DUAL MODIFIER ADAPTATION METHODOLOGY



DUAL MODIFIER ADAPTATION METHODOLOGY

For the On-line Optimization of Uncertain Processes

by

Eric Rodger, B.Sc (Eng)

A Thesis
Submitted to the School of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree

Master of Engineering

McMaster University

(© Copyright by Eric Rodger, December 2010



MASTER OF ENGINEERING (2010) McMaster University

(Chemical Engineering) Hamilton, Ontario, Canada

TITLE: Dual Modifier Adaptation Methodology
For the On-line Optimization of Uncertain Processes
AUTHOR: Eric Rodger, B.Sc(Eng)
(University of Waterloo, Canada)
SUPERVISOR: Dr. Benoit Chachuat
NUMBER OF PAGES: xvi, 194

i



ABSTRACT

The current industry standard in real-time optimization (RT'O) is the two-step method.
In this approach, mismatch between the plant and process model is compensated for by
continuously updating a subset of the parameters in the process model. It is suitably
resistant to measurement noise, however it is not guaranteed to move toward the plant
optimum if structural plant-model mismatch exists. Due to this deficiency, a number of
alternative methods have been developed over the years, including ISOPE and modifier
adaptation. These methods, however, utilize plant derivative information, which must be
estimated because a precise plant model is typically not known in practice. This makes
these methods particularly susceptible to measurement noise. Therefore, in this thesis,
the development of an RT'O technology which is both optimum seeking and resistant to

measurement noise is considered.

This research can be separated into two parts. In the first phase, the current state-of-the-art
modifier adaptation algorithm is modified by employing Broyden’s method to estimate the
plant output derivatives. A pair of deficiencies of Broyden’s method are then detailed, and
a modification to the algorithm, designed to mitigate these deficiencies, is proposed. This
consists of the inclusion of additional constraints in the model-based optimization problem,
designed to limit both offset and variance in the Broyden derivative estimates. Since the
new algorithm possesses two distinct goals, optimality and the accuracy of the Broyden

estimates, it is referred to as dual modifier adaptation.

In the second phase of this research, the design of dual modifier adaptation systems is
considered. The design methodology is built around the design cost criterion, a metric which
had previously been developed for the two-step approach of RTO. The calculation procedure
for the metric is adapted in this research in order to address dual modifier adaptation
systems. In addition, an approach designed to compute the constraint back-off necessary

to ensure a certain level of feasibility is developed.
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The concepts discussed in both the first and second phases of the research are illustrated
using the Williams-Otto Reactor case study. This is a benchmark problem that has been
used in the RTO literature for many years. A more involved case study, a propane furnace,
is introduced in the last main chapter of this thesis. Both the performance of the dual
modifier adaptation algorithm itself and the design of dual modifier adaptation systems are

discussed for this case study.
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Chapter 1

Introduction

Real-Time Optimization (RTO), if properly utilized, can be a very effective tool in the
chemical process industry. The ability to adjust controller set-points based on online process
conditions can provide great financial benefit [Marlin and Hrymak [1997], Cutler and Perry
[1983]]. It is only effective, however, if the RTO system is able to correctly identify the

optimal, or at the very least a good operating point for the current state of the plant.

1.1 Motivation and Thesis Objectives

The RTO task would be very easy if an accurate and complete model of the plant were avail-
able. This model could simply be optimized, using any of a number of known techniques,
to arrive at the best possible controller set-points for implementation. The optimization
would then only have to be carried out periodically, to check if the optimal operating point
had moved due to process disturbances. Unfortunately, a perfect model of the plant is
never available in practice. This means that precise plant derivative information cannot
be obtained, making the direct application of traditional derivative-based NLP solution

techniques to the plant optimization problem impossible.
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The information that is generally available to the RT'O system from the plant is a set of
measurements, taken from sensors located throughout the process. RT'O systems make use
of these measurements to update the set-points, as they can contain important information
about fundamental changes in the state of the process. Note that the measurements also

usually contain some level of measurement noise which should be rejected.

Model-based RTO systems are a common type of RT'O technology. They utilize a process
model which is generally a simplification of the plant. The model is then altered in a clever
way in order to mimic the input-output behaviour of the plant as closely as possible. One
method of accomplishing this is the two-step approach, [Chen and Joseph, 1987], which
alters one or more of the parameters in the process model based on information garnered
from the plant. This approach, while fairly adept at rejecting measurement noise, will not
always be able to find the optimal set-points if the process model is fundamentally different
from the actual plant (structural plant-model mismatch) [Forbes et al., 1994]. This is almost

always the case in practice.

In response to this drawback, a number of other RT'O approaches have been developed, in-
cluding modifier adaptation [Marchetti et al., 2009], which is the focus of this report. Unlike
the two-step approach, this technology utilizes estimated plant gradient information as well
as the plant measurements to update the process model. Using the gradient information in
an intelligent way can guarantee that if the scheme converges, it will converge to a KKT
point of the plant (in the absence of measurement noise). Therefore, in certain situations,
it is much more likely to identify the plant optimum than the two-step approach is. The
difficulty here is that the plant output gradient must be estimated. Since no closed-form
representation of the plant is available for differentiation, an estimation procedure must be
selected. It is essential that this procedure is both accurate and adequately resistant to

measurement noise.

The objective of this thesis is, using modifier adaptation as a conceptual basis, to develop
an RT'O technology that is both optimum seeking and resistant to measurement noise. Both

on-line execution aspects and the off-line design of the new RT'O method are explored.
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1.2 Real-Time Optimization

The Real-Time Optimization (RT'O) system does not function in isolation. It is a part
of a set of inter-connected subsystems that make up a multi-level control structure. This
hierarchy consists of all the core elements of the Process Systems Engineering (PSE) field.

It is shown as Figure 1.1.

Planning

i

Supply Chain

!

Plant-Wide Optimization and Scheduling

!

Real-Time Optimization

!

Control Systems

!

Plant

Figure 1.1: PSE hierarchy (adapted from: Seborg et al. [2004])

Upon examination of the multilevel control structure illustrated in Figure 1.1, the RTO
system lies between the plant-wide optimization and scheduling layer and the process control
layer. Therefore, in short, it takes information from the scheduling layer, makes a set of
computations and sends the resulting information to the process control layer. This is

consistent with the goal of the RTO system described in Section 1.1.

The basis for comparing potential set-points is generally some sort of economic criterion.
This criterion often has to do with decreasing production costs or improving product qual-
ity. The computed set-points can vary between RTO iterations based on new information
obtained from the plant. The iteration frequency depends on the process in question. Gen-

erally, the main requirement is that this frequency must be much longer than the closed-loop
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process dynamics. If this is not possible then some sort of dynamic RTO approach must be

considered [Kadam et al. [2007], Srinivasan and Bonvin [2007]].

The popularity of RT'O technologies has greatly increased over the years [Forbes and Marlin,
1996]. This is due to a couple of key factors. The first is a general increase in the computing
power available. This change has allowed the implementation of RT'O on more complex
systems than before, and has also allowed the RT'O system to be executed more frequently in
some cases, increasing its effectiveness. The second factor is the increasing competitiveness
of the global marketplace. More than ever before, many companies are competing to sell
very similar products. This makes saving every possible dollar during the production process
more vital than ever. RT'O is uniquely positioned to do this, given its goal of optimizing
an economic objective. This has made RT'O particularly popular in the petrochemical
industry and the commodities sector, where it has been widely used [Bailey et al. [1993],

Krishnan et al. [1992a]).

The scope of RT'O systems has been the topic of debate over the years. One option is using
the RT'O system to address the operation of the entire plant at once [Bailey et al., 1993].
The alternative is to adopt a distributed approach which tries to solve individual RTO
problems on each unit in a plant [Darby and White, 1988]. For example, if a plant consists
of a reactor followed by a heat exchanger and a distillation column, three separate RT'O
problems would be solved, one for each unit. A higher-level system may then be tasked

with coordinating the actions of the three separate RTO implementations.

In Darby and White [1988], the distributed approach is supported. The greatest advantage
of the distributed approach is the ease of running the RTO procedure on each individual
unit. For instance, if one unit went offline as a result of a fault or for maintenance, the active
units of the distributed system could still function as normal. The different RT'O systems in
the distributed framework could also be executed at different frequencies, depending on the
specific units that make up the process in question [Darby and White, 1988]. Additionally,
smaller models are also easier to maintain and in general computationally easier to solve

than one large model.
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The plant-wide RT'O strategy is supported by Bailey et al. [1993] and Marlin and Hrymak
[1997], among others. While it clearly does result in a larger, more complex model, with
the power of computers constantly increasing, larger models are becoming less difficult to
deal with. If the entire plant is not considered at once, the optimal set-points may not
be identified due to the individual models not completely representing the interactions
between the different process units [Zhang and Forbes, 2000]. Also, no coordinator needs
to be designed to exchange information between the subsystems. In this work, although
none of the examples are the size of a complete plant, this is assumed to be the strategy of

choice. Therefore, the design of a coordinator is not considered.

The potential economic benefit of an RT'O system does not come without a set of drawbacks
and limitations. For instance, the RT'O system is limited by the quality of the information
it receives from the plant. If the measurements are corrupted significantly, the RTO system
will not identify a good operating point. In fact, the process performance at this sub-optimal
operating point may be worse than the performance had there been no RTO implementation

at all.

The RTO system is also limited by the control system tasked with implementing the set-
points it provides. The slower the control system is in driving the process to the new
set-points, the smaller the benefit from the RTO system. Detecting that the controllers
have pushed the process to a new steady-state can also be a problem in practice. Another
limitation is the reactionary nature of the RT'O system. It cannot predict process distur-
bances ahead of time and therefore there will always be a time lag between the disturbance

and the appropriate response of the RI'O system.

1.3 Approaches to Real-Time Optimization

Model-based RT'O approaches were very briefly mentioned in Section 1.1. The two-step ap-
proach is probably the most well-known and widely used of these methodologies. It consists

of updating a subset of the model parameters so that the model represents actual plant
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input-output behaviour as closely as possible [Chen and Joseph, 1987]. There is another
subclass of model-based methods however, which instead of updating a set of parameters
directly in the model, adds additional parameters to the model to aid in accurately match-
ing input-output data. These methods were developed with the aim of alleviating a major
deficiency of the two-step approach. This deficiency is the inability of the algorithm to
guarantee convergence (under noiseless conditions) to the optimal operating point of the
plant if the process model is fundamentally different from the plant (structural plant-model

mismatch).

The ISOPE (Integrated System Optimization and Parameter Estimation) method carries
out the same parameter estimation step as the two-step approach, but also introduces an
additional parameter into the cost function [Roberts, 1979]. This parameter matches the
gradient of the plant cost function with that of the model. Constraint bias updating adds
an extra parameter to each of the constraint functions, attempting to match the constraints
of the model to those of the plant [Forbes and Marlin, 1994]. In Gao and Engell [2005], the
constraints are updated not only with a zeroth order term (as in constraint bias updating),
but also a first order term, which takes into account gradient information. Finally, modifier
adaptation combines the ideas of both of the preceding methods, by introducing a set of
so-called modifiers which alter both the values and gradients of the cost and constraint
functions [Marchetti et al., 2009]. More details and discussion about all of these methods

can be found in Chapter 2.

Besides model-based RT'O methods, there is another class of methods, sometimes referred
to as model-free methods, which do not employ a process model at all [Chachuat et al.,
2009]. These methods use measurements from the plant, along with a set of heuristics,
to choose the best operating point for the plant. One example of these methods is self-
optimizing control [Skogestad, 2000]. In this method, constant values are chosen for a set
of controlled variables and the system is manipulated by changing the set-points in order to
try to keep these variables at their reference values. The choice of the controlled variables
and corresponding references is important here. Choosing variables which do not vary

significantly in the presence of uncertainty is very important. Other important criteria are



M.A.Sc. Thesis - Eric Rodger McMaster University - Chemical Engineering

given in Skogestad [2000].

NCO tracking is another effective model-free method [Francois et al., 2005]. In this proce-
dure, the inputs are adjusted so as to try to satisfy the necessary conditions of optimality
for the plant. Therefore, this method can be seen as a self-optimizing method where the
controlled variables are the active constraints and reduced gradient (KKT quantities), with
both of these having a reference of zero. Plant measurements, and sometimes estimated
plant output derivatives, are used in this procedure. Since derivative estimates are some-

times used, this approach can be sensitive to measurement noise.

The inputs for NCO tracking are generally divided into two subsets, inputs that help sat-
isfy the active constraints, and sensitivity seeking inputs, which are used to optimize the
economic function. A bi-level formulation has been proposed to separate the relatively easy
task of controlling the constraints and the more difficult task of using the sensitivity-seeking
inputs to achieve optimality [Francois et al., 2005]. A good comparison of model-based and

model-free RTO approaches is given in Chachuat et al. [2009).

1.4 Thesis Overview

This work focuses on model-based RT'O technologies. Within this sub-group, it focuses
primarily on the modifier adaptation approach [Marchetti et al., 2009]. Chapter 2 begins
with a review of the basic components of a model-based RT'O system, followed by a de-
scription of several previously developed technologies. These include the classic two-step
approach, ISOPE, constraint bias updating and ideal modifier adaptation. The background
section ends with a comparison of some of these methods using the Williams-Otto Reactor
benchmark problem. This benchmark RTO problem will be used in simulations throughout

this thesis.

Chapter 3 begins with an explanation of the choice of Broyden’s method for implementation
with modifier adaptation. Next, a convergence analysis is carried out for the modifier

adaptation algorithm employing Broyden’s method. The performance of this algorithm is
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then evaluated using the Williams-Otto Reactor test case, and modifications are suggested
to improve this performance. Specifically, the inclusion of additional constraints in the
model-based optimization problem is suggested, creating an algorithm with two distinct
goals: finding the optimal operating point and generating accurate Broyden estimates.

This new algorithm is referred to as dual modifier adaptation.

Chapter 4 addresses the issue of how to design the dual modifier adaptation system to
achieve the best possible online performance. This design is done offline due to the com-
putational burden of redesigning the system online after every iteration. To form the basis
of this procedure, the design cost criterion [Forbes and Marlin, 1996] is adapted so it can
address both unconstrained and constrained dual modifier adaptation systems. The design
of an appropriate back-off for constrained problems is also investigated. These concepts are

illustrated using the Williams-Otto Reactor test case at the end of the chapter.

In Chapter 5, the performance of dual modifier adaptation and the corresponding design
procedure are evaluated using a more complex case study. This case study involves the
real-time optimization of the operation of a propane pyrolysis reactor. First, the objective
function, constraints and process model are discussed in detail. Next, several aspects of the
dual modifier adaptation algorithm itself are discussed. These include the effect of various
tuning parameters on the performance of the algorithm. The design of modifier adaptation
for this case study is also explored. The computation of the design cost metric is discussed

in detail here.

Conclusions are then drawn and future recommendations are made. These recommendations
include the potential combination of the two-step approach and modifier adaptation with
the goal of leveraging the unique advantages of each technology. Recommendations on how

to improve the design procedure are also made.



Chapter 2

Background on RTO Technologies

The goal of this chapter is to give the reader an overview of the RT'O research that has been
completed in the last 30 years or so. An overview of the main components of a generic RT'O
system will be presented first, followed by a discussion of some of the specific approaches that
have been developed. These include the two-step method, ISOPE, constraint bias updating
and ideal modifier adaptation. Some of these methods necessitate the approximation of the
plant output gradient and therefore potential plant output gradient estimation methods are
discussed as well. Next, the Williams-Otto Reactor process, a standard RTO test case, is
introduced. It will be used to illustrate concepts discussed throughout this report. The

section finishes with a comparison of the two-step approach and ideal modifier adaptation.

2.1 Components of an RTO System

Despite the fact that there are many different algorithms used for real-time optimization,
the basic structure of any one model-based RT'O system is fairly standard. All the separate
components, and the basic flow of information, are shown in Figure 2.1. Note that only some
of the components in Figure 2.1 are necessary for a system to properly operate, therefore

some may not appear in any one particular system.
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Model Update

Data Validation | Model-Based Optimizer |
Sensors ' Results Analysis

§ Plant and Process Controllers

Figure 2.1: General RTO diagram (adapted from Yip and Marlin [2002])

An RTO iteration begins when the process sensors take measurements which reflect the
state of the plant at the current time. At this time the plant must be at steady state. A
check is often performed to ensure this, especially in the case of relatively slow processes.
Generally there is also some form of validation procedure incorporated at this level to
check if the measurements are plausible. This is sometimes called data reconciliation or
gross error detection, and may involve comparing the measurements to the existing process
model. A good discussion of this step, with references for steady-state validation and gross

error detection, can be found in Marlin and Hrymak [1997].

From a design perspective, the decision of which measurements to take and where physically
in the process to take them is not a trivial one. Considerable work was done in this area
by Krishnan et al. [1992b], who applied a series of statistical tests to determine the set of
measurements which would work best with the two-step approach, given the chosen set of
adjustable parameters. Fraleigh et al. [2003] later explored the economics of this decision,
taking into account the fact that the sensor and model updating systems cannot be viewed

in isolation, and rather need to be analyzed as a part of the whole closed-loop RT'O system.

The measurements are then sent to a model updater. The purpose of this step is to use
the measurement information to improve the model of the process. This can be done in a
variety of ways. Either a sel of parameters directly present in the process model, or one or

more "artificial” parameters, introduced specifically for the use of the RT'O algorithm, are

10
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updated. The specifics of this procedure will be left to the individual sections on each RT'O
technology.

Sometimes a test is performed at the end of the model update step to check the conditioning
of the covariance matrix of the updated parameters. This test was originally proposed in
Miletic and Marlin [1998b] for the two-step approach. If the test is failed, some parameters
may need to be fixed for the current iteration in order to improve the conditioning of the
covariance matrix. Alternatively, using multiple data sets for model updating can also
reduce the condition number of the parameter covariance matrix [Yip and Marlin, 2002].
The required data can be collected by performing experiments on the plant, which involve
slightly changing the operating point and taking a new set of measurements at the new point.
Methods for designing such experiments can be found in Yip and Marlin [2003]. Although
all of these results are specific to the two-step approach, the ideas could potentially be

extended to other RT'O approaches as well.

The updated model is then used by the model-based optimizer. The optimizer will determine
the set-points which minimize a particular cost function, satisfying both the process model
as well as any process constraints (including bounds on the set-point). Since the model itself
is usually non-linear, the entire problem is generally an NLP. There are many NLP solution
methods that can be used for this purpose. In this work, the sequential quadratic program-
ming (SQP) solver included in the MATLAB Optimization Toolbox, fmincon, was used to
perform the optimization. When passing the problem to the optimizer, variable scaling can
be very important, especially for large or difficult to solve problems. Providing analytical
derivatives and a reasonable starting point to the optimizer can also increase the chances
of finding a good solution. A discussion of this step can be found in Marlin and Hrymak

[1997].

t

After the new set-point has been computed by the optimizer, the results analysis subsys-
tem decides if it should be implemented on the plant. This check attempts to distinguish
between common cause variation (i.e. measurement noise), which in general should not

motivate an operating point change, and process disturbances (special cause variation),

11
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which are a valid reason for changing the operating point. A statistical test was proposed
in Miletic and Marlin [1998a] for this purpose. At this stage, operators or other plant

personnel may also be required to approve the recommendations of the optimizer.

The last step involves the process control system implementing the prescribed operating
point change. This should be achievable as long as the RT'O system has provided a suitable
operating point. For RT'O systems with frequent execution times, the process dynamics can
sometimes act as a bottleneck, preventing the next RT'O execution from occurring until the
current set-point is reached and the required measurements are taken [Zhang and Forbes,
2000]. Specific analysis of the control system (i.e. individual PIDs or MPC) is beyond the
scope of this report. An investigation of the integration of the RTO and control systems

from an economic viewpoint can be found in Contreras-Dordelly and Marlin [2000].

2.2 The Classic Two-Step Approach

The classic two-step approach to RT'O has been well established for more than 20 years
and is widely used in industry today. A description of the methodology can be found in
Chen and Joseph [1987]. This algorithm has been successfully applied to many industrial
processes. Examples include Bailey et al. [1993] and Krishnan et al. [1992a]. Additional
implementations are listed in Marlin and Hrymak [1997]. The optimization problem that

the RT'O system is trying to solve for the plant is the following:

min  ¢(u,y")

u

st.  y'=F(u)

g(u,y?) <0

umz'n <u< ymaeT (2.1)

where ¢ represents the objective function, u denotes the inputs, y? are the plant outputs
(measurements), F' represents a set of explicit plant input-output relations (generally un-
known), g denotes the output-dependent constraints and u™" and u™** are the bounds on

the inputs.

12
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In the design phase of the two-step approach, the model parameters must be separated into
two subscts. The first subset should hold all the parameters that will remain fixed through-
out the RT'O process. The second subset should contain the parameters that are to be
updated by the parameter estimation problem, in response to plant process changes or dis-
turbances. In general, these parameters should be observable from the plant measurements
taken [Stanley and Mah [1981], Krishnan et al. [1992b]], represent actual process variations,
and aid in moving towards the plant optimum [Marlin and Hrymak, 1997]. There is a con-
siderable amount of literature surrounding how to make this division of the set of model

parameters [Forbes and Marlin [1996], Krishnan et al. [1992b]].

After an appropriate subset of the parameters is chosen for updating, and the appropriate
measurements are taken, an optimization problem is solved that attempts to match the
plant and model outputs as closely as possible. This corresponds to the model updating
step described in the previous section. Through this optimization problem, values are

assigned to the set of adjustable parameters 3:

Bry1 € arg mgll (Vi — YZL—H)2
sty = F(up, B) (2.2)
where y™ represents the model outputs and f is a set of explicit functions defining the
model outputs. Note that in practice an implicit form of f is generally known, however it
is assumed here that the implicit equations can be solved for the outputs using a solver for
systems of non-linear equations (e.g. fsolve in MATLAB). This is only one possible update
strategy, another common one involves weighting the output differences by the inverse of

the covariance matrix of the plant measurements [Yip and Marlin, 2002].

After these new parameter values are obtained, the general model-based RT'O problem is
solved, striving to minimize the objective function (¢) by changing the process inputs,
Uppr Cargmin - ¢(u,y™)
st y" =1f(u,B)
g(u,y™) <0
U™ < u < 0™ (2.3)

13
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Note that all the developments in this work will be done assuming the objective function
for the RT'O system represents a quantity to be minimized. One common example is the
cost of production. For clarity, a diagram of this procedure is shown as Figure 2.2. In this

figure, SS stands for steady-state.

One important drawback of the two-step approach is the fact that it may converge to a sub-
optimal point if structural plant-model mismatch exists. Structural plant-model mismatch
occurs when the model being used does not resemble the actual plant process in some
fundamental way. For instance a side reaction that has not been well documented may be
left out of the process model. This phenomenon occurs frequently in large-scale, complex

industrial systems.

!

| min Qb('ll, ym) i P
o : Upt1 Plant Ye+1

|
i
% s.t. g, y™) <0 (89)
i[ vy =1f(u,By)
! umi'n. <u S umnes Z
By

Brn ngn (yz+1 - le+1)2

st Y1 = £(ukir, )

k—k+1

Figure 2.2: T'wo-step method diagram

Structural plant-model mismatch has been discussed extensively in the RTO literature.
The difficulty in using a simple model to approximate a much more complex model in an
optimization procedure (called the inside-out method or surrogate model optimization in
the literature), is discussed in Biegler et al. [1985]. In this procedure, parameters in the
simplified model are periodically updated using values obtained from the rigorous model.
Note that this is essentially the same situation existing in RT'O, with the more complex
model being the plant and the process model being the simpler model. Biegler et al. [1985]
show that unless the optimum of the rigorous model is also a, KKT point of the simple model,

it will not be found through the parameter update procedure. Since the KKT conditions

14
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involve gradient information, unless the cost and constraint gradients match at the rigorous

model optimum, this condition will not be satisfied.

The concept of model adequacy, [Forbes et al., 1994], was developed for the two-step ap-
proach to deal with this problem. It is a tool that allows the RT'O designer to check if
his/her process model will be capable of recognizing the plant optimum. Instead of trying
to verify first order KKT condition details, it checks conditions to do with the reduced

gradient and Hessian of the approximate model at the plant optimum.

This discussion underscores the importance of the model selection task in designing an RTO
system. Unfortunately, an adequate model in the sense of Forbes et al. [1994] may not be
available in the case of large-scale, complex industrial systems. This has motivated the
development of alternative RT'O paradigms, such and the Integrated System Optimization
and Parameter Estimation (ISOPE) method and Modifier Adaptation (MA), which will be

discussed in Sections 2.4 and 2.5 respectively.

2.3 Constraint Bias Updating

The constraint bias update approach (sometimes also called constraint adaptation) is an-
other common model-based RT'O technology. Detailed information can be found regarding
the approach in Forbes and Marlin [1994] and Chachuat et al. [2008]. While the ISOPE and
modifier adaptation approaches (discussed in the next two sections) are greatly concerned
with optimality, the constraint bias update approach is more concerned with feasibility.
Therefore it is especially useful when it is expected that a large number of the degrees of free-
dom of the optimization problem will be taken up by active constraints [Forbes and Marlin,

1994].

Instead of solving the parameter estimation problem each iteration (like in the two-step
approach), in the constraint bias update approach a new parameter is introduced into the

RTO algorithm to be updated every iteration. This parameter is computed as follows
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[Chachuat et al., 2008]:
EZ+1 =(I-K,) 62 -Ky [g (Uk+1,)’i+1) —8 (uk+1,y?+1, )] (2.4)

where €? is the constraint bias parameter and K, contains filter parameters for each con-
straint which generally range between 0 and 1. The higher the filter parameters, the more
aggressive the correction, but also the more likely the iterates are to diverge. This new

parameter, €, is then incorporated into the model-based optimization problem as follows:

g1 € argmin - o(u,y™)
u
st.  y=£f(upg)
gu,y™) +e, <0

umin S u S umaer (2'5)

One of the core advantages of this approach is that upon convergence, it is easily proved
that its iterates will arrive at a feasible point [Chachuat et al., 2008|. This is valuable,
especially for those industrial processes in which feasibility is crucial. It is also easier to run
from a computational point of view than methods that require the solution of a parameter
estimation problem. In addition, it is less sensitive to measurement noise than the methods
that are presented next (ISOPE and modifier adaptation) which require the approximation
of the plant output gradient. The trade-off is the fact that this method makes no effort
to match the gradients of the model cost function or constraints to those of the plant (the
gradients are taken as those of the nominal process model), therefore it may suffer in terms

of optimality.

2.4 The ISOPE Method

The ISOPE method is detailed in Roberts [1979]. There have since been a variety of
modifications made to improve the original formulation. Here the original method will be
discussed, followed by a look at some of the modifications that are most relevant to this

work. For a more complete review of early ISOPE work consult Roberts [1995].
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The major difference between ISOPE and the traditional two-step approach is the inclusion
of an extra parameter in the objective function. This parameter attempts to match the
gradient of the objective function of the model-based problem with the gradient of the
objective function of the plant. This parameter is updated every iteration in the following

way [Roberts, 1979):

¢ OF of n
Y1 = ay (g1, Y7001) <5ﬁ (Upg1, ¥iopr) — M (uk+1,yig+1>ﬁk+1)> (2.6)

where 1) is the value of the cost gradient parameter. Note that this update procedure
requires knowledge of the plant output gradient (%ﬁ‘—) As previously discussed, since no
true plant model is ever available in RT'O, this term must be approximated. A discussion

of plant gradient estimation procedures is deferred until Section 2.6.

As in the two-step approach, a parameter estimation problem must be solved to update the
adjustable model parameters, 3, for use in both the calculation of the additional parameter
(2.6) and the model-based optimization problem (2.8). The parameter estimation problem
here is essentially the same as Equation 2.2, however it must be solved using an additional

constraint:

Vi1 = Vit (2.7)
The rationale behind the addition of this constraint is to ensure that -g—i in the additional
parameter update step (2.6) is evaluated using the plant outputs (y?). Depending on
the degree of mismatch between the plant and the approximate model, this may not be

achievable in practice. This is a deficiency of the original ISOPE procedure which was later

addressed in the literature [Tatjewski, 2002].

The updated value of the cost gradient parameter (¢) is then sent to the optimization

problem which is solved as follows [Roberts, 1979]:
u® € arg ml}n d(u,y™) +piu
st y™ =B, By)
g(u,y™) <0
umin <u< umas (2.8)
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where u* denotes the optimal inputs. Note that the only alteration from Problem 2.3 is the
inclusion of %, in the cost function. A filter is sometimes placed on the computed inputs

in order to improve the stability of the algorithm [Roberts and Williams, 1981]:
g1 = (I—K)ug + K,u® (2.9)

where K, is a diagonal matrix of filter parameters with values typically ranging between 0

and 1.

The original ISOPE procedure has several shortcomings, which have been addressed in the
literature throughout the last thirty years. For instance, constraints were not addressed
in the original formulation. Specifically, if process constraints are active at the plant opti-
mum, correcting the cost function gradient of the model is not enough to match the KKT

conditions of the plant.

An attempt to address constraint handling is made in Tatjewski et al. [2001], where the use
of a constraint follow-up controller (CFC) is proposed. This controller ensures that certain
key constraints on the outputs are satisfied. This essentially involves splitting the outputs
into two categories, separating those outputs whose constraints are active at the plant
optimum from the others. A subset of the inputs are then assigned o act as manipulated
variables in the CFC. The main disadvantage of this method is that the active set at the
plant optimum must be known before-hand, and the design of the RTO system must be
based on this active set. Therefore, if the active set were to change online, the performance

of the RTO system would likely suffer.

Another possible fix for the constraint handling problem was presented in Gao and Engell
[2005]. Using plant measurements and an approximation of the plant output gradient, the

following is written:

gr(w) = g(uy™) + [g(usyh) — g,y +
g_i (uk)yzl) (g'g (uk,Y£) - % (uk)lea:Bk)> (u - uk) (210)

where the intention is that the modified constraint be comprised of the value of the con-

straint using the model outputs, with 0** and 1% order corrections added to account for
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plant-model mismatch. The modified constraint is then implemented in the optimization

problem (2.8) as follows:
gk (u) <0 (2.11)

Finally, a modification is proposed in Tatjewski [2002], which eliminates the need to solve
the parameter estimation problem as a part of the ISOPE algorithm. This is done by

introducing an extra parameter into the calculation procedure for ¥:

o¢ " OF ot -
VY1 = By (Ugt1, Y e + Qkt1) <_51_1 (W1, ¥hiq) — a (uk+1,}’k+1>,3k)> (2.12)

where a is referred to as the model shift parameter. This parameter a is defined as follows:

A1 = Yt — Vi (2.13)

Examining Equations 2.12 and 2.13, it is clear that the purpose of the model shift parameter
is to make it so that the cost function output derivative, g—i, is essentially evaluated at
yP. Therefore, this negales the need for the parameter estimation problem to enforce the

plant/model output matching criteria of Equation 2.7.

This concludes the discussion on the ISOPE method and extensions. Although this method
is not studied extensively in the remainder of this thesis, the importance of the developments
of the previous section as a precursor to modifier adaptation, the central focus of this work,

will become evident in the sections to follow.

2.5 Ideal Modifier Adaptation

Modifier adaptation (MA) was first presented in Chachuat et al. [2009] and Marchetti et al.
[2009]. It utilizes many of the concepts presented in the previous two sections to arrive
at a clear, concise RT'O methodology. Specifically it introduces a set of extra parameters
(referred to as modifiers here) into the model-based optimization problem which directly

alter both the cost and constraint functions.
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The cost function is altered by the addition of the following cost gradient modifiers, A?

[Marchetti et al., 2009]:

T
X = | 2w w)) -~ 2w, (u, ) (2.14)

where A? is a column vector of modifiers and the individual derivatives are computed as

follows:

de ¢ OF

_ 9¢
W) = %(U,F(u))+8—y(u,F(u))-5ﬁ(u)
%(u,f(u,ﬂ)) = %(u,f(u,,@))ng—f,(u,f(u,ﬁ))-%(u,ﬁ) (2.15)

Note that this modifier is similar but not necessarily identical to the ISOPE parameter
7p defined in Equation 2.6. Both quantities are only the same if the additional ISOPE
constraint, Equation 2.7, holds. The advantage of this particular definition of the cost
gradient modifier is it allows for the elimination of the model shift parameter, a (Equations
2.12 and 2.13). Tt can be eliminated here because the full cost function input derivatives

for both the plant and model are computed separately.

The constraints are also altered in modifier adaptation by the introduction of the following

two modifiers:

¢ = g(u,F(u)-gu,f(uB))
T

d d
N — ﬁ(u,F(u))—ﬁ(u,f(u,ﬁ)) , Vi=1,.,n, (2.16)

where €7 and A? are the constraint bias and gradient modifiers respectively. Note that the
way modifier adaptation deals with constraints is similar to the method that was detailed
in Gao and Engell [2005] (Equation 2.10), with the distinction that separate modifiers are
declared to represent both the zeroth and first order constraint corrections. This provides
the user with the option to choose not to update certain modifiers. For instance, the gradient
modifiers may not be used if the plant output derivatives are too noisy. A parallel can also
be drawn here with the constraint bias update approach. Examining Equation 2.16, it is
apparent that the zeroth order correction modifier, €9, is also identical to the unfiltered

version of the bias update parameter (eb) defined in Equation 2.4. The modifiers are then
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used in the model based optimization problem in the following way [Marchetti et al., 2009]:

Up41 € argmin
u

s.t.

¢ (w,y™) + AP Tu
y" =1 (u,B)

g(u,y™) + €+ Az’T (u—u) <0

um'm S u S umaa:

(2.17)

One of the advantages of the way that modifier adaptation is formulated is it allows for

straightforward filtering of the modifiers defined in Equations 2.14 and 2.16. This filtering

is similar to the filtering of the bias update parameter shown in Equation 2.4:

A?
bV

Ag,'n,g

g
€1
k1

k+1

k-1

= (I-Ka)

g.ng
_)\k

+ Ka

g (u7 F(u)) -8 (11, f(u7 ,B))

(48, B ) — 4, £, )]
1 1 T
[ 42 (o, () — 42 (0,5, )]

42 o) - 45 0]

(2.18)

where ng4 is the number of constraints and K, is a matrix of filter parameters. Note that

in this thesis, it is assumed that K, is a diagonal matrix of filter parameters, k, which

generally range from 0 to 1.

The preceding definition of the modifiers was given in part because it is the definition

suggested in Marchetti et al. [2009] and also because it allowed for clear comparisons to be

made with previous literature. However, this is not the definition that has been selected for

this work. In Marchetti et al. [2009], an alternative scheme is given, where the modifiers

are used directly to correct the model outputs (y™) as opposed to the cost and constraint

functions. These alternate modifiers are defined in the following way:

€r+1

1
Akt

ALY

L k1

-

= (I—-Kh)

-

€L
Ak

ny
)‘k i

+ Ka

F (Uk+1) —f (uk-l—l) ﬁ)

1 1 T
[Q,% (Upq1) — %cu“ (a1, ,3)]

T
7L a 72
_[agu'“’ (Upq1) — £uy (uk+1,,3)]
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where € and A are the output bias and gradient modifiers respectively and ny is the number
of outputs. With the alternate modifier definitions of Equation 2.19, the model-based

optimization problem becomes:
ugr Cargmin ¢ (u,9™)
s.t. ¥ =1f (u,8) + e + AL (u— 1)
g(w,y™) <0
umn <y < ume (2.20)
where y™ are the modified outputs.
After the optimization step, the new set of inputs are sent back to the update procedure

(Equation 2.19) and a new set of modifiers are computed. This algorithm is illustrated in

full on Figure 2.3. In this figure, A represents the full set of modifiers.

| ming(u,§™)

" st gl 7™ <0 i Ukt
| " =f(0,B)+ ek —I—)\{(ufuk) i

| umin < u < ymer !

(¥, VF]

Ukt

£, Vi]

g1,

F (ugp1) — £ (0p41,8)

€kl €k - y
Abs1 AL [%—1: (uper) — 5 (uk+1,ﬁ)]
s | =A=-K) [ K
Al AT o T
Ay ) LA L[5 (ur) - 2 (i, )]
App Ag

Figure 2.3: Ideal modifier adaptation diagram

One of the advantages of defining the modifiers in this manner is flexibility in which outputs
are updated at each iteration. For instance, if a sensor stops working and one measurement
is not available for an iteration, the modifiers pertaining to that output can be held constant
while the rest of the algorithm proceeds as normal. Another example would be if one output
measurement is very noisy, the decision could be made to not update all the modifiers related

to it. This alternate scheme also makes it easier to combine modifier adaptation with other

RTO algorithms.
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One of the most beneficial properties of the modifier adaptation algorithm is that, upon
convergence (in the absence of measurement noise), it will arrive at a local optimum of the
plant. This is due to the fact that the KK'T conditions of the model will mimic those of the
plant at this point [Marchetti et al., 2009]. At the converged point, u}, the modifiers can

be computed as follows:

€ = F(ul)—f(ui,n)
) oF , of
Ao = 7 (ug) — Ju (uge,B) (2.21)

Ignoring the input bound constraints (for simplicity), the KK'T conditions of Problem 2.20

can be written:

g(u,y™(u) <0
7'g(u,9™(u) =0

~¥>0

9¢ 0 Ooyg™ [Qg_ 3g5y]

Toyou 7 |5u” oy ou

8u 811 Oy Ou (2.22)

where v are the Lagrange multipliers for the inequality constraints g and £ is the La-
grangian. The first expression of Equation 2.21 can be re-arranged to yield: F(ul,)) =
€x + £ (u%,, B). The right-hand side in this expression is also exactly what appears on the
right-hand side of the expression for ¥ in Problem 2.20, because at the converged point
u — u; = 0. Therefore, at the converged point, y? is equal to §™ and the first condition in

Equation 2.22 matches that of the plant.

Since the cost (¢) and constraint (g) functions are identical for the plant and model and

( ) = af (ut,, B) + Axo, the fourth condition of (2.22) is the same for both. Since
the constraints of the plant and model are identical, the second and third conditions of
Equation 2.22 match those of the plant because the Lagrange multipliers of the model and

plant are also the same.

Note that, as in the ISOPE algorithm, modifier adaptation requires some method of com-

puting the plant output gradient, g—ﬁ‘. In the algorithm first presented by Marchetti et al.
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[2009], it is assumed that these derivatives are known exactly. The algorithm that corre-
sponds with this assumption will be referred to as ideal modifier adaptation from this point
forward. Methods of estimating the plant output gradient are explored in the following

section.

2.6 Methods for Estimating Plant Output Derivatives

The simplest and most widely known scheme for estimating the plant output gradient is
forward finite differences [Mansour and Ellis, 2003]:
OF¢
du

~ [F(uk+w1)—F(uk) F(ugtwsz)—F(ug) F(“k““*’"u)_F(“k)] (2.23)
- w1y wo e g

where w is a vector of small input perturbations.

Examining Equation 2.23, it is evident that a plant perturbation must be made once every
iteration for each input variable in the optimization problem. Therefore, in a large system,
this would result in many plant perturbations. Not only would this result in a loss of
profit due to operation at sub-optimal points (limiting its acceptance in industry), but it
would also take a considerable amount of time to make all of the perturbations. For these
reasons, the finite differences method is generally inefficient for large or slow processes
[Mansour and Ellis, 2003]. Furthermore, if the process is contaminated by a large amount
of noise, the finite difference approximations could potentially be very inaccurate. This
loss of accuracy depends on the choice of w. However, since no standard method exists for

selecting w, extensive trial and error may be required to find good perturbation sizes.

The dual ISOPE method, discussed in Brdys and Tatjewski [1994] and Mansour and Ellis
[2003] is essentially an alternative way of applying finite differences, which requires no

additional plant perturbations. The following expression is applied:

v~y
OF Ty -k
Sk, ' l:*a‘a (uk,yz)] ~ : (224)
_yi—nu - YZ_
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where n,, is the number of inpufts and Sy, = [(uk—l —ug) (Up—g—ug) ... (Ug_p, — uk)] .
Measurement noise will cause the matrix on the right-hand side of Equation 2.24 to be cor-
rupted by errors, therefore it is important that Sp be well conditioned. The reciprocal
condition number of Sy can be defined as k in the following way [Gao and Engell, 2005]:

o pmin(sk)

H) I, —
F Pmaz (Sk)

(2.25)

where p denotes a singular value. The goal is to ensure that kj is large enough so that
excessive corruption of the derivative approximations by measurement noise is prevented.
This reciprocal condition number can be manipulated by adding an extra constraint to the

model-based optimization problem, which can take the form of:
Kp > € (2.26)

where ¢ is a minimum threshold on the reciprocal condition number. A range of 0.1-0.2 is

suggested in Tatjewski et al. [2001].

This methodology is definitely a positive step, in that it eliminates the need to perturb the
plant many times to get an accurate derivative estimate. However, it was not selected for a
couple of reasons. First, the implementation of the additional constraint could cause a loss
of optimality, depending on whether the model optimum falls inside the area restricted by
the constraint. Furthermore, to the author’s knowledge, there has been no design method
suggested to tune e specifically to fit the nature of any particular RTO problem. Also, the
additional constraint (Equation 2.26) is typically non-convex, making the resulting model-
based optimization problem more difficult to solve. This is illustrated for a two input
problem in Tadej and Tatjewski [2001]. In some extreme situations, this extra constraint

may even make the model-based optimization problem infeasible.

Dynamic perturbation methods, also detailed in Mansour and Ellis [2003], were not con-
sidered in this thesis due mainly to their inherent complexity. It is assumed for the case
studies considered in this thesis that there is enough time to allow the plant to come to
steady state before another RT'O iteration is required. However, for very slow processes,

dynamic perturbation methods could potentially be the best option.
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Another possible method of plant output gradient estimation is Broyden’s method. It was
originally proposed in Broyden [1965] as a way of estimating function derivatives to be used
in solving systems of non-linear equations. Specifically, Broyden’s method was considered to
be a good option when an analytical expression for the Jacobian of the non-linear functions
could not be computed (or was very difficult to evaluate) and the functions themselves were
also time-consuming to evaluate [Broyden, 1965]. This was the case because, in Newton’s
method, if using an analytical expression for the Jacobian was impractical, finite differences
was a common method of estimating the Jacobian. However, if the underlying system
of equations was diflicult to evaluate in the first place, finite differences would have been
very time-consuming since it required an extra function evaluation to be made for each
independent variable. The advantage of Broyden’s method was that no extra function
evaluations had to be made (Equation 2.27), which in these particular cases saved a great
deal of computation time. Methods of solving systems of non-linear equations which utilize

forms of Broyden’s method are typically called quasi-Newton methods [Broyden, 1965].

To the author’s knowledge, Broyden’s method is first discussed in reference to plant output
gradient estimation for RTO in Mansour and Ellis [2003]. This method, like dual ISOPE,
also avoids the need for making plant operating point perturbations. Instead of using many
previous operating points to update the estimate at once, it uses information from only the
last operating point (in addition to information at the current operating point) to update
an existing derivative estimate. Therefore, it is an iterative update scheme in which only
one direction, (ugy1 — ug), is updated at a time. It can be represented by the following
rank-one update formula:

(W1 — )
U1 — uk)T(uk+1 - uk)

oF
du Upt1 )

b= Bi+ (076 ~ 98 — Bi(wer — wy) ( (2.27)

where By (the Broyden update matrix) is a first order approximation of

The initialization of the Broyden update matrix is an important issue. One simple and
generally effective option is to set By to the model output gradient at the initial point ug.
This is effective as long as the approximate model is a reasonable representation of the
plant at this point. If this is not the case in practice, a different approximate model should

probably be selected in the first place.
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2.7 Williams-Otto Reactor Benchmark Problem

In the following section, the Williams-Otto Reactor test case is introduced. This is a bench-
mark RTO test case which has been studied in many papers, including Forbes and Marlin
[1996] and Zhang and Forbes [2000]. The reactor has been isolated here from the overall
Williams-Otto Plant (described in Govindarajan and Karunanithi [2004]) and the simplifi-
cations suggested in Forbes et al. [1994] have been made. It will be used throughout this
thesis to make comparisons between RTO algorithms, as well as to illustrate new develop-

ments.

Problem Formulation

The process consists of an ideal CSTR. where a set of three reactions involving six species

(A, B, C, E, G and P) are taking place:

A+B — C
B+C — P+ FE

cC+P — G (2.28)

The CSTR has two feed streams of pure A and B (flowrates Fiy and Fj) , and one exiting
stream (flowrate F'r). The decision variables (inputs) are the temperature of the reactor, Tg
[°K], and the flow rate of feed B, Fiz [kg/s]. The lower bounds for these inputs are 333.15°K
and 3 kg/s and the upper bounds are 403.15°K and 7 kg/s. Note that this represents a
larger feasible region than the one defined in Forbes et al. [1994]. The reactor mass (Mg)
is 2100 kg and F'4 is 1.8275 kg/s. The objective function is related to plant economics. It
assumes that E and P (mass fractions represented by Xg and Xp) are the only valuable

products and that both feeds, A and B, must be purchased:
¢ =76.23(F4) + 114.34(Fp) — 1143.38(Xp)(Fa + Fp) — 25.92(Xg)(Fa + FB)  (2.29)

Note that although the objective function for this case study was stated in terms of cost,

its result will sometimes be referred to as profit here because it is positive throughout
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the normal operating range of the plant. Furthermore, all costs/profits reported for the

Williams-Otto Reactor test casc are in thousands of dollars.

A constraint will sometimes be added to the test case. It is a limitation on the exit mass
fraction of component B:

Xp <0.35 (2.30)

This constraint does not appear in the formulation in Forbes et al. [1994], but is included
here in order facilitate the illustration of various concepts throughout this thesis. The
material balances that can be derived from the description of the process (Equation 2.28)

are given next:

Fp— (Fa+ Fg)X4— K MpX4Xp =0

Fp— (Fo+ Fp)Xp — K MpXaXp — ksMpXpXc =0

—(Fa+ Fg)Xc + 2K MpX 4 Xp — 2k5MpXpXe — Ky MpXcXp =0
—(Fo+ Fg)Xg + 2k MrXpXc =0

—(Fy + Fg)Xp + ksMpXpXe — 0.5k MpXcXp =0

k7 = 1.6599 % 106¢(~6666.7/Tk)

kh =7.2117 % 108¢(-8333:3/Tr)

kh = 2.6745 % 102~ 11111/TR) (2.31)

where £} is the reaction rate constant for reaction i. Note how a material balance is not
written for component G, as the overall material balance (Fr = F4 - F) is written directly

into these component balances, using up an extra degree of freedom.

A different set of equations will be used as the process model for these simulations. This
model consists of one less reaction and one less component than the full plant model.

Therefore structural plant-model mismatch exists. The reaction sequence for the model is:

A+2B — P+ E

A+B+P — G (2.32)

It is assumed that the measurements of the mass fractions of each of the components
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represented in Equation 2.32 are available to the RT'O system. Therefore these quantities

are considered to be the process outputs.

The material balances that comprise the process model are given next:

Fp— (Fg+ Fp)Xa— ki VaXaXs — ki VRXaXpXp =0
Fp— (Fg+Fp)Xp — 2kT VX4 X% — EiVeXsXpXp =0
—(Fa+ Fp)Xp + 2K VpXaX3% =0

~(Fp+ F)Xp + K VRX 4 X% — Ky VaXaXpXp =0

K = vyel~Fi/Tr)

Ky = vpe~F5/TR) (2.33)

where »; is the pre-exponential factor of reaction ¢ and Ef is the activation energy of
reaction 7. Note that there are no specific values provided here for the pre-exponential
factors and activation energies. Instead it is the task of the individual modeler to provide
estimates for these quantities. The effect of providing different model parameter values on

the performance of the RT'O system will be explored subsequently.

2.8 Comparison of the Two-Step Approach and Ideal Modi-
fier Adaptation

In this section, ideal modifier adaptation is compared with the two-step approach. Similar
comparisons have been made between RT'O approaches in several works in the past. In
Chachuat et al. [2009], the two-step approach is compared qualitatively and quantitatively
to both ideal modifier adaptation and direct input adaptation methods (a class of model-
free methods). Also, the performance of the two-step method was compared to the ISOPE
method as well as both a linear and a quadratic adaptive on-line optimization approach in
Zhang and Forbes [2006] (see the appropriate references for more details on the latter two

approaches).

All of the comparisons in this section are made using the two reaction sequence for the
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approximate model (Equation 2.32) and the three reaction sequence for the simulated plant
(Equation 2.28). Both the two-step approach and modifier adaptation were started using
the same initial model. The initial form of the model essentially represents the starting point
of the algorithm, because to begin the first iteration, this model is optimized to compute
the first operating point that is sent to the plant. The parameters that were used are the
following: [v1,1s, EY, B3] = [1.21 x 107,7.17 x 10'1,7207,10249]. These parameters will
be used for the process model in all Williams-Otto Reactor simulations run in this thesis,
unless otherwise stated. For ideal modifier adaptation, filter parameters of 0.25 (k) were
used for the simulation and the initial modifiers were set to zero (Ag = 0). There was
no filtering done for the two-step approach. Finally, in all of the figures presented for the
Williams-Otto Reactor test case (unless otherwise noted), the profit contours shown are
for the simulated plant, thereby representing the ”true” plant profit attained by the RTO

system.

The first plot, Figure 2.4, shows the noiseless convergence of both the two-step method,
using the pre-exponential factors (vi,12) as the adjustable parameters and ideal modifier
adaptation. Note that the activation energies (E7, E$) could also have been used as the

adjustable parameters in the two-step approach.
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Figure 2.4: RT'O methodology comparison - noiseless case
This comparison illustrates that updating the parameters of an approximate model is not
enough to guarantee convergence to the optimum of a more rigorous model (in this case the
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plant) [Biegler et al. [1985], Forbes et al. [1994]]. The algorithm does improve the initial
operating point, however because of the structural plant-model mismatch in the reaction
sequences, it converges to a sub-optimal point, realizing a loss of profit of just over 2% in
this case. The ideal modifier adapatation simulation is consistent with the claim that the
algorithm will, upon convergence, reach an optimum of the plant [Marchetti et al., 2009].
It takes quite a few iterations to converge to the optimum, however this could likely be

reduced by increasing the filter parameters.

The performance of both RT'O approaches was also tested using different initial models. In
addition to the initial model used in the first trial (Figure 2.4), two other initial models
were tested here. In the first one, 11 was changed to 1.71 x 107 (model 2) and in the other,
E{ was changed to 6707 (model 3). The results for the original model (model 1) as well as

the two new models are shown in Figure 2.5:
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Reactor Temperature CK)

Figure 2.5: RTO methodology comparison - different initial models

It is evident from the simulations that the two-step approach does not always converge to
the same point given different initial models. Only when the models differed solely by a
change in one of the adjustable parameters, did two different models converge to the same
point (models 1 and 2). This emphasizes the importance of model selection for the two-step

approach.

The plant optimum is converged to in all the modifier adaptation simulations. This tends
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to indicate that producing a very good initial model is not as important for modifier adap-
tation. However, if the initial model is too inaccurate, the algorithm may not converge
at all. Furthermore, if the plant has multiple local optima, simulations involving different
approximate models may not converge to the same point. Note that these problems are not

exclusive to modifier adaptation, they exist for many other RT'O schemes as well.

The noiseless convergence of both algorithms for the constrained Williams-Otto Reactor
test case (recall Equation 2.30) is illustrated in Figure 2.6. The same settings that were
used in the simulations for Figure 2.4 were used again here. These results demonstrate
another possible drawback of the two-step method. Although the two algorithms converge
to points that are very close together, the two-step method converges to an infeasible point

of the plant. This could be unacceptable, depending on the consequences of violating the

constraint.
o - LY B PELE) T v
. - RN
2 Plant Prefit Contours i
*+._ |—Plant Constraint g
550 » | =¥~ Two-Step Approach ;]
~-©- Ideal Modifier Adaptation
T 7
s VA
Z s
) -
./
= S
om by
G as S
2
s el
B
w 9 -
3.5
3

Temperature of Reactor (°K)

Figure 2.6: RT'O methodology comparison for constrained problem - noiseless case

In the next comparison, a small amount of measurement noise is added to the mass fraction
measurements (X 4, Xp, Xg, X¢ and Xp). This noise has zero mean and standard deviation
of approximately 2.5% of a typical set of mass fraction values. Noise was also applied to
the individual plant output derivative terms in ideal modifier adaptation. This noise also
had zero mean, and standard deviation of 5.0% of a typical set of values for the individual

gradient elements. The noise was increased for the gradient elements in order to simulate
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the fact that larger levels of noise are expected in the derivative estimates. Fach algorithm

was then run for 50 iterations with the results shown in Figure 2.7.
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Figure 2.7: RT'O methodology comparison - measurement noise added

Instead of converging to a point, both of the algorithms now move to the area surrounding
the corresponding convergence point found in Figure 2.4. Both methods seem to be effected
by the measurement noise to some extent. Modifier adaptation takes more iterations to
arrive at the area of convergence, again because of the filtering of the modifiers. Due
to the presence of measurement noise, the filter parameters cannot be increased without
consequence here. The trade-off is, as the parameters of K, increase, both the convergence

speed and the sensitivity of the algorithm to measurement noise will increase.

The last comparison that is made evaluates the response of each approach to a fundamental
change in the state of the process. Specifically, an unmeasured disturbance is artificially
introduced in the inlet flow rate of component A after 100 iterations and the performance
of the two RT'O approaches on the unconstrained Williams-Otto Reactor process is tracked.
The same noise levels that were considered for the simulations of Figure 2.7 are used again

here. The results are given in Figure 2.8.

Note that the comparisons are made using the two manipulated variables, the temperature
of the reactor (Tg) and the flowrate of component B (Fg). The ideal modifier adaptation

algorithm tracks the step change relatively well, quickly moving toward the new plant

33



M.A.Sc. Thesis - Eric Rodger McMaster University - Chemical Engineering

—o— Ideal Madifier Adaptalion
w——Plalit Optimum
-+ #-- Two-Step Approach

Reactor Temperature {K)
o
]
a

Flowrate of B (ka/s)

—#— Ideal Modifier Adaptation|

—— Plant Optimum
—s— Two-Step Approach

@
&
&

@
&
=

150 200 “o 156 200

100 100
[teration Number iteration Number

Figure 2.8: RT'O methodology comparison - step change

optimum. In the two-step approach, while the flowrate of B moves toward its new plant
optimal value, the temperature of the reactor actually moves away from its new plant
optimal value. This illustrates the fact that when a disturbance occurs in the plant, if there
is structural plant-model mismatch, the two-step approach is not guaranteed to move in

the correct direction.

2.9 Chapter Summary

The goal of this chapter was to provide background information in order to better inform
the reader as well as to motivate the research discussed in the remainder of the thesis.
First, the different components of model-based RT'O systems were discussed and references
for further study were provided. This was followed by a description of four existing model-
based RT'O methods: the two-step approach, constraint bias updating, ISOPE and ideal
modifier adaptation. In addition, different plant output-gradient estimation techniques were

discussed and the Williams-Otto Reactor case study was introduced.

The last section of this chapter consisted of a comparison between the two-step approach
and ideal modifier adaptation. Although ideal modifier adaptation appeared to be superior

in the preceding discussion, in order to apply it in practice, the difficult task of approximat-
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ing the plant output gradient still must be addressed. The formulation and analysis of a
modifier adaptation scheme using Broyden’s method to estimate the plant output gradient

is conducted in the next chapter.
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Chapter 3

Dual Modifier Adaptation

The goal of this chapter is to develop an approach to real-time optimization which not
only can effectively identify the plant optimum, but also performs well in the presence of
measurement noise. To begin, a modification is proposed to the ideal modifier adaptation
algorithm, wherein Broyden’s method is utilized to estimate the plant output gradient. A
convergence analysis of this new algorithm is then carried out, followed by a discussion of
the performance of this algorithm in the presence of measurement noise. Modifications are
then introduced, giving the algorithm two distinct goals: seeking the optimum and achieving
accurate Broyden derivative estimates. All of the concepts discussed in this chapter are

demonstrated using the Williams-Otto Reactor test case.

3.1 Modifier Adaptation with Broyden’s Method

The main difficulty with the online implementation of ideal modifier adaptation, as pre-
sented in Section 2.5, is that the plant output gradient is never precisely known in practice.
Therefore, it must be estimated in some way from the available plant measurements. Several

potential plant output gradient computation methods were discussed in Section 2.6.
Broyden’s method (Equation 2.27) is chosen in this work for implementation with the
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modifier adaptation algorithin for several reasons. First, it mitigates many of the drawbacks
of the finite differencing method, especially the need to potentially make mulliple plant
perturbations in each iteration. It also proves to be fairly easy to initialize, as By can be
set to the model output gradient at the initial point ug. This is effective as long as the
approximate model gradient does not differ extensively from the true plant gradient at this

point.

The update step of the ideal modifier adaptation algorithm, presented in Section 2.6 as
Equation 2.19, can be rewritten to reflect the use of Broyden’s method to estimate the

plant output gradient:

[pi1 ] [ e | F (ugq1) — £ (upt1,8)
T
AL by Bl — % (U1, 8)
P =a-Ka) | 7P| +Ka Bk~ % , ) (3.1)
AL A B o™y T
L1 L% L[ k+1_W(uk+1uB)] ]

where B? is a row vector denoting the estimated derivative of output 4 with respect to the
inputs. The algorithm diagram is given as Figure 3.1, where R is a non-linear map that

represents the Broyden formula (Equation 2.27).

(
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Figure 3.1: Modifier adaptation algorithm with Broyden’s method
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3.1.1 Williams-Otto Reactor Case Study

The Williams-Otto Reactor test case is now used to compare modifier adaptation with
Broyden derivative estimates to ideal modifier adaptation. The results shown in Figure
3.2 are obtained with an absence of measurement noise and the filter parameters set to
0.25. The modifiers are also initialized to zero in this simulation (Ag = 0). In addition, the
starting point (wg) is [Ir, Fg] = [353.15,4.5] and the initial Broyden derivative estimate

is computed as follows: By = df | " The next operating point (u1) is then calculated

= $olu
through the model-based optimization (using Ag). This point is the optimum of the process
model because (Ag = 0). Finally, the next plant output derivative estimate was computed
as: By = R (Bg,u1, U, y?(u1),yP(ug)). These same initial settings were used in all the

simulations detailed in this chapter, unless otherwise noted.
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Figure 3.2: Comparison of MA with Broyden’s method and ideal MA

Although the plant optimum is reached by both algorithms, it is immediately evident that
it takes modifier adaptation with Broyden’s method more iterations to converge very close
to the plant optimum. This is because the algorithm does not move in a very direct route
toward the optimum, due to inaccurate gradient information. The convergence of modifier
adaptation with Broyden’s method is analyzed in detail in Section 3.2. Also note that in all

of the simulations in this chapter, both Ty and Fpg are scaled linearly so that the interval
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[—2,2] corresponds with the variable bounds outlined in Section 2.7:

I

U1 0.05 (TR) — 18.1575

u; = Fp—5 (3.2)

Note that this was done to improve the performance of Broyden’s method (see Section 3.2.3

for explanation).

Similar to ideal modifier adaptation, the performance of modifier adaptation with Broyden’s
method also depends on the approximate model used by the algorithm. The same three
starting models that were used in Figure 2.5 of Section 2.8 are utilized again here. The
filter parameters were again set to 0.25 and the same initial settings (ug, Ap) that were
used for the simulation in Figure 3.2 were used again here. Note that the initial Broyden

estimates (Byp) differed for each of the three initial models, as they were again computed

df

using: Bo = 43|,

. The results are shown in the Figure 3.3.
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Figure 3.3: Modifier adaptation with Broyden’s method using different starting models

Figure 3.3 illustrates the fact that the path taken to the convergence point and the number
of iterations taken to get there both depend on the process model used in the algorithm.
The algorithm converges quickly to the plant optimum in some simulations (model 1) and
it gets stuck moving in the wrong direction for a considerable number of iterations before

converging in other simulations (model 3). Note that no conclusions should be drawn here
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about which process model provides better overall performance, as only a single simulation
is provided as evidence here. Furthermore, although the algorithm converges to the plant
optimum for all process models in this demonstration, there is no guarantee of this. This

will be discussed further in Section 3.2.3.

In addition to the process model, a starting point, ug, must also be provided for the al-
gorithm. Tt is at this point that the Broyden matrix (B) is initialized (recall that Bg can
be estimated as: By = % u0). In addition to being used in this initialization, this point
will be utilized in the first Broyden update as uy in Equation 2.27. It is therefore very
important that this point is well chosen, as it will have a significant effect, especially on the
early performance of the algorithm. To demonstrate this, simulations were run using three
different starting points: [353,6], [373,6] and [353,3.5]. The results are shown in Figure
3.4.
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Figure 3.4: Modifier adaptation with Broyden’s method using different starting points

Although all three of the simulations eventually converge to the plant optimum, the early
performance of the algorithm seems to be strongly dependent on the starting point. The
simulations beginning at points 1 and 3 converge quite quickly to the plant optimum. The
simulation beginning at point 2, however, spends a fair number of iterations considerably
far away from the plant optimum before finally moving towards it. This seems to indicate

that it is important to choose a starting point (up) that is reasonably close to the model
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optimum (uy). This is not only for the benefit of the model-based optimizer, it also helps

in obtaining a good first Broyden update (B1) (see Section 3.2.3).

The next comparison, Figure 3.5, demonstrates the effect that the filter parameter settings
have on the convergence behaviour of modifier adaptation with Broyden updates. In each
of the tests all of the filter parameters are set to the same value. While it is possible, even
sometimes advantageous to run the algorithm with filter parameters set at different levels,

investigation of this is beyond the scope of this thesis.
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Figure 3.5: Modifier adaptation with Broyden’s method with different k values

Upon examination of Figure 3.5, it is clear that the larger the filter parameters, the faster
the movement toward the plant optimum. The downside is that, as the filter parameters
increase, the path toward the optimum becomes more erratic. The trial with filter param-
eters of 0.05 moved very slowly, but in fairly a direct path towards the plant optimum. On
the other hand, the trials with filter parameters of 0.50 and 0.70 moved around in a slightly

erratic path, but managed to converge to the plant optimum fairly quickly.

Trials with k > 0.70 proved to be more erratic, or in some cases did not converge at all.
Therefore, for the Williams-Otto Reactor case study, a good range of k values appears to
be 0.125 — 0.50, however no best values can be identified without knowing more specific
information about the RT'O system in question, such as the nature and frequency of the

disturbances expected in practice. Key information about the filter parameters can also be
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garnered by performing a convergence analysis of the algorithm. This is addressed in detail

in the next section of this thesis.

3.2 Convergence Analysis of Modifier Adaptation with Broy-
den’s Method

The purpose of the following section is to analyze the convergence of modifier adaptation
with Broyden’s method, which was presented in Section 3.1. Analyzing the convergence of
the algorithm is important because it should provide key information regarding the selection
of the filter parameters. Most importantly, it should prevent filter parameters that lead to

divergence from being chosen.

First, the algorithm will be stated formally fo facilitate the analysis to follow. Then, the
convergence of single input problems will be analyzed, using a modified formulation of
the Williams-Otto Reactor process as a test case. Finally, the convergence of multi-input

problems will be investigated.

3.2.1 Algorithm Statement and Linearization

In order to facilitate the calculation of various sensitivities, the algorithm for modifier
adaptation with Broyden updates, that was presented in Section 3.1, is formally stated
here. This statement is based on the one for ideal modifier adaptation that can be found
in Marchetti et al. [2009]. The purpose of stating the algorithm in this way is to remove
uy, from the model-based optimization problem. To begin, the following alternate modifiers

are defined, which represent the constant terms of the output correction:

€ = € — Apuy (3.3)

Hence, the new vector of modifiers, A = , is related to the previously defined set of
A
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modifiers by [Marchetti et al., 2009]:

AL=T (uk) Ay

where T (u) is defined as follows [Marchetti et al., 2009]:

I,

U

The optimization problem can then be rewritten using the alternate modifiers:

U,y € argmin
u

¢ (0,3™)

s.t. ¥y =1 (u,

B)+&+Alu

g(u,3") <0

(3.4)

(3.5)

(3.6)

After making the appropriate substitutions, the modifier adaptation update step (Equation

3.1) appears as follows:

T (upy1) Agr = (I—Kp) T (ug)

€
X
+ Ka

Ny
Ak

[ F(Uk_l_l) _f(uk-l-l)ﬂ) T
1 T
Bl & (uers, )]

Yy T
[Bi3 2 (a1, )] |

(3.7)

Lastly, due to the unique form of T (u), the following can be written: T—! = 21 — T (u).

This allows the update law to be restated as follows:

Apyr = [21— T (upya)]

(I —Ka) T (ug) Ay + Ky
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This update law (Equation 3.8) can be represented by the non-linear map A in the following
way:

Kk—l—l =A (uk-l-l: Uy, Xk) y]Z;_|_17 yZl+1, Bk—l—la VY;cn—l-l) (39)

wheve Vy7' | = % (g1, 3). Similarly, the model-based optimization problem (Equation

3.6) can also be represented by a non-linear map:
w1 = U* (Ag) (3.10)

Note that U* is differentiable at Ay only if ugyq is a unique optimizer of Ay. For this
to be true, the solution of the optimization problem must satisfy the linear independence
constraint qualification (LICQ), the 2nd order (sufficient) KKT conditions for a strict local
minimum and the strict complementary slackness condition (see Appendix B). These two
laws (3.9 and 3.10), along with the definition of T in Equation 3.5 and the Broyden update
map (R), make up the algorithm that will be used in the convergence analysis to follow.

This overall algorithm is denoted by Y hereafter.

The algorithm for modifier adaptation with Broyden updates (Y) can be thought of as a
discrete-time, non-linear map. In order to accurately reflect the state of the RT'O system
at a given iteration (here at iteration k), three quantities need to be known: Ay, Ax_; and

Bj. Therefore, the overall algorithm can be represented as follows:

App
Kk =Y (Kk)Kk—lyBk) (311)

B

Although the algorithm (Y) is non-linear, the asymptotic behaviour of Y can be analyzed
by considering a first order approximation (linearization) of Y in the vicinity of an equilib-
rium point, provided Y is differentiable at that equilibrium point [Khalil, 2001]. In practice,
a stable equilibrium point for the algorithm can be identified by running it for many it-

erations and noting the point to which it converges (if such a point exists). Suppose that
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[KZO,KZO, B;o] is an equilibrium point for the algorithm, Y, that is:

K*

(o]

X*

o0

B,

:Y(K;JQmB&) (3.12)

A first order Taylor series expansion of the algorithm can then be written around the

equilibrium point:

Ay — AL,
Y (R, Re1,Bi) 2 Y (B, Rog, Bl ) + VY (A, Koo, Bl ) |Kpoi —Agy|  (313)
B; —- B

A new triplet is now defined, [6Kk, 6A;_1,6B k] , representing the distance between a partic-

ular iterate and the equilibrium point (i.e. §Ay = Ay —A_,). Using the preceding definition

and Equations 3.11-3.13 the following can be written:

§A k41 SAy,
(SKk ~ Too (5Xk_1 (314)
0Brt1 0By

where T, is equal to VY evaluated at the equilibrium point. It can be defined specifically

as the following matrix of sensitivities:

dAgyy  dApyr  dApg
dA,  dhp_, dBy
_ dA
Yoo= | I 0o & (3.15)
dBrys  dBry1r  dBrya
dAr  dAy_, dBi AL Al B

(]

Now, if the eigenvalues of Y, are computed, the asymptotic behaviour of the algorithm in
the neighbourhood of the equilibrium point can be characterized. The following theorem,

adapted from Antsaklis and Michel [2007], describes how this is done:

Theorem 3.1 (Asymptotic stability of Y) The algorithm, Y, is asymptotically stable
in the vicinity of an equilibrium point if and only if the magnitudes of all of the eigenvalues
of T, are less than one, that is, all of the eigenvalues of Y, are located inside the unit

circle of the complex plane.
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Proof. See [Theorem 4.47, Antsaklis and Michel [2007]] for an explanation.

3.2.2 Convergence Analysis of Single Input Problems

Analyzing the convergence of single input problems is considerably easier than it is for
multiple input problems. This simplicity comes from the fact that, for single input problems,
the Broyden method formula (Equation 2.27), reduces to the following expression (a simple
finite difference):

i Yot~ Yh

g o= e T 3.16
it Uk4+1 — Uk ( )

Notice that in Equation 3.16 the dependence on the previous Broyden iterate, By, vanishes.
Therefore, the state of the system no longer depends on By, and Equations 3.14 and 3.15

can be rewritten as follows:

e dApn  dAggy -
il [PV vl v o (3.17)
(SK;; 1 0 [K* < ] 5Kk_1

The set of sensitivities in (3.17) are not trivial to compute, as they require careful examina-

Ry
dA;

tion of the modifier adaptation algorithm. Considering , there are a variety of paths
through which the modifiers at iteration k can effect the modifiers at iteration k + 1. First
of all, this influence can come directly from the values of the previous modifiers through
the first-order exponential filter (see Equation 3.8). However, the previous modifiers also
effect the new input values determined by the optimizer (see Equation 3.10). These new
inputs then effect the output information (values and gradients) which in turn influence

the current modifiers. All six possible pathways are illustrated in Figure 3.6 and can be

expressed mathematically as follows:

dAryi DA A 0A [ OR OR dF + oA dF _du”
dAy IR, Ougy1r  0Brga Oupt1 By,’QH du — 3y£+1 du o dA o
df %f U
+ aa:;t T avii—'ﬁ ) o (3.18)
Yiet1 Uluy 1.8 Yk+1 U 1.8 dA |7,

where %‘lu,\.ﬂ can be approximated by Bgyi. The most difficult set of sensitivities to
R, OR_ dF

Ougy1 aygﬂ du lupyy

compute are ( > The derivation for this set of sensitivities gives the
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following: % ZZTE . Full details on the calculation of each individual sensitivity appearing
Uk4+1
3

in Equation 3.18 can be found in Appendix C.

A
R

Yiﬂ Brn

B A A

Ag Uk B Appa
A
£ A

of.

it Ou Vit

Figure 3.6: Flowchart illustrating pathways through which Ay influences Ay,

The other term in Equation 3.17 is easier to evaluate. The influence of Ap_; on Agyq
comes entirely through the modified update law (Equation 3.9). It can be represented by

the following expression:

dhp1 DA dU

dAp_,  Ouw, dA |g,_,

(3.19)

Williams-Otto Reactor Case Study

In order to test the convergence analysis procedure, the Williams-Otto Reactor problem,
originally presented in Section 2.7, is modified here. Specifically, the feed rate of component
B (Fp) is fixed at 4.6 kg/s. This effectively makes the Williams-Otto Reactor a single-input

problem, with the temperature of the reactor (I'r) being the only input.

A plot showing how the profit of the plant varies with changes in the temperature of the
reactor (Tg) is given as Figure 3.7. This plot also shows the convergence of a modifier

adaptation system using Broyden updates. In this simulation, filter parameters of 0.5 are
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used. Convergence to the general area of the plant optimum is achieved in only a handful

of iterations.

<= =Planl Profit}
Hellerates |
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Figure 3.7: Plant profit plot for Williams-Otto Reactor single input system

In this case study, upon examination of Equation 2.29, two outputs need to be modified
in order to match the KKT conditions of the model to those of the plant. They are the
mass fraction of component ¥ and the mass fraction of component P. This means that four
modifiers must be updated, one bias and one gradient modifier per output. Therefore, there
are a total of eight variables that are needed to describe the state of the system for this

single input case study (both Ay, and Ay ; for each updated modifier 7).

Numerous tests were run to examine the convergence of modifier adaptation with Broyden’s
method for this case study. The analysis was done by looking at the eigenvalues of Y o, for
different sets of filter parameters, k. Note that only cases where all the filter parameters

were the same were considered here.

Filter parameters of 0.50 are considered first. The non-zero eigenvalues (E¥*) of the Yo,

matrix are given below:;
Ev = [0.5, 0.5,0.5,0.3272 + 0.4884z‘,] (3.20)

Since all of the eigenvalues lie within the unit circle, the algorithm is asymptotically stable
near equilibrium point [Antsaklis and Michel, 2007]. This means that the algorithm should
move toward the equilibrium point when it is started ”sufficiently” close to it. Since pro-

jections can only be taken on a two-dimensional axis, and the system has 8 states in total,
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a couple of different plots are shown in Figure 3.8 o confirm that the system is indeed

moving toward the equilibrium point.

l':kﬂ X
P

Figure 3.8: Modifiers approaching equilibrium point with k = 0.50

To get a sense of which filter parameter values would support stable operation and conversely

which filter parameter values would cause the algorithm to diverge, the gain matrix (Yo)

is computed for a range of filter parameters between 0.01 and 2. The eigenvalues of each

gain matrix are then computed and the eigenvalue with the largest magnitude (dominant

eigenvalue) for each filter parameter sample is isolated. These dominant eigenvalues are

plotted against their corresponding filter parameter values in Figure 3.9.

Magnitude of Dominant Eigenvalue

T
— Dominant Elgenvalue
- - ~Stability Threshold | |

0.8 1 1.2
Filter Parameters (k)

'
14 1.6 18 2

Figure 3.9: Dominant eigenvalue for various filter parameter values

Figure 3.9 illustrates the fact that any sets of filter parameters in the typical range of 0 to 1

should provide stable performance. When the magnitude of the dominant eigenvalue of the

gain matrix is greater than one, this indicates that the algorithm will likely be unstable in
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practice. To test this, filter parameter values of 1.5 were implemented for the single input
Williams-Otto Reactor system. The algorithm was run using Broyden’s method to estimate
the plant output gradient, with no measurement noise. The convergence analysis prediction

was confirmed as the algorithm quickly diverged.

3.2.3 Convergence Analysis of Multiple-Input Problems

Unfortunately, multiple-input problems cannot be analyzed as simply as single-input prob-
lems. The main difficulty stems from the fact that, in the multiple-input case, some of

the derivative terms in Yo (Equation 3.15) are not defined at the convergence point

— . . oBt i
A ,A* ,Bi |. For instance, & can be represented by the following, for a system
00 “roor oo B} g

with two inputs:

i 1— Ai+1,1 D1 1App2
OBf 4 _ AR 1A% NIRRT (3.21)
(')B;.:  Apy1,1 8412 _ A%+1,2 )
Al tAiae AfpiaHA% e

where Apyy; = Upy1,;—Uk; (the difference in component i between the current and previous
operating points). As the algorithm converges, the fractional expressions in this matrix
approach an undefined form (%). Therefore, linearization of the algorithm is not possible

at the convergence point.

To demonstrate the convergence behaviour of the algorithm, the Williams-Otto Reactor
test case is used. The Broydén derivative for one of the outputs, X, will be examined.
This output can be considered in isolation because in the Broyden formula (Equation 2.27)
there is no interaction between outputs. The algorithm is run under noiseless conditions,
with filber parameters of 0.25 and the two terms in the top row of Equation 3.21 are plotted.
The term at position (1,1) is shown at the top of Figure 3.10 and the term at position (1,2)

is shown at the bottom of the figure.

It is clear here that both Broyden derivative terms are not converging after 350 iterations.
This confirms that the Broyden update procedure and by extension the entire algorithm

is not differentiable at the convergence point. Therefore, linearization, as discussed in
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Figure 3.10: Broyden derivative values as the algorithm converges

Equations 3.14 and 3.15, is not possible. Note that a possible solution to this difficulty
would be the application of Lyapunov methods, which do not require differentiability of the

algorithm. This could potentially be a topic of future research.

There is another concept that needs to be discussed related to the use of Broyden’s method
to estimate the plant output gradient for multiple-input systems. Up until this point,
nothing has been said about the nature of the point that modifier adaptation with Broyden’s
method converges to. It was said earlier that in the case of ideal modifier adaptation, as
long as the algorithm converged, it would converge to a KK'T' point of the plant. This
same guarantee cannot be made when Broyden’s method is employed to estimate the plant

output derivatives in multiple-input systems.

To be effective, Broyden’s method needs consistent excitation in all directions. In the previ-
ous section, the comment was made that Broyden’s method updates in only one direction,
(U1 — ug), in each iteration. Therefore, any direction perpendicular to this one is com-
pletely ignored by the method. This can be confirmed by locating the set of directions, M,

such that the Broyden estimate does not change between two successive iterations:

Bryim=Biym, Vm €¢ M (3.22)

By inspection of 2.27 it is easy to find that the set of directions, M, is the £~ dimensional

subspace comprising every direction perpendicular to the update direction from the current
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iteration, (ug41 — ug). This property does not cause a severe problem in a single iteration.
However, if the same set of directions is ignored iteration after iteration, the method may
not ever identify the correct plant output gradient, causing the algorithin to fail to converge

to a stationary point of the plant.

A more detailed mathematical analysis of this concept is now presented. The disparity
between the Broyden plant output gradient and the true plant output gradient is referred

to as the gradient offset subsequently. This gradient offset can be defined as follows:

) ) OF?
€1 = Bl — Em (Ug+1) (3.23)

where efC 41 18 a row vector for the gradient offset for output 4 at iteration k 4+ 1.

An expression is now developed that approximates this offset at any given iteration, as long
as the offset at the previous iteration is already known. To begin, the direction of the last

operating point update is normalized to give the following;:

u — U
Chi1 = l L (3.24)

| W1 — e ||
where ¢}, is the unit direction representing the last operating point move. Note that 3.24

cannot be applied if the operating point did not change between iterations k and k -+ 1.

The projection of the gradient offset in the direction {;; can now be written:

i i OF* (W1 — ug
€1kt = <Bk+1 T ou (Uk+1)) m (3.25)

Approximating %%1 (ug41) using the Broyden update expression (Equation 2.27), the fol-

lowing expression can be obtained:

Bi];;-]-]_ [uk:—l-l - uk] - yzi1 + yk’i
| wetr — ug ||

18kl ™ (3.26)

Now, writing a Taylor series expansion for yk’i = F'(u) around ugyy and ignoring terms
greater than second order:
OF¢ 1 T 02 F1
uy u — ug = [ug — uy — (ug uy — ug
o (Ws1) Uk = Upa ]+ 5 [ = e ] =5 (Wepn) [ — ey

(3.27)

FE(ug) & F* (uggn) +
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The Taylor series expansion of Equation 3.27 is now substituted into Equation 3.26 to get
the final expression for the projection of the gradient offset in the unit direction of the last

operating point move:

aQFz
eh+1Ck+1 ~ Ck+1 ouz (Ug 1) Crp1 | Mpr1 —ug | (3.28)

The gradient offset in directions normal to the direction of the last operating point change
(Cx41) is now considered. If N = [ny,ng,...n,, 1] represents an orthonormal basis of the
(ny, — 1)-dimensional subspace orthogonal to ¢y, ;, then the projection of the gradient offset

in any unit direction n; gives:

; ,_oF
Crr11y = [ L (Uk+1)} n; (3.29)

Note that the Broyden update matrix is not changed in any direction orthogonal to the

direction of the last oper atmg point change, B¢ b = B}'cnj. Using this, and the definition

of the offset (B = e, + (uk)) the following expression can be written:
. OF OFt
e}E_Hnj = [ek + —— ( k) (uk+1):| n; (330)
Finally, writing a Taylor series expansion for @ (ug) around ug4; and ignoring terms

greater than first order yields:

. 2 i
€111y ~ {ei vy (Ugr1) Cppr || M1 — 1y, ||] n; (3.31)

To finish this derivation, the projections of the offset in the orthogonal subspaces ¢, and
N can be combined using eM_1 Ck+1¢k+1ek+1 + NNTe,chl Since NN7' =1 — Ck+1§’k+1,

the following comprehensive expression can be written:
AT AT O*F
eyt = [T CrpaCior] € [I— Ck+lck+1] Il (uk+1)Ck+1 | upr —ug || (3.32)
The gradient offset in Equation 3.32 appears to grow as the step-size is increased. This
provides motivation for limiting the size of the steps taken by the modifier adaptation
algorithm. For instance, if ug and u; are far apart, the gradient offset for the first few

iterations of the algorithm will be large. More importantly, the first term of Equation 3.32
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shows that the gradient offset may not vanish even when the algorithm is converging and
the step-size, || ugy1 —ug ||, becomes very small. Mitigation of these issues will be discussed

later in this chapter.

There is one more issue relating to modifier adaptation with Broyden updates, for multiple
input systems, that needs to be discussed. In the denominator of the Broyden update
definition (Equation 2.27) the following term appears: [ugy1 — ug)” [up1 — ux]. For a two
input system this can be rewritten as: (ugt11 — uk,1)2 + (Uky12 — uk,2)2. It is clear that
this term closely relates changes in both inputs. Therefore, it is advantageous if both inputs
are scaled so that they change by similar amounts. This is also important for systems with

more than two inputs as well.

Instead of rescaling the inputs directly, a more systematic way to deal with the issue would
be to use to restate the Broyden update formula (Equation 2.27) as follows:

(uk+1 - uk)TM
(W1 — ug) T M(ugqg — ug)

B§c+1 =B} + {(yﬁﬂ - Y%i) — Bi (w1 — uk)] (3.33)

where M is a (typically diagonal) scaling matrix.

Application to the Williams-Otto Reactor Test Case

The importance of input variable scaling, when Broyden’s method is employed to estimate
the plant output gradient, is demonstrated in Figure 3.11. Here, the Williams-Otto Reactor
test case is run both with no input variable scaling and with the scaling described earlier
in this chapter. The difference in performance is considerable, as the unscaled simulation

does not even converge to the plant optimum after over 100 iterations.

3.3 Sensitivity to Measurement Noise

Another significant deficiency of Broyden’s method, in addition to the gradient offset prob-

lem described in the previous section, is now discussed. Upon close examination of the
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Figure 3.11: Williams-Otto Reactor test case with and without scaling

Broyden formula (Equation 2.27), it is clear that the output gradient approximation will
become artificially large if in the presence of measurement noise, the new operating point
(ug41) is very close to the previous operating point (ug). This can be easily seen mathe-
matically by considering the gradient estimate in the direction of the last operating point

move, (g1

Yk — Yk
(| g — u ||
This problem is briefly alluded to in Mansour and Ellis [2003] and Gao and Engell [2005]

Bl 1kt = (3.34)

and will be referred to as the peaking phenomenon hereafter.

Before specific solutions are explored, it is useful to consider the peaking problem from
a more mathematical point of view. This will aid in confirming the root causes of the
problem and may help in the evaluation of potential solutions. To this end, a first-order
approximation of the variance in the Broyden derivative estimates is made. Examining
Equation 2.27 again, there are three pathways through which uncertainty can propagate
to the Broyden updates (B%_;). Both the current (k + 1) and previous (k) measurements
can be noisy and this noise can be easily propagated through to the Broyden derivative
estimates via the corresponding terms in the update equation. In addition, variance in the
previous Broyden estimates is propagated through to the new estimates via the B% term in

Equation 2.27.
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To sum this up mathematically, the triplet [B}g +1,yz’frl,yz’i] can be written as a function
of the three quantities described in the previous paragraph:
Bi,,
yi | =R ( i,yiil,yZ’i) (3.35)
v
where R involves the Broyden update map, R (Equation 2.27). R is then linearized around

the mean values of the Broyden derivative estimates and plant measurement quantities:

Bi — Bi
R (Bt 0p’) ~ R (BL o, 07°) + VR (BLaEL, ) [ofi, —api, | (336)
,yZ)’L . @Zﬂ’

where B}g denotes the mean values of the Broyden derivative estimates for the output %,
Qz’il and @fz are the mean values of the plant measurement 3 (at particular iterations) and

VR can be expressed as follows:

R T
w0 0
T
VR=|;2%" 10 (3.37)
Ye+1
R T
By 01

Now, using Equations 3.35-3.37, as well as the definitions of variance and covariance, the

following expression for the variance of the triplet |B% +1,y,€i1, yz’z] can be written [Arras,
1998]:
, orT g o T . oRT 4
K 7 1 -
B OB}, B}, 9B},
Vi o | ™ | o, O Vv | |aps 1o (3.38)
D,i OR T 01 Dy IR T
Yk ayz,z Y, ayz,z 01
. . . atap OR T R AR _ Gyl
where V is a variance operator, By I—Cjy1Ckyq and Y AR I revey Note

that the assumption is made here that the mean values of all involved quantities, B}'ﬂ, @Zil,
9", G4 and Gy, can be approximated by their respective values at the current iteration

i i, Dl Dt
(l'e' B7ic> y}Zc)_H: Y » Ukl and uk)'

Next, the covariance matrix of the triplet [ };,ygil,yg’i] must be developed. First, the

variances of the measurements themselves (02,; and 02,,) need to be estimated. This can

Yet1 Yk
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be done based on knowledge of the sensors that are being used to take the measurements.
The variance due to the measurements is generally assumed to be constant throughout

all the iterations of a given simulation. Also note the asswmption is made that there is no

correlation between 7}, and ¢}, or £, and BY, and that the covariance between y5** and

B}'i can be approximated as M Considering the full covariance matrices of the

Sk 2
0%,
up—ug g yP?

triplets [Bi 1 yﬁ’il,yi”i] and [B};, yZ’j_l, y}:’i], Equation 3.38 can be rewritten as follows:

V(BL.) 0 cou(Bly i) -Gl 0 0 '
0 02 0 ~ ”u—é’;ﬁ[ I 0
COU(B%H:@/ZL) 0 ij,i _Ilmi%lﬂf 01
Vv (B}) 0 |]uk—cllik*1 UZW’ I—Cppalhn 0 0
0 ag,,,,. 0 nTi’?—luTn I 0/(3.39)
¢t 2 0 o2 Chp 01

. o2 . ) _
flug—ae—1]" yP yPt g+ —ugl

From Equation 3.39, the following first-order approximation for the variance of the Broyden

estimates at iteration k -4 1 can be extracted:

. - Cond]
V (Bi1) = [I— el V (BR) [T - CopaClia] + ZUZMHT:?_%

. A i
[T — Cry1Chia] | uk — wer ||0y”’ | vpr — ug ||
¢k ;
k+1 Sk 2pi [T = CrpaChpal (3.40)

_ 020
g —ug [l ug —ue o |77
Examining Equation 3.40, it is clear that the variance is dependent on both the distance

between the current and previous operating points (ug41 and ug) and the distance between

the previous two operating points (uy and ug_1).

Application to the Williams-Otto Reactor Test Case

The Williains-Otto Reactor test case will be used here to illustrate the peaking problem.
Measurement noise is added to the mass fraction measurements (zero mean, standard de-

viation of approximately 0.5% of a set of typical output mass fraction values) and modifier
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adaptation with Broyden’s method is run for 50 iterations. The following plot shows the

true plant profit at each iteration:

200 T T T T T T T T T
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Figure 3.12: MA with Broyden’s method, under the influence of measurement noise

It is easy to identify the peaking phenomenon in Figure 3.12 whenever the plant profit
suddenly decreases. Since significantly large movements away from the plant optimum
would clearly not be acceptable in practice, a modification will need to be made to the

algorithm in order to mitigate this problem.

The dependence of the variance of the Broyden estimates on || ug41 —ug || and || up—ug—1 ||
(Equation 3.40) makes it clear that new operating points must be chosen in a clever way
so as to make the distance between consecutive operating points as large as possible while
still remaining close enough to the plant optimum so that good performance is achieved.
To visualize the importance of the operating point choice, the following short example is
given. For this example, it is assumed that the process has been running at the operated
point uy, for some time. A new set of modifiers have been computed and it is time to choose
Ugy1. The goal here is to find out which operating points will in general provide the lowest

variance of the Broyden derivative estimates V (Bi +1) in the next Broyden update step.

Equation 3.40 has already been derived and can be tasked with making the estimation of
VvV (Bi +1) for any potential operating point. Since it is intended that this example be as

general as possible, it is assumed that no information about the previous Broyden estimates
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is available. In addition, it is assumed that only the current operating point (uy) is known.
These two assumptions lead to a simplification of Equation 3.40:
T

V (Biy1) ~ 205 ”—uii—tlf’%”-z (3.41)
Equation 3.41 is then applied to the Williams-Otto Reactor case study to estimate the effect
of the operating point choice on the Broyden derivative estimates for the change in Xp with
respect to both of the two inputs. Asswming measurement noise of a standard deviation of
5.38 x 10~* (0.5% of a typical value for Xp), Figure 3.13 can be obtained, giving estimates
of each of the four elements of V (BZ{’H) throughout the input space.
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Figure 3.13: Broyden derivative estimate variance for the Xp measurement

Note that, as expected, points very close to the previous operating point, u, have very
high estimates for all the elements of the covariance matrix. Now, the variances of each of
the diagonal terms of Bzil are added together and the result is shown in Figure 3.14. Note
that this neglects both the effect of the covariance of the two terms and also the fact that
the variance of one of the terms of Bi’jrl might have a greater effect on the algorithm than

the other.
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Figure 3.14: Broyden derivative estimate variance for Xp (variance terms added)

The shape of the contours in Figure 3.14 is an ellipse (this is expected given the form
of Equation 3.41). It was important that the above example was as general as possible
because when potential solutions are considered in Section 3.4, they must be effective in all
possible situations, not just for a particular previous Broyden variance estimate or previous

operating point (ug_1).

3.4 Dual Modifier Adaptation

In light of the both the gradient offset and peaking problems discussed in Section 3.2.3
and 3.3 respectively, it is clear that the algorithm for modifier adaptation with Broyden
updates needs to be modified to achieve more consistently accurate plant output gradient
estimates. Note that after any modification the algorithm would possess two distinct goals.
The first being the original goal, to minimize the value of the cost function. The additional
goal would be to achieve accurate Broyden derivative estimates, both in terms of offset and

variance. This is why the new algorithm is called dual modifier adaptation.

In the following section, select ideas from dual control literature are examined for use with
modifier adaptation. One of these ideas is adopted to address the peaking phenomenon.

This idea is then extended to provide the Broyden update method with constant excitation
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in all input directions, thereby helping to mitigate the offset problem as well.

3.4.1 Mitigating the Peaking Phenomenon

While there has not been much work done on dual RT'O methods to this point, aside from
the dual ISOPE method previously discussed in Section 2.4, the dual control problem has
been studied extensively. This problem consists of attempting to achieve the best possible
balance between controller performance and process knowledge when trying to control an
unknown system. Essentially, the system must be perturbed in order to learn information
about it so that better control can be realized in the future. An excellent overview on dual
control was done in Wittenmark [1995]. Solution of the exact dual control problem, while
theoretically possible, is not practical because of the computational time requirements of
solving a stochastic dynamic program. Due to this, a number of approximate dual control

methods have been developed over the years.

Two types of approximate methods mentioned in Wittenmark [1995] seemed to be poten-
tially useful in modifier adaptation. The first is the addition of an extra term to the cost
function to encourage movement away from the current operating point. This acts like a
penalty term, which prevents new operating points from being positioned too close to the

current one. A potential modified cost function is:

1

(W1 — )" C (U — uy)

min ¢ (u, ™) + (3.42)
u

where the parameters in C = diag(c) are chosen to achieve good performance. Note that
there are other possible variations of this approach, for instance, adding one term to the
cost function for each input:

¢

(Ui - Uk,z‘)2

Ty
. ~m
min ¢ (u, ™) + Z

i=1

(3.43)

which would allow the user to ensure movement in all input directions every iteration.

Another type of approximate method, discussed in Wittenmark [1995], is the addition

of an extra constraint to the optimization problem. This could be done in a number of

61



M.A.Sc. Thesis - Eric Rodger McMaster University - Chemical Engineering

different ways. One possible formulation would be to create an ellipsoid around the previous
operating point:

(u—up) ' Bu—u)>1 (3.44)

where B is a symmetric, positive definite matrix of ellipsoid size parameters. Instead of

adding only a single constraint, separate ones could be included for each input:
(u; — Uk,i)2 >p2 Vi=1,.,n, (3.45)

where p are a set of tuning parameters, one for each input direction. Note that all four of the
options outlined above involve introducing additional non-convexity into the optimization

problem.

A check procedure, where the effect of the measurement noise on the input predictions
is computed and checked against a reference value was also considered. Note that this is
similar to the form of dual ISOPE suggested in Gao and Engell [2005]. In this case, if the
check fails, the Broyden matrix is simply not updated during the current iteration. This
approach was discarded however, because the nature of the conditional procedure made
selection of a good check threshold for any given problem difficult. Trial and error, or a

general rule of thumb, would likely have to have been employed instead.

Application to the Williams-Otto Reactor Test Case

In this section, the merits of each of the four dual approaches introduced in the last sec-
tion are analyzed. Tests are conducted for each one of these methods by running modifier
adaptation with Broyden updates and the appropriate addition to the model-based opti-
mization problem. For each method, the Williams-Otto Reactor test case is simulated for
300 iterations, starting from a point relatively close to the plant optimum. White noise is
added to the plant mass fraction measurements, with standard deviation of 0.5% of a set
of typical mass fraction outputs for this system. The filter parameters (k) are all set at
0.25. Values are selected for the tuning parameters (¢, B, or 1) in each of these methods

after considerable testing. These values are chosen to achieve ”good” performance of the
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algorithim, however, they were by no means optimized. The results of the testing are shown

in Figure 3.15.
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Figure 3.15: Demonstration of different dual control methods

Figure 3.15 shows that each approach appears to perform adequately for the specific set
of tuning parameters chosen. No ranking of approaches is possible here, simply because
no attempt has been made to optimize the respective tuning parameters of each approach.
Therefore, the decision will have to be based mostly on qualitative factors. Finally, there
seems to be some offset from the plant optimum present in each of the simulations in the
figure. This deficiency is ignored for now, however, as none of the methods described earlier
in this section have the ability to combat this. This issue will instead be addressed later in

this chapter.

Note that the simulation employing the approach of adding multiple terms to the cost
function, Equation 3.43, is shown in Figure 3.15 for only a run of 100 iterations. The
reasoning for the reduced run length was the MATLAB optimizer, fmincon, frequently
stalled during testing, so it was difficult to string together many successful iterations. The
specific reason for the difficulty was not discovered, however this method was discarded

because of this problem.
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The algorithm which involved the addition of a single term to the cost function (Equation
3.42), performed much better in that there were never any problems with the MATLAB
optimizer over the course of many simulation runs. The problem with cost function ap-
proaches in general, however, is that it is more difficult to devise a systematic procedure
for choosing the tuning parameters. This is because it is hard to estimate the effect of the
penalty term on the algorithin. Conversely, in the case of the constraint approaches, the
restricted area itself can be used to approximate the effect of the constraint since its bound-
ary naturally represents the maximum influence that it can have on a particular operating

point selection.

For the approach involving multiple constraints (Equation 3.45), the model-based optimiza-
tion problem had to be solved using multiple starting points. This was because of the fact
that if the optimizer started in a specific feasible quadrant, it tended not to exit that par-
ticular quadrant, due to the non-convexity introduced by the extra constraints. To combat
this, 4 starting points were selected from inside the input space for each optimization stage.
These four points were the corners of the rectangular area enclosed by the variable bounds
u™" and U™, The extra effort required to solve three additional optimization problems
did not pose a problem for this relatively small two-input problem. However, since the

number of separate areas would grow exponentially with the number of inputs, this method

could become quite computationally expensive for larger problems.

In the remainder of this thesis, the emphasis is on the ellipsoid constraint method. This
method is selected for a couple of reasons. First of all, it does not have any of the major
drawbacks that each of the other three approaches have. There are no problems with the
optimizer, as the algorithm runs smoothly and produces acceptable results. It also consists
of a geometric constraint, making it easier to tune than the single term cost function ap-
proach, and it does not produce a model-based optimization problem that requires solutions
from multiple starting points to be obtained. Also, recall the variance approximation study
of Figure 3.14. The shape of the confours nominally resembled an ellipse, indicating that
this might be a good shape to use for a constraint because the variance could be consistently

kept below a certain level.
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The ellipsoid parameters, denoted by b, are assumed to be on the diagonal of the matrix B
subsequently. In principle B does not have to be diagonal, it only needs to be symmetric
and positive-definite. However, for the purpose of this thesis, the assumption is made that
B is diagonal. A future research direction would be to extend the design procedure in

Chapter 4 to address all B matrices that are symmetric and positive definite.

The effect of the introduction of the ellipsoid constraint on the performance of the algorithm
is illustrated in Figure 3.16. A simulation consisting of 50 iterations, utilizing the same
general settings that were used in creating Figure 3.12 was run. Ellipsoid parameters of
(b = [40,30]) were chosen. These were chosen after a period of testing because they |
appeared to help achieve ”good” algorithm performance. The improvement in performance

is clear, as the large variations in the plant profit are eliminated.

= Plant Optimum
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Figure 3.16: Dual modifier adaptation - ellipsoid constraint only

3.4.2 Mitigating the Gradient Offset Problem

The causes of the gradient offset problem are discussed in detail in Section 3.2.3. It is the
cause of the bias from the plant optimum seen in the simulations of the previous section

(Figure 3.15).

To reduce the effect of the gradient bias, two different approaches are possible (see Section

3.2.3). First, the step length (distance between cousecutive operating points) can be re-
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duced. This can be easily done by employing a trust region constraint which creates an area,
around the current operating point inside which the new operating point must be placed.

This constraint can be written as follows:
- Tlu-u <1 (3.46)

where T is a symmetric positive definite matrix of ellipsoid parameters which define the
trust region. Note that since the trust region constraint and the ellipsoid constraint (Equa-
tion 3.44) have conflicting objectives, they must be designed in a consistent manner so that
they do not cause the model-based optimization problem to be infeasible. In some extreme
cases, in which the level of measurement noise is very high, it might not be possible fo find
an operating point at which both the offset and variance of the Broyden derivative estimates

will be acceptable.

The second method of eliminating offset consists of ensuring, in some way, that the algorithm
explores a variety of possible input directions. It is assumed here that an ellipsoid has
already been sized offline based on the properties of the RT'O problem to be solved. These
include the cost function, constraints and model themselves as well as the level of expected
measurement noise. A systematic design procedure is developed for this in Chapter 4.

Suffice it to say that it is already sized at run-time, and this size is available.

For this derivation the assumption is made that there are n, previous operating points
available, which represent a set of n, — 1 previous movement directions Ay, ..., Ag_n, 1
(where Ay = up — ug—1). If n, previous operating points are not available (i.e. if it is
very early in the RT'O execution period), the ellipsoid constraint itself can simply be used
without considering the offset (as in the lower right panel of Figure 3.15). There is also the

option of generating the missing points by conducting plant experiments.

Let Hy, = span (Ag, ..., Ag_n,+1) denote a hyperplane which is defined by the n,,—1 previous
algorithm movement directions. Since the goal here is to ensure sufficient exploration of the
input space, any offset elimination procedure should ensure that the algorithm moves off
of this hyper-plane. One natural way to impart this goal on the dual modifier adaptation

algorithm would be to build upon the existing ellipsoidal restriction region constraint that
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was developed in Section 3.4.1. In such a case, the constraint(s) would have two distinct
goals: moving the new iterate a significant distance away from u; and moving a significant
distance away from the hyper-plane Hy. Figure 3.17 shows a pair of constraints which
accomplish these goals. The advantage of such a design would be that the constraints would
create only one exclusion area, which would be easier to handle for both the model-based

optimizer and the RT'O design procedure (see Chapter 4).
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Figure 3.17: Ilustration of the dual constraints

There are already a set of tuning parameters that need to be chosen (B) in order to size
the ellipsoidal restriction constraint itself. In the interest of design simplicity, it would
be advantageous to utilize the same design parameters in satisfying the requirement of

movement off of the hyper-plane. The following disjunctive expression does exactly this:

V i [l 2 B (3.47)
—wl'[u—ug] > /wl B wy

where wy, is a vector orthogonal to the hyperplane Hy. One way to choose wy, is as the first

row of the adjugate of the matrix of previous movement directions:
U = [u —u; Ap Apg .. Ak~nu+1] (3.48)

where Ay = ur — ug_1. Even though the new operating point, u, appears here, the first

row of the adjugate of Uy, is independent of the new operating point.
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Figure 3.17 illustrates the constraints (3.47) and corresponding operating point decision
which result from running the dual modifier adaptation algorithm for the Williams-Otto
Reactor test case. Note that the contours shown here are for the process model at this
specific iteration of the algorithm. This ensures that the contours reflect the operating

point choice made in the figure.

Now an explanation of how the constraints of Equation 3.47 result in the construction that
is illustrated in Figure 3.17 is given. Note first that the 4/ w,{B‘lwk term in Equation 3.47
must be positive. This is due to the fact that the matrix B is positive definite and therefore
its inverse is also positive definite. If [u —ug] is on Hg, then both the left sides of the
disjunctive constraints in Equation 3.47 will be equal to zero (vecall that wy, is orthogonal
to Hy) and neither constraint will be satisfied. Therefore, the constraints of (3.47) ensure

that [u — ug] is not on the hyperplane.

This is a good first step, however, the fact that the constraints in Equation 3.47 reside on
or outside of the ellipsoid deﬁﬁed by B must still be established if the constraints (3.47) are
to replace the ellipsoid constraint (3.44). The first disjunctive constraint of (3.47) can be
interpreted as meaning that the projection of [u — uy] in the direction wy (orthogonal to
the hyperplane Hy) must be larger than a constant based on the size of the ellipsoid and
the length of wyg. Since the constraint is linear in terms of the inputs (u), its contours can
be represented by a series of hyper-planes. In addition, since the constraint represents a

projection in a direction orthogonal to Hy, these hyper-planes will be parallel to Hy.
Now, consider the following operating point change:

u—ug) = ——— (3.49)
Note that at this point, both the first disjunctive constraint of (3.47) and the ellipsoid
constraint (3.44) are active. If it can be proved that at this point the first disjunctive

constraint represents a hyper-plane tangent to the ellipsoid, then this is sufficient because

a tangent hyper-plane is by nature an outer-approximation of the ellipsoid.

To prove that the point given in (3.49) is indeed a point where the disjunctive constraint is
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tangent to the ellipsoid, the gradients of both are examined. The gradient of the ellipsoid

constraint can be computed as follows:

d
u ([u —w]" B - - 1) =2B[u— uy] (3.50)
% — B lwp Lo wp )
and when evaluated at [u — uy] JoTE o it becomes: 2 JoTB o On the other hand,

wi [u—uy]

. o« . N s . . Wi .

the gradient of the disjunctive constraint JoTE Tun is simply T Tor Since these two
gradients have the same direction, the point described in (3.49) must be tangent to the
ellipsoid. Therefore, satisfaction of the first disjunctive constraint guarantees satisfaction

of the ellipsoid constraint.

In the left panel of Figure 3.18 the contours of the first disjunctive constraint wi [u — u] —
Mw,{B‘lwk > 0 and the contours of the ellipsoid constraint (u — uk)T Bu—u)—-1>0
are illustrated for a fictitious system. The tangency point, given in Equation 3.49 as u, is

also shown in the figure as uf:r.
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Figure 3.18: Illustration of the ellipsoid and disjunctive constraint contours

A similar argument can be made for the second disjunctive constraint of (3.47). This time,

the point where the constraint is tangent to the ellipsoid is %. The contours of the

second disjunctive constraint —w% [u—ug) — 1/w£73_1wk > 0 and the ellipsoid constraint
(u — uy)” B (u—ug)—1 > 0 are illustrated in the right panel of Figure 3.18. The tangency

s s -
point is represented here as uy".
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In practice, due to the disjunctive nature of the constraints, two different optimization
problems must be solved at each iteration. These two problems are given as Problems 3.51

and 3.52 below:

u;:H c arg m&n ¢ (u, ™)
st. 9" =f(u,B)+&+Afu
g(u,y™) <0
- Tu-u) <1

wi [u—ug] > y/wlIBlwy

u™" < u < u™e® (3.51)

., € arg muin ¢ (u, ™)
st. 9" =f(u,B)+e+Afu
g(u,y") <0
-t Tu—u <1

—w} [u—uy] > y/wlB lwy

u™n <y < ue® (3.52)

The set of inputs generated from these problems (uZLr1 or u;, ;) with the lowest objective

function value is then adopted as the next operating point, ug 1.

The algorithm employing Problems 3.51 and 3.52 as well as the Broyden update map, R (see
Figure 3.1), the modifier update law map, A (3.10), and the alternate modifier conversion
map, T (3.5), will be referred to as dual modifier adaptation for the rest of this thesis. In
addition, the disjunctive constraints (3.47) added to the original model-based optimization
problem to produce Problems 3.51 and 3.52 are referred to as the dual constraints. 'To
complement the algorithm a systemic constraint design procedure is required, which will be

discussed in the next chapter.
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Application to the Williams-Otto Reactor Test Case

The algorithm involving the disjunctive constraints is now tested by running 300 iterations

of the Williams-Otto Reactor test case with filter parameters of 0.25, ellipsoid parameters

of b = [40, 30] and trust region constraint parameters of 7 = . Measurement noise
01

with a standard deviation of 0.5% of a nominal set of mass fraction values is assumed. The

results are shown in Figure 3.19.
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Figure 3.19: Performance of the dual constraints

It appears that the offset has been for the most part eliminated in the left plot of Figure
3.19 (compared with the bottom right plot of Figure 3.15). Examining the right panel,
it seems that all directions in the input space are being explored. Figure 3.20 is also
included to demonstrate how the algorithm using the disjunctive constraints responds to a
disturbance. The scenario considered here is similar to the one considered in Figure 2.8.
The only difference is the size of the unmeasured disturbance was increased so that the
operating point change could be distinguished from the noise in the input estimates. The
same parameter and noise settings that were applied in the simulation for Figure 3.19 were
applied again here. The performance of the algorithm in Figure 3.19 is satisfactory, as
it seems to move fairly quickly to the new plant optimum. It is noisy though, especially
compared to Figure 2.8, which motivates the development of the systematic tuning approach

discussed in the next chapter.
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Figure 3.20: Step change test for dual constraints

3.5 Chapter Summary

In this chapter, Broyden’s method was selected to estimate the plant output gradient in
the modifier adaptation algorithm. The importance of several choices in regard to the new
algorithm was illustrated though a series of simulations using the Williams-Otto Reactor test
case. These choices included the starting point, the process model and the filter parameters.
A convergence analysis of the algorithm for a single input formulation of the Williams-Otto
Reactor test case was then carried out. This analysis proved to be helpful in identifying a

good range of filter parameters for the problem.

The second half of the chapter detailed the development of the dual modifier adaptation al-
gorithm. First, several difliculties in regard to the implementation of Broyden’s method were
discussed in detail, including offset in the gradient estimates and the peaking phenomenon.
Ideas from dual control theory were then used to come up with a solution to the peaking
phenomenon and this solution was then modified so that it could address the gradient offset
problem as well. It consisted primarily of the addition of two disjunctive constraints to the
model-based optimization problem, which restricted operating point placement. The new

algorithm performed well on the Williams-Otto Reactor test case.
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Chapter 4

Offline Design of Dual Modifier
Adaptation

The implementation of an RI'O system alone is not enough to guarantee process improve-
ment. The system must also be well designed, based on the nature of the specific process
in question, in order to achieve the greatest possible financial benefit. Proper design is
especially important for the dual modifier adaptation algorithm introduced in Chapter 3.
Both the trust region and dual constraints must be properly sized on their own, and also
designed together in a consistent manner in order to avoid poor performance or in some

cases even infeasibility.

The optimal design policy involves the selection of new values for the dual constraint pa-
rameters (and any other pertinent design parameters) as the algorithm is running in real
time. This could be done as frequently as before every iteration. The problem with this idea
in practice is the necessary computation time. As the size of the RT'O problem increases,
the computational effort required to solve the corresponding design problem would increase
as well, likely in a dramatic manner. Therefore, for most processes, solving a design prob-
lem online would be computationally demanding, because the solution time is required to

be shorter than the period between consecutive RTO iterations. In addition to the added
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computation time, the complexity of this task would likely limit its acceptance in the pro-
cess systems engineering community. It is for these reasons that an offline design approach
is considered in this thesis. Online design would make for an interesting future research

direction, especially if the computing power available continues to rapidly increase.

The main focus of Chapter 4 is therefore the offline design of dual modifier adaptation
systems. The design procedure is based around the use of an adapted form of the design
cost criterion, which was originally developed by Forbes and Marlin for the two-step ap-
proach of RT'O [Forbes and Marlin, 1996]. The use of the criterion in the design of dual
modifier adaptation systems is investigated first. Details on the calculation of this mefric
are given next. As previously, the developments of this chapter are then illustrated using

the Williams-Otto Reactor test case.

4.1 Dual Modifier Adaptation Design Procedure

In general, the design cost criterion facilitates the comparison of different RT'O design and
technology options. The criterion is a quantitative estimate of the profit lost or additional
cost incurred due to imperfections in the design of the RT'O system. The use of this metric
to arrive at the best possible dual modifier adaptation design is what is discussed in this

section.

The basic design methodology is detailed first, in which both the sizing of the dual constraint
as well as other design options are counsidered. These other design options can include the
set of modifiers to be updated by the algorithm, the model to use and which measurements
to take. Next, a multi-scenario optimization formulation is presented, which is designed to
handle inaccuracies in the benchmark plant models and economic data used in the design
procedure. This formulation can also handle the situation where the process is commonly
operated at multiple different points as well. These concepts are then illustrated though an

example involving the Williams-Otto Reactor test case.
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4.1.1 RTO Design using the Design Cost Criterion

Forbes and Marlin [1996] formulated the design cost optimization problem as follows:
min C (g) (4.1)
S

where ¢ are a set of design choices and C' is the design cost (the calculation of C is discussed
in Sections 4.2 and 4.3). The selection of the optimal ellipsoid parameters, B (3.47), can
easily be incorporated:

min C (s, B) (4.2)
s,B

Note that the selection of the trust region constraint parameters is not considered here
(Equation 3.46). The reason for this is the inherent difficulty in estimating the effect of the
trust region constraint on the model-based optimization problem. This problem stems from
the fact that the trust region constraint will mainly be active as the system moves to react
to fundamental changes in the state of the system (transients). The design cost approach,
however, is concerned only with steady-state performance. Since it was not considered in
the design procedure, the constraint was also not implemented in any of the simulations of
this chapter. Incorporation of the trust region constraint into the design procedure could

potentially be the subject of future research.

Most of the decisions that the design cost criterion has been previously applied to have been
discrete in nature. For instance, previous published applications include model selection
[Forbes and Marlin, 1996], adjustable parameter selection [Zhang and Forbes, 2000] and
sensor selection and placement [Fraleigh et al., 2003]. The dual constraint parameters are
different however, because they can take any values as long as B is positive definite. Due
to this property, the design cost problem to optimize B is a traditional NLP (instead of an
MINLP). Realizing this, the following nested optimization formulation is given to represent

the proposed method of solution:

min (mBinC' (s, 73)> (4.3)

For this formulation, the intention is that the best set of dual constraint parameters are

solved for at each unique combination of the discrete design variables, ¢. Therefore, for
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the problems addressed in this thesis, the inner optimization problem of (4.3) is solved
using an NLP solver and the outer optimization problem is solved by enumeration. On the
other hand, if there were many discrete design decisions, ¢, to be made, Problem 4.2 could
be addressed directly by employing an MINLP solution method, in order to potentially

decrease the computational load.

4.1.2 Sources of Uncertainty in Dual Modifier Adaptation Systems

Tt is widely recognized that uncertainty plays an important role in RT'O problems. There-
fore, it is imperative that it be considered in the design phase of any new RTO system. A
review of uncertainty specific to RT'O systems was done in Zhang et al. [2002]. In this work,
the authors consider four different types of uncertainty: model uncertainty, measurement
uncertainty, process uncertainty and market uncertainty. It is useful to consider each of
these types of uncertainty individually here to examine how they effect dual modifier adap-
tation systems and also how they will be dealt with in the dual modifier adaptation design

procedure.

e Model uncertainty stems from the use of a process model which fails to represent plant
operation. This can be either structural plant-model mismatch (discussed earlier) or
parametric model mismatch, in which values of the parameters in the process model
are inaccurate. This type of uncertainty is dealt with naturally through the modifiers

used to alter the outputs in modifier adaptation.

e Measurement uncertainty occurs due to errors in the sensor system. It is assumed in

this thesis that random measurement noise has a zero offset and some variance: 032, .
This variance can typically be estimated based on factors such as the type, quality
and age of the physical sensors being used. It is assumed here that gross errors have

been eliminated by the data validation system.

Measurement noise propagates through to the modifiers in several ways. It can have an
effect during not only the RTO iteration in which it occurred, but also in future RT'O

iterations due to the first-order exponential filter and the Broyden update (which uses
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the past two sets of plant measurements as well as the previous Broyden estimates).

The effect of measurement noise is dealt with directly in the design cost metric itself.

e Process uncertainty is caused by disturbances in the plant [Zhang et al., 2002]. These
disturbances can include actual changes in the nature of the process (such as catalyst
decay), variations in upstream conditions (such as reactant flowrates) and changes
in surrounding conditions (for instance the outdoor temperature affecting a cooling
water inlet temperature). This uncertainty manifests itself in the design procedure
in the incorrect approximation of certain parameters in the benchmark plant model.
This essentially means that the location of the true plant optimum is not known. This
uncertainty is dealt with by using a scenario averaging approach along with the design

cost criterion (Section 4.1.3).

e Market uncertainty is caused by the fact that market conditions (supply and demand)
are constantly changing due to global events. This means that the sale and purchase
prices of various process inputs and outputs may not be accurately known. This
uncertainty can be dealt with in the same way as process uncertainty, using the

multi-scenario approach of Section 4.1.3.

There is an additional source of variation considered in the design cost problem in this
thesis that is unique to dual modifier adaptation. Recall that the dual constraint defines a
restricted area around the previous operating point where the next operating point cannot
be placed. The effect this constraint has on the solution to the model-based optimization
problem varies from iteration to iteration. For the purpose of the design cost calculation,
the effect of the dual constraint will be approximated and incorporated into the calculation

procedure as a sort of endogenous disturbance, in this work called dual excitation.

4.1.3 Handling Process and Market Uncertainty

Often, there is uncertainty in the benchmark plant model upon which the RT'O design

is being based. After all, this is only an approximate representation of plant behaviour
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in the first place. Fortunately, this uncertainty can be mitigated somewhat through the
use of a scenario averaging approach. The approach that is adopted here requires that
the uncertainty can be accounted for by varying the plant parameters. If the value of a
parameter is uncertain, a reasonable range of values for this parameter must be known.
Note that due to this requirement, structural mismatch between the plant and benchmark

model cannot be accounted for by this approach.

A similar multiple-scenario approach, upon which the following approach is based, was de-
veloped in Forbes and Marlin [1996] for use with the two-step RT'O approach. It considered
the situation where there are multiple common plant operating modes. Therefore, this can
also be dealt with using Equation 4.4 (given below) for modifier adaptation with Broyden
updates, as long as the change in operating mode can be reflected by a change in the bench-
mark model parameters. Alternatively, the design cost procedure could be run individually
for each operating mode, so as to avoid the potential profit loss incurred from adopting a

"universal” design.

If o sets of uncertain plant parameter values (87) are sampled from the space of potential
parameter values, then the optimization problem 4.3 can be recast:
1 o

Covg = > [mgin (ngn ; C(s,B, ﬁf))} (4.4)
where Cyyq is the average design cost value for the scenarios considered. The é term is
included so that the equation will give a plausible estimate for the average design cost at
all the possible plant optima. Note that this approach can also handle uncertainty in the
cost and constraint functions. This includes market uncertainty in purchase and sale prices

in the cost function.

This extension increases the computing power required because it necessitates the solution
of a more complicated design cost problem in order to identify the optimal dual constraint
parameters. However, since all of the design cost computations are done offline this should
not be a major problem. Note thal Equalion 4.4 can easily be extended to include the
weighting of particular vectors of changing plant parameters, 8P, if one set of parameters

is known to be more likely than another. Now that the use of the design cost criterion in
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a dual modifier adaptation design procedure has been detailed, computation details for the

design cost, C, will be discussed in the next section.

4.2 Design Cost Background

This section introduces the design cost criterion, which is a metric that can be used in the
design of dual modifier adaptation systems, as described in Section 4.1. The criterion was
first developed for the two-step method in Forbes and Marlin [1996]. For each proposed
design, a total cost value, C, is calculated. This represents the extra cost (or loss of profit)

incurred due to imperfections in the design and operation of the RT'O system:
C = E[®P ()] — PP (uP*) (4.5)

where u?* is the (unknown) plant optimum, us is the distribution of operating points,
P (u) := ¢(u,F (u)) is the plant cost function written only in terms of the inputs and E
is an expectation operator. It is necessary to consider a distribution of operating points in
Equation 4.5 because various sources of uncertainty (measurement noise, dual excitation)
will cause the operating point computed by the RTO algorithm to change from iteration to

iteration. These sources of uncertainty were discussed in Section 4.1.2.

In Equation 4.5, ®?(uP>*) is computed from estimates of u?* and ®P. The other quantity in
Equation 4.5 that needs to be determined is E [®P(ueo)]. The probability density function
for the distribution (ue) can be expressed as h (1), where 9 is a specific instance of Ug.
Therefore the average value of the cost function for the iterates (ue,) can be approximated
as follows [Forbes and Marlin, 1996:

E (0P (1,)] = / BP(9)h () d9 (4.6)

where x denotes the space of potential operating points which the distribution 1., draws

from. This is often defined in practice by u™"

and u™*. The next couple of steps of
this derivation differ slightly from the derivation given in Forbes and Marlin [1996]. The
major difference is that the derivation in Forbes and Marlin [1996] is made using reduced

properties, where the one applied in this thesis is not.
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The cost at ¥ can be approximated by the following second order Taylor series expansion:

@%ﬂ):éﬂuﬁﬁ+V@ﬂwﬁO?—u@ﬂ+%@9—u”ﬁTV%Whm(ﬂ—u@ﬂ+omﬁ~u@wﬂ

4.7)
where V®P and V2®P respectively denote the gradient and Hessian of the plant cost func-
tion. In writing Equation 4.7, the assumption is made that the profit function is at least

twice continuously differentiable with respect to the set-points (u).

Now, the expected value of the iterates, E [us)], is added and subtracted from each (¢ — u?*)

term of Equation 4.7 and the result rearranged to yield:

() = B(W)+ VI |upe (Eltico] — u) + V&P umr (9 — Efuco])

(0~ Efuea))” VR0 e (9 Efucc)

% (E[ugo] — uP*)T V20P|yps (E[uge] — uP”*)
(E[uco] — uP*) T V28P| o (9 — Eftioo]) + 0 (|| — uP*||®) (4.8)

The Taylor series expansion (Equation 4.8) can then be manipulated in order to sub-divide
the overall design cost into two separate parts. These two separate parts are the bias cost
(CB) and the variance cost (Cy):

C=Cg+Cy (4.9)

e The bias cost, Cp, represents the performance loss due to offset from the plant opti-

mum:

Cp = @ (E[uc]) — ®P(uP")
= V&P|yp (E[too] — uP¥)
1

+§EMQAWFWWWMWM—Mﬂ (4.10)

Note that the second line is made up of the terms from Equation 4.8 which did not
depend on 9 (they were taken directly out of the integral in Equation 4.6). This illus-
trates that Cp simply consists of a Taylor series expansion for ®? (E [us)), evaluated

at uP™*, subtracted from the profit at the plant optimum. If a good benchmark model
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is known, or plant experiments can be cheaply done, the first line of Equation 4.10

can be used to more accurately estimate Cp.

e The variance cost (Cy) represents the performance loss because of the dispersion of
the computed optima, Uy, due to the presence of uncertainty. It can be expressed as

follows [Forbes and Marlin, 1996]:

where V;; (W) is the covariance of inputs 4 and j. Note that the remaining terms of
Equation 4.8 (that were not used in the bias cost definition) are used in this derivation.
Further details can be found in Forbes and Marlin [1996]. If the individual variance
and covariance terms, Vi; (Uoo) are arranged in covariance matrix form as 'V (Uy),

Equation 4.11 can be rewritten as follows [Forbes and Marlin, 1996]:
1
Cy = ElT (V20P|yp 0 V (Ueo)) 1 (4.12)
where o denotes the Hadamard product and 1 is a column vector of ones of length n,,.
Figure 4.1 illustrates the distinction between the two types of costs.

Profit Function Contour Plot
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Figure 4.1: Design cost composition
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Overall, the design cost is computed as the sum of both the performance loss caused by
system offset (Cp) and the performance loss caused by measurement noise and dual exci-
tation (Cy). Note that the true plant optimum (uP*) and both the gradient and Hessian
of the plant cost function evaluated at the plant optimum (V®P|p+ and V2®P|yp.+) are
required in order to compute C. Since true plant operation cannot be perfectly modeled,
exact values for these quantities will never be known. However, they can be approximated
in a number of different ways. One method is to utilize a detailed plant model, which
might be too complex for online implementation, to make the approximation. If such a
model is unavailable, plant experiments or even inherent process knowledge can be used to
make satisfactory estimations. A more detailed discussion on this topic can be found in

Forbes and Marlin [1996].

The design cost concept was extended by Zhang and Forbes, to include a transient term
[Zhang and Forbes, 2000]. The idea here was to use the transient term to try to reflect
the speed with which an RTO system responds to disturbances. This term, called the
transient cost, was simply included in the design cost formulation along with both the bias
and variance costs already defined in Forbes and Marlin [1996]. This extended design cost
formulation is useful if the plant operation is expected to change frequently (every few RT'O
iterations) and if the RT'O designer has a priori knowledge of the nature of the disturbances
the RT'O system is going to face [Zhang and Forbes, 2000]. Although the extended criterion
will not be used in this work, it could be used in a future research study, possibly involving
the selection of the best possible filter parameter matrix, K, , for a particular dual modifier

adaptation implementation.

The design cost criterion can be used to make a variety of different design decisions. In
the original paper by Forbes and Marlin [1996], and in the extended design cost paper
by Zhang and Forbes [2000], it was used to select the best parameter set for updating the
model of a particular system. In the extended design cost paper and in an RT'O performance
analysis paper [Zhang and Forbes, 2006], it was used to distinguish between different RT'O
methods. Other published applications include model selection [Zhang and Forbes, 2000}

and sensor selection [Fraleigh et al., 2003].
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4.3 Design Cost for Dual Modifier Adaptation

In this section, specific details regarding the calculation of the design cost for dual modifier
adaptation systems are discussed. The estimation of the variance cost is detailed first,

followed by the bias cost.

4.3.1 Variance Cost Approximation

It is assumed that the Hessian matrix (V2®P|yp.+) has already been estimated using one
of the methods detailed in Section 4.2. Therefore, the only quantity left to compute in
Equation 4.12 is the covariance matrix of the inputs, V (uw). One possible way would
be to perform a post-optimal sensitivity analysis around the modifier adaptation optimum
obtained with no noise or dual excitation. However, as B goes to infinity, the dual con-
straints (Equation 3.47) are non-differentiable, so no such analysis can be conducted. In-
stead, V (uy) will be approximated by considering two separate scenarios and then the

covariance matrices calculated for each of these scenarios will be added together:
V (Uso) = Vi (o) + V2 (uco) (4.13)

The first scenario involves the modifier adaptation algorithm without the dual constraints,
and V1 (U ) represents the effect that measurement noise has on the system. In the second

scenario, Vy (uy) represents the effect of the dual constraints on the algorithm.

Scenario 1 (modifier adaptation without the dual constraint): The procedure begins by
considering the covariance matrix of the modifiers. Then, a post-optimal sensitivity analysis
is used to approximate the variance-covariance matrix of the inputs. This derivation is
adapted from Forbes and Marlin [1996], where a similar derivation is made for the two-step

approach.

Recall from Section 3.2.1 that a linear approximation of a closed-loop modifier adaptation

system, using Broyden’s method to estimate the plant output gradients, can be written as
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follows:
6Aki1 6Ay
5Xk ~ Yo 5Kk—1 (4.14)
0Bk 0By

where Y o is defined as:

dK_k—l—l d§k+1 dAgyy

dAy dAj_1 dBy,
Yoo | e AR R 41
oo dAy dAg_1 dBy ( 5)

dBryy  dBryi  dBryy

dAp dAp_1 By [K:oxK;:B* ]

oo

The matrix, YT, cannot be computed in practice because of the non-differentiability of the
Broyden update formula at the convergence point of the algorithm as B goes to infinity
(Section 3.2.3). Instead, the behaviour of modifier adaptation with Broyden’s method is
approximated here by that of the ideal modifier adaptation algorithm. This gives rise to
the following:

OAkyy  OAkys

oA SA Sy?
P e | O 4 | PR i (4.16)
oA 0Ap 4 0 0 0Yh_1
where Y o, is now represented by:
dKiJrl d§k+1
v — | dA dAy '
7| & & (®17

dAy dAg_1 [X:o )Xoo]

where KZO are the modifier values obtained by running the ideal modifier adaptation scheme,
with no measurement noise, until convergence is reached (provided it is reached at all). The

inputs at convergence are represented by u,.

Equation 4.16 can be rewritten as the following infinite sum, provided that the modifier

adaptation system is point-wise stable:

__ o OAyyq aKk+1 P
et | 3 (e | e | | (4.18)
SA =0 0 0 6Yh_1

If the modifier adaptation system is not point-wise stable, Equation 4.18 should not be

used because as 1 increases, the expression on the right-hand side will go to infinity. If this
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occurs, the design under consideration should be discarded. Now the expected value of the

sum of squared deviations can be written:

A K] 0 Ohpss e » Ty 1"
k+1 k+1 _ Z(Y )i Oy vk | E 0¥ h41 Yk+1
— — - o0
oA oA i=0 0 0 5YZ Syh
. 3K5+1 6Kk;|,—1
(Yoo)t | Pern i (4.19)

0 0

By definition, the covariance matrix of the modifiers (X) for the first scenario, Vi (Koo),
can be written as [Forbes and Marlin, 1996]:
_ _ T . . T
— OApp1| |0AL1 0Ak11 OA k1

Vi(Aoo) =E || __ - S =S D I = (4.20)
Ay | | 54, 5K 5%

It is assumed next that the measurement noise is white noise (not necessarily Gaussian), of

variance o2,; that is,

yPs
p » 17 2
syh Syh 0 a?,p
. L Akt . :
From this assumption, it is clear that E | = 0 and it follows from Equation 4.19
OAy
that:
o OAp1  OAp 2 1 A
Nz | |Oo 0 N HT
Vi(Aoo) 0 Y (Xoo)t | Phrr P 7Y (Yool | Pirr 0% (4.22)
i=0 0 0 0 032,1, 0 0

There is another important assumption, in relation to Equation 4.22, that needs to be
A g1
9y /€+1

0Bgy1

discussed here. Inside the sensitivity the term o
k41

appears and similarly, inside

OApy1 k

the ay? sensitivity the term ag’y;fl is present. In practice, it is possible to approximate
k k

th

these terms for the nt" measurement and the it? output (when n = 1) as:
P

OBl _ OBiy ~ 4.93
FED - HyPT =S8 ( : )
Yiy1 Y
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where B = Q7Q and s; = Q). See Appendix C for a derivation in the case that 13 is

diagonal.

Post-optimal sensitivity analysis is carried out next, as detailed in Fiacco [1983], to obtain

the covariance matrix of the inputs for scenario 1:

(4.24)

gu* JUu* au* au*1T
Vi (i) = | |
AL,

— — 1 — —
OAk41 aAlj i (Aeo) [aAkH OA
To re-iterate, this post-optimal sensitivity analysis is conducted at the converged optimum

of the ideal modifier adaptation scheme, when it is run without noise and dual excitation.

Scenario 2: In this scenario, the dual constraint is always active and causes variance in

the optimal input values. The following is assumed as a first approximation:
|
Vi (uw) = QB (4.25)

This approximation is supported by experience with numerical simulations. See Appendix
C for an explanation in the case that B is diagonal. A future research direction would be

to develop some mathematical reasoning to support the approximation.

4.3.2 Bias Cost Approximation

Assuming that the gradient and Hessian of the plant profit function are well known, and a
good estimate of the plant optimum is available, Equation 4.10 can be used to calculate the
bias cost for unconstrained systems. The only value in Equation 4.10 specific to the dual
modifier adaptation system in question is E [us]. It is possible to assume that E [u] = ul,,
however note this assumption ignores the effect of any gradient offset that Broyden’s method

may cause in practice.

In the case of constrained problems a modification needs to be made to the bias cost
calculation procedure. This modification is introduced to account for a shift in the expected
value of the iterates (E[teo)) when the dual constraiuts are implemented. This shift occurs
due to the tendency of the model-based optimizer to select points that are inside the feasible

region.
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Offset in Constrained Problems

The dual constraints have an additional effect on problems in which at least one process
inequality constraint is active. Due to the desire of the model-based optimizer to arrive at
feasible operating points, the expected value of the iterates may be pushed away from the
constraint, toward the interior of the feasible region. This movement can be approximated
by considering a fictitious shift in each active constraint in the direction normal to the hyper-
plane tangent to the constraint at the ideal modifier adaptation optimum. This direction

can be represented, for constraint ¢, by —%—% (uk,).

An appropriate constraint shift can be approximated by the distance from the center of the
ellipsoid to its outer edge in the direction —% (u},). If z is a point vector centered at the
ideal modifier adaptation optimum and the ellipsoid is also centered at this optimum, then
the following can be written:

7 Bz =1 (4.26)
which requires that the point z is on the ellipsoid. Since z is also required to be in the

direction 22 (u* , it follows that:
du (o]

dg* ,
where 6 is a scalar parameter which fixes the length of the point vector z. Substituting
(4.27) into (4.26) and solving for §:

6— L (4.28)

(3 we) 8% ()

Equation 4.28 can now be substituted back into Equation 4.27, thereby giving the distance

from the ideal modifier adaptation optimum (uf,) to the expected value of the iterates in
the input space. To obtain a constraint shift, the result of Equation 4.28 has to be converted

to a distance in the constraint space by multiplying it by —%—gui (ugo)T:

o Fe) B
Ag = u o) Bu_ oo (4.29)

(3 ) (% )
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Denoting the change in the constraint value (Ag®) by the variable -y;, the change in the ideal

modifier adaptation optimum can then be approximated:

au*
Au = (1 4.30
o X;v (4.30)

where -y; is considered to be a parameter in the optimization problem and %—g is computed
using post-optimal sensitivity analysis at K; [Fiacco, 1983]. If more than one constraint is
active, the post-optimal sensitivity analysis is applied for all active constraints simultane-

ously. The expected value of the iterates can now he computed as:

E[ue) = Au+ug, (4.31)

4.3.3 Constraint Backoff Calculation

In the case of problems where process constraints are active at the ideal modifier adaptation
optimum, it is sometimes necessary to back off from the active constraint(s) in order to
ensure that most of the operating points chosen by the model-based optimization problem
are feasible points of the plant. The decision to do this is strictly up to the designer of the
RTO system, as it will likely depend on the severity of the consequences if a plant process

constraint is violated.

The root cause of this infeasibility problem is that measurement noise will inevitably cause
the modifiers to be incorrectly estimated. Since these modifiers are often involved in the
process constraints, specifically whenever a constraint involves an output variable, the errors
in the modifiers will commonly cause the constraints to be incorrectly identified. These
constraints will generally move in the area of the true plant constraints, however they may
at times either enforce unnecessary back-off, or worse relax the true plant constraints. For
example, for the constrained Williams-Otto Reactor test case, the dashed lines in Figure
4.2 show the true plant constraint and the corresponding process model constraints at ten

different iterations during a simulation run.
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Figure 4.2: Illustration of variation of process constraints

An approach designed to combat uncertainty in constrained RT'O problems was presented
in Zhang et al. [2002]. This approach involved the online implementation of probabilistic
constraints, which attempted to ensure that a feasible operating point in terms of the plant
was chosen a certain percentage of the time. This percentage was a tuning parameter
that was set by the user. The heart of this procedure involved converting the constraints
written in probabilistic fashion, into constraints that could be implemented by the NLP

solver tasked with solving the model-based optimization problem.

One potential drawback of this approach however is that since the probabilistic constraint
calculation is done on-line, this constraint conversion procedure must be carried out every
iteration, which could be computationally challenging for large-scale RT'O systems. Instead,
in this work, a method is proposed where the stochastic programming problem is solved
off-line, which will yield an operating point to which the active constraints should be backed
off according to the specified infeasibility tolerance. This back-off is then used as both a

part of the design cost calculation and also implemented as a part of the online algorithm.

Back-off approaches have been used in the past to try to combat constraint violation in RT'O
systems. In the implementation in Loeblein and Perkins [1998], the back-off was computed
to address uncertainty in both the plant measurements and the parameters. Additionally,

an interesting example of the use of a back-off to address a kind of a. RTO-control hybrid
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problem can be found in Contreras-Dordelly and Marlin [2000].

The heart of the offline probabilistic programming approach involves the solution of the

following optimization problem:

u ¢ argmin ¢ (u, ™)
u

st. " =f(u,B)+e, +1Tu

Plgf(u,7™) < 0] >p; i=1,..,n4 (4.32)

where u® is the back-off point, P is a probability operator and p; is the probability require-

ment for constraint 3.

Recall that the probabilistic constraints, as shown in Equation 4.32, cannot be sent to a tra-
ditional NLP solver (such as fmincon). Instead, they must be approximated by constraints
of a deterministic form first. Note also that the dual constraints do not appear in Problem
4.32. The assumption is being made here that the dual constraints are inactive at all times.
This is due to the fact that the dual excitation plays no role in constraint violation, because

it is known by the model-based optimizer.

Now the procedure originally discussed in Zhang et al. [2002] for online implementation will
be adapted for use in the offline design of dual modifier adaptation systems. This procedure
considers each constraint individually. Therefore, an overall feasibility level cannot be set,
rather constraint satisfaction levels must be set on an individual basis. A method which
considers all constraints simultaneously is also given in Zhang et al. [2002]. This method

could be adapted for use in this design procedure in the future.

A first-order Taylor series expansion of the constraints in terms of the inputs and modifiers,

around the ideal modifier adaptation optimum (uf';o,KZo), gives the following:

7 A) ~ 2 (1% A — A— A
G (u, ) G (uom oo) + X:o ( oo) + du

OA

* £ A
Ucos ug, A

(4.33)
where G' is the constraint function i written only in terms of the inputs and modifiers

(Gi(ua K) = gi(u7 }",m(u’ K)))
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The constant terms from Equation 4.33 can be collected and represented by the vector d

. . . (] —% Fled
with d; = G (ugo, A;) _ @ -
= A¥ o = A 07
oA ui,, A u ui,, A

uncertain parameters (A) can then be represented by a new variable, £, in the following

ul,, i =1,...,ng. The effect of the

way: '
les
- OA

& A+di, i=1,..,n4 (4.34)

=k
*
uOO ’A'OO

Statistical properties of &€ are required. Its expected value can be approximated as:

OG*
E il = =
& oA

_E[A]+d, i=1,,my (4.35)

Ug,A

where the expected values of the modifiers are approximated as: E [K] = KZO. This approx-
imation is only valid as long as the backoff point, u®, is not too far from the ideal modifier
adaptation optimum (u% ). If this is not the case in practice, alternative designs should be

considered which better control the influence of measurement noise on the algorithm.

The variance of & can also be approximated as:

oGt

oc } Vi (A%) [—_

OA

V(&) =

T
Ci=1,..., 4.36
A u;o’X:o‘| ng ( )

ug, A,
Since each constraint is dealt with individually, separate variances for each element of £ are

isolated instead of considering the overall covariance matrix.

Using Equations 4.33 and 4.34, the overall probabilistic constraints can be written in the

following way:
oG*

P ou

u> El] >pi, 1=1,...,14 (4.37)

ugo, A,
The assumption is made that the random variable &; can be represented by the normal

distribution, which has the cumulative distribution function, N;:

v (_ e,

du

e

AOO

wE[g],V (:fl)) >pi, 1=1,..,n (4.38)

uz,,

Finally, taking the inverse normal distribution of both sides of Equation 4.38:

AGH
Ju

_u2NTH(psEE]L V(&) i=1,,m (4.39)

AOO

*®
Usos
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This last set of constraints can replace the probabilistic constraints in Problem 4.32.

Once the problem (4.32) is solved to find an appropriate operating point (1), the back-off

from a constraint can be computed in the following way:
' = ¢ (U5, TS, Aso)) — g (0™, 3™ (1™, Ag,)) (4.40)

where 0% is the estimated back-off parameter for constraint i. Note that an additional
assumption is made here, that the optimal modifiers are equal to KZO at u®t. This parameter

is then added to the constraints in the model-based optimization of the online algorithm:

g(u,3")+n<0 (4.41)

In summary, Problem 4.32 is solved with the constraints of Equation 4.39 to obtain the
back-off point, u®*. Equations 4.40 and 4.41 are then used to compute and implement the

required backoff, n;, for each constraint, 7, in the online algorithm.

If the backoff procedure is run, the point that the constraint(s) are backed off to (u®t) is
effectively the new ideal modifier adaptation optimum. Therefore, Equation 4.31 must be
rewritten:

E [Ueo] = Au + u® (4.42)

A sample scenario is illustrated in Figure 4.3. In this figure, the constraint is backed-off,
essentially moving the ideal modifier adaptation optimum from ug, to u%. Then, the new
expected value of the iterates (E [ueo)) is computed through the offset calculation procedure

of Section 4.3.2, along with Equation 4.42.

4.4 Test Case: Williams-Otto Reactor

The concepts described in this chapter are now illustrated using the Williams-Otto Reac-

tor test case. The section is split up into three subsections. First, a sample design cost
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Figure 4.3: Tllustration of the results of both the back-off and offset procedures

calculation is given. Next, the design of an RTO system for the unconstrained Williams-
Otto Reactor formulation is investigated. Finally, the design of an RTO system for the

constrained Williams-Otto Reactor process is examined.

4.4.1 Design Cost Computation

In this subsection, a sample design cost calculation is given to help reinforce the concepts
discussed earlier in this chapter. To begin, a set of ellipsoid parameters, B, must be chosen
for the algorithm. For this purpose, a diagonal B matrix is chosen: B = diag(b) where

b = [25,25]. These values were proven through testing to provide reasonable performance,

however, no attempt was made to optimize them.

The plant optimum for the Williams-Otto Reactor system is uP* = [362.885,4.7864]. Since

there are no constraints active at the plant optimum, the gradient is equal to zero there.

The Hessian at the plant optimum is:

- 21113 —62.49 .43)
ub* = .
—62.49  44.37

Note that this matrix is positive definite, which confirms that the plant optimum is indeed a

minimum for the Williams-Otto Reactor cost function. Also note that, the scaling detailed
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in Section 3.1.1 is used in all the calculations and simulations in this section.

To begin, the ideal modifier adaptation algorithm was run, under noiseless conditions,
until it converged to u}, = uP*. Filter parameters of 0.25 were used and the true plant
model, described in Section 2.7, was used to simulate plant operation. The algorithm
converged along the path previously shown in Figure 2.4. Since the plant and ideal modifier
adaptation optima were identical (this will always be the case since exact output gradients
are assumed) and the problem was unconstrained, it was immediately clear that the bias

cost approximation, Cg, was zero.

In order to compute the variance cost (Cy), the covariance matrix of the set-points, V (us),
is required. It was computed, as in Equation 4.13, by summing two separate contributions;
the effect of measurement noise on the iterates without the dual constraints and the direct
effect of the dual constraints on the iterates. Measurement noise of 0.5% of a typical set of
mass fraction values was assumed. The values of each of the contributions as well as the

final covariance matrix are shown below:

0.0551 0.139 0.02 0 0.0751 0.139
A\ (L‘loo) =V (uoo) +Vy (uoo) = + =
0.139 0.350 0 0.02 0.139 0.370
(4.44)

Note that both the measurement noise and the dual constraint make important contribu-
tions to the overall covariance matrix approximation. This is in general the sign of an
effective design, because one of the goals of the design procedure is to find a good trade-off
between the effect of the measurement noise and the effect of the dual excitation on the

algorithm. The variance cost was then be approximated using Equation 4.12:

Cv = %1T (V2P| o 0 V (U00)) 1

17 211.13 —62.49 0.0751 0.139
= — [e]
2 —62.49  44.37 0.139 0.370
— 7.463 (4.45)

Since the bias cost was zero (Equation 4.10), the total design cost (C), by Equation 4.9, was

also equal to 7.463. Practically, this means that if many iterations were run implementing
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the settings assumed in the design cost approximation, the average cost expected from the
algorithm would be ®P(uP*) + 7.463 = —190.7978 + 7.463 = —183.33 (or in other words a
profit of 183.33).

The design cost results were tested by running the algorithm online for 2000 iterations. The
result was an average cost function value of -185.32, which is reasonably close to the design
cost approximation of -183.33. Naturally, this simulation was done using the same settings
that were used for the design cost calculation. The results of the simulation run are shown

below in Figure 4.4.

Flowrate of B (kg/s)

Reactor Temperature (K)

Figure 4.4: Online simulation results for b = 25, 25]

Next, instead of testing one specific ellipsoid size, the whole range of possible sizes is sam-
pled. For each size sampled, both the design cost calculation and an online simulation test
were carried out. Each online simulation test consisted of taking the average cost value over
20,000 iterations. The same filter parameter and measurement noise settings that were used

in the design cost example above were used here as well. The results are shown in Figure

4.5.

The comparison shows that the design cost predictions and the online simulation results
are similar for some sets of dual constraint parameters and very different for others. Both
contours have the same general bowl shape, with one distinet minimum. This is expected,

because sizing the ellipsoid is a trade-off between the effect of the measurement noise, which
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Figure 4.5: Comparison of design cost approximation and online simulation results

is dampened by a larger ellipsoid, and the effect of the dual excitation, which increases
as the ellipsoid grows. As in design cost sample calculation given previously, the design
cost approximation over-predicts the loss in profit for most of the sets of dual constraint
parameters tested. Potential reasons for the over-estimation are discussed later on in the

explanation of the results of Figure 4.6.

Out of the sampled ellipsoid sizes, the design procedure recommends b = [40, 10] with an
average profit of 185.09. The average profit in the corresponding simulation was 184.945,
which illuminates the fact that the design cost criterion can also under-estimate the profit
loss caused by a particular design. On the other hand, the simulation study recommends
b = [30, 15] with an average profit of 185.49. It is important to note that the design cost
approximation results are not expected to exactly match the simulation results because of
the many assumptions made in the calculation procedure. Instead, the goal is simply to

select a good set of dual constraint parameters.

To get a closer look at the trends in Figure 4.5, a more detailed set of results for the special
case when b) = by are shown in Figure 4.6. To create each of the sets of simulation results
in Figure 4.6, 20,000 iterations were again run with each set of dual constraint parameters,

and the average profit over the iterations was computed.
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Figure 4.6: Comparison of design cost and online simulation results (b = b)

Figure 4.6 shows good agreement between the design cost approximation and the simulation
results in the vicinity of the optimal ellipsoid sizes. The slight over-estimation of the profit
loss could be due to the fact that, in the design cost approximation, the interaction between
the measurement noise and the dual excitation is ignored by treating them separately and
then adding them up. The interaction is likely significant in this region because it is expected
that at the optimal ellipsoid sizes there will be a balance struck between the effect of the

measurement noise and the effect of the dual constraints.

There is a significant difference between the design cost and simulation results when the
ellipsoid is either very small or very large. When the ellipsoid is small, the design cost over-
predicts the actual profit loss by a significant amount. Again, this over-estimation could be
due to the fact that the interaction between the two scenarios is being disregarded in the
design cost approximation. Another potential cause of this over-estimation is the fact that

the value of

g];’,’f“ (Equation 4.23) that is used in the covariance matrix approximation for

k1

scenario 1 (V1 (1)) is actually an upper bound on the sensitivity (see Appendix C).
Similarly, the design cost criterion also over-estimates the profit lost when the ellipsoid is
very large. To further investigate this, a closer look is taken at the simulation results when
b = [5,5]. In this simulation, one of the dual constraints is active in 90% of the iterations.

Therefore, while there is still some interaction between the two scenarios, ignoring this

97



M.A.Sc. Thesis - Eric Rodger McMaster University - Chemical Engineering

interaction is unlikely to be the sole cause of the over-estimation. Another potential cause
is the fact that the maximum effect of the dual constraint on the iterates is being used
in the covariance matrix approximation for scenario 2, Vg (us), (see Appendix C). For
the simulation with b = [5, 5], the total profit loss was 9.94. On the other hand, in the
corresponding variance cost approximation, the estimated profit loss due to scenario 2 alone
was 12.775. Since this is already greater than the total profit loss in the simulation, this

example supports the arguement that Vy (us) is being over-estimated.

4.4.2 Design Cost - Unconstrained Formulation

An example constructed to illustrate how the design cost criterion can be practically applied
to help design an RTO system for the unconstrained Williams-Otto Reactor process is now
presented. In modifier adaptation it is possible to choose which modifiers are updated. The
advantage to updating less than the full set of modifiers is that the effect of measurement
noise on the RTO system may be significantly dampened. Of course the disadvantage is
that the system will not converge to the plant optimum, u?+*, if the KK'T conditions of the

model-based optimization problem no longer match those of the plant.

For the Williams-Otto Reactor case study, upon examination of the cost function (2.29),
there are two outputs that need to be modified, Xg and Xp, in order to converge to the
plant optimum. Three different updating scenarios are therefore possible: modifying only
Xpg (design 1), modifying only Xp (design 2) and modifying both mass fractions (design
3). The trials assume filter parameters of 0.25 and white noise added to the mass fraction
measurements with a standard deviation of 0.5% of a nominal set of their values. The
inner optimization problem of Equation 4.3 was run for each of the three designs. Table 4.1

sumimarizes the results.

In Table 4.1 it is clear that the design cost criterion predicts that both designs 2 and 3
should produce nearly identical performance. Modifying only X (design 1) results in a
large bias cost, indicating that the algorithm is moving to the area around a point far away

from the plant optimum in this case. This trial also has by far the lowest variance cost.
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Table 4.1: Breakdown of design cost estimates for different modifier combinations

Design 1 | Design 2 | Design 3
Cg 12.88 0.0158 0
Cv 0.314 5.697 5.677
C 13.19 5.7128 5.677

The results of the design cost approximation can be heavily dependent on the expected level
of measurement noise in the system. For instance, if this level increases, the variance costs
of designs 2 and 3 would likely increase substantially. Conversely, since the variance cost of
design 1 is quite low in Table 4.1, it would likely not increase by as much. Therefore, if the

increase in measurement noise was large enough, design 1 could become the best option.

The recommended ellipsoid size parameters, obtained by solving (4.3) for each of the three
design options are given in Table 4.2. Both designs 2 and 3 have very similar recommended
ellipsoid sizes. This makes sense given that their bias and variance cost estimates are very
similar as well. The method in which only X is modified (design 1) has a much smaller
recommended ellipsoid size, likely because measurement noise does not effect the system as
much. This is supported by the fact that it has a much lower variance cost prediction for
its optimal design, despite a much smaller ellipsoid size. In general, a lower susceptibility
to measurement noise dampens the potential effect of the peaking phenomenon, which the
ellipsoid constraint is trying to prevent. Therefore the ellipsoid itself does not need to be

as large to keep the effect of measurement noise in check.

Table 4.2: Ellipsoid sizes for different modifier combinations

Design 1 | Design 2 | Design 3
b 789.6 37.04 36.97
b2 123.3 7.90 7.97

Simulations were also run for each of these potential designs. In each simulation the appro-
priate online algorithm was run for 2000 iterations, in the presence of measurement noise,

and the average profit lost was reported. In addition, approximations of both of the design
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cost components were made using statistics (E [ue] and V (us)) collected during each sim-
ulation run. Note that C is not expected to match the "true” average profit lost due to the
use of the gradient and Hessian to approximate the actual plant profit surface in the design

cost approximation. The results are shown numerically in Table 4.3 and visually in Figure

4.7.

Table 4.3: Simulation results for different modifier combinations

Design 1 | Design 2 | Design 3
Average Lost Profit | 12912 6.008 5.753
Cs 11.53 0.0793 0.0361
Cv 0.220 5.985 5.862
c 11.730 6.065 5.898

Flowrate of B (kg/s)

Flowrate of B (kg/s)
Flowrate of B (kg/s)
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Figure 4.7: Simulations of designs 1-3 - unconstrained formulation

The left panel of Figure 4.7 verifies that the reason for the high bias cost for design 1 is
that it fails to move to the vicinity of the plant optimum. The low variance cost prediction

for this approach is also validated, in that the iterates are much more concentrated for this

design than for the other two.

The central plot in Figure 4.7 demonstrates that if the mass fraction of P is modified instead

of the mass fraction of E, the algorithm moves to an area much closer to the plant optimum.
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The price that is paid for approaching the plant optimum, however, is a large increase in
the variance of the iterates. This is consistent with the large increase in the variance cost

approximation between design 1 and design 2.

The right panel of Figure 4.7 shows that design 3 produces results that are very similar
to those of design 2. This is consistent with the design cost approximations. In summary,
design 3 should be selected as its average profit loss is a little lower in both the design cost

approximation and the simulation results.

A closer look is taken now at the differences between the design cost approximation and the
simulation results for design 3, in which the modifiers for both Xz and Xp were updated.

Table 4.4 illustrates some of the key differences.

Table 4.4: Design cost/simulation detailed comparison for dual modifier adaptation

Design Cost Approximation Simulation
E [¢ (oo, F (21c0))] —185.12 —185.05
—0.0134 —0.0374
E [teo]
—0.214 —0.247
0.0528 0.0830 0.04707 0.0494
V [uco]
0.0830 0.238 0.0494  0.179

The design cost approximation over-estimates the average profit by about 0.07 (or $70). It is
important to note from this that the design cost criterion again provides a good prediction
of the average profit when ”good” ellipsoid parameters are being considered. All of the
components of the covariance matrix of the inputs are slightly over-predicted by the design
cost criterion, however, since the covariance terms are over-predicted to the greatest extent,
the variance cost is actually under-predicted. There is also a slight discrepancy between
the expected value of the inputs in the design cost calculation and the average value of the
inputs in the simulation. This could be due to a small lingering offset between the Broyden

derivative estimates and the true plant output gradient.

In order to further evaluate the performance of the dual modifier adaptation algorithm
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it is now compared to the two-step approach. Recall Figure 2.5, which illustrated the
performance of the two-step approach when different process models were used. Since the
noiseless performance of the two-step approach varied in these simulations with changes
in the process model, it follows that the behaviour of the two-step approach under noisy
conditions should vary as well depending on the process model. Therefore, the use of three

different process models in this comparison should produce interesting results.

Model 1 is described by the following parameters: [1v1,vs, B¢, E$] = [1.21 x 107,7.17 x
10,7207, 10249]. Note that this is the model that has been used to this point in Chapter
4. Since the two-step approach is run in the following test using the pre-exponential factors
as the adjustable parameters, changes in the activation energies, specifically that of reaction
1 (E%), are considered. In Model 2, Ef is changed to 6707 and in Model 3 Ef is changed
to 7707. Simulations of 500 iterations are run for each of the three models, and the results
are displayed in Figure 4.8 and Table 4.5. Note that approximations of each of the design

cost components are not made here for sake of brevity.

Table 4.5: Simulation results for two-step approach with different process models

Design 1 | Design 2 | Design 3

Average Profit 187.34 182.01 186.66
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Figure 4.8: Simulations of the two-step approach with different process models
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For comparison purposes, dual modifier adaptation simulations for Models 2 and 3 are run,
consisting of 2000 iterations. The same settings that were used in the previous dual modifier
adaptation simulations in this chapter were used again here. Note that before running each
of these simulations, the design cost optimization procedure was run to select the values
for the dual parameters. The results, along with those previously reported for Model 1, are

given in Table 4.6 and Figure 4.9.

Table 4.6: Simulation results for dual modifier adaptation with different process models

Model 1 { Model 2 | Model 3

b 36.97 42.98 30.49
ba 7.97 11.87 5.33
Average Profit | 185.04 186.05 180.53

Flowrate of B (kg/s)

Flowrate of B (kg/s)
Flowrate of B (kg/s)
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Figure 4.9: Simulations of dual modifier adaptation with different process models

First of all, the core difference between the two approaches is clear from Figures 4.8 and 4.9.
The very compact set of iterates for each of the two-step approach simulations indicates
that it is considerably more resistant to measurement noise than dual modifier adaptation
is. However, while none of the two-step simulations in Figure 4.8 are able to move to the
area of the plant optimum, each of the modifier adaptation simulations in Figure 4.9 are

able to do so. The results of Tables 4.5 and 4.6 indicate that the two-step approach is
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the best methodology if Models 1 and 3 are used and dual modifier adaptation is the best
methodology if Model 2 is used.

The purpose of this comparison was not to draw conclusions as to which approach is bet-
ter. Instead, from the results it should be clear that the choice of methodology should be
dependent on the particular choice of process model for the RT'O system, among other fac-
tors. This underscores the importance of a good RTO design procedure. Furthermore, the
clear illustration of the core difference between the two approaches in Figures 4.8 and 4.9
motivates the possible combination of these methodologies in the future. This is discussed

in more detail as a future research direction in Section 6.2.4.

Now, a situation is considered where, in addition to sizing the ellipsoid, variations in the
activation energy of the second reaction in the plant are also considered. It is assumed
that this reaction is catalyzed, and the catalyst is decaying over the course of the operating
day. To capture these variations, three representative values for the activation energy of
the reaction (E,,) arc chosen: 8333, 8433 and 8533 J/mol. The same filter parameter and
measurement noise settings that were used above are used again here. Only the modifiers
for X, are updated (as in design 2). Details of the design cost calculation for each individual

parameter set are shown in Table 4.7.

Table 4.7: Design cost calculation details for each individual parameter set

Eg =8333 J/mol | Ef =8433 J/mol | ES = 8533 J/mol
®P (uP*, yPr) —190.798 ~111.718 —35.362
Cs 0.0158 0.02076 0.0284
Cy 5.6974 5.40638 5.09848
c 5.7132 5.4271 5.1269
by 37.037 41.3182 45.7264
b2 7.897 7.9423 8.1631

The change in the activation energy of the second reaction does in fact cause minor changes

in the design cost results. First of all, the second reaction produces both E and P, the two
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products with economic value. Therefore, increasing the activation energy of the reaction
causes a significant loss of profit (increase in the cost function). The catalyst decay also
causes a decrease in the variance cost of the system. The decrease in variance cost generally
indicates a decrease in the effect of measurement noise on the optimal solution. Therefore,

the ellipsoid does not need to be as large as the catalyst decays.

Using the scenario averaging approach of Equation 4.4 the following dual constraint param-
eters are recommended for implementation: b = [41.00,8.00], with a corresponding design
cost of C' = 5.410. Note that equal weighting was given to each scenario here. To test out
the effectiveness of the ellipsoid parameter choice, the plant profit is compared to the actual
profit in Figure 4.10. The simulation consisted of 100 iterations performed at each of the
3 activation energy levels, with the same settings that were considered in the design cost
calculation. The algorithm performs well at each activation energy setting, once it adjusts
to the corresponding change in the plant. Note that in practice the activation energy would
not change suddenly, rather it would decay over the course of the operating day. There-
fore, the performance loss due to the abrupt changes in activation energy would not be a

problem.

—~+#—terates
——Plant Optimum

Plant Profit

-100 ]
150 200 250 300
iteration Number

Figure 4.10: Simulation of dual MA performance at different activation energy settings

Since the dual parameters are very close to the optimal parameters recommended for each
individual case (Table 4.7), the good performance seen in all scenarios in Figure 4.10 is

expected. It would be interesting to see the performance if the scenarios involved vastly
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different operation. This could be the topic of a future case study, possibly where larger

changes are made in £3.

4.4.3 Design Cost - Constrained Formulation

An example designed to illustrate how the design cost criterion can be practically applied
to a constrained problem is now presented. The Williams-Otto Reactor case study is mod-
ified, as described in Section 2.7, by adding a requirement that the outlet mass fraction of
component B (Xp) must be below 0.35. Note that due to the introduction of the constraint,

Xp also needs to be modified in order for the system to converge to the plant optimum.

Three different updating scenarios will again be tested, modifying only Xp and Xp (design
1), modifying only Xp and X (design 2) and modifying all three mass fractions (design 3).
The trials assume filter parameters of 0.25 and white noise in the composition measurements
with a standard deviation of 0.5% of a nominal set of their values. Table 4.8 summarizes

the design cost estimates for the 3 designs under consideration.

Table 4.8: Breakdown of design cost estimates (constrained system)

Design 1 | Design 2 | Design 3
Cg 11.799 6.265 5.996
Cv 0.537 4.715 5.009
Cr 12.336 10.980 11.005

Table 4.8 indicates that, similar to the unconstrained case, the design cost criterion predicts
that designs 2 and 3 will perform in a similar manner. Modifying X and Xp only (design
1) appears to cause the algorithm to move toward a point far away from the plant optimum
(indicated by the large bias cost). The estimated ellipsoid size parameters are given in

Table 4.9.

Both design 2 and design 3 have similar estimated ellipsoid sizes. This makes sense given

that their bias and variance cost estimates are similar as well. Design 1 has a much smaller
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Table 4.9: Ellipsoid sizes for different modifier combinations (constrained system)

Design 1 | Design 2 | Design 3
by 2049 79.49 98.01
by 90.10 29.54 24.82

recommended ellipsoid size. This is likely because measurement noise does not effect design
1 as much as the others (as indicated by the much lower variance cost approximation), so

the ellipsoid does not need to be as protective.

For each of the three approaches, as a part of the design cost optimization procedure, the
probability requirement for the constraint was set at 95%. This necessitated the estimation
of an appropriate back-off from the constraint. The resulting backoff parameters are given

in Table 4.10.

Table 4.10: Backoff parameters for different modifier combinations (constrained system)

Design 1 | Design 2 | Design 3

Backoff Parameter | 0.00198 0.00369 0.00383

The estimated backoff parameter for design 1 is the smallest. This is consistent with the
low variance cost prediction for this design, because a low variance cost tends to indicate
that a design is not greatly effected by measurement noise, which is the uncertainty that
the backoff is trying to compensate for in the first place. Designs 2 and 3 have similar
backoff parameters, with the one for design 3 being slightly larger, possibly due to the extra

modifiers causing an increase in the effect of measurement noise on the algorithm.

Simulations were run for each of these options. In each simulation run, the online algorithm
was run for 2000 iterations, with the presence of measurement noise, and the average optimal
cost was reported. The same settings that were used for the design cost approximation were
used again here. In addition, the recommended backoff parameters, given in Table 4.10,
were implemented for each design. The results shown in Table 4.11 and Figure 4.11 were

obtained.
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Table 4.11: Simulation results for different modifier combinations (constrained system)

Design 1 | Design 2 | Design 3
Average Lost Profit | 12455 5.77 5.89
Cg 11.29 3.27 3.21
Cy 0.32 2.68 2.72
C 11.61 5.93 5.95
% Feasibility 90.6 95.5 95.6
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Figure 4.11: Simulations for designs 1-3 - constrained formulation

The left panel of Figure 4.11 verifies that the reason for the high bias cost approximation
for design 1 is that it fails to move to the vicinity of the plant optimum. The low variance
cost for this approach is also evident, in that the region of points is much smaller for this

design than for the other two.

The central plot in Figure 4.11 illustrates that modifying the mass fractions of B and P
instead of the mass fractions of B and E, causes a large increase in the variance of the iterates
(Ueo). This is consistent with the large increase in variance cost predicted by the design
cost formulation. For design 3, as the right panel of Figure 4.11 illustrates, modifying all
three mass fractions performs very similarly to modifying the mass fraction of components

B and P only.

108



M.A.Sc. Thesis - Eric Rodger McMaster University - Chemical Engineering

The design cost formulation significantly over-estimates the overall profit lost for both
designs 2 and 3 (Table 4.11). To identify potential causes of this discrepancy, a closer look
is taken at the differences between the design cost approximation and the simulation results

for design 3. Table 4.12 illustrates some of the key differences.

Table 4.12: Detailed design cost comparison for full dual MA (constrained system)

Design Cost Approximation Simulation
E [# (100, ¥? (Ueo))] —174.93 —180.05
—0.1094 —0.1035
E [1co)
—0.953 —0.900
0.0702  0.0632 0.0392 0.0385
V [us]
0.0632  0.0820 0.0385  0.0496
% Feasibility 95.0 95.6

The design cost approximation over-estimates the profit lost by about 5.12 ($5120). One
reason for this is it over-estimates both the u; and ug components of the distance that the
expected value of the iterates moves from the ideal modifier adaptation optimum (u?,), due
to the dual excitation constraint. This is demonstrated by the fact that E [ue] is farther
away from the plant optimum for the design cost approximation that the simulations. Some
of this error may also be due to an over-estimation of the required back-off, however, since
the back-off distance is quite small relative to the distance of the offset (not shown in Table

4.12), most of the error is likely due to the over-estimation of the offset.

Each of the variance and covariance quantities are also widely over-estimated by the design
cost procedure. One reason for this could be the fact that, as previously discussed, that the
interaction between the measurement noise and dual excitation is ignored when they are

treated separately and then their effects are summed.

The backoff parameter estimation seemed to be very effective. It was set to ensure that
about 95% of iterates are feasible points of the plant, and in the simulation 95.6% of the

iterates are feasible. To better visualize the effect of the backoff parameter on the iterates,
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the approach where all three outputs were modified was implemented with and without the

backofl parameter and simulations of 500 iterations were run.

<= Plant Profit Contours

Backed-off C il
= Plant Constraint
© lterates

Flowrate of B (kg/s)
Flowrate of B (kg/s)
-
in

3.5

Temperature of Reactor CK) ‘Temperature of Reactor (°K)

Figure 4.12: Demonstration of the effect of introducing a back-off

Shown in Figure 4.12 are the results without (left panel) and with (right panel) the backoff
parameter. It is clear that the backoff causes an improvement in feasibility. In the run
without the backoff (left panel of Figure 4.12), the constraint was violated 24.3% of the
time, whereas in the run with the backoff applied (right panel of Figure 4.12), the constraint
was only violated 4.6% of the time. As expected, this increase in feasibility came at the cost
of a decrease in average profit. The average profit in the simulation without the backoff
was 181.411, while the average profit in the simulation with the backoff was 180.093. This
increase in profit came because of the selection of points that were infeasible in terms of the
plant. Since such points can have profit values higher than the profit at u?™*, they can cause
an increase the average profit. Once again the severity of the consequences if an infeasible
operating point of the plant is implemented should determine whether the backoff approach

is used, and how high the feasibility level (p;) should be set for each constraint.

4.5 Chapter Summary

In this chapter, a methodology was presented for the design of dual modifier adaptation

systems. This methodology utilized the design cost criterion along with an optimization
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procedure to set the dual constraint parameters as well as any other design parameters
that needed to be addressed. A multi-scenario approach was also presented for handling

uncertainty in the benchmark plant model that is used in the design cost calculation.

Specifics of both the bias and variance cost calculation procedures have been discussed in
detail. The variance cost calculation involved the consideration of two separate scenarios,
one designed to capture the variance due to measurement noise and one designed to capture
the variance caused by the dual constraint. The bias cost computation involved a procedure
designed to estimate the change in the expected value of the dual modifier adaptation iter-
ates due to the dual constraints. In addition, a method for the estimation of an appropriate
level of back-off to ensure constraint feasibility was developed. The calculated back-off was

also then applied in the online simulations.

All of these developments were tested using the Williams-Otto Reactor test case. These
tests demonstrated the ability of the design cost approach to identify a good design for the
system. There was significant error in some of the design cost approximations, however
this was expected given the assumptions made in the calculation procedure. The back-off

methodology also proved to be effective, greatly reducing constraint violation.

In the final chapter, the developments of the previous two chapters are illustrated using
a more involved case study. This case study consists of the real-time optimization of a

propane furnace.

111



Chapter 5

Case Study - Propane Pyrolysis

Reactor

In this final chapter the dual modifier adaptation algorithm is implemented to perform the
real-time optimization task for a propane furnace. At a basic level, this furnace takes a puve
feed of propane, mixes it with steam and thermally cracks it to form a range of hydrocarbon
products. Two of the major products are ethylene and propylene. Many of the concepts
presented in the previous two chapters of this thesis will be illustrated using this case study.
First, the performance of the dual modifier adaptation algorithm will be investigated, both
under noiseless conditions and under the presence of measurement noise. Then the design
of the an effective dual modifier adaptation system for this process will be investigated. As
a part of this, a detailed comparison between the design cost approximation results and

corresponding simulation results will be made.

5.1 Background and Process Description

The problem formulation and specific model for the propane furnace process considered

in this chapter are taken from Contreras-Dordelly [1999]. The specific furnace model was
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developed from industrial information provided to the authors of Contreras-Dordelly [1999]
by M. Kutten, Combustion Engineering Simcom Inc., 1989. A simple process diagram is

given as Figure 5.1 for reference.

Feed (Propane, F) Reacto Products X;
-

Stea.
Fuel (Q)

Figure 5.1: Propane furnace process schematic

The end goal of this propane cracking process is to maximize the profit from the sale of
the hydrocarbons produced. In this model, there are ten different hydrocarbon products
considered, all of which have an appropriate sale value. There are also costs associated with
the process: the dilution steam, propane feed and the fuel used to heat the furnace all must
be bought. The objective function for this process takes all of this into account:

10
d)sz-F—I—wQ-Q—I—wS-SO~F—Zwi-F-Xi (5.1)
i=1

where F is the feed flow of propane in [pounds], wp is the cost of the propane feed [$/
pound|, @ is the energy consumption [MBTU], wq is the cost of the energy [$/MBTU], SO
is the steam-to-oil dilution ratio, wg is the cost of the steam in [$/pound], w; is the sale
price of component i [§/pound] and X; is the weight fraction of component % in the outlet
stream. Note that the time period considered in this problem is one month, therefore the

feed flow, energy consumption and profit quantities are all given on a per month basis.

The objective function, ¢, denotes the total cost of the propane cracking process. In the

normal operating range of the process, however, the value of the cost function will be
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negative, indicating that a profit is made off of the process. Due to this, economic values
will commonly be reported in terms of profit in this chapter. Also note that the feed
rate of propane (F'), the energy consumption (Q) and profit (¢) are assumed to

be divided by 108, as was done in Contreras-Dordelly [1999].

The values used for the sale prices as well as the costs of propane, energy and steam can
be found in Appendix E. The subscripts for each of the ten components are given in Table

5.1.

Table 5.1: Components in the propane cracking process

Subscript | Component
1 Hydrogen
2 Methane
3 Ethylene
4 Ethane
5 Propylene
6 Propane
7 Butadiene
8 Butylene
9 Butane

10 Gasoline

Note that in the actual process there were three other products of the cracking reaction:
acetylene, methyl-acetylene and propadiene. However, since downstream of this reactor
in the actual process acetylene was converted to ethylene, and both methyl-acetylene and
propadiene were converted to propylene, these three intermediate products are ignored in

this case study.

The set-points that will be determined by the dual modifier adaptation system for this

process are the feed rate of propane, F, and the conversion, denoted by C subsequently.
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The conversion is defined as follows:

X - X

=5

(5.2)

where X" is the weight fraction of propane in the inlet stream. Since the feed is pure

propane, the following expression for conversion can be obtained:
C=1-Xg (5.3)

It is assumed that C can be controlled online by adjusting the operating temperature of
the furnace. Note that in the original formulation in Contreras-Dordelly [1999] there was a
third input discussed, the steam-to-oil ratio SO. It is considered to be a fixed parameter in
this work however. Since it was frequently at its lower bound of 0.3 in Contreras-Dordelly
[1999], it is fixed at this value subsequently. A possible extension would therefore be to

consider the full 3 input case study.

The model for this process considers 12 state variables, and is therefore made up of a set
of 12 non-linear algebraic equations. The first ten equations of the model are empirical
expressions which compute the weight fraction in the product stream (X) of each of the
ten components in the furnace (Table 5.1). The other two equations calculate the energy
consumption in the furnace, ), and the average molecular weight of the product stream W.

The ten empirical model equations each have the following form:
Xi = 00i + 0150 + 02:50% + 03C + 0iC* + 05:(SO)C, i=1,..,10 (5.4)

where 0o, 01i, 025, 03i, 044, O5; are all parameters of the empirical model used to compute
the outlet weight fraction of component ¢ (see Appendix E). The empirical expression used

to determine the furnace energy consumption (@) is:

F
Q = 0.036- (5.5)

and the expression used to determine the average molecular weight of the exiting stream

(W) is:
10

W =>" X;MW, (5.6)

i=1
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where MW, is the molecular weight of pure component ¢ [pound/pound-mol].

The model that will used as both the simulated plant and the benchmark plant model for
the design cost calculations has the same form as the process model presented above. Only
the set of parameters in the empirical expressions, gg;, 01i, 02i, 03i, 04i, 05 vary between

them. There is therefore no structural plant-model mismatch present in this case study.

The original model parameters found in Contreras-Dordelly [1999] are used as the parame-
ters of the simulated plant and benchmark plant models in this work and a small subset of
the parameters in the process model is altered to introduce the mismatch. These alterations
had to be done very carefully due to the empirical nature of the model. Specifically, care

had to be taken to ensure that despite the changes, all the weight fractions determined by
10

the model still sum up to one (Z X; = 1> . Due to this requirement, pairs of similar pa-
i=1
rameters were altered simultaneously. For instance, the g43 (the parameter multiplying C?

for ethylene) was reduced by 0.5 in the process model and p45 (the parameter multiplying
C? for propylene) was increased by 0.5. Three other similar changes were made, one more
involving ethylene and propylene, and two others involving methane and ethane. Therefore,

there are 8 parameters that vary between the simulated plant model and the process model.

There are a total of 11 outputs considered in this problem. They are the ten weight fractions
(X) and the energy consumption of the furnace, Q. Measurements of the weight fractions
are assumed to be readily available through an online analyzer. It is assumed that an
estimate of @ can be made in real-time through the rate of consumption of the fuel used to

heat the furnace and a real-time analysis of the fuel gas heating value.

There are also a series of process constraints that apply to this process. First of all, there are
bounds on both of the input variables. The lower bound on F is necessary due to equipment
constraints and the upper bound exists due to upstream supply limitations. Both the lower
and upper bounds on the conversion, C, are necessary because the empirical model was
only developed for a specific operating range. The set-points or inputs for this problem
can be formally stated as: u = [F,C]. Using this, the variable bounds are then stated:
u™" = [5,0.70] and u™*® = [15,0.93].
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In addition to the variable bounds, there are also two other constraints on this process. The

first is an upper limit on the amount of energy that can be used by the furnace:
@ <0.0147 (5.7)

This constraint is required because the temperature of certain equipment in the furnace
must be kept below a certain level. The last constraint is an upper bound of the amount
of ethylene produced by the furnace. This constraint exists because there is a limit to the
amount of ethylene that can be sold on the market. Different constraint levels are used in

Contreras-Dordelly [1999], however, this constraint will be fixed in this thesis as follows:

XsF <3 (5.8)

For the actual implementation of the algorithm, some variable scaling had to be done. The
reason for this is Broyden’s method performs better when the general size of the movements
of each of the inputs from iteration to iteration are similar (see Section 3.2.3). To this end,

the feed rate of propane input (u;) was divided by 100 in the MATLAB code.

5.2 Dual Modifier Adaptation

In this following section, many of the concepts introduced and discussed in Chapter 3 are
illustrated using the propane furnace reactor test case. This includes a comparison of the
performance of ideal modifier adaptation and modifier adaptation with Broyden’s method,
a study of the behaviour of modifier adaptation using Broyden updates with different filter
parameter settings and an illustration of the effect of the dual constraints on the performance

of the algorithm.

First, before any specific tests are done, a contour plot of the plant profit surface is given
in Figure 5.2. This plot shows all six constraints discussed in Section 5.1 as well as the
contours of the plant profit function. The plant optimum is clearly marked with a circle.
Note that this optimum lies on a constraint, specifically the ethylene demand constraint.

This indicates that any change in the demand of ethylene will cause a change in the optimal
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solution. Also note the feasible region of the plant (marked with the black arrows). This
is the wedge-shaped area bordered by constraint 4 (the upper bound on conversion) at the
top, constraint 3 on the left (the lower bound on the propane feed rate), constraint 5 at
the bottom (the lower bound on conversion) and constraint 6 on the right (the ethylene
demand constraint). Constraint 1 (the energy consumption limit) and constraint 2 (the

upper bound on the feed rate of propane) lie completely outside the feasible region.
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Figure 5.2: Plant profit contour plot

The behaviour of the ideal modifier adaptation algorithm, first presented in Section 2.5,
is now compared to the behaviour of modifier adaptation with Broyden’s method, first
presented in Section 3.1. Both algorithms are run in the absence of measurement noise,
utilizing the benchmark plant model given in Section 5.1 to represent the plant. The
starting point for both algorithms is g = [10,0.8]. Filter parameters of 0.4 are also used
and the modifiers are initialized to zero (Ag = 0). To begin, the process model is optimized
using Ao yielding the process model optimum: w; = [8.02,0.857]. The initial Broyden
derivative matrix estimate is obtained using the derivative of the approximate model at
the starting point, B} = %—J: W Note that this initialization procedure will be the same
for all the simulations in this c(l)lapter (unless otherwise noted). The performance of both

algorithms is shown in Figure 5.3.

Both algorithms move initially at approximately the same speed. However, when the plant

optimum is approached, Broyden’s method takes more iterations to actually zero in on
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Figure 5.3: Comparison of ideal MA and MA with Broyden updates

the plant optimum. This is illustrated by the large amount of points close together in the

general area of the plant optimum in Figure 5.3.

The effect of the filter parameters (k) on modifier adaptation with Broyden updates is
examined next. For simplicity, the filter parameters for each of the 33 modifiers are always
set to the same value. Note that there are 33 modifiers required because there are 11
process outputs to be modified, so there are 11 output bias modifiers and 22 output gradient
modifiers that need to be updated. Figure 5.4, illustrates the performance of the algorithm
with filter parameter values of 0.1, 0.4, 0.6 and 0.8. For each of the 3 lowest k values, the
algorithm converges to the plant optimum. In those cases, as k increases, the algorithm
takes a less direct route to the plant optimum, but also reaches it in fewer iterations. A
less direct route does not by itself degrade algorithm performance, however, more erratic

behaviour (larger step sizes) may increase the level of gradient offset (see Section 3.2.3).

The simulation with filter parameter values of 0.8 illustrates the problem of gradient offset
that can occur in multi-input problems. In this case the algorithm reaches a point on
constraint 5 very quickly. This is problematic however, because the algorithm gets stuck on
this constraint, so that the Broyden derivative estimate is never updated in any direction
perpendicular to this constraint. Therefore, the algorithm converges to the optimal point of

the plant in the direction of the constraint (the intersection between constraints 5 and 6).
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Figure 5.4: Effect of changes in k in modifier adaptation with Broyden updates (1)

This is clearly not the plant optimum however. Figure 5.5 is provided so that the behaviour

of the algorithm near the plant optimum can be more easily seen.
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Figure 5.5: Effect of changes in k in modifier adaptation with Broyden updates (2)

The peaking phenomenon can occur when the algorithm is run under the presence of mea-

surement noise, with no restriction on the placement of new operating points with reference

to previous ones (see Section 3.3). To demonstrate this, modifier adaptation is run, using

Broyden derivative estimates, under the presence of measurement noise. This is agsumed to

be white noise, with a standard deviation of 1% of a standard set of values for the weight

fractions and energy consumption (Q). The filter parameters are set at 0.4 and the inputs,
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modifiers and Broyden estimates are initialized as described in the first example of this
section. The algorithm is run for 100 iterations and its performance is shown in Figure 5.6.
It demonstrates the large jumps away from optimal operation that can occur when a new

set-point is placed too close to a previous one.
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Figure 5.6: Performance of MA with Broyden updates (with measurement noise)

This motivated the development of dual modifier adaptation, which restricts the placement
of a new operating point in a clever way so it is not located too close to the previous one
(see Section 3.4). The dual modifier adaptation algorithm is now implemented and the
simulation is rerun, with the results shown in Figure 5.7. Values of B = diag(25000, 15000)
are chosen for the dual constraint parameters for Figure 5.7. Rough tests were done to
ensure that these values provided reasonable performance, however no attempt was made
to optimize them. Examining Figure 5.7 it is clear that with dual modifier adaptation there
are 1o large jumps away from the plant optimum. This shows that the dual constraints can

effectively mitigate the peaking phenomenon.

The reason that the optimal profit value can be exceeded in both Figures 5.6 and 5.7 is
that the optimizer sometimes selects points that are infeasible in terms of the plant. This
selection happens because measurement noise causes incorrect identification of the modifiers
and since the modifiers are involved in the active process constraint, this causes it to be

inadvertently relaxed in some iterations of the algorithm. This motivates the design of an
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Figure 5.7: Performance of dual MA in the presence of measurement noise

appropriate constraint backofl, which is discussed in Section 5.3. Another potential cause of
this, which is not addressed by the constraint backoff approach is offset in the plant output

gradient estimates (see Section 3.2.3).

To close this section, an illustration and corresponding discussion of the effect of the sizing
of the dual constraints on the iterates of dual modifier adaptation is included. This is meant
to illustrate the trade off that exists in the sizing of the ellipsoid and also to motivate the
use of a systematic dual modifier adaptation design procedure. Note that since the trust
region constraint is not considered in the design procedure developed in this thesis, it will

not be implemented for any of the simulations of this chapter.

The performance of a design with an ellipsoid that is too small is shown first. The param-
eters of this ellipsoid are B = diag(2 x 108,5 x 10%). The simulation shown in Figure 5.8
consists of 30 iterations, with measurement noise of a standard deviation of 1% of a typical

set of output values and filter parameters of 0.4.

The algorithm selects operating points that are reasonably close to the plant optimum for
most of the simulation in Figure 5.8, however, on a couple of occasions the iterates jump far
away from the plant optimum. This is an indication that the ellipsoid is too small, because

the peaking phenomenon is still occasionally occurring.
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Figure 5.8: Performance of dual modifier adaptation with a small ellipsoid

If the dual constraint is too large, it can also have an adverse affect on the algorithm. To
demonstrate this, another 30 iterate simulation was now run, this time with dual constraint
parameters of B = diag(10000,500). The results are shown in Figure 5.9. Notice that in
this simulation some of the operating point moves seem to follow a similar pattern. This
pattern consists of 3 operating point changes: a move directly along the constraint, followed
by a move directly away from the constraint, followed finally by a move back towards the
constraint. Examining Figure 5.9 closely, it can be seen a few times. This is okay from
a stability point of view, however, since the dual constraint is always active, it is forcing
larger than necessary input moves each iteration, which impacts the average profit of the

RTO design.

The ideal ellipsoid size is one where the dual constraints are active in some of the iterations,
and in others the measurement noise pushes the system far enough away from the previous
operating point, so the dual constraints are inactive. Achieving this trade-off is one of the
key goals of the design procedure presented in Chapter 4. An example of good performance
is given in Figure 5.10 which shows a simulation utilizing the following dual constraint

parameters: B = diag(25000, 15000).

In the simulation shown in Figure 5.10, after the first few iterations there are no movements

which cause a large decrease in the plant profit (note the shape of the profit contours). Also
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Figure 5.9: Performance of dual modifier adaptation with a large ellipsoid

note that the iterates do not follow a constant pattern and instead move somewhat randomly

in the area close to u?*. These are both indicators of good performance.

5.3 Design of Dual Modifier Adaptation Systems

The following section will discuss the design of a dual modifier adaptation system for the
propane pyrolysis reactor case study. The main design decision in dual modifier adaptation

systems is the size of the ellipsoid, which is the basis of the dual constraints.

First, a sample design cost calculation is made, to demonstrate how the criterion is im-
plemented for this specific case study. The dual constraint parameters are chosen as:
B = diag(25000,15000), which result in relatively good, but by no means optimal sys-
tem performance. Again, noise of a standard deviation of 1% of a common set of outputs,
and filter parameters of 0.4 are considered. First, the Hessian of the plant cost function is

computed at the plant optimum (u?* = [12.34,0.7311]):

- 0 —7.943 5.9
up = .
—7.943 —1.048

Note that the eigenvalues of the Hessian are —8.484 and 7.437, meaning it is indefinite.

Since from the previous section it is known that the plant optimum lies on a constraint,
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Figure 5.10: Performance of dual modifier adaptation with a well designed ellipsoid

this property of the full Hessian is not surprising. It is only the reduced Hessian that is
required to be positive definite at a minimum of an optimization problem. Note that since
this Hessian matrix will be used in the computation of the variance cost, it is possible that

it may cause the variance cost of a particular design to be negative.

Although the ideal modifier adaptation optimum, uf, is equal to the plant optimum for
this case study, the bias cost is not zero. This is due to the fact that both optima lie on a
constraint. A procedure that estimates the change in the expected value of the iterates due
to the tendency of the optimizer to select points inside the feasible region was developed
in Section 4.3.2. This procedure increases Cp as it shifts the expected value of the iterates
away from the ideal modifier adaptation optimum (uf,). Another procedure that involves
backing off from the ideal modifier adaptation optimum to ensure a certain level of feasibility
was also developed (Section 4.3.3). This procedure also increases the bias cost as it shifts

the effective ideal modifier adaptation optimum from u}, to u®.

A probabilistic programming approach is applied offline to compute the backoff, utilizing
an estimate of V1 (Ay) giving, u® = [12.06,0.7091] for a 95% feasibility threshold. The
required backoff in this case for constraint 6 (the constraint that is active at u},) is: 7g =

0.1576.
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The expected value of the iterates is then estimated, as detailed in Section 4.3.2, yielding:
E[ue) = [11.41,0.7091]. The elements of the bias cost calculation procedure are shown
in Figure 5.11. Note that both the calculations of u® and E [uy] involved linearizations
of parts of the algorithm. It is for this reason that u® is not exactly on the backed-off
constraint, the backed-off constraint is not on the ellipsoid and E [uy)] is not on the second

backed-off constraint.
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Figure 5.11: Tllustration of elements of bias cost calculation

Using the benchmark plant model (the same model that was used to simulate the plant),
the value of the profit at E [uy] was computed. This profit was then subtracted from the

estimated profit at the plant optimum to approximate the bias cost:

Cp = —0.5976 — (—0.6677) = 0.0701 (5.10)

The covariance matrix of the iterates is computed now, so that a comparison can then be
made with simulation results that are presented later. An estimate of the covariance matrix

is obtained as follows:

V(uw) = Vi(uw)+ Va(u)
1.125 x 100%*  —5.903 x 104 N 2 x 1079 0
—5903 x 107% 3.617 x 1073 0 3.33 x 1075

1.325 x 107%  —5.903 x 1074
= (5.11)
—5.903 x 107*  3.650 x 1073
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Note that the dual constraints seem to make a smaller contribution to the covariance matrix
of the iterates (especially in the variance of ug) than the measurement noise does. Intuitively
this suggests that the size of the ellipsoid should be increased (especially in the direction of

us) so there is more of an equal trade-off between the two effects.
The variance cost approximation is then computed using Equation 4.12:

Cy = %1T (V2P| 4o 0 V (U00)) 1

L7 0 —7.9432 1.325 x 107*  —5.903 x 10~
g — (o]
2 —7.9432 —1.0476 —5.903 x 10~*  3.650 x 1073
= 278 x 1078 (5.12)

For comparison purposes, a simulation of 2000 iterations, with the same settings detailed
in the design cost approximation is run. The recommended backoff is also implemented for
this simulation. The numerical results are shown in Table 5.2 along with the corresponding
design cost results. In addition, two plots of the iterates are given. Figure 5.12 shows the
position of all 2000 iterates and Figure 5.13 shows a shorter simulation consisting of 50

iterates, in an effort to demonstrate the path traversed by the algorithm.

Table 5.2: Design cost/simulation detailed comparison

Design Cost Approximation Simulation
E [¢ (fico, F (Uso))] —0.5948 —0.6184
11.41 11.24
E [uco]
Lo.7091 |0.7442
i ] I ]
1.325%10~%  —5.903 x 104 6.754 %1075  —3.157 %107
V [uco)
—5.903%10~%  3.650 % 10—3 —3.157%10"% 1968103
% of Feasible Iterates 95 95.7

First note that the overall design cost approximation in Table 5.2 is fairly close to the actual
average cost of the iterates in the simulation. Also, in the simulation, 95.7% of the iterates

were feasible, which is close to the 95% feasibility requirement. However, upon examing the
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Figure 5.12: Performance of dual modifier adaptation with b = [25000, 15000]

underlying results in Table 5.2 more closely, a couple of discrepancies between design cost

approximation and the simulation become clear.
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Figure 5.13: Path of dual modifier adaptation iterates with b = {25000, 15000]

The average value of the feed rate of propane (u1) in the simulation is reasonably close
to the design cost prediction. On the other hand, the average value of the conversion (us)
differs by 0.0351 (or 15% of the feasible region for ug). One possible cause of the discrepancy
is the presence of constraint 5 (the lower bound on conversion) in the simulation, which is
not considered in the design cost approximation. This constraint, because it is very close

to E [uc] does not allow for large decreases in ug. On the other hand, constraint 4, the
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upper bound on the conversion, is well above E [u], S0 it rarely restricts the movement of

the algorithm.

The design cost formulation over-predicts the value of each of the variance and covariance
terms of V [uy]. Some reasons for this over-estimation were discussed in Section 4.4.2.
A further potential source of error is that the active set assumed in the variance cost
calculation is not correct for some of the iterates in the simulation. This is due to the fact
that constraint 5, the lower bound on the conversion, is sometimes active (Figure 5.12). This
can be a major issue because the assumed active set is used to perform the post-optimal
sensitivity analysis, which is used in the input covariance matrix calculation (Equation
4.24). Any error in the post-optimal sensitivity analysis can thus result in an inaccurate
input covariance matrix approximation. Since constraint 5 restricts the movement of the
inputs in practice, ignoring this constraint in the variance cost calculation procedure may

have been part of the cause of the over-estimation.

To examine the performance of the design cost criterion at a variety of different ellipsoid
sizes, pairs of design cost approximations and corresponding simulations were compiled.
For simplicity, only the case where by is equal to 2 X by is considered. This is done because
the algorithm was found to perform better in practice when by > by. 16 different sets of
parameters were considered, from B = diag(5000, 2500) to B = diag(80000, 40000). For each
pair, the design cost calculation is made first, and then the corresponding simulation is run
(5000 iterations). This is done so that the appropriate backoff can be computed through
the design cost calculation and applied in the corresponding simulation. For these trials,
the same settings that were used for the sample design cost calculation and simulation are

used again. The results of the comparison are shown in Figure 5.14.

Examining Figure 5.14, it is clear that the design cost approximation performs quite well
for this set of dual constraint parameters. Poor performance is correctly predicted for
the small dual constraint parameters (large ellipsoid sizes) considered on the left and the
slow decrease in performance is also well predicted as the dual constraint parameters grow
larger on the right side of the plot. Most importantly, the optimum of the design cost

approximation curve is fairly close to the optimum of the simulation curve. This means
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Figure 5.14: Design cost/simulation comparison

that if the optimization problem was solved for this set of dual constraint parameters, an
effective set of parameters would be chosen. The under-estimation of the actual values of
the average profit for all the dual constraint parameters pairs is likely due to the same

reasons discussed previously for the sample calculation.

The final study of this chapter examines the effect of the level of measurement noise on
the accuracy of the design cost estimates. Two new noise levels were tested: noise with a
standard deviation of 0.5% of a common set of outputs and noise with a standard deviation
of 2% of a common set of outputs. Design cost estimates and corresponding simulation
results are shown in Figure 5.15 for the same range of dual constraint parameter values
that was used in the study detailed in Figure 5.14. The results from Figure 5.14 are also

included for comparison purposes.

First of all, both the design cost estimates and simulation results of Figure 5.15 illustrate
that as the noise level is increased, the average profit will decrease. This makes sense,
since a noise level increase would typically increase the variance of the iterates as well as
the backoff required to achieve the 95% feasibility requirement. Also note that, for each
individual noise level, although there is offset between the design cost estimates and the
simulation results, the shape of both curves is fairly similar. This indicates that an effective

set of dual constraint parameters would likely be chosen for each noise level. Upon close
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examination of Figure 5.15, it is also clear that as the noise level increases, the error in the
design cost estimates also increases. This is likely due to the fact that since the noise level
(specifically the variance of the measurements) enters linearly into the calculation of the
covariance matrix of the modifiers (Equation 4.22), any increase in noise level would likely
magnify any existing errors in the modifier covariance matrix approximation. Potential

sources of error have already been discussed earlier in this section.

5.4 Chapter Summary

In this chapter, the concepts introduced in Chapters 3 and 4 of this thesis were applied
to a propane furnace process. This was a two input system, similar to the Williams-Otto
Reactor, however the models were more complicated which caused an increase in the number
of outputs to be modified. First, several investigations were carried out to demonstrate some
of the properties of the dual modifier adaptation algorithm. These included studies on the
effect of the filter parameters and the dual constraint parameters on algorithm performance.
The design cost calculation was demonstrated for a sample ellipsoid size. Comparisons were

then made with simulation results and reasons for discrepancies were suggested.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The main goal of this research was to develop an RTO system which was both optimum
seeking and resistant to measurement noise. The development of said technology was carried
out in two phases. First, the algorithm itself had to be developed. The previously developed
modifier adaptation approach [Marchetti et al., 2009] was used as a basis, and it was made
practical by employing Broyden’s method to estimate the plant output gradients. Additional
constraints were then added to the model-based optimization problem in order to increase
the accuracy of the Broyden derivative estimates. The final algorithm was referred to as
dual modifier adaptation because of its two distinct goals: optimality and the quality of the

Broyden derivative estimates.

The second phase consisted of the development of a design methodology so that various
tuning parameters in dual modifier adaptation could be chosen in order to achieve acceptable
online performance of the algorithm. The design methodology was based around the design
cost criterion, which was introduced in Forbes and Marlin [1996] for the two-step approach.
This original methodology was modified to make it applicable to dual modifier adaptation

and specifically so that it could address the selection of the dual constraint parameters. The
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concepts presented in this thesis were illustrated using both the Williamns-Otto Reactor test

case and a propane furnace case study.

To begin this chapter, conclusions are drawn based on the research that has been presented

in this thesis. Then, recommendations of future research directions are given.

6.1.1 Dual Modifier Adaptation Scheme

e Broyden’s method was shown to be effective in estimating the plant output derivatives
for the modifier adaptation RTO algorithm. This method was chosen because of the
fact it requires no plant experiments to be carried out and it is easy to initialize.
Its performance was demonstrated using the Williams-Otto Reactor test case (Figure

3.5).

e It was established that modifications to modifier adaptation with Broyden’s method
were necessary in order to achieve accurate plant output gradient estimates (see Fig-
ure 3.12). Both gradient variance and offset had to be controlled. The algorithm
was analyzed to determine the causes of each of these phenomena, and appropriate

solutions were presented.

— The gradient variance can be very high because of the peaking phenomenon.
The peaks occur when the algorithm is under the influence of measurement noise
and two consecutive operating points are placed too close together. A constraint
consisting of an ellipsoidal exclusion region, placed around the previous operating
point, was added to the model-based optimization problem. This constraint

proved to be very effective in eliminating the peaking problem (Figure 3.16).

— The gradient offset was controlled in two ways. A trust-region constraint was
introduced in order to limit the size of the steps taken by the algorithm in
the input space. Additionally, the ellipsoidal exclusion region constraint was
modified so that it forced the algorithm to explore a variety of input directions.
These methods proved to be effective in reducing the offset in the Williams-Otto

Reactor test case (Figure 3.19).
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6.1.2 Offline Design of Dual Modifier Adaptation

¢ A methodology was developed in which an adapted form of the design cost criterion
could be used to help design a dual modifier adaptation RT'O system. This design
procedure was shown to effectively address the selection of the dual constraint param-
eters in addition to a variety of other external design variables (such as the model to
use in the RTO system or the specific outputs to modify). The approach was also
successfully extended to account for uncertainty in the benchmark plant model. The
methodology was demonstrated using the Williams-Otto Reactor test case (Sections

4.4.2 and 4.4.3).

e The design cost criterion was used to effectively design dual modifier adaptation sys-
tems. Changes were made to both the variance and bias cost approximation proce-
dures to address unique aspects of dual modifier adaptation systems. The redesigned
metric proved to be fairly accurate in estimating the design cost for the unconstrained
Williams-Otto Reactor test case (Section 4.4.1) and the propane furnace case study

(Section 5.3).

L

— In the variance cost calculation, two separate scenarios were considered: one in
which both of the dual constraints were always inactive, and one in which one of
the dual constraints was always active. The contributions of these two scenarios
were then added up to comprise the overall variance cost approximation. For the
unconstrained formulation of the Williams-Otto Reactor case study the variance
cost calculation procedure was reasonably effective, especially at good ellipsoid
sizes. Significant error was seen in the results of the constrained Williams-Otto

Reactor formulation. Potential reasons for this were discussed.

— The bias cost calculation was modified so it could effectively address constrained
problems. Specifically, a procedure was developed to compute the expected value
of the iterates of a constrained problem. This was necessary because of the desire
of the model-based optimizer to select feasible operating points. In addition, a
constraint backoff approach was developed to try to ensure that the dual modifier

adaptation iterates do not violate the process constraints of the plant. This back-
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off approach proved to be fairly adept at maintaining the level of feasibility above

a particular value (Figure 4.12).

6.2 Recommendations for Further Work

The following section outlines a number of promising research directions based on the work

that has been presented in this thesis.

6.2.1 Convergence Analysis for Multiple Input Problems

In Section 3.2.3 it was found that convergence analysis of the modifier adaptation algorithm
with Broyden updates for multiple-input problems, using a sensitivity analysis approach,
is not possible. 'This is due to the fact that some of the derivatives of the Broyden up-
date step are not defined as the algorithm converges. Lyapunov theory does not require

differentiability, therefore it would be an ideal candidate for use in carrying out this analysis.

6.2.2 Improving and Extending the Design Cost Predictions

There is definite room for improvement in the accuracy of the design cost predictions.

Several of the approximations used in the variance cost estimation procedure are fairly

. . B¢
rough. These include the estimate of the ay,ﬁ“
k41

of Vi (1) in Equation 4.25. If these approximations were refined, the performance of the

sensitivity in Equation 4.23 and the estimate

design cost approach could be significantly improved.

A multi-scenario approach was suggested in Section 4.1.3 to handle uncertainty in the
benchmark plant parameters. This method works well if there are only a few uncertain
parameters. If there are a large number of scenarios to consider however, this method will
become computationally challenging. Therefore, it would be ideal if there was an efficient,
robust optimization method available to handle such problems. For instance, some logic

could be implemented to intelligently choose a subset of the potential combinations of
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parameters in order to decrease the computational requirements of the problem. It also
may be advantageous to develop a procedure that could consider probability distributions

of uncertain parameters, instead of only discrete sets of parameter values.

A couple of extensions to the design cost formulation are also possible. In this thesis no
attempt was made to tune the trust region constraint parameters (Equation 3.46) or the
filter parameters (Equation 3.1). The tuning of both of these quantities involve clear trade-
offs, which motivates the need to carefully consider their respective settings. For instance,
a larger trust region constraint would allow quicker movement to a new optimum, if the
plant optimum for an RT'O system were to change. However, the smaller the trust region
constraint is, the more it restricts large, unwanted movements away from the current plant
optimum, caused by measurement noise. The trade-off in the filter parameter values is quite
similar. Higher filter parameter values would also allow quicker responses to disturbances
causing a change in the optimal operating point of the system, but on the other hand would

magnify the effect of measurement noise, possibly leading to instability of the system.

Consideration of both of these quantities would necessitate extending the design cost ap-
proximation method so it could address the transient behaviour of an RTO system (i.e.
when an unmeasured disturbance causes the plant optimum to change). The extended
design cost metric, developed in Zhang and Forbes [2000], could potentially be used as a
starting point. The original formulation would likely have to be modified somewhat though

to address dual modifier adaptation specifically.

6.2.3 Results Analysis for Dual Modifier Adaptation

The concept of results analysis was discussed briefly in Section 2.1. Recall that it is an
optional part of an RTO implementation which is generally tasked with deciding whether
or not to implement a newly computed operating point in the plant. This decision is made
immediately following the solution of the model-based optimization problem. In making
this decision, the results analysis system is trying to distinguish between common cause

variation (e.g. measurement noise) and actual process disturbances.
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Miletic and Marlin [1998a] proposed a statistical test for results analysis that was designed
to be used within the two-step approach. This method could potentially be adapted in
order to carry out the results analysis task for dual modifier adaptation systems. Such a
procedure, if well designed, could prevent a great deal of unnecessary algorithm movement

once the vicinity of the plant optimum is reached.

To further motivate this potential research direction, a first implementation of the results
analysis procedure detailed in Miletic and Marlin [1998a] was carried out for a dual modifier
adaptation system. The unconstrained Williams-Otto Reactor case study was considered,
with filter parameter settings of 0.25 and measurement noise with a standard deviation of
0.5% of a typical set of mass fraction values. The modifiers for both Xz and Xp were
updated and the optimal dual constraint parameters of b = [36.97,7.97] were used. The
algorithm was started far away from the plant optimum on three occasions and each time

it was run for 250 iterations. The results are shown in Figure 6.1.
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Figure 6.1: Performance of results analysis implementation

In each trial in Figure 6.1, the algorithm moved quickly toward the plant optimum in
the first few iterations and then made very few additional operating point changes. The
benefit of the results analysis procedure is therefore clearly seen, in that many unnecessary
operating point changes were prevented. Note again that this is just meant as a motivating

example. Further research is required to not only tune the results analysis procedure itself,
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but also study its effect on both the steady-state behaviour of the dual modifier adaptation

algorithm, as well as its ability to respond to disturbances.

6.2.4 Hybrid RTO Technologies

The relevant advantages and disadvantages of both the two-step approach and dual modifier
adaptation have been detailed at length throughout this report. To summarize, the two-
step approach can fail to locate the plant optimum if structural model mismatch exists
[Biegler et al., 1985], but is on the other hand fairly resistant to measurement noise. Dual
modifier adaptation on the other hand is optimum seeking, but can be very susceptible to
meagurement noise due to the need to estimate the plant output gradient. It is these two
key differences that motivates the investigation of hybrid approaches. A comparison that

illustrates these differences was provided in Section 4.4.2.

It was established in Sections 4.4.2 and 4.4.3 that dual modifier adaptation can be effectively
carried out with only a subset of the outputs being modified. The two-step approach can
be altered in the same way, as removing outputs just means that the number off terms in
the objective function of the parameter estimation problem (Equation 2.2) will decrease.
Since both approaches can function without the full set of possible outputs, it makes sense
to hybridize them. In this way, some of the outputs would be used to update a set of
parameters and others would be used to update a set of modifiers. These new parameters
and modifiers could then both be used to simultaneously alter the model-based optimization

problem.

The ability to combine the two-step approach and modifier adaptation in this way was one
of the motivations for choosing to modify the oufputs directly instead of both the cost and
constraint functions in modifier adaptation (see Section 2.5 for more details). Design of
these hybrid RT'O systems could easily be carried out by adapting the design cost approach
detailed in Chapter 4 and combining it with the original design cost procedure for the

two-step approach [Forbes and Marlin, 1996].
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A short example intended to demonstrate the potential of these hybrid RT'O systems is
given hereafter. The unconstrained formulation of the Williams-Otto Reactor case study is
considered and it is assumed that measurements of the mass fractions of components A, B,
E, G and P are available. Four different hybrid methods are considered, which are detailed

in Table 6.1.

Table 6.1: Hybrid method details

B Outputs for A | Outputs for 8 | Dual Constraint Params
Method 1 | 21, 12 Xg, Xp Xa, XB, Xo [36.97,7.97]
Method 2 | F.,,, E., Xg, Xp Xa, X, X¢ [36.97,7.97]
Method 3 | w1, v Xp Xa, Xp, Xg, Xa [37.04,7.90]
Method 4 | E,,, Ea, Xg X4, XB, Xp, Xc [789.6, 123.3]

FEach hybrid methodology is run for 2000 iterations, in the presence of measurement noise of
standard deviation of 0.5% of a typical set of mass fraction values and with filter parameters
of 0.25. The ellipsoids sizes used are given in Table 6.1. These sizes are the ones estimated
with the design cost optimization procedure for the corresponding dual modifier adaptation
algorithm. These are likely not optimal, however, since the design cost criterion has not
been adapted to consider hybrid approaches, there is cuwrrently no systematic approach
available for estimating the best sizes. The average cost values are shown in Table 6.2 and

plots of the iterates for each method are shown as part of Figure 6.2.

Table 6.2: Hybrid method results

Method 1 | Method 2 | Method 3 | Method 4

Average Lost Profit 4.855 5.149 4.790 4.23

Examining Table 6.2, it is evident that each of the hybrid methods are viable RTO ap-
proaches. Although none of these methods were tuned precisely, they still all out-performed
the dual modifier adaptation designs detailed in Tables 4.1-4.3 (although none of the meth-

ods were able to out-perform the two-step method application for model 1 - Table 4.5).
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Figure 6.2: Performance of hybrid approaches

Method 4 performs especially well compared to its counterparts. This makes sense because
modifying Xp has been shown to amplify the effect of measurement noise on the system,
much more than modifying Xz does. So in this effective design, the output that caused
dual modifier adaptation to be very susceptible to measurement noise (Xp) was used in the

two-step approach and the other output (Xg) was used in dual modifier adaptation.

Another benefit of hybridization is that it might greatly improve acceptance of the modifier
adaptation technology by those industries where the two-step approach is already well
accepted. This is due to the fact that if modifier adaptation is introduced in this way, it
can be seen as a small deviation from the already trusted two-step approach. For instance,
modifier adaptation could be slowly introduced, by at first only updating the modifiers for

a single output.

In closing, the good performance of all of the hybrid methods on the Williams-Otto Reactor
test case motivates further research in this area. Although the technology itself is easy to
implement, a design procedure would need to be developed, potentially based on the design

cost approach detailed in Chapter 4 of this thesis. In addition, depending on the number
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of measurements available, there could be hundreds or even thousands of discrete design
options for a larger problem. Thus, a systematic optimization method to choose the best

discrete design may need to be developed, to avoid considering all possible discrete designs.
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Table A.1: Definitions of Latin symbols

Symbol | Definition

A modifier update map

ISOPE model shift parameter

matrix of Broyden derivative estimates

W o™

.

average values of Broyden derivative estimates

matrix of dual constraint parameters

conversion (propane furnace)

B
b vector of dual constraint parameters
c
C

design cost

Cg bias cost

Cy variance cost

Cavg | average design cost

c vector of cost function penalty terms
d vector of constant terms in constraint back-off calculation
E expected value operator

Eval eigenvalues

E activation energy of reaction i, °K

e gradient offset

F explicit functions describing plant operation

F feed rate of propane, 1b

F; feed rate of component i, kg/s (Williams-Otto Reactor test
case)

f explicit process model equations

G constraints in terms of inputs and modifiers only

GP constraints in terms of inputs and plant outputs only

Ggre active constraints in terms of inputs and plant outputs only

g process constraints
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Table A.1: Definitions of Latin symbols (continued)

Symbol | Definition

H hyper-plane

H intermediate variable in calculation of sensitivity of A to

previous inputs uy

h probability density function for the iterates
I identity matrix
K, matrix used to filter newly computed constraint values
K, matrix used to filter newly computed input values
Ka matrix used to filber newly computed modifier values
k vector of filter parameters
kI reaction rate constant for reaction i

L Lagrangian

Lm Lagrangian of a model-based optimization problem
Lr Lagrangian of a plant optimization problem
M subspace containing all directions in which the Broyden ma-

trix does not change

MW,; | molecular weight of pure component i, 1b/Ib-mol

Mg mass of reactor, kg

m a direction in which the Broyden matrix does not change

N orthonormal basis for subspace orthogonal to direction of

last movement

N; cumulative distribution function for random variable &;
n unit direction of N

Ty number of inputs

Ty number of outputs

Ng number of constraints

A number of modifiers
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Table A.1: Definitions of Latin symbols (continued)

Symbol | Definition

P probability operator

vector of feasibility requirements for constraints

energy consumption, MBT'U

non-linera. map involving the Broyden update map

Broyden update map

n A 9 IOo|v

matrix of differences between previous operating points and

the current one

SO steam to oil dilution ratio

T transition function between original and alternate sets of

output modifiers

Tr temperature of reactor, K
T matrix of trust region constraint parameters
t vector representation of T(uy41)
U matrix of vectors defining previous movement directions
U* non-linear map describing model-based optimization step
u matrix involved in SVD of gradient of active constraints
u manipulated inputs or operating points
il average values of manipulated inputs or operating points
ub* plant optimum
ust solution to backoff optimization problem
Uoo dual modifier adaptation iterates
u® solution to model-based optimization problem for ISOPE
ul, convergence point of ideal modifier adaptation algorithm
u new operating point ignoring the effect of the dual con-

straints
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Table A.1: Definitions of Latin symbols (continued)

Symbol | Definition

Ug; point at maximum distance the dual constraints can move
the new optimum in direction ¢

AY variance operator

y matrix involved in SVD of gradients of active constraints

v random vector in derivative orientation definition

W average molecular weight of product stream
intermediate variable in calculation of sensitivity of A to
current inputs g1

X; mass fraction of component i, (Williams-Otto Reactor case
study)

X matrix involved in non-linear sensitivity analysis

random vector in derivative orientation definition

X
Y overall modifier adaptation algorithm with Broyden updates
Yy

matrix involved in non-linear sensitivity analysis

y™ model outputs

ym modified model outputs

yP plant outputs

P average values of plant outputs
Z null space of the active constraint set
Z point vector from the steady-state optimum to the edge of

the ellipsoid constraint, normal to an active constraint
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Table A.2: Definitions of Latin symbols

Symbol | Definition

o number of unique sets of uncertain parameter values

adjustable model parameters

BP uncertain plant benchmark model parameters

T map relating modifiers to the Lagrange multipliers of the

corresponding model-based optimization problem

~y Lagrange multipliers

A difference between or change in operating points

4] difference between an operating point and the steady-state
optimum

€ output biag modifier

€ alternate output bias modifier

el constraint bias parameter (constraint bias updating)

12 constraint bias modifier

€ reciprocal condition number threshold

¢ unit vector representing last operating point move

i estimated back-off from constraint i

e! non-linear map between the inputs and the vector represen-
tation of T(ug41)

07 non-linear map between the inputs and the vector represen-
tation of T'(ug)

7] scalar parameter which fixes the length of point vector z

9 a specific instance of the iterates (uqo)

K reciprocal condition number of the matrix S

A full set of output modifiers

A full set of alternate output modifiers

A output gradient modifier
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Table A.2: Definitions of Greek symbols (continued)

Symbol | Definition

A constraint gradient modifier

¢ cost gradient modifier

o tuning parameters for multiple constraint approach

Vi pre-exponential factor of reaction i

3 uncertainty variable in backoff approach

wj cost, or sale value of component i

b matrix involved in SVD of gradient of the active constraints

with respect to the inputs

o singular value
S external design variables
T vector representation of T(uy)

matrix linearizing relationship between previous and current

key algorithm values

v vector of small input perturbations

i plant cost function written only in terms of the inputs

o™ model cost function written only in terms of the inputs

V&P | plant cost function gradient

V2®P | plant cost function Hessian

¢ cost function

X space of potential input values

P ISOPE parameter used to modify the cost function

Q approximation of the sensitivity of the Broyden derivative

estimates to changes in the measurements

w vector orthogonal to hyper-plane H
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Table A.3: Definitions of select superscripts

Symbol | Definition

* optimum

min minimum

Max maximum

P plant

m model
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Table A.4: Definitions of select subscripts

Symbol | Definition

k iteration number
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The purpose of this appendix is to describe in detail some of the mathematical concepts
applied throughout this thesis. The format of this appendix is based on a similar section in

Marchetti [2009].

B.1 The Plant NLP in RTO Systems

The first few demonstrations of this appendix are made in regards to the following non-
linear plant optimization problem, which in general is the uncertain problem that the RT'O

system is trying to solve:

u”* € argmin  ¢(u,y?)
u
st.  y'=F(u)
g(u,y?) <0

umin <u< umnas (B.l)

In this NLP, ¢ represents the objective function, which is defined in terms of both the
inputs (u) and the plant outputs (y?), F denotes the explicit plant model, which relates
the inputs to the plant outputs, g represents the plant inequality constraints and u™"

max

and u represent the input variable bounds. Problem B.1 can easily deal with equality

constraints as well, because they are simply inequality constraints that are always active.

The optimization problem (B.1) can be restated by redefining the objective function and

the constraints in terms of only the inputs. This is done as follows:

uP* € argmin - ®P(u)
u

st.  GP(u) <0 (B.2)

where ®P(u) := ¢(u,y?) and GP(u) = g(u,y?). Note that in Problem B.2 the input
variable bounds have been removed, as the bound constraints can simply be rewritten as
inequality constraints and incorporated in GP. For the developments in the remainder of
this appendix, it is assumed that the objective function (®?) and constraints (G) are twice

continuously differentiable with respect to the inputs.
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B.2 Taylor Series Expansion

Taylor’s theorem, upon which the Taylor series itself is based, essentially states that any
function with continuous derivatives can be approximated by a polynomial {Chapra, 2008].
From a practical point of view, a Taylor series expansion provides an approximation of the
value of a function at a certain operating point. This estimate is produced using the value of
that same function at another operating point as well as some derivative information at the
point where the function value is known. For instance, say the value of the constraint g is
known at the current operating point, ug. The value of that same constraint at a potential

new operating point, ugy; can then be approximated in the following way:

n
1 . ,
9(oarn) = glua) + 3 7 V9| (ugr — wa) o (waar e ) (B3)
i—1 (’I,) Uk
where 7 is the highest order of the terms that the Taylor series expansion is going to
consider [Chapra, 2008]. Note also that the approximation of g(ugy1) is more accurate
when g1 is closer to ug. This is true because in Equation B.3, as (ugy1 — ug) shrinks,

so does the size of the remainder term O (|| U1 — Uk |lnt+1). Conversely, if the two points

are considerably far apart, the Taylor series approximation may be very inaccurate.

B.3 LICQ

A minimum of the plant (uP*) is only required to satisfy the KK'T conditions of the plant op-
timization problem (Problem B.2) if the linear independence constraint qualification (LICQ)
is satisfied. The LICQ states that the gradients of the active constraints (denoted by GP%)
must be linearly independent at the plant optimum u?* [Rardin, 1998]. If this requirement
is not satisfied, u?* may not satisfy the proper KKT conditions, while still being a minimum

of the plant.
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B.4 KKT Conditions

If the first order (necessary) KKT conditions are satisfied at a particular operating point,
uP™*, it means that this point is a KKT point or stationary point of the plant. The first

order (necessary) KKT conditions for the plant optimization problem (Problem B.2) are:

G¥(u) <o
Y7gP =0
¥>0
oLr  dov  ,dgP
fu  du + du =0 (B4)

where the Lagrangian is defined as: £P = ®” + 4T GP and ~ are the Lagrange multipliers
[Rardin, 1998]. In (B.4), the first expression is called the primal feasibility condition, the
second is referred to as the complementary slackness condition and the third and fourth
expressions are together called the dual feasibility conditions [Marchetti, 2009]. Note that
satisfaction of the LICQ and first order KKT' conditions does not guarantee that u?* is a

minimum of the plant. In addition, satisfaction of second order conditions is required.

The second order (sufficient) KKT conditions are used to determine what type of stationary
point a particular operating point is. Note that in order to correctly apply the second order

conditions, the particular operating point must satisfy the first-order KKT conditions (B.4).

To apply the second order conditions, information about the curvature of ®? at the station-
ary point, u?*, must be known. If one or more constraints are active at u”*, the reduced
Hessian, V%’T@’ , must be obtained. Note that the following derivation for the calculation

of the reduced Hessian is taken from Forbes and Marlin [1996].

In order to compute the reduced Hessian, the active set (G™*) at the stationary point the
must be known. Based on this, the gradients of the active constraints with respect to the
inputs at the stationary point, d%# |u1”* can be calculated. A singular value decomposition

is then carried out as follows:
dgre

du ups*

—URY (B.5)
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A set of basis vectors for the null space of the gradients of the active constraints is given
by the columns of V which correspond to the zero singular values of 3. Calling this set of

basis vectors Z, the reduced Hessian at the plant stationary point can be computed:

V2 0P|y = ZEVELP| o Z (B.6)

If the reduced Hessian is strictly positive definite at the stationary point (V%m@ﬂup,* = 0)
then that point is a minimum of the plant optimization problem. Conversely, if the reduced
Hessian at that point is strictly negative definite (V2 ®P|yp < 0), then the point (uP*)
is & maximum. If it is positive semi-definite then it can be a minimum or a saddle point,
and similarly, if it is negative semi-definite, it can be a maximum or a saddle point. If the

reduced Hessian is indefinite, then u”* is a saddle point [Rardin, 1998].

B.5 Sensitivity Analysis Theory

The purpose of conducting a sensitivity analysis is to find out how the solution to an
optimization problem would change if certain parameters in the optimization problem itself
were to change. This is especially important in modifier adaptation (and RTO in general)
because the system tends to be subject to measurement noise which can easily cause the
modifiers, which are essentially parameters in the model-based optimization problem, to be
incorrectly estimated. Non-linear sensitivity analysis theory is explained in detail in Fiacco

[1983].

The following model-based optimization problem is considered for the explanation of non-
linear sensitivity analysis:
u* € arg ml}n ™ (u, A)
st. G(u,A)<0 (B.7)
where the cost function and constraints of the process model are redefined in terms of the

inputs and the modifiers (®™(u, A) := ¢(u,7™(u, A)) and G(u, A) := g(u,$™(u, A))).

Note that this is just a reformulation of Problem 3.6. Also, both ®™ and G must be twice
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continuously differentiable with respect to the inputs and once continuously differentiable
with respect to the modifiers. In addition, the following non-linear map is also defined:

~* =T (K), which relates the modifiers to the optimal values of the Lagrange multipliers.

To carry out the post-optimal sensitivity analysis, both U* and I'* must be differentiable
at A. Note that the non-linear map U* (defined in Equation 3.10) can still be used here
because the nature of the model-based optimization here is still the same as in Problem
3.6 (it has only been reformulated). The differentiability of U* and T'* at A is dependent
on u* being a unique optimizer of A. This requires that the LICQ as well as the first
and second order KKT conditions for a local minimum are satisfied. In addition, the
Lagrange multipliers corresponding to every active constraint must be greater than zero
(strict complementary slackness) [Marchetti, 2009]. For reference, the first order KKT

conditions for the reformulated model-based optimization problem (B.7) are:

G(u,A) <0
7TG:0
v=20

L™ dom 7dG

= = — =0 B.8
du  du ) du (B8)

where the Lagrangian is defined as: £™ = ™ 4+ 4T G and v are the Lagrange multipliers

[Rardin, 1998).

Note that since the analysis involves a set of assumptions and computations at a particular
operating point (u*), it is only locally valid. Therefore, it should not be used to make
assumptions about a potential change in the solution for a large parameter change. Fur-
thermore, to carry out the analysis, an active set is assumed for the problem. Therefore,
if a given parameter variation causes the active set of a problem to change in reality, the

sensitivity analysis will be no longer be valid [Fiacco, 1983].

Two matrices, X and Y are required to complete the sensitivity analysis. They are defined
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as follows [Fiacco, 1983]:
2 _dgT
du? du

dgi
M gu

dgn,
paadd’ R
| Tng du

[ 2L
dul
dg1
Bl
A (B.10)

dgng
| Yng dA.

Note that X represents the Jacobian of both the complementary slackness condition and
the second dual feasibility KKT condition in (B.8) with respect to the inputs (u) and the
Lagrange multipliers (7). Conversely, Y represents the Jacobian of the complementary
slackness and second dual feasibility KKT conditions in (B.8) with respect to the modifiers,
A [Marchetti, 2009]. These matrices are then put together to obtain an estimate of how
a change in the modifiers can effect the solution of the model-based oplimization problem

[Fiacco, 1983]:
aur
dA
ar*

>

=x"ly (B.11)

y
>
>
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The purpose of this appendix is to detail the computation of the sensitivities used in the
convergence analysis of single input problems (Section 3.2.2) and the variance cost approx-
imation (Section 4.3.1). The sensitivities to be addressed are mainly those that are used to

compute Yo, in both cases.

Specifically, the sensitivities making up Equations 3.18 and 3.19 are addressed. Note that
although these equations are written for single input problems specifically, the derivations
are written for multi-input problems in this appendix (unless otherwise stated), so they can
also apply to the variance cost approximation for multiple input problems (Section 4.3.1).
Before any specific derivations are made, note that the following assumption for the form

of the derivatives:

v
[B_V} _ b (C.1)
0% l(ig) 0%
where v and x are two random vectors [Petersen and Pedersen, 2008).

24
? a"A‘k,
(the full form of the update law A), A}, appears linearly and therefore the following can be

The first sensitivity from Equation 3.18 is now addressed. Examining Equation 3.8

written:
oA
—— = (21 — T(ugy1)) (T — Kp) T(ug) (C.2)
OAg
The sensitivity of the optimal inputs to the modifiers, % <. is computed using a non-
k

linear post-optimal sensitivity analysis, as described in Fiacco [1983] and Appendix B of

this thesis.

0.A
Ougiq

is now considered. To begin, the following vector is defined for the purpose of this

derivation:

yP (ugq1) — £ (Wgr1, @, B)

of! T
[B}.;,—}-l - _5%— (uk—l-l) «, IB)]

w=[(I-Kyp) T(uk)Kk + Ka (C.3)

Ny

a n
_[ = (e, 3)]
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The elements of T'(ug41) are placed into a vector, t, which can be defined as follows:

t:[T(ulﬂ-l)(l,:) T(Ugt1)2,) - T(uk+1)(nA,;)] (C4)

The purpose of this change is that the derivative of the algorithm (A) with respect to a
matrix T(ug1) needs to be considered here. Since for both representation and implemen-
tation purposes it is advantageous if the derivative is two-dimensional, T(u1) is stretched

into the vector t. The derivative, %—“tl can be stated as follows:

—W 0
oA .
A 5 (C.5)

where na is the number of modifiers.

Now, the change in T(ug1) with respect to the operating point ugyq ( %—E |uk+1)’ is required.
Using the vector t the following non-linear map is written: t = ! (ugy1). Now, the
corresponding derivative can be written:

— \ -

O(ny,1)
0 (j-1),1)
O¢-1,1) .
oot ’ j=1.mny
= Vi=1.n, .
o0 1 , Vi n (C.6)
O(ny—i,1)

O("Lu (ny *j),l)

O(nynunA,l)

8A ot
can be calculated as Bt Durgs”

oA
Ougq1

Now, using Equations C.5 and C.6, the term
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Four more sensitivities with respect to the non-linear map A are computed as shown below:

;
I,
A T K|
yk+1 O(nynu,ny)_
L
88:3 = [21 - T(up1)] Ka "
yk+1 LO(”ynmny)_
0 Ty Ty T
O o1 (g )] Ky | o)
OBg11 1
[ e
0A O(n Ty Ty )
momm = 21— T(up)] Ka | (C.7)
VYL —Inyn,

The four sensitivities in (C.7) were obtained by directly considering the definition of A

(Equations 3.8 and 3.9).

oM

Hu is simply gZ—S for the single input case. The same idea is applied for multi-input systems,

however, the final matrix must be arranged to fit with the 4th expression of Equation C.7:

82 fl T
ou?
82 2
M | G ©8)
du : '
32 f"y
L du? |
- : : : R OR  dF
The last expression that must be developed in Equation 3.18 is ( B T B, Uk+1>.
Its derivation for single input problems is considered first. Computing the individual deriva-
: . OR_ _ _ YRqi Vi R _ 1 . .
tive terms, e TR A—" and T the following can be written:
_OR | OR dF _ _Yem =¥ 1 dF
Ouprn  Oypyy  du U1 (ur41 — 'U'k)2 Uy — U du U1
Ukl — Uk | QU Ukl — Uk
Now, a Taylor series expansion is written for yz around the point yz 4
dF 1 &°F
Y R Y+ o (ur — k1) + 5 = (ug — tgy1)? (C.10)
du |, 2 du
k1 U1
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where terms greater than second order are ignored. This expansion is then rearranged to
yield the following;:

1 d?F
2 du?

Uk+1

Yer1 ~ Vg . dF

i — U 11
T (wkt1 — ug) (C.11)

Uk+1

Equation C.11 is then substituted into the second expression of (C.9) to yield:

> 1 &PF
N3 R
_— 2 du

can be estimated in a number of ways.

(C.12)

———-+—_——._
Quryr  Oypy, du

Ukt 1

( R OR  dF

which completes the derivation. Note that %};‘-
Uk41

First, if a benchmark model for the plant is available (a model that is too complicated for
online implementation), it could be used here to approximate F(u). Conversely, it could

also be estimated through plant experimentation or inherent process knowledge.

For multi-input problems, the development is much easier, since Y, is being developed
for only the variance cost approximation. In the variance cost approximation (Section
4.3.1) the assumption is madc that the ideal modifier adaptation algorithm approximates
the behaviour of the dual modifier adaptation algorithm. It is assumed in ideal modifier
adaptation, that an exact representation of the plant, F(u), is available. Note that in
practice, the benchmark plant model is typically used in the ideal modifier adaptation
algorithm. Alternatively, F(u) can also be approximated by conducting plant experiments
or through inherent process knowledge. F(u) is then differentiated exactly as the process

model was earlier (C.8):

2F1 ]
du?
82F2
O’F v
82F71y
L ouz |
2 . . . .
Now, % replaces ( 83,?11 'ggp& : ‘;—5 qu) in Equation 3.18 for the design cost approxi-
g k1 ¢

mation of multiple input problems.

was earlier. To

Considering 3.19, % can be addressed in much the same way that Bglﬁ -

simplify the computation, the following matrix is defined: H = [2I — T'(ug4+1)] (I - Ka). A
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vector representation for T(uy) is defined as follows:

T = [T(uk)(l,:) T(uk)(z,;) “ee T(uk)(nm:)] (0.14)
%‘é can then be written as follows:
0A +T ~T T
oy [/H(:,l)Ak HeahAy - H(:,ny(nu—l-l))Ak:] (C.15)

This was written by repeatedly applying the following for a random vector x and a random

matrix A: ax;% = xxT [Petersen and Pedersen, 2008]. Now, writing 7 = 7 (ug) and

realizing that % = 8?1(;?_:1 it is evident that g& in Equation 3.19 can be replaced by

JA 00"

ar ouy *

The computation of % - just consists of carrying out the non-linear sensitivity analysis
E—1

described previously at a new set of modifiers, Ay_;. Now, all the sensitivities required to
write Yo for both the single input problem convergence analysis of Section 3.2.2 and the

variance cost approximation of Section 4.3.1 have been developed.

There is one other pair of sensitivities used in the variance cost approximation that need to

OAg 11
ayt

OApy1

oL and
OYir1

be estimated. These are which are required for the approximation of the
covariance matrix of the modifiers due to measurement noise (Equation 4.22). %’f—ﬂ and
k41

%%i are expressed as follows:
k

OAp1  OA 0A  OBpp
OYhr1 OYpr1  OBrii Oy
Ry DA OBen 16
oy}, OBryi Oyl
where %‘Ar and agﬁ - were computed in (C.7). Note that the expression for a?)’j;; L is
[%] k k

slightly different because there is no direct dependence of the non-linear map (\A) on y}.

An explanation is now included for the approximation given in Section 4.3.1 for %]-37@ and
v4-1

ket
glg—)’j;!‘—l (Equation 4.23) for the special case where B is diagonal. ?9]35“ can be expressed for
k k+1
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the n** measurement and the i** output (when i = n) as:
i Aug i
Z?g1 A
; Aug
7 —_— e
T | T (C.17)
AyPm ~ . .
Yir1 :
Atip,
L _?,1;1 A'“'Jg i

where Aug41 = Upqq — Ug. Note that if ¢ # n then there is no relationship between the nth

. i
measurement and B 1

It is clear that as the algorithm converges, each term of Equation C.17 goes to infinity.
In practice though, the dual constraints prevent this singularity from ever happening. By
closely examining the shape of the ellipsoid itself, it is possible to estimate the values of the
terms in Equation C.17. The maximum absolute values of each of the individual terms in
Equation C.17 are inferred by considering the case, for term ¢, when Au; =0V j # ¢. This

assumption is applied to Equation C.17 to obtain the following;:

1
Auy
1 1
OBl , | B C.18
a . T ( . )
Yi+1
1
L Augn,, J

Hence, Equation C.18 represents an upper bound on the magnitude of the effect that the

measurement noise can have on the Broyden update.

The dual constraint itself is difficult to generalize from an online point of view, due to
varying previous movement directions causing different restricted areas. Therefore, only
the ellipsoid portion of this constraint is considered in this offline approximation. Now, in
the separate cases for each of the n, terms in Equation C.18, the minimum distance that
the ellipsoid itself will allow in any input direction, wu;, is 1/4/b;. This is accurate in each
separate case since the assumption Au; = 0V j # 4 reduces the equation of the ellipsoid to

b; (Au%) = 1. Therefore, the maximum absolute value of each of the terms in the sensitivity
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in Equation C.18 can be estimated:

55

OB}
R (C.19)
Ayt :

bn

u_

Since this derivation was predicated on the assumption that each of the individual terms of
Equation C.17 takes on its maximum value, this will lead to an over-estimation of the effect

of measurement noise on the Broyden estimates. Note that this development also applies

. A
to % which appears as a part of the Ohkt1
k k

sensitivity. The sign of the result is flipped

due to the difference between y} and y} ; in Equation 2.27.

To demonstrate this approximation in practice, a small example is now given. A two input
system is assumed, with an ellipsoid defined by b = [4, 4]. The algorithm has just moved to
an operating point 0.4 units in the u; direction and 0.3 units in the ug direction from the
previous operating point. The new point, previous point, and ellipse are shown as parts of

Figure C.1.

Figure C.1: Diagram for Broyden sensitivity calculation example

Equation C.19 gives the approximation of the sensitivity of the Broyden update for output

7 to the measurement n:

OBt b 4 2
b _ VP Vel _ (C.20)

Oy |/by Vi 2
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The value of the sensitivity in the case of the move specified for this particular example can
be calculated using Equation C.17:

Aug

i —au 04 _
OB 1 o | 2 AuE | | 022037 | 1.6 (C.21)
- - - :

y Au 0.3
ki1 S A 0.4240.32 12

Note that the approximation does indeed provide an upper bound on the magnitude of the

true value of the sensitivity in question.

Finally, a short explanation of the assumption of Equation 4.25 is given for the special case
in which B is diagonal. Recall that this assumption deals with approximating the effect
of the dual constraints on the algorithm when one of them is always active. Consider the
fictitious scenario situation in which the algorithm is only moving between three operating
points, u%,, u*~ and u**. Both u’~ and u** are defined as the closest points that the
ellipsoid constraint will allow to u}, if movement is only allowed in the input direction 4.

These points are shown in Figure C.2 for the u; input direction.

Figure C.2: Assumed algorithm movement for input direction 1 in scenario 2

1
v

assumption of movement only in the input direction ¢ reduces the equation of the ellipsoid

The distance between u¥, and both u’~ and u'* is easily computed as because the
to b; (Auf) = 1. The following 4-point pattern is now assumed from experience for this
scenario: starting at u‘~, moving to uZ,, then on to u** and then back to u¥,. Assuming that
this pattern is constantly repeated, the variance of input i is easily computed: V(ue;) =

2%2_. Now applying this scenario in all of the other input directions, the following is obtained:
1
261

Vs (u) = " (C.22)

Tbn,
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which is equivalent to (4.25) if B is diagonal. Since in reality the constraint can only force
the computed operating point to be pushed the maximum distance (\/l—b—) in one direction
at a time, this represents an over-approximation of the effect of the dual constraints on the

iterates.
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Listing of the Source Code
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In the following appendix, a selection of the source code for the work presented in this thesis
is shown. It is written in MATLAB and the version éhown here corresponds to the propane
furnace problem. The basic dual modifier adaptation code is shown first, followed by the

high-level functions involved in the design of dual modifier adaptation systems.

D.1 Dual Modifier Adaptation Algorithm

function MainModAdapt ()

%this funcition is the main function ithat can be used to test a particular
%dual modifier adaptation design. It produces e graph of the movemeni of

%the system as well as writes out some performance statistics to a file

%reads in modifiers to be updated

methodology._-details;

%creates all scripts coniaeining system properties (e.g. models, objective
%function) as well as corresponding derivative info

[nu, nyp, nym, nxp, nxm, ng] = model_gen_sim(param_var.num, yparam_var_num, mods.var-num);

Y%reads in problem perameters

problem_.parameters_real ;

%computing noise level (stenderd deviation) for each output

rhov = noise.sd*opt-noise-values;

%setting initial values
u_tan_pos = zeros(nutnym,1);

u_tan_neg = =zeros(nufnym,1l);

Zperforming a plant exzperiment at the starting point

[zold, zn, c¢] = plant_measurements(u.matrix(:,1), pp, rhov, nyp, nu, nxp);

%computing model outputs at starting point
w = ones(nxm,1);
for i = 1:(length{u_matrix)—nu)
w(i) = u_matrix(nuti);
end
xum = fsolve (@(w)model_eqns(w, u_matrix(:,1), p), w);
model_states;

output.model_equations;

%computing model derivative estimate at starting point

dydu = model_calcs (u_matrix(:,1), lambdacost(:,1), xum, yum, p);

%computing first Broyden derivative estimate
BR = dydu;

%solving first optimization problem (no dual constiraints)

u = optimizer3 (u.matrix(:,1), p, lambdacost(:,1), ng, nym, ustart, ulL, uU, max_it);
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%loop to move through RTO iterations

for j=1l:num.it

%updating and itracking vaelues through RTO iterations
zold = zn;

cost_tracker (j)

¢

u_matrix (:,j+1) = u;

%taking measurements from the fictitious plant

[z, zn, ¢] = plant_measurements(u.matrix(:,j+1), pp, rhov, nyp, nu, nxp);

%calculating the new dual constraini implementation parameters

if j >= (nu-1)

[p, u-tan_pos, u_tan_neg] = const_parameter_calc4(u_matrix, p, nu, j, u, g_vector, nxm});

end

%updating the Broyden derivaiive estimates
BRold = BR;
BR == broydon(u_-matrix (1:nu,j+1), u.matrix(i:nu,j), zn, zold, BRold);

%computing the model derivatives
opt.states;
ountput-model_equations;

dydu = model_calcs (u_matrix (:,j+1), lambdacost(:,j), u_matrix({(1+ou):{nutoxm),j+1), yum,

%comparing plant and model information

Ci = zn — yum’;
C2 = [];
for i = l:nym

C2 = [C2 ; (BR(i,:)’ — dydu(i,:)’)];

end

%computing new modifier wvalues

P);

lambdacost (:, j4+1) = modifier.calc_bar(C1, C2, nym, nn, lambdacost(:,j), u-.matrix(l:nun,j+4+1),...

u.matrix (i:nu,j), mods.varnum, b, q);

%solving disjunctive optimization problem

best = inf;

[uset2, fopt, exitflag] = optimizer2(u.matrix(:,j+1), p, lambdacost(:,j+1), ng, nym,...
u-tan_pos, uL, uU, max_it);

if fopt < best && exitflag > 0;
u = uset?2;
best = fopt;

end

[uset3, fopt, exitflag)] = optimizer3 (u_matrix(:,j+1), p, lambdacost(:,j+1), ng, nym,...
u-tan_neg, ul, uU, max_it);

if fopt < best && exitflag > 0;
u = uset3;

end
end

%ereating statistics wvectors
lambdacost_stat = lambdacost (:,stat_it:end);
u_.matrix.stat = u_matrix(:,stat_it:end);
for i = i:length(u_matrix_stat)
u.matrix.stat2(1,i) = (u.matrix-stat(1,i)4+18.1575)=%20;

u_matrix-.stat2(2,i) = u_matrix_stat(2,i)+5;
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103 | end
104 | cost_stat = cost_tracker(stat_it:end});
105

106 | %plotiing rTesults

107 | contour.plof_sim (pp, nxp, ng, zeros(nym=(nu+41),1), u, u.matrix-stat, g-backoff)
108 | held on

109 | plot(u.matrix_stat2 (1,:), u.matrix_stat2(2,:),’'—x’)

110

111 |%calculating and printing statistics to a file
112 | u-.averages(1l,:) = mean(u_matrix_stat (l:nu,:)’);
113 {u_variances (1,:) = var(u-matrix_stat (l:nu,:)’);
114 | cost.average (1) = mean(cost_stat);

115 | cost_variance (1) = var(cost_stat);

116

117 | datal = [];
118 | for i = 1:mu

119 datal(:,i) = (g-.vector(i));

120 |end

121 | datal(:,nu+1) = noise_sd;

122

123 [for i = 1:nu

124 datal (:,nut1+142x(i —1)) = u_averages(:,i);
125 datal (:,nu+14-242%(i —1)) = u_variances (:,i);
126 |end

127 | datal (:,3*nu+2) = (cost_average);
128 [datal(:,3*nu+$3) = (cost.variance);

129
130 | varnamesl = [];
131 {for i = 1:(3*nu+3)
132 varnamesl = [varnamesl ; ’Data...’];
133 |end
134 | casenamesl =|[];
135 | for 1 = 1:1
136 casenamesl = [casenamesl ;’oo..’];
137 lend
138
139 tblwrite (datal ,varnamesl, casenamesl,’case_t1.dat’)
140
141 | end
1 |%contains information on which modifiers should be updated (other two
2 | %variables are for e later exztension to hybrid methods)
3
4 | param_var_num = [];
5 | yparam_var-num = [];
6 mods_var.num = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23...
7 24 25 26 27 28 29 30 31 32 33];
1 | function [nu, nyp, nym, nxp, nxm, ng] = model_gen_sim ()
2
3 |%this function generates a set of files (or scripts) which contain
4 | %information about the system (objective funcition, benchmark and normal
5 |%process models, constrainis) and theri respective derivatives
6
7 | %defining symbolic variables
8 |syms Ul U2 real
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syms U0l U02 real

syms X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 real

syms Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y1l real

syms TH1 TH2 TH3 TH4 TH5 TH6 TH7 TH8 TH9 TH10 TH11 TH12 TH13 TH14 TH15 TH16 TH17 TH18 TH19...
TH20 TH21 TH22 TH23 TH24 TH25 TH26 TH27 TH28 TH29 TH30 TH31 TH32 TH33 TH34 TH35 TH36 TH37...
TH38 TH39 TH40 TH41 TH42 TH43 TH44 TH45 TH46 TH47 TH48 TH49 TH50 TH51 TH52 TH53 THS54 THS55. ..
TH56 THS57 TH58 TH59 TH60 TH61 TH62 TH63 TH64 TH65 TH66 TH67 TH68 TH69 TH70 TH71 TH72 TH73...
TH74 TH75 THv6 TH77 TH78 TH79 TH80 THS81 TH82 TH83 TH84 TH85 TH86 TH87 TH88 TH89 real

syms Li L2 L3 L4 L5 L6 L7 L8 L9 Li0 L1l L12 L13 Li4 L15 Li6 L17 L18 Li9 L20 L21 L22 L23 L24...
L25 L26 L27 L28 L29 L30 L31 L32 L33 real

%defining vectors of wvarious quaniities
U = (U1l U2];
U0 = [U01 U02];

XM = [X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X1l X12];
XP = [X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12];
YM = [Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y1i];
YP = [Y1l Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Yil];

param_set = [TH1 TH2 TH3 TH4 TH5 TH6 TH7 TH8 TH9 TH10 TH1i TH12 THi3 TH1l4 TH15 TH16 TH17...
THi8 TH19 TH20 TH21 TH22 TH23 TH24 TH25 TH26 TH27 TH28 TH29 TH30 TH31 TH32 TH33 TH34...
TH35 TH36 TH37 TH38 TH39 TH40 TH41 TH42 TH43 TH44 TH45 THA46 TH47 TH48 TH49 TH50 TH51...
TH52 TH53 TH54 THS55 TH56 TH57 TH58 TH59 TH60 TH61 TH62 TH63 TH64 TH65 TH66 TH67 TH6S. ..
TH69 TH70 TH71 TH72 TH73 TH74 TH75 TH76 TH77 THT8 THT79 TH80 THS81 TH82 TH83 TH84 THS85...
TH86 TH87 TH88 TH89];

W= [U XM];

P = [param._set XM];

L = [L1 L2 L3 L4 L5 L6 L7 L8 L9 Li0 Lil Li2 L13 L14 L15 Li6 L17 L18 L19 L20 L21 L22 L23 L24...
L25 L26 L27 L28 L29 L30 L31 L32 L33];

TH = [TH1 TH2 TH3 TH4 TH5 TH6 TH7 TH8 TH9 TH10 TH11 THi12 TH13 'I'{14 TH15 THIi6 TH17 TH18...

TH19 TH20 TH21 TH22 TH23 TH24 TH25 TH26 TH27 TH28 TH29 TH30 TH31 TH32 TH33 TH34 TH35...
TH36 TH37 TH38 TH39 TH40 TH41 TH42 TH43 TH44 TH45 TH46 TH47 TH48 TH49 TH50 TH51 TH52...
TH53 TH54 TH55 THS56 TH57 TH58 TH59 TH60 TH61 TH62 TH63 THG64 TH65 TH66 TH67 TH68 THGY...
TH70 TH71 TH72 TH73 TH74 TH75 TH76 TH77 TH78 TH79 TH80 TH81 TH82 TH83 TH84 TH85 THS6...
TH87 THS88 THS89];

%setting counters for numbers of inpuis, states and ouiputs
nu = length(U);

nxp = length (XP);

length (XM);

nyp length (YP);

nym = length (YM);

I

nxm

I

%writing wvarious scripts

write.inputs (U, 'U’, ’inputs.m’};
write.inputs.old (U0, *U0’, inputs_old .m’);
write_states_plant (XP,'X’,’plant_states.m’);
write_states_model (XM, 'X’, > model_states.m’);
write_outputs-plant (YP, 'Y’ ,  plant.outputs.m’);
write_outputs_model (YM, 'Y’ , 'model_outputs.m?’);
write_parameters (TH, 'TH’, ’parameters.m’ );
write_modifiers (L, L', modifiers.m’};

write.states_opt (XM, ’X’,’opt_states.m’ ,length(U));
%****************************************************************
%cost function

f = —1+((U1x100)*TH61+(Y1l 4 L1 4 L12«Ul 4 L13xU2) 4 (U1l%100)*TH62x(Y2 + L2 4 Li4xUl 4 L15xU2)...
+ (U1%100)*TH63*(Y¥3 + L3 + L16xUl + L17xU2) 4 (Ulx100)*THG4+(Y4 + L4 + L18xUl 4 L19xU2)...
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+ (Ul«100)*TH65+(Y5 + L5 + L20%Ul 4 L21%U2) + (U1%100)+THG6=(Y6 + L6 4+ L22+Ul + L23+U2)...
+ (U1l%100)+TH67+(Y7 + L7 + L24xUl + L25xU2) + (U1x100)+TH68+(Y8 + L8 + L26+Ul 4+ L27+U2)...
4+ (U1x100)*TH69%(Y9 + L9 4+ L28xUl + L29xU2) 4+ (Ul«100)+TH70%(Y10 + L10 4 L30%Ul + L31«U2)...
— TH71+TH85%(U1%100) — TH72x(Y11 + L11 4 L32+Ul 4+ L33%U2) — (U1x100)«TH73);

writelD(f,’f’,’cost.m’);

%gradient of cost function wrt the inputs
dfdu = jacobian(f,U);
write2D (dfdu, dfdu’,’cost-input_-derivs.m’);

%gradient of cosit funcition wrt the plant ouiputs
dfdyp = jacobian{f,YP);
write2D (dfdyp, 'dfdyp’,'cost_output_plant_derivs.m’);

%gradient of cost function wrt the model outputs
dfdym = jacobian{f,YM);
write2D (dfdym, ’dfdym’, 'cost_output_derivs.m’);

%gradients of cost function wrt opitimization wariables
dfdw = jacobian(f, W);
write2D (dfdw, *dfdw’,’cost.opt_derivs.m’);

A R bk e R T e ]

%plant model
xup (1) = TH1 4 TH2xTH85 + TH3*TH85"2 + TH4+U2 4 TH5+«U2"°2 | TH6+TH85xU2 — X1;
xup(2) = TH7? 4+ TH8«TH85 + TH9+xTH85"2 + THi0+«U2 4 TH11xU2°2 4 TH12+TH85x%U2 — X2;
xup{3) = THI13 4 TH14+TH85 4 TH15+«TH85"2 4+ TH16xU2 4+ TH17+U2"2 4+ THI18+«TH85+xU2 — X3;
xup (4) = TH19 4+ TH20+TH85 + TH21+TH85"2 4 TH22x«U2 4+ TH23xU2°2 + TH24+TH85xU2 — X4;
xup(5) = TH25 -+ TH26+TH85 4 TH27+«+TH85"2 - TH28+U2 4 TH29xU2"2 4 TH30xTH85xU2 — X5;
xup (6) = TH31 + TH32+TH85 4 TH33+«+TH85"2 + TH34xU2 | TH35+U2"2 + TH36+TH85+U2 — X6;
xup (7) = TH37 { TH38x+TH85 4 TH39+TH85"2 + TH40+U2 + TH41:U2"2 4 TH42+«TH85+xU2 — X7;
xup (8) = TH43 4 TH44+TH85 4 TH45«xTH85%2 4 TH46+U2 { TH47+U2"2 4+ TH48+TH85+U2 — X8§;
xup{(9) = TH49 + TH50+TH85 { TH51xTH85"2 + TH52xU2 -} TH53xU2°2 4 TH54+TH85%xU2 — X9;
xup{10) = TH55 4+ TH56«TH85 4 TH57+«TH85"2 4 TH58«U2 + TH59+U2"°2 + TH60xTH85+U2 — X10;
xup(11) TH74+((U1%100)/(X12%100)) — X11;
xup(12) = TH75+X1 + TH76+X2 4 TH77+X3 { TH78+X4 -4 TH79+X5 4 TH80xX6 | TH81xX7 { TH82+X8...
+ TH83%«X9 + TH84xX10 — (X12%100);

writelD (xup, 'xup’, ’'plant_model.m’);

%gradient of functions writ the inputs for the plant
dhdup = jacobian (xup,U);
write2D (dhdup, 'dhdup’,’in_func_plant_derivs.m’);

%gradient of functions writ the states for the plant
dhdxp = jacobian (xup,XP);
write2D (dhdxp, 'dhdxp’,’st-func.plant.derivs.m’};

D 4 4ok s ok ok ok ok ok ok ok ok ok ke sk sk o o sk sk ok o ok o ke ok ok sk sk ok ok ok sk sk ok o ok Sk sk ok ok ok ok s ok K ok ok R oK oK ok ok ok ok R Rk ok sk ok R

%plant outputs
yup(l) = X1;
yup(2) = X2;
yup(3) = X3;
yup(4) = X4;
yup(5) = X5;
yup(6) = X6;
yup(7) = X7;
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yup(8) = X8;

yup(9) = X9;

yup(10) = X10;

yup(11) = Xi1;

writelD (yup, 'yup’,’output_plant_equations.m’);

I

%gradient of plant outputs wrt the inputs
dydup = jacobian (yup,U);
write2D (dydup, dydup’,’output_input_plant_derivs.m’);

%gradient of plant outputs writ the plant states
dydxp = jacobian (yup,XP);
write2D (dydxp, 'dydxp’,’output_state.plant.derivs.m’);

D e st sk s e ke ok ok o o ok sk sk ok ok o S s ok ok sk ok ok ok R ok sk ook ok ok o ok ok ok kR 3K Rk ok oK sk ok ok R ok sk ook ok ok oK ok ok Kk kR R R R

Y%approxzimate model
xum{1) = TH1 4 TH2xTH85 -+ TH3*TH85"2 + TH4xU2 4 TH5+U2"2 4 TH6xTH85xU2 — X1;
xum(2) = TH7 4 TH8+TH85 + TH9*TH85"2 + TH10xU2 4+ TH11+U2"2 4 TH12xTH85xU2 — X2;
xum(3) = TH13 TH14xTH85 + TH15%xTH85"2 + TH16%xU2 4+ TH17+U2°2 + TH18+«THS85xU2 — X3;
xum{4) = TH19 TH20+TH85 + TH21+xTH85"2 4 TH22+U2 4+ TH23+«U2"2 + TH24+TH85xU2 — X4;
xum(5) = TH25 TH26+TH85 + TH27«TH85"2 4 TH28+«U2 4 TH29xU2"2 + TH30+«TH85xU2 — X5;
xum(6) = TH31 TH32+TH85 + TH33+«xTH85"2 4 TH34x«U2 + TH35+U2°2 4 TH36«TH85xU2 — X6;
xum(7) = TH37 TH38xTH85 + TH39+xTH85"2 + TH40xU2 4 TH41xU2"2 4 TH42+TH85+xU2 — X7,
xum(8) = TH43 TH44xTH85 + TH45«TH85"2 4+ THA46+«U2 4 TH47+«U2°2 + TH48+«TH85xU2 — X8;
xum(9) = TH49 THS50+«TH85 + TH51+«TH85"2 4 TH52+U2 4 TH53%U2"°2 4 TH54+TH85xU2 — X9;
xum(10) = TH55 + TH56«TH85 4+ TH57+TH85"2 4 TH58+U2 4+ TH59+U2"2 + TH60=TH85xU2 — X10;
xum(11) = TH74+((Ul*100)/(X12+100)) — X11;
xum{12) = TH75xX1 4+ TH76=X2 + TH77+«X3 4 TH78xX4 + TH79+X5 4 TH80xX6 -+ TH81xX7 4 TH82*XS8...
+ TH83+X9 + TH84xX10 — (X12%100);

writelD (xum, 'xum’, model .m’ );

+ o+t

Il

%gradient of functions wrt the inputs
dhdum = jacobian (xum,U});

write2D (dhdum, 'dhdum’, ’in.func_model_derivs.m’);

%gradient of functions wrt the model states
dhdxm = jacobian (xum,XM);

write2D (dhdxm, 'dhdxm’,’st.func.model_derivs.m’);
%****************************************************************

%approzimate model outputs
yum(1l) = Xi;
yum(2) = X2;
yum(3) = X3;
yum(4) = X4;
yum(5) = X5;
yum(6) = X6;
yum(7) = XT7;
yum(8) = X8;
yum(9) = X9;
yum(10) = X10;
yum(11) = X11;

writelD (yum, ’yum', 'ountput-model.equations.m’ );

%gradient of model outputs writ the inputs

dydum = jacobian (yum,U);
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183 | write2D (dydum, 'dydum’,’output_input_model_derivs.m’};
184
185 | %gradient of model outpuis wrt the model staies

186 |dydxm = jacobian (yum ,XM);

187 | write2D (dydxm, 'dydxm’,’output-state_model_derivs.m’);
188
1BO | Dok ot s s ke ok sk ke oh sk e o ok ok o ok ok ok oo o ok ok ok of ok ok ok o ok ok ok R ok ook oR ok ok ok ok ok o oK R SR ok sk sk ok ok ok ok Sk ok oR ok ok ok R o R
190 | %scction has not been updaied io cover recent changes

191
192 | %first set of constraints and their derivatives

193 g2(1) = Y11 4 L11 + L32*Ul 4 L33xU2 — 0.0147;

194 | g2(2) = (U1x100) — 15;

195 | g2(3) = 5 — (U1%100);

196 |g2(4) = U2 — 0.93;

197 | g2(5) = 0.70 — U2;

198 | g2(6) ((¥3 + L3 + L16+Ul + L17+U2)+(Ulx100) — 3) + THS6;
199 [g2(7) = TH89 — (TH87+(U1-UG1)4TH88x(U2-U02));

200 | writelD(g2,’'g',’constraints2.m’);

201 | dg2 = jacobian (g2, W);

202 | write2D (dg2, 'dgdw’, ’ineq-const_.derivs2.m’);

203 |dg2dym = jacobian (g2, YM);

204 | write2D (dg2dym, 'dgdym’,’const_output_derivs2.m’);

205 | dg2dl = jacobian(g2, L);

206 | write2D (dg2dl, 'dgdl’,’const_lam_derivs2.m’'});

207 | dg2du = jacobian (g2, U);

208 | write2D (dg2du, *dgdu’,’const_input-derivs2.m’);

209
210 | %second seit of constraints and their derivatives

211 {g3(1) = Y11 4 L11 4 L32%Ul 4+ L33xU2 — 0.0147;

212 | g3(2) = (Ul+100) — 15;

213 | g3(3) = 5 — (U1+100);

214 |g3(4) = U2 — 0.93;

215 |g3(5) = 0.70 — U2;

216 | g3(6) = ((¥Y3 + L3 4 L16+Ul 4+ L17%U2)+(U1x100) — 3) + THS6;
217 | g3(7) = TH89 4+ (THS7x(UL-U01)+TH88x(U2-U02));

218 | writelD(g3,’g’,’constraints3 .m’);

219 | dg3 = jacobian (g3, W);

220 | write2D (dg3, 'dgdw’,'ineq-const.derivs3.m’);

221 [ dg3dym = jacobian (g3, YM);

222 | write2D (dg3dym, 'dgdym’,’const_output_derivs3 .m’);

223 | dg3dl = jacobian(g3, L);

224 | write2D (dg3dl, *dgdl’,’const_lam.derivs3 .m’);

225 | dg3du = jacobian (g3, U);

226 | write2D (dg3du, 'dgdu’,’const_input_derivs3 .m’);

227

I

I

228 |%seiting counter for number of constraints
229 | ng = length(g2);

230
231 %****************************************************************
232
233 | %model consiraints written for the optimizer

234 [h(1) = TH1 4 TH2«TH85 -+ TH3xTH85"2 + TH4xU2 4 TH5xU2"2 +4 THG6+TH85+U2 — X1;

235 |h(2) = TH7 + TH8+xTH85 + TH9«TH85"2 + TH10+xU2 + TH11xU2"2 + TH12=TH85xU2 — X2;
236 |h(3) = THi3 + TH14x«TH85 + TH15+TH85"2 { TH16xU2 4 TH17«U2"2 4+ TH18+'TH85xU2 — X3;
237 | h(4) = TH19 4 TH20+TH85 + TH21+xTH85 2 4 TH224U2 4+ TH23xU2"2 4 TH24xTH85+U2 — X4;
238 [h(5) = TH25 4+ TH26«TH85 4 TH27+TH85"2 + TH28+U2 + TH29+U2"2 4 TH30+xTH85xU2 — X5;
239 [h(6) = TH31 + TH32+TH85 + TH33xTH85°2 + TH34xU2 4+ TH35xU2"2 4+ TH36«TH85xU2 — X6;
240 | h(7) = TH37 4 TH38+«TH85 + TH39xTH85"2 4 TH40%U2 4+ TH41xU2"2 + TH42+TH85:U2 — XT7;
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241 | h(8) = TH43 4+ TH44xTH85 + TH45+«TH85"2 { TH46xU2 | TH47+U2"°2 + TH48+«TH85%U2 — X8;

242 [ h(9) TH49 4 TH50+«TH85 + TH51=TH85"2 + TH52xU2 + TH53xU2°2 4+ TH54«TH85xU2 — X9;

243 |h(10) = TH55 + TH56+«TH85 + TH57+TH85"2 4+ TH58+U2 4 TH59%U2°2 -+ TH60+xTH85+U2 — X10;

244 | h(11) = TH74+((U1%100)/(X12+100)) — X11;

245 | h(12) = TH75+X1 4+ TH76+xX2 + TH77+X3 4+ TH78+X4 4 TH79+X5 4 TH80+X6 4+ TH81xX7 4 TH82xX8...
246 + TH83+X9 + TH84xX10 — (X12x100);

247 | writelD (h, ’h’,’eq.model.m’);

248
249 | %gradients of process model wri optimization wvariables
250 |dh = jacobian(h, W);

251 | write2D (dh, 'dh’,’eq_const.derivs.m’);

I

|

252
253 | end
Note that this is intended as an example of these write_... functions. These were adapted
from similar functions provided by Dr. Chachuat.

1 | function write_inputs(Deps_variables ,Var_name, File_name)

2

3 | fid = fopen(File-name, 'wt’);

4 ) for i=1l:length(Deps_variables)

5 Var_.name_i = strcat (Var_.name,num2str(i));

6 Equation.i = strcat(Var_name_i,’'.=.u(’ ,num2str(i),’); " );

7 fprintf(fid, %s\n', Equation.i);

8 |end

9 | fclose(fid);

10

11 | end

1 | %This script contains a bunch of system specific settings. It is read

2 (%directly into the main duel modifier oedaptation function. Its mein

3 | %purpose is to group together all the problem specific settings in one

4 | %place.

5

6 |%setting backoff and dual consiraini paraemiers

7 g-backoff = 0.136;

8 | g_vector = [25000;15000];

9

10 | %setting plant and model parameters

11 {p = [0.00494724; —0.03664829; 0.04069737; 0.019859935; —0.000969887; —0.002677888;...

12 0.10800515; —0.052572383; 0.078125; —0.164172769; 0.377328861; —0.046034175;...

13 0.492783395; 1.669458174; —1.875; —1.466407509; 1.076528013; 0.060010201;...

14 0.007192032; —0.29770971; 0.318080357; 0.341778885; —0.253919555; 0.001326192;...
15 —0.233759303; —4.104523391; 4.553571429; 2.831994285; —1.728076697; 0.011782708;...
16 0.478230614; 2.608846932; —2.898718813; —1.0; —1.28684%10"(—11); —7.42328+10"(—13);...
17 0.043096185; 0.520875137; —0.602678571; —0.427566842; 0.316262353; 0.03427697;...
18 —0.026571494; —0.313838283; 0.3515625; 0.268080883; —0.174337183; —-0.001683244;...
19 —0.000404145; 0.002154272; —0.003395081; —1.58084x10"(—5); 0.000258392; 0.001683244;...
20 0.053389638; 0.369410985; —0.368303571; --0.40355106; 0.386925703; —0.058684009;...
21 0.24; 0.06; 0.25; 0.08; 0.20; 0.08; 0.20; 0.14; 0.08; 0.14; 0.03; 3; 0.08; 0.036;...
22 2; 16; 28; 30; 42; 44; 54; 56; 58; 62; 0.3; g-backoff ; zeros(nu+1,1)};

23 [{pp = [0.00494724; —0.03664829; 0.04069737; 0.019859935; --0.000969887; —0.002677888;...

24 0.10800515; —0.052572383; 0.078125; —0.114172769; 0.327328861; —0.046034175;...

25 0.492783395; 1.669458174; —1.875; —1.966407509; 1.576528013; 0.060010201;...
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0.007192032; —0.29770971; 0.318080357; 0.291778885; —0.203919555; 0.001326192;...
—0.233759303; —4.104523391; 4.553571429; 3.331994285; —2.228076697; 0.011782708;...
0.478230614; 2.608846932; —2.898718813; —1.0; —1.28684%10"(—11); —7.42328%10"(—13);...
0.043096185; 0.520875137; —0.602678571; —0.427566842; 0.316262353; 0.03427697;...
—0.026571494; —0.313838283; 0.3515625; 0.268080883; —0.174337183; —0.001683244;...
—0.000404145; 0.002154272; —0.003395081; —1.58084x10"(—5); 0.000258392; 0.001683244;...
0.053389638; 0.369410985; -—-0.368303571; —0.40355106; 0.386925703; —0.058684009;...
0.24; 0.06; 0.25; 0.08; 0.20; 0.08; 0.20; 0.14; 0.08; 0.14; 0.03; 3; 0.08; 0.036;...
2; 16; 28; 30; 42; 44; 54; 56; 58; 62; 0.3; g-backoff ; zeros(nu41,1)];

%initializing noise level and typical ouipui wvalues

noise_sd = 0.01;

opt_noise_values = {0.011029851237480 0.180665660061833 0.243067841956929 0.051120128815393...
0.192389524065852 0.268872263828000 0.009087264974922 0.013358263483604 0.000432344129713...
0.029976857627441 0.012959475225053];

%setting system start point and modifiers as well as the point at which the
%optimizer will be started in its first run
w.matrix(:,1) = [0.07 0.85 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 20/100];
lambdacost = zeros(nym=x(nu-1),1);
for i = 1l:length(u_matrix(:,1))

ustart{(i,1) = 0.97+u_matrix(i,1) + 0.06+u.matrix(i,1l)=rand();

end

%optimizer setiings

max_it = 50;

for i = 1:nu
uL(i) = —inf;
uU(i) = inf;

end

for i = 1l:nym
uL(i4nu) = —inf;
uU(i+nu) = inf;

end

%filter parameters
b = 0.4;
q = 0.4;

Z%information about how many RTO iterations to run and et which iteration

%statistics should start being tobulated

num_it = 50;
stat_it = 1;
function [z, zn, f] = plant.measurements(u, p, rhov, nyp, nu, nxp)

%the purpose of this funciion is twofold: to generate plant measurements
%from the simulated plant model (adding in measurement noise) and

%compuiing the true plant cosi function wvalue

%solving simulated plant equations
w = ones{nxp,1);
for i = 1:(length(u)—nu)
w(i) = u{nuti);
end
options = optimset(’TolX’, 1le—10, 'TolFun’, le-—-10);

xup = fsolve (@(w)plant.model_eqns{w, u, p), w, options);
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%computing the pleant cost function wvalue (noiseless)
inputs;

parameters;

plant_states;

output_plant_equations;

plant_outputs;

lambdacost = zeros(nyp*(nu+1),1);

nold = zeros(nu,1);

inputs.old;

modifiers;

cost;

%adding measurement noise to the simluated plant outpuis

z = yup’;

for i = 1l:nyp
in¢ = normrnd(0,rhov(i));

zn{i) = z(i) + inc;

end

zn = zn'’;

end

function xup = plant_model_eqns(xup, u, p)

%solves the implicit plant model equations

inputs;
parameters;

plant_states;

plant_model;

end

function xum = model_egqns(xum, u, p)
%solves the implicit process model equations
inputs;
parameters;

model_states;

model;

function dydum_tot = model_calcs(u, lambdacost, xum, yum, p)
%computes the derivatives of the model ouiputs wrt the inputs
modifiers;
parameters;

inputs;

model_outputs;
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model_states;
in_-func.model.derivs;
st_func_model_derivs;
ocutput.input_model_derivs;
output.state_.model_derivs;

dydum_tot = dydum + dydxm={—1*inv{dhdxm)*dhdum});

end

function [xopt, fopt, exitflag, output, lambda}] = optimizer2(u0, p, lambdacost, ng, ustart ,...

ul:, uU, max_it)

%this function solves omne of the model—-based optimization problems

Zproviding settings to the optimizer

options = optimset{’Display’, ’iter’, ’GradObj’, ’on’, ’'GradConstr’, ’'on’,
'LargeScale’, ’'off’', 'HessUpdate’', ’'bfgs’, 'Diagnostics’, ’on’,
'TolX?, 1le—7, 'TolFun’, le—7, 'TolCon’, le—7, 'MaxFunEval’, 3smax.it,

*MaxIter’, max-it);
%carrying out the optimization
[xopt, fopt, exitflag , output, lambda] = fmincon(@(u)cost_.fun(u, u0, p, lambdacost), ustart ,...

i1, {1, [I. (1, ul, vU, @u)nonlin_const2(u, ud, p, lambdacost, ng), options);

end

function [xopt, fopt, exitflag, output, lambda] = optimizer3(u0, p, lambdacost, ng, ustart,...

ul,, wU, max_it)
%this funeciion solves one of the model—based optimization problems

%providing settings to the opiimizer

3

options = optimset(’Display’, ’iter’, 'GradObj’, ° !

on', ’'GradConstr’,

H 3

on’,
3

'LargeScale’, 'off’', ’'HessUpdate', ’'bfgs’, ’'Diagnostics’, ’on’, .
'TolX’, 1le—7, 'TolFun’, 1le—7, 'TolCon’, le—7, MaxFunEval’, 3sxmax_it,

) 3

*MaxIter’, max_it);
%cerrying out the optimization
[xopt, fopt, exitflag , output, lambda] = fmincon(@(u)cost-fun(u, u0, p, lambdacost), ustart ,..

1, {1, {1, [1. uL, uU, @(u)nonlin_const3 (u, u0, p, lambdacost, ng), options);

end

function [f, df] = cost-fun(u, uold, p, lambdacost)

%this function calculates the wvalue of the cosi function and its

%derivatives for the optimizer

parameters;
modifiers;
inputs;
inputs_old;

opt-states;
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output-model_equations;

model_outputs;

cost ;

%only run if analytical

if nargout > 1
cost_opt.-derivs;
cost.output_.derivs;
output-input.model_derivs;

output_state.model_derivs;

df = dfdw + dfdym=*[dydum dydxm]};

derivatives are asked for

end
end
function {g, h, dg, dh] = nonlin.const2(u, uold, p, lambdacost, ng)
parameters;
modifiers;
inputs;
inputs_old;
opt_states;
output-model_equations;
model.outputs;
g = [};
%evaluating inequelity constraints
if ng > 0
constraints?2;
end
%eveluvating equality constraints
eq-model;
%computing constraint derivatives if required
if nargout > 2
dg = [];
if ng > 0
ineq-const_derivs2;
output-state-model_-derivs;
output-input-model_derivs;
const_output_derivs2;
dg = dgdw + dgdym=[dydum dydxm};
end
dg = dg’;
eq.const.derivs;
dh = dh’;
end
end
function [g, h, dg, dh] = nonlin_const3(u, uold, p, lambdacost, ng)
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parameters;

modifiers;

inputs;

inputs-old;

opt_states;
output-model_equations;

model_outputs;

g = [};

%ecvaluating inequality constraints
if ng > 0
constraints3;

end

%evaluating equality constraints

eq-model;

%ecomputing constreint derivatives if required
if nargout > 2
dg = [];
if ng > 0
ineg.const.-derivs3;
output_state_-model_derivs;
output-input_-model_derivs;
const-ontput-derivs3;
dg = dgdw + dgdym=#[dydum dydxm];

end
dg = dg’;
eq-const-derivs;
dh = dh’;
end
end
function [p, u.tan_pos, u-tan_neg] = const_parameter.calc4 (u-matrix, p, nu, j, u, g-vector, nxm)

%this function computes the vector orthogonal to the hyperpleane of previous

%movement directions as well as the rhs of the disjunctive constraints

%calculating the orthogonal vector using the adjugete of the matric of

%previous movement directions

vect-matrix = zeros(nu,nu);
for i = 1:(nu-—1)
vect_matrix {1l:nu,i+1) = u_matrix (1:nu, j+2—i)—u_matrix (1:nu, j+1-i);
end
for i = 1l:nu
vect-matrix(i,1) = u.matrix(i,j+1)*rand();
end
determ = det(vect_matrix);
adj-.vect = determ=inv(vect_matrix);
for i = l:nu

p{end-nu—1+i) = adj-vect(1,i);

end

%calculating the ths of the disjunctive constraint

B = zeros(nu,nu);
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for i = 1:nu
B(i,i) = g-vector(i);
end
p(end) = sqrt(adj_vect (1,:)*inv(B)*adj_vect (1,:)°);

Y%computing the tangent poinis

u-tan_pos = zeros(nuinxm,1);

u-tan.neg = =zeros(nutnxm,1)};

u-tan_pos(1l:nu) = u(l:nu) + inv(B)+*adj.vect(1,:)’/sqrt(adj_vect(1,:)*inv(B)*adj-vect(1,:)*);
u_tan.neg (1l:nu) = u(l:nu) — inv(B)*adj-vect (1,:)’/sqrt(adj_vect(1l,:)*inv(B)*adj-vect(1,:)’);
u_tan_.pos(nu+tl:end) = u(nu+l:end);

u-tan_neg(nutli:end) = u(nu+tl:iend);

end

function BRnew = broydon{u, uold, y, yold, BRold)

%computes new Broyden derivative estimates

BRnew = BRold + (((y — yold)—-BRold#(u — uold})*(u — uold)’)/((u — uold)’s(u — uold));

end

function [lambdacost, C, K| = modifier_calc.bar(Cl, C2, nym, nu, lambdacostold, ubd, u02,...

mods_var-num, b, q)
%this function computes the new wvelues of the modifiers

%computes matrices so oalternate modifiers can be used
Tukl = eye(nym=(nu+1),nym=*(nu+1});
Tuk = eye(nyms*(nu+1),nym=*(nu-+1));
for I = l:nym
for j = 1l:nu
Tukl (i ,nym}-j4nu+(i—1))=uld(j);
Tuk (i ,nym+j+nu=(i—1))=ud2(j);
end

end

%putiing together filter parameter matriz as well as old modifier vector
K = zeros(nym=(nu+1),nym={nu+t1));
for i = l:nym=(nu+l)
if i <= nym
C(i) = C1(i);
K(i,i) = b;
modold (i)=lambdacostold (i});
else
C(i)=C2(i—nym);
K(i,i) = q;
modold (i)=lambdacostold (i);
end

end

%defining identity matriz
1 = eye(length(C));

%calculating new modifier velues
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lambdacost = (2%I—-Tukl)=({I-XK)*Tuk*modold’ 4 Kx+C’);

%erasing update from any modifiers that arent being considered

count = 1;
for i = l:nym=s(nu+1)
if i = mods_var_num{count)
count = count + 1;

if count > length{mods_var-num)
count = 1;
end
else
lambdacost (i) = 0;
end

end

end

function contour_plot_sim(p, nxp, ng, lambdacost, uold, un-matrix,

%defines range to create the contour plot (in sceled values)
range = [0.04 0.16 0.65 0.95];

%spreads input grid evenly across range
u(1) = range(1) — (range(2)—range(1))/10;
u(2) = range(3) — (range(4)—range(3))/10;

g-backoff ,

%computes plant cost funciion wvalue for each input grid point (as well as

%corresponding constraint values)
for i=1:11
u(2) = u(2) + (range(4)—range(3))/10;

for j=1:11
u(l) = u(1) 4 (range(2)—range(1))/10;

x = 0.5%ones{nxp,1);
x(1l:length(zn),1) = 2n;
inputs;

inputs_.old;

parameters;

modifiers;

[xup, fval, exitflag] = fsolve(@(x)plant_model_eqns(x, u, p), x);

plant_states;
output-plant_equations;

plant.outputs;

%collecting constraint information
constraints?2;

gansl(i,j) = g(1);

gans2(i,j) = g(2);

gans3(i,j) = g(3);

gansd (i,j) = g(4);

gans5(i,j) = g(5);

gans6(i,j) = g(6);

%tracking plant cost funciion

cost;

fans (i, j)=—1xf;
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%tracking inputs
wi(i,j) = (u(1)+100);
u2(i,j) = (u(2));

end

u{l) = u(l)

end

%ereating contour
[c, f]
set (f, LevelStep’,0.025)

set (f, ’ShowText', 'on’, 'TextStep’

contour(ul,u2, fans);

colormap cool
hold on

[Cc, f]
set (f, 'LevelStep’ ,500000)
set (f, 'ShowText’,’on’,’TextStep’

contour (ul,u2,gansl);

colormap cool
hold on
[C, f] =
set (f, ’LevelStep’ ,500000)

set (f, 'ShowText’,’on’, ' TextStep’

contour(ul, u2, gans2);

colormap cool
hold on

[c, £l
set (f,'LevelStep’,500000)
set (f, ’ShowText’, ’on’, ’TextStep’

contour{ul,u2,gans3);

colormap cool
hold on

[C, f]
set (f, 'LevelStep’,500000)

set (f, ’ShowText’,’on’,’ TextStep’

contour(ul,u2,gansd);

colormap cool
hold on

[C, f]
set (f, 'LevelStep’,500000)
set (f, ’ShowText’,’on’, ' TextStep’

contour(ul,u2, gansb );

colormap cool
hold on

[C, f]
set(f,'LevelStep’,500000)

set (f, 'ShowText’, 'on’',’  TextStep’

contour{unl,u2,gans6);

colormap cool
hold on

end

plots for cost function

yget(f,

et (f,

yget (f,

yget(f,

get(f,

.get(f,

,get(f,

— 1l1l*{(range(2)—range(1))/10;

end consiraints

'LevelStep’)x2)

’LevelStep ' )*2)

'LevelStep ’)=x2)

'LevelStep’)*2)

'LevelStep ’)x2)

’LevelStep ’)*2)

’LevelStep ' )*2)
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D.2 Offline Design of Dual Modifier Adaptation

Only a couple of functions are shown here for brevity. They are intended to demonstrate

the basic framework for the calculation.

function combo_search ()

%This function sterts a dual modifier adeptation design run by designaiing
%which modifiers should be updaied (note the other wvectors are for the

%implementation of the two—step approach).

param_.var-num = [];

yparam_var_num = [};

mods_var-num = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27...
28 29 30 31 32 33];

[best bbest, bias_best, var_best, final_backoff| = problem_coordinator...

(param_var_num , yparam.var_num , mods_var_num);

disp(best)
disp(bbest)
disp(bias_best)
disp(var_best)
disp(final_backoff)

end

function [best.cost, bbest.real, best_bias, best.var, final_backoff] = problem.coordinator...
(param_var.num , yparam.var.num , mods.var_num)

%This function coordinates the design procedure run. It starts with seiting

%up the different wuncertain paremeter scenarios thet will be used in the
%design cost optimization. Then it runs the model generation function
%which sets up all the cost and consiraint functions and models and their
%derivatives. Next ii compuies the plant optimum (using the benchmark
%model) and then runs ideal modifier adaptation wusing the benchmark model.

%Finally, it carries oult the design cosi optimization.

%creating uncertain parameter scenarios (shown here for mazimum 2 uncertain parameters)

count = 1;
params_to_vary = [7};
plovect = [0];

p2_vect = [0];
for i = l:length(pl_vect)
for j = l:length(p2.vect)
p-vect(count ,:) = [pl_vect(i) ; p2_vect(j)];
count = count + 1;
end

end

%running model generation function

[nu, nyp, nym, nxp, nxm, ng] = model_gen_final(param_var.num, yparam.var-num, mods_var_num);

Z%running the benchmark plant model optimization and ideal modifier

Y%adaptation
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[row, col] size(p-vect);

%running design cost calculation function

%cost and constraint backoff level at optimal

bbest_real exp(bbest );

\»end

to generate
dual

[best_cost , best_bias, best.var, final.backoff]
yparam_var.num, mods.var.num, nym, nu,
BR, dydp, C, lagrange, u_plant_opt, pp,

for i = l:row
[u_plant_opt (:,i), lagrange.plant(:,i)] = MainModAdapt_-new_plant(params_to_vary, p-vect(i,:));
[u(:,1), lambdacost(:,i), zn(:,i), lagrange(:,i), BR(:,({(1+nux(i—1)):nuxi)), C(:,i), K, p,...
pp(:,1), dydp(:,((14nu=(i—1)):nu=xi)), rhov, max.it, viol] = MainModAdapt_new_final...
(param.var_num, yparam.var_num, mods.var.num, p-vect(i,:), params_to_vary, nu, nyp, nym,...
nxp, nxm, ng);
end
%running design cost optimizaetion to obtain estimates of opitimal ducl
%constraint parameters (dual constraint parameiers are LN-scaled)
bstart = [log(80) log(30)];
[bbest, best] = optimizer_b(param_var.num, yparam.var.num, mods_-var.num, nym, nu, u, K, rhov, p,...
lambdacost , ng, nxm, bstart, BR, dydp, C, lagrange, u.plant_opt, pp, nyp, nxp, row, zn,...
max_it, viol)

bias and wariance
constraint parameters
cost_fun_b (bbest ,

X,

param_var-num , ...

u, rhov, p, lambdacost, ng,

viol);

nxm,...

nyp, nxp, row, zn, max.it,
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Appendix E

Data for the Propane Furnace Case

Study
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Table E.1: Sale values for products

Product | § per 1b

Hydrogen 0.24

Methane 0.06

Ethylene 0.25

Ethane 0.08

Propylene 0.20

Propane 0.08

Butadiene 0.20

Butylene 0.14

Butane 0.08

Gasoline 0.14

Table E.2: Process costs

Process Input Cost ($)

Steam 0.03 per b

Energy 3.00 per MBTU

Feed 0.08 per Ib
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Table E.3: Empirical model parameters (simulated and benchmark plant

models)

Component 20 o 02 03 04 05
Hydrogen 0.00494724 | -0.03664829 | 0.04069737 | 0.01985993 | -0.00096988 | -0.00267788
Methane 0.10800515 | -0.05257238 0.078125 -0.11417276 | 0.32732886 | -0.04603417
Ethylene 0.49278340 1.66945817 -1.875 -1.96640751 | 1.57652801 | 0.06001020

Ethane 0.007192032 | -0.29770971 | 0.31808035 | 0.29177888 | -0.20391955 | 0.00132619
Propylene | -0.23375930 | -4.10452339 | 4.55357143 | 3.33199429 | -2.22807667 | 0.01178271
Propane 0.478230614 | 2.60884693 | -2.89871881 -1.0000 -1.2868E-11 | -7.4232K-13

Butadiene | 0.043096185 | 0.52087513 [ -0.60267857 | -0.42756684 | 0.31626235 { 0.03427697

Butylene -0.02657149 | -0.31383828 0.3515625 0.26808088 | -0.17433718 | -0.00168324

Butane -0.00040414 | 0.00215427 | -0.00339508 | -1.5808E-5 0.00025839 | 0.00168324
Gasoline 0.053389638 | 0.36941098 [ -0.36830357 | -0.40355106 | 0.38692570 | -0.05868400
Table E.4: Empirical model parameters (process model)

Component 20 o1 02 03 04 05
Hydrogen 0.00494724 | -0.03664829 | 0.04069737 0.01985993 -0.00096988 | -0.00267788
Methane 0.10800515 | -0.06257238 0.078125 -0.16417276 | 0.37732886 | -0.04603417
Ethylene 0.49278340 1.66945817 -1.875 -1.46640751 | 1.07652801 0.06001020

Ethane 0.007192032 | -0.29770971 | 0.31808035 | 0.34177888 | -0.25391955 | 0.00132619

Propylene | -0.23375930 | -4.10452339 | 4.55357143 | 2.83199429 | -1.72807667 | 0.01178271

Propane 0.478230614 | 2.60884693 | -2.89871881 -1.0000 -1.2868E-11 -7.4232E-13

Butadiene | 0.043096185 | 0.52087513 | -0.60267857 | -0.42756684 0.31626235 0.03427697

Butylene -0.02657149 | -0.31383828 0.3515625 0.26808088 -0.17433718 | -0.00168324
Butane -0.00040414 | 0.00215427 | -0.00339508 -1.5808E-5 0.00025839 0.00168324

Gasoline 0.053389638 | 0.36941098 | -0.36830357 | -0.40355106 0.38692570 -0.05868400

Note that the parameters that were altered between the simulated plant and process models are indicated

in bold.
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