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Abstract 

In this project, an application of the Cox proportional hazard model is being consid-

ered. Cox proportional hazard model is fitted to estimate the effect of the covariates, 

age and drugs, on the survival of the HIV positive patients. These estimates also 

agree with the estimates obtained by using the numerical method. Likelihood ra-

tio, Wald test and Score test are applied to test the significance of these estimates. 

Power for these test are performed by Monte Carlo simulation method. Simulated 

powers for sample size n = 10, 20 and 30, {3 = 0.1,0.2,0.4 and 1%, 5% and 10% are 

tabulated. 
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Chapter 1 

Introduction 

Life tables are one of the oldest statistical techniques and are extensively 

used by medical statisticians and actuaries. Kaplan and Meier gave a comprehensive 

review of earlier work and many new results. Chiang, in a series of papers, has in 

particular explored the connection with birth-death processes. Cox (1972) was largely 

concerned with the extension of the results of Kaplan and IVleier to the comparison of 

life tables and more generally to the incorporation of regression-like arguments into 

life-table analysis. The procedures are closely related to procedures for combining 

contingency tables by Mantel and Haenszel (1959) and Mantel for the application of 

life tables. There is also strong connection with a paper by R. and J. Peto. 

A common problem in the analysis of survival data in medical statistics is that 

of obtaining treatment comparisons while adjusting for and evaluating the effects 

of many uncontrolled independent variables. This introduces the use of non-linear 

regression models which assume that independent variables affect the hazard function 

in a multiplicative way. The hazard function is the probability that an individual 
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will experience an event (for example, death) within a small time interval, given that 

the individual has survived up to the beginning of that interval. It can therefore be 

interpreted as the risk of dying at time t. If the hazard function does not depend 

on time and it's value is completely determined by the covariate and the unknown 

ptuameters, it means that the risk of failure is the same no matter how long the 

subject has been followed. The hazard function and systematic component in the 
-1 

regression model are inversely related. The hazard function, denoted by h(t), can be 

estimated as follows: 

I (t) = number of individuals experiencing an event in interval beginning at t 
1, (number of individuals surviving at time t) x (interval width) 

There are different parametric models which can be useful for analysing sur-

vival data. These models are fitted based on ha:tard functions. For example, expo-

nential distribution can be used when the hazaJ:d rate is constant within a particular 

group of individuals. The vVeibull distribution can be used when the hazard rate 

is not constant but smoothly increasing (may stay the same but never decreases) 

or decreasing with time, whereas the log-normal and the log-logistic distributions 

can be used when a hazard rate initially increases and then declines after reaching a 

peak. A graphical technique is usually applied to assess the assumptions on hazard 

function. 

For various reasons, data resulting from these types of investigations are fre-

quently incomplete, in the sense that observations on survival time are not known 

exactly for all the individuals. This may be due to the limitations on the length of 

the study, or to death from a cause other than that under investigation, and so on. 

Observations of thi~ type are said to be censored data. It is commonly assumed that 
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death and censoring are determined by independent mechanisms and that the only 

information on the survival time t of an individual censored at t+ is that t > t+. 

The proportional hazard model, introduced by Cox (1972), is the most gen­

eral of the regression model because it is not based on any assumptions concerning 

the nature or shape of the underlying survival distribution. It is a well-recognized 

statistical technique for exploring the relationship between the survival of a patient 

and several explanatory variables. A Cox model provides an estimate of the treat­

ment effect on survival after adjustment for other explanatory variables. It allows 

us to estimate the hazard (or risk) of death, or other event of interest, for individu­

als, given their prognostic variables. Even if the treatment groups are similar with 

respect to the variables known to affect survival, use of the Cox model with these 

prognostic variables may produce a more precise estimate of the trcatment effect, for 

example, by resulting in a narrow the confidence interval. Cox's regression model 

may be considered to be a semi-parametric method. 
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Chapter 2 

Assumptions and Definition of the 

model 

2.1 Assumptions 

'While no assumptions are made about the shape of the underlying hazard 

function, the proportional hazard model does imply two assumptions. First, it spec­

ifies a multiplicative relationship between the underlying hazard function and the 

log-linear function of the covariates. This assumption is the so-called the proportion­

ality assumption. In practical terms, it is assumed that, given two observations with 

different values for the independent variables, the ratio of the hazard functions for 

those two observations docs not depend on time. 

The second assumption, of course, is that there is a log-linear relationship 

between the independent variables and the underlying hazaJ.'d function. 
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2.2 Definition of the model 

The model in which the hazard function h(t; x) of a continuous random val' i-

able T, representing the survival time for an individual with independcnt variable 

vector x = (Xl, ... , xp)', which could be any collection of covariates: continuous 

covariates, design variables for nominal scale covariates, product of covariates (inter-

actions) and other higher order terms, is given by 

h(t, x) = ho(t)ex'f3 , 

where ho(t) is some baseline hazard function which may never be defined and {3 = 

({31, ... ,{3p)' is a vector of regression coefficients expressing quantitatively the effect 

of each of the variable in x. Independence of the hazard function (and hence survival) 

on the variable Xj is implied by {3j = O. The cumulative hazard function H(t) is given 

by 

H(t; x) 

S(t;X) 

lot ho( u)ex'fJdu 

Ho(t)ex'f3 , 

exp{ -H(t)} 

exp {-Ho(t)ex'fJ } , 

where Ho(t)andSo(t) are baseline cumulative hazard function and baseline survival 

function, respectively. vVe emphasize that the function ho(t) and So(t) will remain 

unspecified. Only part of the model that affects the covariates is parametrized. This 

is why Cox's model is a semi-parametric model. 
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Chapter 3 

Estimation of parameters 

3.1 Partial likelihood 

Suppose that k individuals die at distinct times: 

tel) < t(2) ... < t(k)' 

At time t(j), an individual with covariate values Xj dies. From basic probability 

theory, the conditional probability that it is the specific individual j that dies out of 

the set R j , given that one individual dies, is 

'\' x, fJ 
L.iERj e i 

Since the hazard function gives the instantaneous probability of failure, the partial 

likelihood function expression proposed by Cox (1972), that depends only on the 

parameter of interest for all the failures, is 

6 



1 , 

L((3) 

The partial log likelihood function is then given by 

k k 

l((3) L xj(3 - LIn L ex~f3 
j=1 j=liERj 

We obtain the partial maximum likelihood estimator (3 of (3 by differentiating 

the right hand side of the partial log- likelihood function above with respect to (3, 

setting the derivative equal to zero, and solving for the unknown parameter (3. The 

derivative with respect to (3 is 

The variance-covariance matrix of this estimator (3 can be estimated by the inverse 

of the negative of the second derivative of the partial log-likelihood at the value of 

the estimator, called as the observed information matrix, and is given by, 

The estimator of the variance-covariance matrix of (3 is then 

Varj3 1((3)-1 

k ~ ex!fJ ~ ex!fJx x ~ ex!fJ x ~ ex!fJx '\' DiER. 1 D.iER. ,. iT is - DiER. ,. iT DiER. 1 is 
~ J J J J 
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3.2 Equal failure times 

The Cox proportional hazard model assumes continuous hazard functions 

with no tied failure times. Since real data do often contain tied failure times, ties 

must be handled. There is more than one way to handle failure times that coincide. 

First case is when time is in principle a continuous variable. Then the dj > 1 failures 

that occur simultaneously at time tj cannot be exact coincidences: their failure times 

would have been slightly different from each other if only we had measured them with 

sufficient accuracy. Since these dj > 1 failures are not after all simultaneous, they 

occur in a particular order, but we do not know which of the dj ! possible orders is the 

correct one. The partial likelihood function therefore ought to include all of them. 

Infact, instead of doing this, an approximation due to Breslow is usually preferred 

in which the term in the partial likelihood, 

that occurs for dj = 1 is replaced when dj > 1 by 

where z; is the sum of the Xj for the dj individuals that fail at time t j . This approx­

imation turns out to be accurate if the ratio dj/nj is small, where nj is the number 

of individuals at risk (me111.bers of R j ) at time t j . An alternative approximation has 

been given by Efron. 

If dj/nj is not small, then we take another approach. vVe acknowledge that 

the time variable was in fact a discrete measurement and we Utle a method suitable 

for such data. Given that there are dj failures at time t j , the probability that the 
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Chapter 4 

Tests of hypotheses 

Two important steps that usually follow the fit of a regression model are 

the assessment of the significance of the coefficients and the formation of confidence 

intervals. For this purpose, it is common to use the following three different tests to 

assess the significance of the coefficients: 

The partiallkelihood ratio test 

The score test 

The Wald test 

4.1 The partial likelihood ratio test 

The partial likelihood ratio test, denoted by G, is calculated as twice the 

difference between the partial log-likelihood of the model containing the covariate, 

and that if not containing the covariate. That is, 

G = 2 {l(;3) -l(O) } 
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G follows asymptotically a chi-square distribution with degrees of freedom deter-

mined by one for each coefficient. The significance for the test implies that at least 

one of the coefficients in the model explains the failure time. 

4.2 The score tests 

Computation of score tests for the multiple proportional haz81'ds regression 

model requires matrix calculations. Specifically, we denote the vector of first p81,tial 

derivatives as u(f3), which is given by 

Z* 
fJlj8f3 
JIV3)113 
o 

Under the hypothesis that all coefficients are equal to zero, and under the 

mathematical conditions needed for the p81tial likelihood tests, the vector of scores 

u(O) = u(f3) 113=0 will be distributed as multivariate normal with luean vector equal 

to zero, and covariance matrix given by the information matrix evaluated at the 

coefficient vector equal to zero, 1(0) = 1(13)113=0 

The score statistic is then given by 

u l (0 )[1( 0) J-1u( 0), 

which is distributed asymptotically as chi-square with p degrees of freedom. 

4.3 The Wald test 

The Wald test is obtained from equivalent theory which states that, under 

the null hypothesis, the estimator of the coefficient, ~, will be asymptotically nor-
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mally distributed with the mean vector equal to zero and a covariance matrix that 

is estimated. 

The Wald test statistic is then given by 

/3' I (/3) /3, 

which is also distributed asymptotically as chi-square with p degrees of freedom. 

4.4 Asymptotic Confidence Interval 

The adequacy of the asymptotic X2 or normal approximations used for the 

score test statistic, likelihood ratio test and Wald statistic can vary substantially 

according to the problem and the amount of information about the parameters. It is 

difficult to make general statements, but the distributions of likelihood ratio statistics 

often tend to their limiting distributions more quickly than Wald statistics or any 

other test statistics. Consequently, likelihood ratio methods are often preferred, 

especially for small to moderate sample sizes. However, confidence intervals based 

on these methods may require substantial computation and are not directly available 

from most software packages, and so the Wald test statistic is often used for this 

purpose and is described as follows. 

For the Wald statistic, the p-value (significance level) based on the observed 

value w(eo) is approximately Pr(X(k) 2: w(eo)). A confidence region for e with ap­

proximate confidence coefficient c:t consists of vectors eo such that 

12 



Confidence intervals for a single parametric function (3 = g( 8) is often required. The 

simplest approach for this is to use the normal approximation E rv N((3, VJ/2) , where 

V,a is given by 

This yields the approximate standard normal pivotal quantity 

and two-sided approximate 100 (1 - a) % confidence interval E ± Za/2 V J/2
, where Zq is 

the qth quantile of N(O,l). One-sided approximate 100(1- a)% confidence intervals 

A A 1/2 A A 1/2 
are given by (3 ::; (3 - V,a and (3 2': (3 + V,a ,respectively. 

13 



Chapter 5 

Power Analysis 

The power function of a test of a statistical hypothesis Ho against an alternative 

hypothesis HI is that function, defined for all distributions under considerations, 

which yields the probability that the test statistic falls in the critical region C of the 

test; that is, it is a function that yields the probability of rejecting the null hypothesis 

under consideration. The value of the power function at a parameter point is called 

the power of the test at that point. As power increases, the chances of a Type II 

error decrease, and vice versa. The probability of Type II error is denoted by rh. 

Therefore, power is equal to 1 - 131. Statistical power depends on the statistical 

significance criterion used in the test, the size of the difference or the strength of the 

similarity (that is, the effect size) in the population and the sensitivity of the data. 

If B E 8 0 , then a(B) is the probability of Type I error; if B E 81, then a(B) 

equals 1- P(Type II error). Thus, minimization of probability of Type II error is 

equivalent to the maximization of a(B) for B E 8 1 subject to the significance level 

requirements, namely, a(B) :S a for B E 8 0 , 
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Table 5.1: Simulated power values for n = 10 for \Vald test 

~ 
l 

f3""-a 0.1 0.05 0.01 

0.1 0.1167 0.0625 0.0265 

0.2 0.1767 0.0987 0.0519 

OA 0.2525 0.1294 0.0782 

The power comparison is done here based on for n = 10, 20 and 30 and for 

coefficients f3 = 0.1,0.2,0.4 and under 10%, 5% and 1% levels of significance. 

Tables 5.1-5.3 present the simulated power values for n = 10, 20 and 30, for vVald 

test. 

In order to explain the power cOlnparison procedure, we consider a particular 

case. For example, when n = 10, to test the hypotheses 

Ho : f3 = 0 Vs H l : f3 f 0 

We generated Monte Carlo random estimates other than 0, say, for example, 

f3 = OA. For this we simulated the variables needed which follows an exponential 

distribution. From these we estimate the coefficients by fitting cox proportional 

hazard model and calculated the p-values for the vVald test at levels of significance 

10%, 5% and 1%. This process is repeated for 400 times. Looking at these we count 

how many times out of 400, Ho has been rejected. vVe see that 101 times it has 

been rejected. Hence the power of this test is 0.2525. So, when we test whether the 

sample is from f3 = 0, when it is actually from f3 = 004, we found the power to be 

0.2525. For the same null hypothesis as above when the sample size is 20, the power 

increases to 0.7923; when the sample size is 30, the power increases to 0.9942. So as 

15 



Table 5.2: Simulated power values for n = 20 for vVald test 

,B"",,a 0.1 0.05 0.01 

0.1 0.2628 0.1654 0.0573 

0.2 0.5467 0.2667 0.1067 

0,4 0.7923 0.6533 0.36 

Table 5.3: Simulated power values for n = 30 for vVald test 

fJ"",,a 0.1 0.05 0.01 

0.1 0,4133 0.297£1 0.0867 

0.2 0.8124 0.6582 0.5067 

0.4 0.9942 0.9857 0.9285 

the sample size increases, the power increases which is to be expected. From these 

tables, we can conclude that as fJ moves away from the zero, the power increases. 

Notice also that the power value is substantially larger for 10% level of significance 

in comparision to 5% and 1%, respectively. 

Tables 5.4 - 5.6 present the simulated power values for n = 10, 20 and 30 for likelihood 

test, while Tables 5.7 - 5.9 present the simulated power values for n = 10, 20 and 30 

for Score test. vVe observe that the power performance of these three tests are very 

nearly the same. However the likelihood ratio shows the better performance. 

16 



Table 5A: Simulated power values for n = 10 for likelihood test 

,8"'--0: 0.1 0.05 0.01 

0.1 0.2248 0.0833 0.0565 

0.2 0.2667 0.1682 0.0733 

0.4 0.3781 0.1867 0.0925 

Table 5.5: SilTlUlated power values for n = 20 for likelihood test 

,8"'--0: 0.1 0.05 0.01 
-

0.1 0.2933 0.2167 0.0879 

0.2 0.5733 0.3067 0.1333 

OA 0.8123 0.7467 0.5033 

Table 5.6: Simulated power values for 11 = 30 for likelihood Lest 

,8"'--0: 0.1 0.05 0.01 

0.1 OA667 0.3281 0.1453 

0.2 0.8425 0.7033 0.5729 

0.4 1 0.9957 0.9895 

17 
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Table 5.7: Simulated power values for n = 10 for score test 

~ 
p",a 0.1 0.05 0.01 

0.1 0.1667 0.0751 0.0338 
I 

0.2 0.2267 0.1333 0.0614 

0.4 0.3562 0.2122 0.1673 

Table 5.8: Simulated Power values for n = 20 for score test 

p",a 0.1 0.05 0.01 

0.1 0.2725 0.1842 0.0773 

0.2 0.5682 0.3200 0.1467 

0.4 0.8025 0.7386 0.4933 

Type I Errors values are simulated for different test. We observe that the 

wald test is more conservative than score and likelihood test. If we look at the values 

of likelihood ratio compared to wald and score the error is high. Hence the claim we 

made that the likelihood ratio test is better is not true as the type I error is affecting 

the power. 

18 
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Table 5.9: Simulated Power values for n = 30 for score test 

fJ""'-Ot 0.1 0.05 0.01 

0.1 0.4582 0.3067 0.1228 

0.2 0.812<1 0.6882 0.5533 

0.4 1 0.9867 0.9547 

Table 5.10: Simulated Type I Error values for V{ald test 

n""'-Ot 0.1 0.05 0.01 

10 0.0631 0.0396 0.0286 

20 0.0825 0.OM8 0.0184 

30 0.0893 0.0489 0.0154 

Table 5.11: Simulated Type I Error values for Score test 

n""'-Ot 0.1 0.05 0.01 

10 0.1665 0.0842 0.0439 

20 0.1467 0.0833 0.0162 

30 0.1072 0.0527 0.0124 

19 
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Table 5.12: Simula.ted Type I Error values for Likelihood test 

T/,'-,,cY. 0.1 0.05 0.01 

10 0.1682 0.0892 0.0743 

20 0.1667 0.1167 0.0316 

30 0.1593 0.0618 0.0245 

20 
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Chapter 6 

Data Description and Analysis 

6.1 Description of Data 

These data were extracted from the website 

''http://people.umass.edu/statdata/statdata/data/hmohiv.xls ". 

Only the part of the data is shown here. 

ID time age drug censor entdate enddate 

1 5 46 0 1 5/15/1990 10/14/1990 

2 6 35 1 0 9/19/1989 3/20/1990 

3 8 30 1 1 4/21/1991 12/20/1991 

4 3 30 1 1 1/3/1991 4/4/1991 

5 22 36 0 1 9/18/1989 7/19/1991 

6 1 32 1 0 3/18/1991 4/17/1991 

7 7 36 1 1 11/11/1989 6/11/1990 

21 
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A large health maintenance organization (HMO) wishes to evaluate the sur-

vival time of its HIV+ members using a follow up study. Subjects were enrolled in 

the study from January 1, 1989 to December 31, 1991. The study ended on Decem-

bel' 31, 1995. After a confirmed diagnosis of HIV, members were followed until death 

due to AIDS to AIDS-related complications, until the end of the study, or until the 

subject was lost to follow up. VVe assume that there were no deaths due to other 

causes ( e.g, auto accident). The primary outcome variable of interest is the survival 

time after a confirmed diagnosis of HIV. Since subjects entered the study at different 

times over a 3 year period, the maximum possible follow up time is different for each 

study participant. Possible predictors of survival time were collected at enrollment 

into the study. Data for 100 subjects were observed as follows: 

TIME: the follow-up time is the number of months between the entry date (ENT 

DATE) and the end date (END DATE), 

AGE: the age of the subject at the start of the follow-up (in years), 

DRUG: history of prior IV drug use ( 1 = YES, 0 = NO), and 

CENSOR: vital status at the end of the study ( 1 = Death due to AIDS, 0 = Lost to 

follow-up or alive). Of many possible covariates, age and prior drug usc were chosen 

for their clinical relevance. 

The variable TIME actually records two different things: for those subjects 

who died, it is the outcome variable of interest, the actual survival time. However, 

for subjects who were alive at the end of the study, or for subjects who were lost, 

TIME iudicates the length of follow-up (which is partial or incomplete observation 

22 
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of survival time). These incomplete observations are referred to as being censored. 

For example, subject 1 died from AIDS 5 months after being seen in the HJVIO clinic 

(CENSOR = 1) while subject 2 was not known to have died from AIDS at the 

conclusion of the study and had been followed for 6 months (CENSOR = 0). It is 

possible for a subject to have entered the study much earlier, eventually becoming 

lost to follow-up as a result of moving, failing to return to the clinic or some other 

reason. 

The main goal for a statistical analysis of these data is to fit a model that 

will yield biologically plausible and interpretable estimates of the effect of age and 

drug use on survival time for HIV + patients. 

6.2 Analysis of Data 

In any applied setting, a statistical analysis should begin with a thoughtful 

description of the data. Sample mean, variance, median, etc. will not yield estimates 

of the desired parameters when the data include censored observations as in the case 

of our data. Hence, we must obtain an estimate of the cumulative distribution func-

tion. However, we are more interested in describing how long the study subjects 

live, than how quickly they die. So, the estimation focuses on the survival func-

tion. The survival function is estimated by Kaplan-Meier estimator. This estimator 

incorporates information from all of the observations available, both censored and 

uncensored, by considering survival to any point in a time series of steps defined by 

the observed survival and censored times. 

23 



Table 6.1: Estimate of thc survival function 

j time n.risk n.cvcnt survival std.crr 

1 100 15 0.8500 0.0357 
I 

2 83 5 0.7988 0.0402 

3 73 10 0.6894 0.0473 

4 61 4 0.6442 0.0493 

5 56 7 0.5636 0.0517 

6 49 2 0.5406 0.0521 

7 46 6 0.4701 0.0526 

8 39 4 0.4219 0.0525 

9 35 3 0.3857 0.0520 

10 32 3 0.3496 0.0511 

11 28 3 0.3121 0.0500 

12 25 2 0.2872 0.0490 

13 21 1 0.2735 0.OL186 

14 20 1 0.2598 0.OL180 

15 19 2 0.2325 0.OL167 

22 16 1 0.2179 0.0460 

30 14 1 0.2024 0.0453 

31 13 1 0.1868 0.0444 

32 12 1 0.1712 0.043:3 

34 11 1 0.1557 0.0421 

35 10 1 0.1401 0.0407 

24 
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36 9 1 0.1245 0.0390 

43 8 1 0.1090 0.0371 

53 7 1 0.0934 0.0349 

54 6 1 0.0778 0.032L1 

57 4 1 0.0584 0.0296 

58 3 1 0.0389 0.0253 

From the above table we see that at the probability of surviving for at least 

one month is 0.85. The conditional probability of surviving the second month after 

having survived the first n1.onth is calculated as (83-5)/83 = 0.94 and the overall 

probability of surviving the second month is 0.83*0.94 = 0.7988 and so forth. The 

standard errors related to its survival estimates are listed in the last column. It is 

to be noted that the standard error is increasing until n is 46 and starts to decrease. 

This is intuitive as the standard error of proportion gets larger when the probability 

is around 0.5. This is true as our survival estimate 0.4701. 

The Figure 6.1 shows the Kaplan-Meier estimate of the survival function using all 

subjects in the study. The estimate demonstrates conventions for handling tied 

survival times as well as tied survival and censored times. The columns in Table 6.1 

presents the time, the number at risk of dying, the number of deaths, the estimate 

of survivorship function, and its standard error. 

Further,we wish to compare groups of subjects. The graph of Kaplan-Meier estimator 

of survival function for each of the groups in Figure 6.1 help us to visualize it. A 

variable related to the survival of the subjects is the history of IV drug use. 
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Figure 6.1: Kaplan-Meier estimate of the survival function 
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Figure 6.2: Estimates of the survival function of the subjects with and without IV 

drug use 
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The estimates of the survival function of the subjects in the non-IV drug use 

and IV drug use have been plotted in Figure 6.2. Both groups show a similar pattern 

of survival. There is a rapidly descending survival function with a long right tail. 

This is a result of a number of early deaths and a few subjects with survival near 

the maximum follow-up tim.e. The figure also shows a separation of the function for 

the two groups. The estimated survivorship function for the non-IV drug users lies 

completely above that of IV drug users, which means the group defined by the upper 

curve lived lot longer than the group defined by the lower curve. 

N ow the obvious statistical question that arises is whether the observed differ­

ence here is significant. There are several ways of performing this test. The log-rank 

test has been applied here. 

survdiff (Surv(time , censor)-drug, data=hmohiv) 

survdiff(formula = Surv(time, censor) - drug, data hmohiv,rho 0) 

N Observed Expected (O-E)-2/E (O-E)-2/V 

drug=O 51 42 54.9 3.02 11. 9 

drug=1 49 38 25.1 6.60 11. 9 

Chisq= 11. 9 on 1 degrees of freedom, p= 0.000575 

Since the p-value is very small(O.000575), it indicates that the test is highly 

significant and supports that those with a prior history of IV drug use tended to die 

sooner than those who did not have a history of IV drug use. 

The semi-parametric Cox proportional hazards model is the most commonly 

used model in hazard regression. Exact partial likelihood method is usually used 

for this model under the assumptions of no tied data. However, our data have some 
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Table 6.2: Estimated coefficients for age 

covariate ~ SE 

age 0.0814 0.0174 

tied observations. Slight modification is therefore needed. Breslow and Efron have 

provided expressions that are more easy to compute than the exact partial likelihood 

to deal with tied observations. Setting method as Breslow or as Efron in a built-in 

function coxph in R yields the appropriate analysis. 

We have fitted the model with single covariate each, both covariates and both 

covariates with interaction by m.aking use of built in functions in R. The coefficients 

that were obtained with this method have been verified by numerically maximizing 

the partial log-likelihood function as well. vVe have done this by applying the function 

nlm. This function carries out a minimization of the function using a Newton-type 

algorithm. 

vVhen this model is fitted with only one covariate (age) in our study, the value 

of the estimated coefficient and the corresponding estimated standard error is given 

in Table 6.2 which also agrees with the estimates obtained by using the numerical 

method. 

mle<-nlm(111,c(0.06),hessian T) 

$minimum [1] 288.5180 

$estimate 

[1] 0.08140366 

$hessian 
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Table 6.3: Estimated coefficients for drug 

covaTiaie ~ BE 
drug 0.78 0.242 

[,1] 

[1,] 3289.773 

varcov1<-solve(mle$hessian) 

varcov1 

[,1] 

[1,J 0.05868916 

se<-sqrt(varcov1) 

[,1] 

[1,] 0.01743480 

vVhen this model is fitted with only one covariate (drug) in our study, the value of 

the estimated coefficient and the corresponding estimated standard error is given 

in Table 6.3 which also agrees with the estimates obtained by using the numerical 

method. 

mle<-nlm(111,c(0.06),hessian T) 

mle 

$minimum 

[1] 294.0964 
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Table 6.4: Estimated coefficients for age and drug 

covariate /J SE 

age 0.0915 0.0185 

drug 0.9414 0.2555 

, 
-i 

$estimate 

[lJ 0.77923 

$hessian 

[,1] 

[l,J 17.03892 

varcovl<-solve(mle$hessian) 

se<-sqrt(varcovl) 

[,1] 

[l,J 0.2422584 

·When this model is fitted with two covariates (age and drug) in our study, the value 

of the estimated coefficients and the corresponding estimated standard errors of the 

estimated coefficients are given in Table 6.4 which also agrees with the estimates 

obtained by using the numerical method. 

mle<-nlm(111,c(0.06),hessian T) 

mle 

$minimum 

[lJ 281.7040 
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Table 6.5: Estimated coefficients for age,clrug and interaction 

covariate 

age 

drllg 

age: drug 

$estimate 

[1] 0.09153135 0.94138352 

$hessian 

[,1] [,2] 

[1,] 3026.91177 -40.07171 

[2,] -40.07171 15.84739 

varcovl<-solve(mle$hessian) 

se<-sqrt(varcovl) 

[,1] [,2] 

[1,] 0.01848815 0.02939907 

[2,] 0.02939907 0.25551392 

/3 SE 

0.0942 0.0229 

1.1859 1.2565 

-0.0067 0.0337 

vVhen this m.odcl is fitted with two covariates (age and drug) and their interactions 

in our study, the value of the estimated coefficients and the corresponding estimated 

standard errors are given in Table 6.5 which also agrees with the estimates obtained 

by using the numerical method. 

nlm(111,c(0.06,0.1,0.1),hessian T) 



! 
--; 

$minimum 

[1] 281.6844 

$estimate 

[1] 0.094234795 1.186308762 -0.006713934 

$hessian 

[,1] [,2] [ ,3] 

[1,] 3062.49362 -44.63811 -391.2862 

[2, ] -44.63811 15.97741 564.4688 

[3,] -391.28615 564.46880 21299.3127 

varcov<-solve(mle$hessian) 

varcov 

[,1] [,2] [,3] 

[1,] 0.0005258306 0.01770068 -0.0004594388 

[2,] 0.0177006797 1.57816125 -0.0414988393 

[3,] -0.0004594388 -0.04149884 0.0011383010 

se<-sqrt(varcov) 

sqrt (varcov) 

[,1] [,2] [,3] 

[1,] 0.02293100 0.1330439 NaN 

[2,] 0.13304390 1.2562489 NaN 

[3, ] NaN NaN 0.03373872 
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Chapter 7 

Conclusions 

Based on this analysis, we can do several tests. The model may be used to determine 

whether the association of age with survival time is different for subjects with and 

without a history of IV drug use. The likelihood ratio test, Wald test and score test 

are performed in order to draw conclusions. 

As we see from the full model, the p-value of covariate, age, is very small 

and hence may be significant whereas the p-value associated with drug and the 

interaction between age and drug terms are larger than 0.05 and hence it may not 

be significant. iNc need to explore this further. However, the p-values of likelihood 

ratio test, vVald test and the score test are very small. It provides evidence against 

the null hypothesis that all three coefficients are simultaneously equal to zero and 

indeed provides evidence towards the alternative hypothesis that at least one of the 

coefficients in the model is significantly associated with survival time. 

Now, the reduced model is fitted. The model contains age and drug as covari-

ates, but their interaction is excluded. The p-value for both age and drug coefficients 
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are small. Hence, we can conclude that both age and drug are significantly associated 

with survival time. We can even test this further by fitting the model with only one 
j 

~ covariate, age and drug, separately. 
, 

We can also conclude in power analysis that the power increases as the sample 

size increases, the power increases as fJ moves away from the zero, the power value 

is substantially larger for 10% level of significance in comparison to 5% and 1%, 

respectively. 
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Appendix A 

R Code and Results for Data 

Analysis 

Kaplan-Meier survival function and it's graph. 

hmohiv.surv <- survfit( Surv(time, censor)- 1 ,data = 

hmohiv) 

summary(hmohiv.surv) 

plot (hmohiv.surv, xlab="Time",ylab="Survival Probability" ) 

The graph of Kaplan-Meier estimator of survival function for 

treatment and control. 

timestrata.surv <- survfit( Surv(time, censor)- strata(drug), 

hmohiv, conf.type="log-log") 

plot (timestrata. surv, lty=c C1 ,3), xlab="Time", ylab="Survival 
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Probabilityll) 

legend (40 , 1.0, c(IIDrug - Noll, IIDrug - Yes ll ) , lty=c(1,3) ) 

To estimate the coefficients fitting Cox model and comparing with 

estimates obtained by using numerical method. 

age.coxph <- coxph( Surv(time,censor)-age, data = 

hmohiv,method=lIbreslow ll ) 

summary(age.coxph) 

coxph (formula=Surv (time , censor) - age, data = hmohiv, method IIbreslow ll ) 

n= 100 

coef exp(coef) se(coef) z p 

age 0.OS14 LOS 0.0174 4.67 3e-06 

exp(coef) exp(-coef) lower .95 upper .95 

age LOS 0.922 1.05 1.12 

Rsquare= 0.192(maxpossible= 0.997 ) 

Likelihood ratio test= 21.4 on 1 df, p=3.S2e-06 

Wald test = 21.S on 1 df, p=3.03e-06 

Score (logrank)test= 22 on 1 df, p=2.72e-06 

drug.coxph <- coxph(Surv(time,censor)-drug, data 

= hmohiv,method=lIbreslowll) 

snmmary(drug.coxph) 

coxph(formula =Surv(time,censor) - drug, data hmohiv, method IIbreslow ll ) 

n= 100 
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coef exp(coef) se(coef) z p 

drug 0.78 2.18 0.242 3.22 0.0013 

exp(coef) exp(-coef) lower .95 upper .95 

drug 2.18 0.459 1.36 3.50 Rsquare= 0.097 

(maxpossible= 0.997 ) Likelihood ratio test= 10.2 on 1 df, 

p=0.00141 Wald test 10.3 on 1 df, p=0.00130 Score 

(logrank) test = 10.7 on 1 df, p=0.00105 

main.coxph <- coxph( Surv(time,censor)-age+drug,data 

hmohiv,method="breslow") 

summary(main.coxph) 

Call: coxph(formula 

Surv(time,censor) - age + drug, data = hmohiv, method 

n= 100 

coef exp(coef) se(coef) z p 

age 0.0915 1.10 0.0185 4.95 7.4e-07 drug 0.9414 

0.2555 3.68 2.3e-04 

exp(coef) exp(-coef) lower .95 upper .95 

age 1.10 0.913 1.06 1.14 

drug 2.56 0.390 1.55 4.23 

Rsquare= 0.295 (max possible= 0.997 ) 

Likelihood ratio test= 35 on 2 df, p=2.53e-08 

Wald test= 32.5 on 2 df, p=8.76e-08 

Score (logrank) test 34.3 on 2 df, p=3.56e-08 
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inter.coxph <- coxph( Surv(time,censor)-age+drug+age:drug, data = 

hmohiv,method="breslow") 

summary(inter.coxph) 

coxph(formula =Surv(time, censor) - age + drug + age:drug, data = hmohiv, 

method = "breslow") 

n= 100 

coef exp(coef) se(coef) z p 

age 0.0942 1.099 0.0229 4.110 0.00004 

drug 1.1859 

age:drug -0.0067 

3.274 

0.993 

1.2565 0.944 0.35000 

0.0337 -0.199 0.84000 

exp(coef) exp(-coef) lower .95 upper .95 

age 

drug 

1.099 

3.274 

0.910 

0.305 

1.051 

0.279 

age:drug 0.993 1.007 0.930 

Rsquare= 0.295 (max possible= 0.997 ) 

1.15 

38.42 

1.06 

Likelihood ratio test=35 on 3 df, p=1.21e-07 

Wald test 32.2 on 3 df, p=4.83e-07 

Score (logrank) test 35.1 on 3 df, p=1.13e-07 

111<- function(beta){ 

-(sum(p41%*%beta)sum(15*log(sum(exp(xi11%*%beta))),5*log(sum (exp 

(xi21 %*%beta))),10*log(sum(exp(xi31%*%beta))),4*log(sum(exp(xi41 

%*%beta))),7*log(sum(exp(xi51%*%beta))),2*log(sum(exp(xi61%*%beta 
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))),6*log(sum(exp(xi71%*%beta))),4*log(sum(exp(xi81%*%beta))) ,3* 

log(sum(exp(xi91%*%beta))),3*log(sum(exp(xi101%*%beta))),3*log( 

sum(exp(xi111%*%beta))),2*log(sum(exp(xi121%*%beta))),1og(sum(exp 

(xi131%*%beta))),log(sum(exp(xi141%*%beta))),2*log(sum(exp(xi151% 

*%beta))),log(sum(exp(xi221%*%beta))),log(sum(exp(xi301%*%beta))), 

log(sum(exp(xi311%*%beta))),log(sum(exp(xi321%*%beta))),log(sum( 

exp(xi341%*%beta))),log(sum(exp(xi351%*%beta))),log(sum(exp(xi361 

%*%beta))),log(sum(exp(xi431%*%beta))),log(sum(exp(xi531%*% 

beta))),log(sum(exp(xi541%*%beta))),log(sum(exp(xi571%*%beta))), 

log(sum(exp(xi581%*%beta)))))} 

nlm(111,c(0.06),hessian = T) 

Power Analysis 

x<-(1: 10)/2-3 

myrates<-exp(0.1*x+1) 

Sim2reg <- function(x1,inputrates){ 

Y <- rexp(length(inputrates), rate inputrates) 

cen<-rexp(length(inputrates), rate 0.1) + ycen <- pmin(y,cen) 

di<-as.numeric(y<=cen) 

temp1<-coxph(Surv(ycen, di)-x1) 

return(temp1$coef) } 

result <- rep(NA, 400) 

for(i in 1:400) result[,i] <- Sim2reg(x1,myrates) 
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x<-(1:20)/2-3 

myrates<-exp(0.1*x+1) 

Sim2reg <- function(x1,inputrates){ 

y <- rexp(length(inputrates), rate 

cen<-rexp(length(inputrates), rate 

di<-as.numeric(y<=cen) 

temp1<-coxph(Surv(ycen, di)-x1) 

return(temp1$coef) } 

result <- rep(NA, 400) 

inputrates) 

0.1) + ycen <- pmin(y,cen) 

for(i in 1:400) result[,i] <- Sim2reg(x1,myrates) 

x<-(1:30)/2-3 

myrates<-exp(0.1*x+1) 

Sim2reg <- function(x1,inputrates){ 

y <- rexp(length(inputrates), rate 

cen<-rexp(length(inputrates), rate 

di<-as.numeric(y<=cen) 

temp1<-coxph(Surv(ycen, di)-x1) 

return(temp1$coef) } 

result <- rep(NA, 400) 

inputrates) 

0.1) + ycen <- pmin(y,cen) 

for(i in 1:400) result[,i] <- Sim2reg(x1,myrates) 
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x<-(1:10)/2-3 

myrates<-exp(0.2*x+1) 

Sim2reg <- function(x1,inputrates){ 

Y <- rexp(length(inputrates), rate inputrates) 

cen<-rexp(length(inputrates), rate 0.2) + ycen <- pmin(y,cen) 

di<-as.numeric(y<=cen) 

temp1<-coxph(Surv(ycen, di)-x1) 

return(templ$coef) } 

result <- rep(NA, 400) 

for(i in 1:400) result[,i] <- Sim2reg(x1,myrates) 

x<-(1:20)/2-3 

myrates<-exp(0.2*x+1) 

Sim2reg <- function(xl,inputrates){ 

Y <- rexp(length(inputrates), rate 

cen<-rexp(length(inputrates), rate 

di<-as,numeric(y<=cen) 

temp1<-coxph(Surv(ycen, di)-x1) 

return(temp1$coef) } 

result <- rep(NA, 400) 

inputrates) 

0.2) + ycen <- pmin(y,cen) 

for(i in 1:400) result[,i] <- Sim2reg(x1,myrates) 
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x<-(1:30)/2-3 

myrates<-exp(0.2*x+1) 

Sim2reg <- function(x1,inputrates){ 

y <- rexp(length(inputrates), rate 

cen<-rexp(length(inputrates), rate 

di<-as.numeric(y<=cen) 

temp1<-coxph(Surv(ycen, di)-x1) 

return(temp1$coef) } 

result <- rep(NA, 400) 

inputrates) 

0.2) + ycen <- pmin(y,cen) 

for(i in 1:400) result[,i] <- Sim2reg(x1,myrates) 

x<-(1:10)/2-3 

myrates<-exp(0.4*x+1) 

Sim2reg <- function(x1,inputrates){ 

y <- rexp(length(inputrates), rate 

cen<-rexp(length(inputrates), rate 

di<-as.numeric(y<=cen) 

temp1<-coxph(Surv(ycen, di)-x1) 

return(temp1$coef) } 

result <- rep(NA, 400) 

inputrates) 

0.4) + ycen <- pmin(y,cen) 

for(i in 1:400) result[,i] <- Sim2reg(x1,myrates) 
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x<-(1:20)/2-3 

myrates<-exp(0.4*x+1) 

Sim2reg <- function(x1,inputrates){ 

Y <- rexp(length(inputrates), rate inputrates) 

cen<-rexp(length(inputrates), rate 0.4) + ycen <- pmin(y,cen) 

di<-as.numeric(y<=cen) 

temp1<-coxph(Surv(ycen, di)-x1) 

return(temp1$coef) } 

result <- rep(NA, 400) 

for(i in 1:400) result[,i] <- Sim2reg(x1,myrates) 

x<-(1:30)/2-3 

myrates<-exp(0.4*x+1) 

Sim2reg <- function(x1,inputrates){ 

Y <- rexp(length(inputrates), rate 

cen<-rexp(length(inputrates), rate 

di<-as.numeric(y<=cen) 

temp1<-coxph(Surv(ycen, di)-x1) 

return(temp1$coef) } 

result <- rep(NA, 400) 

inputrates) 

0.4) + ycen <- pmin(y,cen) 

for(i in 1:400) result[,i] <- Sim2reg(x1,myrates) 
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