LASER INTERFEROMETRIC INVESTIGATION
OF MICROLAYER EVAPORATION
FOR VARIOUS LEVELS OF SUBCOOLING
AND HEAT FLUX
LASER INTERFEROMETRIC INVESTIGATION
OF MICROLAYER EVAPORATION
FOR VARIOUS LEVELS OF SUBCOOLING
AND HEAT FLUX

by

COSMOS M. VOUTSINOS B.Sc. (ENG.)

A Thesis

submitted to the School of Graduate Studies
in partial fulfillment of the requirements
for the degree

Master of Engineering
McMaster University

March 1976
TO DONNA
TITLE : Laser Interferometric Investigation of Microlayer Evaporation for Various Levels of Subcooling and Heat Flux

AUTHOR : COSMOS M. VOUTSINOS
          B.Sc. (Mech. Eng.)
          (University of Waterloo, Ontario, Canada)

SUPERVISOR : Dr. Ross L. Judd

NUMBER OF PAGES : 116

SCOPE AND CONTENTS :

An experimental study of the growth and evaporation of the microlayer, underlying a bubble during nucleate boiling heat transfer to dichloromethane, is presented. The influence of heat flux (8000 Btu/hr ft$^2$ - 20,000 Btu/hr ft$^2$) and subcooling ($0^\circ$F - $13.5^\circ$F) upon the rates of growth and evaporation, have been studied using laser interferometry and high speed photography through the glass heater surface on which bubbles were nucleated.
The results presented indicate that the microlayer thickness is of the order of 5 \( \mu \text{m} \). The analysis of these results confirms that the microlayer evaporation phenomenon is a significant heat transfer mechanism representing approximately 25\% of the total nucleate boiling heat transfer rate for the conditions investigated.

As subcooling is increased from saturation, the contribution of the microlayer evaporation to the total heat transfer rate varies in accordance with two interacting processes in the region investigated. This variation appears as an initial decrease followed by an increase.
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>viii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xi</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xii</td>
</tr>
</tbody>
</table>

## CHAPTER

1. INTRODUCTION
   
   A. PURPOSE                                          1
   
   B. LITERATURE SURVEY                                 4

2. EXPERIMENTAL APPARATUS
   
   A. INTRODUCTION                                      8
   
   B. TEST ASSEMBLY                                    9
   
   C. POWER SUPPLY                                      16
   
   D. PRESSURE CONTROL                                  19
   
   E. TEMPERATURE MEASURING SYSTEM                      21
   
   F. OPTICAL SYSTEM                                    23

3. TEST CONDITIONS
   
   A. TEST FLUID                                        32
   
   B. TEMPERATURE MEASURING LOCATIONS                   32
   
   C. DATA ORGANIZATION                                 34

4. TEST PROCEDURES
   
   A. THERMOMETRIC RESULTS                              39
   
   B. PHOTOGRAPHIC RESULTS                             42

5. DATA REDUCTION

   A. THERMOMETRIC RESULTS                              39
   
   B. PHOTOGRAPHIC RESULTS                             42
ACKNOWLEDGEMENTS

The author gratefully acknowledges the assistance of Professor Ross L. Judd, who provided guidance and advice in planning and performing the research investigation.

The author also expresses his appreciation to Professors J.H.T. Wade, J. N. Siddall and J.V. Vlachopoulos for their interest and cooperation in serving as members of the committee.

Special thanks are due to Mr. Thomas Efthimiopoulos who assisted in the design of the apparatus.

The financial support of the National Research Council is gratefully acknowledged.
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Schematic Diagram of Heat Transfer Mechanisms</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Light Spectra</td>
<td>10</td>
</tr>
<tr>
<td>3.</td>
<td>Detail Drawing of Test Assembly</td>
<td>12</td>
</tr>
<tr>
<td>4.</td>
<td>Photograph of Test Assembly</td>
<td>13</td>
</tr>
<tr>
<td>5.</td>
<td>Specimen of Heater Surface</td>
<td>15</td>
</tr>
<tr>
<td>6.</td>
<td>Subcooling Heat Exchanger</td>
<td>17</td>
</tr>
<tr>
<td>7.</td>
<td>Vapour Condensers</td>
<td>18</td>
</tr>
<tr>
<td>8.</td>
<td>Photograph of Power Supply</td>
<td>20</td>
</tr>
<tr>
<td>9.</td>
<td>Temperature Measuring System</td>
<td>22</td>
</tr>
<tr>
<td>10.</td>
<td>Schematic of Optical System</td>
<td>24</td>
</tr>
<tr>
<td>11.</td>
<td>Schematic of Interferometer</td>
<td>25</td>
</tr>
<tr>
<td>12.</td>
<td>Specimen Optics</td>
<td>27</td>
</tr>
<tr>
<td>13.</td>
<td>Dichloromethane Vapour Pressure Curve</td>
<td>33</td>
</tr>
<tr>
<td>14.</td>
<td>Microlayer Profiles and Interference Rings</td>
<td>45</td>
</tr>
<tr>
<td>15.</td>
<td>Area of Revolution</td>
<td>47</td>
</tr>
<tr>
<td>16.</td>
<td>Characteristic Curves</td>
<td>50</td>
</tr>
<tr>
<td>17.</td>
<td>Plot of Superheat vs Subcooling</td>
<td>51</td>
</tr>
<tr>
<td>18.</td>
<td>Microlayer Profiles and Interferograms for Data Point (1,1)</td>
<td>54</td>
</tr>
<tr>
<td>19.</td>
<td>Microlayer Profiles and Interferograms for Data Point (1,2)</td>
<td>55</td>
</tr>
<tr>
<td>20.</td>
<td>Microlayer Profiles and Interferograms for Data Point (1,3)</td>
<td>56</td>
</tr>
<tr>
<td>21.</td>
<td>Microlayer Profiles and Interferograms for Data Point (1,4)</td>
<td>57</td>
</tr>
<tr>
<td>22.</td>
<td>Microlayer Profiles and Interferograms for Data Point (2,1)</td>
<td>58</td>
</tr>
<tr>
<td>23.</td>
<td>Microlayer Profiles and Interferograms for Data Point (2,2)</td>
<td>59</td>
</tr>
<tr>
<td>24.</td>
<td>Microlayer Profiles and Interferograms for Data Point (2,3)</td>
<td>60</td>
</tr>
</tbody>
</table>
25. Microlayer Profiles and Interferograms for Data Point (2,4) 61
26. Microlayer Profiles and Interferograms for Data Point (3,1) 62
27. Microlayer Profiles and Interferograms for Data Point (3,2) 63
28. Microlayer Profiles and Interferograms for Data Point (3,3) 64
29. Microlayer Profiles and Interferograms for Data Point (3,4) 65
30. Plot for Active Site Density 66
31. Plot for Bubble Frequency 67
32. Plot for Bubble Flux Density 68
33. Plot for Maximum Bubble Diameter 70
34. Microlayer Profile for Data Point (1,1) 71
35. Microlayer Profile for Data Point (1,2) 72
36. Microlayer Profile for Data Point (1,3) 73
37. Microlayer Profile for Data Point (1,4) 74
38. Microlayer Profile for Data Point (2,1) 75
39. Microlayer Profile for Data Point (2,2) 76
40. Microlayer Profile for Data Point (2,3) 77
41. Microlayer Profile for Data Point (2,4) 78
42. Microlayer Profile for Data Point (3,1) 79
43. Microlayer Profile for Data Point (3,2) 80
44. Microlayer Profile for Data Point (3,3) 81
45. Microlayer Profile for Data Point (3,4) 82
46. Effect of Subcooling on Microlayer Profiles for q/A = 19,000 Btu/hr-ft$^2$ 83
47. Effect of Subcooling on Microlayer Profiles for q/A = 13,200 Btu/hr-ft$^2$ 84
48. Effect of Subcooling on Microlayer Profiles for q/A = 8,600 Btu/hr-ft$^2$ 85
49. Volume of Microlayer Liquid Evaporated 87
50. Heat Transferred by Microlayer Evaporation 88
51. Percent Heat Transferred by Microlayer Evaporation 89
52. Ratio of Heat Transferred by Microlayer Evaporation vs Total Heat 90
**LIST OF TABLES**

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Refractive Indices and Reflecting Surfaces</td>
<td>28</td>
</tr>
<tr>
<td>2.</td>
<td>Data Organization Matrix</td>
<td>34</td>
</tr>
<tr>
<td>3.</td>
<td>Volumes of Revolution</td>
<td>114</td>
</tr>
</tbody>
</table>
# LIST OF APPENDICES

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.</td>
<td>Experimental Data</td>
<td>98</td>
</tr>
<tr>
<td>B.</td>
<td>Bubble Frequency Histograms</td>
<td>111</td>
</tr>
<tr>
<td>C.</td>
<td>Volumes of Revolution</td>
<td>114</td>
</tr>
</tbody>
</table>
NOMENCLATURE

A = area

C_L = specific heat of liquid

D = diameter

d = microlayer thickness

E = supplied voltage

F = average number of frames between bubble emission

f = frequency of bubble emission

Gr = Grashof number

h_fg = latent heat

I = supplied current

I_i = intensity of reflected light from i^th surface

L = total film length

m = number of fringe

N = number of active sites

Nu = Nusselt number

N/A = active site density

n = average number of frames

n_i = refractive index of i^th component

P_sat = saturation pressure

Q = power supplied (3.414EI)

q_E = heat transferred by microlayer evaporation

q_loss = heat lost

q_T = total heat transferred

q/A = heat flux
\( R(t) \) = bubble radius

\( r \) = bubble radius

\( r_i \) = reflectivity of \( i \)th surface

\( \bar{T} \) = average time elapsed between bubbles (\( \bar{t} \))

\( T_{\text{sat}} \) = saturation temperature

\( T_w \) = temperature of heater surface

\( T_\infty \) = liquid bulk temperature

\( (T_w - T_{\text{sat}}) \) = superheat

\( (T_{\text{sat}} - T_\infty) \) = subcooling

\( t \) = time

\( \bar{t} \) = average time per frame

\( V_E \) = evaporated microlayer volumes

\( v \) = frequency of film markings

**GREEK LETTERS**

\( \beta \) = bulk modulus

\( \delta_0(r) \) = initial microlayer thickness

\( \delta(r,t) \) = instantaneous microlayer thickness

\( \eta \) = total film markings

\( \theta \) = angle of incidence

\( \lambda \) = laser wavelength

\( \mu \) = viscosity of liquid

\( \nu \) = kinematic viscosity of liquid

\( \rho_l \) = density of liquid

\( \tau \) = departure time

\( \phi \) = bubble flux density
CHAPTER I
CHAPTER I

INTRODUCTION

A. Purpose

Nucleate boiling is a complex heat transfer phenomenon that has been the subject of many publications in the last 25 years. Any interpretation of this phenomenon must be capable of explaining the abrupt increase in heat flux observed when boiling begins and many models have been postulated to predict the nucleate boiling heat transfer rate. None, however, has proven sufficient especially at significant levels of subcooling (1). The heat transfer mechanisms that have formed the basic blocks of some of these models are the following:

1) Latent Heat Transport during which a bubble absorbs energy equivalent to one bubble volume of vapour. As this bubble disconnects itself from the heater surface it transports along the latent heat it contains as seen in Figure 1A. Where nucleation is not present, energy is transferred from the surface by natural convection as seen in Figure 1B.

2) Bubble Agitation during which fluid mixing occurs near the heated surface by the presence, growth and departure of bubbles. Three bubbles are seen in Figure 1A. Their fast growth displaces the fluid and causes microconvection currents which enhance the heat transfer.
Figure 1. SCHEMATIC DIAGRAM OF HEAT TRANSFER MECHANISMS.
3) **Vapour-Liquid Exchange** during which liquid equivalent to one bubble volume picks up heat from the heater surface and is transported away while colder liquid replaces an equal volume adjacent to the wall. Figure 1C shows the cold liquid rushing toward the heater surface in order to replace the departing volume.

4) **Condensing Action** during which vapour currents inside the bubble condenses at the vapour-liquid interface, thus transferring heat into the bulk of the liquid (Figure 1D). This mechanism has not been proven as yet; however, it appears to be very reasonable.

5) **Microlayer Evaporation** by which energy is transferred away from the heated surface into the bubble by evaporation of a thin layer of superheated liquid underneath the bubble (Figure 1E). Considerable evidence is produced in the present research about the role of this heat transfer mechanism, and is discussed further.

Additional and as yet unknown mechanisms contributing to the nucleate boiling heat transfer may exist. However, the significance of microlayer evaporation is becoming increasingly important in recent years. This mechanism relates the evaporative process at the base of the bubble with the bubble growth and its omission is thought to be the possible explanation of the deficiency of the existing models. The purpose of the present investigation is to present an experimental study of the microlayer evaporation phenomenon in which the rates
of evaporation and heat transfer for various levels of subcooling and heat flux were determined.

B. Literature Survey

The concept of evaporation of a thin layer of liquid at the base of the bubble is based on the existence of a thin liquid layer. Such an assumption was originally made by Snyder and Edwards (2). Until that time, the usual hypothesis of nucleate boiling was that the bubble agitates the liquid thus promoting the increase in heat transfer. Moore and Mesler (3) were the first to obtain indirect evidence of the existence of the microlayer underneath the bubble. In their experiments, they recorded the rapid fluctuations in the temperature of the surface on which nucleate boiling was occurring. Their observations could not be explained in terms of the bubble agitation model. The only hypothesis that appeared to be consistent was the one by Snyder and Edwards which proposed vapoaurization at the base of the bubble. Hendricks and Sharp (4) provided a confirmation of these hypotheses by correlating high speed photographic data with surface temperature—time profiles under the growing bubble.

With similar techniques, Rogers and Messler (5) also managed to show that the large temperature drop noted by Moore and Messler occurred when the perimeter of the bubble base passes over the thermocouple junction.
A more direct evidence of the microlayer existence during nucleate boiling was originally provided by Sharp (6), who used interferometry to record the evaporation and dry out of a thin film of liquid at the base of each bubble. Shortly after, the microlayer thickness \( \sigma_0(r) \) was deduced by Cooper and Lloyd (7) who performed simultaneous measurements of temperature fluctuations at various points over which a bubble was allowed to grow. From these temperature variations, Cooper and Lloyd were able to deduce the local enthalpy extraction at the location of each of the thermometers. Their main conclusion was that \( \sigma_0(r) \) is of the order of 10 micrometers for toluene and isopropyl alcohol. They also obtained indication that the radius of the evaporated volume of the microlayer is about half the maximum radius of the bubble. Jawurek (8) performed a photographic investigation based on the destructive interference patterns between reflections of the vapour-liquid interface beneath the bubble and the heated glass surface on which nucleate boiling occurred and determined that for boiling methanol, the microlayer thickness \( \sigma(r, t) \) was no more than 1 micrometer.

Several additional experiments and mathematical models were presented, based on the above investigations. One of these models describing the transient temperature of a heater surface
as dictated by the evaporation of a liquid microlayer was
derived by Dzakowic and Frost (9). Although this mathematical
model was based on the assumption that the liquid microlayer
temperature is always uniform and equal to the heater surface
temperature, it appears to be in agreement with the experimental
data obtained by Moore and Messler. Another analytical
prediction of the size and shape of the microlayer was presented
by Olander and Watts (10). This mathematical model was
based on the solution of the boundary layer momentum and
continuity equations. Their results indicate that \( \delta_o(r) \)
varies linearly with radial position.

Copper and Lloyd (11) presented an empirical correlation
which predicts that the thickness of the microlayer \( \delta_o(r) \)
is \( 0.8 \sqrt{t} \) where "t" is the time required for the bubble
to grow to radius \( r \). This correlation was supported by
experimental data based on observations of the growth and
departure of individual vapour bubbles and on temperature
measurements of the solid surface beneath it. Another
model for bubble dynamics in nucleate boiling was derived
by Robin and Snyder (12). Based on the assumption of mass
transfer through the growing bubble, they derived a second
order unsteady partial differential equation. This
equation was solved with numerical approximation and
provided reasonable results.
More recently, Judd and Merte (1) presented experimental results by which they were able to test several of the existing models for various levels of subcooling and acceleration. There was indication that none of the basic models could adequately predict nucleate boiling heat flux for other than saturated boiling conditions and at standard gravity. All of the models predicted a decreasing value of heat flux as subcooling and acceleration increased. This observation was given the interpretation that some additional mechanism may exist that would be inoperative under saturated boiling conditions, but very sensitive to the level of subcooling. Microlayer evaporation might well be the missing mechanism.
CHAPTER II

EXPERIMENTAL APPARATUS

A. Introduction

The design specifications of the apparatus were dictated by the experimental requirements which included the investigation of the microlayer thickness $\sim (r, t)$ as a function of radius and time at various levels of liquid temperature and heat flux. The precision required however, in measuring the microlayer thickness was very important; firstly, because the magnitude of change that might take place by varying the heat flux or the level of subcooling was not known and secondly, because the thickness data were to be used for the determination of the total volume of liquid evaporated from the microlayer during nucleate boiling for all the above conditions. The latter would be used to determine the significance of heat transfer by microlayer evaporation.

An interferometric investigation was to be used in order to obtain the microlayer thickness measurements, similar to the investigation undertaken by Jawurek. However, it was decided that in order to obtain a higher precision, the illuminating source used in the interferometer should have the highest possible spectral purity. A Helium-Neon laser
was used to illuminate the microlayer through a glass heater surface on which nucleate boiling was taking place. Figure 2 shows the difference in spectral purity among white light, monochromatic light and laser light. The use of the laser light source dictated that all the surfaces of the specimens, prisms, and lens should be coated with antireflective coating with an exception of the ones which were needed to reflect. In this manner, the unnecessary interference patterns were eliminated leaving a very clear image of the interference fringes resulting from the presence of the microlayer thickness.

In addition, the experiment required the ability to be able to vary the amount of heat supplied and the liquid temperature independently using an appropriate liquid selected so that it would boil at temperatures that would provide safe experimental conditions and yield reasonable sized bubbles which could be readily analysed photographically.

B. Test Assembly

An existing test assembly described in Reference (14) was modified in accordance with the special requirements of the present investigation.
Figure 2. LIGHT SPECTRA
It provided a test platform on which the specimens could be mounted in a controlled environment in which nucleate boiling tests could be performed. Figure 3 is a detailed drawing and Figure 4 is a photograph of the test assembly.

The basic component of the assembly was a test vessel which was constructed on a 6" diameter type 304 stainless steel pipe. This pipe formed the side walls of the vessel which had machined flanges of the same material resting on gaskets at each end. The upper flange contained threaded holes for the bus-bars, the subcooling coil, the condenser coil, the pressure control system (vacuum), and the thermocouples. Eight tie down bolts connected the upper flange (cover plate) to the lower flange (base plate) and provided vacuum tight seals.

The fluid tested was dichloromethane (methylene/chloride) which was boiled on a borosilicate glass heater surface coated with a half wavelength thickness of stannic oxide which conducted electric current and generated the required heat for boiling. This glass heater specimen was arranged within the test assembly on the base plate of the vessel in order to ensure normal axes of observation of the nucleate boiling phenomenon as required by the research investigation. The oxide coated surface of the specimen was in contact with the dichloromethane, while the other surface was coated with one quarter wavelength thickness of antireflective coating for He-Ne laser light and it was exposed to the air.
Figure 5 shows the details of one specimen of the oxide film heater surface. Each one was cut to size $2\,\frac{7}{16}'\times1\,\frac{5}{16}'' + \frac{1}{32}''$ from sheets of $1/8$" thick oxide coated borosilicate glass and after the corners were rounded to $1/8$" radius. A layer of metallic silver was deposited on each end leaving an effective heat transfer surface of $2'' \times 1\,\frac{5}{16}'' + \frac{1}{32}''$. The silver bands facilitated the electrical contact between the bus-bars and the oxide coating. Since it was not possible to evaluate local heat flux values, it had to be assumed that the oxide coating had been deposited uniformly and that the heat was generated uniformly over the heat transfer surface. Judd (13) discussed this assumption in his doctoral thesis and found it to be quite reasonable. Since boiling occurred at randomly located nucleation sites in the oxide coating, it was also assumed that any $1\text{mm} \times 1\text{mm}$ square of heater surface should contain the same number of nucleation sites.

At the base of the cylindrical test assembly an optical sight tube $2\,1/2''$ diameter of stainless steel pipe was provided. A Viton "O" ring set in an internal groove formed the seal between the sight tube wall and the observation glass window.

The requirements of the research investigation dictated that subcooling be varied at constant pressure. This variation
could only be accomplished by changing the temperature of the test fluid which was accomplished with a single pass heat exchanger shown in Figure 6, constructed as an integral part of the internal components of the test assembly. The tubes were bent into a hollow form providing clearance for the bus-bars (electrical conductors).

A vapour condenser was mounted 1 1/2" beneath the top flange in order to condense the vapour formed during testing. The vapour condenser was constructed of 1/4" diameter stainless steel tubing wound in a spiral fashion. A reflux condenser was constructed outside of the test vessel along the line that draws vacuum in the test assembly. The two vapour condensers and the subcooling heat exchanger were connected in parallel with valves installed for purposes of controlling the relative flow rates. The vapour condensers are shown in Figure 7.

C. Power Supply

The power supply which furnished power to the coated glass surface (test specimen) was comprised of six 12 volt DC batteries which could be connected either in series or parallel by means of various knife switches. Finer voltage control was achieved through a large rheostat connected in series between the bank of batteries and the heater surface in the test vessel. This source provided a very steady
power ranging from 0 to 72 volts. The power flow to the heater was continuously monitored by means of a voltmeter and an ammeter mounted on the power supply shown in Figure 8.

D. Pressure Control

In order to maintain a constant saturation temperature at the heat transfer surface throughout the research investigation, the pressure inside the test vessel had to remain constant. During each experiment, comprised of a number of tests at different levels of heat flux and degrees of subcooling, the pressure in the test vessel was maintained constant at approximately 1/2 atmosphere, in order to decrease the number of active nucleation sites and to increase the size of the vapour bubbles, thereby simplifying the photographic analysis. Subatmospheric pressure was achieved with an Edwards rotary vacuum pump and an atmospheric bleed valve which enabled the pressure in the vessel to be adjusted to a predetermined value. The pressure control was achieved manually with a Nupro fine threaded metering valve which was installed on the cover plate of the test vessel and the pressure was continuously monitored by a mercury manometer. Although such a pressure control appears very difficult, it proved to be quite satisfactory. Before each test, power was supplied to the heater surface in order to initiate boiling. The pressure control valve then
was manually adjusted to the desired level. As the system reached equilibrium the adjustments became finer and finer to the point that the pressure reading on the mercury monometer remained visually unchanged.

E. Temperature Measuring System

Four chromel-constantan thermocouples were used in the present investigation. Three of them were used to measure the bulk liquid temperature and the other one was used to measure the temperature of the heater surface. Figure 9 shows a photograph of the temperature measuring system. Each of the three thermocouples measuring the bulk liquid temperature was a Thermoelectric "Ceramo" thermocouple mounted in the cover plate, while the one measuring the heater surface temperature was "epoxied" on the underside of the heater plate. Chromel-constantan thermocouples were selected for their E.M.F. characteristic which is 36 microvolts/°F. Their output signals were fed into a switch box from which each output signal could be directed either to a high resolution Guildline potentiometer or to a Minneapolis Honeywell recorder. The E.M.F. produced by each of the thermocouples was individually converted into temperature in degrees Fahrenheit by the use of a conversion table published by the National Bureau of Standards (15).
Figure 9. TEMPERATURE MEASURING SYSTEM
F. Optical System

An existing optical system was modified to accept a SPECTRA PHYSICS Helium-Neon laser (model 125A, \( \lambda = 0.6328 \) micrometers). This laser was specified by the manufacturer to produce a highly monochromatic beam at 50 mW; however, its actual power was measured directly using three different photocells and was found to be 62.5 mW.

A schematic diagram of the modified system is presented in Figures 10 and 11. The light emitted by the laser was reflected by a first surface mirror through two collimating lenses which together enlarged the beam diameter tenfold. The focal lengths of these lenses were selected to be as large as the available space allowed, in order to reduce the amount of light dispersion and ensure a parallel ray beam at the beginning of the interferometer. Both surfaces of each of these lenses were coated with 1/4 wavelength antireflective coating. The parallel, coherent, and highly monochromatic beam of light was then directed upward in the interferometer by means of a first surface mirror located beneath the heater surface of the test vessel.

Figure 10 shows the two schematic views of the interferometer and the schematics of the light path in it. After the light was deflected upward from the front surface mirror, it passed first through a rhomboidial prism and then through the
Figure 11: Schematic of Interferometer
heater glass plate, thus illuminating the boiling phenomena occurring at the upper surface of the glass heater. The rhomboidal prism had its bottom surface coated with \( \frac{1}{\sqrt{2}} \) wavelength thickness of antireflective coating. Since the light meets this surface at 45 degrees, \( \frac{1}{\sqrt{2}} \) wavelength thickness would result in \( \frac{1}{4} \) wavelength of actual path length, thereby maximizing the antireflective effect. The front surface of the rhomboidal prism was coated with silver in such a manner that it would form a mirror that reflected inside the prism. This mirror was used to block the path of any reflection from the bottom surface of the prism thereby ensuring that the interferometer's output would contain interference patterns formed only by the boiling phenomena and the heater plate. Figure 10 also shows the method used in order to achieve fine adjustment of the first mirror at the base of the interferometer, and of the rhomboidal prism. By turning the fine threaded screws against the extended levers about the turning axes, one could make adjustments as fine as \( \frac{1}{100} \) of a degree.

Because of the high sensitivity of laser light to interference, the lower surface of the glass heater was also coated with \( \frac{1}{4} \) wavelength thickness antireflective coating. Table 1 presents the optical analysis of all the reflecting surfaces and Figure 12 shows the results of the analysis diagramatically. I_0 indicates the incident beam intensity after it had passed through the rhomboidal prism. This beam was used to illuminate the boiling phenomena. Each of the \( i \) surfaces reflected
Figure 12. SPECIMEN OPTICS
\[ \text{TABLE 1} \]

**REFRACTIVE INDICES**

<table>
<thead>
<tr>
<th>(n_i)</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_0)</td>
<td>1.283</td>
<td>Antireflective coat</td>
</tr>
<tr>
<td>(n_1)</td>
<td>1.000</td>
<td>Air</td>
</tr>
<tr>
<td>(n_2)</td>
<td>1.479</td>
<td>Glass</td>
</tr>
<tr>
<td>(n_3)</td>
<td>1.993</td>
<td>Stannic Oxide</td>
</tr>
<tr>
<td>(n_4)</td>
<td>1.356</td>
<td>Dichloromethane liquid</td>
</tr>
<tr>
<td>(n_5)</td>
<td>1.000</td>
<td>Dichloromethane vapour</td>
</tr>
</tbody>
</table>

**CALCULATION OF RELATIVE INTENSITIES**

\[
\frac{I_s}{I_o} = \left( \frac{n_s - n_t^2}{n_s + n_t^2} \right)^2 \left( \frac{1.283 - 4}{1.283 + 4} \right)^2 = 0.0153 \quad \text{1.5\%}
\]

\[
\frac{I_2}{I_s - I_s} = \left( \frac{n_2 - n_t^2}{n_2 + n_t^2} \right)^2 \left( \frac{1.479 - 1.283^2}{1.479 + 1.283^2} \right)^2 = 0.0028 \quad \text{0.2\%}
\]

\[
\frac{I_4}{I_s - I_s - I_2} = \left( \frac{n_4 - n_t^2}{n_4 + n_t^2} \right)^2 \left( \frac{1.993 - 1.479^2}{1.993 + 1.479^2} \right)^2 \quad \text{0.2\%}
\]

\[
\frac{I_3}{I_s - I_s - I_s - I_4} = \left( \frac{n_3 - n_t^2}{n_3 + n_t^2} \right)^2 \left( \frac{1.356 - 1.993^2}{1.356 + 1.993^2} \right)^2 = 0.2410 \quad \text{24.1\% ***}
\]

\[
\frac{I_2}{I_s - I_s - I_3 - I_4} = \left( \frac{n_2 - n_t^2}{n_2 + n_t^2} \right)^2 \left( \frac{1.000 - 1.356^2}{1.000 + 1.356^2} \right)^2 = 0.0872 \quad \text{8.7\% ***}
\]

\[
\frac{I_3}{I_s - I_s - I_3 - I_4 - I_2} = \left( \frac{n_3 - n_t^2}{n_3 + n_t^2} \right)^2 \left( \frac{1.356 - 1.000^2}{1.356 + 1.000^2} \right)^2 = 0.0228 \quad \text{2.2\%}
\]

*** Note that the material selection is such that it maximizes the reflectivity
back light of intensity $I_1$, which is the function of the combined effect of the refractive indices ($n_{i-1}$ and $n_i$) of the media existing on each side of the surface.

$$\frac{I_1}{I_0} = \left( \frac{n_2 - n_1^2}{n_2 + n_1^2} \right)^2$$

By selecting the materials with the appropriate refractive index, it was possible to increase the intensity of $I_2$ and $I_3$ and reduce the intensity of the others. $I_2$ and $I_3$ were the important components of the whole research investigation, as interference between them gave the image that was photographed in order to determine and microlayer thickness.

The interferometer's output was photographed on Kodak 4X negative film, at the rate of 2500 frames per second, through a 16mm Hycam K1001 R high speed camera mounted outside the interferometer. The interference patterns produced whenever a bubble occurred were deflected into the objective lens of the camera by the upper surface of the rhomboidal prism.

Similarly to Jawurek (8), the mathematical formulae describing the microlayer thickness for the formation of fringes are given below. In the present investigation the
fringes were produced by an interference action between $I_2$ and $I_3$. The physical meaning of the variable "d" is shown in Figures 11 and 12.

For bright fringes

$$d = (2m + 1) \left( \frac{\lambda}{4n_4} \right), \quad m = 0, 1, 2 \ldots$$

In this case the bright fringes indicated step wise that the microlayer thickness was;

$$1 \left( \frac{\lambda}{4n_4} \right), \quad 3 \left( \frac{\lambda}{4n_4} \right), \quad 5 \left( \frac{\lambda}{4n_4} \right) \quad \text{etc.}$$

For dark fringes

$$d = (2m) \left( \frac{\lambda}{4n_4} \right), \quad m = 0, 1, 2, \ldots$$

Since during the present investigation the interference patterns were recorded by negative films, the actual bright fringes appeared dark. Therefore, although the measured fringes were the dark ones, the relationship of the bright fringes applied.
For both cases, the reflected intensity was governed by the relation;

\[ I_r = (r_1^2 + r_2^2 + 2r_1r_2 \cos \theta) I_0 \]

For antireflective coating, the intensity reflected in terms of refractive indices is given by;

\[ I_r = \left( \frac{2(n_2^2 - n_1^2)}{(n_1 + n_2)^2} \right)^2 I_0 \]

Where \( I_r \) is desired to be as small as possible. Hence in order for

\[ I_r \rightarrow 0 \]

\[ n_2 \rightarrow n_1 \]

Further improvements of the optical system might have been achieved using a spectrum analyser. The velocity of either the upper or the lower vapour-liquid interface of a bubble, could be measured. The existing interferometer has the potential to provide this data through optical heterodyning (Doppler effect) between \( I_1 \) and \( I_3 \) or \( I_2 \) and \( I_3 \) respectively.
CHAPTER III
CHAPTER III

TEST CONDITIONS

A. Test Fluid

The chosen test fluid was dichloromethane (methylene chloride). This fluid was selected because experimentation with water had indicated (13) that the stannic oxide coating was incompatible with boiling water. Boiling water tends to attack the oxide coated surface in an electrolytic manner and consequently eliminates its usefulness within a few minutes. Several workers have reported these results and in order to solve this problem they have used methanol, carbon tetrachloride, Freon 113, or dichloromethane. The preference to use dichloromethane for the present investigation was based on its considerably less hazardous properties i.e. non-poisonous and non-explosive. In addition, it boils at a low temperature and has a much desired refractive index. Figure 13 shows the vapour temperature saturation curve.

B. Temperature Measuring Locations

When experiments were performed the three thermocouple junctions were positioned at 0.05 inches, 0.45 inches and 0.50 inches from the heater surface. The selection of these locations for the thermocouple junctions provided information for the temperature variation within the bulk liquid and the boundary layer adjacent to the heat transfer surface. The bulk liquid temperature was defined as the average output of the two thermocouples that had their junctions positioned at 0.45 inches and at 0.50 inches. Consequently, for the purpose of this research investigation
Figure 13. VAPOUR PRESSURE CURVE FOR DICHLORETHANE
the method used to define subcooling was to compute the difference between the saturation temperature at the heat transfer surface and the average temperature level at the two arbitrarily chosen positions in the bulk liquid.

C. Data Organization

Six levels of heat flux and four levels of subcooling were investigated for their combined influence upon nucleate boiling. For the purpose of being able to identify the data, these tests were grouped to form a matrix having a constant heat flux in every row and approximately constant subcooling in every column as shown in Table 2.

<table>
<thead>
<tr>
<th>Decreasing $q/A$</th>
<th>Increasing $(T_{\text{sat}} - T_\infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>(2,1)</td>
<td>(2,2)</td>
</tr>
<tr>
<td>(3,1)</td>
<td>(3,2)</td>
</tr>
<tr>
<td>(4,1)</td>
<td>(4,2)</td>
</tr>
<tr>
<td>(5,1)</td>
<td>(5,2)</td>
</tr>
<tr>
<td>(6,1)</td>
<td>(6,2)</td>
</tr>
</tbody>
</table>

The six levels of heat flux were $q/A = 19,400, 13,500, 8,900, 5,100, 2,300,$ and $1,300$ Btu/hr ft$^2$. For every heat flux under investigation the subcooling temperature was varied from $0^\circ F$ (for
saturated boiling) to the maximum possible obtainable value. The variations were taken in four increments by increasing the flow of water correspondingly in the subcooling heat exchanger. This procedure was continued until sufficient data was supplied for every point in the matrix. During these tests, temperature as well as photographic data were obtained and two complete matrices were recorded.

In addition to the above, one set of data was obtained through a different procedure where the flow through the subcooling heat exchanger was fixed, and the heat flux was changed. In this manner, the matrix of the experiment was scanned by columns rather than by rows as in the previous case. Carrying out the experiments with either one of the two procedures, the system was always given sufficient time to reach equilibrium.

The matrix grouping has organized the data in such a way that the variation of any recorded parameter with heat flux or subcooling could be obtained by plotting the data by columns or by rows respectively.

Motion pictures were obtained only for the three first rows of the matrix since no boiling was observed for the other three.
CHAPTER IV
CHAPTER IV

TEST PROCEDURE

Preliminary tests were conducted prior to the commencement of the research investigation during which the normal functioning of each component in the system was established.

Although the test vessel was disassembled and reassembled twice, only one charge of dichloromethane was used. Consequently, all the temperature data as well as the photographic data were obtained from boiling the same charge of dichloromethane (approximately 30 cm$^3$). Also, no replenishing was necessary during the investigating period due to the effectiveness of the condensing system.

The first pretest procedure was the adjustment of the two screws in the interferometer to position the light beam approximately in the middle of the heater surface. This procedure was followed by adjusting the camera's positioning and focusing on the illuminated section.

The atmospheric pressure was measured, and the appropriate manometer reading that would ensure the desired pressure in the test vessel was calculated. After both condensers had had their respective flows established, the vacuum pump and the direct current power supply were started. The pressure in the test vessel was slowly reduced to the desired value with the manual operation of the pressure control valve. The change of flow through the subcooling heat exchanger, whenever employed,
always caused pressure transients in the test vessel which were continuously reduced with additional adjustment of the pressure control valve until a steady-state was achieved.

During the period of time in which steady-state boiling conditions were being established, the temperature recorder and the potentiometer were calibrated against a standard cell with known E.M.F. One of the thermocouples that measured the bulk liquid temperature was monitored by the recorder and the camera was loaded with film and set at a filming rate of 2,500 frames per second.

Steady-state test conditions were considered to have been reached when the manometer appeared visually unchanged and at the same time, the bulk liquid temperature thermocouple remained constant within ±5% for a period of 5 minutes or longer. When these conditions were fulfilled, the thermocouple that was "epoxied" to the heater surface was connected to the recorder, and the steady-state values of each of the other three thermocouple outputs were measured sequentially. Once the temperature values had been obtained, the readings of the voltmeter and ammeter on the power supply were recorded. For those tests involving photography of the phenomena occurring on the heat transfer surface, high speed motion pictures were obtained immediately following the
potentiometer measurements. The framing rate chosen enabled a complete cycle of vapour bubble emission including active and inactive periods to be photographed. Each of the film strips obtained were later analyzed to determine the frequency of vapour bubble emission, the density of active nucleation side, and the volume of the microlayer evaporated for the particular combination of heat flux and subcooling investigated.
CHAPTER V
CHAPTER V

DATA REDUCTION

A. Thermometric Results

The following paragraphs describe the methods used in calculating the heat flux, the saturation temperature, the surface temperature, the liquid temperature, the subcooling and the superheat.

1. The heat transferred to the liquid at the heat transfer surface was calculated from the total power supplied to the oxide coating minus the sum of the heat losses.

\[ \frac{q}{A} = 3.414 \frac{EI}{A} - \sum_{i=1}^{n} \left( \frac{q_{loss}}{A} \right)_i \]

One of the heat losses in the above equation is the heat loss to the air space. This was computed by means of the correlation.

\[ Nu = 0.27 \left( Pr \; Gr \right)^{1/4} \]

which applied (13) for natural convection from a heater surface facing downward. For the purpose of computing an approximate value for this heat loss, the difference in temperature between the underside of the heater surface and the temperature of the air beneath it was taken to be the difference between the temperature measured by the "epoxied" thermocouple and the
ambient temperature. Based on these data the total heat loss to the air space was computed to be 0.02 Btu/hr ft\(^2\).

Another mode of heat loss was the heat conducted to the base plate through the rubber gasket that separated the heater surface from the base plate. This loss was approximated by an analysis based on one dimensional conduction. The temperature of the base plate was assumed to be the same as that of the bulk liquid in contact with it, thus giving an average temperature difference of 30\(^\circ\)F. Using a rubber thermal conductivity of 0.07 Btu/hr \(\text{ft}\times \text{F}\) the total heat loss to the base plate was computed to be 0.06 Btu/hr ft\(^2\).

2. The saturation temperature of the liquid at the heat transfer surface could not be measured. Therefore, the saturation temperature was deduced from the measured pressure existing in the test vessel and from the saturation curve shown in Figure 13. No hydrostatic pressure corrections were made, however, since the pressure fluctuations in the test vessel were much greater than the additional pressure applied on the heater surface due to the weight of the 2.5" height of liquid.
3. The temperature at the heat transfer surface was assumed to be the same as that of the underside of the heat glass plate because heat conduction through the plate represented less than 2\% of the heat dissipated at the boiling surface. In this case, no corrections were made for the temperature drop by conduction through the test specimen since the effect of the thermal conductivity (k plate = 0.6 Btu/ hr ft\textdegree F) through a plate thickness of 0.125 in. would result in a very small temperature drop. Detailed calculations for this temperature drop have been performed by other workers (13) and the temperature correction was estimated to be approximately 0.48\textdegree F.

4. The temperature of the liquid was computed by averaging the output of the two thermocouples that were positioned arbitrarily inside the liquid in the test vessel.

\[ T_\infty = \frac{1}{2} \left( T_1 + T_2 \right) \]

5. The subcooling temperature was computed to be the difference between the saturation temperature as defined above and the liquid temperature.

\[ \Delta T_{\text{Subcooling}} = (T_{\text{sat}} - T_\infty) \]
6. The superheat was defined to be the temperature difference between the surface temperature and the saturation temperature.

\[ \Delta T_{\text{superheat}} = (T_w - T_{\text{sat}}) \]

B. **Photographic Results**

The paragraphs in this section describe the methods used in calculating the true film speed, the active site density, the bubble frequency, the maximum bubble size, the micro-layer thickness and the volume of evaporated liquid.

1. The framing rate was set at 2,500 frames per second on the HYCAM camera. However, in order to obtain the true speed of the film, the total number of frames was divided by the total number of seconds of filming. Allowances were made on each film strip for the first seven feet where acceleration effects were present and had to be excluded from the averaging process. Appendix A contains a summary of the framing rates for each film.

2. The active site density and average population density were determined by projecting each set of film strips containing the photographic data of the nucleate boiling phenomenon. The entire film strip was examined in the
enlarged projection, and each site was marked on the projection at the point where bubbles were initiated. No artificial sites existed, and since it had been assumed that the active sites were uniformly distributed over the total area of the heater surface, it is further assumed that the section of surface examined was representative. This assumption seemed to be quite reasonable for these tests in which active site density was large, although there is some question of the representativeness of the data for those tests in which the active site density was small.

3. The period of time between cycles of vapour bubble emission was also determined by the detailed examination of the projected film strips. The growth of each single vapour bubble at each site was followed frame by frame until the bubble departed and another bubble was initiated at the same nucleation site. This interval of time has been designated as the period of time between cycles of bubble emission, whose reciprocal provides the frequency of vapour bubble emission. The frequency with which bubbles were produced, was averaged for each site, and finally the total number of active sites was summed up and the average frequency over all sites was obtained.

Although the entire film strip was examined, the procedure outlined above used the question of representativeness as mentioned earlier because some of the sites produced only
one or two bubbles while other sites produced as many as one hundred bubbles. Despite the uncertainties, however, it is believed that the determination of the average frequency provided relative indications of the influence of the parameters concerned. The histograms of the various frequencies are summarized in Appendix B. their mean value was taken as the average frequency over all the sites.

4. As employed here, the maximum bubble size is the diameter of the image projected in the plane of the heat transfer surface. The maximum diameter then, was determined by direct measurement on the screen, in which the film strips were projected. The magnification ratio of the projected screen size to the real size was 30:1 and similar magnification was transferred to the graduated measuring device used. Chapter VI summarizes the maximum bubble size in a matrix format, and gives a graphical representation of its changes with varying heat flux and subcooling.

5. The microlayer thickness was measured by means of the interference rings as shown in Figure 14. During film examination, the number of dark fringes (m) was counted starting from the center of the bubble. Also, the radius (r) of these fringes from the same center was measured and recorded. Then for every m\textsuperscript{th} dark fringe a step of height equivalent to \( (2m + 1) \left( \frac{\lambda}{4n^4} \right) \) above the heater surface was plotted at a radius (r) from the bubble's center. In this manner the
\[ \frac{q}{A} = 60.9 \text{ kW/m}^2 \] \[ (T_w - T_{sat}) = 20.5^\circ C \] \[ (T_{sat} - T_\infty) = 5.6^\circ C \] \[ \tau = 0.1 \text{ ms} \] \[ \tau = 1.3 \text{ ms} \] \[ \tau = 2.5 \text{ ms} \] \[ \tau = 3.7 \text{ ms} \]
profiles of the bubble and the profiles of the microlayer thickness were obtained at all the growing stages of each bubble examined. A representative number of bubbles (3-8) were studied for each film strip and they all were examined frame by frame. Considering the time of growth given by the number of frames elapsed, the microlayer thickness as a function of radius and time \( \bar{\delta}(r, t) \) was obtained.

Because the bubble projections on the plate were not always circular, the radius along which measurements were made was selected to have the average length of the maximum and the minimum radii of the bubble.

Finally, \( \bar{\delta}_0(r) \) was plotted for each growing bubble as indicated in the diagrams of Figures 34 to 45.

6. Figure 15 shows the microlayer cross-sectional area bounded above by the line \( \bar{\delta}_0(r) \), below by the line representing the surface heater and on the side by the line plotted from the profile of the microlayer before departure. If this area were allowed to revolve about an axis that is perpendicular to the heater surface and which passes through the center of the bubble, it would produce a volume of revolution, approximately equivalent to the volume of liquid evaporated during the bubble's growing stages, which represents

\[
v_E = 2\pi \int_0^{R(t)} \left[ \bar{\delta}_o(r) - \bar{\delta}(r, t) \right] r \, dr
\]
Figure 15  AREA OF REVOLUTION
Appendix C summarizes the results of these computations in matrix form and gives a graphical representation of changes with varying heat flux and degree of subcooling.

Finally, the total energy transported by microlayer evaporation was computed by:

\[
\dot{Q}_{\text{microlayer}} = 2\pi \rho \rho_f \Delta_f \frac{N}{A} \int_0^{R(t)} \left[ \delta^{(r)}(r) - \delta^{(s, \tau)}(r) \right] r \, dr
\]

where \( \delta^{(r)}(r) \) represents the instantaneous microlayer profile at the instant of departure \( t = \tau \).
CHAPTER VI
CHAPTER VI

RESULTS

The results obtained are presented in this section without comment. Most discussion and interpretations will be given in the following sections. The experimental results are categorized under the headings:

A. Heat transfer results

B. Microlayer evaporation results

The data is presented in a series of graphs showing the influence of heat flux and subcooling upon each one of the measured quantities. The numerical values plotted are tabulated in the Appendices.

A. Heat Transfer Results

The results of a series of tests performed to determine the characteristic boiling curve for dichloromethane boiling on the oxide coated glass surface is presented in Figure 16. These results which were obtained for various levels of heat flux under saturated and subcooled boiling conditions are presented as a plot of heat flux versus subcooling and superheat. Figure 16 also shows the transition from Natural Convection to Nucleate Boiling for both plots (saturated boiling and maximum subcooled boiling conditions.

Figure 17 summarizes the heat transfer results in the form of plots of superheat versus subcooling with levels of heat flux as parameters. This parametric form shows the influence of heat flux and subcooling upon the superheat.
Figure 16  CHARACTERISTIC CURVES
\[ \left( T_w - T_s \right) \left( T_s - T_d \right) = \left( \frac{8600}{22.6} \right)^{\frac{3}{4}} \]

\[ = 86.2 \]

\[ \frac{q}{A} = 8,600 \text{ Btu/hr ft}^2 \]
The tables contained in Appendix A summarize the data for the 12 combinations of heat flux and levels of subcooling investigated. Each table contains the experimental data for each point in the heat flux and subcooling matrix. The remaining Appendices contain all the pertinent experimental data.
B. Microlayer Evaporation Results

Figures 18 to 29 are presenting prints made from motion picture films. The interference rings as captured in the films can be clearly seen in these prints. Each figure presents the growth stages of a bubble, by means of four prints adjacent to the plot of the instantaneous microlayer profile as deduced from the interferograms. Also each figure contains prints from different combinations of heat flux and subcooling level.

Figures 30 to 52 present the results of the study which determined the total heat transferred by microlayer evaporation, and the influence exerted upon it by varying heat flux and level of subcooling.

The results of the active site density N/A are presented in figure 30 in the form of plots of average population density versus subcooling for various values of constant heat flux. The values presented in this plot represent the bubble population on the surface at a given instant of time. The bubble frequency averaged over all active sites is given in figure 31. The plot shows the effect of subcooling and heat flux upon the frequency with which bubbles were produced. Figure 32 presents results in the form of plots of bubble flux density versus subcooling, again with the levels of heat flux as parameters. The values presented in this plot, indicate the number of bubbles that departed from the heater surface per unit time at specified levels of heat flux and subcooling.
Figure 18

THE OF THE

(1.1)
Figure 19
Figure 20

OF THE

OF THE DATA (1,3)
Figure 21
PRINTS OF THE INTERFEROGRAMS OF THE DATA POINT (1,4)
Figure 22
PRINTS OF THE INTERFEROGRAMS OF THE DATA POINT (2,1)
Figure 23
PRINTS OF THE INTERFEROGRAMS OF THE DATA POINT (2,2)
Figure 24
PRINTS OF THE INTERFEROGRAMS OF THE DATA POINT (2,3)
Figure 25

PRINTS OF THE INTERFEROGRAMS OF THE DATA POINT (2,4)
Figure 26

PRINTS OF THE INTERFERGRAMS OF THE DATA POINT (3,1)
Figure 27
PRINTS OF THE INTERFÉROGRAMS OF THE DATA POINT (3,2)
PRINTS OF THE INTERFEROGRAMS OF THE DATA POINT (3,3)
Figure 29
PRINTS OF THE INTERFEROGRAMS OF THE DATA POINT (3,4)
Figure 31  BUBBLE FREQUENCY

- $q/A = 19,000$ Btu/hr ft$^2$
- $q/A = 13,200$ Btu/hr ft$^2$
- $q/A = 5,600$ Btu/hr ft$^2$
Figure 32  BUBBLE FLUX
The results of the analysis of the maximum bubble size, are summarized in Figure 33. The maximum size is obtained by measuring the maximum diameter attained by the vapour bubbles while attached to the heat transfer surface. Care has been taken to distinguish between vapour bubbles which departed from the heat transfer surface, and those which collapsed in order to exclude the later. The maximum bubble size results are presented as a function of subcooling for various values of constant heat flux.

Figures 34 to 45 illustrate the variation of the instantaneous microlayer thickness $\bar{\delta}(r,t)$ with elapsed time and depicts the initial microlayer thickness $\bar{\delta}_0(r)$ obtained by plotting the locus of points at which the gradient $\partial\bar{\delta}(r,t)/\partial t$ approaches infinity. Each one of these figures contains microlayer profiles for one specific combination of heat flux and subcooling.

Boiling did occur only for the three higher heat flux values for all levels of subcooling. Therefore, the microlayer evaporation data included here contains only 12 combinations of heat flux and subcooling, out of 24 combinations that were examined.

Each of figures 46, 47 and 48 illustrate the influence of subcooling upon the initial microlayer thickness $\bar{\delta}_0(r)$ for a constant heat flux.
Figure 33  MAXIMUM BUBBLE SIZE

- q/A  39,000 Btu/hr ft²
- q/A  13,200 Btu/hr ft²
- q/A  8,600 Btu/hr ft²
Figure 34 MICROLAYER PROFILE FOR DATA POINT (1,1)
Figure 35  MICROLAYER PROFILE FOR DATA POINT (1.2)
Figure 39  MICROLAYER PROFILE FOR DATA POINT (2,2)
Figure 41: Microlayer profile for data point (2,4)
Figure 43 MICROLAYER PROFILE FOR DATA POINT (3,2)
Note: All curves are based upon 15 individual initial microlayer profiles.

\[ \frac{q}{A} = 19,000 \text{ Btu/hr ft}^2 \]

Figure 46  THE EFFECT OF SUBCOOLING ON THE INITIAL MICROLAYER PROFILES
Figure 47 THE EFFECT OF SUBCOOLING ON THE INITIAL MICROLAYER PROFILES

Note: All curves are based upon 15 individual initial microlayer profiles.

\[ \frac{q}{A} = 13,200 \text{ Btu/hr ft}^2 \]
Note: All curves are based upon 15 individual initial microlayer profiles.

\[ \frac{q}{A} = 8,600 \text{ Btu/hr ft}^2 \]
Figures 49 to 52 present the results of the analysis which was performed to determine the percentage of heat transferred by microlayer evaporation. Figure 49 summarizes the volumes of liquid which were evaporated from the microlayer into the bubble. Each curve contains data plotted in the form of volume versus subcooling with the levels of heat flux as parameter. The amount of heat transferred through microlayer evaporation is presented in figure 50 as a function of subcooling. The levels of heat flux are again presented in such a way as to show the influence of both heat flux and subcooling upon the heat transferred by microlayer evaporation. Figure 51 presents plots of the percentage of heat transferred by microlayer evaporation as a function of subcooling. The effect of heat flux is also shown in figure 51 in parametric form. Finally figure 52 illustrates the effects of heat flux upon the heat transferred by microlayer evaporation while the influence of subcooling is shown in parametric form.
Figure 49  VOLUMES OF MICROLAYER LIQUID EVAPORATED
Figure 50  HEAT TRANSFERRED BY MICROLAYER EVAPORATION
Figure 51 PERCENT OF HEAT TRANSFERED BY MICROLAYER EVAPORATION
Figure 52  RATIO OF HEAT TRANSFERED BY MICROLAYER EVAPORATION vs. TOTAL HEAT TRANSFERED
CHAPTER VII

DISCUSSION

A. Heat Transfer Results

The test procedure involving the establishment of reference test conditions before each run was explained previously. The purpose of this procedure was to obtain test results for the particular level of subcooling investigated. Figure 16 presented the two curves corresponding to minimum subcooling (i.e. Saturated boiling), and to maximum subcooling (i.e. \(T_s - T_{\infty} = 13.5^\circ F\)). For intermediate levels of subcooling the data points fall between the two plots.

The heat transfer results are essentially parallel to one another. The value of the slope in the Natural Convection region for both curves shown on Figure 16, depends entirely upon the physical parameters of the heated liquid and it may be verified as follows:

\[
Nu = 0.16 \left( Pr \ Gr \right)^{1/3}
\]

where by substituting the definitions for Nusselt and for Grashof numbers

\[
\frac{hD}{k} = 0.16 \left[ Pr \frac{\beta \rho^2}{\mu^2} B^3 (T_w - T_\infty) \right]^{1/3}
\]

hence

\[
\frac{q}{A} = 0.16 \left( Pr \frac{\beta \rho^2}{\mu^2} \right)^{1/3} (T_w - T_\infty)^{4/3}
\]

whereas by substituting fluid property values for dichloromethane evaluated at the saturation temperature, then

\[
\frac{q}{A} = 22.6 (T_w - T_\infty)^{4/3} \text{ Btu/hr-ft}^2
\]

Although the number of points are very few to be of significance, in Figure 17 the data contained illustrate that subcooling has a marked effect upon the superheat at constant heat flux. Also there may be noted that the value of superheat increases with increasing heat flux.
The point at which the curve intersects the subcooling axes may be found as follows:

\[
\text{Superheat} + \text{Subcooling} = \text{Natural Convection}
\]

hence 

\[
(T_w - T_s) + (T_s - T_\infty) = \frac{(8600)^{3/4}}{22.6} = 86
\]

B. Microlayer Evaporation Results

The profiles of the bubbles presented in Figures 18 to 29 are plotted from data obtained in the adjacent interferograms. It must be noted that the profile of the bubble cap is entirely conjectural since the depth of field of the optical system was such that only detail within the microlayer region would be visible. Occasional evidence of the cap was presented in the form of a secondary dark spot (interference) whenever a bubble was growing asymmetrically. This illustrated in the second print of Figure 29. The initial growth rate was extremely rapid as evidenced by the blurred image in the first print of Figure 14. Careful examination of frames enlarged 100 times revealed the bubbles growth history in the form of interference fringes. Asymmetry has commenced when the fringes are no longer concentric within the outline of the bubble. The broadening of the fringes seen in some figures is an indication of a decrease in the slope of the liquid-vapour interface. In all the prints presented, it is apparent that the dry spot beneath the bubble grows continually.

The results presented in Figure 30 demonstrate the influence of heat flux and subcooling upon the active site density. Although a small number of points were available, the curves plotted appear to have a tendency to decrease with increased subcooling. Also heat flux appears to have more influence on the active site density than subcooling.
The influence of heat flux and subcooling upon the frequency of vapour bubble emission has been illustrated in Figure 31. The curves presented show that the frequency of vapour bubble emission varies directly with heat flux and indirectly with subcooling. Decrease in frequency with increasing subcooling is explained by the fact that it takes longer periods of time for a bubble to reach departure size. The fact that the surface temperature and the temperature of the fluid adjacent, both increase with increasing heat flux, provide an explanation for the heat flux effects because bubbles grow more rapidly due to the enhancement of heat transfer in the boundary layer at the heat transfer surface. The plots shown in Figures 31 & 32 illustrate that there were no significant differences in the curves of bubble frequency (Bubbles/sec) and bubble flux density (Bubble/ft\(^2\)-sec), with heat flux when both were plotted vs subcooling.

In the results presented in Figure 33 no attempt was made to indicate the influence which heat flux and subcooling may have had upon the maximum bubble size results. This is because effects due to varying heat flux were such that could not be distinguished from the uncertainty in the measurements obtained. Variation of subcooling levels indicated that a high percentage of bubbles reached a radius of 1.5mm for saturated boiling and for the maximum subcooling level investigated. On the other hand bubbles growing in the intermediate subcooling levels scarcely exceeded a radius of 1.1mm. These results however, may not necessarily be considered representative because of the relatively small samples available for examination.
The variations of the instantaneous microlayer thickness \( \delta (r, t) \) were summarized in Figures 34 to 45. The numbers shown with each instantaneous microlayer profile indicate the elapsed time to the particular frame examined. Since each frame number corresponds to a time lapse of approximately 0.45 milliseconds, the development of the bubble's periphery, microlayer and dry spot may be obtained as a function of time. The bubbles depicted in these figures grew much faster at the initial stages as compared to the final. They all nucleated, reached departure size and detached in an averaged time lapse of 5.6 milliseconds.

The initial microlayer thickness \( \delta_0 (r) \) presented in figures 34 to 45 have been reproduced in figures 46, 47 and 48 for comparison. It is immediately apparent that for constant heat flux the microlayer thickness decreases with increased subcooling.

The discussion to this point has been concerned with the presentation of physical effects which have been observed or deduced from the results of the present investigation. The remainder of the discussion is directed towards the utilization of these results in order to obtain the percent contribution of the microlayer evaporation phenomenon to the total nucleate boiling heat transfer, for the various levels of subcooling and heat flux.
The volume of liquid evaporated from the microlayer in the time interval 0 to \( t \) is given by:

\[
V_e = 2\pi \int_0^{R(t)} \left[ \delta_0(r) - \delta(r, t) \right] r \, dr
\]

It was calculated as a volume of revolution of the area between the initial microlayer thickness \( \delta_0(r) \), the heater surface, and the last recorded instantaneous microlayer profile \( \delta(r, \tau) \) at the instant of departure where \( t = \tau \). Figure 49 presents the effect upon the volume evaporated by varying levels of subcooling and heat flux. Because the use of the volume of revolution method requires perfect symmetry, the most symmetric bubbles at the departure size were carefully selected, thus minimizing the error due to asymmetric growth. Volume fluctuations due to varying heat flux were such that could not be distinguished from the uncertainty of the measurements obtained.

The contribution of the microlayer evaporation heat transfer to the nucleate boiling heat transfer process could be assessed once the validity of the initial microlayer profile had been established since the heat transferred may be computed by:

\[
\left( \frac{q}{A} \right)_{\text{microlayer}} = 2\pi \rho \frac{h_f}{\Delta} N \int_0^{R(t)} \left[ \delta_0(r) - \delta(r, \tau) \right] r \, dr
\]

Figure 50 illustrates the effect exerted upon the microlayer evaporation heat transfer by the varying heat flux and levels of subcooling. The variation of these curves appear to be similar to the plots in figure 51 which show the percent contribution of the microlayer evaporation phenomenon to the total nucleate boiling heat transfer. Heat
transferred by microlayer evaporation varies directly with heat flux. Its dependence however on the levels of subcooling indicate that there exist at least two interacting mechanisms causing the plots to decrease initially and then increase.

Finally the heat transferred by microlayer evaporation to the total heat transferred was illustrated in Figure 52. All of the curves plotted increase with increased heat supply. This is because an increase in heat flux causes an increase in bubble flux density which results in a direct increase in heat transferred by microlayer evaporation. As the heat supplied decreases the rate of heat transferred by microlayer evaporation approaches zero for all the plots which converge at the incipient point. As subcooling is increased from the saturated condition, microlayer evaporation heat transfer decreases. A minimum is reached and then microlayer evaporation begins to increase with increasing subcooling.
CHAPTER VIII

CONCLUSION

The results of the present investigation comprise a consistent set of measurements of microlayer thickness, active site density, frequency of vapour bubble emission and maximum bubble size pertaining to dichloromethane boiling on an oxide coated glass heating surface for various combinations of heat flux and subcooling.

The above results confirm that the microlayer evaporation phenomenon is a significant heat transfer mechanism. The relative significance of this mechanism to the nucleate boiling heat transfer process at the various levels of heat flux and subcooling examined, is summarized as follows:

a) Microlayer evaporation heat transfer increases directly with increased heat flux.

b) Microlayer evaporation heat transfer decreases originally with increased levels of subcooling, reaches a minimum and then increases again.
APPENDICES
APPENDIX A

EXPERIMENTAL DATA
**DATA FOR POINT (1, 1)**

**FILM DATA**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total film length</td>
<td>3870 frames</td>
</tr>
<tr>
<td>Total film markings</td>
<td>183 dots</td>
</tr>
<tr>
<td>Marking frequency</td>
<td>100 dots/sec</td>
</tr>
<tr>
<td>Average number of frames</td>
<td>21.147 frames/dot</td>
</tr>
<tr>
<td>Average time per frame</td>
<td>0.473 \times 10^{-3} secs/frame</td>
</tr>
</tbody>
</table>

**POWER DATA**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage supplied</td>
<td>68 volts</td>
</tr>
<tr>
<td>Current supplied</td>
<td>1.52 amps</td>
</tr>
<tr>
<td>Power supplied</td>
<td>352.87 Btu/hr</td>
</tr>
<tr>
<td>Plate area</td>
<td>1.82 \times 10^{-2} ft^2</td>
</tr>
<tr>
<td>Power supplied per unit area</td>
<td>19,388.5 Btu/hr ft^2</td>
</tr>
</tbody>
</table>

**THERMODYNAMIC DATA**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall temperature</td>
<td>109.4 °F</td>
</tr>
<tr>
<td>Bulk liquid temperature</td>
<td>68.0 °F</td>
</tr>
<tr>
<td>Saturation temperature</td>
<td>69.9 °F</td>
</tr>
<tr>
<td>Saturation pressure</td>
<td>14.0 in Hg</td>
</tr>
<tr>
<td>Subcooling temperature</td>
<td>1.9 °F</td>
</tr>
<tr>
<td>Superheat temperature</td>
<td>39.5 °F</td>
</tr>
</tbody>
</table>

**BUBBLE DATA**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number of frames between bubbles</td>
<td>60.4 frames</td>
</tr>
<tr>
<td>Number of active sites per frame</td>
<td>26 sites/frame</td>
</tr>
<tr>
<td>Average elapsed time between bubbles</td>
<td>0.0285 secs</td>
</tr>
<tr>
<td>Average bubble-frequency</td>
<td>35 Bubbles/sec-site</td>
</tr>
<tr>
<td>Bubble flux density</td>
<td>851,009 Bubbles/ft^2-sec</td>
</tr>
</tbody>
</table>
### DATA FOR POINT (1, 2)

#### FILM DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total film length, L</td>
<td>1231</td>
<td>frames</td>
</tr>
<tr>
<td>Total film markings, ( n )</td>
<td>53</td>
<td>dots</td>
</tr>
<tr>
<td>Marking frequency, ( v )</td>
<td>100</td>
<td>dots/sec</td>
</tr>
<tr>
<td>Average number of frames, ( n )</td>
<td>23.226</td>
<td>frames/dot</td>
</tr>
<tr>
<td>Average time per frame, ( \tau )</td>
<td>(0.43 \times 10^{-3})</td>
<td>secs/frame</td>
</tr>
</tbody>
</table>

#### POWER DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage supplied, ( E )</td>
<td>69</td>
<td>volts</td>
</tr>
<tr>
<td>Current supplied, ( I )</td>
<td>1.53</td>
<td>amps</td>
</tr>
<tr>
<td>Power supplied, ( Q )</td>
<td>360.4</td>
<td>Btu/hr</td>
</tr>
<tr>
<td>Plate area, ( A )</td>
<td>(1.82 \times 10^{-2})</td>
<td>ft(^2)</td>
</tr>
<tr>
<td>Power supplied per unit area, ( q/A )</td>
<td>19,803</td>
<td>Btu/hr ft(^2)</td>
</tr>
</tbody>
</table>

#### THERMODYNAMIC DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall temperature, ( T_w )</td>
<td>108.2</td>
<td>°F</td>
</tr>
<tr>
<td>Bulk liquid temperature, ( T_\infty )</td>
<td>61.1</td>
<td>°F</td>
</tr>
<tr>
<td>Saturation temperature, ( T_{sat} )</td>
<td>69.9</td>
<td>°F</td>
</tr>
<tr>
<td>Saturation pressure, ( P_{sat} )</td>
<td>14.0</td>
<td>in Hg</td>
</tr>
<tr>
<td>Subcooling temperature, ( \Delta T_{sub} )</td>
<td>8.8</td>
<td>°F</td>
</tr>
<tr>
<td>Superheat temperature, ( \Delta T_{sup} )</td>
<td>38.3</td>
<td>°F</td>
</tr>
</tbody>
</table>

#### BUBBLE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average number of frames between bubbles, ( F )</td>
<td>70.4</td>
<td>frames</td>
</tr>
<tr>
<td>Number of active sites per frame, ( N )</td>
<td>26</td>
<td>sites/frame</td>
</tr>
<tr>
<td>Average elapsed time between bubbles, ( T )</td>
<td>0.030</td>
<td>secs</td>
</tr>
<tr>
<td>Average bubble frequency, ( f )</td>
<td>33</td>
<td>Bubbles/sec-site</td>
</tr>
<tr>
<td>Bubble flux density, ( \Phi )</td>
<td>802,380</td>
<td>Bubbles/ft(^2)-sec</td>
</tr>
</tbody>
</table>
### DATA FOR POINT (1, 3)

#### FILM DATA
- L (Total film length): 1026 frames
- n (Total film markings): 44 dots
- v (Marking frequency): 100 dots/sec
- n (Average number of frames): 23.318 frames/dot
- t (Average time per frame): $0.428 \times 10^{-3}$ secs/frame

#### POWER DATA
- E (Voltage supplied): 67 volts
- I (Current supplied): 1.51 amps
- Q (Power supplied): 345.39 Btu/hr
- A (Plate area): $1.82 \times 10^{-2}$ ft²
- q/A (Power supplied per unit area): 18,977 Btu/hr ft²

#### THERMODYNAMIC DATA
- T_w (Wall temperature): 107.6 °F
- T_0 (Bulk liquid temperature): 59.9 °F
- T_sat (Saturation temperature): 69.9 °F
- P_sat (Saturation pressure): 14.0 in Hg
- ΔT_sub (Subcooling temperature): 10.0 °F
- ΔT_sup (Superheat temperature): 37.7 °F

#### BUBBLE DATA
- F (Average number of frames between bubbles): 80.5 frames
- N (Number of active sites per frame): 25 sites/frame
- T (Average elapsed time between bubbles): 0.0344 secs
- f (Average bubble frequency): 29 Bubbles/sec-site
- Φ (Bubble flux density): 678,002 Bubbles/ft²·sec
### DATA FOR POINT (1, 4)

#### FILM DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L  Total film length</td>
<td>1052</td>
<td>frames</td>
</tr>
<tr>
<td>( \eta )  Total film markings</td>
<td>46</td>
<td>dots</td>
</tr>
<tr>
<td>v  Marking frequency</td>
<td>100</td>
<td>dots/sec</td>
</tr>
<tr>
<td>n  Average number of frames</td>
<td>22.869</td>
<td>frames/dot</td>
</tr>
<tr>
<td>( \tau )  Average time per frame</td>
<td>0.437*10^{-3}</td>
<td>secs/frame</td>
</tr>
</tbody>
</table>

#### POWER DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E  Voltage supplied</td>
<td>68</td>
<td>volts</td>
</tr>
<tr>
<td>I  Current supplied</td>
<td>1.51</td>
<td>amps</td>
</tr>
<tr>
<td>Q  Power supplied</td>
<td>350.5</td>
<td>Btu/hr</td>
</tr>
<tr>
<td>A  Plate area</td>
<td>1.82*10^{-2}</td>
<td>ft²</td>
</tr>
<tr>
<td>q/A Power supplied per unit area</td>
<td>19,260</td>
<td>Btu/hr ft²</td>
</tr>
</tbody>
</table>

#### THERMODYNAMIC DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>( T_w ) Wall temperature</td>
<td>106.8</td>
<td>°F</td>
</tr>
<tr>
<td>( T_\infty ) Bulk liquid temperature</td>
<td>56.65</td>
<td>°F</td>
</tr>
<tr>
<td>( T_{sat} ) Saturation temperature</td>
<td>69.90</td>
<td>°F</td>
</tr>
<tr>
<td>( P_{sat} ) Saturation pressure</td>
<td>14</td>
<td>in Hg</td>
</tr>
<tr>
<td>( \Delta T_{sub} ) Subcooling temperature</td>
<td>10.3</td>
<td>°F</td>
</tr>
<tr>
<td>( \Delta T_{sup} ) Superheat temperature</td>
<td>36.9</td>
<td>°F</td>
</tr>
</tbody>
</table>

#### BUBBLE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F  Average number of frames between bubbles</td>
<td>70.5</td>
<td>frames</td>
</tr>
<tr>
<td>N  Number of active sites per frame</td>
<td>26</td>
<td>sites/frame</td>
</tr>
<tr>
<td>T  Average elapsed time between bubbles</td>
<td>0.0333</td>
<td>secs</td>
</tr>
<tr>
<td>f  Average bubble frequency</td>
<td>30</td>
<td>Bubbles/sec-site</td>
</tr>
<tr>
<td>( \Phi ) Bubble flux density</td>
<td>729,436</td>
<td>Bubbles/ft²·sec</td>
</tr>
</tbody>
</table>
DATA FOR POINT ( 2 , 1 )

**FILM DATA**
- L Total film length: 3814 frames
- η Total film markings: 180 dots
- v Marking frequency: 100 dots/sec
- n Average number of frames: 21.188 frames/dot
- τ Average time per frame: $0.472 \times 10^{-3}$ secs/frame

**POWER DATA**
- E Voltage supplied: 56 volts
- I Current supplied: 1.29 amps
- Q Power supplied: 246.6 Btu/hr
- A Plate area: $1.82 \times 10^{-2}$ ft$^2$
- q/A Power supplied per unit area: 13,550.9 Btu/hr ft$^2$

**THERMODYNAMIC DATA**
- $T_\text{w}$ Wall temperature: 107.9 °F
- $T_\infty$ Bulk liquid temperature: 67.8 °F
- $T_{\text{sat}}$ Saturation temperature: 69.9 °F
- $P_{\text{sat}}$ Saturation pressure: 14 in Hg
- $\Delta T_{\text{sub}}$ Subcooling temperature: 2.1 °F
- $\Delta T_{\text{sup}}$ Superheat temperature: 38.0 °F

**BUBBLE DATA**
- F Average number of frames between bubbles: 75.6 frames
- N Number of active sites per frame: 23 sites/frame
- T Average elapsed time between bubbles: 0.035 secs
- f Average bubble frequency: 28 Bubbles/sec-site
- $\Phi$ Bubble flux density: 602,253 Bubbles/ft$^2$-sec
DATA FOR POINT (2, 2)

FILM DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Total film length</td>
<td>929</td>
<td>frames</td>
</tr>
<tr>
<td>n Total film markings</td>
<td>44</td>
<td>dots</td>
</tr>
<tr>
<td>v Marking frequency</td>
<td>100</td>
<td>dots/sec</td>
</tr>
<tr>
<td>n Average number of frames</td>
<td>21.136</td>
<td>frames/dot</td>
</tr>
<tr>
<td>r Average time per frame</td>
<td>0.473 x 10^-3</td>
<td>secs/frame</td>
</tr>
</tbody>
</table>

POWER DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E Voltage supplied</td>
<td>56</td>
<td>volts</td>
</tr>
<tr>
<td>I Current supplied</td>
<td>1.28</td>
<td>amps</td>
</tr>
<tr>
<td>Q Power supplied</td>
<td>244.7</td>
<td>Btu/hr</td>
</tr>
<tr>
<td>A Plate area</td>
<td>1.82 x 10^-2</td>
<td>ft^2</td>
</tr>
<tr>
<td>q/A Power supplied per unit area</td>
<td>13,446</td>
<td>Btu/hr ft^2</td>
</tr>
</tbody>
</table>

THERMODYNAMIC DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_w Wall temperature</td>
<td>106.8</td>
<td>°F</td>
</tr>
<tr>
<td>T_\infty Bulk liquid temperature</td>
<td>61.7</td>
<td>°F</td>
</tr>
<tr>
<td>T_sat Saturation temperature</td>
<td>69.9</td>
<td>°F</td>
</tr>
<tr>
<td>P_sat Saturation pressure</td>
<td>14.0</td>
<td>in Hg</td>
</tr>
<tr>
<td>ΔT_{sub} Subcooling temperature</td>
<td>8.2</td>
<td>°F</td>
</tr>
<tr>
<td>ΔT_{sup} Superheat temperature</td>
<td>36.9</td>
<td>°F</td>
</tr>
</tbody>
</table>

BUBBLE DATA

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F Average number of frames between bubbles</td>
<td>81.314</td>
<td>frames</td>
</tr>
<tr>
<td>N Number of active sites per frame</td>
<td>14</td>
<td>sites/frame</td>
</tr>
<tr>
<td>T Average elapsed time between bubbles</td>
<td>0.0384</td>
<td>secs</td>
</tr>
<tr>
<td>f Average bubble frequency</td>
<td>26</td>
<td>Bubbles/sec-site</td>
</tr>
<tr>
<td>ϕ Bubble flux density</td>
<td>340,403</td>
<td>Bubbles/ft^2·sec</td>
</tr>
</tbody>
</table>
DATA FOR POINT (2, 3)

**FILM DATA**

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Total film length</td>
<td>1089</td>
<td>frames</td>
</tr>
<tr>
<td>n</td>
<td>Total film markings</td>
<td>48</td>
<td>dots</td>
</tr>
<tr>
<td>v</td>
<td>Marking frequency</td>
<td>100</td>
<td>dots/sec</td>
</tr>
<tr>
<td>n</td>
<td>Average number of frames</td>
<td>22.687</td>
<td>frames/dot</td>
</tr>
<tr>
<td>τ</td>
<td>Average time per frame</td>
<td>0.440*10^{-3}</td>
<td>secs/frame</td>
</tr>
</tbody>
</table>

**POWER DATA**

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Voltage supplied</td>
<td>56</td>
<td>volts</td>
</tr>
<tr>
<td>I</td>
<td>Current supplied</td>
<td>1.28</td>
<td>amps</td>
</tr>
<tr>
<td>Q</td>
<td>Power supplied</td>
<td>244.7</td>
<td>Btu/hr</td>
</tr>
<tr>
<td>A</td>
<td>Plate area</td>
<td>1.82*10^{-2}</td>
<td>ft^2</td>
</tr>
<tr>
<td>q/A</td>
<td>Power supplied per unit area</td>
<td>13,446</td>
<td>Btu/hr ft^2</td>
</tr>
</tbody>
</table>

**THERMODYNAMIC DATA**

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_w</td>
<td>Wall temperature</td>
<td>107.4</td>
<td>°F</td>
</tr>
<tr>
<td>T_∞</td>
<td>Bulk liquid temperature</td>
<td>59.2</td>
<td>°F</td>
</tr>
<tr>
<td>T_sat</td>
<td>Saturation temperature</td>
<td>69.9</td>
<td>°F</td>
</tr>
<tr>
<td>P_sat</td>
<td>Saturation pressure</td>
<td>14</td>
<td>in Hg</td>
</tr>
<tr>
<td>ΔT_{sub}</td>
<td>Subcooling temperature</td>
<td>10.7</td>
<td>°F</td>
</tr>
<tr>
<td>ΔT_{sup}</td>
<td>Superheat temperature</td>
<td>37.5</td>
<td>°F</td>
</tr>
</tbody>
</table>

**BUBBLE DATA**

<table>
<thead>
<tr>
<th>Letter</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Average number of frames between bubbles</td>
<td>119.6</td>
<td>frames</td>
</tr>
<tr>
<td>N</td>
<td>Number of active sites per frame</td>
<td>14</td>
<td>sites/frame</td>
</tr>
<tr>
<td>T</td>
<td>Average elapsed time between bubbles</td>
<td>0.052</td>
<td>secs</td>
</tr>
<tr>
<td>f</td>
<td>Average bubble frequency</td>
<td>19</td>
<td>Bubbles/sec-site</td>
</tr>
<tr>
<td>φ</td>
<td>Bubble flux density</td>
<td>248,756</td>
<td>Bubbles/ft^2·sec</td>
</tr>
</tbody>
</table>
### DATA FOR POINT (2, 4)

#### FILM DATA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L$</td>
<td>Total film length</td>
<td>1035</td>
<td>frames</td>
</tr>
<tr>
<td>$\eta$</td>
<td>Total film markings</td>
<td>46</td>
<td>dots</td>
</tr>
<tr>
<td>$v$</td>
<td>Marking frequency</td>
<td>100</td>
<td>dots/sec</td>
</tr>
<tr>
<td>$n$</td>
<td>Average number of frames</td>
<td>22.500</td>
<td>frames/dot</td>
</tr>
<tr>
<td>$\tau$</td>
<td>Average time per frame</td>
<td>$0.444 \times 10^{-3}$</td>
<td>secs/frame</td>
</tr>
</tbody>
</table>

#### POWER DATA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E$</td>
<td>Voltage supplied</td>
<td>45</td>
<td>volts</td>
</tr>
<tr>
<td>$I$</td>
<td>Current supplied</td>
<td>1.01</td>
<td>amps</td>
</tr>
<tr>
<td>$Q$</td>
<td>Power supplied</td>
<td>155.1</td>
<td>Btu/hr</td>
</tr>
<tr>
<td>$A$</td>
<td>Plate area</td>
<td>$1.82 \times 10^{-2}$</td>
<td>ft$^2$</td>
</tr>
<tr>
<td>$q/A$</td>
<td>Power supplied per unit area</td>
<td>11,923</td>
<td>Btu/hr ft$^2$</td>
</tr>
</tbody>
</table>

#### THERMODYNAMIC DATA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_w$</td>
<td>Wall temperature</td>
<td>106.5</td>
<td>°F</td>
</tr>
<tr>
<td>$T_\infty$</td>
<td>Bulk liquid temperature</td>
<td>57.6</td>
<td>°F</td>
</tr>
<tr>
<td>$T_{sat}$</td>
<td>Saturation temperature</td>
<td>69.9</td>
<td>°F</td>
</tr>
<tr>
<td>$p_{sat}$</td>
<td>Saturation pressure</td>
<td>14</td>
<td>in Hg</td>
</tr>
<tr>
<td>$\Delta T_{sub}$</td>
<td>Subcooling temperature</td>
<td>12.3</td>
<td>°F</td>
</tr>
<tr>
<td>$\Delta T_{sup}$</td>
<td>Superheat temperature</td>
<td>36.6</td>
<td>°F</td>
</tr>
</tbody>
</table>

#### BUBBLE DATA

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F$</td>
<td>Average number of frames between bubbles</td>
<td>97.92</td>
<td>frames</td>
</tr>
<tr>
<td>$N$</td>
<td>Number of active sites per frame</td>
<td>9</td>
<td>sites/frame</td>
</tr>
<tr>
<td>$T$</td>
<td>Average elapsed time between bubbles</td>
<td>0.0434</td>
<td>secs</td>
</tr>
<tr>
<td>$f$</td>
<td>Average bubble frequency</td>
<td>23</td>
<td>Bubbles/sec-site</td>
</tr>
<tr>
<td>$\Phi$</td>
<td>Bubble flux density</td>
<td>193,581</td>
<td>Bubbles/ft$^2$-sec</td>
</tr>
</tbody>
</table>
DATA FOR POINT (3, 1)

FILM DATA

L  Total film length  3757  frames
η  Total film markings  175  dots
ν  Marking frequency  100  dots/sec
n  Average number of frames  21.468  frames/dot
τ  Average time per frame  0.65*10^{-3}  secs/frame

POWER DATA

E  Voltage supplied  46  volts
I  Current supplied  1.04  amps
Q  Power supplied  163.3  Btu/hr
A  Plate area  1.82*10^{-2}  ft^2
q/A  Power supplied per unit area  8,974  Btu/hr ft^2

THERMODYNAMIC DATA

T_w  Wall temperature  106.5  °F
T_b  Bulk liquid temperature  67.1  °F
T_{sat}  Saturation temperature  69.9  °F
P_{sat}  Saturation pressure  14  in Hg
ΔT_{sub}  Subcooling temperature  2.8  °F
ΔT_{sup}  Superheat temperature  36.6  °F

BUBBLE DATA

F  Average number of frames between bubbles  93.5  frames
N  Number of active sites per frame  7  sites/frame
T  Average elapsed time between bubbles  0.0434  secs
f  Average bubble frequency  23  Bubbles/sec-site
Φ  Bubble flux density  150,563  Bubbles/ft^2-sec
### DATA FOR POINT (3.2)

#### FILM DATA
- **L** Total film length: 1243 frames
- **η** Total film markings: 57 dots
- **ν** Marking frequency: 100 dots/sec
- **n** Average number of frames: 21.807 frames/dot
- **τ** Average time per frame: $0.458 \times 10^{-3}$ secs/frame

#### POWER DATA
- **E** Voltage supplied: 46 volts
- **I** Current supplied: 1.02 amps
- **Q** Power supplied: 160.18 Btu/hr
- **A** Plate area: $1.82 \times 10^{-2}$ ft$^2$
- **q/A** Power supplied per unit area: 8.801 Btu/hr ft$^2$

#### THERMODYNAMIC DATA
- **T_w** Wall temperature: 107.6 °F
- **T_b** Bulk liquid temperature: 60.9 °F
- **T_sat** Saturation temperature: 69.9 °F
- **P_sat** Saturation pressure: 14.0 in Hg
- **ΔT_sub** Subcooling temperature: 9707 °F
- **ΔT_sup** Superheat temperature: °F

#### BUBBLE DATA
- **F** Average number of frames between bubbles: 94.93 frames
- **N** Number of active sites per frame: 6 sites/frame
- **T** Average elapsed time between bubbles: 0.0434 secs
- **f** Average bubble frequency: 23 Bubbles/sec-site
- **Φ** Bubble flux density: 129,054 Bubbles/ft$^2$-sec
DATA FOR POINT \((3, 3)\)

**FILM DATA**

- \(L\) Total film length: 1125 frames
- \(\eta\) Total film markings: 51 dots
- \(v\) Marking frequency: 100 dots/sec
- \(n\) Average number of frames: 22.058 frames/dot
- \(\tau\) Average time per frame: \(0.453 \times 10^{-3}\) secs/frame

**POWER DATA**

- \(E\) Voltage supplied: 46 volts
- \(I\) Current supplied: 1.02 amps
- \(Q\) Power supplied: 160.1 Btu/hr
- \(A\) Plate area: \(1.82 \times 10^{-2}\) ft\(^2\)
- \(q/A\) Power supplied per unit area: 8,801 Btu/hr ft\(^2\)

**THERMODYNAMIC DATA**

- \(T_w\) Wall temperature: 105.0 \(^\circ\)F
- \(T_\infty\) Bulk liquid temperature: 57.9 \(^\circ\)F
- \(T_{sat}\) Saturation temperature: 69.9 \(^\circ\)F
- \(P_{sat}\) Saturation pressure: 14.0 in Hg
- \(\Delta T_{sub}\) Subcooling temperature: 12.0 \(^\circ\)F
- \(\Delta T_{sup}\) Superheat temperature: 35.1 \(^\circ\)F

**BUBBLE DATA**

- \(F\) Average number of frames between bubbles: 95.9 frames
- \(N\) Number of active sites per frame: 7 sites/frame
- \(T\) Average elapsed time between bubbles: 0.0434 secs
- \(f\) Average bubble frequency: 23 Bubbles/sec-site
- \(\Phi\) Bubble flux density: 150,563 Bubbles/ft\(^2\)-sec
<table>
<thead>
<tr>
<th><strong>DATA FOR POINT ( 3 , 4 )</strong></th>
</tr>
</thead>
</table>

**FILM DATA**

- **L** Total film length: 1093 frames
- **η** Total film markings: 50 dots
- **v** Marking frequency: 100 dots/sec
- **n** Average number of frames: 21.860 frames/dot
- **τ** Average time per frame: 0.45*10^-3 secs/frame

**POWER DATA**

- **E** Voltage supplied: 36 volts
- **I** Current supplied: 0.8 amps
- **Q** Power supplied: 98.32 Btu/hr
- **A** Plate area: 1.82*10^-2 ft^2
- **q/A** Power supplied per unit area: 5,402 Btu/hr ft^2

**THERMODYNAMIC DATA**

- **T_w** Wall temperature: 100.9 °F
- **T_∞** Bulk liquid temperature: 56.5 °F
- **T_sat** Saturation temperature: 69.9 °F
- **P_sat** Saturation pressure: 14.0 in Hg
- **ΔT_sub** Subcooling temperature: 13.4 °F
- **ΔT_sup** Superheat temperature: 31.0 °F

**BUBBLE DATA**

- **F** Average number of frames between bubbles: 95.1 frames
- **N** Number of active sites per frame: 4 sites/frame
- **T** Average elapsed time between bubbles: 0.0343 secs
- **f** Average bubble frequency: 23 Bubbles/sec-site
- **Φ** Bubble flux density: 86,036 Bubbles/ft^2-sec
APPENDIX B.

BUBBLE FREQUENCY HISTOGRAMS
APPENDIX C.

VOLUMES OF REVOLUTION
<table>
<thead>
<tr>
<th>Heat Flux Levels</th>
<th>Subcooling Levels</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1.245</td>
<td>0.412</td>
<td>0.393</td>
<td>0.955</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.908</td>
<td>0.437</td>
<td>0.584</td>
<td>1.602</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>1.180</td>
<td>0.578</td>
<td>1.868</td>
<td>1.525</td>
</tr>
</tbody>
</table>

The values contained in the above matrix are the volumes of microlayer liquid evaporated into the bubble in \( \text{ft}^3 \times 10^9 \), given by the relationship:

\[
V_E = 2\pi \int_0^{R(t)} \left( \sigma_0(r) - \sigma(r, \tau) \right) r \, dr
\]
BIBLIOGRAPHY


