
VERIFICATION OF PROGRAMS WITH Z3

By

EWA ROMANOWICZ, B.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree of

Master of Science

Department of Computing and Software

McMaster University

© Copyright by Ewa Romanowicz, June 2010

ii

MASTER OF SCIENCE (2010)

(Department of Computing and Software)

TITLE: Verification of programs with Z3

AUTHOR: Ewa Romanowicz, B.Sc. (York University)

SUPERVISOR: Dr. Ryszard Janicki

NUMBER OF PAGES: viii, 74

McMaster University

Hamilton, Ontario

Abstract

Fixing the errors in programs is usually very labor-intensive and thus an expensive

task. It is also known to be prone to human error thus not fully reliable. There have

been many methods of program verification developed, however they still require a lot

of human input and interaction throughout the process. There is an increasing need

for an automated software verification tool that would reduce human interaction to

the minimum. Satisfiability Modulo Theories (SMT) solvers, a series of SAT-solvers

such as Z3 looked initially to be a proper and easy to use tool. Its syntax is fairly

uncomplicated and it seems to be quite efficient.

In this thesis, Z3 is used to find loop invariants, prove some properties of concur

rent programs written in Owicki-Gries style and prove some properties of recursive

programs. It appears that - in general- Z3 does not work as well as expected in

all areas to which it was applied.

iii

iv O. Abstract

Acknow ledgements

I would like to thank my supervisor, Dr. Ryszard Janicki, for his help in the last four

years, for his guidance and extreme patience during my struggles to juggle school

and work commitments. I appreciate his faith that this thesis will be completed

successfully, his sharing of knowledge and his enthusiastic approach to my work.

Thanks to all the professors at McMaster and York Universities that I had a chance

to interact with and who made a positive impact on my quest toward completion of

this thesis and this degree.

Thanks to my former colleagues who helped the classes to be more fun and en

joyable.

Special thanks to Daniel Zingaro for being a good friend and for being optimistic

and confident in my work, even when I wasn't. I would like to also thank him for

allowing me to waste precious time when I needed to procrastinate and be lazy.

Also, special thanks to Ian Anderson for providing final improvement comments,

editing the finished thesis paper, being very supportive and confident in my work in

the last steps of the process.

Finally I would like to thank my Mom for always being there for me and scolding

me about my school work when I totally deserved it.

v

vi O. Acknowledgements

Contents

Abstract

Acknowledgements

1 Introduction

2 Program Verification

2.1 Background and History

2.2 Axiomatic Approach To Program Verification

2.3 Weakest Precondition.

2.4 Proof Obligations

3 Automatic theorem provers

3.1 DPLL

3.2 SAT Solvers

3.2.1 Simplify Theorem Prover.

3.2.2 Z3 Theorem Prover

4 Loop Invariants

4.1 Program Verification by calculating relations

4.1.1 Verification of Factorial program

4.2 Examples

4.2.1 Sum of Elements of the Array

4.2.2 Quick Sort.

4.2.3 Merge Sort

4.2.4 Bubble Sort .

4.2.5 Insertion Sort

4.2.6 Selection Sort

Vll

iii

v

1

5

5

6

8

11

15

15

16

17
18

21

21

22

24

24

26

28

32

33

34

viii

4.2.7 Shell Sort

5 Concurrency

5.1 Owicki/Gries Theory

5.2 Single statement concurrency

5.2.1 Example 1 .

5.2.2 Example 2 .

5.2.3 Example 3 .

5.2.4 Example 4 .

5.3 Relation of a Single Statement.

5.4 Relation of Multiple Disjoint Statements

5.4.1 Relation of Dependant Statements

5.4.2 Second example

5.4.3 Become more complicated

6 Recursive Programs

6.1 A Practical Approach.

6.1.1 Total Correctness . . .

6.1.2 Factorial and recursion

6.2 Z3 and recursive programs

6.2.1 Factorial

6.2.2 Other Examples. . . .

6.2.3 Induction proofs and recursion.

7 In Closing

7.1 Z3 and Automatic program verification

7.2 Future Work.

CONTENTS

36

39

39

41

41

43

44

46

47

50

52

53

54

57

57

58

59

62

63

63

65

67

67

69

Chapter 1

Introduction

One of the most crucial problems in a program is making sure that it carries out its

intended function [24]; because of that, Program Verification is an important part of

software design [38] and is the subject of numerous studies. It allows for the detection

of logical errors in early stages of design [2] and lowers the costs of programming

error [24]. According to Dijkstra (1976), a programming language should be thought

of first and foremost as an algorithm-oriented system of mathematical notation and

then as something to be run on a machine. When programs are proved correct, it is

possible to place a great reliance on outcomes of the programs, and predict with their

properties with confidence [24].

In the late sixties and early seventies, a technique for verification and analysis of

computer programs based on a calculus of relations (or equivalently predicates) was

proposed by R. W. Floyd [20] and quickly exploited by others [6], [30]. Despite

many theoretical and methodological advantages (it emphasizes calculation instead

of proving as in the more popular method of C. A. R. Hoare [24]), the technique

has never become widely accepted. This may be because of the huge amount of

symbolic computations that need to be performed for even relatively simple cases [9],

even though in most cases these are rather easy (though lengthy) predicate calculus

computations.

The B-method for program verification became popular and there are many ver

sions of HOL theorem provers that can assist us with proving the correctness of

programs, however there became a need for a faster prover that would process huge

programs with hundreds of variables with minimal user interaction and within the

shortest possible time [4], [22].

1

2 1. Introduction

The situation has dramatically changed today, as we have very powerful tools

supporting symbolic computation such as Maple [32] and Mathematica [43], and

relatively easy to use theorem provers such as Simplify [15] or Z3 [34]. The problem

is still non-trivial, as the most general cases are undecidable, but for many practi

cal cases an efficient solution seems to be feasible. Experiments with Maple were

presented in [8], [9], the theoretical foundation of the approach in [8] and a tool

in [9], [47]. The main idea is to represent programs not as relations or predicates,

but as symbolic recurrence relations; this of course imposes many restrictions, on

the structure of the programs that can be handled. Despite those restrictions, the

method is still applicable to a large variety of numerical programs. This thesis will

represent programs as predicates (in special formats) and try to use theorem provers

as a medium for analysis.

In 1962, M. Davis, G. Logemann and D. Loveland from New York University [12]

explained how satisfiability (satisfiability modulo theories (SMT)) can be used as the

mechanism for proving first order logic formulas. They mentioned in their article an

example that generated more than 500 quantifier-free lines and used just a couple of

minutes to calculate it to be valid. Highly efficient SAT-solvers were introduced as a

result of the excellent performance of the algorithm [4].

A wide range of SMT solvers were developed, each introducing an improvement

to the proceeding version. The more popular SMT solvers that have been developed

include: ABLogic, Barcelogic, Yices, Simplify and Z3. The common goal for all the

SMT Solvers is to provide fast and reliable program verification with minimal user

input.

Simplify was by developed by Compaq as an efficient SMT solver the input for

which is a first-order formula with quantifiers [14]. It provides counter examples for

invalid formulas. Microsoft also recently developed the Z3 solver [34]that introduced,

among other things, improvements over Simplify theorem prover by implementing

enhanced E-matching that increases efficiency of solving quantifiers. The features of

these solvers include the ability to work with free function and predicate symbols,

real and integer arithmetic, bitvectors and arrays.

In theory the correctness of more practical programs can be proved as a result of

the advances in SAT-solving technology [36]. This thesis will explore the different

types of programs and their verification using Z3 SMT solver, including recursion.

The main and common characteristic between these programs is that the recursion

block depends on the value of the previous iterations. We will observe the behavior of

1. Introduction 3

the SMT solvers when the program iterates n times, where n is an arbitrary number

of iterations and where iteration n depends on the previous iteration, n - 1.

Chapter 2 will explain program verification and how proof obligations are gener

ated. The use of different automatic theorem provers will be explained in Chapter 3.

Loop invariants and program verification by calculating relations will be explained

in Chapter 4, together with examples of using Z3 in verifying program correctness.

Chapter 5 will explain; using examples, how concurrent programs can be proved using

SMT solvers and the Owicki/ Gries method. Chapter 6 will explain how SMT solvers

can be used to prove recursive programs. Conclusion and discussion on future work

will appear in the last chapter.

4 1. Introduction

Chapter 2

Program Verification

2.1 Background and History

During development of computer programs, there is significant effort put into ensuring

that the finished program is working as designed, that it produces reliable results and

that it terminates for any possible allowed input [27] [44] [42].

Since the begInning of software engineering, testing has been the most popular

way of verifying programs to be correct. Testing ensures that for a given set of test

inputs, the output of the program produces expected results [7]. There have been

many testing techniques developed, but it has been discovered that testing does not

provide the required level of assurance that the program is correct for any possible

input [42]. It is unclear if the selected inputs from often infinite possibilities assure

that every bug in the code will be revealed [42]. It is said that testing can show

errors, however it can never show the absence of errors [45].

While testing is still widely used in the industry, there has been significant research

towards finding a definite and reliable program verification method that would allow

verification of program correctness for any possible case.

Formal verification has been introduced as an alternative to testing. It allows

representation of a behavior of a program in mathematical terms which then can be

proved [42]. It has also been a subject of numerous publications [31].

Back in 1947, the first idea of proving program correctness was outlined by Gold

stein and von Neumann. They explained a possible proof technique that used vectors

of program variables after several execution steps. The idea, however, failed for logi

cally complex and large programs [45].

5

6 2. Program Verification

Floyd developed a method from the idea introduced by Goldstein and von Neu

mann [20]. He formalized proof of correctness, equivalence and termination by in

troducing assertions in the program flow with the use of program flow charts. The

essence of his approach indicated that the correctness of the output follows directly

from the correctness of the input [45].
Hoare expanded Floyd's ideas and the use of axioms in reasoning about computer

programs [24]. Just as Floyd, Hoare claimed that the validity of a program depends

on the values of variables before the start of the program. He defined the postcondition

as the property of the values after the program is executed and the precondition as

the value taken by the variables before the program is initiated. This definition is

known as a Hoare triple and uses the following notation

{P}Q{R}

which means that "if the assertion P is true before initiation of a program Q, then

the assertion R will be true on its completion" [24].
Using the new notation, Hoare redefined Floyd's idea of program verification that

used flow charts and was able to construct formal proofs of simple programs [24].
These formal proofs are the basis for program verification that is done today.

2.2 Axiomatic Approach To Program Verification

Axiom of Assignment

The assignment statement is of the form

x:=f

where x is a variable and f is an arbitrary programming language expression. In

order for the assertion P(x) to be true as a postcondition, P(J) has to be true as a

precondition. In the new Hoare notation, the axiom is expressed as follows:

f- Po {x := f}P

which means that Po is obtained from P by substituting f for all occurrences of x.

2. Program Verification 7

Rules of Consequence

Taking the "Axiom of Assignment" as a basis of programs, Hoare introduced rules

of inference in order to be able to deduct more theorems. The" rule of consequence"

was defined as follows:

If f--- P{Q}R and f--- R => S then f--- P{Q}S

If f--- P{Q}R and f--- S => P then f--- S{Q}R

If execution of program Q ensures that R is true, then any assertion logically impled

by R is also true. If P is known to be a precondition for Q in order to obtain R, then

any assertion that logically implies P is true.

Rule of Composition

A program is a sequence of statements that execute in order. The "rule of compo

sition" states that the postcondition of the first set of statements is a precondition

to the set of the statements following the first. If the second part of the program

produces correct results, then the whole program is correct if the precondition of the

first set of statements is satisfied [24]. This has been formalized using the following

notation:

Rule of Iteration

The last rule - the" rule of iteration" - has been defined for fragments of programs

such as S, that are executed until the condition B is false.

while B do S

The formalization includes an assertion P that is always true before and after the

statements in S are completed.

If f--- P /\ B{S}P then f--- P{while B do S}--,B /\ P

The rules were later extended to define recursive procedures, functional calls in

programs, coroutines and unconditional jumps [45].

8 2. Program Verification

2.3 Weakest Precondition

The rules and definitions introduced by Hoare [24J did not guarantee program ter

mination. In 1975, Edsger Dijkstra tightened Hoare's definition of preconditions by

introducing a definition of the weakest preconditions [16J.

wp(S,R)

The weakest precondition as per Dijkstra guarantees that after executing statements

S the program will terminate and satisfy the post-condition R. The properties of wp

were defined as follows: (taken from [16]).

1. For any S, we have for all states: wp(S, F)

Excluded Miracle).

F (the so-called Law of the

2. For any S and any two post-conditions, such that for all states P * Q, we have

for all states: wp(S, P) * wp(S, Q).

3. For any S and any two post-conditions P and Q, we have for all states

(wp(S, P) 1\ wp(S, Q)) = wp(S, P 1\ Q).

4. For any deterministic S and any post-conditions P and Q, we have for all states

(wp(S, P) V wp(S, Q)) = wp(S, P V Q).

Knowing the program statements S, wp(S, R) can be derived from any post-condition

R.

The program statements have been formalized by Dijkstra [16J using guarded

commands, in order to be able to derive weakest preconditions easily.

A guarded command is a building block for alternative and repetitive constructs

such that the boolean expression has to evaluate to true before the statements that

follows can be executed.

<guarded command> ::= <guard> ---t<guarded list>

<guard> ::= <boolean expression>

<guarded list> ::= <statement> I; <statement> I
<guarded command set> ::= <guarded command> 0 <guarded command set>

<alternative construct> ::= if <guarded command set> fi

<repetitive construct> ::= do <guarded command set> od

2. Program Verification 9

<statement> <alternative construct> I <repetitive construct> I "other state-

ments"

where { } denotes zero or more instances.

Using the above notation, Dijkstra defined a way of obtaining weakest precondi

tions to be as follows:

Skip Statement

Weakest precondition of an empty statement is defined as

wp(" skip" , R) = R

Assignment Statement

For assignment x := E the weakest precondition is defined as:

wp("x := E", R) = RE

Where RE is R with all occurrences of x replaced by E.

Consecutive Statements

For statements Sl and S2 such that they appear consecutively in the program and

are separated by ; , the weakest precondition can be expressed as:

Alternative Statement

The alternative construct of syntax:

the weakest precondition can be obtained as follows:

wp(IF,R) = (BB and (Vi: 1:S; i:S; n: Bi =? Wp(SLi,R)))

where B B denotes

10 2. Program Verification

With respect to the weakest preconditions, the following theorem has been derived:

THEOREM 1: From (Vi : 1 :::; i :::; n : (Q and Bi) =? wp(SLi , R)) for all

states we can conclude that (Q and B B) =? wp(I F, R) holds for all states.

Also, when t denotes an integer function defined on state space and wdec(S, t)

is a weakest precondition such that S guarantees to terminate and that t is decreased

by at least one, the following is true:

THEOREM 2: From (Vi : 1 :::; i :::; n : (Q and B i) =? wdec(SLi' t)) for all

states we can conclude that (Q and BB) =? wdec(IF, t) holds for all states.

Repetitive Statement

The repetitive statement have been defined by Dijkstra as:

do Bl ---+ SLID ... DBn ---+ SLn ad

Taking variable k as number of iterations the following can be defined:

Hk(R) = (R and non BB) for k = 0 and for k> 0 Hk(R) = (wp(IF, Hk-1(R)) or

Ho(R))

Due to the fact that k is an induction variable the following theorems can be proved

using induction:

THEOREM 3: If we have for all states (P and BB) =? (wp(IF, P) and wdec(IF, t)

and t ~ 0) we can conclude that we have for all states P =? wp(DO, P and non

BB).

THEOREM 4: From (P and BB) =? wp(IF, P) for all states, we can con

clude that we have for all states (P and (wp(DO, T)) =? wp(DO, P and non BB).

In the above theorems, P is referred to as "the invariant relation" and t "the

variant function" [16].

2. Program Verification 11

2.4 Proof Obligations

Djikstra and Feijen [17] explained that the program should be looked at as a state

transition where each statement transitions from one state of the program to another.

Based on the state transition a functional specification can be defined as the relation

between the initial and final state of the program in four points:

1. the declaration of local variables;

2. the precondition, traditionally put in braces (following the Hoare triple nota

tion);

3. the program statement;

4. the postcondition, also put in braces;

Each state transition should be proved individually by following simple automated

rules called "proof obligations". Combination of all the subsequent statements can

assure the correctness of the state change from program precondition to the program

postcondition. The proof obligations were defined as follows:

The Postulate of skip

The skip statement as a state change can be defined as [x : int {P}skip{Q}] and

requires the following proof:

P=?Q

The Postulate of Assignment

The assignment statement as a state change is defined as [x, y : int {P}x := E{ Q}]

and requires the following proof:

P=?Q1

Where Q1 denotes that every occurrence of x in Q is replaced by E.

12 2. Program Verification

The Postulate of Concatenation

The concatenation of statements as a state change is defined as [x : int {P}So; Sl {Q}]

can be proven by separately proving each of the concatenated statements such that

there is a predicate H that:

[x: int {P}So{H}] and [x : int {H}Sl{Q}]

The Postulate of the Alternative Statement

The alternative statement as a state change is defined as:

[x : int

{P}
if Eo ---+ So
o E1 ---+ Sl

fi

{Q}]

can be proven by ensuring that:

P ::::} Eo V E1

and each of the statements within the alternative statement with respect to the initial

precondition can be shown correct by proving the following:

[x : int {P 1\ Eo}So{ Q}]

[x: int {P 1\ Eo}So{Q}]

The Postulate of the Repetitive Statement

The repetitive statement as a state change is defined as:

[x : int
{P}

do Eo ---+ So
o El ---+ Sl

od

2. Program Verification 13

{Q}]

can be proven by ensuring that there is a predicate H (called an invariant)

and an integer function vi (called a variant function) such that all the following

holds: The invariant holds before the loop

On every iteration the invariant holds before and after the iteration, and value of vi
decreases on every iteration.

I[x: int{H /\ Eo /\ vi = VF}; So{H /\ vi < VF}]I

I[x: int{H /\ El /\ vi = VF}; Sl{H /\ vi < VF}] I

On each iteration where either guard Eo or El is true, the value of viis greater than

O.

In the case where neither of the guards is true, the postcondition should be achieved.

14 2. Program Verification

Chapter 3

Automatic theorem provers

The use of the method of generating proof obligations allowed predicate calculus to

prove program correctness for sequential programs [19]. This method has been widely

used and implemented as a part of many other methods and in proving non sequential

programs. Construction of these proofs, however, was extremely difficult, especially

with large programs. The disadvantage of the verification and analysis of computer

programs based on a calculus of relations is the amount of symbolic computation that

it requires [9].

Provers that are able to prove logical expressions have been developed. The B

method for program verification became popular and many versions of HOL theorem

provers were created, such as HaL-light or Isabele HaL, that can assist with proving

the correctness of programs. These provers however still required lots of manual input

as proof obligations had to be generated manually, or the prover required extensive,

manual guidance through the proof.

There became a need for a faster prover that would process huge programs with

hundreds of variables with minimal user interaction and within the shortest possible

time [4].

3.1 DPLL

It was noticed that the quantifiers caused most of the problems with program verifica

tion and that there were many proof procedures available. These procedures were able

to confirm validity of the formula, however when the formula was invalid it involved

seeking "forever" [13]. Wang and Gilmore were able to develop programs that use the

15

16 3. Automatic theorem provers

quantification theory procedures, however these programs were only able to validate

simple formulas and run into serious problems with more complicated examples [13].

In 1960, M. Davis and H.Putnam described a uniform procedure for quantifi

cation theory which worked with complicated formulas successfully [12] [13]. In

the algorithm, a quantifier-free formula is derived by replacing existential quantifiers

in a prenex form formula with a function symbol. It has been noted that that this

process does not affect consistency [13]. Using the DPLL (Davis-Putnam-Logemann

Loveland) algorithm, the quantifier-free formula is checked for consistency by applying

the elimination of one-literal clauses rule (Rule I), applying the affirmative-negative

rule (Rule II) and eliminate atomic formulas rule (Rule III). These rules are repeated

until it is decided that the conjunction obtained initially was consistent or inconsis

tent. (Details on this algorithm can be found in [12] and [13].)

3.2 SAT Solvers

The example of DPLL mentioned in [12] and [13] generated more than 500 quantifier

free lines and was calculated to be valid in a few of minutes. Highly efficient SAT

solvers were introduced as a result of the excellent performance of the algorithm [4]

Satisfiability of a formula is the existence of a substitution which makes variables

either true or false, so that the original formula with a substitution is a tautology [3].

This algorithm has been used to calculate validity of first-order logic formulas, whose

implementation details are described in reference [14], however for formulas which

are not logically valid the algorithm entered an infinite loop without giving a result.

The major modern DPLL-based SAT solvers do not use the original DPLL al

gorithm, but improvements have been introduced as described in [36] and called

Abstract DPLL. The solvers used these days use the Abstract DPLL with Learning

mechanism. The DPLL procedure is restarted when not enough progress is made, so

that knowledge from the previous run is used in the subsequent run of the algorithm

to search in a faster way [36].

Satisfiability modulo theories also expand boolean satisfiability by including equal

ity reasoning, arithmetic, fixed-size bit-vectors, arrays, quantifiers and other first

order theories. SMT -solvers have proven highly scalable, efficient and suitable for

integrating theory reasoning [34].

3. Automatic theorem provers 17

3.2.1 Simplify Theorem Prover

Simplify was developed by Compaq as a prototype of a SMT theorem prover. It

was constructed to accept any first-order logic formula together with quantifiers and

obtain a result stating whether the formula was valid or invalid [14]. Invalid formulas

generate a trace and error message for the user. The mechanism used by Simplify is

to check for satisfiability of the negation of the formula it is validating [14].

M. Davis and H. Putnam [13] describe the satisfiability algorithm, which termi

nates and yields the validity of a given formula. For formulas which are not logically

valid the algorithm enters an infinite loop without giving a result. Simplify uses

this algorithm in order to calculate validity of the given first-order logic formula, the

implementation details of which are described in reference [14].

Simplify also implements the Simplex algorithm originally introduced by George

B. Dantzig [11] [1]. This tableaus technique improves performance over using the

original satisfiability algorithm only. The description of the Simplex algorithm is also

included in reference [14].

A well known approach for quantifier reasoning with ground decisions - E-matching

algorithm - is also used which would later be implemented in other SMT-solvers [33].

An interesting ability of Simplify is detection and reporting of errors in the for

mulas. It maintains a conjunction of literals that characterizes the formula and prints

the conjunction to the user as a counterexample. For example if we want to check

validity of

x ~ 0 ::::} x > 10

Simplify would report an error as the negation of the formula is not satisfiable and

the counterexample presented would be as follows [14]:

x ~ 0 /\ x ::; 10

In case of inability to calculate the value of a procedure, Simplify returns the formula

with a procedure unsolved which indicates where the problem occurred.

Simplify uses a lisp-like syntax to enter formulas and terms. The boolean connec

tives include

AND OR NOT IMPLIES IFF EXPLIES

and relations contain

18 3. Automatic theorem provers

EQ NEQ < <= > >= DISTINCT

The operations on literals include only

+ - * select store

where select and store are operations on an array.

Simplify also has the ability to add new formulas and assumptions to be used in other

proofs using the

command.

3.2.2 Z3 Theorem Prover

Satisfiability modulo theories (SMT) expand boolean satisfiability (SAT) by including

equality reasoning, arithmetic, fixed-size bit-vectors, arrays, quantifiers, and other

first-order theories [34]. Satisfiability Modulo Theories solvers have proven highly

scalable, efficient and suitable for integrating theory reasoning [33].

In September 2007, Microsoft Research introduced a new SMT-solver called Z3,

targeted at solving problems in software verification and analysis [34]. This solver

uses a well-known approach for incorporating quantifier reasoning with ground de

cision procedures originally used in the Simplify theorem prover [18] and supports

three input formats - SMT-LIB, Simplify and DIMACS format. It can also be called

using an ANSI C API, a .NET API, and an OCaml API.

The architecture of Z3 is an integration of a modern DPLL-based SAT solver, core

theory solver which handles equalities and uninterpreted functions, satellite solvers

and an E-matching abstract machine [34].

The approach is however improved in Z3 and the algorithms identify matches

on E-graphs incrementally and efficiently. Experimental results reference [33] show

substantial performance improvements over existing SMT solvers.

E-matching takes a set of ground equations E, a ground term t and a term p

that contains variables as input. The output is the set of substitutions 8, modulo

E, over the variables in p, such that EFt ~ 8(p). The two substitutions are called

equivalent if the right side of the equation of each substitution is pairwise congruent

modulo E [33].

3. Automatic theorem provers 19

Z3 introduces a notion of an index on E-graphs (E-matching code trees) which al

low performing matching against several patterns simultaneously. These indexes when

combined with the inverted path index can find patterns that may potentially match

after modifications in the E-graph. The overhead of using the improved E-matching

algorithm is searching and maintaining sets of patters for quantified formulas so that

retrieval can be efficient [33].

20 3. Automatic theorem provers

Chapter 4

Loop Invariants

The basic technique to find the loop invariants was proposed by C.A.R. Hoare [24].

Finding them however is not an easy process, especially in large programs, and was

prone to create problems. Extensive research has been conducted to find an automatic

way of finding loop invariants.

In sixties a technique using calculus of relations was proposed for verification and

analysis of computer programs [5], [6], [30]. The technique has never become

widely accepted because of the huge amount of symbolic calculations that need to be

performed even though it has many theoretical and methodological advantages (for

example that it emphasized calculation and not proving).

It is easy to compute polynomial invariants of loops due to symbolic computation

tools available now.

4.1 Program Verification by calculating relations

Carette, Janicki and Zhai [9] developed a program that reads in the text of a program

and returns the symbolic calculation of the output. The article uses an example of

program factorial that calculates n!. To validate the program there were three critical

pieces of information that were required - the initial condition being the value of

the variables before the loop executed, the recurrence statements inside the loop that

are executed when the loop is progressing and loop termination which is the number

of times recurrence statements are executed before the loop exits. Using the above

information we can symbolically execute the program and validate it against the post

conditions.

21

22 4. Loop Invariants

The results of this section were published as [25] .

4.1.1 Verification of Factorial program

This section will explain more details of program verification by calculating relations

on the factorial program and showing how it can be verified using Z3. The factorial

program can be represented in Maple syntax as follows [9]:

factorial:=proc(n: :posint)

local i, fac;

i:=1;

fac:=1;

while i < n do

begin

i:=i+1;

fac:=fac*i;

end;

return fac

end proc;

It is relatively easy to prove using calculus of relations and predicates that the

above program computes n!. An example of such proof can be found, for example,

in [6], [8], [9]. Most such proofs require some amount of human ingenuity, usually

to "see" a pattern which, in most cases, is impossible to mechanize. The technique

proposed in [8] and implemented in [46] translates the above program into the

recurrence relations:

i(O) = 1

fac(O) = 1

i(k+ 1) = i(k)+ 1

fac(k+1)=fac(k) . i(k+1)

and then the recurrence relations are solved symbolically using powerful Maple tools.

The answer produced is the text "n!".

4. Loop Invariants 23

Relations Recurrence and Initial Condition

StateTransition(i, 1) Initial Condition: i(O)=l

StateTransition(fac,1) Initial Condition: fac(O)=l

FixedPoint(i < n, Loop Termination: t = min{ k ?: 0 I i(k) ?: n}

StateTransition(i,i+ 1) Recurrence: i(k + 1) = i(k) + 1

StateTransition(fac,fac*i) ,) Recurrence: fac(k + 1) = fac(k) * i(k + 1)

return fac fac(t)

With Simplify and Z3 we proceed differently. We have to produce two predicate

expressions (in the appropriate format) - one that represents the program, and

another that represents the presumed outcome of the program; we then compare

them. While the tool presented in [9], [46] was able to automatically translate

Maple programs into appropriate recurrences, so far we do not have such possibilities

implemented for Z3 or Simplify.

The math satements can be expressed in Simplify input format as assumptions

about the program. For the above program, the BG_PUSH statements can be applied

as follows to define both of the initial conditions:

(BG_PUSH (FORALL (n) (EQ (fac 1 n) 1)))

(BG_PUSH (FORALL (n)(EQ(i 1 n) 1)))

and the body of the loop (where k is the number of iterations of the loop):

(BG_PUSH (FORALL (n k) (IMPLIES (AND (>= n (i k n)) (> k 1)) (EQ
(fac k n) (* (fac (- k 1) n) (i k n))))))

(BG_PUSH (FORALL (n k) (IMPLIES (AND (>= n (i k n)) (> k 1)) (EQ (i
k n) (+ (i (- k 1) n) 1)))))

The program can be invoked by calling function fac and passing number n to

cancluate n!.

(BG_PUSH (FORALL (n) (IMPLIES (> n 0) (EQ (fact n) (fac n n)))))

In order to check the validity a special function had to be created called factorial

that calculates n! using the mathematical definition. In Simplify syntax the definition

of factorial is as follows:

24 4. Loop Invariants

(BG_PUSH (EQ (factorial 1) 1))

(BG_PUSH (FORALL (n) (IMPLIES (> n 1) (EQ (factorial n) (*

(factorial (- n 1)) n)))))

The validity is checked by comparing the value of n! received by factorial (math

ematical equation) and the program we are trying to verify by checking the equality

of the two n! obtained:

(EQ (factorial 5) (fact 5))

If Z3 returns Valid after entering the above, the program might be correct. Note

that we can show that for instance factorial 7 = fac 7, factorial 17 = fac 17, but we

cannot show that factorial k = fac k for a variable k. We believe that this is more

than testing [35], because this equality means equivalence of appropriate predicate

expressions generated during both calculations, however this is less than a formal

proof.

4.2 Examples

Similar to the factorial example presented in previous section, other programs can be

represented in Simplify format. To simplify the notation, Java will be used to write

out algorithms of the programs analyzed.

4.2.1 Sum of Elements of the Array

Since Z3 does not have the required mathematical formulas, in order to validate the

program we need to create the mathematical representation of the sum of elements

in Simplify format. The correct sum of elements will be expressed as SumElm.

(BG_PUSH (FORALL (a k) (IFF (> k 1) (EQ (SumElm a k) (+ (select a k)

(SumElm a (- k 1)))))))

(BG_PUSH (FORALL (a k) (IFF (EQ k 1) (EQ (SumElm a k) (select a
k)))))

The program that we are trying to validate is as follows:

4. Loop Invariants

public int SumArray(int[] a)
{

}

int s = 0;

int k = 0;

int n = a.length;

while (k<n){

}

s s+a[i] ;

k = k+1;

return s;

25

The statements in Simplify format that represent the program and are entered

into Simplify are the following:

Initial conditions

(BG_PUSH (FORALL (a k) (IFF (EQ k 1) (EQ (SumArray a k) (select a
k)))))

(BG_PUSH (FORALL (a k) (IFF (EQ k 1) (EQ (i k) 1))))

Recurrence Equations

(BG_PUSH (FORALL (a k) (IFF (> k 1) (EQ (SumArray a k) (+ (SumArray

a (- k 1)) (select a (i k)))))))

(BG_PUSH (FORALL (k) (IFF (> k 1) (EQ (i k) (+ (i (- k 1)) 1)))))

Where k again starts at the loop termination value. Then we can test for any

array a of example length 6 by entering the following equation statement:

(EQ (SumElm a 6) (SumArray a 6))

Z3 validates this program successfully. Note that in this way we have proved that

the above program calculates the sum of any array of length 6. We can do it (at

least in theory) for any concrete number, i.e. for any concrete length, but not for an

arbitrary n.

26 4. Loop Invariants

4.2.2 Quick Sort

For sorting algorithms we need to validate the program by making sure the newly

obtained array is actually sorted. The following will check the array and return 1 if

it is sorted and 0 if it is not sorted.

(BG_PUSH (FORALL (a i) (IMPLIES (EQ i 1) (EQ (sorted a i) 0))))

(BG_PUSH (FORALL (a i) (IMPLIES (AND (> i 1) (>= (select a i)

(select a (- i 1)))) (EQ (sorted a i) (sorted a (-i 1))))))

(BG_PUSH (FORALL (a i) (IMPLIES (AND (> i 1) « (select a i) (select

a (- i 1)))) (EQ (sorted a i) 1))))

The Quick Sort algorithm is as follows:

public int[] quicksort (int[] a, int p, int r)

{

}

if (p < r){

int q = partition(a, p, r);
}

quicksort (a, p, q-1);

quicksort (a, q+1, r);

return a;

public int partition(int[] a, int p, int r)
{

int x = a[r];

int i = P - 1;

for (int j=p; j<r; j++)
{

if (aU] <= x)
{

i = i + 1;

exchange(a[i], a[j]);

exchange(a[i+1], a[r]);

4. Loop Invariants 27

}

}

return (i + 1);
}

The Quick sort can be represented by the following statements in Simplify syntax:

(BG_PUSH (FORALL (a n p r) (IFF « p r) (EQ (quickSort a n p

r) (quickSort (quickSort a n (+ (partition (changes a n p r) n p r)

1) r) n p (- (partition (changes a n p r) n p r) 1))))))

(BG_PUSH (FORALL (a n p r) (IFF (>= p r) (EQ (quickSort a n p r)
a))))

(BG_PUSH (FORALL (a n prj) (EQ (changes a n p r) (LoopOne a n p r

(select a r) (- p 1) p))))

(BG_PUSH (FORALL (a n prj) (EQ (partition a n p r) (Loop a n p r

(select a r) (- p 1) p))))

(BG_PUSH (FORALL (a n p r x i j) (IFF (AND « j r) «= (select a j)

x)) (EQ (Loop a n p r x i j) (Loop a n p r x (+ i 1) (+ j 1))))))

(BG_PUSH (FORALL (a n p r x i j) (IFF (>= j r) (EQ (Loop a n p r x i
j) (+ i 1)))))

(BG_PUSH (FORALL (a n p r x i j) (IFF (AND « j r) «= (select a j)

x)) (EQ (LoopOne a n p r x i j) (LoopOne a n p r x (+ i 1) (+ j
1))))))

(BG_PUSH (FORALL (a n p r x i j) (IFF (>= j r) (EQ (LoopOne a n p r

x i j) (exchange ani j r)))))

(BG_PUSH (FORALL (a n i j r) (EQ (exchage ani j r) (swap (swap a n

i j) n (+ i 1) r))))

28 4. Loop Invariants

(BG_PUSH (FORALL (a n i j) (EQ (swap ani j) (store (store (store a

(select a j) (+ n 1)) (select a i) j) (select a (+ n 1)) j))))

To test the algorithm the following needs to be executed:

(BG_PUSH (FORALL (a) (EQ (Array a) (store (store (store (store

a 1 5) 2 2) 3 4) 4 6))))

(EQ (sorted (quickSort (Array a) 4 1 4) 4) 1)

Z3 validates this program successfully, however the solution is less general than

the solution for Sum as it only validates a concrete array.

4.2.3 Merge Sort

Before the Merge sort example can be presented, it is important to note that Simplify

syntax has no built-in division. The division of elements has to be explicitly defined

in order to be able to use it.

(BG_PUSH (FORALL (a b i c) (IFF (> c a) (EQ (diva b i c) (- i
1)))))

(BG_PUSH (FORALL (a b i c) (IFF «= c a) (EQ (diva b i c) (diva b
(+ i 1) (+ c b))))))

(BG_PUSH (FORALL (a b i c) (EQ (divide a b) (diva bOO))))

In Merge sort, the array is divided into subarrays containing parts of the original

array. The function that splits the array needs to be defined.

(BG_PUSH (FORALL (b) (EQ (Array b) (store b 1 0))))

(BG_PUSH (FORALL (a m n k) (IMPLIES (> k (- n m)) (EQ (subArray a m

n k) (store (Array b) (select a k) 1)))))

(BG_PUSH (FORALL (a m n k) (IMPLIES «= k (- n m)) (EQ (subArray a m

n k) (store (subArray a m n (+ k 1)) (select a (+ k m)) k)))))

4. Loop Invariants

The merge sort algorithm is as follows:

public int[] mergesort(int m)
{

}

int[] left = new int[O];

int[] right = new int[O];

int middle;

if (m.length <= 1){return m}

else {

}

middle = (m.length/2)

for (int i=O; i<=middle; i++){

left [left. length+1]=m[i] ;

}

for (int i=(middle+1); i<=m.length; i++){

right [right.length+1]=m[i] ;
}

left = mergesort(left);

right = mergesort(right);

return = merge(left, right);

public int[] merge (int[] left,int[] right)
{

int[] result = new int[O];

while (left.length > 0 && right.length > 0)
{

if (left[O] <= right[O]){

append(left[O], result);

left = rest(left);

} else {

append(right[O],result);

right = rest(right);
}

if (left. length} > 0 {

append(rest(left), result);

29

30 4. Loop Invariants

}

if (right.length > O){

append (rest (right) ,result);
}

return result;
}

The mergesort function can be defined in Simplify as follows:

The initial values are defined(subArray and divide are explicitly used):

(BG_PUSH (FORALL (a m n) (IFF «= (- n m) 1) (EQ (mergesort a m n)

(subArray a m n 1)))))

(BG_PUSH (FORALL (a m n) (IFF (> (- n m) 1) (EQ (middle a m n)

(divide (- n m) 2)))))

The recurrences for Mergesort are:

(BG_PUSH (FORALL (result) (EQ (Array result) (store result 1 0))))

(BG_PUSH (FORALL (a m n) (IFF (> (- n m) 1) (EQ (merge sort a m n)

(merge (mergesort a m (middle a m n)) (- (middle a m n) m)

(mergesort a (+ 1 (middle a m n)) n) (- n (+ 1 (middle a m n))) 0

(Array result))))))

The second step that is used by Mergesort is merging the sorted pieces of the

array into the main array which at the end will be sorted. It can be represented by

the following predicate (in Simplify format):

(BG_PUSH (FORALL (a m k c) (EQ (appendfirst a m k c) (store c

(select a 1) k))))

(BG_PUSH (FORALL (a m b n k c) (IFF (AND (> m 0) (AND (> n 0) «=
(select a 1) (select b 1)))) (EQ (merge a m b n k c) (merge (rest a

m (- m 1)) (- m 1) b n (+ k 1) (appendfirst a m k c))))))

(BG_PUSH (FORALL (a m b n k c) (IFF (AND (> m 0) (AND (> n 0) (>

4. Loop Invariants

(select a 1) (select b 1)))) (EQ (merge a m b n k c) (merge a m

(rest b n (- n 1)) (- n 1) (+ k 1) (appendfirst b n k c))))))

(BG_PUSH (FORALL (a m k c t) (IFF (> t 0) (EQ (appendrest a m k c t)

(store c (select (appendrest a m k c (+ t 1)) t) (+ k 1))))))

(BG_PUSH (FORALL (a m k c t) (IFF (EQ t m) (EQ (appendrest a m k c

t) (store c (select a t) (+ k 1))))))

(BG_PUSH (FORALL (a m b n k c) (IFF (AND (> m 0) «= nO)) (EQ

(merge a m b n k c) (appendrest a m k c 1)))))

(BG_PUSH (FORALL (a m b n k c) (IFF (AND «= m 0) (> nO)) (EQ

(merge a m b n k c) (appendrest b n k c 1)))))

(BG_PUSH (FORALL (a m k) (IFF (EQ k 1) (EQ (rest a m k) (store a

(select a 2) k)))))

(BG_PUSH (FORALL (a m k) (IFF « k (- m 1)) (EQ (rest a m k) (rest

(store a (select a (+ k 1)) k) m (- k 1))))))

(BG_PUSH (FORALL (a m b n k c) (IFF (AND «= n 0) «= m 0)) (EQ

(merge a m b n k c) c))))

The test uses a defined Array a and checks if the array is sorted.

(BG_PUSH (FORALL (a) (EQ (Array a) (store (store (store (store a 1

5) 2 2) 3 4) 4 6))))

(EQ (sorted (mergesort (Array a) 1 4) 4) 1)

31

In this example Z3 is unable to validate the algorithm successfully and it does

not provide a counterexample. The same definition of this sorting algorithm, when

plugged into Simplify, results in a successful proof that marks the algorithm valid.

32 4. Loop Invariants

4.2.4 Bubble Sort

The Bubble Sort algorithm is as follows

public int[] bubblesort(int[] a)
{

}

for (int i=1 ; i<= a.length; i++){

for (int j=a.length; j>i; j--){

if (a[j] < a[j-1]){

swap(a[j], a[j-1]);
}

}

}

return a;

The initial conditions are as follows:

(BG_PUSH (FORALL (a n j i) (IFF (EQ j i) (EQ (bbsort ani j)

(bbsort a n (- i 1) n)))))

(BG_PUSH (FORALL (a n j i) (IFF (EQ i 0) (EQ (bbsort ani j) a))))

The recurrence equations are:

(BG_PUSH (FORALL (a n j i) (IFF (AND (>= i 1) (AND (>= j n) (AND

(NEQ i j) « (select a j) (select a (-j 1)))))) (EQ (bbsort ani j)

(opt3 (opt2 (opt1 (bbsort ani (- j 1)) n i j) n i j) n i j)))))

(BG_PUSH (FORALL (a n j i) (EQ (opt1 ani j) (store a (select a j)
(+ n 1)))))

(BG_PUSH (FORALL (a n j i) (EQ (opt2 ani j) (store a (select a (
j 1)) j))))

(BG_PUSH (FORALL (a n j i) (EQ (opt3 ani j) (store a (select a (+

n 1)) (- j 1)))))

4. Loop Invariants

The calling function is bubblesort taking an array a of size n.

(BG_PUSH (FORALL (a n j i) (EQ (bubblesort a n) (bbsort ann n))))

In order to test the code we need to test it on a given array Array a.

(BG_PUSH (FORALL (a) (EQ (Array a) (store (store (store (store a 1

5) 2 2) 3 4) 4 6))))

33

The array received from running the code should be sorted. The following com

mand will check that it is indeed sorted:

(EQ (sorted (bubblesort (Array a) 4) 4) 1)

4.2.5 Insertion Sort

The sorting algorithm is as follows:

public int[] Insert(int[] a)
{

}

a=sort(a);

int i=a.length;

while ((i>0)&&(a[i-1]>x){

a[i]=a[i-1] ;

i=i-1;
}

a[i]=x;

return a;

The initial Condition is describing that if the value of i is 0 then the element

should be inserted as a first element of the array.

(BG_PUSH (FORALL (a i x) (IFF (EQ i 0) (EQ (insert a i x) (store a 1

x)))))

The Recurrence equations are:

34 4. Loop Invariants

(BG_PUSH (FORALL (a i x) (IFF (AND (> i 1) (> (select a i) x)) (EQ

(insert a i x) (insert (store a (+ i 1) (select a i)) (-i 1) x)))))

(BG_PUSH (FORALL (a i x) (IFF (AND (> i 1) «= (select a i) x)) (EQ

(insert a i x) (store a (+ i 1) x)))))

Again, a given array needs to be used. Here the array has 4 elements and we are

trying to add the 5th element '3'.

(BG_PUSH (FORALL (a) (EQ (Array a) (store (store (store (store a 1

5) 2 2) 3 4) 4 6))))

Again, we check running the command to see if it is sorted.

(EQ (sorted (insert (bubblesort (Array a) 4) 4 3) 5) 1)

4.2.6 Selection Sort

The selection Sort algorithm is as follows:

public int[] selectionSort(int[] a)
{

}

int min;

for (int i=O; i«size-1); i++)
{

}

min i· ,
for (int j=i+1; j<size; j++)
{

}

if (a[j] < a[min]){

min = j;
}

swap(a[i], a[min]);

return a;

The main call of the procedure is selectionSort:

4. Loop Invariants

(BG_PUSH (FORALL (a n i j min) (EQ (selectionSort a n) (selsort a n
(- n 2) (- n 1) (- n 1)))))

The initial conditions are as follows:

(BG_PUSH (FORALL (a n j i min) (IFF (EQ j i) (EQ (selsort ani j

min) (swap ani j min)))))

(BG_PUSH (FORALL (a n j i min) (IFF (EQ i 0) (EQ (selsort ani j

min) a))))

The recurrence equations are:

(BG_PUSH (FORALL (a n j i min) (IMPLIES (AND « (select a j) (select

a min)) (AND (> i 0) (> j i))) (EQ (selsort ani j min) (selsort a

n i (- j 1) j)))))

(BG_PUSH (FORALL (a n j i min) (IMPLIES (AND (>= (select a j)

(select a min)) (AND (> i 0) (> j i))) (EQ (selsort ani j min)

(selsort ani (- j 1) min)))))

The swap algorithm can be presented as follows:

(BG_PUSH (FORALL (a n j i min) (EQ (swap ani j min) (opt3 (opt2

(opt1 (selsort a n (- i 1) i min) n i min) n i min) n i min))))

35

(BG_PUSH (FORALL (a n i min) (EQ (opt1 ani min) (store a (select a

min) (+ n 1)))))

(BG_PUSH (FORALL (a n i min) (EQ (opt2 ani min) (store a (select a

(- min 1)) min)))) (BG_PUSH (FORALL (a n i min) (EQ (opt3 ani min)

(store a (select a (+ n 1)) (- min 1)))))

Testing of the algorithm:

(BG_PUSH (FORALL (a) (EQ (Array a) (store (store (store (store

a 1 5) 2 2) 3 4) 4 6))))

(EQ (sorted (selectionSort (Array a) 4) 4) 1)

36 4. Loop Invariants

4.2.7 Shell Sort

The Shell Sort Algorithm is:

public int[] shellSort(int A[], int size) {

int i, j, increment, temp;

}

increment = size/2;

while (increment > 0)
{

}

for (i=increment; i < size; i++)

{

j i' ,
temp=A [iJ ;

while ((j >= increment) && (A[j-increment] > temp))
{

}

A[j] = A[j - increment];

j = j - increment;

AU] = temp;

if (increment 2){

increment 1;}

else {

increment (int) (increment / 2.2);}
}

return a;

Main function of shell Sort is:

(BG_PUSH (FORALL (a size) (EQ (shellSort a size) (loopOne a size

(divide size 2)))))

(BG_PUSH (FORALL (size) (IFF (EQ (divide size 2) 2) (EQ (increment

size) 1))))

4. Loop Invariants

(BG_PUSH (FORALL (size) (IFF (NEQ (divide size 2) 2) (EQ (increment

size) (divide size 3)))))

The recurrence equations are:

(BG_PUSH (FORALL (a size inc temp i j) (IFF (> inc 0) (EQ

(loopOne a size inc) (loopOne (loopTwo a size inc inc) size

(increment size))))))

(BG_PUSH (FORALL (a size inc temp i j) (IFF «= inc 0) (EQ (loopOne

a size inc) a))))

(BG_PUSH (FORALL (a size inc temp i j) (IFF « i size) (EQ (loopTwo

a size inc i) (loopTwo (LoopThree a size inc (select a i) i i) size

inc (+ i 1))))))

37

(BG_PUSH (FORALL (a size inc temp i j) (IFF (>= i size) (EQ (LoopTwo

a size inc i) a))))

(BG_PUSH (FORALL (a size inc temp i j) (IFF (AND (>= j inc) (>

(select a (- j inc)) temp)) (EQ (LoopThree a size inc temp i j)

(assign a j (select (LoopThree a size inc temp i (- j inc)) (- j

inc)))))))

(BG_PUSH (FORALL (a size inc temp i j) (IFF (OR « j inc) «=
(select a (- j inc)) temp)) (EQ (LoopThree a size inc temp i j)

(assign a j temp)))))

Testing of the algorithm:

(BG_PUSH (FORALL Ca) CEQ (Array a) (store (store (store (store

a 1 5) 2 2) 3 4) 4 6))))

(EQ (sorted (shellSort (Array a) 4) 4) 1)

Which returns valid as expected.

38 4. Loop Invariants

This chapter shows that Z3 has trouble with verifying program by calculating

relations. It is unable to handle complicated calculations in the Simplify format and

programs that do not use integers [15]. For example a construction of a proof of a

program that creates Chebyshev polynomials is impossible in Z3.

Large values specified for input also limit Z3 significantly. For example, when

calculating the sum of the array elements, the sum for array of length 20 returned

valid in less than a second, however if the same command was run for 30 elements the

SumArray ran for extended amount of time without being able to reach a conclusion.

Similar results have been seen with other examples provided in this chapter.

The requirement of working on specific values of variables is also an important

limitation that makes Z3 unfit as a prover of program correctness for arbitrary values

of program variables. When working with the factorial example, the value of p had

to be specified and when working with arrays, Z3 was unable to work with arbitrary

array. In the instance of SumArray, Z3 attempted to validate the program for any

array of length p, however results were inconclusive.

When working with sorting algorithms, Z3 had to work with an exact array,

and did not even account for assumptions of the elements. For example when an

assumption was created that element a is less than element b in the array, Z3 did not

return an error, however it took a very long time to complete the validation, which

makes the result inconclusive.

The lack of understanding of mathematical concepts such as factorial has been

shown to be a limitation of Z3 as well, where a mathematical definition had to be

created. The user-created definition of factorial has not been validated and thus

cannot be assumed to be correct.

Chapter 5

Concurrency

While sequential programs can be annotated with assertions which reflect proof obli

gations, it is not clear how concurrent programs should be annotated and what proof

obligations are required to validate them. This chapter will introduce the core of

the Owicki/Gries Theory and show examples of validating such programs using Z3.

There are many models of concurrency and Owicki/Gries method is one of the oldest

and simplest which is a good starting point for proving concurrent programs with Z3.

It can be noted that if Z3 is unable to successfully use this model for proving program

correctness, it will probably not work with other models either.

5.1 Owicki/Gries Theory

Susan Speer Owicki and David Gries developed a set of rules that allow correct

annotation of a multi program and define the proof obligations required. The rules

have been defined as follows [19]:

Rule of Global Correctness

Assertion P in a component is globally correct whenever for each {Q}S - i.e. for each

atomic statement S with pre-assertion Q - taken from a different component,

{P !\ Q!\ I}S{P !\ I}

is a correct Hoare-triple.

39

40 5. Concurrency

Rule of Local Correctness

For local correctness of an assertion P in a component, we distinguish two cases.

• If P is the (one and only) initial assertion of the component, it is locally correct

whenever it is implied by the precondition of the multiprogram as a whole

• If P is textually preceded by {Q}B, i.e. by atomic statement B with pre

assertion Q, it is locally correct whenever {Q}S{P} is a correct Hoare-triple.

Rule of Postcondition

Postcondition R of a multiprogram is correct whenever

• all components are guaranteed to terminate

• R is implied by the conjunction of the post-assertions of the individual compo

nents.

Rule of Private Variables

For an assertion in a component that depends on private variables of that component

only, it suffices to prove local correctness, because its global correctness is guaranteed.

Rule of Orthogonality

An assertion is maintained by all assignments to variables not occurring in it

Rule of Disjointness

Assertion P is (globally) correct under {Q}B if [P 1\ Q ::::} false].

Rule of Progress

Statement {Q} if B ----+ B fi is a component guaranteed to terminate if and only

if the rest of the system, when constrained to Q, will, in a finite number of steps,

converge to a state in which B is true.

5. Concurrency 41

Rule of Absence of total deadlock

A configuration of guarded statements containing one such statement per component,

is deadlock free whenever it is possible to supply each guarded statement in the

configuration with a correct pre-assertion in such a way that the conjunction of the

pre-assertions implies the disjunction of the guards

The multiprogram as a whole is free of total deadlock whenever all such configu

rations are deadlock free.

An example of investigate the disjunction of the guards can be as follows:

While a first program component of the multiprogram has the following guard:

if Bl ---+ skip fi

The second has the following:

if B2 ---+ skip fi

The following needs to be true:

Bl V B2

The following examples will show how concurrent programs can be proved using the

Owicki/Gries method and Z3.

5.2 Single statement concurrency

5.2.1 Example 1

The following simple program only checks for local and global correctness for

programs A and B which contain a single assignment statement. Starting with

x = 0, the program A adds 1 to x and the program B adds 2. The annotated

program as per Owicki/Gries can be defined as follows:

A:

B:

Pre: x=O

{x=O V x=2}

x:=x+l;

{x=l V x=3}

42

{x=O V x=l}

x:=x+2;

{x=2 V x=3}

The proof obligations are defined as follows:

Local Correctness

For program A:

x=O :::} (x=O V x=2)

(x=O V x=2) :::} (l=x+l V 3=x+l)

For program B:

x=O :::} (x=O V x=l) (x=O V x=l) :::} (2=x+2 V 3=x+2)

G 10 hal Correctness

For program A:

(x=O V x=2) 1\ (x=O V x=l) :::} O=x+2 V 2=x+2

For program B:

(x=O V x=l) 1\ (x=O V x=2) :::} O=x+l V l=x+l

In simplify format

(IMPLIES (EQ x 0) (OR (EQ x 0) (EQ x 2)))

5. Concurrency

(IMPLIES (OR (EQ x 0) (EQ x 2)) (OR (EQ 1 (+ xi)) (EQ 3 (+ xi))))

(IMPLIES (EQ x 0) (OR (EQ x 0) (EQ xi)))

(IMPLIES (OR (EQ x 0) (EQ x 1)) (OR (EQ 2 (+ x 2)) (EQ 3 (+ x 2))))

(IMPLIES (AND (OR (EQ x 0) (EQ x 2)) (OR (EQ x 0) (EQ x 1))) (OR (EQ 0 (+ x 2):
(EQ 2 (+ x 2))))

(IMPLIES (AND (OR (EQ x 0) (EQ x 1)) (OR (EQ x 0) (EQ x 2))) (OR (EQ 0 (+ xi):

-.
I

5. Concurrency

(EQ 1 (+ x 1))))

When the proof obligations are entered into Z3, the following is returned:

1: Valid.

2: Valid.

3: Valid.

4: Valid.

5: Valid.

6: Valid.

5.2.2 Example 2

43

The second example add additional complexity of possible deadlock. The multipro

gram is as follows and represent a well known consumer and supplier algorithm:

Pre: in=O 1\ out=O

Prod:

* [if in < C+out ---+ skip fi

{in < C+out}

in:=in+1;

Cons:

* [if out < in ---+ skip fi

{out < in}

out := out+1;

Inv: out :::; in 1\ in :::; C + out

The proof obligations are defined as follows:

local Correctness

((in=O 1\ out=O) =* in < C+out) V ((in=O 1\ out=O) =* out < in)

44

Global correctness

in < C+out 1\ out < in =? in < C+out+ 1

out < in 1\ in < C+out =? out < in+ 1

Deadlock

in < C+out V out < in

In Simplify Syntax:

(BG_PUSH (AND «= out in) «= in (+ C out))))

(BG_PUSH «= 1 C))

5. Concurrency

(OR (IMPLIES (AND (EQ in 0) (EQ out 0)) « in (+ C out))) (IMPLIES (AND (EQ i~

(EQ out 0)) « out in)))

(IMPLIES (AND « in (+ C out)) « out in)) « in (+ C (+ out 1))))

(IMPLIES (AND « in (+ C out)) « out in)) « out (+ in 1))) (OR « in (+ C ou

« out in))

When the proof obligations are entered as Z3 input, the following is returned:

1: Valid.

2: Valid.

3: Valid.

4: Valid.

5.2.3 Example 3

Use of private variables

Pre: x=O 1\ a=O 1\ b=O

A:

5. Concurrency

{a=O}

x,a := x+l, a+l;

{a=l}

B:

{b=O}

x,b := x+l, b+l;

{b=l}

Post: a+b=2

Proof obligations are defined as follows:

Precondition obligation

x=O 1\ a=O 1\ b=O =? a=O

x=O 1\ a=O 1\ b=O =? b=O

local correctness

a=O =? a+l=l

b=O =? b+l=l

glo bal correctness

a=O 1\ b=O =? a=O

b=O 1\ a=O =? b=O

postcondition

a=l 1\ b=l =? a+b=2

In Simplify format, this can be written as follows:

(IMPLIES (AND (EQ x 0) (AND (EQ a 0) (EQ b 0)))

(IMPLIES (AND (EQ x 0) (AND (EQ a 0) CEQ b 0)))

(IMPLIES (EQ a 0) (EQ (+ a 1) 1))

(IMPLIES CEQ b 0) (EQ C+ b 1) 1))

(IMPLIES (AND (EQ a 0) (EQ b 0)) (EQ a 0))

(IMPLIES (AND (EQ b 0) (EQ a 0)) (EQ b 0))

(IMPLIES (AND (EQ a 1) (EQ b 1)) (EQ (+ a b) 2))

45

(EQ a 0))

CEQ b 0))

46 5. Concurrency

After executing these statements under Z3, we get the following indication that

our program is correct:

1: Valid.

2: Valid.

3: Valid.

4: Valid.

5: Valid.

6: Valid.

7: Valid.

5.2.4 Example 4

Private variables

Pre: x=O 1\ (V j : dj = 0)
Comp.i *[{ di = O}

x,di := x+1, l+di;

{di = 1}
x,di := x-1, -1 + di;

{di = O}

]

Proof obligations are as follows:

Precondition obligation

Vi:: x=O 1\ (V j :: dj = 0) =? di=O

local correctness

Vi:: di=O =? di+1 = 1

Vi:: di=l =? di-1 = 0

5. Concurrency

glo bal correctness

di=O 1\ dj=O =? di=O

di=O 1\ dj=l =? di=O

di=l 1\ dj=O =? di=l

di=l 1\ dj=l =? di=l

In Simplify format this can be represented as follows:

(FORALL (i) (IMPLIES (AND (EQ x 0) (FORALL (j) (EQ (d j) 0»)
(FORALL (i) (IMPLIES (EQ (d i) 0) (EQ (+ (d i) 1) 1»)
(FORALL (i) (IMPLIES (EQ (d i) 1) (EQ (+ (- 0 1) (d i» 0»)
(IMPLIES (AND (EQ (d i) 0) (EQ (d j) 0» (EQ (d i) 0»
(IMPLIES (AND (EQ (d i) 0) (EQ (d j) 1» (EQ (d i) 0»
(IMPLIES (AND (EQ (d i) 1) (EQ (d j) 0» (EQ (d i) 1»
(IMPLIES (AND (EQ (d i) 1) (EQ (d j) 1» (EQ (d i) 1)

Comments:

47

(EQ (d i) 0»)

Z3 does not understand negative numbers such as (- 1) and complains about wrong

arguments when Simplify is able to validate such formulas. Changing the definition

of -1 to (- 0 1) is able to validate via Z3.

After executing the formulas we get the following:

1: Valid.

2: Valid.

3: Valid.

4: Valid.

5: Valid.

6: Valid.

7: Valid.

5.3 Relation of a Single Statement

As shown in Example 4 from the previous section, the Owicki/ Gries method works

well with Z3 and allows validation of concurrent programs, however in order to create

48 5. Concurrency

a fully automated program prover, it would be required to minimize the number of

annotations specified and remove the invariants used in Owicki/ Gries method. In

order to accomplish this, proving by calculating relations can be used.

To start, a fairly trivial example of a program that is concurrent to itself can

be designed. A program that splits into multiple threads where each thread runs

separately would be an example of a program concurrent to itself. In the following

example, the program will split n times, where n is a finite number. The program

itself will look as follows:

Pre: {x=O}

Fork.k *[x:=x+l]

Inv: {\I k : x = k)}

Post: {\I n : x = n)}

The value of k represents the number of concurrent programs that are currently

finished, where n - k is the number of programs that are still to run.

In order to prove the program using relations, the program needs to be rewritten,

and it looks as follows:

Pre: {x(O)=O}

Fork.k x(k)=x(k-l)+ 1;

Post: {\I n : x(n)=n}

Local correctness

This can be proven by using the relational method from Chapter 4, so that the proof

obligation statements are as follows:

Pre: x(O)=O

statement: (\I k>O : x(k)=x(k-l)+ 1)

To prove: x(I)=1

Please note that in the 'To prove' statement, k is one as each program runs only once.

5. Concurrency 49

The Simplify format proof would be as follows:

(BG_PUSH (FORALL (k) (IMPLIES (EQ k 0) (EQ (x k) 0))))

(BG_PUSH (FORALL (k) (IMPLIES (> k 0) (EQ (x k) (+ (x (- k 1)) 1)))))

(EQ (x 1) 1)

Which returns valid in Z3.

G 10 ba1 correctness

We can notice that our program has only one statement, and it either finishes or not.

Global correctness is assured by reaching the correct postcondition.

The following are statements required for the proof obligation:

Initial confition:

(\I k=O, n>O : x(k)=O)

Recurance:

(\I k>O, n>O : x(k)=x(k-l)+l)

To prove:

(\I n>O : x(n) = n)

In Simplify format it would be as follows:

(BG_PUSH (FORALL (k) (IMPLIES (EQ k 0) (EQ (x 0) 0))))

(BG_PUSH (FORALL (k) (IMPLIES (> k 0) (EQ (x k) (+ Cx (- k 1)) 1)))))

What we want to prove is as follows:

(FORALL (n) (IMPLIES (> n 0) (EQ (x n) n)))

However Z3 is unable to calculate it and marks it as invalid. After providing the

value of n, the program is validated successfully:

CEQ (x 5) 5)

50 5. Concurrency

In the above example, we could specifically say that k is the number of programs

that finished executing the single statement, then terminate the program when the

value of k = n, thus all programs finished.

5.4 Relation of Multiple Disjoint Statements

The validation of a multi program with a single statement with calculating relations

is not complicated as has been shown in the previous example. The complexity of

the proof increases with the number of statements within the program. To illustrate

this, let us look at the following example:

Pre: x=O /\ y=O

Comp.i *[x:=x+l;

{y<x}

y:=y+l;

Inv: y:S;x

In relational format, the program will look as follows:

Pre: x(O)=y(O)=O

Comp.i x(i) = x(i-l)+l;

y(i) = x(i)+ 1;

Termination: (V k, x(k)=y(k)=k)

This example is very similar to the one before, however we now have two state

ments that we will be executing.

Local Correctness

Once again the local correctness is an execution of the program when k = 1. The

following is required to be true after executing the statements once:

(V k=l : y(l)=l /\ x(l)=l)

This can be entered in the simplify format as follows:

5. Concurrency 51

(BG_PUSH (FORALL (k) (IMPLIES (EQ k 0) (AND (EQ (x 0) 0) (EQ (y 0) 0)))))

(BG_PUSH (FORALL (k) (IMPLIES (> k 0) (EQ (x k) (+ (x (- k 1)) 1)))))

(BG_PUSH (FORALL (k) (IMPLIES (> k 0) (EQ (y k) (+ (y (- k 1)) 1)))))

(AND (EQ (y 1) 1) (EQ (x 1) 1))

This returns valid.

G 10 bal Correctness

One of the rules of global correctness is that when executing a statement from one

program, it does collide with a statement from another program. Since statements

are disjoint and just adding 1, it is enough to make sure that termination is reached.

In order to show the program terminates and provides the correct values, the

following needs to be proved:

(V n>O : x(n) = y(n) = n)

In Simplify format it would be as follows:

(BG_PUSH (FORALL (n k) (IMPLIES (EQ k 0) (AND (EQ (x n k) 0) (EQ (y n k) 0))))

(BG_PUSH (FORALL (n k) (IMPLIES (> k 0) (EQ (x n k) (+ 1 (x n (- k 1)))))))

(BG_PUSH (FORALL (n k) (IMPLIES (> k 0) (EQ (y n k) (+ 1 (y n (- k 1)))))))

(FORALL (n) (AND (EQ (x n n) n) (EQ (y n n) n)))

(AND (EQ ex 5 5) 5) (EQ (y 5 5) 5))

(FORALL (n) (AND (EQ (x n n) n) (EQ (y n n) n)))

This also returns valid.

52 5. Concurrency

5.4.1 Relation of Dependant Statements

For global correctness we need to take into account that at any given time during

execution, there are some programs that have not started yet, some programs that

have executed only the first statement, and some programs that have executed both

statements and thus exited.

Pre: x=O /\ y=O

*[x:=x+l;

y:=x]

Post: x=i /\ y=x

Local Correctness

The local correctness is straightforward and it can be represented in Z3 format as

follows

(BG_PUSH (FORALL (k) (EQ (x 0) 0)))

(BG_PUSH (FORALL (k) (EQ (y 0) 0)))

(BG_PUSH (FORALL (k) (IMPLIES (> k 0) (EQ (x k) (+ (x (- k 1)) 1)))))

(BG_PUSH (FORALL (k) (IMPLIES (> k 0) (EQ (y k) (x k)))))

(AND (EQ (x 1) 1) (EQ (y 1) 1))

which returns valid.

G 10 bal Correctness

(BG_PUSH (FORALL (k) (EQ (x 0) 0)))

(BG_PUSH (FORALL (k) (EQ (y 0) 0)))

(BG_PUSH (FORALL (k) (IMPLIES (> k 0) (EQ (x k) (+ (x (- k 1) 1))))))

5. Concurrency 53

(BG_PUSH (FORALL (k) (IMPLIES (> k 0) (EQ (y k) (x k)))))

(AND (EQ (x 5) 5) (EQ (y 5) 5))

which is also valid

In the example the dependency was only with one statement, such that x was inde

pendent of y, but y was dependent of x. The situation changes when both statements

are dependent of each other.

5.4.2 Second example

A program that looks as follows can be considered:

Pre: x=O 1\ y=O

*[x:=y+l;

y=x]

Post: y=x 1\ x :::; y+ 1;

As can be seen, both x and y appear in both of the statements.

Local Correctness

With local correctness the proof is simple, as each of the statements are executed

only once, so that the proof in Simplify syntax looks as follows:

(BG_PUSH (FORALL (k) (EQ (x 0) 0)))

(BG_PUSH (FORALL (k) (EQ (y 0) 0)))

(BG_PUSH (FORALL (k) (IMPLIES (> k 0) (EQ (x k) (+ (y (- k 1)) 1)))))

(BG_PUSH (FORALL (k) (IMPLIES (> k 0) (EQ (y k) (x k)))))

(AND (EQ (y 1) (x 1)) «= (x 1) (+ (y 0) 1)))

returns Valid

54 5. Concurrency

Global Correctness

Similarly we can define the global correctness by providing a value of k larger than 1.

(BG_PUSH (FORALL (k) (EQ (x 0) 0)))

(BG_PUSH (FORALL (k) (EQ (y 0) 0)))

(BG_PUSH (FORALL (k) (IMPLIES (> k 0) (EQ (x k) (+ (y (- k 1)) 1)))))

(BG_PUSH (FORALL (k) (IMPLIES (> k 0) (EQ (y k) (x k)))))

(AND (EQ (y 5) (x 5)) «= (x 5) (+ (y 4) 1))

which returns valid.

5.4.3 Become more complicated

The example above assumes that both of the statements are executed at once, thus

each program starts and finishes before another program starts. In the proof below

this assumption is dropped. The execution of the program can be interrupted after

the first statement, which significantly changes the values of x and y in postcondition.

For example if we split the program into five executions, and the first statement

is executed five times first, then the value of x(5) would be y(O) + 1 and the value of

y at the end of the execution would be x(5), thus still making the postcondition true

as the value of y(k) = x(k) and the value of x(k) = y(O) + 1.

The following returns invalid, even though appears to be correct for the scenario

described above.

(AND (EQ (y 5) (x 5)) «= (x 5) (+ (y 0) 1)))

With this chapter we can conclude that Z3 has a lot of limitations when working

with concurrent programs.

It appears to be working well with the Owicki/Gries method to prove the concur

rent programs, but it requires a lot of manual input that cannot be easily automated.

Attempts to prove using relations was unsuccessful.

There were two significant limitations discovered in Z3 with the relational method.

The first showed was with proving multiple programs run in parallel. Z3 required a

5. Concurrency 55

specific number of programs to be run in parallel and was unable to calculate for an

arbitrary number of programs.

The second limitation was with being able to model a truly concurrent system,

when execution of any program can be interrupted between statements by another

program running concurrently. Z3 was able to prove only programs that started and

finished uninterrupted.

56 5. Concurrency

Chapter 6

Recursive Programs

There aren't many methods that allow proving of recursive programs [40]. The most

widely known approaches have been described by Zohar Manna [28], M. Foley and

C. A. Hoare [21]. These methods verify the correctness of recursive programs by

computational and structural induction methods (which prove the properties of a

fixpoint [28] [29]), or by using Hoare Logic [21] [37] [40].

This chapter will provide examples of recursive programs proven with Z3 and

illustrate the method used, which has been described by Nikolaj Popov and Tudor

Jebelean [40], [26] and uses a Theorema system of methodology to derive verification

conditions, allows these conditions to be generated automatically and is easy to follow.

6.1 A Practical Approach

The method described by Nikolaj Popov and Tudor Jebelean [40], [26] is based

on Hoare logic such that given a program and its specifications, it generates proof

obligations that are minimal to prove that the program satisfies the specifications.

The method proves partial correctness and termination of a simple recursive program

defined as follows in a domain]]J)

F[x] = If Q[x] then S[x] else C[x,F[R[x]]]

where Q is a predicate on]]J) and S,C,R are functions that have been proved correct.

The precondition of the program is I[x] and the postcondition is O[x,y].

57

58 6. Recursive Programs

Coherence

A program is coherent when all the calls made to its auxiliary programs do not

violate their preconditions. The following proof obligations must be true to assure

coherence of the program F[x].

(\:Ix: IF[x])(Q[x] =? Is[x])
(\:Ix: IF [x]) (--.Q[x] =? IR[x])

Partial Correctness

Partial correctness can be expressed as the following proof obligations [26]:

(\:Ix: IF[x])(Q[x] =? OF[X, S[xlD
(\:Ix: IF [x]) (--.Q[x] =? IF[R[xlD
(\:Ix: IF [x]) (--.Q[x] A OF [R[x], F[R[xlll =? OF[X, C[x, F[R[xlllD
(\:Ix: IF [x]) (--.Q[x] A OF[R[x], F[R[xlll =? Ic[x, F[R[x]lD

Termination

If Is, Ie and IR are preconditions of S,C and R, and the partial correctness is

proven correct, then the termination of F can be expressed with the following proof

obligation:

(\:Ix: IF[x])(F'[x] = 0)

where

F'[x] = If Q[x] then 0 else F[R[xll

In other words the Q[x] will eventually be reached, the recursive function will

no longer be called and 0 will be returned.

6.1.1 Total Correctness

Combining the Partial Correctness, Termination and Coherence proofs allows us to

construct verification conditions:

6. Recursive Programs

(Vx : IF[X])(Q[X] =? Is[x])
(VX : IF[X])(-,Q[X] =? IR[X])
(VX : IF[X])(Q[X] =? OF[X, S[X]])

59

J (VX : IF [X]) (-,Q[X] =? IF[R[x]])
t

1 (Vx : IF [X]) (-,Q[X] 1\ OF [R[x], F[R[x]]] =? OF[X, C[X, F[R[x]]]])
(VX : IF [X]) (-,Q[X] 1\ OF [R[x], F[R[x]]] =? Ic[x, F[R[x]]])

and a proof of termination of:

F'[x] = If Q[x] then 0 else F'[R[x]]

which is: (Vx: IF[x])(F'[x] = 0)

6.1.2 Factorial and recursion

In this section, the example of factorial will be revisited as an example of a simple

recursive program that, in recursion notation, is as follows:

Where:

Q[n] {:? n=O

S[n] {:? 1

C[n] {:? n*F[n-1]

R[n] {:? n-1

F[n] = If n=O then 1 else n*F[n-1]

and the domain of n is N.

The following are the proof obligations for the Factorial program:

(Vn E N) (n = 0 =? n! = 1)

(Vn E N) (n :I 0 =? n - 1 E N)

(Vn E N)(n =1= 01\ (n - I)! = F(n - 1) =? n! = n * F(n - 1))

60

('lin E N)(n = 0 =? true)

('lin E N)(n = 0 =? n 2: 0)

('lin E N)(n i= O!\ (n - I)! = F(n - 1) =? n > 0)

and the termination of:

6. Recursive Programs

F'[n] = If n=O then 0 else F'[n-1]

which is: ('lin E N)(F'[n] = 0)

These proofs can be easily worked out by hand and Z3 should be able to validate

them successfully. First the definition of factorial as n! needs to be recalled.

(BG_PUSH (EQ (factorial 1) 1))

(BG_PUSH (FORALL (n) (IMPLIES (> n 1) (EQ (factorial n) (*

(factorial (- n 1)) n)))))

for the purpose of this example the following definition statement also needs to

be included:

(BG_PUSH (EQ (factorial 0) 1))

Also the definition of division must be included as the Simplify format does not

include division.

(BG_PUSH (FORALL (a b i c) (IFF (> c a) (EQ (diva b i c) (- i
1)))))

(BG_PUSH (FORALL (a b i c) (IFF «= c a) (EQ (diva b i c) (diva b

(+ i 1) (+ c b))))))

(BG_PUSH (FORALL (a b i c) (EQ (divide a b) (diva bOO))))

The last item is the definition of the function of F which can be simply defined

as:

6. Recursive Programs 61

(BG_PUSH (FORALL (n) (EQ (F n) (factorial n))))

This brings to the proof obligations defined in this chapter, that in Simplify format

are written as follows:

(FORALL (n) (IMPLIES (EQ n 0) (EQ (factorial n) 1)))

(FORALL (n) (IMPLIES (> n 0) (>= (- n 1) 0)))

(FORALL (n) (IMPLIES (AND (> n 0) (EQ (factorial (- n 1)) (F (- n 1))))

(EQ (factorial n) (* (F (- n 1)) n))))

(FORALL (n) (IMPLIES (>= n 0) (>=n 0)))

(FORALL (n) (IMPLIES (>= n 0) (>= nO)))

(FORALL (n) (IMPLIES (AND (> n 0) (EQ (factorial (- n 1)) (F (- n 1))))
(> nO)))

which returns valid for all the proof obligations.

The last proof obligation to verify is termination which is often the hardest to

prove [39]. In the example of factorial, the following needs to be proven:

("In E N)(F'[n] = 0)

where

F'[n] = If n = 0 then 0 else F'[n -1]

The value of n is decremented by 1 on each iteration, meanmg n will eventu-

ally reach a regardless of its initial value of n E N. This can be expressed in Simplify

format as follows where Fp denotes F':

(BG_PUSH (FORALL (n) (IMPLIES (EQ n 0) (EQ (Fp n) 0))))

(BG_PUSH (FORALL (n) (IMPLIES (> n 0) (EQ (Fp n) (Fp (- n 1))))))

62 6. Recursive Programs

(FORALL (n) (IMPLIES (>= n 0) (EQ (Fp n) 0)))

Z3 returns invalid as it cannot evaluate (Fpn) for all possible n greater or equal to

o. This can again be omitted by strengthening the precondition of F. For example if

we restrict the n to be between 0 and 100, the following new precondition is obtained:

IF-new[n] ¢:? (n E N 1\ n ?: 100)

which changes the proof obligation to be:

('lin E N 1\ n ?: 100)(F'[n] = 0)

and again can be represented in Z3 as:

(FORALL (n) (EQ (Fp 100) 0)))

This however appears to have too many iterations for Z3 to handle and returns

an error. Lowering the value to 50 returns valid.

6.2 Z3 and recursive programs

The example of factorial shows that the value of n needs to be specified so that the

termination of the program at the value of n can be calculated. Knowing this Z3

limitation and the fact that Z3 can present recursive programs in their basic form,

the following verification can be implemented.

Every recursive program can be represented as the following [28] [39] [26] [40]

[37] [29].

F[x] = If Q[x] then S[x] else C[x,F[R[x]]]

In Z3 format it can be defined as a following background push statements for x E

N:

(BG_PUSH (IMPLIES (Q[x]) (S[x])))

(BG_PUSH (FORALL (x) (IMPLIES (not Q[x]) (C[x,F[R[x]]]))))

6. Recursive Programs 63

Once the recursive function is defined by the above statement, the result obtained

for a given value of x can be compared with the expected result as defined by the

postcondition.

r> 2 ... o. ..1 F -l- • 1
aCLOnal

Let's revisit the factorial example again which is defined recursively as:

F[n] = If n=O then 1 else n*F[n-1]

The factorial example, can be defined under Z3 with the following statement:

(BG_PUSH (FORALL (n) (IMPLIES (> n 0) (EQ (F n) (* n (F (- n 1)))))))

This can be again proved with the following statement with an arbitrary value of

n and with using the definition of factorial from the previous chapter.

(EQ (F 5) (factorial 5))

Which returns valid.

6.2.2 Other Examples

Fibonacci

The Fibonacci sequence can be defined as follows:

F[n] = If n<2 then 1 else F[n-1]*F[n-2]

Which can then be defined in Z3 with the following background push statements:

(BG_PUSH (FORALL (n) (EQ (F 1) 1)))

(BG_PUSH (FORALL (n) (EQ (F 0) 1)))

(BG_PUSH (IMPLIES (> n 1) (EQ (F n) (+ (F (- n 2)) (F (- n 1))))))

And can be proved by providing a value of n. For example, for n = 1, the formula

is as follows:

64 6. Recursive Programs

(EQ (F 1) 1)

and it returns valid.

However for n greater than 1, Z3 is unable to calculate the sequence as it has

trouble calculating the combination of recursive calls. For example for n = 2

(EQ (F 2) 1)

returns invalid.

Nested Recursion

A more complicated example is one that consists of two independent functions where

one of the functions has nested recursion. For this we can take the example from

Zohar Manna [28], which is as follows:

Fl[x] ¢:: if x>10 then x-l0 else Fl[Fl[x+13]]

F2[x] ¢:: if x> 10 then x-l0 else F2[x+3]

In Z3 format this will look as follows:

(BG_PUSH (FORALL (x) (IMPLIES (> x 10) (EQ (F1 x) (- x 10)))))

(BG_PUSH (FORALL (x) (IMPLIES (> x 10) (EQ (F2 x) (- x 10)))))

(BG_PUSH (FORALL (x) (IMPLIES «= x 10) (EQ (F1 x) (F1 (F1 (+ x 13)))))))

(BG_PUSH (FORALL (x) (IMPLIES «= x 10) (EQ (F2 x) (F2 (+ x 3))))))

This evaluates to valid for x > 10 as per base case:

(EQ (F1 11) (F2 11))

however when x is less than 0, the nested recursion is not being evaluated as per

the counter example.

Counterexample:

context:

(AND

(NEQ (F1 1) 3)
)

1: Invalid.

6. Recursive Programs 65

6.2.3 Induction proofs and recursion

The best way of verifying the correctness of recursive programs is to use induction

proofs which allow verification of the program for any value of the variable.

For example the factorial program defined as;

F[n] = If n=O then 1 else n*F[n-l]

Has a base case that:

F[O] = 1

Then we can assume the following

V n>O (F[n-l] = factorial of n-l)

so that the function to prove is as follows:

V n>O (F[n] = n *F[n-l])

In Z3 this can be defined as follows

The base case

(BG_PUSH (FORALL (n) (IMPLIES (EQ n 0) (EQ (F n) 1))))

The assumption

(BG_PUSH (FORALL (n) (IMPLIES (> n 0) (EQ (F (- n 1)) (factorial (- n 1))))))

The inductive case

(FORALL (n) (IMPLIES (> n 0) (EQ (F n) (* n (F (- n 1))))))

In order to validate the program above, the definition of factorial has to be defined

as shown in the previous chapters.

(BG_PUSH (EQ (factorial 1) 1))

(BG_PUSH (FORALL (n) (IMPLIES (> n 1) (EQ (factorial n) (* (factorial (- n 1)

66 6. Recursive Programs

The definition of Fn can be defined as follows:

(BG_PUSH (EQ (F 1) 1))

(BG_PUSH (FORALL (n) (IMPLIES (> n 1) (EQ (F n) (* (F (- n 1)) n)))))

Z3 is unable to validate the program and the following counterexample is returned:

(AND

)

(NEQ (* n 1) n)

(EQ (* 1 n) 2)
(EQ (F n) 2)

The counterexample does not appear to be showing any issue with the program

representation. The counterexample does not show that the inductive assumption

statement has been used, and use of the assumption statement would be required to

complete the proof. It is unclear why Z3 is unable to successfully use the assumption

statement.

This chapter shows that Z3 is not able to successfully validate recursive programs.

When using the method described by Nikolaj Popov and Tudor Jebelean [40], [26],

the termination cannot be calculated successfully for any number of recursive calls.

It also has a problem with calculating termination for large number of recursive calls

and prove had to settle for only 50 to be able to receive valid from Z3.

Even though the definition of a recursive program can be easily expressed with Z3

syntax, it does not help with the proofs. It again proves correct only for specific values

for the number of recursion calls and it is unable to deal with multiple recursion calls

such as in the Fibonacci sequence program. Attempts to prove a nested recursion

also did not go well as even a simple program was not able to be validated by Z3.

It was also disappointing that Z3 was unable to deal with a simple induction

proof, which might have been very helpful with different programs, especially when

dealing with recursion. This was a result of Z3 not being able to use the provided

assumptions which is crucial for induction proofs.

Chapter 7

In Closing

7.1 Z3 and Automatic program verification

Program Verification using a SMT solver like Z3 and symbolic calculation allows

the creation of a model of the program in order to check its validity. The model

provides two predicates that require validation in an SMT solver. The first predicate

can validate that for any set of input parameters x (x in precondition) the program

returns a value, i.e. Vx.prog(x). The second predicate can validate that for any set

of input parameters x (x in precondition) the postcondition should be attainable,

i.e. Vx.goal(x). The ultimate goal of program verification is to check if the program

returns the correct value, which can be expressed by the following: Vx.prog(x) =
goal(x).

Z3 is unable to validate such predicates. It requires the x value to be given in

order to conclude if the program is correct. In formal terms, we have to replace

a general predicate expression with a more specific propositional expression. When

validating any of the examples shown in this thesis, a specific input parameter had

to be specified.

If the precondition allows only a small set of x values, then it is possible to validate

the program by executing the statements for each x, however in case of big or infinite

sets this is not possible. In such cases we can only sample specific data that might be

a good representation of the set. The model cannot establish if the program works

correctly for every x, but only for specific conditions. The samples of x can create

test cases for the model, but will not be able to definitely prove the correctness of the

program. The model appears to be a program checker as described in [7].

67

68 7. In Closing

Other limitations of Z3 are the ability to work only on integers due to the Simplify

format [14] which makes it unable to represent fractions or strings. The universal

quantifiers are often not calculated properly if the equation is too complicated making

it often invalid with no meaningful counterexample.

In some cases if the specific number x was too large, Z3 was unable to calculate

it due to insufficient resources so that, for example the Sum of Array Elements had

to be run for array of 50 items only. Larger arrays caused an error. There is also no

known documentation on how to increase this items limit for Z3 to be able to show

correctness of the program for higher numbers.

Z3 also does not have adequate ability to work with mathematical equations.

These limitations include trouble with negative numbers which need to be specified

explicitly and with simple calculations such as division, as no such notion exists in

Z3. Similarly factorial needed to be defined in a mathematical way in order to be

able to compare it with the factorial output of the program to ensure post conditions

were met.

Working with arrays in Z3 was also very challenging. Besides the inability to work

with an arbitrary length array, Z3 cannot, for example, sort an array if the items of

the array are unknown.

Concurrent programs cannot be properly defined when we take into account that

any program can be interrupted between arbitrary statements. When this was taken

into account for concurrent programs, Z3 was returning invalid for programs that

were valid under certain conditions.

It has been also discovered that Z3 does not take into account the assumptions

about elements, for example when sorting array with elements a and b, such that

a > b. The inability too work with the assumptions was also shown in the example

of induction, when the inductive assumption was not properly used while proving.

It can be noticed that the verification of programs using Z3 with Simplify format

has a very recursive structure. Z3 calls recursively each state in the calculation and

reaches the initial state of the program which indicate the program termination.

The tool was able to prove simple recursive programs, however more complicated

programs (that use multiple or nested recursive calls) came back to be invalid due to

the complexity of calculations Z3 had to perform.

One of the main requirements of a prover is to show the program is correct, and

if not, provide guidance to where the program fails. The error messages provided by

Z3 are hard to understand regarding where the syntax problem appeared and it is

7. In Closing 69

time consuming to find it in more complicated programs. The prover rarely shows

a counter example, which is ambiguous to the user and hard to understand so that

fixing the code is impossible based on the lack of counter examples.

Z3 is not the easiest prover to use for its lisp-like syntax which does not resemble

a program in a way that most programmers understand. It is useful to use a bracket

matching text editor to avoid syntax errors caused by missing brackets.

7.2 Future Work

It is important for a prover to prove a variety of different programs. It is still an issue

that provers are not powerful enough to be able to prove complex programs [21].

Z3 still requires a lot of work in order to be able to accomplish the task of program

verification. The complexity of programs is often not understood by the prover and

it is assumed that the user is knowledgable about the program and the problem the

program solves [23] in order to aid the prover.

Many programs that are developed in the industry are based on math, structures

and different data types. One limitation of Z3 is that it can only work with integers

and it is unable to do simple mathematical equations which can be easily handled by

Mathematica or Maple. For example, a definition of factorial had to be constructed,

which makes this verification tool dependent on external sources to produce a suc

cessful validation. Z3 can be combined with programs such as Maple or Mathematica

to help with proving [18].

It has been noted that computer programs are inductive definitions of programs

and can be proved by induction [41] [10]. Inductive structure occurs naturally in the

structure of the program and yields the conditions for verifications of the properties.

Inductive assertions reflect the way we understand the program. Large complex

programs must be constructed in ways that do not violate the limits of human mind to

manage complexity [27]. This observation might be very helpful in proving programs.

Improvements to the Z3 induction would need to be added in order to be able to prove

a variety of different programs.

Program verification is not inexpensive [27]. Formal testing is still viewed as less

costly [10]. Program verification can be a substitution for testing. As in program

testing, Z3 runs the program on test inputs and verifies if the expected output is

reached [7]. It might be beneficial to use Z3 as a testing tool for programs when the

program is represented symbolically and then run on various inputs as the program

70 7. In Closing

specifications dictate.

In order to think of Z3 as a prover it is important to understand what kinds of

relations are able to be validated in Z3, especially, to know exactly when this technique

is closer to proving then testing or checking. More research examples are required to

understand the possibilities and limits of Z3 when verifying programs by calculating

relations. Secondly, since manual translations of programs into the Simplify syntax is

prone to human errors, an automatic compiler and solver might be introduced similar

to the program developed in [46]. Finally, using both Z3 and Maple tools would

definitely lead to interesting results, however building a proper interface would be

difficult and problematic.

Bibliography

[1] 1. Adler and N. Megiddo, "A simplex algorithm whose average number of steps
is bounded between two quadratic functions of the smaller dimension," J. ACM,
vol. 32, no. 4, pp. 871-895, 1985.

[2] R. AIm and T. A. Henzinger, "Finitary Fairness," ACM Transactions on Pro
gramming Languages, vol. 20, no. 6, pp. 1171-1194, 1998.

[3] B. Anton and Z. Stachniak, "Substitutional definition of satisfiability in classical
propositional logic," Theory of applications and satisfiability testing, vol. 3569,
pp. 31-45, 2005.

[4] A. Bauer, M. Pister, and M. Tautschnig, "Tool-support for the analysis of hybrid
systems and models," in DATE '07: Proceedings of the conference on Design,
automation and test in Europe, (San Jose, CA, USA), pp. 924-929, EDA Con
sortium, 2007.

[5] H. Bekic, "Definable operations in general algebras, and the theory of automata
and flowcharts.," in Technical Report, IBM Laboratory, 1969.

[6] A. Blikle, "An analysis of programs by algebraic means," in Mathematical Foun
dation of Computer Science, pp. 167-213, Banach Center Publications, 1997.

[7] M. Blum and S. Kannan, "Designing programs that check their work," J. ACM,
vol. 42, no. I, pp. 269-291, 1995.

[8] J. Carette and R. Janicki, "Computing Properties of Numerical Imperative Pro
grams by Symbolic Computation," Fundam. InJ., vol. 80, no. 1-3, pp. 125-146,
2008.

[9] J. Carette, R. Janicki, and Y. Zhai, "Program verification by calculating rela
tions."

[10] R. Cartwright, "Formal program testing," in POPL '81: Proceedings of the 8th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
(New York, NY, USA), pp. 125-132, ACM, 1981.

71

72 BIBLIOGRAPHY

[11] G. B. Dantzig, Linear programming and extensions. Princeton University Press,
1963.

[12] M. Davis, G. Logemann, and D. Loveland, "A machine program for theorem
proving," Commun. ACM, vol. 5, no. 7, pp. 394-397, 1962.

[13] M. Davis and H. Putnam, "A Computing Procedure for Quantification Theory,"
J. ACM, vol. 7, no. 3, pp. 201-215, 1960.

[14] D. Detlefs, G. Nelson, and J. B. Saxe, "Simplify: a theorem prover for program
checking," J. ACM, vol. 52, no. 3, pp. 365-473, 2005.

[15] D. Detlefs, G. Nelson, and J. B. Saxe, "Simplify: A Theorem Prover for Pro
gram Verification," A CM Transactions on Programming Languagegs and Sys
tems, vol. 52, no. 3, pp. 365-473, 2005.

[16] E. W. Dijkstra, "Guarded Commands, Nondeterminacy and Formal Derivation
of Programs," Communicatons of the ACM, vol. 18, no. 8, pp. 453-457, 1975.

[17] E. W. Dijkstra and W. H. J. Feijen, A Method of Programming. Adison Wesley,
1988.

[18] D. K. Enric Rodriguez-Carbonell, "Program Verification Using Automatic Gen
eration ofInvariants," Book Series Lecture Notes in Computer Science, vol. 3407,
pp. 325-340, 2005.

[19] W. H. J. Feijen and A. J. M. van Gasteren, On a method of multiprogramming.
New York, NY, USA: Springer-Verlag New York, Inc., 1999.

[20] R. W. Floyd, "Assigning meaning to programs," in Mathematical aspects of com
puter science: Proc. American Mathematics Soc. symposia (J. T. Schwartz, ed.),
vol. 19, (Providence RI), pp. 19-31, American Mathematical Society, 1967.

[21] M. Foley and C. A. R. Hoare, "Proof of a Recursive Program: Quicksort," Com
put. J., vol. 14, no. 4, pp. 391-395, 1971.

[22] J. Franco, "Some interesting research directions in satisfiability," Annals of Math
ematics and Artificial Intelligence, vol. 28, no. 1-4, pp. 7-15, 2000.

[23] D.1. Good, R. L. London, and W. W. Bledsoe, "An interactive program verifica
tion system," in Proceedings of the international conference on Reliable software,
(New York, NY, USA), pp. 482-492, ACM, 1975.

[24] C. A. R. Hoare, "An Aximoatic Basis for Computer Programming," Communi
cations of the ACM, vol. 12, no. 10, pp. 576-583, 1969.

BIBLIOGRAPHY 73

[25] R. Janicki and E. Romanowicz, "Proving properties of programs with theorem
provers. Experiments with Z3 and Simplify," Proceedings of The 2009 Interna
tional Conference on Software Engineering Research and Practice, vol. 1, pp. 10-
16,2009.

[26] T. Jebelean, L. Kovacs, and N. Popov, "Experimental Program Verification in
the Theorema System," Int. Journal on Software Tools for Technology Transfer
(STTT) , 2006. in press.

[27] R. L. London, "A view of program verification," in Proceedings of the inter
national conference on Reliable software, (New York, NY, USA), pp. 534-545,
ACM, 1975.

[28] Z. Manna, Methematical Theory of Computation. 1974.

[29] Z. Manna and J. Vuillemin, "Fixpoint Approach to the Theory of Computation,"
in fCALP, pp. 273-291, 1972.

[30] A. W. Mazurkiewicz, "Proving Algorithms by Tail Functions," Information and
Control, vol. 18, no. 3, pp. 220-226, 1971.

[31] A. Mili and J. Desharnais, "A system for classifying program verification meth
ods: Assigning meanings to program verification methods," in ICSE '84: Pro
ceedings of the 7th international conference on Software engineering, (Piscataway,
NJ, USA), pp. 499-509, IEEE Press, 1984.

[32] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, and S. M. Vorkoetter,
Maple Programming Guide. 1998.

[33] L. Moura and N. Bj orner , "Efficient E-Matching for SMT Solvers," in CADE-
21: Proceedings of the 21st international conference on Automated Deduction,
(Berlin, Heidelberg), pp. 183-198, Springer-Verlag, 2007.

[34] L. D. Moura and N. Bjrner, "Z3: An Efficient SMT Solver," in In Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS,
2008.

[35] G. J. Myers, The Art of Software Testing. J. Wiley, 2004.

[36] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, "Solving SAT and SAT Modulo
Theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to
DPLL(T)," J. ACM, vol. 53, no. 6, pp. 937-977, 2006.

[37] T. Nipkow, "Hoare Logics for Recursive Procedures and Unbounded Nondeter
minism," in Computer Science Logic (CSL 2002) (J. Bradfield, ed.), vol. 2471 of
LNCS, pp. 103-119, Springer, 2002.

74 BIBLIOGRAPHY

[38] S. Owicki and D. Gries, "Verifying properties of parallel programs: an axiomatic
approach," Commun. ACM, vol. 19, no. 5, pp. 279-285, 1976.

[39] N. Popov and T. Jebelean, "Proving Termination of Recursive Programs by
Matching Against Simplified Program Versions and Construction of Specialized
Libraries in Theorema," in Proceedings of 9-th International Workshop on Ter
mination (D. Hofbauer and A. Serebrenik, eds.), (Paris, France), pp. 48-52, June
2007.

[40] N. Popov, "A Practical Approach to Verification of Recursive Programs in The
orema," February 2004. Technical report 04-06, Institute e-Austria Timisoara
(www.ieat.ro). Contributed talk at Computer Aided Verification of Information
Systems (CAVIS-04), Timisoara, Romania.

[41] C. Reynolds and R. Yeh, "Induction as the basis for program verification," in
ICSE '76: Proceedings of the 2nd international conference on Software engineer
ing, (Los Alamitos, CA, USA), p. 389, IEEE Computer Society Press, 1976.

[42] H. Wasserman and M. Blum, "Software reliability via run-time result-checking,"
1. ACM, vol. 44, no. 6, pp. 826-849, 1997.

[43] S. Wolfram, The Mathematica Book. Cambridge University Press, 1999.

[44] R. T. Yeh, "An approach to program verification," in DAC)76: Proceedings of
the 13th Design Automation Conference, (New York, NY, USA), pp. 295-300,
ACM, 1976.

[45] E. 1. Yushchenko and 1. V. Kasatkina, "Current methods for proving program
correctness," Journal Cybernetics and Systems Analysis, vol. 16, no. 6, pp. 832-
861, 1980.

[46] Y. Zhai, "Symbolic Execution Tool for Program Verification,"
(http://www.cas.mcmaster.ca/cas724/2007 /tool/index.html).

[47] Y. Zhai, "An Analysis of Programs by Symbolic Computations," in Master The
sis, Dept. of Computing and Software, 2006.

11814 1

