a tracking system. We have chosen a six Degree of 

Freedom (DoF) PHANTOM 1.5 Premium Haptic Interface, designed and manufac-

tured by Sensable Technologies, robotic arm. The US probe is connected to the end 

effector of this device, which is the end arm of robotic arm. By this attachment, the 

coordinate system of the US probe can be represented in the coordinate system of 

the arm. To obtain the initial values of the six parameters, the relationship between 

the coordinate system of the probe and the MR volume should be provided. This 

is a common challenge in many tracking systems, and a well-practiced solution is to 

employ transformation matrix (we refer to it as "probe-to-MR""), which converts the 

coordinate system of the US probe to that of the MR volume. In this work, a new 

method for finding probe-to-MR matrix has been proposed. Chapter 3 includes more 

details of this method. 

Obtaining a 2D image out of a 3D data set is a significant contribution of this 
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project. In MLS-based approach, finding a 2D view is converted into re-mapping 

a regular grid, and interpolation of the grid points in a volume. In FEM-based 

algorithm a more sophisticated approach is introduced in which the deformation is 

applied simultaneously with forming the image. In Chapter 3 a detailed explanation 

of the proposed methods is provided. 

In FEM-based method, deformable registration is implemented by first building 

a 3D tetrahedral mesh from the 3D MR volume, then deforming this physical model, 

and lastly projecting back the deformations to the final 2D image. The latter step 

is jointly performed with the re-slicing or re-formatting the 2D image out of the 3D 

MR volume. A new methodology to find the deformation parameters for the 3D 

mesh has been proposed. Basically, to parameterize the FEM-based method as the 

deformable transformation model, we need to find the answer to how a 3D mesh can 

be deformed. From the literature, it is known that a 3D tetrahedral mesh consists 

of several nodes that make tetrahedral elements. By knowing the displacement of a 

node and having at least three constrained nodes in the entire mesh, the displacement 

of every point inside the elements can be determined by means of shape functions, 

which are just simple interpolants. Consequently, to deform the mesh, some nodes 

must be selected and displaced in three dimensions. Obviously, the most challenging 

part of this scenario is finding the number and the indices of the selected nodes to 

perform the mesh deformation. In the field of optimization, this problem falls under 

the category of integer programming, which is known to be extremely difficult to 

solve. In this project, we address the challenge in a new manner to make it simpler. 

A visual identification is performed on the IMR and Ius to obtain two sets of 

control points. Each pair of points represents the similar anatomy structure on the 
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two modalities. The positions of the pairs are used in both methods of deformations 

in this thesis. In FEM-based method, the control points specify the node numbers 

and the displacements. MLS-based method uses the control points to form local 

least squares problems. The solutions of the least squares provide the local rigid 

transformations. Applying the local rigid transformations to the entire MR volume 

creates deformed MR images. 

1.2 Thesis Contributions and Outline 

Physical modeling based on FEM can provide accurate results for image deformation, 

but its application in the field of deformable image registration is limited due to the 

difficulties in determining precise boundary conditions of the 3D mesh. In this work, 

we propose a simplified version of FEM-based method to gain a better and more 

realistic deformed images without any a priori knowledge on the boundary conditions. 

We can summarize our main contributions in this thesis as: 

• Application of the PHANTOM robotic arm as the US probe tracking system 

and solving a modified optimization problem to find the probe-to-MR coordinate 

matrix transformation in the initial rigid registration step. 

• A novel FEM-based deformation method to bypass the integer programming 

problem of the mesh deformation. 

• 2D and 3D implementation of MLS-based technique, and application of this 

method in deformable registration. 

• Design and implementation of re-slicing an arbitrary plane inside a 3D data 

volume. 

9 



M.A.Sc. Thesis - Navid Samavati McMaster - Electrical Engineering 

The rest of this thesis is organized as follows. In Chapter 2, we briefly review and 

compare the previous works and techniques on mono- and multi-modality deformable 

image registration. Initial rigid registration, tracking system, the proposed modified 

optimization scheme to find the probe-to-world coordinate matrix transformation and 

implementation of re-slicing an arbitrary plane inside a 3D data volume are discussed 

in Chapter 3. A detailed study on MLS algorithm and FEM-based deformation is 

also discussed in this chapter. Chapter 4 is dedicated to our experimental results. 

The thesis is concluded in Chapter 5 with possible future extensions of the present 

work. 
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Chapter 2 

Literature Review 

Image registration is one the most fundamental applications of image processing in 

the field of medical imaging. In this process, the goal is to find the best alignment 

between a fixed (source) and a moving (target) image. Technically, a set of geo-

metric transformation parameters, which maximizes a similarity measure cost func-

tion, is found to provide us with the best alignment of the fixed and moving image. 

Consequently, geometric transformation model and similarity measure, the two most 

important components of the process, should be determined carefully to resolve a 

registration problem. Depending on the mono- or the multi-modality nature of the 

images, which will be registered, and the degree of freedom of the geometric trans-

formation, we have to talce into account variety of options for these two components. 

In the following paragraphs, we briefly review and discuss different methods for each 

components, and finally conclude our proposed combinations for our deformable liver 

image registration problem. 

Rigid-body transformations refer to transformations that preserve the geometrical 

distance between all points in the image. Translation and rotation are the only 

11 
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two components in the rigid-body transformation. Affine transformations allow for 

global change of scale and shear, as well as translation and rotation. These two 

transformations can be simply represented by homogenous 4 x 4 matrices to map 

from 3D to 3D spaces. Non-rigid transformations map a straight line to a curved 

line. Generally, they are divided into two categories; physical based (also known 

as non-parametric transformations) models and function representations (also known 

as parametric transformations). Physical modeling of non-rigid transformations is 

derived from the continuum mechanics theory, and they can be grouped into two 

subcategories; elasticity and fluid flow. Function representations are originated from 

interpolation and approximation theory. Basis function expansions are used to model 

the deformation. Radial basis functions, B-Splines and Thin-Plate Splines (TPS) are 

good examples of such functions which are reviewed in this chapter. 

2.1 Physical Based Transformations 

The linear elasticity theory is explained by concepts of stress and strain. At any 

location, stress can be defined as the contact force per unit area acting on orthogonal 

planes that intersect the location. Stress is analyzed by Cauchy stress tensor. This 

tensor is second rank and denoted by aij, the subscripts i and j can be changed with 

one of the three Cartesian directions. The components of stress are normal to the 

plane, aii, or lie within it , aij for i -=J j. Since this tensor has nine entries, it can 

be represented by a 3 x 3 matrix. Strain is a measure of the amount of deformation. 

The way it is analyzed mathematically is similar to stress. It is denoted by a second 

rank tensor, tij, with normal, tii, and shear, tij for i -=J j, components. 

When a body is under an external force, internal forces are generated within the 

12 
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body which cause it to deform. The internal forces consist of body and surface forces. 

Body forces are distributed throughout the volume and they can be specified as force 

per unit volume. In an equilibrium state, body forces, f, balance with the surface 

stresses, O'ij, within a linear elastic material. Therefore, the integral of the surface 

stress forces and the body forces must be equal to zero. By assuming linear stress 

components across an infinitesimal element, the following set of equilibrium equations 

can be determined [6]: 

aO'xx aO'xy aO'zx f - 0 
ax + ay + az + x - , (x, y, z) (2.1) 

where (x, y, z) shows that the other two equations can be provided through cyclic 

permutation of x, y, and z. Normal and shear infinitesimal strain is expressed in 

terms of the spatial derivative of displacement as follows: 

txy 

au 
ax' 

~[~~+~~], (x, y, z; u, v, w) 

(2.2) 

(2.3) 

where (u,v,w) are the displacements along the directions of (x,y,z), respectively. 

By applying Gauss's divergence theory, it can be shown that the stress tensor O'ij 

is symmetric. Hence, the number of stress components is reduced to six (O'xx, O'yy, 

O'zz, O'xy, O'yz, O'zx). The relationship between stress and strain is expressed in the 

generalized Hooke's law, O'ij = Cijkmtkm. In this formula, C ijkm is a fourth rank 

tensor referred to as the stiffness tensor. In a homogenous isotropic material, it is 

feasible to reduce the number of independent constants in C ijkm to just two (called 

Lam constants). This reduction is achievable because of the infinite number of " planes 

13 
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of symmetry" and by considering the rotational invariance. In an isotropic material, 

the stress strain relation is written in the following Piola-Kirchoff form: 

(2.4) 

where>. and f-L are the Lam constants, and f-L is also referred to as the shear modulus. 

By substituting Eq.(2.2) into Eq.(2.4) and then substituting the resulting expres­

sion into Eq.(2.1), gives the Navier-Cauchy linear elastic PDE 

f-L\l2U(X) + (f-L + >')\l(\l.u(x)) + f(x) = 0, (2.5) 

where u(x) is the displacement vector at position x, and f(x) is the force per unit 

volume. 

The Navier-Cauchy PDE is basically an optimization problem in which the exter­

nal forces and internal stresses are balanced with smoothness constraints. It can be 

solved using variational, finite difference, FEM-models, basis function expansion, and 

Fourier transform methods. The usage of linear elastic models for non-rigid registra­

tion was first introduced by Broit in [5]. In his thesis, Broit solved the PDE by finite 

difference method on a rectangular lattice. The first and the second derivatives are 

approximated using discrete derivatives, which result to three linear equations, one for 

each direction. The value of the displacement, u, for each lattice point is calculated 

using the Jacobi method based on the initial and the previously computed displace­

ments. Inter-subject registration of cortical grey matter is performed using an elastic 

model in [10]. Their model is based on a balance between internal and external forces 

that leads to a PDE, which is ultimately solved using successive over-relaxation. 

14 
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In registration problems with large deformations, fluid flow transformations are 

typically used. These transformations are based on the non-linear relationship be-

tween the stress and the strain. More specifically, a hysteresis in stress-strain curve 

and stress relaxation can be observed in a viscoelastic material. Unlike a linear elastic 

model, which is represented by springs, viscoelastic model is presented using springs 

and dashpots which are connected in series in a Maxwell material and in parallel and 

series in a Kelvin material. It is worth noting that in a viscoelastic model, stress and 

strain are functions of time. Christensen et al. [7] proposed a viscous fluid flow model 

which was applied after linear elastic registration to recover large deformations. 

Based on the principle of intensity conservation between image frames, optical flow 

has been justified to be employed in tracking small scale motions in time sequences 

of images. Demons algorithm [31] utilizes optical flow to determine the displacement. 

Due to the fact that there is no constraint on the displacement in this algorithm, 

it does not necessarily preserve the topology. To reduce the effect of noise, the 

displacement field is convolved by a Gaussian function to produce a smoother field. 

During the run of the algorithm, based on the determined displacement field, the 

source image is resampled for the next iteration. 

To benefit more from the continuum mechanics, further investigation on non-linear 

materials is done to explain the complex behavior of some materials such as soft tissue 

organs [16]. In his work, Humphery observed that although soft biological tissues have 

variety of forms, they are composed of only two fundamental components: cells and 

an extra-cellular matrix. Therefore, tissues could be modelled as an amalgamation of 

different components and exhibit anisotropy. Consequently, new models can better 

explain the multi-axial behavior of muscle, growth, damage, regeneration, and cell 

15 
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mechanics. 

2.2 Function Representation Transformations 

Transformations based on basis functions do not deal with any physical modeling, but 

instead they model deformation using a set of coefficients of the basis functions. These 

coefficients are adjusted so that the total combination of the basis functions fit the 

displacement field. It should be noted that generally these functions do not preserve 

the topology. Radial basis functions are functions of the distance of the interpolation 

point x and the basis function of another point, which is usually a landmark position 

(Xi). These functions can be defined as follows: 

N 

f(x) = LC¥iR(llx - XiII), (2.6) 
i=l 

where N is the number of the landmark positions, C¥iS are the weights which are 

determined by solving a set of linear equations, and R defines a type for the radial 

basis function. 

The application of the Thin-Plate Splines (TPS) in medical image analysis was 

initially introduced by Bookstein [4] to model the shape deformation. As mentioned 

in [35], it is the most commonly used radial basis function. The TPS is very useful 

in multidimensional interpolation problems and in applications where smoothness is 

important. It is usually applicable to registration problems with manually located 

sets of homologous features and anatomical landmarks in the images. The spline 

coefficients can also be determined using the least squares [4]. TPS cannot accurately 

model local deformations, because it is globally supported function. Furthermore, 
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large deformations can lead to singularities in the equations, which need to be solved, 

or the topology might not be preserved in the resulting model. Another disadvan­

tage of the global extent is the high computational complexity when large numbers 

of landmarks are used [14]. Using a cubic B-Spline Free-Form Deformation (FFD) 

with a voxel similarity measure is proposed by Rueckert et al. [27]. Their algorithm 

searches for a set of control points which minimizes a cost function. The cost nmc-

tion includes a TPS bending energy term and a normalized mutual information as a 

similarity metric. The cost function is minimized using a gradient descent method, 

and regarding the fact that the FFD grids can be reconstructed hierarchically, the 

deformations can be determined by multiresolution. 

The deformations produced by Bookstein [4] can lead to undesirable local non­

uniform shearing and scaling. Alexa et al. [1] introduced the concept of as-rigid-as 

possible deformation in which the amount of local shearing and scaling is minimized. 

To create such deformations, Igarashi et al. [17] triangulated the input images and 

solved a linear system of equations with a size equal to the number of vertices of 

the triangulation. Schaefer et al. [28] improved the method of [17] in terms of 

the computational complexity, and the quality of final results using a method called 

Moving Least Squares (MLS), which is the method of choice in this thesis. 

2.3 Similarity Measures 

Commonly, similarity measures can be grouped into feature-based and intensity-based 

methods. In feature-based methods, the two images are pre-processed so that the spe­

cific images' features or landmarks can be extracted from the two. Regarding how 
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much the extracted features of each image are moved with respect to the correspond-

ing features of the other image, the transformation parameters or components are 

estimated. Intensity-based methods deal with minimizing a cost function which is 

based on a similarity measure of the reference, and moving images' intensities by 

determining the transformation variables. In the next paragraphs, a review of the 

most common similarity measures is presented. 

The famous family of correlation-like similarity measure is usually computed for 

window pairs of the reference and the moving images with the following general form 

CC = L:(h(i) - [1) (I2(i) - [2) 

vL:(I1(i) - I1)2VL:(I2(i) - Iz)2' 
(2.7) 

where I j (i) represents the intensity of pixel i in the image j. 

Although it can exactly align mutually translated images, it can also be success­

fully applied to more complex geometric transformations. Recently, there has been 

a great interest in using Cross-Correlation (CC) in multimodal image registration. 

In this field, the pixel intensities of the same anatomy are different in the reference 

and the moving images due to different imaging sensors. With the assumption of 

existence of a correlation function between the pixel intensities in the two images, 

CC can still be used efficiently. One of the well-known modified form of CC in this 

case is called Local Correlation (LC): 

LC = ~ L CC2(Sj), 
Sj€M 

(2.8) 

where CC2 is the square cross correlation coefficient for the j-th subregion Sj, and N 

is the number of subregions contained in M. LC has been successfully implemented 
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in variety of rigid and deformable registration tasks [32]. There has been numerous 

modifications on ee in literature to address the specified registration conditions [35]. 

Flatness of the similarity measure maxima due to the self-similarity of the images is 

the main drawback of the ee. This flatness can be resolved and sharpened by pre-

processing and using a vector or edge correlation. High computational complexity is 

another limitation of ee which can be easily overcome with hardware implementation. 

The application of information theory in image registration is considered in a 

widely used similarity measure called mutual information. The fundamental concept 

in the definition of the mutual information lies in the statistically significant rela­

tionship between pixel intensities of the input images of the registration. Based on 

Shannon's definition of entropy [29], mutual information is defined as follows: 

J(A, B) = H(A) + H(B) - H(A, B). (2.9) 

Mutual information has been studied by many researcher on various applications. In 

this thesis, an interesting application of the mutual information is in nonrigid regis-

tration of multimodality images. In [11], the mutual information is used to recover 

an un-deformed Tl MR image from a synthetically deformed and intensity changed 

Tl MR image. The results of the two dimensional (2D) implementation prove the 

feasibility of this approach [11]. A rigid registration of Ultrasound and MR cardiac 

images is performed by applying the mutual information to fine tune the final param­

eters of the registration in [15]. To the best of our knowledge, using the above formula 

without any further pre- and post-processing step for mutual information to register 

US and MR without any proper initial guess of the optimal solution seems to be 

impractical. There are many works on this topic that report a successful registration. 
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However, a modified version of the mutual information for their specific applications 

is used [25]. 

Haber and Modersitzki [12] reported that their proposed similarity metric, which 

is based on intensity gradient information, outperforms the mutual information. They 

justified their claim by comparing the behavior of their metric with the mutual infor­

mation applied to multimodal MR images. However, no US-MR registration result 

was reported to evaluate the usefulness of the their gradient based similarity metric 

in that area. There are many more modified similarity metrics based on gradient 

information and also based on combinations of mutual information with other meth­

ods. Based on our experience, generally, the most successful multimodality similarity 

measure is mutual information. 

2.4 Overview of the related works 

In this section, a brief overview of the most important related works to our registration 

project is presented. 

In [20], Lange et al. used the center lines of the liver vessels as features and their 

non-rigid registration between US and MR is reported to improve the Root Mean 

Square Target Registration Error (RMS TRE) of the vessels by approximately 3-5 

mm. A fast registration method based on the Iterative Closest Point (ICP) approach 

and the Multi-level B-Spline transformation is performed. Then, the best search result 

of the specific anatomical feature pairs on the centerlines of the vessels of the intra­

and pre-operative images is found. The center lines of the vessels are extracted from 

segmented pre-operative MR and CT images, and the intra-operative power doppler 

US images. They conclude that their proposed registration method is fast enough for 
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clinical application in liver surgery. They claim that their initial accuracy results are 

promising and must be further evaluated, especially in the operating room. 

Craene et al. applied the finite element deformation model and the mutual in-

formation as their metric to obtain a non-rigid registration of the pre-operative and 

the post-procedural images of tumor Radio-Frequency (RF) ablation in the liver [9]. 

Simultaneous Perturbation Stochastic Approximation (SPSA) is their method of op-

timization for the cost function, which contains a mutual information term and a 

weighted term based on the linear elastic energy, to balance the action of similarity 

measure. In each step, the gradient of the cost function is determined using the finite 

difference method, and in the next step different perturbations of the subset of the 

active vertices, to stochastically estimate the mutual information gradient, are per-

formed. Then, the average mutual information is added to the cost function. Their 

algorithm is parallelized for symmetric multi-processor architectures. 

Blackall et al. [3] report a registration accuracy to within 10 mm between free­

hand US and MR images of liver. This accuracy is reached by an optically tracked US 

probe and the use of models of respiratory motion and deformation. Their motivation 

was to transfer information from the pre-operative 3D MR or CT images to the intra­

operative US images to help the needle insertion procedure in thermal ablation of liver 

metastasis. To achieve suitable evidence of the corresponding structure, they intro-

duced an intermediate mapping from both sets of images (intra- and pre-operative) 

to probability images. This pre-processing step results in more consistency in the 

behavior of their similarity metric (Normalized Cross Correlation (NCC)) and pro­

vided their registration with successful results. Nonrigid registration is accomplished 

by acquiring different MR or CT volumes in various phases of breathing (from inhale 
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to exhale) in order to compensate the deformation caused by breathing. With this 

strategy, 2D US scans can be done anytime during a breathing cycle. They also elim­

inated the effects of the US probe pressure by ignoring the first few centimeters of 

the US images. 

Combining anatomical landmark information as a constraint, and normalized gra­

dient field as the intensity measure improves the mean of point distances above 3 mm 

in comparison with the rigid and the thin-plate spline registration which are based 

only on landmarks [21]. TPS registration is the fundamental method of nonrigid reg­

istration in [21]. To obtain a better match, the intensity information is also integrated 

into the optimization problem as a constraint. The objective function consists of a 

normalized gradient field as a similarity measure and a regularization term, which 

indicates the level of smoothness of the deformation field. The optimization is solved 

using a Discretize-Optimize approach. It is also reported that the clinical validation of 

the deformable registration is challenging, and it depends on the specific application 

that the registration problem is solved for. 

Wein et. al developed an automatic rigid and affine CT-US registration by propos­

ing a robust similarity measure based on simulating US from CT, resulting in average 

RMS TRE of 8.1 mm [33]. They used a tracking setup to find an initial estimate of 

the orientation of the selected US frame. The automatic US frame selection criteria 

is based on the entropy of the US images. This enables the final selected US im­

ages to contain fine unique vascularity. A modified Correlation Ratio (CR) similarity 

measure is also proposed. The most important advantage of this similarity measure 

called, LC2 , is taking into account the importance of alignment of small vascularity, 
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which is essential in a correct registration within the liver. Basically, the simula-

tion of an image from a CT image, which has most of the characteristics of an US 

image, results in such minimum or maximum points on similarity measure function. 

This simulation is accomplished by considering the relationship between the X-ray 

attenuation coefficient and the tissue density. 
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Chapter 3 

Proposed Multi-modality 

Registration Methods 

The flow chart of our system of deformable registration between 2D US images and 

3D MR volume is displayed in Figure 3.1. We first find a rigid registration between 

a 2D US image (Ius) and a 2D MR image (IMR) , which is reconstructed from the 

3D MR volume. The probe used in our experiments is attached to a six degree of 

freedom arm as the tracking system. It acquires Ius as the reference image for our 

registration algorithm. This 2D image contains sufficient amount of features to be 

matched with the correct IMR . A 2D MR image, Ik:i~ial is reconstructed by means 

of three translational and three rotational parameters, which are the outputs of the 

tracking device. All of these parameters are converted from the coordinate system of 

the probe to the coordinate system of MR volume (we discuss this conversion in more 

details in Section 3.1). This image is further investigated by a local search on these six 

parameters' neighborhoods using the mutual information as the similarity measure to 

produce the accurately matched image, IMR . The process of rigidly matching of Ius 
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Figure 3.1: Flow chart of the proposed algorithm for deformable registration between 
2D US and 3D MR images 
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Plane C 
Plane A 

Plane B 
Figure 3.2: Tetrahedral liver mesh. Planes A and B are used as the reference planes 
for finding the control points. Plane C is used to evaluate the registration accuracy. 

and IMR is repeated for another acquired 2D Us image. In Figure 3.2, Plane A and 

Plane B represent geometrical views of two MR images, which are rigidly matched 

with their corresponding 2D US images. By selecting some points on these two images' 

planes as the control points, which act as the inputs of our deformation algorithms, we 

deform the 3D volume using FEM-based and MLS-based methods to achieve the best 

possible non-rigid registration. We should note that the reconstructed MR image on 

Plane C will be used to verify the registration accuracy in Chapter 4. In Section 3.2, 

we discuss an overview of the FEM-based deformation method, and in Section 3.6 we 

explain how MLS-method deforms the MR images. 
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3.1 Initial Rigid Registration 

The US probe is attached to a six Degree of Freedom (DoF) robotic arm (Fig­

ure 3.4(a)). The output of this tracking system is a matrix which can convert the 

coordinate system of the tip of the arm, that is referred to as end-effector, to the 

global coordinate system of the arm. This 4 x 4 matrix has the following form 

Tl= 

Origin of system A represented ih 
·system B 

Y' 

Ru 

R21 

R31 

0 

R12 

R22 

R32 

0 

R 13 Tx 

R 23 Ty 

R33 Tz 

0 1 

Coordinate A 

Figure 3.3: Conversion of the coordinate A into the coordinate B. 

(3.1) 

where ~j represents the projection of the axis i of the coordinate system A into 

the axis j of the coordinate system B, and ~ shows the translation in i direction, 

Figure 3.3. Rotation matrix (the 3 x 3 matrix, R, constructed from the first three 
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columns and rows of Tl) has six constraints on its elements. In summary, we can 

say RRT = I. Therefore, it can be minimally represented by three parameters. In 

other words, three parameters are sufficient to describe the orientation of a coordinate 

system, and in total Tl contains only six independent parameters. ct, (3, and'Y are 

the angle of rotation with respect to axis X, Y, and Z. 

In our experiments, we used the tracking system on a phantom. The phantom 

should be deformable and multi-modality. We made a PYA cryogel phantom (for 

further information about the phantom refer to appendix B). This phantom can be 

thought of as a replacement for the patient. Therefore, the following explanation 

holds for both patient and phantom study. Throughout the following explanation, 

wherever the patient case is pointed out, the equivalent phantom case is clarified in 

the parentheses. 

In our framework, we essentially need to know the orientation and the transla-

tion of the US plane in the coordinate system of the patient's body (phantom), or 

technically, in the 3D MR data set. The transformation matrix, which converts the 

coordinate system of the MR data set to the coordinate system of the US probe, is 

indicated by Tt;.~e. This is the most important unknown of our initial rigid regis­

tration problem. Accordingly, T:~d is the transformation matrix that converts the 

coordinate system of the end-effector of the robotic arm to the coordinate system of 

the arm (see Figure 3.4(b)). T:~d is homogenous transformation relating the end­

effector frame and the robot base frame. This transformation is a function of joint 

measurements and is calculated using the device forward kinematics [30]. Therefore, 

we can write 

T MR TArm TEnd TMR 
Arm· End· Probe = Probe' (3.2) 
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(a) Tracking 6-DoF arm (b) Tracking framework. 

Figure 3.4: (a) Tracking arm's end-effector is attached to the US probe. (b) Trans­
formation matrices are also illustrated in order to provide a schematic view of the 
entire US image acquisition and initial rigid registration. 

where all the parameters describing Trr:;;, and TJr~ie are unknown. 

It should be noted that the strategy to find the unknown parameters is to form an 

optimization problem by introducing a cost function based on the known parameters. 

We assume that we know the position (or the translation) parameters of the US probe 

in the coordinate system of the MR data set for some points. These points can be 

some skin markers or equivalently some features on the MR data set that the US 

probe can be manually placed to the corresponding surface positions on the patient's 

body (the edges of phantom's container). The process starts with selecting a point 

on the tip of the probe (PProbe) that its position is known relative to the coordinate 

system of the end-effector of the arm. Then, by touching the surface features of the 

patient's body (the edges of phantom's container) with the probe (exactly on PProbe), 
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we can obtain the following equation: 

T MR TArm TEnd P TJ Arm· End· Probe· Probe = .ti, (3.3) 

where PProbe is the constant point selected on the probe represented in the coordinate 

system of the probe, and I{ is the ith point (feature) on the patient's body (the edges 

of phantom's container) represented in the coordinate system of the MR data set. If 

we continue forming this equation for every feature on the patient's body, then we 

will be able to derive the following cost function: 

N 

C = I: IIT%;~.T:~d·T:~ie·pProbe - I{W, (3.4) 
i=l 

where N is the number of observation (feature) points and 11.11 denotes norm 2. The 

goal is to minimize this cost function by finding the optimal unknown parameters in 

T%;.:;; and Tffr~1e. This optimization problem is an unconst~'ained non-linear problem 

with the total number of twelve unknowns, and can be solved using one of the standard 

non-linear optimization packages. Obviously, each point (feature) generates three 

independent equations. Therefore, to produce a more accurate solution, we include 

more than 1; = 4 points to have an over-determined system of equations. Solving an 

over-determined system of equations will decrease the effect of noisy measurement's 

precision. For our application, we decided to have eight points (features). After 

finding the unknown parameters, we can multiply T%;.;:;', T:~d' and T:~1e together 

to obtain Tf'!,."!:be. This means that when we acquire an US image then the position 

and the orientation of that image is available in the coordinate system of the 3D MR 

data set. Figure 3.5 displays the acquired 2D US image and the 2D reconstructed 

30 



M.A.Sc. Thesis - Navid Samavati 

(a) 2D reconstructed MR im­
age 

McMaster - Electrical Engineering 

(b) Acquired 2D US image 

Figure 3.5: The acquired 2D US image and the 2D reconstructed MR image based 
on the six output parameters of the tracking system. The US image is taken from 
the top layer of the PYA gel. The two images are rigidly match. 

MR image based on the output of the tracking system in our phantom study. These 

six parameters are the inputs to our intensity based algorithm to further optimize 

and tune the final reconstructed I MR . In the rest of this section, we explain how a 

2D MR image is reconstructed from a 3D data set while having the six parameters 

of the position and the rotation (orientation). 

In this thesis, for the rigid registration of the patient data, the tracking system is 

not used due to the difficulties in accessing to the proper skin markers, that can be 

seen on MR images and remain fixed relative to the patient position. However, one 

can overcome this problem by having access to these specialized markers. Therefore, 

in the absence of the tracking system, our back-up strategy is to use a manual global 

search of the rigid parameters. Hence, before starting the intensity-based local search 

for the three rotational and the three translational parameters, the initial values of 

them can be still available. 

To find an arbitrary 2D projection of a 3D data set, an initial 2D grid parallel 

31 



M.A.Sc. Thesis - Navid Samavati McMaster - Electrical Engineering 

to one of the principle planes (e.g. XY, XZ or YZ) is built. We should note that 

a 2D grid basically consists of three 2D matrices, each containing one of the X, Y, 

and Z position values of all the grid points. The density or the resolution of this 2D 

grid depends on the pixel spacing of Ius and If1~ial. The pixel spacing information 

of both images are available in the header file coming with the raw images. Our 

purpose is to find Itt~ial which matches with Ius. It means that the physical space 

between two neighboring pixels in If1~ial and Ius should be the same. Normally, 

Ius has smaller pixel spacing than MR volume. So, the spacing between the initial 

2D grid can be the same as the pixel spacing of Ius. The reason is to maintain 

the highest possible resolution (in terms of underlying anatomical structure). The 

next step is to transform this grid to the newly found plane. The transformation 

matrix contains the six parameters of the position and the orientation available from 

the tracking system. Then, for every new transformed grid point, using a 3D linear 

interpolation, a pixel intensity is estimated (see Figure 3.6). It must be emphasized 

that pixel intensities of the 3D MR data set with their fixed and regular positions are 

being used to interpolate the pixel intensity for each grid point on this specific plane. 

These intensities are placed as the entries of a 2D matrix, which can be displayed as 

a new reconstructed 2D MR image. 

The final step is to further optimize this reconstructed 2D MR image, If1~ial, by 

changing the six parameters of its plane to achieve the best match between this image 

and Ius. The criteria chosen to measure the similarity between the images is the 

mutual information. As introduced in Chapter 2, mutual information is reported to 

be the most suitable similarity metric for multi-modality (MR-US) comparisons. Our 

strategy to obtain a fine tune of the six parameters is to search within an interval 
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Figure 3.6: 3D interpolation of a pixel intensity of a transformed grid point 

around each parameter's initial value, and determine the mutual information for 

each value. In Appendix A, a more detailed study on how to calculate the mutual 

information between two images is presented. The best image is the one with the 

highest amount of mutual information. It is necessary to point out that to compute 

the mutual information between any two images, they must be in the same size. 

Therefore, IMR is cropped to the size of Ius. 

3.2 FEM-Based Deformations 

The flow chart displayed in Figure 3.7, illustrates an overview of how our proposed 

FEM-based algorithm deforms the MR volume. In this flow chart, liver segmentation 

and building the 3D mesh are pre-processing steps. The main parts of this chart 

are the reconstructing 2D deformed MR image from the deformed mesh, and the 

displacement vector generator. Initially, we study the mathematical backgrounds 

and the physics fundamentals of the FEM to have a better understanding of the 

deformations generated by this algorithm. Then, we extensively discuss the two main 
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blocks of the flow chart, reconstruction of the 2D MR image and the displacement 

vector generator. 

//-"-~~""""""'-"--';l 

.-----(-tj Volume / 

\ I 
\ Segmentation I 
\ , 
\--T--~ 

I 
L __ Meshin~ __ J 

Reconstructing 
'-------->\ 20 Deformed j.--------' 

MR Image 

Figure 3.7: Flow chart of the proposed algorithm for deformable registration between 
2D US and 3D MR images 

3.3 FEM Mathematical and Physical Backgrounds 

The main idea in FEM is to spatially discretize the deformation model. In our case, 

we model the deformation with the linear elasticity assumptions that leads solving 

partial differential equilibrium equations of the object under the condition of small 

deformation. Hence, the geometry of the object is partitioned into smaller elements. 

The shapes of these elements are specified by means of a mesh which covers the 

desired geometry. The continuous form of the solution is determined by interpolation 

functions for every point inside each element. These functions are based on the 

displacement of the nodes specifying the element. To have a better perspective of 

FEM formulation, we consider a 3D object displayed in Figure 3.8 in equilibrium. 

Surface Be is where the body is constrained with prescribed displacement of Us. It is 
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also exposed to body forces distributed over the volume denoted by ib (e.g. gravity 

force), surface forces is distributed on Su (e.g. pressure) and concentrated loads, 

~ [23]. 

..is 

y s. 
c 

x 

Figure 3.8: General 3D body for structural analysis (Taken from [23]) 

As discussed in Chapter 2, there is a relationship between strain and displacement, 

and it can be represented by the following matrix form: 

E=Lu, (3.5) 
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where uT = [u V w land L is in the form of 

au 0 0 ax 

0 au 0 ay 

0 0 au 
L= az (3.6) 

0 au au 
az ay 

au 0 au 
az ax 
au au 0 ay ax 

The relationship between stress and strain can be obtained using generalized Hooke's 

law in the following form: 

(j = DE, (3.7) 

where D, the stress-strain matrix for linear homogenous and isotropic materials, is 

related to Poisson's ratio v and Young's elasticity module E in the form of 

A + 2f-k A A 0 0 0 

A A + 2f-k A 0 0 0 

A A A + 2f-k 0 0 0 
D= (3.8) 

0 0 0 f-k 0 0 

0 0 0 0 f-k 0 

0 0 0 0 0 f-k 

36 



I M.A.Sc. Thesis - Navid Samavati McMaster - Electrical Engineering 

and Lame's constants A and J-L are defined as 

E// 

(1 + //)(1 - 2//)' 
E 

2(1 + //)' 

(3.9) 

(3.10) 

The development of the deformation equations are based on the virtual work principle 

for an object in equilibrium state. This principle states that the total amount of 

external virtual work is equal to the total amount of internal virtual work for an 

object in equilibrium. This can be written in the following form [23] 

(3.11) 

where IS is the virtual strain corresponding to the virtual displacement ii. In equilib-

rium state, the external loads in the right hand side of the Eq. (3.11) is related to the 

stress, (j'. The internal virtual work is on the left hand side of this equation, whereas 

the right hand side of this equation contains the virtual work by external forces. To 

emphasize that the virtual displacements and the corresponding strains are unrelated 

to the real deformation and strain that the body undergoes given the external loads 

and restrains of the problem described for Figure 3.8, the overbar notation is used. 

Our objective here is to find the virtual displacement ii. In most cases, there is 

no analytical solution for Eq. (3.11). Therefore, we need to geometrically descritize 

the region where the PDEs should be solved. There are many ways to partition the 

space, but in this thesis we will use a tetrahedral mesh to model the liver. This mesh 

contains a number of nodes and an elemental matrix in which every row indicates the 

node numbers required to specify an element. These elements are overlapping only 
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through the nodes, which are nothing but some points. Figure 3.2 shows a tetrahedral 

mesh for liver. 

For an arbitrary point inside an element, we have 

(3.12) 

where superscript e indicates element e, u is the nodal displacement vector of the 

element, (j is the general nodal displacement vectorl of the mesh, and Ne(x, y, z) is 

the interpolation function for the element e. The details of Ne(x, y, z) will be derived 

in Section 3.5. Similarly, we can express the elemental strain parameter based on the 

general nodal displacement vector 

(3.13) 

We denote matrix LNe(x, y, z) as Be(x, y, z). The element displacements and strains 

are defined in terms of the general displacement vector (j. At this stage, Eq. (3.11) 

can be written as 

(3.14) 

where ()e is the virtual displacement within each element and Ee is the corresponding 

1 It should be noted that in order to distinguish between the nodal displacement vector and the 
general nodal displacement vector, we use upper case for the latter. Any other upper case notation 
indicates a matrix. 
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strain. Substituting Eqs. (3.12) and (3.13) and (3.7) in Eq. (3.14), we obtain 

[ ( ~ L N"''f,dV') + (3.15) 

(~LNfndS') + ~R.l· 
Removing (; from both sides ofthe Eq. (3.15) and denoting the global nodal displace­

ment by U instead of (;, the remaining terms can be expressed as 

KU=!, (3.16) 

where U E ~3n is the vector of nodal displacement, ! E ~3n is the vector of nodal 

forces, and K E ~3nx3n is the global stiffness matrix of the mesh given by 

(3.17) 

The right hand side of Eq. (3.15) is the external force vector on the exerted nodes [23]. 

{:ri<.lli<-:il 

i 

Figure 3.9: A tetrahedral elcment 
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3.4 Displacement Vector Generator 

Our proposed technique to deform the mesh starts with choosing some control points 

(Pus) on Ius as the features and also the corresponding points (Pl'vIR) that resemble 

the same anatomy structure on IMR (see Figure 3.10). These features are mostly 

on the bifurcation points, the vessel walls, and the center lines of the vessels. The 

outputs of this step are the displacement vectors of some particular nodes of the 3D 

mesh. Later in this section, we give an explanation on how to identify these particular 

nodes. We have two pairs of rigidly matched MR and US images; one on Plane A 

and another on Plane B (see Figure 3.2). Although IMR and Ius are rigidly matched, 

but there are some deformations between the structures of the two images due to the 

fact that 

(3.18) 

where N is the number of control points. 

Our goal is to find a deformable transformation that deforms hIR so that if one 

. N·· 
selects the same anatomy structures (producing PMR ), then L:i=l (!Pus - PMRJ) will 

be minimum. Such a transformation is presented in this section using FEM-based 

linear elastic deformation model. Section 3.6 discusses the transformation obtained 

by MLS. 

In the FEM-based approach, since the mesh and the 3D MR data have the same 

coordinate system, we are able to find the tetrahedral element inside the organ mesh 

that contains the first control point, P]."IR. This point is the candidate to be a new 

node, and therefore the element is broken into four smaller elements as shown in 

Figure 3.11. After updating the mesh, the algorithm continues this process for every 
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(a) Control points on Ius (b) Control points on hIR 

Figure 3.10: Corresponding control points on Ius and IMR 

control point to the last control point. Now, there are N nodes inside the organ 

mesh with known deformation values (Ui = p&s - ptIR). In order to apply this type 

of boundary condition, in Eq. (3.16), all but the diagonal elements of the rows and 

columns, corresponding to these N nodes, in matrix K are set to zero. The diagonal 

entries are set to one and force vector f is changed to account for the multiplication 

of the deleted rows and columns by the known displacements of the N nodes (further 

details of the process is explained in [24]). Therefore, Eq. (3.16) can be solved to 

create the deformed mesh. The Conjugate Gradient (CG) method, which benefits 

from the symmetry and the positive-definiteness of matrix K, is an effective method 

to solve this system of equations. A highly pamllel implementation of the CG on an 

Field Programmable Gate Array (FPGA) device is introduced by Mafi et al. [24]. 
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Figure 3.11: Defining a new node and breaking an element into four new smaller 
elements 

3.5 Reconstructing 2D MR images 

Now, we would like to discuss how the FEM approximates the continuous deformation 

throughout each element based on the displacements of the mesh nodes. First, we 

derive the interpolation (variation) functions for scalar displacement (one dimensional 

displacement value), and then we extend the theory to the 3D case. In Figure 3.9, 

a flat-faced tetrahedral element with four nodes labeled as i, j, k, and l is depicted. 

The values of the field (one dimensional (lD) displacement value in our case) are 

(Pi, (Pj, (Pk, and (PI, and the global positions of the nodes are (Xi, Yi, Zi), (Xj, Yj, Zj), 

(Xk, Yk, Zk), and (Xl> Yl, Zl) for the nodes i, j, k, and l, respectively. Linear assumption 

of the interpolation results in the following form of the 1D displacement value of an 

arbitrary point 

(3.19) 
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The nodal conditions causes ¢(Xi' Yi, Zi) = g?i, ¢(Xj, Yj, Zj) = g?j, ¢(Xk, Yk, Zk) = g?k, 

and ¢(Xl' Yl, Zl) = g?l. Therefore, the following system of equations is produced 

(3.20) 

Solving the Eqs. (3.20) gives 

1 
6V (aig?i + ajg?j + akg?k + alg?l) , 

1 
6V(bi g?i + bjg?j + bkg?k + blg?l) , (3.21) 

1 
6V(Cig?i + Cjg?j + Ckg?k + Clg?l) , 

1 
6V(di g?i + djg?j + dkg?k + dlg?l) , 

where V is the volume of the tetrahedron given by 

1 Xi Yi Zi 

1 1 Xj Yj Zj 
V=-

6 1 Xk Yk Zk 

(3.22) 

1 Xl Yl Zl 

(3.23) 

Xl Yl Zl 
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1 Yj Zj 

bi = 1 Yk Zk , (3.24) 

1 Yl Zl 

Xj 1 Zj 

e;.=- Xk 1 Zk , (3.25) 

Xl 1 Zl 

and 

Xj Yj 1 

di =- Xk Yk 1 , (3.26) 

Xl Yl 1 

and other constants are defined by cyclic interchange of the subscripts in the order 

of l, i, j, k. The sign in front of the determinants are to be reversed when aj, bj , Cj, 

dj and aI, bl , Cz, dl are being generated [26]. Substituting Eq. (3.19) in Eqs. (3.21) 

results into 

¢(X, Y, z) 

[N(x, Y, z)]$(e), (3.27) 
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where 

and 

[N(x,y,z)] 

Ni(x, y,z) 

[Ni(x, y, z)Nj(x, y, z)Nk(x, y, z)NI(x, y, z)] 

1 
6V(ai + bix + CiY + diz) 

1 
-(a· + b·x + c·y + d·z) 6V J J J J 

1 
6V(ak + bkX + CkY + dkz) 

1 
6V(al + blX + ClY + dlz) 

<Pi 

~(e) = <Pj 

<Pk 

<PI 

(3.28) 

(3.29) 

This is the result ofthe interpolation function for a scalar (lD) displacement. Extend­

ing interpolation function for 3D displacement, which means to have displacement for 

X, Y and Z directions, we obtain 

u(X, y, z) 

¢(x, y, z) = v(x, y, z) = [N(x, y, z)]~(e), (3.30) 

w(x,y, z) 
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where 

Ni(x, y, z) 

[N(x, y, z)] = 0 

o 

o 

Nj(x, y,z) 

o 

0 

Ni(x,y,z) 

0 

0 

0 

Nj(x,y, z) 

N1(x, y, z) 

0 

0 

Cl'>3i-2 

Cl'>3i-1 

Cl'>3i 

Cl'>3j-2 

Cl'>3j-1 

$(e) = Cl'>3J' 

Cl'>3k-2 

Cl'>3k-1 

Cl'>3k 

Cl'>31-2 

([>31-1 

Cl'>31 
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0 Nj(x, y,z) 

0 0 

Ni(x, y,z) 0 

Nk(x,y, z) 0 

0 Nk(x,y, z) (3.31) 

0 0 

0 0 

N1(x, y, z) 0 

0 N1(x,y,z) 

(3.32) 
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It should be noted that u(x, y, z), v(x, y, z) and w(x, y, z) are the displacements along 

X, Y and Z directions, respectively. Also, for each node, we have Ui = W3i-2, Vi = 

W3i-b and Wi = W3i. The rest of the displacements are generated by interchanging i 

with j, k and l. 

To reconstruct the 2D deformed MR image, we utilize both the deformed and 

the un-deformed meshes. Basically, any point on the grid of the MR image will fall 

inside an element of the deformed mesh. In Figure 3.12(a), a grid point G on Plane 

A, is assumed to be inside a particular element. Our goal is to find the position 

of this particular point in the un-deformed mesh. Since the un-deformed and the 

deformed meshes are available, we have the displacements for each of the four nodes 

describing a tetrahedron. We are then able to determine the displaced position of 

every point inside an element (e.g. G in Figure 3.12(b)) using the interpolation 

equations previously introduced. To benefit from the interpolation functions, there 

are two possible approaches. The first approach is the backward method and it means 

that G, the non-displaced position of point G, is determined with this assumption 

that G is the non-displaced position of point G. In fact, we replace the two elements 

with each other. The main advantage of this method is the simplicity of the concept. 

The only thing that should be considered is to change the sign of the displacement 

for each node or a negative sign in front of the Eq. (3.32). The second approach or 

the forward method is explained in what follows. 

In the forward method, we assume for every point in the geometry we have 

G = G + ¢(x, y, z). (3.33) 
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(a) Un-deformed tetrahedron element (b) Deformed tetrahedron element 

Figure 3.12: Determining the displacement of an arbitrary point inside an element 

According to Eq. (3.30) and Eqs. (3.20), we have the following equations for ¢ 

u 

¢ v 

w 

u al + a2X + a3Y + a4Z (3.34) 

v a5 + a6x + a7Y + agZ 

w ag + alOx + allY + a12Z. 
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Substituting Eqs. (3.34) in Eq. (3.33) gives 

1 
x x al a2 a3 a4 

x 
y y + a5 a6 a7 as (3.35) 

y 
i z ag alO all a12 

z 

where x, y and i represent G or the displaced positions of x, y and z (G), respec­

tively. We should note that ai's can be obtained with the equations given for the 3D 

displacement linear interpolation functions, Eqs. (3.35). After some manipulations, 

we can simply rewrite Eq. (3.35) in the following form: 

1 +a2 x 

y (3.36) 

1 +a12 z i- ag 

Our goal was to find G. This is possible by obtaining the inverse of the 3 x 3 matrix 

of the Eq. (3.36), and multiplying it by the right hand side of that equation. 

The difference between these two methods (forward and backward) is in the speed. 

In the forward approach, we use the constants of the un-deformed mesh. It is ob-

vious that these constants can be calculated off-line, since the un-deformed mesh is 

available to us anytime during the deformable registration. On the other hand, the 

backward approach deals with computing the constants for every deformed mesh. 

This is especially important in those parts of our algorithm in which we generate dif-

ferent deformed mesh throughout different iterations. Therefore, the algorithm that 

we used to compute the un-deformed or non-displaced position of a grid point is the 
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forward method. 

Now, the pixel value for this point is found by means of a 3D linear interpolation 

in the coordinate of the 3D MR data set. This process should be repeated for every 

grid point to produce the 2D deformed MR image. 

3.6 MLS-based Deformations 

The Moving Least Squares (MLS) method for image deformation was introduced by 

Schaefer et al. [28]. The original idea of moving least squares was first proposed by 

Lancaster and Salkauskas [19]. The main advantages of this method are its smooth-

ness and the minimum amount of local shearing and scaling. To deform an image, a 

set of control points and their corresponding displaced positions should be selected 

on the image. For every point v on the image, a least squares problem is solved to 

find the best affine transformation lv for that specific point 

(3.37) 

where Pi and qi are row vectors representing the initial and the displaced positions of 

the control points, respectively. Weight coefficients, Wi, are functions of the point v 

in the form of 
1 

w· - .,------:-::-
~ - Ipi - V 12a ' 

(3.38) 

where a ~ 1. 

Because the weights Wi in this least squares problem are dependent on the point 

of evaluation v, we call this a Moving Least Squares minimization. Therefore, we 

obtain a different transformationlv(x) for each v. We define our deformation function 
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f to be f(v) = lv(v). Note that as v approaches Pi, Wi approaches infinity and the 

function f interpolates; f(Pi) = qi' Moreover, if qi = Pi, then lv(x) = x for all x and f 

is the identity transformation f(v) = v. Finally, this deformation function f has the 

property that it is smooth everywhere (except at the control points Pi when a ::; 1). 

Since lv (x) is an affine transformation, it consists of a linear transformation matrix M 

and a translation matrix T (lv(x) = xM + T). We can simplify this minimization by 

removing T. Therefore, by taking the partial derivatives of Eq. (3.37) with respect to 

free variables in T and setting them to zero a linear system of equations is produced 

and solving it for T yields T = q - P M where P = 2:i WiPi and q = L wiqi. With * *, * 2:i Wi * 2:i Wi 

this fact, we can rewrite lv(x) in terms of linear transformation matrix M 

(3.39) 

Correspondingly, we are able to turn the first least squares problem into 

(3.40) 

where Pi = Pi - P* and qi = qi - q*. It is clear that this problem is very general 

and we have many choices for the transformation matrix M. We first derive the 

closed-form solution to MLS problem by assuming that 11/1 is an affine transformation 

and then similarity transformation. Eventually, we find the solution for M as a rigid 

transformation, which we are more interested in. 
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By assuming M as an affine transformation, it has the following form 

M = (cos(a) -Sin(a)). ( 1 

sin(a) cos(a) Hy 
HX) . (SX 0), 
1 0 Sy 

(3.41) 

where the matrices are called rotation, scaling, and shearing from left to right. Using 

the classic normal equations solution for Eq. (3.40) (as introduced in [22]), we have 

fa(v) = 'L:Ajqj + q*, 
j 

where Aj is a single scalar given by 

(3.42) 

(3.43) 

Given a point v, everything in Aj can be simply pre-computed resulting a simple, 

weighted sum. This deformation can be performed in the order of millisecond on an 

average Pentium IV machine. 

Similarity transformation is a kind of affine transformation that includes transla-

tion, rotation and uniform scaling. Hence, 

M = (cos(a) - sin(a) ) . (s 0) 

sin(a) cos(a) 0 S 
(3.44) 

To change our deformation method to be restricted to similarity transformation, 

we limit the matrix M to have the property that MT M = )..21 for some scalar )... M 
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is a block matrix of the form 

where Ml and M2 are column vectors of length 2. The restriction we have assumed, 

requires Mf Ml = M'{ M2 = ).2 and Mf M2 = O. This makes M2 = Mt, where -L 

operator means (x, y) -t (-y, x). With these assumptions about M, the solution to 

the least squares problem would be 

(3.45) 

where Ms and Ai depend only on the Pi, v. They can be pre-computed and derived 

by the following equations 

(3.46) 

As we expected, similarity MLS deformation preserves angles in the original image 

better than affine transformation. We observe Figure 3.13(c), which is deformed using 

similarity transformation, is much better than the result in Figure 3.13(b) using affine 

transformation. However, there is still one important problem, which is the bigger 

arm in comparison to the original image. vVe fix this issue with finding and applying 

a rigid transformation. For rigid transformation, we use exactly the same equation 

as for similarity transformation except a modified Mr. In this case, matrix lvl will be 
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fa) (1)) (t'j fd) 

Figure 3.13: Deformation using MLS. Original image with control points shown in 
blue (a). MLS deformations using affine transformations (b), similarity transforma­
tions (c) and rigid transformations (d). Images from [28]. 

in the following form 

M = (cos(a) - sin(a) ) 

sin(a) cos (a) 
(3.47) 

We will not present the mathematics behind this solution and refer the reader to [28] 

for details. The solution in this case is given by 

(3.48) 

---7 

where f r(v) = Li qiA and Ai is defined in Eq. (3.46). 

Due to the normalization, this method would be slower than the previous two 

methods. The result of applying rigid transformation to the doll image can be seen 

in Figure 3.13(d). It is clear that this is the best deformation among all the methods 

we have mentioned. 

Furthermore, the MLS method can be extended to find the mapping function 

with respect to another handle like line segment rather than point [28]. In this thesis, 

another aspect of the presented version of MLS method is extended. In fact, we 

discuss the 3D extension of 2D MLS method in Section 3.7 as introduce by [34]. 3D 
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MLS is more useful for our deformable registration problem, since we deform the 

entire MR volume, and then reconstruct a 2D image from the deformed volume. 

3.7 3D MLS-Based Deformations 

In the 3D case, solving the minimization problem needs minor modifications. The 

closed-form solution of Eq. (3.37) for a rigid transformation cannot be derived by the 

method introduced for the 2D case. For 3D transformation, we use Singular Value 

Decomposition (SVD) to find a closed-form solution. 

If lv is a rigid transformation then lv(x) = Mx + r, where M is an orthogonal 

matrix, and r is the translational component. Weighted centroids of Pi's and qi'S are 

in the following forms [34J 

2:i WiPi 

2:i Wi ' 
2:i Wiqi 
2:i Wi . 

(3.49) 

(3.50) 

Note that the translational component of lv must map P* to q* due to the interpolation 

property of the MLS, which means r = q* - P*. Therefore, only All should be deter-
1 

mined. Let Qi = wl, Pi = Pi - P*, iii = qi - q*, P = Qi(Pl ... PN), Q = Qi(iil ... iiN) 

(P and Q are 3 by N matrices). Then 

liMP - Q"~ = tr((MP - Q)t(MP - Q)) 

tr(ptp) +tr(QtQ) - 2tr(QtMP) , 
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where II.IIF denotes the Frobenius norm. Maximizing ( = tr(QtMP) = tr(MPQt) 

causes E to be minimized, since P and Q are constant. According to SVD, PQt = 

U AVt such that A = diag(Al, A2, A3) is diagonal with non-negative entries, and U, V 

are orthogonal. Hence 

(3.52) 

Let N = ut ~V, then N is orthogonal due to the fact that U, M, and V are all 

orthogonal. Consequently, I Ni,j I ::; 1, and 

3 3 

( = tr(N A) = 2: Ni,iAi ::; 2: Ai. (3.53) 
i=l i=l 

Thus, ( is maximized, when N = 1 {:? M = VUt [34]. 

To summarize, by calculating p* and q* and performing SVD on PQt, finally we 

can let 

(3.54) 

In the MLS-based method, we replace initial control points with the features selected 

on the 2D MR image and also the displaced control points with the features selected 

on the ultrasound image. Our goal is to find a rigid transformation based on Eq. (3.54) 

for every point in the MR volume. The entire process of our algorithm is depicted 

in Figure 3.14. Due to the high computational complexity of this approach, we 

calculate this transformation for every point on a coarse low resolution 3D grid, 

which we build based on our 3D volume. By decreasing the number of points with 

computed deformation, we can interpolate the displacement in all three directions (X, 

Y, and Z) for any point inside the volume. Using a linear interpolation with known 
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displacements for a set of regularly placed points (points on 3D low resolution grid), 

we are able to interpolate the displacements for any point inside the MR volume. 

Therefore, to reconstruct the 2D MR image, we first use the approach explained 

in Section 3.1 to find the grid points on the plane of the 2D MR image. Then, for 

each point using the mentioned displacement interpolation, the new positions of these 

grid points are obtained. Next, the pixel intensities are interpolated by means of a 

3D linear interpolation. Putting all these pixel intensities together in a 2D matrix, 

provides us with a 2D deformed MR image reconstructed on the desired plane. 
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Figure 3.14: Obtaining a deformed 2D MR image based on the deformed MR volume. 
The process starts with the conversion of a high resolution 3D grid (a) into a low 
resolution one (b). By applying the solution of Eq. (3.54) to each grid point in (b) 
deformed grid (c) is built. Using 3D interpolation in all three directions a deformed 
high resolution grid (d) is constructed. The same technique is used to reconstruct a 
deformed 2D grid (f) from a regular 2D grid ( e). Finally, by the interpolation of the 
intensity the deformed 2D MR image is produced (g). 

58 



I 
I 
1 
! 

i 

-I 
Chapter 4 

Experimental Results 

In this Chapter, we provide the reader with the experimental results of our methods. 

Also, the existing trade-offs between speed and accuracy are being addressed. In 

Section 4.1, the results of the initial and the deformable registration for the presented 

methods are evaluated. In Section 4.2, we discuss the speed issues and conclude our 

work by explaining the final results. Throughout this chapter, we only use one set 

of data to test our algorithms which seems rather insufficient. It should be noted 

that collecting the data for this thesis was divided into two parts. The first part was 

the MR liver imaging, which was not available for us anytime we would like to have 

access. Therefore, we ended up having only one MR data set of a volunteer within 

the two years of working on the project. The second part of the data collecting was to 

acquire the US images of the same volunteer. Due to the lack of an expert operator 

to obtain the US images with the clinical standards and having only one volunteer, 

the same person who underwent the MR imaging for a US liver imaging, we decided 

to let the volunteer acquire the US images himself. The US images are not probably 

the best we could have, but they seem to satisfy our needs to run the registration 
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process. 
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Figure 4.1: Local maximum of the mutual information between Ius and IMR . As 
introduced in 3.1, a and 'Yare two rotational parameters in degree, while f3 = 0, 
Tx = 156.3, Ty = 53.6, and Tz = 224. 

4.1 Initial and Deformable Registration Results 

A set of inhale breath-hold MR images was acquired from a healthy liver of a volunteer 

using a 3T GE MEDICAL SYSTEMS scanner with a body coil. The images were 

3-D T1-weighted with the voxel size of 0.59 mmxO.59 mmx4.00 mm. A set of 2D 

US images were obtained using a SIEMENS SONOLINE G60S and C6-3 probe. The 

pixel spacing of the US scan was 0.41 mmx0.41 mm. Corresponding 2D MR image, 

IMR , of the US image, Ius as explained in 3, is found by the initial rigid registration. 

Ius and IMR are illustrated in Figures 4.4(a) and 4.4(b) , respectively. Figure 4.1 

shows the local maximum of the mutual information as defined in Eq. (2.9) as the 

similarity measure to find the best local MR image match of the US image. This 
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N MLS FEM 
4 12.8 9.3 
5 12.2 8.7 
6 11.5 8.2 
10 8.9 7.2 

Table 4.1: RMS TRE (in millimeter) for different methods of this thesis with various 
N (N is the number of control points used to run the methods). 

figure illustrates a local maximum of our similarity measure with regard to two of the 

parameters. This local search is done for all the six rigid parameters, but because of 

the limitation in representing more than three dimensions, we choose only two of the 

parameters along with the amount of mutual information. 

Figures 4.4(c) and 4.4(a) present the results of the FEM-based and MLS-based 

methods on IMR. To evaluate the 3D registration accuracy qualitatively, we arbitrar-

ily choose another 2D US image on Plane C in Figure 3.2, called test plane, and find 

the corresponding 2D MR image. Deformable registration using FEM-method and 

MLS-method is performed, and the two resulting deformed MR images are displayed 

in Figure 4.3. Also, the results of our methods for the reference planes (Plane A and 

B in Figure 3.2) are showed in Figures 4.4 and 4.5. 

Quantitative evaluation of our methods is carried out by calculating RMS TRE 

between the deformed MR test image and the US test image. Two sets of points on 

the two images are chosen (QMR and Qus). These points display the corresponding 

structures on both images. A sample of such points can be illustrated in Figure 3.10. 

The TRE for a pair of points (QkR and Qhs) is defined as 

(4.1) 
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The RMS TRE is then calculated for all of the points, and consequently we can have 

a quantitative evaluation of our registration. In Table 4.1, we computed the RMS 

TRE for various numbers of control points for both methods we introduced. It can 

be seen that FEM-based method with N = 10 results in the best performance for 

the registration. We examined higher values of N, but no significant improvement 

in terms of RMS TRE was observed. MLS-based method performs as an acceptable 

registration with RMS TRE of 8.9 mm with N = 10. However, due to the fact that 

FEM-based method contains some information (very rough approximation) on the 

real organ deformation, it seems reasonable that it outperforms MLS-based method. 

Basically, MLS-based method is purely deduced by mathematical models. It should 

be noted that the cost of using FEM-based method instead of MLS-based method is 

the higher computational complexity. 
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(a) Test US image 

McMaster - Electrical Engineering 

(b) Correctly deformed MR image, 
MI=0.4989 

(c) False deformed MRimage, MI=O.6130 

Figure 4.2: False registration by mutual information. The deformed MR images are 
produced with FEM-based method with N=10. Mutual information for each MR 
image is calculated between Ius and IMR . 
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(a) Test US image 

McMaster - Electrical Engineering 

(b) Un-deformed test MR image; rigidly 
matches with test US 

(c) Deformed test MR image using MLS- (d) Deformed test MR image using FEM-
based method based method 

Figure 4.3: Test US and its rigid and non-rigid MR image matches using FEM and 
MLS (Geometrical Plane C in Figure 3.2). 
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(a) Reference US image 

McMaster - Electrical Engineering 

(b) Un-deformed MR image; rigidly 
matches with US 

(c) Deformed MR image using MLS- (d) Deformed MR image using FEM-
based method based method 

Figure 4.4: Reference US and its rigid and non-rigid MR image matches using FEM 
and MLS (Geometrical Plane A in Figure 3.2). 
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(a) Reference US image 

McMaster - Electrical Engineering 

(b) Un-deformed MR image; rigidly 
matches with US 

(c) Deformed MR image using MLS- (d) Deformed MR image using FEM-
based method based method 

Figure 4.5: Reference US and its rigid and non-rigid MR image matches using FEM 
and MLS (Geometrical Plane B in Figure 3.2). 
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It is worth mentioning that mutual information as a quantitative evaluation has 

been tested. False registration results which are corresponding to higher amount of 

mutual information as similarity criterion between Ius and IMR on the test plane 

(plane C in Figure 3.2), indicates that mutual information cannot be used as a reli-

able evaluation criteria. As an evidence, Figure 4.2 represents Ius on the test plane 

along with the two different deformed MR images. Image (b) is the correctly de­

formed IMR match of Ius with lower amount of mutual information (0.4989) and 

aRMS TRE of 7.2mm, while image (c) is the deformed IMR with higher amount 

of mutual information (0.6130). Therefore, mutual information cannot be used as a 

useful measure of accuracy. It should be noted that the RMS TRE for the false IMR 

cannot be computed, since the anatomy structures of Ius are not completely present 

on this image. The inherent problem with mutual information is that its value can 

be significantly dependent to the background noise [12]. US and MR images of the 

liver have a large number of pixel intensities mostly classified as background noise or 

irrelevant anatomy structures. Hence, the mutual information as function of regis-

tration parameters can possibly have many local peaks due to the alignment of the 

background noise. Normally, alignment of the important anatomy structures that are 

used as the landmarks in our algorithms has a very small effect on the value of the 

mutual information. Therefore, mutual information potentially can results in false 

registrations. 

4.2 (;omputational Speed and Solutions 
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M T RMS TRE i RT·R 
23 0.31 10.5 71 3.1818e+003 
88 0.58 10.2 125 2.6540e+005 
172 1.43 9.1 43 2.2690e+009 
587 14.27 9.0 171 2.2973e+003 

Table 4.2: Various running time, T, for different numbers of the nodes, NI, of the 
mesh with their corresponding registration accuracy results, RMS TRE, in the FEM­
based method. The number of iterations in the CG is denoted by i. The measure of 
error is RT. R. The vector of residual is calculated as R = f - K.U, where f is the 
force vector, K is the global stiffness matrix, and U is the global nodal displacement 
vector in FE analysis. In fact, RT . R should be made small as the error. The CG 
starting point is set as Ui=l = f. CG algorithm stops whenever i reaches 900 or 
RT . R decreases by the order of 1014 . Note that the number of control points used 
in every row is 4 (N=4). 

No. of nodes Duration (in second) RMS TRE (in millimeter) 
180 0.08 10.8 
567 0.23 10.5 
1690 0.70 10.2 
13520 6.55 10.1 

Table 4.3: Various running time for different numbers of the points on the 3D grid 
with their corresponding registration accuracy results in the MLS-based method. 
Note that the number of control points used in every row ofthe table is 4 (N=4). 

68 



M.A.Sc. Thesis - Navid Samavati McMaster - Electrical Engineering 

(a) No. of nodes=23 (b) No. of nodes=88 

(c) No. ofnodes=l72 (d) No. of nodes=587 

Figure 4.6: Different numbers of the nodes of the mesh with their corresponding 
registration accuracy results in the FEM-based method. Note that the number of 
control points used is 4. (The deformed MR image is on the geometrical Plane A in 
Figure 3.2). 
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(a) No. of points=180 (b) No. of points=567 

(c) No. of points=1690 (d) No. of points=13520 

Figure 4.7: Different numbers of the points on the 3D grid with their corresponding 
registration accuracy results in the MLS-based method. Note that the number of 
control points used is 4. (The deformed MR image is on the geometrical Plane A in 
Figure 3.2). 
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In this section, we discuss the results of the proposed deformable registration al­

gorithm with different grid resolutions. Technically, most of the computational load 

of the algorithm is related to calculating the deformation for the 3D grid, which we 

use to obtain the final result for the entire MR volume. In FEM-based method, the 

resolution of the 3D grid could be the number of the nodes of the organ mesh. The 

number of the points on the regular 3D grid, that we build to obtain the deforma­

tion, determines the resolution of the 3D grid in the MLS-based method. The other 

important part of the complexity arises from the resolution of the 2D grid. This grid 

is used to interpolate pixels' intensities to reconstruct a 2D image as the final output 

of the nonrigid registration. But, because of the different conditions and algorithms 

used to do this task in the two introduced methods (MLS and FEM), we cannot 

have an accurate comparison. Therefore, in the following study, we only consider 

the resolution of the 3D grid, which is the most effective part on the speed of the 

algorithms. 

We test the algorithms on a Pentium N with a Dual Core 1.66GHz CPU and 2 

Gigabytes RAM. For the implementation of the FEM-based and MLS-based meth­

ods, we use MATLAB R2007b. Implementation of 3D MLS algorithm includes matrix 

multiplications and using the SVD function of MATLAB. A MATLAB implementa­

tion of the Conjugate Gradient (CG) algorithm is used to solve the linear system of 

equations of Eq. (3.16). The measure of error is provided by RT . R. This vector of 

residual is calculated as R = f - K.U, where f is the force vector, K is the global 

stiffness matrix, and U is the global nodal displacement vector in FE analysis. In 

fact, RT . R as the error, should be made small. The CG starting point is set as 

Ui=l = f. CG algorithm stops whenever i reaches 900 or RT . R decreases by the 
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order of 1014. It should be noted that the inputs of the two algorithms are assumed 

to be prepared and the computation time of this preparation is not calculated in the 

running time of the algorithms. Also, except for the internal iterations of the SVD 

function of MATLAB, the MLS-based code is single-iteration only. 

Table 4.3, represents the time it takes to compute the deformations for all the 

points for various grid resolutions. In FEM-based method, this would be the duration 

of the computing the nodes' displacements. To have a better perspective of the trade­

offs here, using both methods, FEM and MLS, the final registered 2D images on Plane 

A in Figure 3.2 for the selected grid resolutions are displayed in Figures 4.6 and 4.7. 

Obviously, MLS-based method outperforms FEM-based in terms of speed. For al­

most the same number of grid points (in average rv 570 number of points/nodes for 

both methods), the results of the two methods are given in Figures 4.6(d) and 4.7(b). 

Comparing with the US image of the same plane, FEM-based method produces RMS 

TRE of 9.0 mm, while MLS-based method results in RMS TRE of 10.8 mm. There­

fore, we can conclude that FEM outperforms MLS. Ultimately, it can be concluded 

that with a moderate resolution, e.g. 172 for FEM, we can gain a faster speed, while 

keeping the quality and the accuracy of the registration at an acceptable level. 
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Chapter 5 

Conclusions and Future Work 

Deformable multi-modality image registration is a challenging problem due to various 

types of possible deformations and high chance of false registration. In particular, 

3D registration of MR and US is a very difficult task because of the fundamental 

differences in the nature of the two modalities and the noisy nature of the US images. 

In this thesis, we initially find a 2D MR match of our acquired 2D US image by means 

of a tracking system. In the next step, this image is further optimized by a local search 

of six rigid parameters to maximize the mutual information as a similarity measure 

between the two images. The main goal of this thesis is to detect the differences, 

which are caused by deformations between these two images, and apply them to 

the entire MR volume. This process is accomplished by employing two specialized 

techniques introduced in Chapter 3: FEM-based and MLS-based methods. FEM­

based method benefits from more realistic results due to the fact that it is based on the 

continuum mechanics, while MLS-based method is purely deduced from mathematical 

functions, approximation, and interpolation theory. Although, our FE modeling is 

not completely governed by real parameters of the organ (liver) and we use a linear 
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elastic model and also unknown boundary conditions, but the preliminary results we 

obtain by this method illustrates a better accuracy than MLS-based method. Our 

implementation of the MLS-based method could be executed at least 20 times faster 

than that of the FEM-based method. Therefore, in applications, where the accuracy 

is critical, FEM-based method should be used. The MLS-based method is more 

suitable of the applications demanding higher speed or a parallel implementation of 

the FEM-based method can solve the computation speed problem. 

According to the preliminary results presented in this thesis, there are still nu­

merous potentials for further research including: 

• Automatic selection of the control points to have a fully automatic deformable 

registration algorithm 

• Extending the deformable registration algorithm by proposing a cost function 

which can generate a global optimum in a correct match between the deformed 

MR image and the US image 

• Parallel implementation of the algorithms on FPGA or GPUs to achieve a real­

time response 

• Increasing the number of reference US images, and using the correlation between 

them to increase the accuracy of the results 

• Building a high quality FE mesh by including the neighboring organs (referred 

to as multi-organ mesh), and increasing the number of nodes 

e Obtaining the boundary conditions of the multi-organ mesh to produce more 

realistic results 
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• Extension of the current criteria to assess the registration results with a more 

I 
sophisticated and accurate measurement 

1 

75 



Appendix A 

Mutual Information 

Hill et al. [13] proposed a 2D plot showing the combination of gray values in each of 

the two images for all corresponding points. This feature space is referred to as a joint 

histogram. The two images should essentially in the same size. The joint histogram 

is constructed by counting the number of times a combination of gray values occurs. 

For each pair of corresponding points, (x, y), with x a point on image A and y a 

point on image B, the entry (IA(x),IB(y)) in the feature space is increased (I is a 

function, which maps the position to the intensity in an image). This means that 

joint histogram is a mXn matrix, where m and n are the number of available pixel 

intensities in image A and B, respectively. In Figure A.l ( c), we display the joint 

histogram between image A and B. To represent a better illustration of the joint 

histogram, we normalize the entries of the join histogram between 0 and 1. 

According to the Shannon's definition of join entropy [29], and by dividing each 
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(a) Image A (b) Image B (c) Joint histogram 

Figure A.1: Joint histogram of a CT image (A) and a MR image (B). Images from [25J 

entry of the joint histogram by the total number of entries, we can write 

- LP(i,j) logp(i,j), 
i,j 

where p(i,j) is the probability of each entry of the joint histogram. 

Entropy of an image is computed by dividing the number of occurrence of each 

pixel intensity by the total number of pixels to find a probability for each pixel 

intensity. The next step is to calculate the following summation 

- Lp(i) logp(i). 
i 

Finally, mutual information is calculated based on Eq. (2.9). 

77 



Appendix B 

Phantom Study 

In this section, we briefly explain how to make a phantom from Poly Vinyle Alcohol 

(PVA) cryogel based on the method introduced in [8]. A sealed container of aqueous 

solution of 15.0% by weight PYA was heated in boiling water for an hour. Depending 

on the concentration of the solution, different hardness of the produced gel can be 

achieved. It is worth noting that hardness also depends on the number of freeze-thaw 

cycles. The solution is poured into the final container (or mold) and freezed for twelve 

hours at _20DC. Then, the container is thawed by raising the air temperature by 

10 D /min to 25 DC and held at that temperature for twelve hours. This process is 

called a freeze-thaw cycle. We can continue this cycle to have a harder gel. For the 

purpose of this thesis, we poured two other layers of PYA solution with a number 

of arbitrarily placed stones on the top of each layer as the features of the phantom. 

Therefore, the bottom layer is the hardest and the top layer is the softest layer of the 

phantom. This multi-modality deformable phantom can be scanned by the US pro be 

from the top layer, since it is inside the container box. A Tl weighted 2D MR image 

of the phantom is displayed in Figure B.2. The black features are the stones that we 
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(a) Tl weighted 2D MR (b) Layers and the 
image stones 

Figure B.2: A Tl weighted 2D MR image of the PYA phantom 

placed into the solution before the freeze-thaw cycle of the next layer. 
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