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ABSTRACT 

The current industry standard in real-time optimization (RTO) is the two-step method. 

In this approach, mismatch between the plant and process model is compensated for by 

continuously updating a subset of the parameters in the process model. It is suitably 

resistant to measurement noise, however it is not guaranteed to move toward the plant 

optimum if structural plant-model mismatch exists. Due to this deficiency, a number of 

alternative methods have been developed over the years, including ISOPE and modifier 

adaptation. These methods, however, utilize plant derivative information, which must be 

estimated because a precise plant model is typically not known in practice. This makes 

these methods particularly susceptible to measurement noise. Therefore, in this thesis, 

the development of an RTO technology which is both optimum seeking and resistant to 

measurement noise is considered. 

This research can be separated into two parts. In the first phase, the current state-of-the-art 

modifier adaptation algorithm is modified by employing Broyden's method to estimate the 

plant output derivatives. A pair of deficiencies of Broyden's method are then detailed, and 

a modification to the algorithm, designed to mitigate these deficiencies, is proposed. This 

consists of the inclusion of additional constraints in the model-based optimization problem, 

designed to limit both offset and variance in the Broyden derivative estimates. Since the 

new algorithm possesses two distinct goals, optimality and the accuracy of the Broyden 

estimates, it is referred to as dual modifier adaptation. 

In the second phase of this research, the design of dual modifier adaptation systems is 

considered. The design methodology is built around the design cost criterion, a metric which 

had previously been developed for the two-step approach of RTO. The calculation procedure 

for the metric is adapted in this research in order to address dual modifier adaptation 

systems. In addition, an approach designed to compute the constraint back-off necessary 

to ensure a certain level of feasibility is developed. 
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The concepts discussed in both the first and second phases of the research are illustrated 

using the Williams-Otto Reactor case study. This is a benchmark problem that has been 

used in the RTO literature for many years. A more involved case study, a propane furnace, 

is introduced in the last main chapter of this thesis. Both the performance of the dual 

modifier adaptation algorithm itself and the design of dual modifier adaptation systems are 

discussed for this case study. 
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Chapter 1 

Introduction 

Real-Time Optimization (RTO) , if properly utilized, can be a very effective tool in the 

chemical process industry. The ability to adjust controller set-points based on online process 

conditions can provide great financial benefit [Marlin and Hrymak [1997]' Cutler and Perry 

[1983]]. It is only effective, however, if the RTO system is able to correctly identify the 

optimal, or at the very least a good operating point for the current state of the plant. 

1.1 Motivation and Thesis Objectives 

The RTO task would be very easy if an accurate and complete model of the plant were avail­

able. This model could simply be optimized, using any of a number of known techniques, 

to arrive at the best possible controller set-points for implementation. The optimization 

would then only have to be carried out periodically, to check if the optimal operating point 

had moved due to process disturbances. Unfortunately, a perfect model of the plant is 

never available in practice. This means that precise plant derivative information cannot 

be obtained, making the direct application of traditional derivative-based NLP solution 

techniques to the plant optimization problem impossible. 
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The information that is generally available to the RTO system from the plant is a set of 

measurements, taken from sensors located throughout the process. RTO systems make use 

of these measurements to update the set-points, as they can contain important information 

about fundamental changes in the state of the process. Note that the measurements also 

usually contain some level of measurement noise which should be rejected. 

Model-based RTO systems are a common type of RTO technology. They utilize a process 

model which is generally a simplification of the plant. The model is then altered in a clever 

way in order to mimic the input-output behaviour of the plant as closely as possible. One 

method of accomplishing this is the two-step approach, [Chen and Joseph, 1987], which 

alters one or more of the parameters in the process model based on information garnered 

from the plant. This approach, while fairly adept at rejecting measurement noise, will not 

always be able to find the optimal set-points if the process model is fundamentally different 

from the actual plant (structural plant-model mismatch) [Forbes et al., 1994]. This is almost 

always the case in practice. 

In response to this drawback, a number of other RTO approaches have been developed, in­

cluding modifier adaptation [Marchetti et al., 2009]' which is the focus of this report. Unlike 

the two-step approach, this technology utilizes estimated plant gradient information as well 

as the plant measurements to update the process model. Using the gradient information in 

an intelligent way can guarantee that if the scheme converges, it will converge to a KKT 

point of the plant (in the absence of measurement noise). Therefore, in certain situations, 

it is much more likely to identify the plant optimum than the two-step approach is. The 

difficulty here is that the plant output gradient must be estimated. Since no closed-form 

representation of the plant is available for differentiation, an estimation procedure must be 

selected. It is essential that this procedure is both accurate and adequately resistant to 

measurement noise. 

The objective of this thesis is, using modifier adaptation as a conceptual basis, to develop 

an RTO technology that is both optimum seeking and resistant to measurement noise. Both 

on-line execution aspects and the off-line design of the new RTO method are explored. 

2 
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1.2 Real-Time Optimization 

The Real-Time Optimization (RTO) system does not function in isolation. It is a part 

of a set of inter-connected subsystems that make up a multi-level control structure. This 

hierarchy consists of all the core elements of the Process Systems Engineering (PSE) field. 

It is shown as Figure 1.1. 

Planning 

Supply Chain 

Plant-Wide Optimization and Scheduling 

Real-Time Optimization 

Control Systems 

Plant 

Figure 1.1: PSE hierarchy (adapted from: Seborg et al. [2004]) 

Upon examination of the multilevel control structure illustrated in Figure 1.1, the RTO 

system lies between the plant-wide optimization and scheduling layer and the process control 

layer. Therefore, in short, it takes information from the scheduling layer, makes a set of 

computations and sends the resulting information to the process control layer. This is 

consistent with the goal of the RTO system described in Section 1.1. 

The basis for comparing potential set-points is generally some sort of economic criterion. 

This criterion often has to do with decreasing production costs or improving product qual­

ity. The computed set-points can vary between RTO iterations based on new information 

obtained from the plant. The iteration frequency depends on the process in question. Gen­

erally, the main requirement is that this frequency must be much longer than the closed-loop 

3 



]\/I.A.Sc. Thesis - Eric Rodger McMaster University - Chemical Engineering 

process dynamics. If this is not possible then some sort of dynamic RTO approach must be 

considered [Kadam et al. [2007], Srinivasan and Bonvin [2007]]. 

The popularity ofRTO technologies has greatly increased over the years [Forbes and Marlin, 

1996]. This is due to a couple of key factors. The first is a general increase in the computing 

power available. This change has allowed the implementation of RTO on more complex 

systems than before, and has also allowed the RTO system to be executed more frequently in 

some cases, increasing its effectiveness. The second factor is the increasing competitiveness 

of the global marketplace. More than ever before, many companies are competing to sell 

very similar products. This makes saving every possible dollar dming the production process 

nlore vital than ever. RTO is uniquely positioned to do this, given its goal of optimizing 

an economic objective. This has made RTO particularly popular in the petrochemical 

industry and the commodities sector, where it has been widely used [Bailey et al. [1993]' 

Krishnan et al. [1992alJ. 

The scope of RTO systems has been the topic of debate over the years. One option is using 

the RTO system to address the operation of the entire plant at once [Bailey et al., 1993]. 

The alternative is to adopt a distributed approach which tries to solve individual RTO 

problems on each unit in a plant [Darby and White, 1988]. For example, if a plant consists 

of a reactor followed by a heat exchanger and a distillation column, three separate RTO 

problems would be solved, one for each unit. A higher-level system may then be tasked 

with coordinating .the actions of the three separate RTO implementations. 

In Darby and White [1988]' the distributed approach is supported. The greatest advantage 

of the distributed approach is the ease of running the RTO procedme on each individual 

unit. For instance, if one unit went offline as a result of a fault or for maintenance, the active 

units of the distributed system could still function as normal. The different RTO systems in 

the distributed framework could also be executed at different frequencies, depending on the 

specific units that malce up the process in question [Darby and White, 1988]. Additionally, 

smaller models are also easier to maintain and in general computationally easier to solve 

than one large model. 

4 



M.A.Sc. Thesis - Eric Rodger 1tIcMaster University - Chemical Engineering 

The plant-wide RTO strategy is supported by Bailey et al. [1993] and Marlin and Hrymak 

[1997], among others. \iVhile it clearly does result in a larger, more complex model, with 

the power of computers constantly increasing, larger models are becoming less difficult to 

deal with. If the entire plant is not considered at once, the optimal set-points may not 

be identified due to the individual models not completely representing the interactions 

between the different process units [Zhang and Forbes, 2000]. Also, no coordinator needs 

to be designed to exchange information between the subsystems. In this work, although 

none of the examples are the size of a complete plant, tllis is assumed to be the strategy of 

choice. Therefore, the design of a coordinator is not considered. 

The potential economic benefit of an RTO system~ does not come without a set of drawbacks 

and limitations. For instance, the RTO system is limited by the quality of the information 

it receives from the plant. If the measurements are corrupted significantly, the RTO system 

will not identify a good operating point. In fact, the process performance at this sub-optimal 

operating point may be worse than the performance had there been no RTO implementation 

at all. 

The RTO system is also limited by the control system tasked with implementing the set­

points it provides. The slower the control system is in driving the process to the new 

set-points, the smaller the benefit from the RTO system. Detecting that the controllers 

have pushed the process to a new steady-state can also be a problem in practice. Another 

limitation is the reactionary nature of the RTO system. It cannot predict process distm­

bances ahead of time and therefore there will always be a time lag between the distmbance 

and the appropriate response of the RTO system. 

1.3 Approaches to Real-Time Optimization 

Model-based RTO approaches were very briefly mentioned in Section 1.1. The two-step ap­

proach is probably the most well-known and widely used of these methodologies. It consists 

of updating a subset of the model param~eters so that the model represents actual plant 

5 



iVI.A.Sc. Thesis - Eric Rodger McMaster University - Chemical Engineering 

input-output behaviour as closely as possible [Chen and Joseph, 1987]. There is another 

subclass of model-based methods however, which instead of updating a set of paralneters 

directly in the model, adds additional parameters to the model to aid in accurately match­

ing input-output data. These methods were developed with the aim of alleviating a major 

deficiency of the two-step approach. This deficiency is the inability of the algorithm to 

guarantee convergence (under noiseless conditions) to the optimal operating point of the 

plant if the process model is fundamentally different from the plant (structural plant-model 

mismatch) . 

The ISOPE (Integrated System Optimization and Parameter Estimation) method carries 

out the same parameter estimation step as the two-step approach, but also introduces an 

additional parameter into the cost function [Roberts, 1979]. This parameter matches the 

gradient of the plant cost function with that of the model. Constraint bias updating adds 

an extra parameter to each of the constraint functions, attempting to match the constraints 

of the model to those of the plant [Forbes andlVIarlin, 1994]. In Gao and Engell [2005], the 

constraints are updated not only with a zeroth order term (as in constraint bias updating), 

but also a first order term, which takes into account gradient information. Finally, modifier 

adaptation combines the ideas of both of the preceding methods, by introducing a set of 

so-called modifiers which alter both the values and gradients of the cost and constraint 

functions [Marchetti et al., 2009]. More details and discussion about all of these methods 

can be found in Chapter 2. 

Besides model-based RTO methods, there is another class of methods, sometimes referred 

to as model-free methods, which do not employ a process model at all [Chachuat et al., 

2009]. These methods use measurements from the plant, along with a set of heuristics, 

to choose the best operating point for the plant. One example of these methods is self­

optimizing control [Skogestad, 2000]. In this method, constant values are chosen for a set 

of controlled variables and the system is manipulated by changing the set-points in order to 

try to keep these variables at their reference values. The choice of the controlled variables 

and corresponding references is important here. Choosing variables which do not vary 

significantly in the presence of uncertainty is very hnportant. Other important criteria are 

6 
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given in Skogestad [2000]. 

NCO tracking is another effective model-free method [Francois et al., 2005]. In this proce­

dure, the inputs are adjusted so as to try to satisfy the necessary conditions of optimality 

for the plant. Therefore, this method can be seen as a self-optimizing method where the 

controlled variables are the active constraints and reduced gradient (KKT quantities), with 

both of these having a reference of zero. Plant measurements, and sometimes estimated 

plant output derivatives, are used in this procedure. Since derivative estimates are some­

times used, this approach can be sensitive to measurement noise. 

The inputs for NCO tracking are generally divided into two subsets, inputs that help sat­

isfy the active constraints, and sensitivity seeking inputs, which are used to optimize the 

economic function. A bi-level formulation has been proposed to separate the relatively easy 

task of controlling the constraints and the more difficult task of using the sensitivity-seeking 

inputs to achieve optimality [Francois et al., 2005]. A good comparison of model-based and 

model-free RTO approaches is given in Chachuat et al. [2009]. 

1.4 Thesis Overview 

This work focuses on model-based RTO technologies. Within this sub-group, it focuses 

primarily on the modifier adaptation approach [Marchetti et al., 2009]. Chapter 2 begins 

with a review of the basic components of a model-based RTO system, followed by a de­

scription of several previously developed technologies. These include the classic two-step 

approach, ISOPE, constraint bias updating and ideal modifier adaptation. The background 

section ends with a comparison of some of these methods using the Williams-Otto Reactor 

benchmark problem. This benchmark RTO problem will be used in simulations throughout 

this thesis. 

Chapter 3 begins with an explanation of the choice of Broyden's method for implem.entation 

with modifier adaptation. Next, a convergence analysis is carried out for the nlOdifier 

adaptation algorithm employing Broyden's method. The performance of this algorithm is 

7 
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then evaluated using the Williams-Otto Reactor test case, and modifications are suggested 

to improve this performance. Specifically, the inclusion of additional constraints in the 

model-based optimization problem is suggested, creating an algorithm with two distinct 

goals: finding the optimal operating point and generating accurate Broyden estimates. 

This new algorithm is referred to as dual modifier adaptation. 

Chapter 4 addresses the issue of how to design the dual modifier adaptation system to 

achieve the best possible online performance. This design is done offline due to the com­

putational burden of redesigning the system online after every iteration. To form the basis 

of this procedure, the design cost criterion [Forbes and Marlin, 1996] is adapted so it can 

address both unconstrained and constrained dual modifier adaptation systems. The design 

of an appropriate back-off for constrained problems is also investigated. These concepts are 

illustrated using the Williams-Otto Reactor test case at the end of the chapter. 

In Chapter 5, the performance of dual modifier adaptation and the corresponding design 

procedure are evaluated using a more complex case study. This case study involves the 

real-time optimization of the operation of a propane pyrolysis reactor. First, the objective 

function, constraints and process model are discussed in detail. Next, several aspects of the 

dual modifier adaptation algorithm itself are discussed. These include the effect of various 

tuning parameters on the performance of the algorithm. The design of modifier adaptation 

for this case study is also explored. The computation of the design cost metric is discussed 

in detail here. 

Conclusions are then drawn and future recommendations are made. These recommendations 

include the potential combination of the two-step approach and modifier adaptation with 

the goal of leveraging the unique advantages of each technology. Recommendations on how 

to improve the design procedure are also made. 

8 



Chapter 2 

Background on RTO Technologies 

The goal of this chapter is to give the reader an overview of the RTO research that has been 

completed in the last 30 years or so. An overview of the main components of a generic RTO 

system will be presented first, followed by a discussion of some of the specific approaches that 

have been developed. These include the two-step method, ISOPE, constraint bias updating 

and ideal modifier adaptation. Some of these methods necessitate the approximation of the 

plant output gradient and therefore potential plant output gradient estimation methods are 

discussed as well. Next, the Williams-Otto Reactor process, a standard RTO test case, is 

introduced. It will be used to illustrate concepts discussed throughout this report. The 

section finishes with a comparison of the two-step approach and ideal modifier adaptation. 

2.1 Components of an RTO System 

Despite the fact that there are many different algorithms used for real-time optimization, 

the basic structure of anyone model-based RTO system is fairly standard. All the separate 

components, and the basic flow of information, are shown in Figure 2.1. Note that only some 

of the components in Figure 2.1 are necessary for a system t.o properly operat.e, therefore 

some may not appear in anyone particular system. 

9 
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I I . 
! Model Update· 

Data Validation. Model-Based Optimizer 

t 
Sensors: . Results Analysis 

.~ 

! Plant and Process Controllers 

Figure 2.1: General RTO diagram (adapted from Yip and Marlin [2002]) 

An RTO iteration begins when the process sensors take measurements which reflect the 

state of the plant at the ClUTent time. At this time the plant must be at steady state. A 

check is often performed to ensure this, especially in the case of relatively slow processes. 

Generally there is also some form of validation procedure incorporated at this level to 

check if the measurements are plausible. This is sometimes called data reconciliation or 

gross error detection, and may involve comparing the measurements to the existing process 

lllOdel. A good discussion of this step, with references for steady-state validation and gross 

error detection, can be found in Marlin and Hrymak [1997]. 

From a design perspective, the decision of which n1.easurements to take and where physically 

in the process to take them is not a trivial one. Considerable work was done in this area 

by Krishnan et al. [1992b], who applied a series of statistical tests to determine the set of 

measurements which would work best with the two-step approach, given the chosen set of 

adjustable parameters. Fraleigh et al. [2003] later explored the economics of this decision, 

taking into account the fact that the sensor and model updating systems cannot be viewed 

in isolation, and rather need to be analyzed as a part of the whole closed-loop RTO system. 

The measurements are then sent to a model updater. The purpose of this step is to use 

the measurement information to improve the model of the process. This can be done in a 

variety of ways. Either a set of parameters directly present in the process model, or one or 

more" artificial" parameters, introduced specifically for the use of the RTO algorithm, are 
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updated. The specifics of this procedme will be left to the individual sections on each RTO 

technology. 

Sometimes a test is performed at the end of the model update step to check the conditioning 

of the covariance matrix of the updated parameters. This test was originally proposed in 

Miletic and Marlin [199Sb] for the two-step approach. If the test is failed, some parameters 

may need to be fixed for the current iteration in order to improve the conditioning of the 

covariance matrix. Alternatively, using multiple data sets for model updating can also 

reduce the condition number of the parameter covariance matrix [Yip and Marlin, 2002]. 

The required data can be collected by performing experiments on the plant, which involve 

slightly changing the operating point and taking a new set of measurements at the new point. 

Methods for designing such experiments can be found in Yip and :Marlin [2003]. Although 

all of these results are specific to the two-step approach, the ideas could potentially be 

extended to other RTO approaches as well. 

The updated model is then used by the model-based optimizer. The optimizer will determine 

the set-points which minimize a particular cost function, satisfying both the process model 

as well as any process constraints (including bounds on the set-point). Since the model itself 

is usually non-linear, the entire problem is generally an NLP. There are many NLP solution 

methods that can be used for this pmpose. In this work, the sequential quadratic program­

ming (SQP) solver included in the MATLAB Optimization Toolbox, Jmincon, was used to 

perform the optimization. When passing the problem to the optimizer, variable scaling can 

be very important, especially for large or difficult to solve problems. Providing analytical 

derivatives and a reasonable starting point to the optimizer can also increase the chances 

of finding a good solution. A discussion of this step can be found in Marlin and Hrymak 

[1997]. 

After the new set-point has been computed by the optimizer, the results analysis subsys­

tem decides if it should be implemented on the plant. This check attempts to distinguish 

between common cause variation (i.e. measmement noise), which in general should not 

motivate an operating point change, and process distmbances (special cause variation), 
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which are a valid reason for changing the operating point. A statistical test was proposed 

in Miletic and Marlin [1998a) for this purpose. At this stage, operators or other plant 

personnel may also be required to approve the recommendations of the optimizer. 

The last step involves the process control system implementing the prescribed operating 

point change. This should be achievable as long as the RTO system has provided a suitable 

operating point. For RTO systems with frequent execution times, the process dynamics can 

sometimes act as a bottleneck, preventing the next RTO execution from occurring until the 

ClUTent set-point is reached and the required measurements are taken [Zhang and Forbes, 

2000). Specific analysis of the control system (i.e. individual PIDs or MPC) is beyond the 

scope of this report. An investigation of the integration of the RTO and control systems 

from an economic viewpoint can be found in Contreras-Dordelly and Marlin [2000). 

2.2 The Classic Two-Step Approach 

The classic two-step approach to RTO has been well established for more than 20 years 

and is widely used in industry today. A description of the methodology can be found in 

Chen and Joseph [1987). This algorithm has been successfully applied to many industrial 

processes. Examples include Bailey et al. [1993) and Krishnan et al. [1992a]. Additional 

implementations are listed in Marlin and Hrymak [1997). The optimization problem that 

the RTO system is trying to solve for the plant is the following: 

min 
u 

¢(u,yP) 

S.t. yP = F(u) 

g (u, yP) :S 0 

u min :s u :s u max (2.1) 

where ¢ represents the objective function, u denotes the inputs, yP are the plant outputs 

(measurements), F represents a set of explicit plant input-output relations (generally un­

known), g denotes the output-dependent constraints and umin and umax are the bounds on 

the inputs. 
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In the design phase of the two-step approach, the model parameters must be separated into 

two subsets. The first subset should hold all the param.eters that will remain fixed through­

out the RTO process. The second subset should contain the parameters that are to be 

updated by the parameter estimation problem, in response to plant process changes or dis­

turbances. In general, these parameters should be observable from the plant measurements 

taken [Stanley and Mah [1981]' Krishnan et al. [1992b]], represent actual process variations, 

and aid in moving towards the plant optimum [Marlin and Hrymak, 1997]. There is a con­

siderable amount of literature surrounding how to make this division of the set of model 

parameters [Forbes and Marlin [1996]' Krishnan et al. [1992b]]. 

After an appropriate subset of the parameters is chosen for updating, and the appropriate 

n1.easurements are taken, an optimization problem is solved that attempts to match the 

plant and model outputs as closely as possible. This corresponds to the model updating 

step described in the previous section. Thl'ough this optimization problem, values are 

assigned to the set of adjustable parameters /3: 

/3 k+1 E arg min 
(3 

S.t. 

(Y1+1 - Yk+1) 
2 

Yk+l = f(Uk+l, /3) (2.2) 

where ym represents the model outputs and f is a set of explicit functions defining the 

model outputs. Note that in practice an implicit form of f is generally known, however it 

is assumed here that the implicit equations can be solved for the outputs using a solver for 

systems of non-linear equations (e.g. fsolve in NIATLAB). This is only one possible update 

strategy, another common one involves weighting the output differences by the inverse of 

the covariance matrix of the plant measurements [Yip and Marlin, 2002]. 

After these new parameter values are obtained, the general model-based RTO problem is 

solved, striving to minimize the 0 b j ective function (if» by changing the process inputs, 

Uk+l E arg min 
u 

S.t. 
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Note that all the developments in this work will be done assuming the objective function 

for the RTO system represents a quantity to be minimized. One common example is the 

cost of production. For clarity, a diagram of this procedme is shown as Figme 2.2. In this 

figme, S S stands for steady-state. 

One important drawback of the two-step approach is the fact that it may converge to a sub­

optimal point if structmal plant-model mismatch exists. Structmal plant-model mismatch 

occms when the model being used does not resemble the actual plant process in some 

fundamental way. For instance a side reaction that has not been well documented may be 

left out of the process model. This phenomenon occms frequently in large-scale, complex 

industrial systems. 

min </J(u, ym) 
u 

s.t. g(u, ym) ~ 0 
yffi = f(U,,Bk) 
u min ::; U ::; llm.ax 

Figme 2.2: Two-step method diagram 

Structmal plant-model mismatch has been discussed extensively in the RTO literatme. 

The difficulty in using a simple model to approximate a much more complex model in an 

optimization procedme (called the inside-out method or smrogate model optimization in 

the literatme), is discussed in Biegler et al. [1985]. In this procedme, parameters in the 

simplified model are periodically updated using values obtained from the rigorous model. 

Note that this is essentially the same situation existing in RTO, with the more complex 

model being the plant and the process model being the simpler model. Biegler et al. [1985] 

show that unless the optimum of the rigorous model is also a KKT point of the simple model, 

it will not be found through the parameter update procedme. Since the KKT conditions 
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involve gradient information, unless the cost and constraint gradients match at the rigorous 

model optimum, this condition will not be satisfied. 

The concept of model adequacy, [Forbes et al., 1994]' was developed for the two-step ap­

proach to deal with this problem. It is a tool that allows the RTO designer to check if 

his/her process model will be capable of recognizing the plant optimum. Instead of trying 

to verify first order KKT condition details, it checks conditions to do with the reduced 

gradient and Hessian of the approximate model at the plant optimum. 

This discussion underscores the importance of the model selection task in designing an RTO 

system. Unfortunately, an adequate model in the sense of Forbes et al. [1994] may not be 

available in the case of large-scale, complex industrial systems. This has motivated the 

development of alternative RTO paradigms, such and the Integrated System Optimization 

and Parameter Estimation (ISOPE) method and Modifier Adaptation (MA), which will be 

discussed in Sections 2.4 and 2.5 respectively. 

2.3 Constraint Bias Updating 

The constraint bias update approach (sometimes also called constraint adaptation) is an­

other common model-based RTO technology. Detailed information can be found regarding 

the approach in Forbes and Marlin [1994] and Chachuat et al. [2008]. While the ISOPE and 

modifier adaptation approaches (discussed in the next two sections) are greatly concerned 

with optimality, the constraint bias update approach is more concerned with feasibility. 

Therefore it is especially useful when it is expected that a large number of the degrees of free­

dom of the optimization problem will be taken up by active constraints [Forbes and 1tIarlin, 

1994]. 

Instead of solving the parameter estimation problem each iteration (like in the two-step 

approach), in the constraint bias update approach a new parameter is introduced into the 

RTO algorithm to be updated every iteration. This parameter is computed as follows 
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[Chachuat et al., 2008]: 

(2.4) 

where Eb is the constraint bias parameter and Kg contains filter parameters for each con­

straint which generally range between 0 and 1. The higher the filter parameters, the more 

aggressive the correction, but also the more likely the iterates are to diverge. This new 

pm'ameter, Eb, is then incorporated into the model-based optimization problem as follows: 

Uk+l E argmin 
u 

S.t. 

¢(u, ym) 

y=f(u,,B) 

g (u, ym) + E% ::; 0 

(2.5) 

One of the core advantages of this approach is that upon convergence, it is easily proved 

that its iterates will arrive at a feasible point [Chachuat et al., 2008]. This is valuable, 

especially for those industrial processes in which feasibility is crucial. It is also easier to run 

from a computational point of view than methods that require the solution of a parameter 

estimation problem. In addition, it is less sensitive to measurement noise than the methods 

that are presented next (IS OPE and modifier adaptation) which require the approximation 

of the plant output gradient. The trade-off is the fact that this method makes no effort 

to match the gradients of the model cost function or constraints to those of the plant (the 

gradients are taken as those of the nominal process model), therefore it may suffer in terms 

of optimality. 

2.4 The ISOPE Method 

The ISOPE method is detailed in Roberts [1979]. There have since been a variety of 

modifications made to improve the original formulation. Here the original nlethod will be 

discussed, followed by a look at some of the modifications that are most relevant to this 

work. For a more complete review of em'ly ISOPE work consult Roberts [1995]. 
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The major difference between ISOPE and the traditional two-step approach is the inclusion 

of an extra parameter in the objective function. This parameter attempts to match the 

gradient of the objective function of the model-based problem with the gradient of the 

objective function of the plant. This parameter is updated every iteration in the following 

way [Roberts, 1979]: 

(2.6) 

where W is the value of the cost gradient parameter. Note that this update procedure 

requires knowledge of the plant output gradient (~!). As previously discussed, since no 

true plant model is ever available in RTO, this term must be approximated. A discussion 

of plant gradient estimation procedures is deferred until Section 2.6. 

As in the two-step approach, a parameter estimation problem must be solved to update the 

adjustable model parameters, [3, for use in both the calculation of the additional parameter 

(2.6) and the model-based optimization problem (2.8). The parameter estimation problem 

here is essentially the same as Equation 2.2, however it must be solved using an additional 

constraint: 

P m 
Yk+1 = Yk+1 (2.7) 

The rationale behind the addition of this constraint is to ensure that ~~ in the additional 

parameter update step (2.6) is evaluated using the plant outputs (yP). Depending on 

the degree of mismatch between the plant and the approximate model, this may not be 

achievable in practice. This is a deficiency of the original ISOPE procedure which was later 

addressed in the literature [Tatjewski, 2002]. 

The updated value of the cost gradient parameter (w) is then sent to the optimization 

problem which is solved as follows [Roberts, 1979]: 

u* E argmin 
u 

s.t. 

¢(u, ym) + wf u 

ym = f(U,[3k) 

g (u,ym) :s 0 
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where u* denotes the optimal inputs. Note that the only alteration from Problem 2.3 is the 

inclusion of Wk in the cost function. A filter is sometimes placed on the computed inputs 

in order to improve the stability of the algorithm [Roberts and Williams, 1981]: 

(2.9) 

where Ku is a diagonal matrix of filter parameters with values typically ranging between 0 

and 1. 

The original ISOPE procedme has several shortcomings, which have been addressed in the 

literatme throughout the last thirty years. For instance, constraints were not addressed 

in the original formulation. Specifically, if process constraints are active at the plant opti­

mUln, correcting the cost function gradient of the model is not enough to match the KKT 

conditions of the plant. 

An attempt to address constraint handling is made in Tatjewski et al. [2001], where the use 

of a constraint follow-up controller (CFC) is proposed. This controller ensmes that certain 

key constraints on the outputs are satisfied. This essentially involves splitting the outputs 

into two categories, separating those outputs whose constraints are active at the plant 

optimum from the others. A subset of the inputs are then assigned to act as manipulated 

variables in the CFC. The main disadvantage of this method is that the active set at the 

plant optimum must be known before-hand, and the design of the RTO system must be 

based on this active set. Therefore, if the active set were to change online, the performance 

of the RTO system. would likely suffer. 

Another possible fix for the constraint handling problem was presented in Gao and Engell 

[2005]. Using plant measmements and an approximation of the plant output gradient, the 

following is written: 

g (u, ym) + [g (Uk, Y1) - g (Uk, Yk)] + 

~~ (Uk,Yk) (~: (Uk,yD - z: (Uk,Yk,f3k)) (U-Uk) (2.10) 

where the intention is that the modified constraint be comprised of the value of the con­

straint using the model outputs, with oth and 1st order corrections added to account for 
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plant-model mismatch. The modified constraint is then implemented in the optimization 

problem (2.8) as follows: 

(2.11) 

Finally, a modification is proposed in Tatjewski [2002]' which eliminates the need to solve 

the parameter estimation problem as a part of the ISOPE algorithm. This is done by 

introducing an extra parameter into the calculation procedure for 'ljJ: 

(2.12) 

where a is referred to as the model shift parameter. This parameter a is defined as follows: 

(2.13) 

Examining Equations 2.12 and 2.13, it is clear that the purpose of the model shift parameter 

is to make it so that the cost function output derivative, ~~, is essentially evaluated at 

yp. Therefore, this negaLes the need for the parameter estimation problem to enforce the 

plant/model output matching criteria of Equation 2.7. 

This concludes the discussion on the ISOPE method and extensions. Although this method 

is not studied extensively in the remainder of this thesis, the importance of the developments 

of the previous section as a precursor to modifier adaptation, the central focus of this work, 

will become evident in the sections to follow. 

2.5 Ideal Modifier Adaptation 

Modifier adaptation (:rVIA) was first presented in Chachuat et ai. [2009] and :Marchetti et ai. 

[2009]. It utilizes many of the concepts presented in the previous two sections to arrive 

at a clear, concise RTO methodology. Specifically it introduces a set of extra parameters 

(referred to as modifiers here) into the model-based optimization problem which directly 

alter both the cost and constraint functions. 
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The cost function is altered by the addition of the following cost gradient modifiers, )...<1> 

[Marchetti et al., 2009]: 

<I> _ [d¢ d¢ ]T )... - du (u, F(u)) - du (u, f(u, ,8)) (2.14) 

where )...<1> is a column vector of modifiers and the individual derivatives are computed as 

follows: 

d¢ 
du(u,F(u)) 

d¢ 
du (u, f(u,,8)) 

o¢ o¢ of 
ou (u, F(u)) + oy (u,F(u)) . ou (u) 

o¢ o¢ of 
ou (u,f(u,,8)) + oy(u,f(u,,8)). ou (u,,8) (2.15) 

Note that this modifier is similar but not necessarily identical to the ISOPE parameter 

'ljJ defined in Equation 2.6. Both quantities are only the same if the additional ISOPE 

constraint, Equation 2.7, holds. The advantage of this particular definition of the cost 

gradient modifier is it allows for the elimination of the model shift parameter, a (Equations 

2.12 and 2.13). It can be eliminated here because the full cost function input derivatives 

for both the plant and model are computed separately. 

The constraints are also altered in modifier adaptation by the introduction of the following 

two modifiers: 

g (u, F(u)) - g (u, f(u,,8)) 

dg dg 
[ ] 

T 

du (u, F(u)) - du (u, f(u, ,8)) , Vi = 1, .. ,ng (2.16) 

where E
g and )...g are the constraint bias and gradient modifiers respectively. Note that the 

way modifier adaptation deals with constraints is similar to the method that was detailed 

in Gao and Engell [2005] (Equation 2.10), with the distinction that separate modifiers are 

declared to represent both the zeroth and first order constraint corrections. This provides 

the user with the option to choose not to update certain modifiers. For instance, the gradient 

modifiers may not be used if the plant output derivatives are too noisy. A parallel can also 

be drawn here with the constraint bias update approach. Examining Equation 2.16, it is 

apparent that the zeroth order correction modifier, Eg, is also identical to the unfiltered 

version of the bias update parameter (Eb) defined in Equation 2.4. The modifiers are then 
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used in the model based optimization problem in the following way [1tIarchetti et al., 2009]: 

Uk+ 1 E arg min 
u 

S.t. 

1; (u, ym) + >.t,T u 

ym = f (u,,6) 

g (u,ym) + E~ + >.~,T (u - Uk) ~ 0 

(2.17) 

One of the advantages of the way that modifier adaptation is formulated is it allows for 

straightforward filtering of the modifiers defined in Equations 2.14 and 2.16. This filtering 

is similar to the filtering of the bias update parameter shown in Equation 2.4: 

9 9 g (u, F(u)) - g (u, f(u, ,6)) Ek+1 Ek 

>.t+1 Xl> [~~(u,F(U)) - ~~(u,f(u,,6))( k 
>.g,l = (I - KA) >.g,1 +KA [1~ (u,F(u)) -1~ (u,f(U,,6))( (2.18) k+1 k 

>.g,'/1.g 
k+1 

>.g,'/1.g 
k [d~:9 (u,F(u)) - d~:g (u,f(u,,6))( 

where ng is the number of constraints and KA is a matrix of filter parameters. Note that 

in this thesis, it is assumed that KA is a diagonal matrix of filter parameters, k, which 

generally range from 0 to 1. 

The preceding definition of the modifiers was given in part because it is the definition 

suggested in :Marchetti et al. [2009] and also because it allowed for clear comparisons to be 

made with previous literature. However, this is not the definition that has been selected for 

this work. In Marchetti et al. [2009], an alternative scheme is given, where the modifiers 

are used directly to correct the model outputs (ym) as opposed to the cost and constraint 

functions. These alternate modifiers are defined in the following way: 

"\ ny 
"'k+1 
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where E and .x are the output bias and gradient modifiers respectively and ny is the number 

of outputs. \iVith the alternate modifier definitions of Equation 2.19, the model-based 

optimization problem becomes: 

Uk+ 1 E arg min 
u 

s.t. 

where ym are the modified outputs. 

¢(u,ym) 

ym = f (u, (3) + Ek + .xr (u - Uk) 

g (u,ym) -s 0 

(2.20) 

After the optimization step, the new set of inputs are sent back to the update procedure 

(Equation 2.19) and a new set of nlOdifiers are computed. This algorithm is illustrated in 

full on Figme 2.3. In this figure, A represents the full set of modifiers. 

minr/>(u,ym) 

s~t. g(u,ym):s 0 
ym = f(u,,B) + Ck -I >-.[ (u - Uk) 

U min ::; u'::; U max 

Figure 2.3: Ideal modifier adaptation diagram 

One of the advantages of defining the modifiers in this manner is flexibility in which outputs 

are updated at each iteration. For instance, if a sensor stops working and one measmement 

is not available for an iteration, the modifiers pertaining to that output can be held constant 

while the rest of the algorithm proceeds as normal. Another example would be if one output 

measmement is very noisy, the decision could be made to not update all the modifiers related 

to it. This alternate scheme also makes it easier to combine modifier adaptation with other 

RTO algorithms. 
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One of the most beneficial properties of the modifier adaptation algorithm is that, upon 

convergence (in the absence of measurement noise), it will arrive at a local optimulll of the 

plant. This is due to the fact that the KKT conditions of the model will mimic those of the 

plant at this point [lvlarchetti et al., 2009J. At the converged point, u~, the modifiers can 

be computed as follows: 

A* 00 
(2.21) 

Ignoring the input bound constraints (for simplicity), the KKT conditions of Problem 2.20 

can be written: 

g(u,ym(u))::::; 0 

')'T g (u, ym(u)) = 0 

')'2:0 

a£.£ a¢ + a¢aym +,),T [ag + agaym ] = 0 
au au ay au au ay au (2.22) 

where,), are the Lagrange multipliers for the inequality constraints g and £ is the La­

grangian. The first expression of Equation 2.21 can be re-arranged to yield: F (u~) = 

Eoo + f (u~,f3). The right-hand side in this expression is also exactly what appears on the 

right-hand side of the expression for ym in Problem 2.20, because at the converged point 

u - Uk = O. Therefore, at the converged point, yP is equal to ym and the first condition in 

Equation 2.22 matches that of the plant. 

Since the cost (¢) and constraint (g) functions are identical for the plant and model and 

g~ (u~) = g~ (u~,f3) + Aoo , the fourth condition of (2.22) is the same for both. Since 

the constraints of the plant and model are identical, the second and third conditions of 

Equation 2.22 match those of the plant because the Lagrange multipliers of the model and 

plant are also the same. 

Note that, as in the ISOPE algorithm, modifier adaptation requires some method of com­

puting the plant output gradient, g~. In the algorithm first presented by Marchetti et al. 
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[2009]' it is assumed that these derivatives are known exactly. The algorithm that corre­

sponds with this assumption will be referred to as ideal modifier adaptation from this point 

forward. rvIethods of estimating the plant output gradient are explored in the following 

section. 

2.6 Methods for Estimating Plant Output Derivatives 

The simplest and most widely known scheme for estimating the plant output gradient is 

forward finite differences [Mansour and Ellis, 2003]: 

F(Uk+W2)-F(Ukl 
W2 

where w is a vector of small input perturbations. 

F(Uk+wnul-F(Ukl] 
Wnu 

(2.23) 

Examining Equation 2.23, it is evident that a plant perturbation must be made once every 

iteration for each input variable in the optimization problem. Therefore, in a large system, 

this would result in many plant perturbations. Not only would this result in a loss of 

profit due to operation at sub-optimal points (limiting its acceptance in industry), but it 

would also take a considerable amount of time to make all of the perturbations. For these 

reasons, the finite differences method is generally inefficient for large or slow processes 

[IvIansour and Ellis, 2003]. F\lrthermore, if the process is contaminated by a large amount 

of noise, the finite difference approximations could potentially be very inaccurate. This 

loss of accuracy depends on the choice of w. However, since no standard method exists for 

selecting w, extensive trial and error may be required to find good perturbation sizes. 

The dual ISOPE method, discussed in Brdys and Tatjewski [1994] and Mansour and Ellis 

[2003] is essentially an alternative way of applying finite differences, which requires no 

additional plant perturbations. The following expression is applied: 

p P 
Yk-l - Yk 

p p 
Yk-2 - Yk 

(2.24) 

p p 
Yk-nu - Yk 
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where nu is the munber of inputs and Sk = [(Uk-l - Uk) (Uk-2 - Uk) 

Measurement noise will cause the matrix on the right-hand side of Equation 2.24 to be cor­

rupted by errors, therefore it is important that Sk be well conditioned. The reciprocal 

condition number of Sk can be defined as "'k in the following way [Gao and Engell, 2005]: 

(2.25) 

where p denotes a singular value. The goal is to ensure that "'k is large enough so that 

excessive corruption of the derivative approximations by measurem.ent noise is prevented. 

This reciprocal condition number can be manipulated by adding an extra constraint to the 

model-based optimization problem, which can take the form of: 

(2.26) 

where E is a minimum threshold on the reciprocal condition number. A range of 0.1-0.2 is 

suggested in Tatjewski et al. [2001]. 

This methodology is definitely a positive step, in that it eliminates the need to perturb the 

plant many times to get an accurate derivative estimate. However, it was not selected for a 

couple of reasons. First, the implementation of the additional constraint could cause a loss 

of optimality, depending on whether the model optimum falls inside the area restricted by 

the constraint. Furthermore, to the author's knowledge, there has been no design method 

suggested to tune E specifically to fit the nature of any particular RTO problem. Also, the 

additional constraint (Equation 2.26) is typically non-convex, maldng the resulting model­

based optimization problem more difficult to solve. This is illustrated for a two input 

problem in Tadej and Tatjewski [2001]. In some extreme situations, this extra constraint 

may even make the model-based optimization problem infeasible. 

Dynamic perturbation methods, also detailed in Mansour and Ellis [2003], were not con­

sidered in this thesis due mainly to their inherent complexity. It is assumed for the case 

studies considered in this thesis that there is enough time to allow the plant to come to 

steady state before another RTO iteration is required. However, for very slow processes, 

dynamic perturbation methods could potentially be the best option. 
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Another possible method of plant output gradient estimation is Broyden's method. It was 

originally proposed in Broyden [1965] as a way of estimating function derivatives to be used 

in solving systems of non-linear equations. Specifically, Broyden's method was considered to 

be a good option when an analytical expression for the Jacobian of the non-linear functions 

could not be computed (or was very difficult to evaluate) and the functions themselves were 

also time-conslillling to evaluate [Broyden, 1965]. This was the case because, in Newton's 

method, if using an analytical expression for the Jacobian was impractical, finite differences 

was a common method of estimating the Jacobian. However, if the underlying system 

of equations was difficult to evaluate in the first place, finite differences would have been 

very time-consuming since it required an extra function evaluation to be made for each 

independent variable. The advantage of Broyden's method was that no extra function 

evaluations had to be made (Equation 2.27), which in these particular cases saved a great 

deal of computation time. Methods of solving systems of non-linear equations which utilize 

forms of Broyden's method are typically called quasi-Newton methods [Broyden, 1965]. 

To Lhe author's knowledge, Broyden's method is first discussed in reference to plant output 

gradient estimation for RTO in Mansour and Ellis [2003]. This method, like dual ISOPE, 

also avoids the need for making plant operating point perturbations. Instead of using many 

previous operating points to update the estimate at once, it uses information from only the 

last operating point (in addition to information at the current operating point) to update 

an existing derivative estimate. Therefore, it is an iterative update scheme in which only 

one direction, (Uk+! - Uk), is updated at a time. It can be represented by the following 

rank-one update formula: 

. . [ . pi' ] (Uk+l- Uk)T 
B1+1 = Bk + (Y1~1 - Yk' ) - Bk(Uk+l - Uk) ( )T( ) 

Uk+l - Uk Uk+l - Uk 
(2.27) 

where Bk+! (the Broyden update matrix) is a first order approximation of aaFu I . 
Uk+l 

The initialization of the Broyden update matrix is an important issue. One simple and 

generally effective option is to set Bo to the model output gradient at the initial point uo. 

This is effective as long as the approximate model is a reasonable representation of the 

plant at this point. If this is not the case in practice, a different approximate model should 

probably be selected in the first place. 
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2.7 Williams-Otto Reactor Benchmark Problem 

In the following section, the \iVilliams-Otto Reactor test case is introduced. TIlls is a bench­

mark RTO test case which has been studied in many papers, including Forbes and Marlin 

[1996] and Zhang and Forbes [2000]. The reactor has been isolated here from the overall 

Williams-Otto Plant (described in Govindarajan and Karunanithi [2004]) and the simplifi­

cations suggested in Forbes et al. [1994] have been made. It will be used throughout this 

thesis to make comparisons between RTO algorithms, as well as to illustrate new develop­

ments. 

Problem Formulation 

The process consists of an ideal CSTR where a set of three reactions involving six species 

(A, B, C, E, G and P) are taking place: 

A+B -----+ C 

B+C -----+ P+E 

C+P -----+ G (2.28) 

The CSTR has two feed streams of pure A and B (flowrates FA and FE) , and one exiting 

stream (flowrate FR)' The decision variables (inputs) are the temperatme of the reactor, TR 

[OK]' and the flow rate of feed B, FE [kg/s]. The lower bounds for these inputs are 333.15°K 

and 3 kg/s and the upper bounds are 403.15°K and 7 kg/so Note that this represents a 

larger feasible region than the one defined in Forbes et al. [1994]. The reactor mass (JV!R) 

is 2100 kg and FA is 1.8275 kg/so The objective function is related to plant economics. It 

assumes that E and P (mass fractions represented by XE and Xp) are the only valuable 

products and that both feeds, A and B, must be pmchased: 

(2.29) 

Note that although the objective function for this case study was stated in terms of cost, 

its result will sometimes be referred to as profit here because it is positive throughout 
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the normal operating range of the plant. Fmthermore, all costs/profits reported for the 

\iVilliams-Otto Reactor test case are in thousands of dollars. 

A constraint will sometimes be added to the test case. It is a limitation on the exit mass 

fraction of component B: 

(2.30) 

This constraint does not appear in the formulation in Forbes et al. [1994]' but is included 

here in order facilitate the illustration of various concepts throughout this thesis. The 

material balances that can be derived from the description of the process (Equation 2.28) 

are given next: 

FA - (FA + FB)XA - k"]11.1RXAXB = 0 

FB - (FA +FB)XB - k"]MRXAXB - kPl1RXBXC = 0 

-(FA + FB)XC + 2k"] MRXAXB - 2k~MRXBXC - k'3MRXCXP = 0 

-(FA +FB)XE + 2k~MRXBXC = 0 

-(FA + FB)Xp + k~MRXBXC - 0.5k'3MRXCXP = 0 

k"] = 1.6599 * 106e(-6666.7/TR) 

k2 = 7.2117 * 108 e( -8333.3/TR) 

k'3 = 2.6745 * 1012e(-1l11l/TR) (2.31) 

where ki is the reaction rate constant for reaction i. Note how a material balance is not 

written for component G, as the overall material balance (FR = FA + FB) is written directly 

into these component balances, using up an extra degree of freedom. 

A different set of equations will be used as the process model for these simulations. This 

model consists of one less reaction and one less component than the full plant model. 

Therefore structmal plant-model mismatch exists. The reaction sequence for the model is: 

A + 2B ----+ P + E 

A+B+P ----+ G (2.32) 

It is assumed that the measmements of the mass fractions of each of the components 
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represented in Equation 2.32 are available to the RTO system. Therefore these quantities 

are considered to be the process outputs. 

The material balances that comprise the process model are given next: 

FA - (FA + FB)XA - krVRXAX1- k;VRXAXBXp = 0 

FB - (FA + FB)XB - 2krVRXAX1- k;VRXAXBXp = 0 

-(FA + FB)XE + 2krVRXAX1 = 0 

-(FA + FB)Xp + krVRXAX1- k;VRXAXBXp = 0 

kr = vle(-EUTR) 

k; = v2e(-EUTR ) (2.33) 

where Vi is the pre-exponential factor of reaction i and EY' is the activation energy of 

reaction i. Note that there are no specific values provided here for the pre-exponential 

factors and activation energies. Instead it is the task of the individual modeler to provide 

estimates for these quantities. The effect of providing different model parameter values on 

the performance of the RTO system will be explored subsequently. 

2.8 Comparison of the Two-Step Approach and Ideal Modi­

fier Adaptation 

In this section, ideal modifier adaptation is compared with the two-step approach. Similar 

comparisons have been made between RTO approaches in several works in the past. In 

Chachuat et al. [2009], the two-step approach is compared qualitatively and quantitatively 

to both ideal modifier adaptation and direct input adaptation methods (a class of model­

free methods). Also, the performance of the two-step method was compared to the ISOPE 

method as well as both a linear and a quadratic adaptive on-line optimization approach in 

Zhang and Forbes [2006] (see the appropriate references for more details on the latter two 

approaches) . 

All of the comparisons in tIllS section are made using the two reaction sequence for the 
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approximate model (Equation 2.32) and the three reaction sequence for the simulated plant 

(Equation 2.28). Both the two-step approach and modifier adaptation were started using 

the same initial model. The initial form of the model essentially represents the starting point 

of the algorithm, because to begin the first iteration, this model is optimized to compute 

the first operating point that is sent to the plant. The parameters that were used are the 

following: [1Il,1I2,Ef,E2'] = [1.21 x 107 ,7.17 x 1011 ,7207,10249]. These parameters will 

be used for the process model in all Williams-Otto Reactor simulations run in this thesis, 

unless otherwise stated. For ideal modifier adaptation, filter parameters of 0.25 (k) were 

used for the simulation and the initial modifiers were set to zero (Ao = 0). There was 

no filtering done for the two-step approach. Finally, in all of the figmes presented for the 

Williams-Otto Reactor test case (unless otherwise noted), the profit contoms shown are 

for the simulated plant, thereby representing the "true" plant profit attained by the RTO 

system. 

The first plot, Figme 2.4, shows the noiseless convergence of both the two-step n1.ethod, 

using the pre-exponential factors (111,112) as the adjustable parameters and ideal modifier 

adaptation. Note that the activation energies (Ef, E2') could also have been used as the 

adjustable parameters in the two-step approach. 

4' .. " 
350 355 

__ 100 _ 

(.~-; Plant Profit Contours 
~ Ideal Modifier Adaptation 
-e-Two-Step Approach 

360 365 370 

Reactor Temperature ('K) 

Figme 2.4: RTO methodology comparison - noiseless case 

This comparison illustrates that updating the parameters of an approximate model is not 

enough to guarantee convergence to the optimum of a more rigorous model (in this case the 
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plant) [Biegler et al. [1985], Forbes et al. [1994]]. The algorithm does improve the initial 

operating point, however because of the structural plant-model mismatch in the reaction 

sequences, it converges to a sub-optimal point, realizing a loss of profit of just over 2% in 

this case. The ideal modifier adapatation simulation is consistent with the claim that the 

algorithm will, upon convergence, reach an optimum of the plant [NIarchetti et al., 2009]. 

It takes quite a few iterations to converge to the optimum, however this could likely be 

reduced by increasing the filter parameters. 

The performance of both RTO approaches was also tested using different initial models. In 

addition to the initial model used in the first trial (Figme 2.4), two other initial models 

were tested here. In the first one, VI was changed to 1.71 x 107 (model 2) and in the other, 

E't was changed to 6707 (model 3). The results for the original model (model 1) as well as 

the two new models are shown in Figure 2.5: 

4.4 

4.2 
"" 

354 356 ass 360 362 364 

Reactor Temperature (,K) 

@ Plant Profit Contours -
~ -*"2-Step pt 1 
~2-Steppt2 

-e-2-step pt 3 
-X-MApI1 
-.-MA pt2 

,as - -e-MA pta 

366 368 

Figme 2.5: RTO methodology comparison - different initial models 

It is evident from the simulations that the two-step approach does not always converge to 

the same point given different initial models. Only when the models differed solely by a 

change in one of the adjustable parameters, did two different models converge to the same 

point (models 1 and 2). This emphasizes the importance of model selection for the two-step 

approach. 

The plant optimum is converged to in all the modifier adaptation simulations. This tends 

31 



:~./I.A.Sc. Thesis - Eric Rodger McMaster University - Chemical Engineering 

to indicate that producing a very good initial model is not as important for modifier adap-

tation. However, if the initial model is too inaccurate, the algorithm may not converge 

at all. Furthermore, if the plant has multiple local optima, simulations involving different 

approximate models may not converge to the same point. Note that these problems are not 

exclusive to modifier adaptation, they exist for many other RTO schemes as well. 

The noiseless convergence of both algorithms for the constrained 'Villiams-Otto Reactor 

test case (recall Equation 2.30) is illustrated in Figure 2.6. The same settings that were 

used in the simulations for Figure 2.4 were used again here. These results delTlOnstrate 

another possible drawback of the two-step method. Although the two algorithms converge 

to points that are very close together, the two-step method converges to an infeasible point 

of the plant. This could be unacceptable, depending on the consequences of violating the 

constraint. 

Figure 2.6: RTO methodology comparison for constrained problem - noiseless case 

In the next comparison, a small amount of measurement noise is added to the mass fraction 

measurements (XA, XB, X E , XG andXp). This noise has zero mean and standard deviation 

of approximately 2.5% of a typical set of mass fraction values. Noise was also applied to 

the individual plant output derivative terms in ideal modifier adaptation. This noise also 

had zero mean, and standard deviation of 5.0% of a typical set of values for the individual 

gradient elements. The noise was increased for the gradient elements in order to simulate 
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the fact that larger levels of noise are expected in the derivative estimates. Each algorithm 

was then run for 50 iterations with the results shown in Figure 2.7. 

345 350 355 360 365 

Reactor Temperature ('K) 

C Plant Profit Contours 
-~- Two-Step Approach 
-e-Ideal Modifier Adaptation 

370 375 

Figure 2.7: RTO methodology comparison - measurement noise added 

Instead of converging to a point, both of the algorithms now move to the area surrounding 

the corresponding convergence point found in Figure 2.4. Both methods seem to be effected 

by the measurement noise to some extent. NIodifier adaptation takes more iterations to 

arrive at the area of convergence, again because of the filtering of the modifiers. Due 

to the presence of measurement noise, the filter parameters cannot be increased without 

consequence here. The trade-off is, as the parameters of KA increase, both the convergence 

speed and the sensitivity of the algorithm to measurement noise will increase. 

The last comparison that is made evaluates the response of each approach to a fundamental 

change in the state of the process. Specifically, an unmeasured disturbance is artificially 

introduced in the inlet flow rate of component A after 100 iterations and the performance 

of the two RTO approaches on the unconstrained Williams-Otto Reactor process is tracked. 

The same noise levels that were considered for the simulations of Figure 2.7 are used again 

here. The results are given in Figure 2.8. 

Note that the comparisons are made using the two manipulated variables, the temperature 

of the reactor (TR) and the flowrate of component B (FE). The ideal modifier adaptation 

algorithm tracks the step change relatively well, quickly moving toward the new plant 
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Figure 2.8: RTO methodology comparison - step change 

optimum. In the two-step approach, while the fiowrate of B moves toward its new plant 

optimal value, the temperature of the reactor actually moves away from its new plant 

optimal value. This illustrates the fact that when a disturbance occurs in the plant, if there 

is structural plant-model mismatch, the two-step approach is not guaranteed to move in 

the correct direction. 

2.9 Chapter Summary 

The goal of this chapter was to provide background information in order to better inform 

the reader as well as to motivate the research discussed in the remainder of the thesis. 

First, the different components of model-based RTO systems were discussed and references 

for further study were provided. This was followed by a description of four existing model­

based RTO methods: the two-step approach, constraint bias updating, ISOPE and ideal 

modifier adaptation. In addition, different plant output-gradient estimation techniques were 

discussed and the Williams-Otto Reactor case study was introduced. 

The last section of this chapter consisted of a comparison between the two-step approach 

and ideal modifier adaptation. Although ideal modifier adaptation appeared to be superior 

in the preceding discussion, in order to apply it in practice, the difficult task of approximat-
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ing the plant output gradient still must be addressed. The formulation and analysis of a 

modifier adaptation scheme using Broyden's method to estimate the plant output gradient 

is conducted in the next chapter. 
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Chapter 3 

Dual Modifier Adaptation 

The goal of this chapter is to develop an approach to real-time optimization which not 

only can effectively identify the plant optimum, but also performs well in the presence of 

measurement noise. To begin, a modification is proposed to the ideal nlOdifier adaptation 

algorithm, wherein Broyden's method is utilized to estimate the plant output gradient. A 

convergence analysis of this new algorithm is then carried out, followed by a discussion of 

the performance of this algorithm in the presence of measurement noise. Modifications are 

then introduced, giving the algorithm two distinct goals: seeking the optimum and achieving 

accurate Broyden derivative estimates. All of the concepts discussed in this chapter are 

demonstrated using the \iVilliams-Otto Reactor test case. 

3.1 Modifier Adaptation with Broyden's Method 

The main difficulty with the online implementation of ideal modifier adaptation, as pre­

sented in Section 2.5, is that the plant output gradient is never precisely known in practice. 

Therefore, it must be estimated in some way from the available plant measurements. Several 

potential plant output gradient. computation methods were discussed in Section 2.6. 

Broyden's method (Equation 2.27) is chosen in this work for implementation with the 
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modifier adaptation algorithm for several reasons. First, it mitigates many of the drawbacks 

of the finite differencing method, especially the need to potentially make mulLiple plant 

perturbations in each iteration. It also proves to be fairly easy to initialize, as Bo can be 

set to the model output gradient at the initial point uo. This is effective as long as the 

approximate model gradient does not differ extensively from the true plant gradient at this 

point. 

The update step of the ideal modifier adaptation algorithm, presented in Section 2.6 as 

Equation 2.19, can be rewritten to reflect the use of Broyden's method to estimate the 

plant output gradient: 

... ny 

Ak+l 

(3.1) 

where Bi is a row vector denoting the estimated derivative of output i with respect to the 

inputs. The algorithm diagram is given as Figure 3.1, where n is a non-linear map that 

represents the Broyden formula (Equation 2.27). 

min.p(u, ym) 

s~t. g(u,ym) C; 0 
y"' = f(u,f3) + €k +>'k

T (u - Uk) 

U min ::::; U ::; U max 

Plant 
(88) 

Figure 3.1: 1/Iodifier adaptR.tion algorithm with Broyden's method 
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3.1.1 Williams-Otto Reactor Case Study 

The \iVilliams-Otto Reactor test case is now used to compare modifier adaptation with 

Broyden derivative estimates to ideal modifier adaptation. The results shown in Figure 

3.2 are obtained with an absence of measurement noise and the filter parameters set to 

0.25. The modifiers are also initialized to zero in this simulation (Ao = 0). In addition, the 

starting point (uo) is [TR,FE ] = [353.15,4.5] and the initial Broyden derivative estimate 

is computed as follows: Bo = ~~ lua' The next operating point (Ul) is then calculated 

tlll'ough the model-based optimization (using Ao). This point is the optimum of the process 

model because (Ao = 0). Finally, the next plant output derivative estimate was computed 

as: Bl = n (Bo, Ul, uo, yP(Ul), yP(uo)). These same initial settings were used in all the 

simulations detailed in this chapter, unless otherwise noted . 
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::::.<.~/ .~~" 05' .-:-.,',' 
(i)4.8"/ ."" rF / en ',-,,' .' 
Co . 

3.8"'-' ---'c~-'---"'-'c' ~--cc:"=-='----::-:':::--~"--:c~",,------=,~~~'--::' ~" ,--' ~-''---=------'"-'-:c"''' 
352 354 356 358 360 362 364 366 

Reactor Temperature ('K) 

Figure 3.2: Comparison of MA with Broyden's method and ideal MA 

Although the plant optimum is reached by both algorithms, it is immediately evident that 

it takes modifier adaptation with Broyden's method more iterations to converge very close 

to the plant optimum. This is because the algorithm does not move in a very direct route 

toward the optimum, due to inaccurate gradient information. The convergence of modifier 

adaptation with Broyden's method is analyzed in detail in Section 3.2. Also note that in all 

of the simulations in this chapter, both TR and FE are scaled linearly so that the interval 
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[-2,2] corresponds with the variable bOlUlds outlined in Section 2.7: 

Ul 0.05 (TR) - 18.1575 

FE -5 (3.2) 

Note that this was done to improve the performance of Broyden's method (see Section 3.2.3 

for explanation). 

Similar to ideal modifier adaptation, the performance of modifier adaptation with Broyden's 

method also depends on the approximate model used by the algorithm. The same three 

starting models that were used in Figme 2.5 of Section 2.8 are utilized again here. The 

filter parameters were again set to 0.25 and the same initial settings (uo, Ao) that were 

used for the simulation in Figme 3.2 were used again here. Note that the initial Broyden 

estimates (Bo) differed for each of the three initial models, as they were again computed 

using: Bo = ddf I . The results are shown in the Figme 3.3. 
li lio 
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Figure 3.3: Modifier adaptation with Broyden's method using different starting models 

Figure 3.3 illustrates the fact that the path taken to the convergence point and the number 

of iterations taken to get there both depend on the process model used in the algorithm. 

The algorithm converges quickly to the plant optimum in some simulations (model 1) and 

it gets stuck moving in the wrong direction for a considerable number of iterations before 

converging in other simulations (model 3). Note that no conclusions should be drawn here 
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about which process model provides better overall performance, as only a single simulation 

is provided as evidence here. Furthermore, although the algorithm converges to the plant 

optimum for all process models in this demonstration, there is no guarantee of this. This 

will be discussed further in Section 3.2.3. 

In addition to the process model, a starting point, uo, must also be provided for the al­

gorithm. It is at this point that the Broyden matrix (B) is initialized (recall that Bo can 

be estimated as: Bo = ~~ lua)' In addition to being used in this initialization, this point 

will be utilized in the first Broyden update as Uk in Equation 2.27. It is therefore very 

important that this point is well chosen, as it will have a significant effect, especially on the 

early performance of the algorithm. To demonstrate this, simulations were run using tluee 

different starting points: [353,6], [373,6] and [353,3.5]. The results are shown in Figure 

3.4. 
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Figure 3.4: Modifier adaptation with Broyden's method using different starting points 

Although all three of the simulations eventually converge to the plant optimum, the early 

performance of the algorithm seems to be strongly dependent on the starting point. The 

simulations beginning at points 1 and 3 converge quite quickly to the plant optimum. The 

simulation beginning at point 2, however, spends a fair number of iterations considerably 

far away from the plant opLimum before finally moving towards it. This seems to indicate 

that it is important to choose a starting point (uo) that is reasonably close to the model 
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optimum (Ul)' This is not only for the benefit of the model-based optimizer, it also helps 

in obtaining a good first Drayden update (Bl) (see Section 3.2.3). 

The next compa.rison, Figme 3.5, demonstrates the effect that the filter parameter settings 

have on the convergence behaviom of modifier adaptation with Broyden updates. In each 

of the tests all of the filter parameters are set to the same value. While it is possible, even 

sometimes advantageous to run the algorithm with filter parameters set at different levels, 

investigation of this is beyond the scope of this thesis. 
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Figure 3.5: Modifier adaptation with Broyden's method with different k values 

Upon examination of Figme 3.5, it is clear that the larger the filter parameters, the faster 

the movement toward the plant optimum. The downside is that, as the filter parameters 

increase, the path toward the optimum becomes more erratic. The trial with filter param­

eters of 0.05 moved very slowly, but in fairly a direct path towards the plant optimum. On 

the other hand, the trials with filter parameters of 0.50 and 0.70 moved around in a slightly 

erratic path, but managed to converge to the plant optimum fairly quickly. 

Trials with k ::0: 0.70 proved to be more erratic, or in some cases did not converge at all. 

Therefore, for the Williams-Otto Reactor case study, a good range of k values appears to 

be 0.125 - 0.50, however no best values can be identified without knowing more specific 

information about the RTO system in question, such as the natme and frequency of the 

distmbances expected in practice. Key information about the filter parameters can also be 
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garnered by performing a convergence analysis of the algorithm. This is addressed in detail 

in the next section of this thesis. 

3.2 Convergence Analysis of Modifier Adaptation with Broy­

den's Method 

The purpose of the following section is to analyze the convergence of modifier adaptation 

with Broyden's n1.ethod, which was presented in Section 3.1. Analyzing the convergence of 

the algorithm is important because it should provide key information regarding the selection 

of the filter parameters. Most importantly, it should prevent filter parameters that lead to 

divergence from being chosen. 

First, the algorithm will be stated formally to facilitate the analysis to follow. Then, the 

convergence of single input problems will be analyzed, using a modified formulation of 

the Williams-Otto Reactor process as a test case. Finally, the convergence of multi-input 

problems will be investigated. 

3.2.1 Algorithm Statement and Linearization 

In order to facilitate the calculation of various sensitivities, the algorithm for modifier 

adaptation with Broyden updates, that was presented in Section 3.1, is formally stated 

here. This statement is based on the one for ideal modifier adaptation that can be found 

in Marchetti et ai. [2009]. The purpose of stating the algorithm in this way is to remove 

Uk from the model-based optimization problem. To begin, the following alternate modifiers 

are defined, which represent the constant terms of the output correction: 

(3.3) 

Hence, the new veetm of modille", A ~ [: 1 ' i, ,-elated to the pcevious\y defined ,,' of 
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modifiers by [Marchetti et al., 2009]: 

(3.4) 

where T (u) is defined as follows [Marchetti et al., 2009]: 

T (u) == (3.5) 

The optimization problem can then be rewritten using the alternate modifiers: 

Uk+ 1 E arg min 
u 

S.t. ym = f (u, (3) + Ek + >..r u 

g (u, ym) ::; 0 (3.6) 

After making the appropriate substitutions, the modifier adaptation update step (Equation 

3.1) appears as follows: 

Ek 

At 
T (Uk+l) Ak+l = (1 - K A) T (Uk) + KA (3.7) 

Lastly, due to the unique form of T (u), the following can be written: T-1 = 21 - T (u). 

This allows the update law to be restated as follows: 

(3.8) 
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This update law (Equation 3.8) can be represented by the non-linear map Ain the following 

way: 

(3.9) 

where VYk+l = ~~ (Uk+l,j3). Similarly, the model-based optimization problem (Equation 

3.6) can also be represented by a non-linear map: 

(3.10) 

Note that U* is differentiable at Ak only if uk+ 1 is a unique optimizer of A k. For tIns 

to be true, the solution of the optimization problem must satisfy the linear independence 

constraint qualification (LICQ), the 2nd order (sufficient) KKT conditions for a strict local 

minimum and the strict complementary slackness condition (see Appendix B). These two 

laws (3.9 and 3.10), along with the definition of T in Equation 3.5 and the Broyden update 

map (n), malm up the algorithm that will be used in the convergence analysis to follow. 

This overall algorithm is denoted by Y hereafter. 

The algorithm for modifier adaptation with Broyden updates (Y) can be thought of as a 

discrete-time, non-linear map. In order to accurately reflect the state of the RTO system 

at a given iteration (here at iteration k), three quantities need to be known: Ak, Ak- 1 and 

B k . Therefore, the overall algorithm can be represented as follows: 

[

Ak+11 
Ak = Y (Ak' Ak-l, Bk) 

Bk+l 

(3.11) 

Although the algorithm (Y) is non-linear, the asymptotic behaviour of Y can be analyzed 

by considering a first order approximation (linearization) of Y in the vicinity of an equilib­

rium point, provided Y is differentiable at that equilibrium point [Khalil, 2001]. In practice, 

a stable equilibrium point for the algorithm can be identified by running it for many it­

erations and noting the point to which it converges (if such a point exists). Suppose that 
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[A::a, A::a, B~] is an equilibrium point for the algorithm, Y, that is: 

(3.12) 

A first order Taylor senes expansion of the algorithm can then be written around the 

equilibrium point: 

(3.13) 

A new triplet is now defined, [OAk, OAk-I, OBk] , representing the distance between a partic­

ular iterate and the equilibrium point (i.e. OAk = Ak - A::a). Using the preceding definition 

and Equations 3.11-3.13 the following can be written: 

[

OAk+l] [ OAk ] 
OAk ~ Y co oAk- 1 

OBk+l OBk 

(3.14) 

where Y co is equal to VY evaluated at the equilibrium point. It can be defined specifically 

as the following matrix of sensitivities: 

(3.15) 

Now, if the eigenvalues of Y co are computed, the asymptotic behaviom of the algorithm in 

the neighbomhood of the equilibrium point can be characterized. The following theorem, 

adapted from Antsaklis and Michel [2007], describes how this is done: 

Theorem 3.1 (Asymptotic stability of Y) The algorithm, Y, is asymptotically stable 

in the vicinity of an equilibrium point if and only if the magnitudes of all of the eigenvalues 

of Y co are less than one, that is, all of the eigenvalues of Y co are located inside the unit 

circle of the complex plane. 
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Proof. See [Theorem 4.47, Antsaklis and Michel [2007]] for an explanation. 

3.2.2 Convergence Analysis of Single Input Problems 

Analyzing the convergence of single input problems is considerably easier than it is for 

multiple input problems. This simplicity comes from the fact that, for single input problems, 

the Broyden method formula (Equation 2.27), reduces to the following expression (a simple 

finite difference): 

(3.16) 

Notice that in Equation 3.16 the dependence on the previous Broyden iterate, B k , vanishes. 

Therefore, the state of the system no longer depends on Bk, and Equations 3.14 and 3.15 

can be rewritten as follows: 

(3.17) 

The set of sensitivities in (3.17) are not trivial to compute, as they require careful examina­

tion of the modifier adaptation algorithm. Considering d;i: 1
, there are a vaJ:iety of paths 

through which the modifiers at iteration k can effect the modifiers at iteration k + 1. First 

of all, this influence can come directly from the values of the previous modifiers through 

the first-order exponential filter (see Equation 3.8). However, the previous modifiers also 

effect the new input values determined by the optimizer (see Equation 3.10). These new 

inputs then effect the output information (values and gradients) which in turn influence 

the cmrent modifiers. All six possible pathways are illustrated in Figme 3.6 and can be 

expressed mathematically as follows: 

8A (8A 8A (8n 8n dF I ) 8A dF I ) dU* I 
EJAk + EJUk+l + EJB k+l' 8Uk+l + 8Yk+l . du Uk+l + 8Yk+l . du Uk+l • dA Ak 

+ ( 8A . df I + EJA . 8
2
f I ) . dU* I 

EJym du 8\lym 8u2 dA -k+l Uk+l,/3 k+l Uk+l,/3 Ak 

(3.18) 

where ddF I can be approximated by Bk+1' The most difficult set of sensitivities to 
U Uk+l 

compute are ( an. + aJ}. . dF I . ). The derivation for this set of sensitivities gives the 
aUk+l aYk+l du Uk+l 
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following: ~ ~:~ I . Full details on the calculation of each individual sensitivity appearing 
Uk+l 

ill Equation 3.18 can be found in Appendix C. 

A 

A 

U* 

A 

Figure 3.6: Flowchart illustrating pathways through which Ak influences A k+l 

The other term in Equation 3.17 is easier to evaluate. The influence of A k - l on A k+l 

comes entirely through the modified update law (Equation 3.9). It can be represented by 

the following expression: 

dAHl _ aA. dU* I 
dAk- l - aUk dA Ak-l 

Williams-Otto Reactor Case Study 

(3.19) 

In order to test the convergence analysis procedure, the \iVilliams-Otto Reactor problem, 

originally presented in Section 2.7, is modified here. Specifically, the feed rate of component 

B (FB) is fixed at 4.6 kg/so This effectively makes the Williams-Otto Reactor a single-input 

problem, with the temperature of the reactor (TR) being the only input. 

A plot showing how the profit of the plant varies with changes in the temperature of the 

reactor (TR) is given as Figure 3.7. This plot also shows the convergence of a nlOdifier 

adaptation system using Broyden updates. In this simulation, filter parameters of 0.5 are 
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used. Convergence to the general area of the plant optimum is achieved in only a handful 

of iterations. 
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Figme 3.7: Plant profit plot for Williams-Otto Reactor single input system 

In this case study, upon examination of Equation 2.29, two outputs need to be modified 

in order to match the KKT conditions of the model to those of the plant. They are the 

mass fraction of component E and the mass fraction of component P. This means that fom 

modifiers must be updated, one bias and one gradient modifier per output. Therefore, there 

are a total of eight variables that are needed to describe the state of the system for this 

single input case study (both A k+1 ,i and Ak,i for each updated modifier i). 

Numerous tests were run to examine the convergence of modifier adaptation with Broyden's 

method for this case study. The analysis was done by looking at the eigenvalues of Y <Xl for 

different sets of filter parameters, k. Note that only cases where all the filter parameters 

were the same were considered here. 

Filter parameters of 0.50 are considered first. The non-zero eigenvalues (Eval) of the Y <Xl 

matrix are given below: 

Eval 
= [0.5,0.5,0.5,0.3272 ± 0.4884i,] (3.20) 

Since all of the eigenvalues lie within the unit circle, the algorithm is asymptotically stable 

near equilibrium point [Antsaklis and Michel, 2007]. This means that the algorithm should 

move toward the equilibrium point when it is started "sufficiently" close to it. Since pro­

jections can only be taken on a two-dimensional axis, and the system has 8 states in total, 
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a couple of different plots are shown in Figure 3.8 to confirm that the system is indeed 

moving toward the equilibrium point. 

X 10'" 

x~ 

)0 
"" 

x 10"" 

Figure 3.8: Modifiers approaching equilibrium point with k = 0.50 

To get a sense of which filter parameter values would support stable operation and conversely 

which filter parall1.eter values would cause the algorithm to diverge, the gain matrix (Y 00) 

is computed for a range of filter parameters between 0.01 and 2. The eigenvalues of each 

gain matrix are then computed and the eigenvalue with the largest magnitude (dominant 

eigenvalue) for each filter parameter sample is isolated. These dominant eigenvalues are 

plotted against their corresponding filter parameter values in Figure 3.9. 
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Figure 3.9: Dominant eigenvalue for various filter parameter values 

Figure 3.9 illustrates the fact that any sets of filter parameters in the typical range of a to 1 

should provide stable performance. When the magnitude of the dominant eigenvalue of the 

gain matrix is greater than one, this indicates that the algorithm will likely be unstable in 
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practice. To test this, filter parameter values of 1.5 were implemented for the single input 

\iVilliams-Otto Reactor system. The algorithm was run using Broyden's method to estimate 

the plant output gradient, with no nleasurement noise. The convergence analysis prediction 

was confirmed as the algorithm quickly diverged. 

3.2.3 Convergence Analysis of Multiple-Input Problems 

Unfortunately, multiple-input problems cannot be analyzed as simply as single-input prob­

lems. The main difficulty stems from the fact that, in the multiple-input case, some of 

the derivative terms in Y 00 (Equation 3.15) are not defined at the convergence point 

[A:a, A:a, B~ ]. For instance, 8:~r can be represented by the following, for a system 

with two inputs: 

(3.21) 

where ~k+l,i = Uk+l,i -Uk,i (the difference in component i between the current and previous 

operating points). As the algorithm converges, the fractional expressions in this matrix 

approach an undefined form (g). Therefore, linearization of the algorithm is not possible 

at the convergence point. 

To demonstrate the convergence behaviour of the algorithm, the Williams-Otto Reactor 

test case is used. The Broyden derivative for one of the outputs, X p , will be examined. 

This output can be considered in isolation because in the Broyden formula (Equation 2.27) 

there is no interaction between outputs. The algorithm is run under noiseless conditions, 

with filter parameters of 0.25 and the two terms in the top row of Equation 3.21 are plotted. 

The term at position (1,1) is shown at the top of Figure 3.10 and the term at position (1,2) 

is shown at the bottom of the figure. 

It is clear here that both Broyden derivative terms are not converging after 350 iterations. 

This confirms that the Broyden update procedure and by extension the entire algorithm 

is not differentiable at the convergence point. Therefore, linearization, as discussed in 
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Figure 3.10: Broyden derivative values as the algorithm converges 

Equations 3.14 and 3.15, is not possible. Note that a possible solution to this difficulty 

would be the application of Lyapunov methods, which do not require differentiability of the 

algorithm. This could potentially be a topic of future research. 

There is another concept that needs to be discussed related to the use of Broyden's method 

to estimate the plant output gradient for multiple-input systems. Up nntil this point, 

nothing has been said about the nature of the point that modifier adaptation with Broyden's 

method converges to. It was said earlier that in the case of ideal modifier adaptation, as 

long as the algorithm converged, it would converge to a KKT point of the plant. This 

same guarantee cannot be made when Broyden's method is employed to estimate the plant 

output derivatives in multiple-input systems. 

To be effective, Broyden's method needs consistent excitation in all directions. In the previ­

ous section, the comment was made that Broyden's method updates in only one direction, 

(Uk+l - Uk), in each iteration. Therefore, any direction perpendicular to this one is com­

pletely ignored by the method. This can be confirmed by locating the set of directions, M, 

such that the Broyden estimate does not change between two successive iterations: 

(3.22) 

By inspection of 2.27 it is easy to find that the set of directions, M, is the ~nu-l dimensional 

subspace comprising every direction perpendicular to the update direction from the current 
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iteration, (Uk+1 - Uk)' This property does not cause a severe problem in a single iteration. 

However, if the same set of directions is ignored iteration after iteration, the method may 

not ever identify the correct plant output gradient, causing the algorithm to fail to converge 

to a stationary point of the plant. 

A more detailed mathematical analysis of this concept is now presented. The disparity 

between the Broyden plant output gradient and the true plant output gradient is referred 

to as the gradient offset subsequently. This gradient offset can be defined as follows: 

(3.23) 

where el+1 is a row vector for the gradient offset for output i at iteration k + 1. 

An expression is now developed that approximates this offset at any given iteration, as long 

as the offset at the previous iteration is ah'eady known. To begin, the direction of the last 

operating point update is normalized to give the following: 

(3.24) 

where (k+l is the unit direction representing the last operating point move. Note that 3.24 

cannot be applied if the operating point did not change between iterations k and k + 1. 

The projection of the gradient offset in the direction (HI can now be written: 

(3.25) 

Approximating Bfui (Uk+l) using the Broyden update expression (Equation 2.27), the fol­

lowing expression can be obtained: 

(3.26) 

Now, writing a Taylor series expansion for y~,i == pi (Uk) around Uk+l and ignoring terms 

greater than second order: 
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The Taylor series expansion of Equation 3.27 is now substituted into Equation 3.26 to get 

the final expression for the projection of the gradient offset in the unit direction of the last 

operating point move: 

(3.28) 

The gradient offset in directions normal to the direction of the last operating point change 

(k+l) is now considered. If N = [lll' ll2, ... llnu-l ] represents an orthonormal basis of the 

(nu -1 )-dimensional subspace orthogonal to (k+l' then the projection of the gradient offset 

in any unit direction llj gives: 

(3.29) 

Note that the Broyden update matrix is not changed in any direction orthogonal to the 

direction of the last operating point change, Bi+I llj = Billj. Using this, and the definition 

of the offset (Bi = ei + Bfui (Uk)) the following expression can be written: 

(3.30) 

Finally, writing a Taylor series expansion for Bfui (Uk) around Uk+l and ignoring terms 

greater than first order yields: 

(3.31 ) 

To finish this derivation, the projections of the offset in the orthogonal subspaces (HI and 

N b b· d . i,T /' /,T i,T + NNT i,T S· NNT I /' /,T can e com me usmg e k+ l = o"k+lo"k+lek+l e k+ l · mce = - o"k+lo"k+l, 

the following comprehensive expression can be written: 

(3.32) 

The gradient offset in Equation 3.32 appears to grow as the step-size is increased. This 

provides motivation for limiting the size of the steps taken by the modifier adaptation 

algorithm. For instance, if Uo and UI are far apart, the gradient offset for the first few 

iterations of the algorithm will be large. More importantly, the first term of Equation 3.32 
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shows that the gradient offset may not vanish even when the algorithm is converging and 

the step-size, II uk+l - Uk II, becomes very small. j\!Iitigation of these issues will be discussed 

later in this chapter. 

There is one more issue relating to modifier adaptation with Broyden updates, for multiple 

input systems, that needs to be discussed. In the denominator of the Broyden update 

definition (Equation 2.27) the following term appears: [Uk+l - Uk]T [Uk+l - Uk]. For a two 

input system this can be rewritten as: (Uk+l,l - Uk,1)2 + (Uk+l,2 - Uk,2)2. It is clear that 

this term closely relates changes in both inputs. Therefore, it is advantageous if both inputs 

are scaled so that they change by similar amounts. This is also important for systems with 

more than two inputs as well. 

Instead of rescaling the inputs directly, a more systematic way to deal with the issue would 

be to use to restate the Broyden update formula (Equation 2.27) as follows: 

(3.33) 

where M is a (typically diagonal) scaling matrix. 

Application to the Williams-Otto Reactor Test Case 

The importance of input variable scaling, when Broyden's method is employed to estimate 

the plant output gradient, is demonstrated in Figme 3.11. Here, the Williams-Otto Reactor 

test case is run both with no input variable scaling and with the scaling described earlier 

in this chapter. The difference in performance is considerable, as the unscaled simulation 

does not even converge to the plant optimum after over 100 iterations. 

3.3 Sensitivity to Measurement Noise 

Another significant deficiency of Broyden's method, in addition to the gradient offset prob­

lem described in the previous section, is now discussed. Upon close examination of the 
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Figure 3.11: '¥illiams-Otto Reactor test case with and without scaling 

Broyden formula (Equation 2.27), it is clear that the output gradient approximation will 

become artificially large if in the presence of measurement noise, the new operating point 

(Uk+l) is very close to the previous operating point (Uk). This can be easily seen mathe­

matically by considering the gradient estimate in the direction of the last operating point 

move, (k+l : 
p,i p,i 

. Yk+l - Yk 
Bk+1 (k+l = .,,-=-'--=----'-'-----c:-

II Uk+l - Uk II 
(3.34) 

This problem is briefly alluded to in Mansour and Ellis [2003] and Gao and Engell [2005] 

and will be referred to as the peaking phenomenon hereafter. 

Before specific solutions are explored, it is useful to consider the peaking problem from 

a more mathematical point of view. This will aid in confirming the root causes of the 

problem and may help in the evaluation of potential solutions. To this end, a first-order 

approximation of the variance in the Broyden derivative estimates is made. Examining 

Equation 2.27 again, there are three pathways through which uncertainty can propagate 

to the Broyden updates (Bt+l). Both the current (k + 1) and previous (k) measurements 

can be noisy and this noise can be easily propagated through to the Broyden derivative 

estimates via the corresponding terms in the update equation. In addition, variance in the 

previous Broyden estimates is propagated through to the new estimates via the B~ term in 

Equation 2.27. 

55 



M.A.Sc. Thesis - Eric Rodger McMaster University - Chemical Engineering 

To sum this up mathematically, the triplet [B1+l' y~~ l' y~,i] 
of the three quantities described in the previous paragraph: 

can be written as a function 

(3.35) 

where R involves the Broyden update map, n (Equation 2.27). R is then linearized around 

the mean values of the Broyden derivative estimates and plant measmement quantities: 

(3.36) 

where B1 denotes the mean values of the Broyden derivative estimates for the output i, 

Y~~l and y~,i are the mean values of the plant measmement i (at particular iterations) and 

VR can be expressed as follows: 

an-T 0 0 aBL 

VR= 
an- T I 0 

aYk~l 
(3.37) 

an-T 0 I 
aYk" 

Now, using Equations 3.35-3.37, as well as the definitions of variance and covariance, the 

following expression for the variance of the triplet [Bi p,i P,i] 
k+l'Yk+l'Yk can be written [Arras, 

1998]: 

an- T T 
an- T 

(B~+l) aBt 0 0 

c~ ) aBi 0 0 
k 

V ~~.l ;:::;; 
an- T I 0 V Y~~.l 

an- T I 0 (3.38) a p,i aYk~l Yk+l 
yP,t an- T 0 I 

p,t an- T 0 I k aYk,i Yk a p,i Yk 

where V is a variance operator, gJ:; = 1- (k+l (r+l and aa?:i = - aa!i = !lu .C::k:::-u II' Note 
k Yk+l Yk k+1 k 

that the assumption is made here that the mean values of all involved quantities, B1, y~~l' 
y~,i, Uk+l and Uk, can be approximated by their respective values at the cmTent iteration 

(. Bi p,i p,i d) 
I.e. k' Yk+l' Yk , Uk+l an Uk· 

Next, the covariance matrix of the triplet [B1, Y~~l' y~,i] must be developed. First, the 

variances of the measmements themselves (a2
p ,i and a2

p ,i) need to be estimated. This can 
Yk+l Yk 
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be done based on knowledge of the sensors that are being used to take the measurements. 

The variance due to the measurements is generally a,s::lmned to be constant throughout 

all the iterations of a given simulation. Also note the assumption is made that there is no 

correlation between Y~~I and y~,i, or y~~1 and BL and that the covariance between y~,i and 

Bl can be approximated as lIuk5~k_1II a~p,i' Considering the full covariance matrices of the 

triplets [Bl+l,y~~I,y~,i] and [BL~~I,y~,i], Equation 3.38 can be rewritten as follows: 

v (Bl+1) 0 CO"(B~~" 11.';,) j [I -'kHcr+I 0 

~r [ 0 
a 2 . R::: 'f+l I yP,t IIUk+l-Ukll 

i p,i 0 a2 . 'f+l 0 cov(Bk+1' Yk+l) yP,t -IIUk+l-Ukll 

V (B1) 0 
(, 0

2 j [1-, e 0 

J(339) IIUk-Uk-lli yP,t kT+I k+1 

[ 0 
a 2 . o 'k+l I yP,t IIUk+l-Ukll 

c:.f a2 0 a2 c:.f+l 0 IIUk-Uk-lli yP,t yp,i -lluk+l-Ukll 

From Equation 3.39, the following first-order approximation for the variance of the Broyden 

estimates at iteration k + 1 can be extracted: 

(3.40) 

Examining Equation 3.40, it is clear that the variance is dependent on both the distance 

between the current and previous operating points (Uk+1 and Uk) and the distance between 

the previous two operating points (Uk and Uk-I). 

Application to the Williams-Otto Reactor Test Case 

The Williams-Otto Reactor test case will be used here to illustrate the peaking problem. 

Measurement noise is added to the mass fraction measurements (zero mean, standard de­

viation of approximately 0.5% of a set of typical output mass fraction values) and modifier 
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adaptation with Broyden's method is run for 50 iterations. The following plot shows the 

true plant profit at each iteration: 
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Figure 3.12: IVIA with Broyden's method, under the influence of measurement noise 

It is easy to identify the peaking phenomenon in Figme 3.12 whenever the plant profit 

suddenly decreases. Since significantly large movements away from the plant optimum 

would clearly not be acceptable in practice, a modification will need to be made to the 

algorithm in order to mitigate this problem. 

The dependence of the variance of the Broyden estimates on II Uk+l -Uk II and II Uk -Uk-l II 
(Equation 3.40) makes it clear that new operating points must be chosen in a clever way 

so as to make the distance between consecutive operating points as large as possible while 

still remaining close enough to the plant optimum so that good performance is achieved. 

To visualize the importance of the operating point choice, the following short example is 

given. For this example, it is assumed that the process has been running at the operated 

point Uk for some time. A new set of modifiers have been computed and it is time to choose 

Uk+l. The goal here is to find out which operating points will in general provide the lowest 

variance of the Broyden derivative estimates V (Bk+l) in the next Broyden update step. 

Equation 3.40 has already been derived and can be tasked with making the estimation of 

V (B1+1) for any potential operating point. Since it is intended that this example be as 

general as possible, it is assumed that no information about the previous Broyden estimates 
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is available. In addition, it is assumed that only the current operating point (Uk) is known. 

These two assumptions lead to a simplification of Equation 3.40: 

(3.41) 

Equation 3.41 is then applied to the \iVilliams-Otto Reactor case study to estimate the effect 

ofthe operating point choice on the Broyden derivative estimates for the change in Xp with 

respect to both of the two inputs. Assuming measurement noise of a standard deviation of 

5.38 x 10-4 (0.5% of a typical value for Xp), Figure 3.13 can be obtained, giving estimates 

of each of the four elements of V (B~~l) throughout the input space. 

Reactor Temprature ('K) 

Figure 3.13: Broyden derivative estimate variance for the Xp measurement 

Note that, as expected, points very close to the previous operating point, uk, have very 

high estimates for all the elements of the covariance matrix. Now, the variances of each of 

the diagonal terms of B~~l are added together and the result is shown in Figure 3.14. Note 

that this neglects both the effect of the covariance of the two terms and also the fact that 

the variance of one of the terms of B~~l might have a greater effect on the algorithm than 

the other. 
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Figure 3.14: Broyden derivative estimate variance for Xp (variance terms added) 

The shape of the contours in Figure 3.14 is an ellipse (this is expected given the form 

of Equation 3.41). It was important that the above example was as general as possible 

because when potential solutions are considered in Section 3.4, they must be effective in all 

possible situations, not just for a particular previous Broyden variance estimate or previous 

operating point (Uk-I). 

3.4 Dual Modifier Adaptation 

In light of the both the gradient offset and peaking problems discussed in Section 3.2.3 

and 3.3 respectively, it is clear that the algorithm for modifier adaptation with Broyden 

updates needs to be modified to achieve more consistently accurate plant output gradient 

estimates. Note that after any modification the algorithm would possess two distinct goals. 

The first being the original goal, to minimize the value of the cost function. The additional 

goal would be to achieve accurate Broyden derivative estimates, both in terms of offset and 

variance. This is why the new algorithm is called dual modifier adaptation. 

In the following section, select ideas from dual control literature are examined for use with 

modifier adaptation. One of these ideas is adopted to address the peaking phenomenon. 

This idea is then extended to provide the Broyden update method with constant excitation 
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in all input directions, thereby helping to mitigate the offset problem as well. 

3.4.1 Mitigating the Peaking Phenomenon 

While there has not been much work done on dual RTO methods to this point, aside from 

the dual ISOPE method previously discussed in Section 2.4, the dual control problem has 

been studied extensively. This problem consists of attempting to achieve the best possible 

balance between controller performance and process knowledge when trying to control an 

unknown system. Essentially, the system must be perturbed in order to learn information 

about it so that better control can be realized in the future. An excellent overview on dual 

control was done in Wittenmark [1995]. Solution of the exact dual control problem, while 

theoretically possible, is not practical because of the computational time requirements of 

solving a stochastic dynamic program. Due to this, a number of approximate dual control 

methods have been developed over the years. 

Two types of approximate methods mentioned in \Vittenmark [1995] seemed to be poten­

tially useful in modifier adaptation. The first is the addition of an extra term to the cost 

function to encourage movement away from the current operating point. This acts like a 

penalty term, which prevents new operating points from being positioned too close to the 

current one. A potential modified cost function is: 

(3.42) 

where the pammeters in C = diag(c) are chosen to achieve good performance. Note that 

there are other possible variations of this approach, for instance, adding one term to the 

cost function for each input: 

(3.43) 

which would allow the user to ensure movement in all input directions every iteration. 

Another type of approximate method, discussed in \Vittenmark [1995], is the addition 

of an extra constraint to the optimization problem. This could be done in a number of 
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different ways. One possible formulation would be to create an ellipsoid around the previous 

operating point: 

(3.44) 

where B is a symmetric, positive definite matrix of ellipsoid size parameters. Instead of 

adding only a single constraint, separate ones could be included for each input: 

(3.45) 

where J.t are a set of tuning parameters, one for each input direction. Note that all four of the 

options outlined above involve introducing additional non-convexity into the optimization 

problem. 

A check procedure, where the effect of the measurement noise on the input predictions 

is com.puted and checked against a reference value was also considered. Note that this is 

similar to the form of dual ISOPE suggested in Gao and Engell [2005]. In this case, if the 

check fails, the Broyden matrix is simply not updated during the current iteration. This 

approach was discarded however, because the nature of the conditional procedure made 

selection of a good check threshold for any given problem difficult. Trial and error, or a 

general rule of thumb, would likely have to have been employed instead. 

Application to the Williams-Otto Reactor Test Case 

In this section, the merits of each of the four dual approaches introduced in the last sec­

tion are analyzed. Tests are conducted for each one of these methods by running modifier 

adaptation with Broyden updates and the appropriate addition to the model-based opti­

mization problem. For each method, the \iVilliams-Otto Reactor test case is simulated for 

300 iterations, starting from a point relatively close to the plant optimum. White noise is 

added to the plant mass fraction measmements, with standard deviation of 0.5% of a set 

of typical mass fraction outputs for this system. The filter parameters (k) are all set at 

0.25. Values are selected for the tuning parameters (c, B, or J.t) in each of these methods 

after considerable testing. These values are chosen to achieve "good" performance of the 
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algorithm, however, they were by no means optimized. The results of the testing are shown 

in Figure 3.15. 

350 360 370 380 390 

Temperature of Reactor fK) 

Multiple constraints (Eqn. 3.45 - ~=[0.1,0.1]) Ellipsoid Constraint (Eqn. 3.44 - 8=[75,0;0,35]) 

350 360 370 380 
Temperature of Reactor ('K) 

Figure 3.15: Demonstration of different dual control methods 

Figure 3.15 shows that each approach appears to perform adequately for the specific set 

of tuning parameters chosen. No ranking of approaches is possible here, simply because 

no attempt has been made to optimize the respective tuning parameters of each approach. 

Therefore, the decision will have to be based mostly on qualitative factors. Finally, there 

seems to be some offset from the plant optimum present in each of the simulations in the 

figure. This deficiency is ignored for now, however, as none of the methods described earlier 

in this section have the ability to combat this. This issue will instead be addressed later in 

this chapter. 

Note that the simulation employing the approach of adding multiple terms to the cost 

function, Equation 3.43, is shown in Figure 3.15 for only a run of 100 iterations. The 

reasoning for the reduced run length was the 1/IATLAB optimizer, jrnincon, frequently 

stalled during testing, so it was difficult to string together many sllccessful iterations. The 

specific reason for the difficulty was not discovered, however this nlethod was discarded 

because of this problem. 
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The algorithm which involved the addition of a single term to the cost function (Equation 

3.42), performed much better in that there were never any problems with the MATLAB 

optimizer over the course of many simulation runs. The problem with cost function ap­

proaches in general, however, is that it is more difficult to devise a systematic procedure 

for choosing the tuning parameters. This is because it is hard to estimate the effect of the 

penalty term on the algorithm. Conversely, in the case of the constraint approaches, the 

restricted area itself can be used to approximate the effect of the constraint since its bound­

ary naturally represents the maximum influence that it can have on a particular operating 

point selection. 

For the approach involving multiple constraints (Equation 3.45), the model-based optimiza­

tion problem had to be solved using multiple starting points. This was because of the fact 

that if the optimizer started in a specific feasible quadrant, it tended not to exit that par­

ticular quadrant, due to the non-convexity introduced by the extra constraints. To combat 

this, 4 starting points were selected from inside the input space for each optimization stage. 

These four points were the corners of the rectangular area enclosed by the variable bounds 

umin and umax . The extra effort required to solve three additional optimization problems 

did not pose a problem for this relatively small two-input problem. However, since the 

number of separate areas would grow exponentially with the number of inputs, this method 

could become quite computationally expensive for larger problems. 

In the remainder of this thesis, the emphasis is on the ellipsoid constraint method. This 

method is selected for a couple of reasons. First of all, it does not have any of the major 

drawbacks that each of the other three approaches have. There are no problems with the 

optimizer, as the algorithm runs smoothly and produces acceptable results. It also consists 

of a geometric constraint, making it easier to tune than the single term cost function ap­

proach, and it does not produce a model-based optimization problem that requires solutions 

from mUltiple starting points to be obtained. Also, recall the variance approximation study 

of Figure 3.14. The shape of the contours nominally resembled an ellipse, indicating that 

this might be a good shape to use for a constraint because the variance could be consistently 

kept below a certain level. 
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The ellipsoid parameters, denoted by b, are assumed to be on the diagonal of the matrix 13 

subsequently. In principle 13 does not have to be diagonal, it only needs to be symmetric 

and positive-definite. However, for the purpose of this thesis, the assumption is made that 

13 is diagonal. A future research direction would be to extend the design procedure in 

Chapter 4 to address all 13 matrices that are symmetric and positive definite. 

The effect of the introduction of the ellipsoid constraint on the performance of the algorithm 

is illustrated in Figure 3.16. A simulation consisting of 50 iterations, utilizing the same 

general settings that were used in creating Figure 3.12 was run. Ellipsoid parameters of 

(b = [40,30]) were chosen. These were chosen after a period of testing because they 

appeared to help achieve" good" algorithm performance. The improvement in performance 

is clear, as the large variations in the plant profit are eliminated. 
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Figure 3.16: Dual modifier adaptation - ellipsoid constraint only 

3.4.2 Mitigating the Gradient Offset Problem 

The causes of the gradient offset problem are discussed in detail in Section 3.2.3. It is the 

cause of the bias from the plant optimum seen in the simulations of the previous section 

(Figure 3.15). 

To reduce the effect of the gradient bias, two different approaches are possible (see Section 

3.2.3). First, the step length (distance between consecutive operating points) can be re-
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duced. This can be easily done by employing a trust region constraint which creates an area 

around the current operating point inside which the new operating point must be placed. 

This constraint can be written as follows: 

(3.46) 

where r is a symmetric positive definite matrix of ellipsoid parameters which define the 

trust region. Note that since the trust region constraint and the ellipsoid constraint (Equa­

tion 3.44) have conflicting objectives, they must be designed in a consistent manner so that 

they do not cause the model-based optimization problem to be infeasible. In some extreme 

cases, in which the level of measurement noise is very high, it might not be possible to find 

an operating point at which both the offset and variance of the Broyden derivative estimates 

will be acceptable. 

The second method of eliminating offset consists of ensuring, in some way, that the algorithm 

explores a variety of possible input directions. It is assumed here that an ellipsoid has 

ah'eady been sized offline based on the properties of the RTO problem to be solved. These 

include the cost function, constraints and nlOdel themselves as well as the level of expected 

measurement noise. A systematic design procedure is developed for this in Chapter 4. 

Suffice it to say that it is already sized at run-time, and this size is available. 

For this derivation the assumption is made that there are nu previous operating points 

available, which represent a set of nu - 1 previous movement directions Ak, ... , Ak-nu+1 

(where Ak = Uk - Uk-I). If nu previous operating points are not available (i.e. if it is 

very early in the RTO execution period), the ellipsoid constraint itself can simply be used 

without considering the offset (as in the lower right panel of Figure 3.15). There is also the 

option of generating the missing points by conducting plant experiments. 

Let Hk = span (Ak, ... , Ak-nu+1) denote a hyperplane which is defined by the nu-1 previous 

algorithm movement directions. Since the goal here is to ensure sufficient exploration of the 

input space, any offset elimination procedure should ensure that the algorithm moves off 

of this hyper-plane. One natural way to impart this goal on the dual modifier adaptation 

algorithm would be to build upon the existing ellipsoidal restriction region constraint that 
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was developed in Section 3.4.1. In such a case, the constraint(s) would have two distinct 

goals: moving the new iterate a significant distance away from Uk and moving a significant 

distance away from the hyper-plane Hk. Figure 3.17 shows a pair of constraints which 

accomplish these goals. The advantage of such a design would be that the constraints would 

create only one exclusion area, which would be easier to handle for both the model-based 

optimizer and the RTO design procedure (see Chapter 4). 

5.5 I , " "i 

-Constraint 1 
, -Constraint 2 
$ Ellipse 

C Uk 

U
k

_
1 

Uk+ 1 
_ Model Profit Contours 

" . .. / . 

350 355 

,<i" 
/ ,.-

/ 

<f' .p 

360 366 370 
Temperature of Reactor (K) 

Figure 3.17: Illustration of the dual constraints 
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There are already a set of tuning parameters that need to be chosen (13) in order to size 

the ellipsoidal restriction constraint itself. In the interest of design simplicity, it would 

be advantageous to utilize the same design parameters in satisfying the requirement of 

movement off of the hyper-plane. The following disjunctive expression does exactly this: 

(3.47) 

where Wk is a vector orthogonal to the hyperplane Hk. One way to choose Wk is as the first 

row of the adjugate of the matrix of previous moven"lent directions: 

(3.48) 

where ~k = Uk - Uk-I. Even though the new operating point, U, appears here, the first 

row of the adjugate of Uk is independent of the new operating point. 
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Figme 3.17 illustrates the constraints (3.47) and corresponding operating point decision 

which result from running the dual modifier adaptation algorithm for the \iVilliams-Otto 

Reactor test case. Note that the contoms shown here are for the process model at this 

specific iteration of the algorithm. This ensmes that the contoms reflect the operating 

point choice made in the figme. 

Now an explanation of how the constraints of Equation 3.47 result in the construction that 

is illustrated in Figme 3.17 is given. Note first that the V Wrf3-1wk term in Equation 3.47 

must be positive. This is due to the fact that the matrix 13 is positive definite and therefore 

its inverse is also positive definite. If [u - Uk] is on Hk, then both the left sides of the 

disjunctive constraints in Equation 3.47 will be equal to zero (recall that Wk is orthogonal 

to Hk) and neither constraint will be satisfied. Therefore, the constraints of (3.47) ensme 

that [u - Uk] is not on the hyperplane. 

This is a good first step, however, the fact that the constraints in Equation 3.47 reside on 

or outside of the ellipsoid defined by 13 must still be established if the constraints (3.47) are 

to replace the ellipsoid constraint (3.44). The first disjunctive constraint of (3.47) can be 

interpreted as meaning that the projection of [u - Uk] in the direction Wk (orthogonal to 

the hyperplane Hk) must be larger than a constant based on the size of the ellipsoid and 

the length of Wk. Since the constraint is linear in terms of the inputs (u), its contoms can 

be represented by a series of hyper-planes. In addition, since the constraint represents a 

projection in a direction orthogonal to Hk, these hyper-planes will be parallel to Hk. 

Now, consider the following operating point change: 

(3.49) 

Note that at this point, both the first disjunctive constraint of (3.47) and the ellipsoid 

constraint (3.44) are active. If it can be proved that at this point the first disjunctive 

constraint represents a hyper-plane tangent to the ellipsoid, then this is sufficient because 

a tangent hyper-plane is by natme an outer-approximation of the ellipsoid. 

To prove that the point given in (3.49) is indeed a point where the disjunctive constraint is 
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tangent to the ellipsoid, the gradients of both are examined. The gradient of the ellipsoid 

constraint can be computed as follows: 

(3.50) 

and when evaluated at [u - Uk] = V 13;lw~ it becomes: 2 V T
Wk 

1 On the other hand, 
w k 13 Wk w k 13 Wk 

the gradient of the disjunctive constraint ;rJu-=-~kl is simply V TWk_l • Since these two 
w k 13 Wk w k 13 Wk 

gradients have the same direction, the point described in (3.49) must be tangent to the 

ellipsoid. Therefore, satisfaction of the first disjunctive constraint guarantees satisfaction 

of the ellipsoid constraint. 

In the left panel of Figme 3.18 the contoms of the first disjunctive constraint wk [u - Uk]­

J wk13- 1Wk :::: 0 and the contoms ofthe ellipsoid constraint (u - ukf 13 (u - Uk) - 1 :::: 0 

are illustrated for a fictitious system. The tangency point, given in Equation 3.49 as u, is 

also shown in the figure as ut+. 

Figme 3.18: Illustration of the ellipsoid and disjunctive constraint contoms 

A similar argument can be made for the second disjunctive constraint of (3.47). This time, 

the point where the constraint is tangent to the ellipsoid is V_~-l~k . The contoms of the 
w k 13 Wk 

second disjunctive cons(,raint -wk [u - Uk]- J wk13-1Wk :::: 0 and the ellipsoid constraint 

(u - ukf 13 (u - Uk) -1 :::: 0 are illustrated in the right panel of Figme 3.18. The tangency 

point is represented here as ut-. 
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In practice, due to the disjunctive nature of the constraints, two different optilnization 

problems must be solved at each iteration. These two problems are given as Problems 3.51 

and 3.52 below: 

+ . 
U k+ 1 E arg mm 

u 

S.t. 

U k+ 1 E arg min 
u 

S.t. 

ym = f (u, (3) + Ek + A[ U 

g (u,ym) ~ 0 

[u-ukfT[u-Uk] ~ 1 

w[ [u - Uk] 2': J W[f3-1wk 

ym = f (u,{3) + Ek + A[ U 

g(u,ym) ~ 0 

[u - ukf T [u - Uk] ~ 1 

-w[ [u - Uk] 2': J W[f3-1wk 

(3.51) 

(3.52) 

The set of inputs generated from these problems (utH or uk+1) with the lowest objective 

function value is then adopted as the next operating point, Uk+l. 

The algorithm employing Problems 3.51 and 3.52 as well as the Broyden update map, n (see 

Figure 3.1), the modifier update law map, A (3.10), and the alternate modifier conversion 

map, T (3.5), will be referred to as dual modifier adaptation for the rest of this thesis. In 

addition, the disjunctive constraints (3.47) added to the original model-based optimization 

problem to produce Problems 3.51 and 3.52 are referred to as the dual constraints. To 

complement the algorithm a systemic constraint design procedure is required, which will be 

discussed in the next chapter. 
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Application to the Williams-Otto Reactor Test Case 

The algorithm involving the disjunctive constraints is now tested by running 300 iterations 

of the Williams-Otto Reactor test case with filter parameters of 0.25, ellipsoid parameters 

of b ~ [40,3D[ and 'm" ,-egion eonslminl pan"nele", of r ~ [~ :]_ Me"Bm'emcnl noise 

with a standard deviation of 0.5% of a nominal set of mass fraction values is assumed. The 

results are shown in Figure 3.19. 

355 3GO 3S5 370 

Temperature of Reactor ('K) 

Figure 3.19: Performance of the dual constraints 

It appears that the offset has been for the most part eliminated in the left plot of Figure 

3.19 (compared with the bottom right plot of Figure 3.15). Examining the right panel, 

it seems that all directions in the input space are being explored. Figure 3.20 is also 

included to demonstrate how the algorithm using the disjunctive constraints responds to a 

disturbance. The scenario considered here is similar to the one considered in Figure 2.8. 

The only difference is the size of the unmeasured disturbance was increased so that the 

operating point change could be distinguished from the noise in the input estimates. The 

same parameter and noise settings that were applied in the simulation for Figure 3.19 were 

applied again here. The performance of the algorithm in Figure 3.19 is satisfactory, as 

it seems to move fairly quickly to the new plant optimum. It is noisy though, especially 

compared to Figure 2.8, which motivates the development of the systematic tuning approach 

discussed in the next chapter. 
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Figme 3.20: Step change test for dual constraints 

3.5 Chapter Summary 

In this chapter, Broyden's method was selected to estimate the plant output gradient in 

the modifier adaptation algorithm. The importance of several choices in regard to the new 

algorithm. was illustrated though a series of simulations using the Williams-Otto Reactor test 

case. These choices included the starting point, the process model and the filter parameters. 

A convergence analysis of the algorithm for a single input formulation of the \iVilliams-Otto 

Reactor test case was then carried out. This analysis proved to be helpful in identifying a 

good range of filter parameters for the problem. 

The second half of the chapter detailed the development of the dual modifier adaptation al­

gorithm. First, several difficulties in regard to the implementation of Broyden's method were 

discussed in detail, including offset in the gradient estimates and the peaking phenomenon. 

Ideas from dual control theory were then used to come up with a solution to the peaking 

phenomenon and this solution was then modified so that it could address the gradient offset 

problem as well. It consisted primarily of the addition of two disjunctive constraints to the 

model-based optimization problem, which restricted operating point placement. The new 

algorithm performed well on the \iVilliams-Otto Reactor test case. 
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Chapter 4 

Offline Design of Dual Modifier 

Adaptation 

The implementation of an RTO system alone is not enough to guarantee process improve­

ment. The system must also be well designed, based on the nature of the specific process 

in question, in order to achieve the greatest possible financial benefit. Proper design is 

especially important for the dual modifier adaptation algorithm introduced in Chapter 3. 

Both the trust region and dual constraints must be properly sized on their own, and also 

designed together in a consistent manner in order to avoid poor performance or in some 

cases even infeasibility. 

The optimal design policy involves the selection of new values for the dual constraint pa­

rameters (and any other pertinent design parameters) as the algorithm is running in real 

time. This could be done as frequently as before every iteration. The problem with this idea 

in practice is the necessary computation time. As the size of the RTO problem increases, 

the computational effort required to solve the corresponding design problem would increase 

as well, likely in a dramatic manner. Therefore, for most processes, solving a design prob­

lem online would be computationally demanding, because the solution time is required to 

be shorter than the period between consecutive RTO iterations. In addition to the added 
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computation thne, the complexity of this task would likely limit its acceptance in the pro­

cess systems engineering comlmmity. It is for these reasons that an offline design approach 

is considered in this thesis. Online design would make for an interesting future research 

direction, especially if the computing power available continues to rapidly increase. 

The main focus of Chapter 4 is therefore the offline design of dual modifier adaptation 

systems. The design procedure is based around the use of an adapted form of the design 

cost criterion, which was originally developed by Forbes and Marlin for the two-step ap­

proach of RTO [Forbes and Marlin, 1996). The use of the criterion in the design of dual 

modifier adaptation systems is investigated first. Details on the calculation of this Inetric 

are given next. As previously, the developments of this chapter are then illustrated using 

the VVilliams-Otto Reactor test case. 

4.1 Dual Modifier Adaptation Design Procedure 

In general, the design cost criterion facilitates the comparison of different RTO design and 

technology options. The criterion is a quantitative estimate of the profit lost or additional 

cost incurred due to imperfections in the design of the RTO system. The use of this metric 

to arrive at the best possible dual modifier adaptation design is what is discussed in this 

section. 

The basic design methodology is detailed first, in which both the sizing of the dual constraint 

as well as other design options are considered. These other design options can include the 

set of modifiers to be updated by the algorithm, the model to use and which measurements 

to take. Next, a multi-scenario optimization formulation is presented, which is designed to 

handle inaccuracies in the benchmark plant models and economic data used in the design 

procedure. This formulation can also handle the situation where the process is commonly 

operated at multiple different points as well. These concepts are then illustrated though an 

example involving the Vlilliams-Otto Reactor test case. 
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4.1.1 RTO Design using the Design Cost Criterion 

Forbes and Marlin [1996] formulated the design cost optimization problem as follows: 

minC (~) 
~ 

(4.1) 

where ~ are a set of design choices and C is the design cost (the calculation of C is discussed 

in Sections 4.2 and 4.3). The selection of the optimal ellipsoid parameters, 13 (3.47), can 

easily be incorporated: 

minC (~,13) 
~,13 

(4.2) 

Note that the selection of the trust region constraint parameters is not considered here 

(Equation 3.46). The reason for this is the inherent difficulty in estimating the effect of the 

trust region constraint on the model-based optimization problem. This problem stems from 

the fact that the trust region constraint will mainly be active as the system n1.oves to react 

to fundamental changes in the state of the system (transients). The design cost approach, 

however, is concerned only with steady-state performance. Since it was not considered in 

the design procedure, the constraint was also not implemented in any of the simulations of 

this chapter. Incorporation of the trust region constraint into the design procedure could 

potentially be the subject of future research. 

Most of the decisions that the design cost criterion has been previously applied to have been 

discrete in nature. For instance, previous published applications include model selection 

[Forbes and Marlin, 1996], adjustable parameter selection [Zhang and Forbes, 2000] and 

sensor selection and placement [Fraleigh et al., 2003]. The dual constraint parameters are 

different however, because they can take any values as long as 13 is positive definite. Due 

to this property, the design cost problem to optimize 13 is a traditional NLP (instead of an 

MINLP). Realizing this, the following nested optimization formulation is given to represent 

the proposed method of solution: 

(4.3) 

For this formulation, the intention is that the best set of dual constraint parameters are 

solved for at each unique combination of the discrete design variables,~. Therefore, for 
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the problems addressed in this thesis, the inner optimization problem of (4.3) is solved 

using an NLP solver and the outer optimization problem is solved by enumeration. On the 

other hand, if there were many discrete design decisions, <;, to be made, Problem 4.2 could 

be addressed directly by employing an MINLP solution method, in order to potentially 

decrease the computational load. 

4.1.2 Sources of Uncertainty in Dual Modifier Adaptation Systems 

It is widely recognized that uncertainty plays an important role in RTO problems. There­

fore, it is imperative that it be considered in the design phase of any new RTO system. A 

review of uncertainty specific to RTO systems was done in Zhang et al. [2002]. In this work, 

the authors consider four different types of uncertainty: model uncertainty, measmement 

uncertainty, process uncertainty and market uncertainty. It is useful to consider each of 

these types of uncertainty individually here to examine how they effect dual modifier adap­

tation systems and also how they will be dealt with in the dual modifier adaptation design 

procedme. 

• Model uncertainty stems from the use of a process model which fails to represent plant 

operation. This can be either structmal plant-model mismatch (discussed earlier) or 

parametric model mismatch, in which values of the parameters in the process model 

are inaccmate. This type of uncertainty is dealt with natmally through the modifiers 

used to alter the outputs in modifier adaptation. 

• Measmement uncertainty occms due to errors in the sensor system. It is assumed in 

this thesis that random measmement noise has a zero offset and some variance: O'~p, 

This variance can typically be estimated based on factors such as the type, quality 

and age of the physical sensors being used. It is assumed here that gross errors have 

been eliminated by the data validation system. 

:Measmement noise propagates through to the modifiers in several ways. It can have an 

effect during not only the RTO iteration in which it occurred, but also in futme RTO 

iterations due to the first-order exponential filter and the Broyden update (which uses 
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the past two sets of plant n1.easurements as well as the previous Broyden estimates). 

The effect of measurement noise is dealt with directly in the design cost metric itself . 

• Process uncertainty is caused by disturbances in the plant [Zhang et al., 2002]. These 

disturbances can include actual changes in the nature of the process (such as catalyst 

decay), variations in upstream conditions (such as reactant flowrates) and changes 

in surrounding conditions (for instance the outdoor temperature affecting a cooling 

water inlet temperature). This uncertainty manifests itself in the design procedure 

in the incorrect approximation of certain parameters in the benchmark plant model. 

This essentially means that the location of the true plant optimum is not known. This 

uncertainty is dealt with by using a scenario averaging approach along with the design 

cost criterion (Section 4.1.3) . 

• Market uncertainty is caused by the fact that market conditions (supply and demand) 

are constantly changing due to global events. This means that the sale and purchase 

prices of various process inputs and outputs may not be accurately known. This 

uncertainty can be dealt with in the same way as process uncertainty, using the 

multi-scenario approach of Section 4.1.3. 

There is an additional SOlUTe of variation considered in the design cost problem in this 

thesis that is unique to dual modifier adaptation. Recall that the dual constraint defines a 

restricted area around the previous operating point where the next operating point cannot 

be placed. The effect this constraint has on the solution to the model-based optimization 

problem varies from iteration to iteration. For the purpose of the design cost calculation, 

the effect of the dual constraint will be approximated and incorporated into the calculation 

procedure as a sort of endogenous disturbance, in this work called dual excitation. 

4.1.3 Handling Process and Market Uncertainty 

Often, there is uncertainty in the benchmark plant model upon which the RTO design 

is being based. After all, this is only an approximate representation of plant behaviour 
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in the first place. Fortlmately, this uncertainty can be mitigated somewhat through the 

use of a scenario averaging approach. The approach that is adopted here requires that 

the uncertainty can be accounted for by varying the plant parameters. If the value of a 

parameter is uncertain, a reasonable range of values for this parameter must be known. 

Note that due to this requirement, structmalmismatch between the plant and benchmark 

model cannot be accounted for by this approach. 

A similar multiple-scenario approach, upon which the following approach is based, was de­

veloped in Forbes and Marlin [1996] for use with the two-step RTO approach. It considered 

the situation where there are multiple common plant operating modes. Therefore, this can 

also be dealt with using Equation 4.4 (given below) for modifier adaptation with Broyden 

updates, as long as the change in operating mode can be reflected by a change in the bench­

mark model parameters. Alternatively, the design cost procedme could be run individually 

for each operating mode, so as to avoid the potential profit loss incmred from adopting a 

"universal" design. 

If Q sets of uncertain plant parameter values ({3P) are sampled from the space of potential 

parameter values, then the optimization problem 4.3 can be recast: 

Caag ~ ~ ["'tn ( "lin t, C «, B, 1m) 1 (4.4) 

where Cavg is the average design cost value for the scenarios considered. The ~ term is 

included so that the equation will give a plausible estimate for the average design cost at 

all the possible plant optima. Note that this approach can also handle uncertainty in the 

cost and constraint functions. This includes market uncertainty in pmchase and sale prices 

in the cost function. 

This extension increases the computing power required because it necessitates the solution 

of a more complicated design cost problem in order to identify the optimal dual constraint 

parameters. However, since all of the design cost computations are done offline this should 

not be a major problem. Note thaL EquaLion 4.4 can easily be extended to include the 

weighting of particular vectors of changing plant parameters, {3P, if one set of parameters 

is known to be more likely than another. Now that the use of the design cost criterion in 
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a dual modifier adaptation design procedure has been detailed, computation details for the 

design cost, C, will be discussed in the next section. 

4.2 Design Cost Background 

This section introduces the design cost criterion, which is a metric that can be used in the 

design of dual modifier adaptation systems, as described in Section 4.1. The criterion was 

first developed for the two-step method in Forbes and 1tIarlin [1996]. For each proposed 

design, a total cost value, C, is calculated. This represents the extra cost (or loss of profit) 

incurred due to imperfections in the design and operation of the RTO system: 

(4.5) 

where uP '* is the (unknown) plant optimum, U(X) is the distribution of operating points, 

q>P (u) := ¢(u, F (u)) is the plant cost function written only in terms of the inputs and E 

is an expectation operator. It is necessary to consider a distribution of operating points in 

Equation 4.5 because various sources of uncertainty (measurmnent noise, dual excitation) 

will cause the operating point computed by the RTO algorithm to change from iteration to 

iteration. These sources of uncertainty were discussed in Section 4.1.2. 

In Equation 4.5, q>P(uP'*) is computed from estimates of u p,* and q>p. The other quantity in 

Equation 4.5 that needs to be determined is E [q>P(u(X))]. The probability density function 

for the distribution (u(X)) can be expressed as h(D), where 19 is a specific instance of U(X). 

Therefore the average value of the cost ftmction for the iterates (uoo ) can be approximated 

as follows [Forbes and Marlin, 1996]: 

(4.6) 

where X denotes the space of potential operating points which the distribution U(X) draws 

from. This is often defined in practice by umin and umax . The next couple of steps of 

this derivation cliffer ::;lightly fro111 the derivation given in Forbes and rVlarlin [1996]. The 

major difference is that the derivation in Forbes and Marlin [1996] is made using reduced 

properties, where the one applied in this thesis is not. 
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The cost at iJ can be approximated by the following second order Taylor series expansion: 

where V<.PP and V2 <'pP respectively denote the gradient and Hessian of the plant cost func­

tion. In writing Equation 4.7, the assumption is made that the profit function is at least 

twice continuously differentiable with respect to the set-points (u). 

Now, the expected value of the iterates, E [u=], is added and subtracted from each (iJ - uP'*) 

term of Equation 4.7 and the result rearranged to yield: 

<'pP(iJ) <.pP(uP'*) + V<.pPlup ,* (E[uoo]- up,*) + V<.pPlup ,* (iJ - E[u=)) 

1 )T 2 + "2 (iJ - E[u=] V <.pPlup,* (iJ - E[u=)) 

1 + "2 (E[u=] - up,*)T V2 <.pPlup ,* (E[u=] - up,*) 

+ (E[u=]- up,*f V2 <.pPlup ,* (iJ - E[u=)) + a (11iJ - uP'*11 3
) (4.8) 

The Taylor series expansion (Equation 4.8) can then be manipulated in order to sub-divide 

the overall design cost into two separate parts. These two separate parts are the bias cost 

(GB) and the variance cost (G17): 

(4.9) 

• The bias cost, GB, represents the performance loss due to offset from the plant opti-

mum: 

GB <'pP (E [u=)) - <'pP(up,*) 

V<.pPlup,. (E[u=] - up,*) 

+ ~ (E[u=] - up,*)T V2 <.pPlup ,* (E[u=] - up,*) (4.10) 

Note that the second line is made up of the terms from Equation 4.8 which did not 

depend on iJ (they were taken directly out of the integral in Equation 4.6). This illus­

trates that GB simply consists of a Taylor series expansion for <'pP (E [uoo)), evaluated 

at uP,*, subtracted from the profit at the plant optimum. If a good benchmark model 
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is known, or plant experiments can be cheaply done, the first line of Equation 4.10 

can be used to more accmately estimate 0 B. 

• The variance cost (OF) represents the performance loss because of the dispersion of 

the computed optima, U eXll due to the presence of uncertainty. It can be expressed as 

follows [Forbes and Marlin, 1996]: 

(4.11) 

where V ij (u()()) is the covariance of inputs i and j. Note that the remaining terms of 

Equation 4.8 (that were not used in the bias cost definition) are used in this derivation. 

Fmther details can be found in Forbes and Marlin [1996]. If the individual variance 

and covariance terms, Vij (u()()) are arranged in covariance matrix form as V (u()()) , 

Equation 4.11 can be rewritten as follows [Forbes and Marlin, 1996]: 

(4.12) 

where 0 denotes the Hadamard product and 1 is a column vector of ones of length nu' 

Figme 4.1 illustrates the distinction between the two types of costs. 

PI"Otit Function Contoul' Plot 

Figme 4.1: Design cost composition 
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Overall, the design cost is computed as the sum of both the performance loss caused by 

system offset (CB) and the performance loss caused by measmement noise and dual exci­

tation (Cv-). Note that the true plant optimum (uP'*) and both the gradient and Hessian 

of the plant cost function evaluated at the plant optimum (Vq>Plup ,* and V2 q>Plup ,*) are 

required in order to compute C. Since true plant operation cannot be perfectly modeled, 

exact values for these quantities will never be known. However, they can be approximated 

in a number of different ways. One method is to utilize a detailed plant model, which 

might be too complex for online implementation, to make the approximation. If such a 

model is unavailable, plant experiments or even inherent process knowledge can be used to 

make satisfactory estimations. A more detailed discussion on this topic can be found in 

Forbes and Marlin [1996]. 

The design cost concept was extended by Zhang and Forbes, to include a transient term 

[Zhang and Forbes, 2000]. The idea here was to use the transient term to try to reflect 

the speed with which an RTO system responds to distmbances. This term, called the 

transient cost, was simply included in the design cost formulation along with both the bias 

and variance costs already defined in Forbes and Marlin [1996]. This extended design cost 

formulation is useful if the plant operation is expected to change frequently (every few RTO 

iterations) and if the RTO designer has a priori knowledge of the natme of the distmbances 

the RTO system is going to face [Zhang and Forbes, 2000]. Although the extended criterion 

will not be used in this work, it could be used in a futme research study, possibly involving 

the selection of the best possible filter parameter matrix, KA, for a particular dual modifier 

adaptation implementation. 

The design cost criterion can be used to make a variety of different design decisions. In 

the original paper by Forbes and Marlin [1996]' and in the extended design cost paper 

by Zhang and Forbes [2000], it was used to select the best parameter set for updating the 

model of a particular system. In the extended design cost paper and in an RTO performance 

analysis paper [Zhang and Forbes, 2006], it was used to distinguish between different RTO 

methods. Other published applications include model selection [Zhang and Forbes, 2000] 

and sensor selection [Fraleigh et al., 2003]. 
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4.3 Design Cost for Dual Modifier Adaptation 

In this section, specific details regarding the calculation of the design cost for dual modifier 

adaptation systems are discussed. The estimation of the variance cost is detailed first, 

followed by the bias cost. 

4.3.1 Variance Cost Approximation 

It is assumed that the Hessian matrix (V2 <[>Plup ,*) has ah'eady been estimated using one 

of the methods detailed in Section 4.2. Therefore, the only quantity left to compute in 

Equation 4.12 is the covariance matrix of the inputs, V (uoo ). One possible way would 

be to perform a post-optimal sensitivity analysis around the modifier adaptation optimum 

obtained with no noise or dual excitation. However, as B goes to infinity, the dual con­

straints (Equation 3.47) are non-differentiable, so no such analysis can be conducted. In­

stead, V (uoo) will be approximated by considering two separate scenarios and then the 

covariance matrices calculated for each of these scenarios will be added together: 

(4.13) 

The first scenario involves the modifier adaptation algorithm without the dual constraints, 

and VI (uoo ) represents the effect that measurement noise has on the system. In the second 

scenario, V 2 (uoo ) represents the effect of the dual constraints on the algorithm. 

Scenario 1 (modifier adaptation without the dual constraint): The procedure begins by 

considering the covariance matrix of the modifiers. Then, a post-optimal sensitivity analysis 

is used to approximate the variance-covariance matrix of the inputs. This derivation is 

adapted from Forbes and Marlin [1996], where a similar derivation is made for the two-step 

approach. 

Recall from Section 3.2.1 that a linear approximation of a closed-loop modifier adaptation 

system, using Broyden's method to estimate the plant output gradients, can be written as 
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follows: 

where Y 00 is defined as: 

[
5Ak+lj [5Ak j 5Ak ~ y 00 5Ak- l 

5Bk+l 5Bk 

dAk+1 

dAk 
dAk 
dAk 

dBk+l 
dAk 

dAk+1 

dAk - 1 

dAk 
dAk - 1 

dBk+l 
dAk - 1 

dAk±l 
dB k 

dAb' 
dB k 

dBk+l 
dB k 

(4.14) 

(4.15) 

The matrix, Y 00, cannot be computed in practice because of the non-differentiability of the 

Broyden update formula at the convergence point of the algorithm. as 13 goes to infinity 

(Section 3.2.3). Instead, the behaviour of modifier adaptation with Broyden's method is 

approximated here by that of the ideal modifier adaptation algorithm. This gives rise to 

the following: 

(4.16) 

where Y 00 is now represented by: 

(4.17) 

where A:a are the modifier values obtained by running the ideal modifier adaptation scheme, 

with no measurement noise, until convergence is reached (provided it is reached at all). The 

inputs at convergence are represented by u~. 

Equation 4.16 can be rewritten as the following infinite sum, provided that the modifier 

adaptation system is point-wise stable: 

(4.18) 

If the modifier adaptation system is not point-wise stable, Equation 4.18 should not be 

used because as i increases, the expression on the right-hand side will go to infinity. If tIlls 
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occurs, the design under consideration should be discarded. Now the expected value of the 

sum of squared deviations can be written: 

(4.19) 

By definition, the covariance matrix of the modifiers (A) for the first scenario, VI (Aoo), 

can be written as [Forbes and Marlin, 1996]: 

(4.20) 

It is assumed next that the measurement noise is white noise (not necessarily Gaussian), of 

variance a~p; that is, 

(4.21) 

From this assumption, it is clear that E [
8Ak+l] = 0 and it follows f:rom Equation 4.19 
8Ak 

that: 

00 

VI (Aoo) ~ L (Y oo)i (4.22) 
i=O 

There is another important assumption, in relation to Equation 4.22, that needs to be 

discussed here. Inside the aaA;+l sensitivity the term aaB;+l appears and similarly, inside 
Yk+l Yk+l 

the aAak;p sensitivity the term aBaktl is present. In p:ractice, it is possible to app:roximate 
Yk Yk 

these te:rms fo:r the n,th measurement and the ith output (when n = i) as: 

(4.23) 
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where B = nTn and Si = n(i,i)' See Appendix C for a derivation in the case that B is 

diagonal. 

Post-optimal sensitivity analysis is carried out next, as detailed in Fiacco [1983], to obtain 

the covariance matrix of the inputs for scenario 1: 

(4.24) 

To re-iterate, this post-optimal sensitivity analysis is conducted at the converged optimum 

of the ideal modifier adaptation schem.e, when it is run without noise and dual excitation. 

Scenario 2: In this scenario, the dual constraint is always active and causes variance in 

the optimal input values. The following is assumed as a first approximation: 

(4.25) 

This approximation is supported by experience with numerical simulations. See Appendix 

C for an explanation in the case that B is diagonal. A future research direction would be 

to develop some mathematical reasoning to support the approximation. 

4.3.2 Bias Cost Approximation 

Assuming that the gradient and Hessian of the plant profit function are well known, and a 

good estimate of the plant optimum is available, Equation 4.10 can be used to calculate the 

bias cost for unconstrained systems. The only value in Equation 4.10 specific to the dual 

modifier adaptation system in question is E [uoo]. It is possible to assume that E [uoo] = u~, 

however note this assumption ignores the effect of any gradient offset that Broyden's method 

may cause in practice. 

In the case of constrained problems a modification needs to be made to the bias cost 

calculation procedure. This modification is introduced to account for a shift in the expected 

value of the iterates (E [uoo]) when the dual constraints are implemented. This shift occurs 

due to the tendency of the model-based optimizer to select points that are inside the feasible 

region. 
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Offset in Constrained Problems 

The dual constraints have an additional effect on problems in which at least one process 

inequality constraint is active. Due to the desire of the model-based optimizer to arrive at 

feasible operating points, the expected value of the iterates may be pushed away from the 

constraint, toward the interior of the feasible region. This movement can be approximated 

by considering a fictitious shift in each active constraint in the direction normal to the hyper­

plane tangent to the constraint at the ideal modifier adaptation optimum. This direction 

can be represented, for constraint i, by - ~~ (u~). 

An appropriate constraint shift can be approximated by the distance from the center of the 

ellipsoid to its outer edge in the direction - ~~ (u~). If z is a point vector centered at the 

ideal modifier adaptation optimum and the ellipsoid is also centered at this optimum, then 

the following can be written: 

(4.26) 

which requires that the point z is on the ellipsoid. Since z is also required to be in the 

direction ~~ (u~), it follows that: 

(4.27) 

where () is a scalar parameter which fixes the length of the point vector z. Substituting 

(4.27) into (4.26) and solving for (): 

1 
() = -----r='======== 

(~(u~J)T J3( ~~ (Ubc)) 
(4.28) 

Equation 4.28 can now be substituted back into Equation 4.27, thereby giving the distance 

from the ideal modifier adaptation optimum (u~) to the expected value of the iterates in 

the input space. To obtain a constraint shift, the result of Equation 4.28 has to be converted 

to a distance in the constraint space by nmltiplying it by - ~~ (u~f: 

ogi (u* )T ogi (u* ) 
b.gi = i==o=u,===oo====.=o:::u===oo=== 

(~~ (Ubc))T J3(~~ (Ubc)) 
(4.29) 
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Denoting the change in the constraint value (ligi) by the variable "~Ii, the change in the ideal 

modifier adaptation optimum can then be approximated: 

ou*\ liu = -- 'Yi 
0'Yi X* 

00 

(4.30) 

where 'Yi is considered to be a parameter in the optimization problem and ~~i* is computed 

using post-optimal sensitivity analysis at A:a [Fiacco, 1983]. If more than one constraint is 

active, the post-optimal sensitivity analysis is applied for all active constraints simultane­

ously. The expected value of the iterates can now be computed as: 

(4.31) 

4.3.3 Constraint Backoff Calculation 

In the case of problems where process constraints are active at the ideal modifier adaptation 

optimum, it is sometimes necessary to back off from the active constraint(s) in order to 

ensme that most of the operating points chosen by the model-based optimization problem 

are feasible points of the plant. The decision to do this is strictly up to the designer of the 

RTO system, as it will likely depend on the severity of the consequences if a plant process 

constraint is violated. 

The root cause of this infeasibility problem is that measmement noise will inevitably cause 

the modifiers to be incorrectly estimated. Since these modifiers are often involved in the 

process constraints, specifically whenever a constraint involves an output variable, the errors 

in the modifiers will c0l11lnonly cause the constraints to be incorrectly identified. These 

constraints will generally move in the area of the true plant constraints, however they may 

at times either enforce unnecessary back-off, or worse relax the true plant constraints. For 

example, for the constrained \'Villiams-Otto Reactor test case, the dashed lines in Figme 

4.2 show the true plant constraint and the corresponding process model constraints at ten 

different iterations during a simulation run. 
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Figure 4.2: Illustration of variation of process constraints 

An approach designed to combat uncertainty in constrained RTO problems was presented 

in Zhang et al. [2002]. This approach involved the online implementation of probabilistic 

constraints, which attempted to ensure that a feasible operating point in terms of the plant 

was chosen a certain percentage of the time. This percentage was a tuning parameter 

that was set by the user. The heart of this procedure involved converting the constraints 

written in probabilistic fashion, into constraints that could be implemented by the NLP 

solver tasked with solving the model-based optimization problem. 

One potential drawback of this approach however is that since the probabilistic constraint 

calculation is done on-line, this constraint conversion procedure must be carried out every 

iteration, which could be computationally challenging for large-scale RTO systems. Instead, 

in this work, a method is proposed where the stochastic programming problem is solved 

off-line, which will yield an operating point to which the active constraints should be backed 

off according to the specified infeasibility tolerance. This back-off is then used as both a 

part of the design cost calculation and also implemented as a part of the online algoritlllu. 

Back-off approaches have been used in the past to try to combat constraint violation in RTO 

systems. In the implementation in Loeblein and Perkins [199S], the back-off was computed 

to address uncertainty in both the plant measurements and the parameters. Additionally, 

an interesting example of the use of a back-off to address a kind of a RTO-control hybrid 
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problem can be found in Contreras-Dordelly and Marlin [2000]. 

The heart of the offline probabilistic programming approach involves the solution of the 

following optimization problem: 

ust E argmin 
u 

s.t. ym = f (u,f3) + E~ +)..';,! u 

p [gi(u, ym) SO] 2: Pi i = 1, ... , ng ( 4.32) 

where ust is the back-off point, P is a probability operator and Pi is the probability require-

ment for constraint i. 

Recall that the probabilistic constraints, as shown in Equation 4.32, cannot be sent to a tra­

ditional NLP solver (such as Jmincon). Instead, they must be approximated by constraints 

of a deterministic form first. Note also that the dual constraints do not appear in Problem 

4.32. The assumption is being made here that the dual constraints are inactive at all times. 

This is due to the fact that the dual excitation plays no role in constraint violation, because 

it is known by the model-based optimizer. 

Now the procedure originally discussed in Zhang et al. [2002] for online implementation will 

be adapted for use in the offline design of dual modifier adaptation systems. This procedure 

considers each constraint individually. Therefore, an overall feasibility level cannot be set, 

rather constraint satisfaction levels must be set on an individual basis. A method which 

considers all constraints simultaneously is also given in Zhang et al. [2002]. This method 

could be adapted for use in this design procedure in the future. 

A first-order Taylor series expansion of the constraints in terms of the inputs and modifiers, 

around the ideal modifier adaptation optimum (u~, A:a), gives the following: 

Ci ( A) ~ C i ( * A*) fJC
i I (A A*) fJC

i I ( *). -u, ~ u oo ' 00 + ---=- - 00 + ~ u - U oo , 2 - 1, ... , ng 
fJA -* uU-* u~ ,Aoo u~ ,Aoo 

( 4.33) 

where C i is the constraint function i written only in terms of the inputs and modifiers 
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The COI1stant terms from Equation 4.33 can be collected and represented by the vector d 

. h d - Gi ( * A*) EJGi I A* EJG
i I *. - 1 Tl ff t f th WIt i - U OO ' 00 - EJX * -* 00 - au * _* U OO ' 2 - , ... , n g . le e ec 0 e 

ll(X) ,Aoo U oo ,Aoo 

uncertain parameters (A) can then be represented by a new variable, ~, in the following 

way: 

fJG
i 
I -~i= ---=- A+di , i=1, ... ,ng 

fJA u* x* 
00> 00 

(4.34) 

Statistical properties of ~ are required. Its expected value can be approximated as: 

fJGi I -E [~il ~ ---=- E [ A] + di , i = 1, ... , ng 
fJA u* X* 

00> 00 

(4.35) 

where the expected values ofthe modifiers are approximated as: E [A] = A:'. This approx­

imation is only valid as long as the backoff point, u st , is not too far from the ideal modifier 

adaptation optimum (u~J. If this is not the case in practice, alternative designs should be 

considered which better control the influence of measurement noise on the algorithm. 

The variance of ~i can also be approximated as: 

V(~i)= [fJGil _*lVdA~)[fJGil _*IT, i=1, ... ,ng 
fJA u* A fJA u* A 

00' co 00' 00 

(4.36) 

Since each constraint is dealt with individually, separate variances for each element of ~ are 

isolated instead of considering the overall covariance matrix. 

Using Equations 4.33 and 4.34, the overall probabilistic constraints can be written in the 

following way: 

(4.37) 

The assumption is made that the random variable ~i can be represented by the normal 

distribution, which has the cumulative distribution function, N( 

(4.38) 

Finally, taking the inverse normal distribution of both sides of Equation 4.38: 

i = 1, ... ,ng (4.39) 
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This last set of constraints can replace the probabilistic constraints in Problem 4.32. 

Once the problem (4.32) is solved to find an appropriate operating point (ust ), the back-off 

from a constraint can be computed in the following way: 

(4.40) 

where r/ is the estimated back-off parameter for constraint i. Note that an additional 

assumption is made here, that the optimal modifiers are equal to A:a at u st . This parameter 

is then added to the constraints in the model-based optimization of the online algorithm: 

(4.41) 

In summary, Problem 4.32 is solved with the constraints of Equation 4.39 to obtain the 

back-off point, u st . Equations 4.40 and 4.41 are then used to compute and implement the 

required backoff, rli, for each constraint, i, in the online algorithm. 

If the backoff procedure is run, the point that the constraint(s) are backed off to (ust) is 

effectively the new ideal modifier adaptation optimum. Therefore, Equation 4.31 must be 

rewritten: 

E [uool = ~u + u st (4.42) 

A sample scenario is illustrated in Figure 4.3. In this figure, the constraint is backed-off, 

essentially moving the ideal modifier adaptation optimum from U oo to u st . Then, the new 

expected value of the iterates (E [uoo]) is computed through the offset calculation procedure 

of Section 4.3.2, along with Equation 4.42. 

4.4 Test Case: Williams-Otto Reactor 

The concepts described in this chapter are now illustrated using the ,iVilliams-Otto Reac­

tor test case. The section is split up into three subsections. First, a sample design cost 
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Figure 4.3: Illustration of the results of both the back-off and offset procedures 

calculation is given. Next, the design of an RTO system for the unconstrained 'Williams­

Otto Reactor formulation is investigated. Finally, the design of an RTO system for the 

constrained Williams-Otto Reactor process is examined. 

4.4.1 Design Cost Computation 

In this subsection, a sample design cost calculation is given to help reinforce the concepts 

discussed earlier in this chapter. To begin, a set of ellipsoid parameters, 13, must be chosen 

for the algorithm. For this purpose, a diagonal 13 matrix is chosen: 13 = diag(b) where 

b = [25,25]. These values were proven through testing to provide reasonable performance, 

however, no attempt was made to optimize them. 

The plant optimum for the Williams-Otto Reactor system is uP '* = [362.885,4.7864]. Since 

there are no constraints active at the plant optimum, the gradient is equal to zero there. 

The Hessian at the plant optimum is: 

2 [211.13 \1 ([>Plup ,* = 
-62.49 

-62.49] 

44.37 
(4.43) 

Note that this matrix is positive definite, which confirms that the plant optimum is indeed a 

minimum for the \iVilliams-Otto Reactor cost function. Also note that, the scaling detailed 
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in Section 3.1.1 is used in all the calculations and simulations in this section. 

To begin, the ideal modifier adaptation algorithm was run, under noiseless conditions, 

until it converged to u~ = uP'*. Filter parameters of 0.25 were used and the true plant 

lTlOdel, described in Section 2.7, was used to simulate plant operation. The algorithm 

converged along the path previously shown in Figure 2.4. Since the plant and ideal modifier 

adaptation optima were identical (this will always be the case since exact output gradients 

are assumed) and the problem was unconstrained, it was immediately clear that the bias 

cost approximation, GE , was zero. 

In order to compute the variance cost (Gv ) , the covariance matrix of the set-points, V (uoo ) , 

is required. It was computed, as in Equation 4.13, by summing two separate contributions: 

the effect of measurement noise on the iterates without the dual constraints and the direct 

effect of the dual constraints on the iterates. Measurement noise of 0.5% of a typical set of 

mass fraction values was assumed. The values of each of the contributions as well as the 

final covariance matrix are shown below: 

0.139] + [0.02 

0.350 0 

0] [0.0751 0.139] 

0.02 - 0.139 0.370 

(4.44) 

Note that both the measurement noise and the dual constraint make important contribu­

tions to the overall covariance matrix approximation. This is in general the sign of an 

effective design, because one of the goals of the design procedure is to find a good trade-off 

between the effect of the n1.easurement noise and the effect of the dual excitation on the 

algorithm. The variance cost was then be approximated using Equation 4.12: 

Gv 1 T ( 2 ) 21 V <I>P\up ,· 0 V (uoo) 1 

~lT ([211.13 -62.49] 0 [0.0751 

2 -62.49 44.37 0.139 

7.463 

0.139]) 1 
0.370 

(4.45) 

Since the bias cost was zero (Equation 4.10), the total design cost (G), by Equation 4.9, was 

also equal to 7.463. Practically, this means that if many iterations were run implementing 
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the settings assumed in the design cost approximation, the average cost expected from the 

algorithm would be <T>P(uP'*) + 7.463 = ~190.7978 + 7.463 = ~183.33 (or in other words a 

profit of 183.33). 

The design cost results were tested by running the algorithm online for 2000 iterations. The 

result was an average cost function value of -185.32, which is reasonably close to the design 

cost approximation of -183.33. Naturally, this simulation was done using the same settings 

that were used for the design cost calculation. The results of the simulation run are shown 

below in Figure 4.4. 

''\>.~ 0 

o • 

I i '-
g \"', ."- 150 _~ 

o .<~" ~~. ," r ,- __ .. I·~.-r 

."., ...• ~;~ :X'~~~r~ii~;r~Jlj~, 
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Reactor Temperature ('K) 

Figure 4.4: Online simulation results for b = [25,25] 

Next, instead of testing one specific ellipsoid size, the whole range of possible sizes is sam­

pled. For each size sampled, both the design cost calculation and an online simulation test 

were carried out. Each online simulation test consisted of taking the average cost value over 

20,000 iterations. The same filter parameter and measurement noise settings that were used 

in the design cost example above were used here as well. The results are shown in Figure 

4.5. 

The comparison shows that the design cost predictions and the online simulation results 

are similar for some r:;etr:; of dual constraint parameters and very different for others. Both 

contours have the same general bowl shape, with one distinct minimum. This is expected, 

because sizing the ellipsoid is a trade-off between the effect of the measurement noise, which 
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Figure 4.5: Comparison of design cost approximation and online simulation results 

is dampened by a larger ellipsoid, and the effect of the dual excitation, which increases 

as the ellipsoid grows. As in design cost sample calculation given previously, the design 

cost approximation over-predicts the loss in profit for most of the sets of dual constraint 

parameters tested. Potential reasons for the over-estimation are discussed later on in the 

explanation of the results of Figure 4.6. 

Out of the sampled ellipsoid sizes, the design procedure recommends b = [40,10] with an 

average profit of 185.09. The average profit in the corresponding simulation was 184.945, 

which illuminates the fact that the design cost criterion can also under-estimate the profit 

loss caused by a particular design. On the other hand, the simulation study recommends 

b = [30,15] with an average profit of 185.49. It is important to note that the design cost 

approximation results are not expected to exactly match the simulation results because of 

the many assumptions made in the calculation procedure. Instead, the goal is simply to 

select a good set of dual constraint parameters. 

To get a closer look at the trends in Figure 4.5, a more detailed set of results for the special 

case when b1 = b2 are shown in Figure 4.6. To create each of the sets of simulation results 

in Figure 4.6, 20,000 iterations were again run with each set of dual constraint parameters, 

and the average profit over the iterations was computed. 
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Figme 4.6: Comparison of design cost and online simulation results (b1 = b2 ) 

Figme 4.6 shows good agreement between the design cost approximation and the simulation 

results in the vicinity of the optimal ellipsoid sizes. The slight over-estimation of the profit 

loss could be due to the fact that, in the design cost approximation, the interaction between 

the measurement noise and the dual excitation is ignored by treating them separately and 

then adding them up. The interaction is likely significant in this region because it is expected 

that at the optimal ellipsoid sizes there will be a balance struck between the effect of the 

measmement noise and the effect of the dual constraints. 

There is a significant difference between the design cost and simulation results when the 

ellipsoid is either very small or very large. When the ellipsoid is small, the design cost over­

predicts the actual profit loss by a significant amount. Again, this over-estimation could be 

due to the fact that the interaction between the two scenarios is being disregarded in the 

design cost approximation. Another potential cause of this over-estimation is the fact that 

the value of ~B;+l (Equation 4.23) that is used in the covariance matrix approximation for 
Yk+l 

scenario 1 (V 1 (lioo)) is actually an upper bound on the sensitivity (see Appendix C). 

Similarly, the design cost criterion also over-estimates the profit lost when the ellipsoid is 

very large. To fmther investigate this, a closer look is taken at the simulation results when 

b = [5,5]. In this simulation, one of the dual constraints is active in 90% of the iterations. 

Therefore, while there is still some interaction between the two scenarios, ignoring this 
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interaction is unlikely to be the sole cause of the over-estimation. Another potential cause 

is the fact that the maximum effect of the dual constraint on the iterates is being used 

in the covariance matrix approximation for scenario 2, V 2 (uoo ) , (see Appendix C). For 

the simulation with b = [5,5]' the total profit loss was 9.94. On the other hand, in the 

corresponding variance cost approximation, the estimated profit loss due to scenario 2 alone 

was 12.775. Since this is ahoeady greater than the total profit loss in the simulation, this 

example supports the arguement that V 2 (uoo ) is being over-estimated. 

4.4.2 Design Cost - Unconstrained Formulation 

An example constructed to illustrate how the design cost criterion can be practically applied 

to help design an RTO system for the unconstrained Williams-Otto Reactor process is now 

presented. In modifier adaptation it is possible to choose which modifiers are updated. The 

advantage to updating less than the full set of modifiers is that the effect of measmement 

noise on the RTO system may be significantly dampened. Of counie the disadvanLage is 

that the system will not converge to the plant optimmll, uP,*, if the KKT conditions of the 

model-based optimization problem no longer match those of the plant. 

For the 'iVilliams-Otto Reactor case study, upon examination of the cost function (2.29), 

there are two outputs that need to be modified, XE and Xp, in order to converge to the 

plant optimum. Three different updating scenarios are therefore possible: modifying only 

XE (design 1), modifying only Xp (design 2) and modifying both mass fractions (design 

3). The trials assume filter parameters of 0.25 and white noise added to the mass fraction 

measmements with a standard deviation of 0.5% of a nominal set of their values. The 

inner optimization problem of Equation 4.3 was run for each of the three designs. Table 4.1 

summarizes the results. 

In Table 4.1 it is clear that the design cost criterion predicts that both designs 2 and 3 

should produce nearly identical performance. Modifying only X E (design 1) results in a 

large bias cost, indicating that the algorithm is moving to the area around a point far away 

from the plant optimum in this case. This trial also has by far the lowest variance cost. 
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Table 4.1: Breakdown of design cost estimates for different modifier combinations 

Design 1 Design 2 Design 3 

CB 12.88 0.0158 0 

Cv 0.314 5.697 5.677 

C 13.19 5.7128 5.677 

The results of the design cost approximation can be heavily dependent on the expected level 

of measmement noise in the system. For instance, if this level increases, the variance costs 

of designs 2 and 3 would likely increase substantially. Conversely, since the variance cost of 

design 1 is quite low in Table 4.1, it would likely not increase by as much. Therefore, if the 

increase in measmement noise was large enough, design 1 could become the best option. 

The recommended ellipsoid size parameters, obtained by solving (4.3) for each of the three 

design options are given in Table 4.2. Both designs 2 and 3 have very similar recommended 

ellipsoid sizes. This makes sense given that their bias and variance cost estimates are very 

similar as well. The luethod in which only XE is modified (design 1) has a much smaller 

recommended ellipsoid size, likely because measmement noise does not effect the system as 

much. This is supported by the fact that it has a much lower variance cost prediction for 

its optimal design, despite a much smaller ellipsoid size. In general, a lower susceptibility 

to measmement noise dampens the potential effect of the peaking phenomenon, which the 

ellipsoid constraint is trying to prevent. Therefore the ellipsoid itself does not need to be 

as large to keep the effect of measmement noise in check. 

Table 4.2: Ellipsoid sizes for different modifier combinations 

Design 1 Design 2 Design 3 

b1 789.6 37.04 36.97 

b2 123.3 7.90 7.97 

Simulations were also run for each of these potential designs. In each simulation the appro­

priate online algorithm was run for 2000 iterations, in the presence of measurement noise, 

and the average profit lost was reported. In addition, approximations of both of the design 
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cost components were made using statistics (E [uool and V (uoo)) collected dming each Silll­

ulation run. Note that C is not expected to match the "true" average profit lost due to the 

use of the gradient and Hessian to approximate the actual plant profit surface in the design 

cost approximation. The results are shown numerically in Table 4.3 and visually in Figme 

4.7. 

Table 4.3: Simulation results for different modifier combinations 

Design 1 Design 2 Design 3 

Average Lost Profit 12.912 6.008 5.753 

CB 11.53 0.0793 0.0361 

Cv 0.220 5.985 5.862 

C 11.730 6.065 5.898 

~ ~ 
Dl Dl 

15 15 

~ ~ 
1; 1; 
u:: u:: 

Figme 4.7: Simulations of designs 1-3 - unconstrained formulation 

The left panel of Figme 4.7 verifies that the reason for the high bias cost for design 1 is 

that it fails to move to the vicinity of the plant optimum. The low variance cost prediction 

for this approach is also validated, in that the iterates are much more concentrated for this 

design than for the other two. 

The central plot in Figure 4.7 demonstrates that if the mass fraction of P is modified instead 

of the mass fraction of E, the algorithm moves to an area much closer to the plant optimum. 
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The price that is paid for approaching the plant optimum, however, is a large increase in 

the variance of the iterates. This is consistent with the large increase in the variance cost 

approximation between design 1 and design 2. 

The right panel of Figme 4.7 shows that design 3 produces results that are very similar 

to those of design 2. This is consistent with the design cost approximations. In summary, 

design 3 should be selected as its average profit loss is a little lower in both the design cost 

approximation and the simulation results. 

A closer look is taken now at the differences between the design cost approximation and the 

simulation results for design 3, in which the modifiers for both X E and Xp were updated. 

Table 4.4 illustrates some of the key differences. 

Table 4.4: Design cost/simulation detailed comparison for dual modifier adaptation 

Design Cost Approximation Simulation 

E [</> (uoo , F (uoo))l -185.12 -185.05 

[-00131] [ -0~74] E [uool 
-0.214 -0.247 

[00528 008W] [OM707 0049'] v [uool 
0.0830 0.238 0.0494 0.179 

The design cost approximation over-estimates the average profit by about 0.07 (or $70). It is 

important to note from this that the design cost criterion again provides a good prediction 

of the average profit when "good" ellipsoid parameters are being considered. All of the 

components of the covariance matrix of the inputs are slightly over-predicted by the design 

cost criterion, however, since the covariance terms are over-predicted to the greatest extent, 

the variance cost is actually under-predicted. There is also a slight discrepancy between 

the expected value of the inputs in the design cost calculation and the average value of the 

inputs in the simulation. This could be due to a small lingering offset between the Broyden 

derivative estimates and the true plant output gradient. 

In order to fmther evaluate the performance of the dual modifier adaptation algorithm 
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it is now compared to the two-step approach. Recall Figure 2.5, which illustrated the 

performance of the two-step approach when different process models were used. Since the 

noiseless performance of the two-step approach varied in these simulations with changes 

in the process model, it follows that the behaviour of the two-step approach under noisy 

conditions should vary as well depending on the process model. Therefore, the use of three 

different process models in this comparison should produce interesting results. 

Modell is described by the following parameters: [1I1,1I2,Ef,E~1 = [1.21 x 107,7.17 x 

1011 , 7207, 10249]. Note that this is the model that has been used to this point in Chapter 

4. Since the two-step approach is run in the following test using the pre-exponential factors 

as the adjustable parameters, changes in the activation energies, specifically that of reaction 

1 (En, are considered. In Model 2, Ef is changed to 6707 and in Model 3 Ef is changed 

to 7707. Simulations of 500 iterations are run for each of the three models, and the results 

are displayed in Figure 4.8 and Table 4.5. Note that approximations of each of the design 

cost components are not made here for sake of brevity. 

Table 4.5: Simulation results for two-step approach with different process models 

Design 1 Design 2 Design 3 

Average Profit 187.34 182.01 186.66 

/" / /' ,. /' / / /' / " ... " 

", 
Model 3 

Mo~el ~ 

4.2 !l 

3.8 350 355 360 365 370 375 

Reactor Temperature ('K) 

Figure 4.8: Simulations of the two-step approach with different process models 
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For comparison pmposes, dual modifier adaptation simulations for Models 2 and 3 are run, 

consisting of 2000 iterations. The same settings that were used in the previous dual modifier 

adaptation simulations in this chapter were used again here. Note that before running each 

of these simulations, the design cost optimization procedme was run to select the values 

for the dual parameters. The results, along with those previously reported for Modell, are 

given in Table 4.6 and Figme 4.9. 

Table 4.6: Simulation results for dual modifier adaptation with different process models 

Modell Model 2 Model 3 

b1 36.97 42.98 30.49 

b2 7.97 11.87 5.33 

Average Profit 185.04 186.05 180.53 

i :§' .!!1 
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Figme 4.9: Simulations of dual modifier adaptation with different process models 

First of all, the core difference between the two approaches is clear from. Figmes 4.8 and 4.9. 

The very compact set of iterates for each of the two-step approach simulations indicates 

that it is considerably more resistant to measmement noise than dual modifier adaptation 

is. However, while none of the two-step simulations in Figure 4.8 are able to move to the 

area of the plant optimum, each of the modifier adaptation simulations in Figure 4.9 are 

able to do so. The results of Tables 4.5 and 4.6 indicate that the two-step approach is 
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the best methodology if Models 1 and 3 are used and dual modifier adaptation is the best 

methodology if 1tlodel 2 is used. 

The purpose of this comparison was not to draw conclusions as to which approach is bet­

ter. Instead, from the results it should be clear that the choice of methodology should be 

dependent on the particular choice of process model for the RTO system, among other fac­

tors. This underscores the importance of a good RTO design procedure. Furthermore, the 

clear illustration of the core difference between the two approaches in Figures 4.8 and 4.9 

motivates the possible combination of these methodologies in the futme. This is discussed 

in more detail as a futme research direction in Section 6.2.4. 

Now, a situation is considered where, in addition to sizing the ellipsoid, variations in the 

activation energy of the second reaction in the plant are also considered. It is assmned 

that this reaction is catalyzed, and the catalyst is decaying over the comse of the operating 

day. To capture these variations, three representative values for the activation energy of 

the reaction (Ea2 ) arc chosen: 8333, 8433 and 8533 J /mol. The same filter parameter and 

measm'mnent noise settings that were used above are used again here. Only the modifiers 

for Xp are updated (as in design 2). Details of the design cost calculation for each individual 

parameter set are shown in Table 4.7. 

Table 4.7: Design cost calculation details for each individual parameter set 

E~ = 8333 J /mol E~ = 8433 J /mol E~ = 8533 J /mol 

ipP(uP'*, yP,*) -190.798 -111.718 -35.362 

CB 0.0158 0.02076 0.0284 

Cv 5.6974 5.40638 5.09848 

C 5.7132 5.4271 5.1269 

bl 37.037 41.3182 45.7264 

b2 7.897 7.9423 8.1631 

The change in the activation energy of the second reaction does in fact cause minor changes 

in the design cost results. First of all, the second reaction produces both E and P, the two 
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products with economic value. Therefore, increasing the activation energy of the reaction 

causes a significant loss of profit (increase in the cost function). The catalyst decay also 

causes a decrease in the variance cost of the system. The decrease in variance cost generally 

indicates a decrease in the effect of measurement noise on the optimal solution. Therefore, 

the ellipsoid does not need to be as large as the catalyst decays. 

Using the scenario averaging approach of Equation 4.4 the following dual constraint param­

eters are recommended for implem.entation: b = [41.00,8.00]' with a corresponding design 

cost of C = 5.410. Note that equal weighting was given to each scenario here. To test out 

the effectiveness of the ellipsoid parameter choice, the plant profit is compared to the actual 

profit in Figure 4.10. The simulation consisted of 100 iterations performed at each of the 

3 activation energy levels, with the same settings that were considered in the design cost 

calculation. The algorithm performs well at each activation energy setting, once it adjusts 

to the corresponding change in the plant. Note that in practice the activation energy would 

not change suddenly, rather it would decay over the course of the operating day. There­

fore, the performance loss due to the abrupt changes in activation energy would not be a 

problem. 

-50 

-10°0'-------::5'::-o -------:c10~0------,-J15~0-------=-'20:::-0------,-J25'cc0-------=-'300 

Iteration Number 

Figure 4.10: Simulation of dual MA performance at different activation energy settings 

Since the dual parameters are very close to the optimal parameters recommended for each 

individual case (Table 4.7), the good performance seen in all scenarios in Figure 4.10 is 

expected. It would be interesting to see the performance if the scenarios involved vastly 
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different operation. This could be the topic of a future case study, possibly where larger 

changes are made in E~. 

4.4.3 Design Cost - Constrained Formulation 

An example designed to illustrate how the design cost criterion can be practically applied 

to a constrained problem is now presented. The Williams-Otto Reactor case study is mod­

ified, as described in Section 2.7, by adding a requirement that the outlet mass fraction of 

component B (XB ) must be below 0.35. Note that due to the introduction of the constraint, 

XB also needs to be modified in order for the system to converge to the plant optimum. 

Three different updating scenarios will again be tested, modifying only XE and XB (design 

1), modifying only X p and X B (design 2) and modifying all three mass fractions (design 3). 

The trials assume filter parameters of 0.25 and white noise in the composition measurements 

with a standard deviation of 0.5% of a nominal set of their values. Table 4.8 summarizes 

the design cost estimates for the 3 designs under consideration. 

Table 4.8: Breakdown of design cost estimates (constrained system) 

Design 1 Design 2 Design 3 

CB 11.799 6.265 5.996 

Cv 0.537 4.715 5.009 

CT 12.336 10.980 11.005 

Table 4.8 indicates that, similar to the unconstrained case, the design cost criterion predicts 

that designs 2 and 3 will perform in a similar manner. Modifying XE and XB only (design 

1) appears to cause the algorithm to move toward a point far away from the plant optimum 

(indicated by the large bias cost). The estimated ellipsoid size parameters are given in 

Table 4.9. 

Both design 2 and design 3 have similar estimated ellipsoid sizes. This makes sense given 

that their bias and variance cost estimates are similar as well. Design 1 has a much smaller 
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Table 4.9: Ellipsoid sizes for different modifier combinations (constrained system) 

Design 1 Design 2 Design 3 

b1 2049 79.49 98.01 

b2 90.10 29.54 24.82 

recommended ellipsoid size. This is likely because measurement noise does not effect design 

1 as much as the others (as indicated by the much lower variance cost approximation), so 

the ellipsoid does not need to be as protective. 

For each of the three approaches, as a part of the design cost optimization procedure, the 

probability requirement for the constraint was set at 95%. This necessitated the estimation 

of an appropriate back-off from the constraint. The resulting backoff parameters are given 

in Table 4.10. 

Table 4.10: Backoff parameters for different modifier combinations (constrained system) 

Design 1 Design 2 Design 3 

Backoff Parameter 0.00198 0.00369 0.00383 

The estimated backoff parameter for design 1 is the smallest. This is consistent with the 

low variance cost prediction for this design, because a low variance cost tends to indicate 

that a design is not greatly effected by measurement noise, which is the uncertainty that 

the backoff is trying to compensate for in the first place. Designs 2 and 3 have similar 

backoff parameters, with the one for design 3 being slightly larger, possibly due to the extra 

modifiers causing an increase in the effect of measurement noise on the algorithm. 

Simulations were run for each of these options. In each simulation run, the online algorithm 

was run for 2000 iterations, with the presence of measurement noise, and the average optimal 

cost was reported. The same settings that were used for the design cost approximation were 

used again here. In addition, the recommended backoff parameters, given in Table 4.10, 

were implemented for each design. The results shown in Table 4.11 and Figure 4.11 were 

obtained. 
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Table 4.11: Simulation results for different modifier combinations (constrained system) 

Design 1 Design 2 Design 3 

Average Lost Profit 12.455 5.77 5.89 

OB 11.29 3.27 3.21 

OF 0.32 2.68 2.72 

0 11.61 5.93 5.95 

% Feasibility 90.6 95.5 95.6 

..!!! ~ ~ 
In In 

"15 "15 

~ ~ 
15 15 
u:: u:: 

Figure 4.11: Simulations for designs 1-3 - constrained formulation 

The left panel of Figure 4.11 verifies that the reason for the high bias cost approximation 

for design 1 is that it fails to move to the vicinity of the plant optimum. The low variance 

cost for this approach is also evident, in that the region of points is much smaller for this 

design than for the other two. 

The central plot in Figure 4.11 illustrates that modifying the mass fractions of Band P 

instead of the mass fractions of Band E, causes a large increase in the variance of the iterates 

(uoc,). This is consistent with the large increase in variance cost predicted by the design 

cost formulation. For design 3, as the right panel of Figure 4.11 illustrates, modifying all 

three mass fractions performs very similarly to modifying the mass fraction of components 

Band P only. 
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The design cost formulation significantly over-estimates the overall profit lost for both 

designs 2 and 3 (Table 4.11). To identify potential causes of this discrepancy, a closer look 

is taken at the differences between the design cost approximation and the simulation results 

for design 3. Table 4.12 illustrates some of the key differences. 

Table 4.12: Detailed design cost comparison for full dualNIA (constrained system) 

Design Cost Approximation Simulation 

E [4> (uoo , yP (uoo))l -174.93 -180.05 

[ -0 10M] [ -0 HI"] E [uool 
-0.953 -0.900 

[00702 00632] [00302 00385] v [uool 
0.0632 0.0820 0.0385 0.0496 

% Feasibility 95.0 95.6 

The design cost approximation over-estimates the profit lost by about 5.12 ($5120). One 

reason for this is it over-estimates both the U1 and U2 components of the distance that the 

expected value of the iterates moves from the ideal modifier adaptation optimum (u~), due 

to the dual excitation constraint. This is demonstrated by the fact that E [uool is farther 

away from the plant optimum for the design cost approximation that the simulations. Some 

of this error may also be due to an over-estimation of the required back-off, however, since 

the back-off distance is quite small relative to the distance of the offset (not shown in Table 

4.12), most of the error is likely due to the over-estimation of the offset. 

Each of the variance and covariance quantities are also widely over-estimated by the design 

cost procedure. One reason for this could be the fact that, as previously discussed, that the 

interaction between the measurement noise and dual excitation is ignored when they are 

treated separately and then their effects are summed. 

The backoff parameter estimation seemed to be very effective. It was set to ensure that 

about 95% of iterates are feasible points of the plant, and in the simulation 95.6% of the 

iterates are feasible. To better visualize the effect of the backoff parameter on the iterates, 
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the approach where all three outputs were modified was implemented with and without the 

backoff parameter and simulations of 500 iterations were run. 

350 355 360 365 370 375 

Temperature of Reactor fK) 

Figure 4.12: Demonstration of the effect of introducing a back-off 

Shown in Figure 4.12 are the results without (left panel) and with (right panel) the backoff 

parameter. It is clear that the backoff causes an improvement in feasibility. In the run 

without the backoff (left panel of Figure 4.12), the constraint was violated 24.3% of the 

time, whereas in the run with the backoff applied (right panel of Figure 4.12), the constraint 

was only violated 4.6% of the time. As expected, this increase in feasibility came at the cost 

of a decrease in average profit. The average profit in the simulation without the backoff 

was 181.411, while the average profit in the simulation with the backoff was 180.093. This 

increase in profit came because of the selection of points that were infeasible in terms of the 

plant. Since such points can have profit values higher than the profit at uP'*, they can cause 

an increase the average profit. Once again the severity of the consequences if an infeasible 

operating point of the plant is implemented should determine whether the backoff approach 

is used, and how high the feasibility level (Pi) should be set for each constraint. 

4.5 Chapter Summary 

In this chapter, a methodology was presented for the design of dual modifier adaptation 

systems. This methodology utilized the design cost criterion along with an optimization 
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procedure to set the dual constraint parameters as well as any other design parameters 

that needed to be addressed. A multi-scenario approach was also presented for handling 

uncertainty in the benchmark plant model that is used in the design cost calculation. 

Specifics of both the bias and variance cost calculation procedures have been discussed in 

detail. The variance cost calculation involved the consideration of two separate scenarios, 

one designed to capture the variance due to measurement noise and one designed to capture 

the variance caused by the dual constraint. The bias cost computation involved a procedure 

designed to estimate the change in the expected value of the dual modifier adaptation iter­

ates due to the dual constraints. In addition, a method for the estimation of an appropriate 

level of back-off to ensure constraint feasibility was developed. The calculated back-off was 

also then applied in the online simulations. 

All of these developments were tested using the \lVilliams-Otto Reactor test case. These 

tests demonstrated the ability of the design cost approach to identify a good design for the 

system. There was significant error in some of the design cost approximations, however 

this was expected given the assumptions made in the calculation procedure. The back-off 

methodology also proved to be effective, greatly reducing constraint violation. 

In the final chapter, the developments of the previous two chapters are illustrated using 

a more involved case study. This case study consists of the real-time optimization of a 

propane furnace. 
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Chapter 5 

Case Study - Propane Pyrolysis 

Reactor 

In this final chapter the dual modifier adaptation algorithm is implemented to perform the 

real-time optimization task for a propane fmnace. At a basic level, this fmnace takes a pme 

feed of propane, mixes it with steam and thermally cracks it to form a range of hydrocarbon 

products. Two of the major products are ethylene and propylene. Many of the concepts 

presented in the previous two chapters of this thesis will be illustrated using this case study. 

First, the performance of the dual modifier adaptation algorithm will be investigated, both 

under noiseless conditions and under the presence of measmement noise. Then the design 

of the an effective dual modifier adaptation system for this process will be investigated. As 

a part of this, a detailed comparison between the design cost approximation results and 

corresponding simulation results will be made. 

5.1 Background and Process Description 

The problem formulation and specific model for the propane fmnace process considered 

in this chapter are taken from Contreras-Dordelly [1999]. The specific furnace model was 
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developed from industrial information provided to the authors of Contreras-Dordelly [1999] 

by M. Kutten, Combustion Engineering Simcom Inc., 1989. A simple process diagram is 

given as Figme 5.1 for reference. 

Feed (Propane, F) 
Reactor 

Products Xi 

Stea 

Fuel (Q) 

Figme 5.1: Propane fmnace process schematic 

The end goal of this propane cracking process is to maximize the profit from the sale of 

the hydrocarbons produced. In this model, there are ten different hydrocarbon products 

considered, all of which have an appropriate sale value. There are also costs associated with 

the process: the dilution steam, propane feed and the fuel used to heat the furnace all must 

be bought. The objective function for this process takes all of this into account: 

10 

¢ = 'WF . F + 'WQ . Q + 'Ws . SO . F - L 'Wi . F . Xi 
i=l 

(5.1) 

where F is the feed flow of propane in [pounds], 'WF is the cost of the propane feed [$/ 

pound], Q is the energy consumption [MBTU], 'WQ is the cost of the energy [$/MBTU]' SO 

is the steam-to-oil dilution ratio, 'Ws is the cost of the steam in [$/pound], 'Wi is the sale 

price of component i [$/pound] and Xi is the weight fraction of component i in the outlet 

stream. Note that the time period considered in this problem is one month, therefore the 

feed flow, energy consumption and profit quantities are all given on a per month basis. 

The objective function, ¢, denotes the total cost of the propane cracking process. In the 

normal operating range of the process, however, the value of the cost function will be 
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negative, indicating that a profit is made off of the process. Due to this, economic values 

will commonly be reported in terms of profit in this chapter. Also note that the feed 

rate of propane (F), the energy consumption (Q) and profit (¢) are assumed to 

be divided by 108 , as was done in Contreras-Dordelly [1999]. 

The values used for the sale prices as well as the costs of propane, energy and steam can 

be found in Appendix E. The subscripts for each of the ten components are given in Table 

5.1. 

Table 5.1: Components in the propane cracking process 

Subscript Component 

1 Hydrogen 

2 Methane 

3 Ethylene 

4 Ethane 

5 Propylene 

6 Propane 

7 Butadiene 

8 Butylene 

9 Butane 

10 Gasoline 

Note that in the actual process there were tln"ee other products of the cracking reaction: 

acetylene, methyl-acetylene and propadiene. However, since downstream of this reactor 

in the actual process acetylene was converted to ethylene, and both methyl-acetylene and 

propadiene were converted to propylene, these three intermediate products are ignored in 

this case study. 

The set-points that will be determined by the dual modifier adaptation system for this 

process are the feed rate of propane, F, and the conversion, denoted by C subsequently. 
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The conversion is defined as follows: 

c = x~n~X6 
X'6n (5.2) 

where x~n is the weight fraction of propane in the inlet stream. Since the feed is pure 

propane, the following expression for conversion can be obtained: 

(5.3) 

It is assumed that C can be controlled online by adjusting the operating temperature of 

the furnace. Note that in the original formulation in Contreras-Dordelly [1999] there was a 

third input discussed, the steam-to-oil ratio SO. It is considered to be a fixed parameter in 

this work however. Since it was frequently at its lower bound of 0.3 in Contreras-Dordelly 

[1999]' it is fixed at this value subsequently. A possible extension would therefore be to 

consider the full 3 input case study. 

The model for this process considers 12 state variables, and is therefore made up of a set 

of 12 non-linear algebraic equations. The first ten equations of the model are empirical 

expressions which compute the weight fraction in the product stream (X) of each of the 

ten components in the furnace (Table 5.1). The other two equations calculate the energy 

consumption in the furnace, Q, and the average molecular weight of the product stream W. 

The ten empirical model equations each have the following form: 

where (JOi, (Jli, (J2i, (J3i, (J4i, (J5i are all parameters of the empirical model used to compute 

the outlet weight fraction of component i (see Appendix E). The empirical expression used 

to determine the furnace energy consumption (Q) is: 

F 
Q = 0.036

W 
(5.5) 

and the expression used to determine the average molecular weight of the exiting stream 

(W) is: 
10 

W= L.::Xd\!{Wi (5.6) 
i=l 
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where 1\!{liVi is the molecular weight of pure component i [pound/pound-mol]. 

The model that will used as both the simulated plant and the benchmark plant model for 

the design cost calculations has the same form as the process model presented above. Only 

the set of parameters in the empirical expressions, [!Oi, [!li, [!2i, [!3i, [!4i, [!5i vary between 

them. There is therefore no structural plant-model mislTl.atch present in this case study. 

The original model parameters found in Contreras-Dordelly [1999] are used as the parame­

ters of the simulated plant and benchmark plant models in this work and a small subset of 

the parameters in the process model is altered to introduce the mismatch. These alterations 

had to be done very carefully due to the empirical nature of the model. Specifically, care 

had to be taken to ensure that despite the changes, all the weight fractions determined by 

the model still ,mu up to one (t, Xi ~ I). Due to this re.quiretncnl" pairn of similax pa­

rameters were altered simultaneously. For instance, the [!43 (the parameter multiplying C2 

for ethylene) was reduced by 0.5 in the process model and [!45 (the parameter multiplying 

C2 for propylene) was increased by 0.5. Three other similar changes were made, one more 

involving ethylene and propylene, and two others involving methane and ethane. Therefore, 

there are 8 paralTl.eters that vary between the simulated plant model and the process model. 

There are a total of 11 outputs considered in this problem. They are the ten weight fractions 

(X) and the energy consumption of the furnace, Q. Measurements of the weight fractions 

are assumed to be readily available through an online analyzer. It is assumed that an 

estimate of Q can be made in real-time through the rate of consumption of the fuel used to 

heat the furnace and a real-time analysis of the fuel gas heating value. 

There are also a series of process constraints that apply to this process. First of all, there are 

bounds on both of the input variables. The lower bound on F is necessary due to equipment 

constraints and the upper bound exists due to upstream supply limitations. Both the lower 

and upper bounds on the conversion, C, are necessary because the empirical model was 

only developed for a specific operating range. The set-points or inputs for this problem 

can be formally stated as: u = [F, C]. Using this, the variable bounds are then stated: 

umin = [5,0.70] and umax = [15,0.93]. 
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In addition to the variable bounds, there are also two other constraints on this process. The 

first is an upper limit on the amount of energy that can be used by the furnace: 

Q ~ 0.0147 (5.7) 

This constraint is required because the temperature of certain equipment in the furnace 

must be kept below a certain level. The last constraint is an upper bound of the amount 

of ethylene produced by the furnace. This constraint exists because there is a limit to the 

amount of ethylene that can be sold on the market. Different constraint levels are used in 

Contreras-Dordelly [1999]' however, this constraint will be fixed in this thesis as follows: 

(5.8) 

For the actual implementation of the algorithm, some variable scaling had to be done. The 

reason for this is Broyden's method performs better when the general size of the movements 

of each of the inputs from iteration to iteration are similar (see Section 3.2.3). To this end, 

the feed rate of propane input (Ul) was divided by 100 in the MATLAB code. 

5.2 Dual Modifier Adaptation 

In this following section, many of the concepts introduced and discussed in Chapter 3 are 

illustrated using the propane furnace reactor test case. This includes a comparison of the 

performance of ideal modifier adaptation and modifier adaptation with Broyden's n1.ethod, 

a study of the behaviour of modifier adaptation using Broyden updates with different filter 

parameter settings and an illustration of the effect of the dual constraints on the performance 

of the algorithm. 

First, before any specific tests are done, a contour plot of the plant profit surface is given 

in Figure 5.2. This plot shows all six constraints discussed in Section 5.1 as well as the 

contour:; of the plant profit function. The plant optimum is clearly marked with a circle. 

Note that this optimum lies on a constraint, specifically the ethylene demand constraint. 

This indicates that any change in the demand of ethylene will cause a change in the optimal 
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solution. Also note the feasible region of the plant (marked with the black arrows). This 

is the wedge-shaped area bordered by constraint 4 (the upper bound on conversion) at the 

top, constraint 3 on the left (the lower bound on the propane feed rate), constraint 5 at 

the bottom (the lower bound on conversion) and constraint 6 on the right (the ethylene 

demand constraint). Constraint 1 (the energy consumption limit) and constraint 2 (the 

upper bound on the feed rate of propane) lie completely outside the feasible region. 
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Figme 5.2: Plant profit contom plot 

The behaviom of the ideal modifier adaptation algorithm, first presented in Section 2.5, 

is now compared to the behaviom of modifier adaptation with Broyden's method, first 

presented in Section 3.1. Both algorithms are run in the absence of measmem.ent noise, 

utilizing the benchmark plant model given in Section 5.1 to represent the plant. The 

starting point for both algorithms is Uo = [10,0.8]. Filter parameters of 0.4 are also used 

and the modifiers are initialized to zero (Ao = 0). To begin, the process model is optimized 

using Ao yielding the process model optimum: Ul = [8.02,0.857]. The initial Broyden 

derivative matrix estimate is obtained using the derivative of the approximate model at 

the starting point, Bb = ~( I . Note that this initialization procedme will be the same 
liO 

for all the simulations in this chapter (unless otherwise noted). The performance of both 

algorithms is shown in Figme 5.3. 

Both algorithms move initially at approximately the same speed. However, when the plant 

optimum is approached, Broyden's method takes more iterations to actually zero in on 
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Figme 5.3: Comparison of ideal MA and MA with Broyden updates 

the plant optimum. This is illustrated by the large amount of points close together in the 

general area of the plant optimum in Figme 5.3. 

The effect of the filter parameters (k) on modifier adaptation with Broyden updates is 

examined next. For simplicity, the filter parameters for each of the 33 modifiers are always 

set to the same value. Note that there are 33 modifiers required because there are 11 

process outputs to be modified, so there are 11 output bias modifiers and 22 output gradient 

modifiers that need to be updated. Figure 5.4, illustrates the performance of the algorithm 

with filter param.eter values of 0.1, 0.4, 0.6 and 0.8. For each of the 3 lowest k values, the 

algorithm. converges to the plant optimum. In those cases, as k increases, the algorithm 

takes a less direct route to the plant optimum., but also reaches it in fewer iterations. A 

less direct route does not by itself degrade algorithm performance, however, more erratic 

behaviour (larger step sizes) may increase the level of gradient offset (see Section 3.2.3). 

The simulation with filter parameter values of 0.8 illustrates the problem of gradient offset 

that can occur in multi-input problems. In this case the algorithm reaches a point on 

constraint 5 very quickly. This is problematic however, because the algorithm gets stuck on 

this constraint, so that the Broyden derivative estimate is never updated in any direction 

perpendicular to this constraint. Therefore, the algorithm converges to the optimal point of 

the plant in the direction of the constraint (the intersection between constraints 5 and 6). 
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Figme 5.4: Effect of changes in k in modifier adaptation with Broyden updates (1) 

This is clearly not the plant optimum however. Figme 5.5 is provided so that the behaviom 

of the algorithm near the plant optimum can be more easily seen. 
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Figme 5.5: Effect of changes in k in modifier adaptation with Broyden updates (2) 

The peaking phenomenon can occm' when the algorithm is run under the presence of mea­

surement noise, with no restriction on the placement of new operating points with reference 

to previous ones (see Section 3.3). To demonstrate this, modifier adaptation is run, using 

Broyden derivative estimates, under the presence of measm'ement noise. This is assumed to 

be white noise, with a standard deviation of 1% of a standaxd set of values for the weight 

fractions and energy consumption (Q). The filter parameters are set at 0.4 and the inputs, 
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modifiers and Broyden estimates are initialized as described in the first example of this 

section. The algorithm is run for 100 iterations and its performance is shown in Figure 5.6. 

It demonstrates the large jumps away from optimal operation that can occur when a new 

set-point is placed too close to a previous one. 
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Figure 5.6: Performance of MA with Broyden updates (with measurelnent noise) 

This motivated the development of dual modifier adaptation, which restricts the placement 

of a new operating point in a clever way so it is not located too close to the previous one 

(see Section 3.4). The dual modifier adaptation algorithm is now implell1.ented and the 

simulation is rerun, with the results shown in Figure 5.7. Values of 13 = diag(25000, 15000) 

are chosen for the dual constraint parameters for Figure 5.7. Rough tests were done to 

ensure that these values provided reasonable performance, however no attempt was made 

to optimize them. Examining Figure 5.7 it is clear that with dual modifier adaptation there 

are no large jumps away from the plant optimum. This shows that the dual constraints can 

effectively mitigate the peaking phenomenon. 

The reason that the opthnal profit value can be exceeded in both Figures 5.6 and 5.7 is 

that the optimizer sometimes selects points that are infeasible in terms of the plant. This 

selection happens because measurement noise causes incorrect identification of the modifiers 

and since the modifiers are involved in the active process constraint, this causes it to be 

inadvertently relaxed in some iterations of the algorithm. This motivates the design of an 
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Figure 5.7: Performance of dual MA in the presence of measurement noise 

appropriate constraint backoff, which is discussed in Section 5.3. Another potential cause of 

this, which is not addressed by the constraint backoff approach is offset in the plant output 

gradient estimates (see Section 3.2.3). 

To close this section, an illustration and corresponding discussion of the effect of the sizing 

of the dual constraints on the iterates of dual modifier adaptation is included. This is meant 

to illustrate the trade off that exists in the sizing of the ellipsoid and also to motivate the 

use of a systematic dual modifier adaptation design procedure. Note that since the trust 

region constraint is not considered in the design procedure developed in this thesis, it will 

not be implemented for any of the simulations of this chapter. 

The performance of a design with an ellipsoid that is too small is shown first. The param­

eters of this ellipsoid are 13 = diag(2 x 106,5 X 104). The simulation shown in Figure 5.8 

consists of 30 iterations, with measurement noise of a standard deviation of 1 % of a typical 

set of output values and filter parameters of 0.4. 

The algorithm selects operating points that are reasonably close to the plant optimum for 

most of the simulation in Figure 5.8, however, on a couple of occasions the iterates jump far 

away from the plant optimum. This is an indication that the ellipsoid is too small, because 

the peaking phenomenon is still occasionally occurring. 
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Figme 5.8: Performance of dual modifier adaptation with a small ellipsoid 

If the dual constraint is too large, it can also have an adverse affect on the algorithm. To 

demonstrate this, another 30 iterate simulation was now run, this time with dual constraint 

parameters of 13 = diag(10000,500). The results are shown in Figure 5.9. Notice that in 

this simulation some of the operating point moves seem to follow a similar pattern. This 

pattern consists of 3 operating point changes: a ll1nve directly along the constraint, followed 

by a move directly away from the constraint, followed finally by a move back towards the 

constraint. Examining Figure 5.9 closely, it can be seen a few times. This is okay from 

a stability point of view, however, since the dual constraint is always active, it is forcing 

larger than necessary input moves each iteration, which impacts the average profit of the 

RTO design. 

The ideal ellipsoid size is one where the dual constraints are active in some of the iterations, 

and in others the measurement noise pushes the system far enough away from the previous 

operating point, so the dual constraints are inactive. Achieving this trade-off is one of the 

key goals of the design procedure presented in Chapter 4. An example of good performance 

is given in Figure 5.10 which shows a simulation utilizing the following dual constraint 

parameters: 13 = diag(25000, 15000). 

In the simulation shown in Figme 5.10, after the first few iterations there are no movements 

which cause a large decrease in the plant profit (note the shape of the profit contoms). Also 
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Figme 5.9: Performance of dual modifier adaptation with a large ellipsoid 

note that the iterates do not follow a constant pattern and instead move somewhat randomly 

in the area close to uP'*. These are both indicators of good performance. 

5.3 Design of Dual Modifier Adaptation Systems 

The following section will discuss the design of a dual modifier adaptation system for the 

propane pyrolysis reactor case study. The main design decision in dual modifier adaptation 

systems is the size of the ellipsoid, which is the basis of the dual constraints. 

First, a sample design cost calculation is made, to demonstrate how the criterion is im­

plelnented for this specific case study. The dual constraint parameters are chosen as: 

13 = diag(25000,15000), which result in relatively good, but by no means optimal sys­

tem performance. Again, noise of a standard deviation of 1% of a common set of outputs, 

and filter parameters of 0.4 are considered. First, the Hessian of the plant cost function is 

computed at the plant optimum (uP '* = [12.34,0.7311]): 

2 [ 0 V CPPlup ,· = 
-7.943 

-7.943] 

-1.048 
(5.9) 

Note that the eigenvalues of the Hessian are -8.484 and 7.437, meaning it is indefinite. 

Since from the previous section it is known that the plant optimum lies on a constraint, 
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Figure 5.10: Performance of dual modifier adaptation with a well designed ellipsoid 

this property of the full Hessian is not smprising. It is only the reduced Hessian that is 

required to be positive definite at a minimum of an optimization problem. Note that since 

this Hessian matrix will be used in the computation of the variance cost, it is possible that 

it may cause the variance cost of a particular design to be negative. 

Although the ideal modifier adaptation optimum, u~ is equal to the plant optimum for 

this case study, the bias cost is not zero. This is due to the fact that both optima lie on a 

constraint. A procedure that estimates the change in the expected value of the iterates due 

to the tendency of the optimizer to select points inside the feasible region was developed 

in Section 4.3.2. This procedure increases CB as it shifts the expected value of the iterates 

away from the ideal modifier adaptation optimum (u~). Another procedure that involves 

backing off from the ideal modifier adaptation optimum to ensme a certain level of feasibility 

was also developed (Section 4.3.3). This procedure also increases the bias cost as it shifts 

the effective ideal modifier adaptation optimum from u~ to u st . 

A probabilistic programming approach is applied offline to compute the backoff, utilizing 

an estimate of VI (Aoo) giving, ust = [12.06,0.7091] for a 95% feasibility threshold. The 

required backoff in this case for constraint 6 (the constraint that is active at u~) is: TJ6 = 

0.1576. 
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The expected value of the iterates is then estimated, as detailed in Section 4.3.2, yielding: 

E [uool = [11.41,0.7091l. The elements of the bias cost calculation procedure are shown 

in Figure 5.11. Note that both the calculations of ust and E [uool involved linearizations 

of parts of the algorithm. It is for this reason that ust is not exactly on the backed-off 

constraint, the backed-off constraint is not on the ellipsoid and E [uool is not on the second 

backed-off constraint. 

0.8 

0.7B ~'fp , 

t: 
o 

0.76 

.~ 0.74 

~ o 
00.72 

0.7 -~ .... 

0.68 

10 10.5 11 11.5 12 12.5 13 13.5 
Feed Rate of Propane (Ib/month) 

Figure 5.11: Illustration of elements of bias cost calculation 

Using the benchmark plant model (the same model that was used to simulate the plant), 

the value of the profit at E [uool was computed. This profit was then subtracted from the 

estimated profit at the plant optimmn to approximate the bias cost: 

CB = -0.5976 - (-0.6677) = 0.0701 (5.10) 

The covariance matrix of the iterates is computed now, so that a comparison can then be 

made with simulation results that are presented later. An estimate of the covariance matrix 

is obtained as follows: 

VI (uoo) + V2 (uoo) 

[ 

1.125 X 10-
4 

-5.903 x 10-
4

] + [2 x 10-5 0 ] 

-5.903 X 10-4 3.617 X 10-3 0 3.33 X 10-5 

[ 

1.325 X 10-4 -5.903 x 10-4] 
(5.11) 

-5.903 x 10-4 3.650 X 10-3 
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Note that the dual constraints seem to make a smaller contribution to the covariance matrix 

of the iterates (especially in the variance of U2) than the measurement noise does. Iutuitively 

this suggests that the size of the ellipsoid should be increased (especially in the direction of 

U2) so there is more of an equal trade-off between the two effects. 

The variance cost approximation is then computed using Equation 4.12: 

1 T ( 2 ) C17 = "21 V <I>Plup ,* 0 V (uoo) 1 

1 T ([ 0 -7.9432] [1.325 x 10-
4 

"21 -7.9432 -1.0476 0 -5.903 x 10-4 

2.78 X 10-3 

-5.903 x 10-
4
]) 1 

3.650 X 10-3 

(5.12) 

For comparison purposes, a simulation of 2000 iterations, with the same settings detailed 

in the design cost approximation is run. The recommended backoff is also implemented for 

this simulation. The numerical results are shown in Table 5.2 along with the corresponding 

de::;ign cosL results. In addition, two plots of the iterates are given. Figure 5.12 shows the 

position of all 2000 iterates and Figure 5.13 shows a shorter simulation consisting of 50 

iterates, in an effort to demonstrate the path traversed by the algorithm. 

Table 5.2: Design cost/simulation detailed comparison 

Design Cost Approximation Simulation 

E [</> (uoo , F (uoo »] -0.5948 -0.6184 

[ 1141] [ 1124] E[uoo] 
0.7091 0.7442 

[ 1.325. 10-' -5.003 "0-'] [ 6.754 "0-' -3.15" 10-'] v [uoo] 

-5.903 * 10-4 3.650 * 10-3 -3.157 * 10-4 1.968 * 10-3 

% of Feasible Iterates 95 95.7 

First note that the overall design cost approximation in Table 5.2 is fairly close to the actual 

average cost of the iterates in the simulation. Also, in the simulation, 95.7% of the iterates 

were feasible, which is close to the 95% feasibility requirement. However, upon examing the 

127 



M.A.Sc. Thesis - Eric Rodger 

c: 
.2 
~ 
~ c: o 
u 

I 

I 

I 

l 
I 

: 
I 

~ ~ 

l 
I 

I 

l ;:-. 
.':' .. .1. 
: 
: 
I 

McMaster University - Chemical Engineering 

8 9 10 11 12 
Feed Rate of Propane (Ib/month) 

C) Plant Contours 
Constraint 1 
Constraint 2 

- ... Constraint 5 
-. --Constraint 6 

'. 
14 

0. 

15 

Figme 5.12: Performance of dual modifier adaptation with b = [25000,15000] 

underlying results in Table 5.2 more closely, a couple of discrepancies between design cost 

approximation and the simulation become clear. 

c: 
o 
.~ 

~ 
c: 
8 

8 9 10 11 12 
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15 

Figme 5.13: Path of dual modifier adaptation iterates with b = [25000,15000] 

The average value of the feed rate of propane (Ul) in the simulation is reasonably close 

to the design cost prediction. On the other hand, the average value of the conversion (U2) 

differs by 0.0351 (or 15% of the feasible region for U2). One possible cause of the discrepancy 

is the presence of constraint 5 (the lower bound on conversion) in the simulation, which is 

not considered in the design cost approximation. This constraint, because it is very close 

to E [uro] does not allow for large decreases in U2. On the other hand, constraint 4, the 
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upper bound on the conversion, is well above E [uooJ, so it rarely restricts the movement of 

the algorithm. 

The design cost formulation over-predicts the value of each of the variance and covariance 

terms of V [uoo]. Some reasons for this over-estimation were discussed in Section 4.4.2. 

A further potential source of error is that the active set assumed in the variance cost 

calculation is not correct for some of the iterates in the simulation. This is due to the fact 

that constraint 5, the lower bound on the conversion, is sometimes active (Figure 5.12). This 

can be a major issue because the assumed active set is used to perform the post-optimal 

sensitivity analysis, which is used in the input covariance matrix calculation (Equation 

4.24). Any error in the post-optimal sensitivity analysis can thus result in an inaccurate 

input covariance matrix approximation. Since constraint 5 restricts the nlOvement of the 

inputs in practice, ignoring this constraint in the variance cost calculation procedure may 

have been part of the cause of the over-estimation. 

To examine the performance of the design cost criterion at a variety of different ellipsoid 

sizes, pairs of design cost approximations and corresponding simulations were compiled. 

For simplicity, only the case where b1 is equal to 2 x b2 is considered. This is done because 

the algorithm was found to perform better in practice when b1 > b2 . 16 different sets of 

parameters were considered, from 13 = diag(5000, 2500) to 13 = diag(80000, 40000). For each 

pair, the design cost calculation is made first, and then the corresponding simulation is run 

(5000 iterations). This is done so that the appropriate backoff can be computed through 

the design cost calculation and applied in the corresponding simulation. For these trials, 

the same settings that were used for the sample design cost calculation and simulation are 

used again. The results of the cOlnparison are shown in Figure 5.14. 

Examining Figure 5.14, it is clear that the design cost approximation performs quite well 

for this set of dual constraint parameters. Poor performance is correctly predicted for 

the small dual constraint parameters (large ellipsoid sizes) considered on the left and the 

slow decrease in performance is also well predicted as the dual constraint parameters grow 

larger on the right side of the plot. IvIost importantly, the optimum of the design cost 

approximation curve is fairly close to the optimum of the simulation curve. This means 
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Figme 5.14: Design cost/simulation comparison 

that if the optimization problem was solved for this set of dual constraint parameters, an 

effective set of param.eters would be chosen. The under-estimation of the actual values of 

the average profit for all the dual constraint parameters pairs is likely due to the same 

reasons discussed previously for the sample calculation. 

The final study of this chapter examines the effect of the level of measmement noise on 

the accmacy of the design cost estimates. Two new noise levels were tested: noise with a 

standard deviation of 0.5% of a common set of outputs and noise with a standard deviation 

of 2% of a common set of outputs. Design cost estimates and corresponding simulation 

results are shown in Figme 5.15 for the same range of dual constraint parameter values 

that was used in the study detailed in Figme 5.14. The results from Figme 5.14 are also 

included for comparison purposes. 

First of all, both the design cost estimates and simulation results of Figure 5.15 illustrate 

that as the noise level is increased, the average profit will decrease. This makes sense, 

since a noise level increase would typically increase the variance of the iterates as well as 

the backoff required to achieve the 95% feasibility requirement. Also note that, for each 

individual noise level, although there is offset between the design cost estimates and the 

simulation results, the shape of both cmves is fairly similar. This indicates that an effective 

set of dual constraint parameters would likely be chosen for each noise level. Upon close 
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Figure 5.15: Design cost/simulation comparisons at different noise levels 

examination of Figure 5.15, it is also clear that as the noise level increases, the error in the 

design cost estimates also increases. This is likely due to the fact that since the noise level 

(specifically the variance of the measurements) enters linearly into the calculation of the 

covariance l11.atrix of the modifiers (Equation 4.22), any increase in noise level would likely 

magnify any existing errors in the modifier covariance matrix approximation. Potential 

sources of error have ah'eady been discussed earlier in this section. 

5.4 Chapter Summary 

In this chapter, the concepts introduced in Chapters 3 and 4 of this thesis were applied 

to a propane furnace process. This was a two input system, similar to the \iVilliams-Otto 

Reactor, however the n1.odels were more complicated which caused an increase in the number 

of outputs to be modified. First, several investigations were carried out to demonstrate some 

of the properties of the dual modifier adaptation algorithm. These included studies on the 

effect of the filter parameters and the dual constraint parameters on algorithm performance. 

The design cost calculation was demonstrated for a sample ellipsoid size. Comparisons were 

then made with simulation results and reasons for discrepancies were suggested. 
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Chapter 6 

Conclusions and Recommendations 

6.1 Conclusions 

The main goal of this research was to develop an RTO system which was both optimum 

seeking and resistant to measurement noise. The development of said technology was carried 

out in two phases. First, the algorithm itself had to be developed. The previously developed 

modifier adaptation approach [Marchetti et al., 2009] was used as a basis, and it was made 

practical by employing Broyden's method to estimate the plant output gradients. Additional 

constraints were then added to the model-based optimization problem in order to increase 

the accuracy of the Broyden derivative estimates. The final algorithm was referred to as 

dual nlOdifier adaptation because of its two distinct goals: optimality and the quality of the 

Broyden derivative estimates. 

The second phase consisted of the development of a design methodology so that various 

tuning param.eters in dual modifier adaptation could be chosen in order to achieve acceptable 

online performance of the algorithm. The design methodology was based around the design 

cost criterion, which was introduced in Forbes and lVlarlin [1996] for the two-step approach. 

This original methodology was modified to make it applicable to dual modifier adaptation 

and specifically so that it could address the selection of the dual constraint param.eters. The 
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concepts presented in this thesis were illustrated using both the \lVilliams-Otto Reactor test 

case and a propane furnace case study. 

To begin this chapter, conclusions are drawn based on the research that has been presented 

in this thesis. Then, recommendations of future research directions are given. 

6.1.1 Dual Modifier Adaptation Scheme 

• Broyden's method was shown to be effective in estimating the plant output derivatives 

for the modifier adaptation RTO algorithm. This method was chosen because of the 

fact it requires no plant experiments to be carried out and it is easy to initialize. 

Its performance was demonstrated using the Williams-Otto Reactor test case (Figure 

3.5) . 

• It was established that modifications to modifier adaptation with Broyden's method 

were necessary in order to achieve accurate plant output gradient estimates (see Fig­

ure 3.12). Both gradient variance and offset had to be controlled. The algorithm 

was analyzed to determine the causes of each of these phenomena, and appropriate 

solutions were presented. 

- The gradient variance can be very high because of the peaking phenomenon. 

The peaks occur when the algorithm is under the influence of measurement noise 

and two consecutive operating points are placed too close together. A constraint 

consisting of an ellipsoidal exclusion region, placed around the previous operating 

point, was added to the model-based optimization problem. This constraint 

proved to be very effective in eliminating the peaking problem (Figure 3.16). 

- The gradient offset was controlled in two ways. A trust-region constraint was 

introduced in order to limit the size of the steps taken by the algorithm in 

the input space. Additionally, the ellipsoidal exclusion region constraint was 

modified so that it forced the algorithm to explore a variety of input directions. 

These methods proved to be effective in reducing the offset in the \lVilliams-Otto 

Reactor test case (Figure 3.19). 
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6.1.2 Offline Design of Dual Modifier Adaptation 

• A methodology was developed in which an adapted form of the design cost criterion 

could be used to help design a dual modifier adaptation RTO system. This design 

procedure was shown to effectively address the selection of the dual constraint pal"am­

eters in addition to a variety of other external design variables (such as the model to 

use in the RTO system or the specific outputs to modify). The approach was also 

successfully extended to account for uncertainty in the benchmark plant model. The 

methodology was demonstrated using the Williams-Otto Reactor test case (Sections 

4.4.2 and 4.4.3). 

• The design cost criterion was used to effectively design dual modifier adaptation sys­

tems. Changes were made to both the variance and bias cost approximation proce­

dures to address unique aspects of dual modifier adaptation systems. The redesigned 

metric proved to be fairly accurate in estimating the design cost for the unconstrained 

Williams-Otto Reactor test case (Section 4.4.1) and the propane furnace case study 

(Section 5.3). 

- In the variance cost calculation, two sepal"ate scenarios were considered: one in 

which both of the dual constraints were always inactive, and one in which one of 

the dual constraints was always active. The contributions of these two scenal"ios 

were then added up to comprise the overall variance cost approximation. For the 

unconstrained formulation of the Williams-Otto Reactor case study the variance 

cost calculation procedure was reasonably effective, especially at good ellipsoid 

sizes. Significant error was seen in the results of the constrained Williams-Otto 

Reactor formulation. Potential reasons for this were discussed. 

- The bias cost calculation was modified so it could effectively address constrained 

problems. Specifically, a procedure was developed to compute the expected value 

of the iterates of a constrained problem. This was necessary because of the desire 

of the model-based optimizer to select feasible operating points. In addition, a 

constraint backoff approach was developed to try to ensure that the dual modifier 

adaptation iterates do not violate the process constraints of the plant. This back-
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off approach proved to be fairly adept at maintaining the level of feasibility above 

a particular value (Figme 4.12). 

6.2 Recommendations for Further Work 

The following section outlines a number of promising research directions based on the work 

that has been presented in this thesis. 

6.2.1 Convergence Analysis for Multiple Input Problems 

In Section 3.2.3 it was fOlmd that convergence analysis of the modifier adaptation algorithm 

with Broyden updates for multiple-input problems, using a sensitivity analysis approach, 

is not possible. This is due to the fact that some of the derivatives of the Broyden up­

date step are not defined as the algorithm_ converges. Lyapunov theory does not require 

differentiability, therefore it would be an ideal candidate for use in carrying out this analysis. 

6.2.2 Improving and Extending the Design Cost Predictions 

There is definite room for improvement in the accmacy of the design cost predictions. 

Several of the approximations used in the variance cost estimation procedme are fairly 

rough. These include the estimate of the aaB~,tl sensitivity in Equation 4.23 and the estimate 
Yk+l 

of V 2 (uco ) in Equation 4.25. If these approximations were refined, the performance of the 

design cost approach could be significantly improved. 

A multi-scenario approach was suggested in Section 4.1.3 to handle uncertainty in the 

benchmark plant parameters. This method works well if there are only a few uncertain 

parameters. If there are a large number of scenarios to consider however, this method will 

become computationally challenging. Therefore, it would be ideal if there was an efficient, 

robust optimization method available to handle such problems. For instance, some logic 

could be implemented to intelligently choose a subset of the potential combinations of 
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parameters in order to decrease the computational requirements of the problem. It also 

may be advantageous to develop a procedure that could consider probability distributions 

of uncertain parameters, instead of only discrete sets of parameter values. 

A couple of extensions to the design cost formulation are also possible. In tllis thesis no 

attempt was nlade to tune the trust region constraint parameters (Equation 3.46) or the 

filter parameters (Equation 3.1). The tuning of both of these quantities involve clear trade­

offs, which motivates the need to carefully consider their respective settings. For instance, 

a larger trust region constraint would allow quicker movement to a new optimum, if the 

plant optimum for an RTO system~ were to change. However, the smaller the trust region 

constraint is, the more it restricts large, unwanted movements away from the current plant 

optimum, caused by measurement noise. The trade-off in the filter parameter values is quite 

similar. Higher filter parameter values would also allow quicker responses to disturbances 

causing a change in the optimal operating point of the system, but on the other hand would 

magnify the effect of measurement noise, possibly leading to instability of the system. 

Consideration of both of these quantities would necessitate extending the design cost ap­

proximation method so it could address the transient behaviour of an RTO system (Le. 

when an unmeasured disturbance causes the plant optimum to change). The extended 

design cost metric, developed in Zhang and Forbes [2000], could potentially be used as a 

starting point. The original formulation would likely have to be modified somewhat though 

to address dual modifier adaptation specifically. 

6.2.3 Results Analysis for Dual Modifier Adaptation 

The concept of results analysis was discussed briefly in Section 2.1. Recall that it is an 

optional part of an RTO implem~entation which is generally tasked with deciding whether 

or not to implement a newly computed operating point in the plant. This decision is made 

immediately following the solution of the model-based optimization problem. In making 

this decision, the results analysis system is trying to distinguish between common cause 

variation (e.g. measurement noise) and actual process disturbances. 
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Miletic and Marlin [199Sa] proposed a statistical test for results analysis that was designed 

to be used within the two-step approach. This method could potentially be adapted in 

order to carry out the results analysis task for dual modifier adaptation systems. Such a 

procedme, if well designed, could prevent a great deal of unnecessary algorithm movement 

once the vicinity of the plant optimum is reached. 

To fmther motivate this potential research direction, a first implementation of the results 

analysis procedure detailed in Miletic and Marlin [199Sa] was carried out for a dual modifier 

adaptation system. The unconstrained Williams-Otto Reactor case study was considered, 

with filter parameter settings of 0.25 and measmement noise with a standard deviation of 

0.5% of a typical set of mass fraction values. The modifiers for both XE and Xp were 

updated and the optimal dual constraint parameters of b = [36.97,7.97] were used. The 

algorithm was started far away from the plant optimum on tllTee occasions and each tim.e 

it was run for 250 iterations. The results are shown in Figme 6.1. 

340 345 350 355 360 365 370 375 380 385 

Reactor Temperature ('K) 

Figure 6.1: Performance of results analysis implementation 

In each trial in Figme 6.1, the algorithm moved quickly toward the plant optimum in 

the first few iterations and then made very few additional operating point changes. The 

benefit of the results analysis procedme is therefore clearly seen, in that many unnecessary 

operating point changes were prevented. Note again that this is just meant as a motivating 

example. Fmther research is required to not only tune the results analysis procedure itself, 
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but also study its effect on both the steady-state behaviour of the dual modifier adaptation 

algorithm, as well as its ability to respond to disturbances. 

6.2.4 Hybrid RTO Technologies 

The relevant advantages and disadvantages of both the two-step approach and dual modifier 

adaptation have been detailed at length throughout this report. To smIDllarize, the two­

step approach can fail to locate the plant optimmll if structm"al model mismatch exists 

[Biegler et al., 1985], but is on the other hand fairly resistant to measurement noise. Dual 

modifier adaptation on the other hand is optimum seeking, but can be very susceptible to 

measurement noise due to the need to estimate the plant output gradient. It is these two 

key differences that motivates the investigation of hybrid approaches. A comparison that 

illustrates these differences was provided in Section 4.4.2. 

It was established in Sections 4.4.2 and 4.4.3 that dual modifier adaptation can be effectively 

carried out with only a subset of the outputs being modified. The two-step approach can 

be altered in the same way, as removing outputs just means that the number off terms in 

the objective function of the parameter estimation problem (Equation 2.2) will decrease. 

Since both approaches can function without the full set of possible outputs, it makes sense 

to hybridize them. In this way, some of the outputs would be used to update a set of 

parameters and others would be used to update a set of modifiers. These new parameters 

and modifiers could then both be used to simultaneously alter the model-based optimization 

problem. 

The ability to combine the two-step approach and modifier adaptation in this way was one 

of the motivations for choosing to modify the outputs directly instead of both the cost and 

constraint functions in modifier adaptation (see Section 2.5 for more details). Design of 

these hybrid RTO systems could easily be carried out by adapting the design cost approach 

detailed in Chapter 4 and combining it with the original design cost procedure for the 

two-step approach [Forbes and IVlarlin, 1996]. 
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A short example intended to demonstrate the potential of these hybrid RTO systems is 

given hereafter. The unconstrained formulation of the "\iVilliams-Otto Reactor case study is 

considered and it is assumed that measurements of the mass fractions of components A, B, 

E, G and P are available. Four different hybrid methods are considered, which are detailed 

in Table 6.1. 

Table 6.1: Hybrid method details 

{3 Outputs for A Outputs for {3 Dual Constraint Params 

Method 1 Vi, V2 XE,Xp XA,XB,XG [36.97,7.97] 

Method 2 E a1 , Ea2 XE, Xp XA,XB,XG [36.97,7.97] 

Method 3 Vi, V2 Xp XA,XB,XE,XG [37.04,7.90] 

Method 4 E a1 , Ea2 XE XA,XB,XP,XG [789.6, 123.3] 

Each hybrid methodology is run for 2000 iterations, in the presence of measurement noise of 

standard deviation of 0.5% of a typical set of mass fraction values and with filter parameters 

of 0.25. The ellipsoids sizes used are given in Table 6.1. These sizes are the ones estimated 

with the design cost optimization procedure for the corresponding dual modifier adaptation 

algorithm. These are likely not optimal, however, since the design cost criterion has not 

been adapted to consider hybrid approaches, there is currently no systematic approach 

available for estimating the best sizes. The average cost values are shown in Table 6.2 and 

plots of the iterates for each method are shown as part of Figure 6.2. 

Table 6.2: Hybrid method results 

Method 1 Method 2 Method 3 Method 4 

Average Lost Profit 4.855 5.149 4.790 4.23 

Examining Table 6.2, it is evident that each of the hybrid methods are viable RTO ap­

proaches. Although none of these methods were tuned precisely, they still all out-perfonned 

the dual modifier adaptation designs detailed in Tables 4.1-4.3 (although none of the meth­

ods were able to out-perform the two-step method application for model 1 - Table 4.5). 
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Figure 6.2: Performance of hybrid approaches 

Method 4 performs especially well compared to its counterparts. This makes sense because 

modifying Xp has been shown to amplify the effect of measurement noise on the system, 

much more than modifying XE does. So in this effective design, the output that caused 

dual modifier adaptation to be very susceptible to measurement noise (Xp) was used in the 

two-step approach and the other output (XE) was used in dual modifier adaptation. 

Another benefit of hybridization is that it might greatly improve acceptance of the modifier 

adaptation technology by those industries where the two-step approach is ah'eady well 

accepted. This is due to the fact that if modifier adaptation is introduced in this way, it 

can be seen as a small deviation from the ah'eady trusted two-step approach. For instance, 

modifier adaptation could be slowly introduced, by at first only updating the ulOdifiers for 

a single output. 

In closing, the good performance of all of the hybrid methods on the Williams-Otto Reactor 

test case motivates further research in this area. Although the technology itself is easy to 

implement, a design procedure would need to be developed, potentially based on the design 

cost approach detailed in Chapter 4 of this thesis. In addition, depending on the number 
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of measurements available, there could be hundreds or even thousands of discrete design 

options for a larger problem. Thus, a systematic optimization n1.ethod to choose the best 

discrete design may need to be developed, to avoid considering all possible discrete designs. 
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Table A.1: Definitions of Latin symbols 

Symbol Definition 

A modifier update map 

a ISOPE model shift parameter 

B matrix of Broyden derivative estimates 

Bi average values of Broyden derivative estimates 

f3 matrix of dual constraint parameters 

b vector of dual constraint parameters 

C conversion (propane fmnace) 

C design cost 

CB bias cost 

Cv variance cost 

Cavg average design cost 

c vector of cost function penalty ternlS 

d vector of constant terms in constraint back-off calculation 

E expected value operator 

Eval eigenvalues 

Ea 
t activation energy of reaction i, oK 

e gradient offset 

F explicit functions describing plant operation 

:F feed rate of propane, lb 

Pi feed rate of component i, kg/s (Williams-Otto Reactor test 

case) 

f explicit process model equations 

G constraints in terms of inputs and modifiers only 

gP constraints in terms of inputs and plant outputs only 

gp,a active constraints in terms of inputs and plant outputs only 

g process constraints 

148 



.M.A.Sc. Thesis - Eric Rodger McMaster University - Chemical Engineering 

Table A.l: Definitions of Latin symbols (continued) 

Symbol Definition 

H hyper-plane 

1-£ intermediate variable in calculation of sensitivity of A to 

previous inputs Uk 

h probability density function for the iterates 

I identity matrix 

Kg matrix used to filter newly computed constraint values 

Ku matrix used to filter newly computed input values 

KA matrix used to filter newly computed modifier values 

k vector of filter parameters 

k~ 
t reaction rate constant for reaction i 

.e Lagrangian 

.em Lagrangian of a m.odel-bascd optimization problem 

.ep Lagrangian of a plant optimization problem 

M subspace containing all directions in which the Broyden ma-

trix does not change 

MWi molecular weight of pme component i, lbjlb-mol 

MR mass of reactor, kg 

m a direction in which the Broyden matrix does not change 

N orthonormal basis for subspace orthogonal to direction of 

last movement 

Ni cumulative distribution flIDction for random variable ~i 

n unit direction of N 

nu number of inputs 

ny number of outputs 

ng number of constraints 

nA number of modifiers 
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Table A.l: Definitions of Latin symbols (continued) 

Symbol Definition 

p probability operator 

p vector of feasibility requirements for constraints 

Q energy consumption, MBTU 

R non-linera map involving the Broyden update map 

n Broyden update map 

S matrix of differences between previous operating points and 

the cmrent one 

SO steam to oil dilution ratio 

T transition function between original and alternate sets of 

output modifiers 

TR temperature of reactor, K 

T matrix of trust region constraint parameters 

t vector representation of T(Uk+l) 

U matrix of vectors defining previous movement directions 

U* non-linear map describing model-based optimization step 

U matrix involved in SVD of gradient of active constraints 

U manipulated inputs or operating points 

U average values of manipulated inputs or operating points 

UP, * plant optimum 

ust solution to backoff optimization problem 

Uoo dual modifier adaptation iterates 

u* solution to model-based optimization problem for ISOPE 

u* 
00 

convergence point of ideal modifier adaptation algorithm 
I 

new operating point ignoring the effect of the dual con-u 

straints 
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Table A.l: Definitions of Latin symbols (continued) 

Symbol Definition 

u ai point at maximum distance the dual constraints can move 

the new optimum in direction i 

V variance operator 

V matrix involved in SVD of gradients of active constraints 

v random vector in derivative orientation definition 

W average molecular weight of product stream 

w intermediate variable in calculation of sensitivity of A to 

current inputs Uk+l 

Xi mass fraction of component i, (\iVilliams-Otto Reactor case 

study) 

X matrix involved in non-linear sensitivity analysis 

x random vector in derivative orientation definition 

y overall modifier adaptation algorithm with Broyden updates 

y matrix involved in non-linear sensitivity analysis 

ym model outputs 

ym modified model outputs 

yP plant outputs 

yP average values of plant outputs 

Z null space of the active constraint set 

z point vector from the steady-state optimum to the edge of 

the ellipsoid constraint, normal to an active constraint 
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Table A.2: Definitions of Latin symbols 

Symbol Definition 

a number of unique sets of uncertain parameter values 

(3 adjustable model parameters 

(3P uncertain plant benchmark model parameters 

r* map relating modifiers to the Lagrange multipliers of the 

corresponding model-based optimization problem 

'Y Lagrange multipliers 

~ difference between or change in operating points 

(j difference between an operating point and the steady-state 

optimum 

E output bias modifier 

E alternate output bias modifier 

Eb constraint bias parameter (constraint bias updating) 

Eg constraint bias modifier 

c reciprocal condition number threshold , unit vector representing last operating point move 

TJi estimated back-off from constraint i 

e t non-linear map between the inputs and the vector represen-

tation of T(Uk+l) 

e r non-linear map between the inputs and the vector represen-

tation of T(Uk) 

() scalar parameter which fixes the length of point vector z 

{) a specific instance ofthe iterates (uoo ) 

K, reciprocal condition number of the matrix S 

A full set of output modifiers 

A full set of alternate output modifiers 

A output gradient modifier 
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Table A.2: Definitions of Greek symbols (continued) 

Symbol Definition 

)..g constraint gradient modifier 

)..¢ cost gradient modifier 

J.L tuning parameters for multiple constraint approach 

Vi pre-exponential factor of reaction i 

e uncertainty variable in backoff approach 

Wi cost or sale value of component i 

:E matrix involved in SVD of gradient of the active constraints 

with respect to the inputs 

(T singular value 

<; external design variables 

T vector representation of T(Uk) 

y matrix linearizing relationship between previous and ClUTent 

key algorithm values 

v vector of small input perturbations 

cpP plant cost flIDction written only in terms of the inputs 

cpm model cost function written only in terms of the inputs 

\1cpP plant cost function gradient 

\12cpP plant cost function Hessian 

¢ cost function 

X space of potential input values 

1jJ ISOPE parameter used to modify the cost function 

n approximation of the sensitivity of the Broyden derivative 

estimates to changes in the measurements 

w vector orthogonal to hyper-plane H 
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Table A.3: Definitions of select superscripts 

Symbol Definition 

* optimum 

min minimum 

max maximum 

p plant 

m model 
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Table A.4: Definitions of select subscripts 

Symbol Definition 

k iteration number 
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The purpose of this appendix is to describe in detail some of the mathematical concepts 

applied throughout this thesis. The format of this appendix is based on a similar section in 

:Marchetti [2009]. 

B.1 The Plant NLP in RTO Systems 

The first few demonstrations of this appendix are made in regards to the following non­

linear plant optimization problem, which in general is the uncertain problem that the RTO 

system is trying to solve: 

uP'* E arg min 
u 

S.t. 

¢(u,yP) 

yP = F(u) 

g (u, yP) ::; 0 

(B.1) 

In this NLP, ¢ represents the objective function, which is defined in terms of both the 

inputs (u) and the plant outputs (yP), F denotes the explicit plant n1.odel, which relates 

the inputs to the plant outputs, g represents the plant inequality constraints and umin 

and umax represent the input variable bounds. Problem B.1 can easily deal with equality 

constraints as well, because they are simply inequality constraints that are always active. 

The optimization problem (B.1) can be restated by redefining the objective function and 

the constraints in terms of only the inputs. This is done as follows: 

uP,* E arg min 
u 

S.t. (B.2) 

where (j)P(u) := ¢(u, yP) and gP(u) := g (u, yP). Note that in Problem B.2 the input 

variable bounds have been removed, as the bound constraints can simply be rewritten as 

inequality constraints and incorporated in gPo For the developments in the remainder of 

this appendix, it is assumed that the objective function (j)P) and constraints (gP) are twice 

continuously differentiable with respect to the inputs. 
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B.2 Taylor Series Expansion 

Taylor's theorem, upon which the Taylor series itself is based, essentially states that any 

function with continuous derivatives can be approximated by a polynomial [Chapra, 2008]. 

From a practical point of view, a Taylor series expansion provides an approximation of the 

value of a function at a certain operating point. This estimate is produced using the value of 

that same function at another operating point as well as some derivative information at the 

point where the function value is known. For instance, say the value of the constraint 9 is 

known at the current operating point, Uk. The value of that same constraint at a potential 

new operating point, uk+l can then be approximated in the following way: 

g(Uk+l) = 9(Uk) + t, (:)! \7~)gluk (UkH - Uk)i + 0 (II UkH - Uk IIntH) (B.3) 

where 111; is the highest order of the terms that the Taylor series expansion is going to 

consider [Chapra, 2008]. Note also that the approximation of 9(UkH) is more accurate 

when Uk+l is cloner Lo Uk. This is true because in Equation B.3, as (UkH - Uk) shrinks, 

so does the size of the remainder term 0 (II Uk+l - Uk IIntH). Conversely, if the two points 

are considerably far apart, the Taylor series approximation may be very inaccurate. 

B.3 LICQ 

A minimum of the plant (uP'*) is only required to satisfy the KKT conditions of the plant op­

timization problem (Problem" B.2) if the linear independence constraint qualification (LICQ) 

is satisfied. The LICQ states that the gradients of the active constraints (denoted by QP,a) 

must be linearly independent at the plant optimum uP'* [Rardin, 1998]. If this requirement 

is not satisfied, uP'* may not satisfy the proper KKT conditions, while still being a minimum 

of the plant. 
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B.4 KKT Conditions 

If the first order (necessary) KKT conditions are satisfied at a particular operating point, 

uP,*, it means that this point is a KKT point or stationary point of the plant. The first 

order (necessary) KKT conditions for the plant optimization problem (Problem B.2) are: 

,2 0 

a [P difJP T d9P 
au = du +, du = 0 (BA) 

where the Lagrangian is defined as: LP = ifJP + ,T 9P and, are the Lagrange multipliers 

[Rardin, 1998]. In (BA), the first expression is called the primal feasibility condition, the 

second is referred to as the complementary slackness condition and the third and fourth 

expressions are together called the dual feasibility conditions [Marchetti, 2009]. Note that 

satisfaction of the LICQ and first order KKT conditions does not guarantee that uP ,* is a 

minimum of the plant. In addition, satisfaction of second order conditions is required. 

The second order (sufficient) KKT conditions are used to determine what type of stationary 

point a particular operating point is. Note that in order to correctly apply the second order 

conditions, the particular operating point HUlst satisfy the first-order KKT conditions (B.4). 

To apply the second order conditions, information about the curvature of ifJP at the station-

ary point, uP,*, must be known. If one or more constraints are active at uP,*, the reduced 

Hessian, V~,rifJP, must be obtained. Note that the following derivation for the calculation 

of the reduced Hessian is taken from Forbes and Marlin [1996]. 

In order to compute the reduced Hessian, the active set (9P,a) at the stationary point the 

must be known. Based on this, the gradients of the active constraints with respect to the 

inputs at the stationary point, d~:,a lup ,* can be calculated. A singular value decomposition 

is then carried out as follows: 

-- =U~V 
d9P,al 

du u P'* 

(B.5) 
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A set of basis vectors for the null space of the gradients of the active constraints is given 

by the columns of V which correspond to the zero singular values of~. Calling this set of 

basis vectors Z, the reduced Hessian at the plant stationary point can be computed: 

(B.6) 

If the reduced Hessian is strictly positive definite at the stationary point (V'~ r<I>Plup ,* »- 0) , 

then that point is a minimum of the plant optimization problem. Conversely, if the reduced 

Hessian at that point is strictly negative definite (V';,r<I>Plup ,* -< 0), then the point (uP'*) 

is a maximum. If it is positive semi-definite then it can be a minimum or a saddle point, 

and similarly, if it is negative semi-definite, it can be a maximum or a saddle point. If the 

reduced Hessian is indefinite, then uP '* is a saddle point [Rardin, 1998]. 

B.5 Sensitivity Analysis Theory 

The purpose of conducting a sensitivity analysis is to find out how the solution to an 

optimization problem would change if certain parameters in the optimization problem itself 

were to change. This is especially important in modifier adaptation (and RTO in general) 

because the system tends to be subject to Ineasurement noise which can easily cause the 

modifiers, which are essentially parameters in the model-based optimization problem, to be 

incorrectly estimated. Non-linear sensitivity analysis theory is explained in detail in Fiacco 

[1983]. 

The following model-based optimization problem is considered for the explanation of non­

linear sensitivity analysis: 

u* E arg min 
u 

S.t. 

<I>m (u,A) 

G(u,A) ~ 0 (B.7) 

where the cost function R,nd constraints of the process nlOdel are redefined in terms of the 

inputs and the modifiers (<I>m(u, A) := ¢(u, ym(u, A)) and G(u, A) := g(u, ym(u, A))). 

Note that this is just a reformulation of Problem 3.6. Also, both <I>m and G must be twice 
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continuously differentiable with respect to the inputs and once continuously differentiable 

with respect to the modifiers. In addition, the following non-linear map is also defined: 

,* = r* (A), which relates the modifiers to the optimal values of the Lagrange multipliers. 

To carry out the post-optimal sensitivity analysis, both U* and r* must be differentiable 

at A. Note that the non-linear map U* (defined in Equation 3.10) can still be used here 

because the nature of the model-based optimization here is still the same as in Problem 

3.6 (it has only been reformulated). The differentiability of U* and r* at A is dependent 

on u* being a unique optimizer of A. This requires that the LICQ as well as the first 

and second order KKT conditions for a local minimum are satisfied. In addition, the 

Lagrange multipliers corresponding to every active constraint must be greater than zero 

(strict complementary slackness) [Marchetti, 2009]. For reference, the first order KKT 

conditions for the reformulated model-based optimization problem (B.7) are: 

G(u, A) ::; 0 

,TG=O 

,2':0 
aLm diJ)m TdG 
--=--+, -=0 
au du du 

(E.8) 

where the Lagrangian is defined as: Lm = iJ)m + ,T G and, are the Lagrange multipliers 

[Rardin, 1998]. 

Note that since the analysis involves a set of assumptions and computations at a particular 

operating point (u*), it is only locally valid. Therefore, it should not be used to make 

assumptions about a potential change in the solution for a large parameter change. Fur­

thennore, to carry out the analysis, an active set is assumed for the problem. Therefore, 

if a given parameter variation causes the active set of a problem to change in reality, the 

sensitivity analysis will be no longer be valid [Fiacco, 1983]. 

Two matrices, X and Yare required to complete the sensitivity analysis. They are defined 
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X= 

dgng 
/ng du 

y= 

dgng 
/ng dX 

(B.9) 
g 

(B.10) 

Note that X represents the Jacobian of both the complementary slackness condition and 

the second dual feasibility KKT condition in (E.8) with respect to the inputs (u) and the 

Lagrange multipliers (--y). Conversely, y represents the Jacobian of the complementary 

slackness and second dual feasibility KKT conditions in (B.8) with respect to the modifiers, 

A [Marchetti, 2009]. These matrices are then put together to obtain an estimate of how 

a change in the modifiers can effect the solution of the model-based optimization problem 

[Fiacco, 1983]: 

[ 
dif Ix] = x-1y 
d~1 
dA x 

(B.ll) 
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The purpose of this appendix is to detail the computation of the sensitivities used in the 

convergence analysis of single input problems (Section 3.2.2) and the variance cost approx­

imation (Section 4.3.1). The sensitivities to be addressed are mainly those that are used to 

compute Y 00 in both cases. 

Specifically, the sensitivities making up Equations 3.18 and 3.19 are addressed. Note that 

although these equations are written for single input problems specifically, the derivations 

are written for multi-input problems in this appendix (unless otherwise stated), so they can 

also apply to the variance cost approximation for multiple input problems (Section 4.3.1). 

Before any specific derivations are made, note that the following assumption for the form 

of the derivatives: 

(C.1) 

where v and x m:e two random vectors [Petersen and Pedersen, 2008]. 

The first sensitivity from Equation 3.18, %1", is now addressed. Examining Equation 3.8 

(the full form of the update law A), Ak appears linearly and therefore the following can be 

written: 

(C.2) 

The sensitivity of the optimal inputs to the modifiers, ddf 1_ , is computed using a non­
Ak 

linear post-optimal sensitivity analysis, as described in Fiacco [1983] and Appendix B of 

this thesis. 

aaA is now considered. To begin, the following vector is defined for the purpose of this 
Uk+l 

derivation: 

(C.3) 
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The elements of T(Uk+l) are placed into a vector, t, which can be defined as follows: 

(C.4) 

The purpose of this change is that the derivative of the algorithm (A) with respect to a 

matrix T(Uk+1) needs to be considered here. Since for both representation and implemen­

tation purposes it is advantageous if the derivative is two-dimensional, T(Uk+1) is stretched 

into the vector t. The derivative, ~1- can be stated as follows: 

aA 
at 

where nA is the munber of modifiers. 

[

-w ° ] 
° -w 

(C.5) 

Now, the change in T(Uk+l) with respect to the operating point uk+l (~T I ), is required. 
uU Uk+l 

Using the vector t the following non-linear map is written: t = e t (Uk+1). Now, the 

corresponding derivative can be written: 

O(ny,l) 

O(nu(j-l),l) 

O(i-l,l) 

1 

O(nu-i,l) 

O(nu(ny-j),l) 

j = l...ny 
, \f i = l. .. nu 

Now, using Equations C.5 and C.6, the term "oA can be calculated as ~At "oet . 
UUk+l u uUk+l 
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Four more sensitivities with respect to the non-linear map A are computed as shown below: 

(C.7) 

The four sensitivities in (C.7) were obtained by directly considering the definition of A 

(Equations 3.8 and 3.9). 

{)t;; is simply g:~ for the single input case. The same idea is applied for multi-input systems, 

however, the final lTl.atrix must be arranged to fit with the 4th expression of Equation C.7: 

{)2j1 

{)u2 

aM {)2f2 

~ (C.8) au 
{)2r y 

{)u2 

The last expression that must be developed in Equation 3.18 is ({) {)R. + {){)l!- • ~F I ) . 
Uk+l Yk+l U Uk+l 

Its derivation for single input problems is considered first. Computing the individual deriva-
p p 

tive terms, {)'R = - Y kH -Y k 2 and {){)l}- = 1 , the following can be written: 
{)Uk+l (Uk+l-Uk) Yk+l Uk+l-Uk 

(
an an dFI ) 

aUk+l + aYf+l . du Uk+l 

(C.9) 

Now, a Taylor series expansion is written for Y~ arOlUld the point Y~+l: 

(C.10) 
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where terms greater than second order are ignored. This expansion is then rearranged to 

yield the following: 

(C.lI) 

Equation C.lI is then substituted into the second expression of (C.9) to yield: 

(C.12) 

which completes the derivation. Note that ~:~ I can be estimated in a number of ways. 
Uk+l 

First, if a benchmark model for the plant is available (a model that is too complicated for 

online implementation), it could be used here to approximate F(u). Conversely, it could 

also be estimated through plant experimentation or inherent process knowledge. 

For multi-input problems, the development is much easier, since Y 00 is being developed 

for only the variance cost approximation. In the variance cost approximation (Section 

4.3.1) the assumption is made that the ideal modifier adaptation algorithm approximates 

the behaviour of the dual modifier adaptation algorithm. It is assumed in ideal nlOdifier 

adaptation, that an exact representation of the plant, F(u), is available. Note that in 

practice, the benchmark plant model is typically used in the ideal modifier adaptation 

algorithm. Alternatively, F(u) can also be approximated by conducting plant experiments 

or through inherent process knowledge. F(u) is then differentiated exactly as the process 

model was earlier (C.8): 

Now 8
2
F replaces ( an + 8'f. . 

, 8u2 8Uk+l aYk+l 

mation of multiple input problems. 

8 2Fl 
8u2 

82 F2 

8u2 
(C.13) 

dF I ) in Equation 3.18 for the design cost approxi-
du Uk+l 

Considering 3.19, gA can be addressed in much the same way that 8u8A was earlier. To 
UUk k+l 

simplify the computation, the following matrix is defined: 1£ = [21 - T(Uk+l)] (I - KA). A 
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vector representation for T(Uk) is defined as follows: 

(C.14) 

~..; can then be written as follows: 

(C.15) 

This was written by repeatedly applying the following for a random vector x and a random 

matrix A: Bx;fx = xxT [Petersen and Pedersen, 2008]. Now, writing T = EV (Uk) and 

realizing that BeT BBe
t 

it is evident that BBA. in Equation 3.19 can be replaced by BUk - uk+1 Uk 

The computation of dd1.f \_ just consists of carrying out the non-linear sensitivity analysis 
Ak-1 

described previously at a new set of modifiers, Ak-l' Now, all the sensitivities required to 

write Y 00 for both the single input problem convergence analysis of Section 3.2.2 and the 

variance cost approximation of Section 4.3.1 have been developed. 

There is one other pair of sensitivities used in the variance cost approximation that need to 

be estimated. These are BBA;+1 and B~k;p, which are required for the approximation of the 
Yk+1 Yk 

covariance matrix of the modifiers due to measurement noise (Equation 4.22). ~Al~±1 and 
Yk+1 

B~ktP are expressed as follows: 
Yk 

8A 8A 8Bk+1 --+-_._-
8Y~+1 8B k+1 8y~+ 1 

8A 8Bk+l 
8Bk+l' 8y~ 

(C.16) 

where ~ and ~ were computed in (C.7). Note that the expression for BAk±1 IS 
BYk+l BBk+1 BYk 

slightly different because there is no direct dependence of the non-linear map (A) on y~. 

An explanation is now included for the approximation given in Section 4.3.1 for ~B;+1 and 
Yk+l 

B~\P (Equation 4.23) for the special case where 13 is diagonal. ~B;+1 can be expressed for 
Yk Yk+1 
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the nth measurement and the ith output (when i = n) as: 

~j:;;l.6.U; 
.6.U2 

(C.17) 

where .6.uk+1 = Uk+1 - Uk. Note that if i of- n then there is no relationship between the nth 

measlU'ement and Bl+ l' 

It is clear that as the algorithm converges, each term of Equation C.17 goes to infinity. 

In practice though, the dual constraints prevent this singularity from ever happening. By 

closely examining the shape of the ellipsoid itself, it is possible to estimate the values of the 

terms in Equation C.17. The maximum absolute values of each of the individual terms in 

Equation C.17 are inferred by considering the case, for term i, when .6.Uj = 0 V j of- i. This 

assumption is applied to Equation C.17 to obtain the following: 

1 
.6.Ul 

1 
.6.u2 

1 
.6.unu 

(C.18) 

Hence, Equation C.18 represents an upper bound on the magnitude of the effect that the 

n1.easurement noise can have on the Broyden update. 

The dual constraint itself is difficult to generalize from an online point of view, due to 

varying previous movement directions causing different restricted areas. Therefore, only 

the ellipsoid portion of this constraint is considered in this offline approximation. Now, in 

the separate cases for each of the nu terms in Equation C.18, the minimum distance that 

the ellipsoid itself will allow in any input direction, Ui, is 1/..fbi. This is accurate in each 

separate case since the assumption .6.Uj = 0 V j of- i reduces the equation of the ellipsoid to 

bi (.6.u!) = 1. Therefore, the maximum absolute value of each of the terms in the ::;ensiLivity 
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in Equation C.18 can be estimated: 

Jb1 
8Bl+1 y'b2 
8yp,n ~ 

k+l 

(C.19) 

Since this derivation was predicated on the assumption that each of the individual terms of 

Equation C.17 takes on its maximum value, this will lead to an over-estimation of the effect 

of measmement noise on the Broyden estimates. Note that this development also applies 

to aBaktl which appears as a part of the aAaktl sensitivity. The sign of the result is flipped 
Yk Yk 

due to the difference between Y1 and Y1+l in Equation 2.27. 

To demonstrate this approximation in practice, a small example is now given. A two input 

system is assumed, with an ellipsoid defined by b = [4,4]. The algorithm has just moved to 

an operating point 0.4 units in the Ul direction and 0.3 units in the U2 direction from the 

previous operating point. The new point, previous point, and ellipse are shown as parts of 

Figme C.l. 

Figure C.1: Diagram for Broyden sensitivity calculation example 

Equation C.19 gives the approximation of the sensitivity of the Broyden update for output 

i to the measmement 71: 

(C.20) 

170 



NLA.Sc. Thesis - Eric Rodger McMaster University - Chemical Engineering 

The value of the sensitivity in the case of the move specified for this particular example can 

be calculated using Equation C .17: 

(C.21) 

Note that the approximation does indeed provide an upper bound on the magnitude of the 

true value of the sensitivity in question. 

Finally, a short explanation of the assumption of Equation 4.25 is given for the special case 

in which 13 is diagonal. Recall that this assumption deals with approximating the effect 

of the dual constraints on the algorithm when one of them is always active. Consider the 

fictitious scenario situation in which the algorithm is only moving between three operating 

points, u~, u i - and uH . Both u i - and uH are defined as the closest points that the 

ellipsoid constraint will allow to u~ if movement is only allowed in the input direction i. 

These points are shown in Figure C.2 for the Ul input direction. 

u* 
00 

Figure C.2: Assumed algorithm movement for input direction 1 in scenario 2 

The distance between u~ and both u i - and uH is easily computed as ,fi;, because the 

assumption of movement only in the input direction i reduces the equation of the ellipsoid 

to bi (.6..uT) = 1. The following 4-point pattern is now assumed fro111. experience for this 

scenario: starting at u i -, moving to u~, then on to u i+ and then back to u~. Assuming that 

this pattern is constantly repeated, the variance of input i is easily computed: V(Uoo,i) = 

2t
i

. Now applying this scenario in all of the other input directions, the following is obtained: 

(C.22) 
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which is equivalent to (4.25) if 13 is diagonal. Since in reality the constraint can only force 

the computed operating point to be pushed the maximum distance (~) in one direction 

at a time, this represents an over-approximation of the effect of the dual constraints on the 

iterates. 
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In the following appendix, a selection of the source code for the work presented in this thesis 

is shown. It is written in MATLAB and the version shown here corresponds to the propane 

furnace problem. The basic dual modifier adaptation code is shown first, followed by the 

high-level functions involved in the design of dual modifier adaptation systems. 

D.l Dual Modifier Adaptation Algorithm 

function l\ifailllvIodAdapt () 

2 

3 %thi8 junction -is the m.u'in function that can be used to test a particular 

4 %dual modifier adaptation design. It prod'Uces a graph of the movement of 

5 %the system as well as wrHcs out some performance statistics to a file 

6 

7 %rcads in modifiers to be updated 

8 methodology_details j 

9 

10 %creates all scripts containing system propert'ies (e.g. models, objective 

11 %function) as welt as corresponding derivative info 

12 [nu, nyp I nym, nxp I nxm, ng] = modeLgen_sim (param_var_num I yparam_var_num I mods_var_llum) j 

13 

14 %reads in problem parameters 

15 problem_parameters_real j 

16 

17 %computing noise level (standard deViation) for each output 

18 rho v = noise_sd*opt_noise_values; 

19 

20 %setting 'init-ial values 

21 u_tan_pos 

22 u_tan_neg 

23 

zeros (nu+nym, 1 ) j 

zeros (nu+nym, 1) j 

24 %perform'ing a plant experiment at the starting pO'int 

25 (zold, zn, c] = plant_measurements (u_matrix (: ,1), pp I rhov, nyp, nu I nxp) i 

26 

27 %computi.ng 1nodel outputs at starting point 

28 W = ones(nxm , l); 

29 for i = l:(length(u_matrix)-nu) 

30 w(i) = u_matrix(nu+i); 

31 end 

32 xum = fsolve (@(w)model_eqns(w , u_matrix (: ,1) I p), w) j 

33 model_states j 

34 output_model_equations; 

35 

36 %computing n~odel derivative estimate at starting pO'int 

37 dydu = modeLcalcs(u_nlatrix(:,I), lambdacost(:,I), xum, yum, p); 

38 

39 %computing first Bl'oyden derivative esti1nate 

40 BR= dydu; 

41 

42 %solving fi7'st optimization problem (no dual constraints) 

43 u = optimizer3(u_matrix(: ,I) I p, lambdacost(: ,I) ,ng, nyffi, llstart, uL, uU, max_it); 

44 

174 



M.A.Sc. Thesis - Eric Rodger McNlaster University - Chemical Engineering 

45 %loop to move through RTO iterations 

46 for j =1: num_it 

47 

48 %updating and tracking values through RTO -iterations 

49 zold = Zllj 

50 

51 

52 

cost-tracker (j) 

u_matrix (: ,j +1) 

c; 

u; 

53 %taking measurements from the fictitious plant 

54 [z, Zll, c] = plant_rneasurements(u_matrix(: ,j+l). pp, rhov, nyp, nu, nxp)j 

55 

56 %calculating the new dual constraint implementation parameters 

57 if j >= (nu-l) 

58 

59 end 

60 

61 %updating the B1'oyden dcr"ivaiive estimates 

62 BRoid = BR; 

63 BR = broydon(u_rnatrix(l:nu,j+l). n_matrix(l:nu,j), Zll, zold, BRoId); 

64 

65 %compuUng the model deri.1IaU.ves 

66 opt_states j 

67 output_model_equations j 

68 dydu = modeLcalcs(u_matrix(:,j+l), lambdacost(:,j), u_matrix«(1+nu):(nu+nxm),j+l), yum, p); 

69 

70 %comparing plant and model injor1nation 

71 Cl = zn - yum I j 

72 C2=[]; 

73 for i = l:nym 

74 C2 = [C2 ; (BR(i ,:)' - dydu(i ,:) ')]; 

75 end 

76 

77 %cornputing new modifier values 

78 lambdacost(:,j+l) = modifier_calc_bar(Cl, C2, nym, fin, lambdacost(:,j), u_matrix(l:nn,j+l), ... 

79 u_matrix (1: nu, j), mods_var_nllm, b, q) j 

80 

81 %solving di.sj1tnctive opti1nization problem 

82 best = inf j 

83 [uset2, fopt, exitflag] = optimizer2(u_matrix(: ,j+l), p, lambdacost(: ,j+l), ng, nym, ... 

84 

85 if fopt < best && exitflag > OJ 

86 u=uset2j 

87 best = fopt j 

88 end 

89 Iuset3, fopt, exitflag] = optimizer3(u_matrix(:,j+l)' p, lambdacost(:,j+l), ng, nym, ... 

90 

91 if fopt < best && exitfiag > 0; 

92 u = uset3 j 

93 end 

94 

95 end 

96 

97 %creat.ing statistics vectors 

98 lambdacost_stat = lambdacost (:, stat_it :end)j 

99 u_matrix_stat = ll_matrix(:, stat_it :end)j 

100 for i = l:length(u_matrix_stat) 

101 u_matrix_stat2 (1, i) (u_matrix_stat (1, i )+18.1575) * 20; 

102 
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103 end 

104 cost_stat = cost_tracker(stat_it :end)j 

105 

106 %plotting results 

107 contour_plot_sim (pp, nxp I ng, zeros (nym*(nu+l) ,1), U I u_matrix_stat, g_backoff) 

108 hold on 

109 plot(u_matrix_stat2 (1,:), u_matrix_stat2 (2,:), '-x') 

110 

111 %calculati.ng and printing statistics to a file 

112 u_averages(l ,:) = rnean(u_matrix_stat(l:11u,:} '); 

113 u_variances (1 ,:) = var(u_matrix_stat (l:nu,:) 'L 
114 cost_average (1) = mean ( cost_stat) j 

115 cost_variance (1) = var( cost_stat) j 

116 

117 datal = []; 

118 for i = l:nu 

119 data1(:,i) = (g_vector(i)); 

120 end 

121 datal (: , nu+1) 

122 

123 for i = I:llll 

124 

125 

126 end 

datal (: , nu+1+1+2*(i -1)) 

datal (: , nu+1+2+2*(i -1)) 

u_averages (: . i) j 

u_variances (: , i ); 

127 data1(:,3*nu+2) 

128 datal (: ,3 * nu+3) 

129 

(cost_average) j 

(cost_variance) j 

130 varnamesl = [) i 

131 for i = 1: (3* nu+3) 

132 varnames1 = [varnames1 , Data ___ ' ] ; 

133 end 

134 casenamesl =()j 

135 for I = 1:1 

136 casenames1 [casenames1 j' ~~~ ..... '] j 

137 end 

138 

139 tblwrite(data1 ,varnames1 ,casenames1, 'case_t1.dat ') 

140 

141 end 

%contains infoTmati.on on which modifiers should be updated (other two 

2 %variables are for a latc1' extension to hybrid methods) 

3 

4 param_va.r_num = [1 i 

5 yparam_var_num = [] j 

6 mods_var_Hum = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ... 

7 24 25 26 27 28 29 30 31 32 33]; 

function [nu, nyp, nym, nxp, nxm t ng] = modeLgen_sim () 

2 

%this function generates a set of files (01' scripts) which contain 

4 %information about the system. (objective funct'ion. benchmark and normal 

5 %p1'OCCSS models. constraints) and thcri. respective dcrivat'ives 

6 

7 %def-ining symbolic 11ariables 

8 syms U1 U2 real 

176 



lVLA.Sc. Thesis - Eric Rodger 

9 syms U01 U02 real 

10 syms Xl X2 X3 X4 X5 X6 X7 X8 X9 XlO X11 X12 real 

11 syms Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 real 

McMaster University - Chemical Engineering 

12 syms TH1 TH2 TH3 TH4 TH5 TH6 TH7 TH8 TH9 THlO THl1 TH12 TH13 TH14 TH15 TH16 TH17 TH18 TH19 .. . 

13 TH20 TH21 TH22 TH23 TH24 TH25 TH26 TH27 TH28 TH29 TH30 TH31 TH32 TH33 TH34 TH35 TH36 TH37 .. . 

14 TH38 TH39 TH40 TH41 TH42 TH43 TH44 TH45 TH46 TH47 TH48 TH49 TH50 TH51 TH52 TH53 TH54 TH55 .. . 

15 TH56 TH57 TH58 TH59 TH60 TH61 TH62 TH63 TH64 TH65 TH66 TH67 TH68 TH69 TH70 TH71 TH72 TH73 .. . 

16 TH74 TH75 TH76 TH77 TH78 TH79 TH80 TH81 TH82 TH83 TH84 TH85 TH86 TH87 TH88 TH89 real 

17 syms L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 ... 

18 L25 L26 L27 L28 L29 L30 L31 L32 L33 real 

19 

20 %defining vectors of various quantities 

21 U = [U1 U2 [ ; 

22 UO = [U01 U02J; 

23 XM = [Xl X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12J; 

24 XP = [Xl X2 X3 X4 X5 X6 X7 X8 X9 X10 Xl1 X12 J; 

25 YM = [Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 J; 

26 yP = [Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Yll J ; 

27 param_set = [TH1 TH2 TH3 TH4 TH5 TH6 TH7 TH8 TH9 TH10 TH11 TH12 TH13 TH14 TH15 TH16 TH17 ... 

28 TH18 TH19 TH20 TH21 TH22 TH23 TH24 TH25 TH26 TH27 TH28 TH29 TH30 TH31 TH32 TH33 TH34 .. . 

29 TH35 TH36 TH37 TH38 TH39 TH40 TH41 TH42 TH43 TH44 TH45 TH46 TH47 TH48 TH49 TH50 TH51 .. . 

30 TH52 TH53 TH54 TH55 TH56 TH57 TH58 TH59 TH60 TH61 TH62 TH63 TH64 TH65 TH66 TH67 TH68 .. . 

31 TH69 TH70 TH71 TH72 TH73 TH74 TH75 TH76 TH77 TH78 TH79 TH80 TH81 TH82 TH83 TH84 TH85 .. . 

32 TH86 TH87 TH88 TH89 J ; 

33 W = [U XMJ; 

[param_set XMJ; 34 P 

35 L [L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 ... 

36 L25 L26 L27 L28 L29 L30 L31 L32 L33 J ; 

37 TH = [TH1 TH2 TH3 TH4 TH5 TH6 TH7 TH8 TH9 TH10 TH11 TH12 TH13 TH14 TH15 TH16 TH17 TH1S ... 

38 TH19 TH20 TH21 TH22 TH23 TH24 TH25 TH26 TH27 TH28 TH29 TH30 TH31 TH32 TH33 TH34 TH35 .. . 

39 TH36 TH37 TH38 TH39 TH40 TH41 TH42 TH43 TH44 TH45 TH46 TH47 TH48 TH49 TH50 TH51 TH52 .. . 

40 TH53 TH54 TH55 TH56 TH57 TH58 TH59 TH60 TH61 TH62 TH63 TH64 TH65 TH66 TH67 TH68 TH69 .. . 

41 TH70 TH71 TH72 TH73 TH74 TH75 TH76 TH77 TH78 TH79 TH80 TH81 TH82 TH83 TH84 TH85 TH86 .. . 

42 TH87 TH88 TH89 J ; 

43 

44 %setting counters for numbers of inputs J states and outputs 

45 nn = length (U); 

46 nxp length (XP); 

47 nxm length (XM); 

48 nyp length (YP); 

49 nym = length (YM); 

50 

51 %wTiting various scripts 

52 write_inputs (U, 'U' I I inputs .m'); 

53 write_inputs_old (UO, 'UO' I I inputs_old .m'); 

54 write_states_plant (XP, 'X' I I plant_states .m'); 

55 write_states_model (XM, 'X' I 1 modeLstates .m') i 

56 write_outputs_plant (YF, 'Y' , I plant_outputs .m') j 

57 write_out puts_model (Ylvl, 'Y' , 'modeLoutputs .m') j 

58 write_parameters (TH, 'TIl' 1 I parameters .m') j 

59 wr i te_IDodifiers (L l 'L' , ' modifiers .m I L 
60 write_states_opt (Xl\1, 'X', 'opt_states .m' ,length(U))j 

61 

62 %**************************************************************** 

63 

64 %cost fun-chon-

65 f = -1*«U1dOO)*TH6h(Y1 + L1 + L1hU1 + L13*U2) + (Uh100)*TH62*(Y2 + L2 + L14*U1 + L15*U2) ... 

66 + (U1dOO)*TH63*(Y3 + L3 + L16*U1 + L17*U2) + (U1dOO)*TH64*(Y4 + L4 + L18*U1 + L19*U2) ... 
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67 

68 

69 

70 

71 

72 

+ (Uh100)*TH65*(Y5 + L5 + L20*U1 + L2hU2) + (U1dOO)*TH66*(Y6 + L6 + L22*U1 + L23*U2) ... 

+ (Uh100)*TH67*(Y7 + L7 + L24*U1 + L25.U2) + (Uh100)*TH68*(Y8 + L8 + L26*U1 + L27*U2) ... 

+ (U1. 1 00) .TH69. (Y9 + L9 + L28.U1 + L29*U2) + (U1.100)*TH70.(YlO + L10 + L30.U1 + L31.U2) ... 

TH7hTH85.(U1dOO) - TH72.(Y11 + L11 + L32.U1 + L33.U2) -

writelD(f I 'f', 'cost .m')j 

73 %gradient of cost junction wrt the inputs 

74 dfdu = jacobian (f ,U); 

75 write2D(dfdu, 'dfdu', 'cost_input_derivs .m')i 

76 

77 %gradi.ent of cost funct-ion wrt the plant outputs 

78 dfdyp = jacobian(f,YP); 

79 write2D (dfdyp , 'dfdyp , , ' cost_o u t pu t_p la n t_deri VB .m' ) ; 

80 

81 %g1'adient of cost junct-ion wrt the model outputs 

82 dfdym = jacobian(f,YM); 

83 write2D(dfdyrn, 'dfdym' I 'cost_output_derivs .m'); 

84 

85 %g1'adients of cost junction 101't optimization vari.ables 

86 dfdw = jacobian (f, \'1); 

87 write2D (dfdw I I dfdw ' , ' cost _0 pt_der i vs .m' ) i 

88 

(U1.t00) .TH73); 

89 %**************************************************************** 

90 

91 

92 

93 

94 

95 

96 

97 

98 

99 

%plant 

xup (1) 

xup(2) 

xup(3) 

xup(4) 

xup(5) 

xup(6) 

xup(7) 

xup(8) 

xup(9) 

model 

= TH1 + TH2*TH85 + 
= TH7 + TH8.TH85 + 

TH13 + TH14.TH85 

TH19 + TH20.TH85 

TH25 + TH26.TH85 

TH31 + TH32.TH85 

TH37 + TH38.TH85 

TH43 + TH44.TH85 

TH49 + TH50.TH85 

TH3.TH85'2 + TH4.U2 + TH5.U2'2 + TH6.TH85.U2 - Xl; 

TH9.TH85'2 + THlO.U2 + TH1hU2'2 + TH12.TH85.U2 - X2; 

+ TH15.TH85' 2 + TH16*U2 + TH17.U2'2 + TH18.TH85*U2 

+ TH2t.TH85' 2 + TH22.U2 + TH23.U2'2 + TH24.TH85. U2 

+ TH27.TH85' 2 + TH28*U2 + TH29.U2'2 + TH30.TH85. U2 

+ TH33*TH85' 2 + TH34.U2 + TH35*U2'2 + TH36.TH85.U2 

+ TH39.TH85' 2 + TH40.U2 + TH4hU2'2 + TH42.TH85.U2 

+ TH45.TH85'2 + TH46.U2 + TH47.U2'2 + TH48.TH85.U2 

+ TH5hTH85'2 + TH52.U2 + TH53*U2'2 + TH54.TH85.U2 

X3; 

X4; 

X5; 

X6; 

X7; 

X8j 

X9; 100 

101 

102 

103 

xup(10) = TH55 + TH56.TH85 + TH57.TH85'2 + TH58.U2 + TH59*U2'2 + TH60.TH85.U2 - XlO; 

xup (11) TH74*«Uh100)/(X1h100» - X11; 

xup(12) TH75.X1 + TH76*X2 + TH77.X3 + TH78.X4 + TH79.X5 + TH80.X6 + TH8hX7 + TH82.X8 ... 

104 + TH83.X9 + TH84*XlO - (X12.100); 

105 writelD (xup 1 'xup " I plant_model.m') j 

106 

107 %.Qrad'f.ent of junctions wrt the inputs jor the plant 

108 dhdup = jacobian (xup ,U); 

109 write2D (dhdup, 'dhdup',' in_func_plant_derivs .m') j 

110 

111 %.Qradient of junctions wrt the states f01' the plant 

112 dhdxp = jacobian(xup,XP); 

113 write2D(dhdxp, 'dhdxp', 'st_func_plant_derivs .m'); 

114 

115 %**************************************************************** 

116 

117 

118 

119 

120 

121 

122 

123 

124 

%plant 

yup(l) 

yup(2) 

yup(3) 

yup(4) 

yup(5) 

yup(6) 

yup(7) 

outputs 

Xl; 

X2; 

X3; 

X4; 

X5; 

= X6; 

= X7; 
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125 yup(8) = X8; 

126 yup(9) = X9; 

127 yup(10) = X10; 

128 yup(ll) = Xl1; 

129 writelD (yup, 'yup' , 'output_plant_equations .m'); 

130 

131 %gradient of plant outP'llts wrt the 'i.np'lLts 

132 dydup = jacobian(yup,U); 

133 write2D (dydup I 'dydup I , ' outpu t_inp ut _pIa n t_deri vs .m' ) j 

134 

135 %gradient of plant outputs wrt the plant states 

136 dydxp = jacobian(yup,XP); 

137 write2D (dydxp I 'dydxp' I ' 0 u t pu t_st at e_plan t_der i vs .m' ); 

138 

139 %****************************************************************** 

140 

141 %approximate model 

142 xum(l) 

143 xum(2) 

144 xum(3) 

145 xum(4) 

146 xum(5) 

147 xum(6) 

148 xum(7) 

149 xum(8) 

150 xurn( 9) 

= TH1 + TH2.TH85 + TH3.TH85"2 + TH4.U2 + TH5.U2"2 + TH6*TH85.U2 - Xl; 

TH7 + TH8.TH85 + TH9.TH85"2 + THlO.U2 + TH1hU2"2 + TH12.TH85*U2 - X2; 

TH13 + TH14.TH85 + TH15*TH85'2 + TH16.U2 + TH17*U2"2 + TH18.TH85.U2 -

TH19 + TH20.TH85 + TH2hTH85" 2 + TH22.U2 + TH23*U2"2 + TH24*TH85.U2 -

TH25 + TH26*TH85 + TH27.TH85 " 2 + TH28.U2 + TH29*U2"2 + TH30.TH85.U2 -

TH31 + TH32.TH85 + TH33.TH85" 2 + TH34*U2 + TH35.U2"2 + TH36.TH85.U2 

TH37 + TH38.TH85 + TH39.TH85' 2 + TH40*U2 + TH41.U2"2 + TH42.TH85*U2 

TH43 + TH44.TH85 + TH45.TH85' 2 + TH46*U2 + TH47*U2"2 + TH48.TH85.U2 

TH49 + TH50*TH85 + THShTH85 " 2 + TH52.U2 + TH53.U2"2 + TH54.TH85 * U2 

X3; 

X4; 

X5; 

X6; 

X7; 

X8; 

X9; 

151 xum(10) = TH55 + TH56.TH85 + TH57.TH85"2 + TH58.U2 + TH59.U2"2 + TH60.TH85*U2 - X10; 

152 xum(ll) = TH74*«U1*lOO)/(X12*100)) - Xll; 

153 xum( 12) = TH75.X1 + TH76.X2 + TH77*X3 + TH78*X4 + TH79*X5 + TH80*X6 + TH8hX7 + TH82.X8 ... 

154 + TH83.X9 + TH84*XlO - (X12.100); 

155 writelD(xum, 'xum', 'model.m')j 

156 

157 %gradient oj functions wrt the inputs 

158 dhdum = jacobian{xum,U}j 

159 write2D (dhduID, 'dhdum', 'in_func_ffiodel_derivs .m'); 

160 

161 %gradient of functions WTt the model states 

162 dhdxffi = jacobian (xum,XM)j 

163 write2D (dhdxm, 'dhdxm' , ' st_func_ffiodel_deri vs .m' ) j 

164 

165 %**************************************************************** 

166 

167 %approximate model outputs 

168 

169 

170 

171 

172 

173 

174 

175 

176 

yum(l) 

yum(2) 

yum(3) 

yum(4) 

yum(5) 

yum(6) 

yum(7) 

yum(8) 

yum(9) 

Xl; 

X2j 

X3; 

X4j 

X5; 

X6; 

X7; 

X8; 

X9; 

177 yum(10) = X10; 

178 yum(ll) = Xl1; 

179 writelD (YUID, 'YUID' , 'output_modeLequations .m') j 

180 

181 %gradient of model outputs 11l1't the inputs 

182 dyduffi = jacobian(yuID,U)i 
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183 write2D (dydum, 'dydum' I 'out pu t_input_IDodeLderi vs .m 1 ); 

184 

185 %gradi.ent of model outputs wrt the model states 

186 dydxm = jacobian (yuID,XlvI)i 

187 write2D (dydxm, 'dydxm '. I output_state_modeLderivs .m'); 

188 

189 %**************************************************************** 

190 %section has not been updated to cover recent changes 

191 

192 %/i7'St set of const7'aints and their derivati.ves 

193 g2 (1) 

194 g2 (2) 

195 g2 (3) 

196 g2(4) 

197 g2 (5) 

198 g2 (6) 

199 g2 (7) 

Y11 + L11 + L32*U1 + L33*U2 - 0.0147; 

(Uh100) - 15; 

5 - (U1dOO); 

U2 - 0.93; 

0.70 U2; 

«Y3 + L3 + L16*U1 + L1hU2)*(UldOO) - 3) + TH86; 

TH89 - (TH8h(UI-UOl)+TH88*(U2-U02)); 

200 writelD(g2,'g','Collstraints2.m')i 

201 dg2 = jacobian (g2, W); 

202 write2D (dg2 I 'dgdw I, I ineq_const_derivs2 .m') i 

203 dg2dyrn = jacobian(g2, YM); 

204 write2D (dg2dym, 'dgdym I I ' const _ou t pu t_deri vs2 .m' ); 

205 dg2dl = jacobian(g2, L); 

206 write2D (dg2dl I I dgdl ' I 'const_lam_deri vs2 .m J ) j 

207 dg2du = jacobian(g2, U); 

208 write2D (dg2du J 'dgdu ' , 'const_in pu t_de ri vs 2 .m J ) i 

209 

210 %second set of constru'ints and thei7' deri,vatives 

211 g3(1) 

212 g3(2) 

213 g3 (3) 

214 g3(4) 

215 g3 (5) 

216 g3 (6) 

217 g3(7) 

Y11 + Lll + L32*U1 + L33*U2 - 0.0147; 

(Uhl00) - 15; 

5 - (Uh100); 

U2 - 0.93; 

0.70 U2; 

«Y3 + L3 + LI6*Ul + L1hU2)*(Uhl00) - 3) + TH86; 

TH89 + (TH8h(U1-UOl)+TH88*(U2-U02)); 

218 write1D(g3, 'g','constraints3.m')i 

219 dg3 = jacobian(g3, W); 

220 write2D (dg3 , 'dgdw' , 1 ineq_const_deri vs 3 .m' ) ; 

221 dg3dym = jacobian (g3, Ylvl); 

222 write2D (dg3dym, 'dgdym ' I ' const _ou t pu t_deri vs3 .m' ) i 

223 dg3dl = jacobian(g3, L); 

224 write2D(dg3dl J 'dgdl',] const_lam_derivs3 .m')j 

225 dg3du = jacobian (g3, U); 

226 write2D(dg3du] 'dgdu J
, 'const_input_derivs3 .m')j 

227 

228 %setting counter f07' number of constraints 

229 ng = length(g2); 

230 

231 %**************************************************************** 

232 

233 %model constraints w7·i.tten for the opti.mizer 

234 h (1) = THI + TH2*TH85 + TH3*TH85" 2 + TH4* U2 + TH5* U2" 2 + TH6*TH85* U2 - Xl; 

235 h(2) = TH7 + TH8*TH85 + TH9*TH85"2 + THI0*U2 + THlhU2"2 + THI2*TH85*U2 - X2; 

236 h(3) TH13 + THI4*TH85 + THI5*TH85"2 + TH16*U2 + TH17*U2"2 + THI8*TH85*U2 X3; 

237 h (4) 

238 h(5) 

239 h (6) 

240 h (7) 

TH19 

TH25 

TH31 

TH37 

+ TH20*TH~5 
+ TH26*TH85 

+ TH32*TH85 

+ TH38*TH85 

+ TH2hTH85-2 + 
+ TH27*TH85-2 + 
+ TH33*TH85 "2 + 
+ TH39*TH85 " 2 + 

TH22*U2 + TH23*U2"2 + TH24*TII85* U2 X4; 

TH28*U2 + TH29*U2"2 + TH30*TH85* U2 X5; 

TH34*U2 + TH35*U2"2 + TH36*TH85* U2 X6; 

TH40*U2 + TH4hU2" 2 + TH42*TH85*U2 X7; 
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241 h(8) = TH43 + TH44.TH85 + TH45.TH85'2 + TH46.U2 + TH47.U2'2 + TH48.TH85.U2 - X8; 

242 h(9) = TH49 + TH50.TH85 + TH5hTH85'2 + TH52.U2 + TH53.U2'2 + TH54.TH85.U2 - X9; 

243 h(10) = TH55 + TH56.TH85 + TH57.TH85'2 + TH58.U2 + TH59*U2'2 + TH60.TH85.U2 XlO; 

244 h(ll) = TH74.«Uh100)/(X12dOO)) - Xll; 

245 h(12) = TH75.X1 + TH76.X2 + TH77.X3 + TH78.X4 + TH79.X5 + TH80.X6 + TH81.X7 + TH82.X8 ... 

246 + TH83.X9 + TH84.X10 - (X12.100); 

247 writelD (h, 'h' , 1 eq_ffiodel.m') j 

248 

249 %gradients of process model wrt optimization var'iables 

250 dh = jacobian (h, \'IT); 

251 write2D (dh I 'dh' I 'eq_const_derivs .m '); 

252 

253 end 

Note that this is intended as an example of these write.. functions. These were adapted 

from similar functions provided by Dr. Chachuat. 

function wri te_in puts (Deps_variables I Var_uame , File_name) 

2 

3 fid = fopen{File_name, 'wt'); 

4 for i =1: length (Deps_variables) 

5 Var_uame_i = strcat(Var_name,num2str{i»j 

6 EquatioTI_i = strcat(Var_name_i,'~= ..... u(',nurn2str(i),')i'); 

7 fprintf( fid , '%s\n " Equatioll_i) j 

8 end 

9 fclose(fid); 

10 

11 end 

%Thi,s script conta·ins a bunch of system speci,jic settings. It is read 

2 %directly into the ma·in dual modifier adaptati.on junction. Its main 

3 %purpose 'is to group together all the problem spec'ific settings in one 

4 %place. 

5 

6 %sett'ing backoff and dual constraint paramte1's 

7 g_backoff = 0.136; 

8 g_vector = [25000;15000]; 

9 

10 %setting plant and model parameters 

11 p = [0.00494724; -0.03664829; 0.04069737; 0.019859935; -0.000969887; -0.002677888; ... 

12 0.10800515; -0.052572383; 0.078125; -0.164172769; 0.377328861; -0.046034175; ... 

13 0.492783395; 1.669458174; -1.875; -1.466407509; 1.076528013; 0.060010201; ... 

14 0.007192032; -0.29770971; 0.318080357; 0.341778885; -0.253919555; 0.001326192; ... 

15 -0.233759303; -4.104523391; 4.553571429; 2.831994285; -1.728076697; 0.011782708; ... 

16 0.478230614; 2.608846932; -2.898718813; -1.0; -1.28684*10'(-11); -7.42328.10'(-13); ... 

17 0.043096185; 0.520875137; -0.602678571; -0.427566842; 0.316262353; 0.03427697; .. . 

18 -0.026571494; -0.313838283; 0.3515625; 0.268080883; -0.174337183; -0.001683244; .. . 

19 -0.000404145; 0.002154272; -0.003395081; -1.58084*10'(-5); 0.000258392; 0.001683244; ... 

20 

21 

22 

23 pp 

24 

25 

0.053389638; 0.369410985; -0.368303571; -0.40355106; 0.386925703; -0.058684009; .. . 

0.24; 0.06; 0.25; 0.08; 0.20; 0.08; 0.20; 0.14; 0.08; 0.14; 0.03; 3; 0.08; 0.036; .. . 

2; 16; 28; 30; 42; 44; 54; 56; 58; 62; 0.3; g_backoff ; zeros(nu+1,1)]; 

[0.00494724; -0.03664829; 0.04069737; 0.019859935; -0.000969887; -0.002677888; .. . 

0.10800515; -0.052572383; 0.078125; -0.114172769; 0.327328861; -0.046034175; .. . 

0.492783395; 1.669458174; -1.875; -1.966407509; 1.576528013; 0.060010201; ... 
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27 

28 

29 

30 

31 

32 

33 

34 

35 
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0.007192032; -0.29770971; 0.318080357; 0.291778885; -0.203919555; 0.001326192; ... 

-0.233759303; -4.104523391; 4.553571429; 3.331994285; -2.228076697; 0.011782708; ... 

0.478230614; 2.608846932; - 2.898718813; -1. 0; -1.28684-10' ( -11); -7.42328<10' ( -13); ... 

0.043096185; 0.520875137; -0.602678571; -0.427566842; 0.316262353; 0.03427697; .. . 

-0.026571494; -0.313838283; 0.3515625; 0.268080883; -0.174337183; -0.001683244; .. . 

-0.000404145; 0.002154272; -0.003395081; -1.58084-10'(-5); 0.000258392; 0.001683244; ... 

0.053389638; 0.369410985; -0.368303571; -0.40355106; 0.386925703; -0.058684009; .. . 

0.24; 0.06; 0.25; 0.08; 0.20; 0.08; 0.20; 0.14; 0.08; 0.14; 0.03; 3; 0.08; 0.036; .. . 

2; 16; 28; 30; 42; 44; 54; 56; 58; 62; 0.3; g_backaff ; zeras(nu+1,l)]; 

36 %in'itiaU,zing nO'ise level and tYP·j·cal output values 

37 noise_sd = O.Oli 

38 opt_Doise_values [0.011029851237480 0.180665660061833 0.243067841956929 0.051120128815393 ... 

39 0.192389524065852 0.268872263828000 0.009087264974922 0.013358263483604 0.000432344129713 ... 

40 0.029976857627441 0.012959475225053]; 

41 

42 %setting system start point and modifiers as well as the pO'int at which the 

43 %optimiz€7' will be started in its first run 

44 u_matrix(: ,I) = [0.07 0.85 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.01 20/100]; 

45 lambdacast = zeras(nym*(nu+1) ,I); 

46 far i = l:length(u_matrix (: ,I» 
47 ustart(i ,I) = 0.97.u_matrix(i ,I) + 0.06*u_matrix(i ,l).rand(); 

48 end 

49 

50 %optimizer settings 

51 max_it = 50j 

52 for i = l:nu 

53 uL(i)=-inf; 

54 uU ( i) = in f ; 

55 end 

56 for i = l:nym 

57 uL(i+nu) =-inf; 

58 uU( i+nu) = inf; 

59 end 

60 

61 %filter parameters 

62 b 0.4; 

63 q 0.4; 

64 

65 %information about how many RTO iterations to run and at which iteration 

66 %statistics should start being tabulated 

67 nUID_it = 50j 

68 stat_it = Ij 

function [z, zn, f] = plant_measurements(u, p. rhov, nyp, nu, nxp) 

2 

3 %the purpose of tlds function is twofold: to generate plant measurements 

4 %from the sim1Llated plant 7nodel (adding in measurement noise) and 

5 %comput'ing the true plant cost junction value 

6 

7 %solving simulated plant equat'ions 

8 W = ones(nxp,I); 

9 far i = 1: (length (u)-nu) 

10 wei) = u(nu+i); 

11 end 

12 options = optimset( 'TolX' , Ie-IO, 'ToIFun l
, le-IO)i 

13 xup = fsolve (@(w)plant_modeLeqns(w , u, p), w, options) i 
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14 

15 %compuUng the plant cost function value (noi.seless) 

16 inputs j 

17 parameters j 

18 plant_states; 

19 output_plant_equations j 

20 plant_outputs; 

21 lambda cost = zeros(nyp*(nu+l) ,1); 

22 uold = zeros (nn, 1) i 

23 inputs_old j 

24 modifiers i 

25 

26 cost; 

27 

28 %adding measurement noi,se to the si1nluated plant outputs 

29 z = yup I j 

30 

31 for i = l:nyp 

32 inc = normrnd(O,rhov(i»i 

33 zn(i) = z(i) + inc; 

34 end 

35 zn = zn' j 

36 

37 end 

function xup = plant_model_eqns (xup I U, p) 

2 

3 %solves the implicit plant 1nodel equations 

4 

5 inputs j 

6 parameters i 

7 plant_states; 

8 

9 plant_model j 

10 end 

function xum = modeLeqns{xuffi, il, p) 

2 

3 %solves the implicit process model equati.ons 

4 

5 inputs j 

6 parameters i 

7 model_states i 

8 

9 model i 

10 end 

function dydum_tot = modeLcalcs(u, lambdacost I xum, yum, p) 

2 

3 %computes the deri11atives of the model outputs wrt the inp1Lts 

4 

5 modifiers i 

6 parameters j 

7 inputs i 

8 modeLoutputs i 
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9 modeLstates; 

10 

11 iu_func_ffiodel_derivs; 

12 st_func_IDodel_derivs j 

13 output_input_ffiodel_derivs j 

14 output_state_model_derivs j 

15 

16 dyd urn_tot 

17 

18 end 

dydum + dydxm*(-hinv(dhdxm)*dhdum); 

2 

3 

function [xopt, fopt, exitflag, output, lambda) 

uL, nU, max_it) 

1/IcMaster University - Chemical Engineering 

optimizer2 (uO, P. lambdacost 1 ng I ustart, ... 

4 %thi,s function solves one of the model-based optimizaHon problems 

5 

6 %provid-ing settings to the opt'imizer 

7 options = optimset('Display', 'iter', 'GradObj', 'on', 'GradConstr', 'on', 

8 

9 

10 

11 

I LargeScale 1 I 'off I I 'HessUpdate I I 'bfgs' I 'Diagnostics I I 'on' I 

'ToIX' , 1e-7, 'TolFun' , 1e-7, 'ToiCon'. 1e-7, ':r..!J:axFunEvaI', 3*max_it, 

I Maxlter', max_it) i 

12 %caT1'ying out the opt'imization 

13 (xopt, fopt t exitflag, output, lambda 1 = fmincon(@(u}cost_fun(u, uO, p, lambdacost), ustart 

14 [], [J, [], [], uL, uU, @(u)nonlin_const2(u, uO, p, lambdacost, ng), options); 

15 

16 end 

2 

3 

function [xopt, fopt, exitflag, output, lambda] 

uL, uU, max_it) 

optimizer3 (uO, p, lambdacost 1 ng, us tart l' " 

4 %thi.s function solves one of the model-based optimization problems 

5 

6 %providi.ng settings to the optimizer 

7 options = optimset('Display', 'iter', 'GradObj', 'on', 'GradConstr', 'on', ... 

8 

9 

10 

11 

'LargeScale', 'off I I 'Hess Update', 'bIgs I I 'Diagnostics' I 'on' I 

'TolX' , 1e-7, 'ToIFun', 1e-7, 'TolCon' , 1e-7, ':tvlaxFunEval', 3*max_it, 

'Maxlter I, max_it) j 

12 %carry-ing out the optimization 

13 [xopt, fopt, exitflag, output, lambda] = fmincon(@(u}cost_fun(u, nO, p, lambdacost}, ustart 

14 

15 

[], [], [], [], uL, uU, @(u)nonlin_const3(u, uO, p, lambda cost , ng), options); 

16 end 

function (f, dfl = cost_fun(u, uold I p, lambdacost) 

2 

3 %this function calculates the 'l1alue of the cost function and its 

4 %dc1"ivatives for the optim·izcr 

5 

6 parameters i 

7 modifiers j 

8 inputs i 

9 inputs_old j 

10 opt_states i 
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12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 
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end 

output_model_equations j 

modeLoutputs j 

cost i 

%only run if analyti.cal der'ivafives a1'e asked for 

if nargout > 1 

end 

cost_opt_derivs j 

cost_output_derivs i 

output_input_IDodel_derivs i 

output_state_model_derivs; 

df = dfdw + dfdym * [dydum dydxm J ; 

function [g, h, dg, dhJ nonlin_const2(u, uold I P, lambdacost, ng) 

end 

parameters j 

modifiers j 

inputs j 

inputs_old j 

opt_states i 

output_modeLequations j 

modeLoutputSj 

g = [J; 

%evaluating inequality const1'aints 

if ng > 0 

constraints2 j 

end 

%evaluating equali.ty constraints 

eq_model j 

%computing constraint der'ivativ€s if requi1'cd 

if nargout > 2 

end 

dg = [J; 

if ng > 0 

end 

ineq_const_derivs2; 

output_state_model_derivs j 

output_input_model_derivs j 

coust_output_derivs2 i 

dg = dgdw + dgdym * [dydum dydxm J ; 

dg = dg'; 

eq_const_derivs j 

dh = dh'; 

function [g, h, dg, dh] nonlin_const3 (u, uold, p, larnbdacost, ng) 
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end 

parameters j 

modifiers j 

inputs j 

inputs_old i 

opt_states i 

output_model_equations j 

modeLoutputs; 

g = []; 

%evaluating inequal'ity const7'aints 

if ng > 0 

constraints3 j 

end 

%evaluat'ing equali.ty constraints 

eq_ffiodel i 

%computing constraint derivati.ves if requiTed 

if nargout > 2 

end 

dg = []; 

if ng > 0 

end 

ineq_const_derivs3 j 

output_statc_model_derivs i 

output_input_model_derivs i 

const_output_derivs3 j 

dg = dgdw + dgdym * [dydum dydxm]; 

dg = dg'; 

dh = dh'; 

McMaster University - Chemical Engineering 

function [P, u_tan_pos, u_tan_neg] = const_parameter_calc4{u_rnatrix, P, nu, j, il, g_vector, llxm) 

2 

3 %this functi.on computes the vector orthogonal to the hyperplane of previous 

4 %movement directi.ons as 'well as the 1'11,8 of the disjunctive constraints 

5 

6 %calculating the orthogonal vector using the adjugate of the mat7'ix of 

7 %previous movement directions 

8 vect_matrix = zeros(nu,llu)j 

9 for i = 1: (nu-1) 

10 vect_matrix(l:nu , i+l) u_matrix (1: nu I j+2-i )-u_matrix (1: nu I j+l-i ) j 

11 end 

12 for i = l:nu 

13 vect_matrix(i 11) = u_matdx(i ,j+1)*rand()j 

14 end 

15 determ = det (vect_ma trix ) j 

16 adj_vect = determ*inv( vect_matrix) j 

17 for i = l:nu 

18 p(end-nu-1+i) = adj_vect (1, i); 

19 end 

20 

21 %calculati.ng the rhs of the d-isju1I.ctive constraint 

22 B = zeros(nu,llu)j 
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23 for i = l:nu 

24 B( i , i) = g_vector (i); 

25 end 

26 p(end) = sqrt(adi_vect (1 ,:)*inv(B)* adj_vect (1,:) '); 

27 

28 %computing the tangent poi.nts 

29 u_tan_pos = zeros (nu+nxm.l) j 

30 li_tan_neg = zeros (nu+nxm,I) i 

31 u_tan_pos (l:nu) = u(l:nu) + inv(B)* adi_vect (1 ,:) '/sqrt(adi_vect (1 ,:)*inv(B)*adj_vect (1 ,:) '); 

32 u_tan_neg(l:nu) = u(l:nu) - inv(B)*adj_vect (1 ,:)' /sqrt(adi_vect (1 ,:)dnv(B)*adj_vect (1,:) '); 

33 u_tan_pos (nu+l:end) u(nu+l:end); 

34 u_tan_neg(nu+l:end) = u(nu+l:end); 

35 

36 end 

function BRnew = broydon(u, uold, y, yald I BRaId) 

2 

3 %computes new Broyden deri.vative estimates 

4 

5 BRnew BRoid + «(y - yold)-BRold*(u - uold))*(u - uold) ')/«u - uold)'*(u - uold)); 

6 

7 end 

function [lambdacost I C, K] modifier_calc_bar (CI, C2, nym, nu, lambdacostold I uO I u02 I'.' 

2 mods_var_llum I b I q) 

3 

4 %this function computes the new values Of the 1nodifiers 

5 

6 %computes matrices so alternate modifiers can be used 

7 Tukl = eye(nyrn*(nu+l),nym*(nu+l)); 

8 Tuk = eye(nyrn*(nu+l),nym*(nu+l)); 

9 for i = l:nym 

10 for j = l:nu 

11 Tukl(i ,nym+j+nu*(i-l))=uO(j); 

12 Tuk(i ,nyrn+j+nu*(i-l))=u02(j); 

13 end 

14 end 

15 

16 %putt1.ng together filter parameter matrix as well as old mod-ifie, vector 

17 K = zeros(nym*(nu+l),nyrn*(nu+l)); 

18 for i = l:nym*(nu+l) 

19 if i <= uym 

20 C(i)=Cl(i); 

21 K( i , i) = b; 

22 mod old (i )=Iambdacostold (i); 

23 else 

24 C( i )=C2( i-nym); 

25 K(i,i)=q; 

26 mod old (i )=Iambdacostold (i); 

27 end 

28 end 

29 

30 %de!'ining 'identity 1natrix 

31 I = eye(length(C)); 

32 

33 %calc1dating new modifi.er values 
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34 lambdacost = (2*I-Tuk1)*«I-K)*Tuk*modold' + K*C'); 

35 

36 %erasing update from any modifiers that arent being considered 

37 count 1; 

38 for i = 1:nym*(nu+1) 

39 if i = mods_var_num(count) 

40 count = count + 1 i 

41 if count> length{mods_var_llum) 

42 count = 1; 

43 end 

44 else 

45 lambdacost (i) O' 

46 end 

47 end 

48 

49 end 

function contour_plot_sim (p, nxp I ng I lambdacost I uold I u_matrix. g_backoff, zn) 

2 

3 %defines range to create the contour plot (in scaled values) 

4 range = (0.04 0.16 0.65 0.95]; 

5 

6 %spreads input grid evenly across range 

7 u(l) 

8 u(2) 

9 

range (1) 

range(3) 

(range(2)-range (1))/10; 

(range(4)-range(3))/10; 

10 %computes plant cost junction value JOT each input grid point (as well as 

11 %corresponding constraint values) 

12 for i =1:11 

13 u(2) = u(2) + (range(4)-range(3))/10; 

14 

15 for j=l:11 

16 u(l) = u(l) + (range(2)-range(1))/10; 

17 

x = O.5*ones(nxp,l)i 

x (1: length (zn) ,1) = zn; 

inputs j 

inputs_old j 

parameters j 

modifiers i 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

(xup, fval, exitflag] = fsolve(@(x)plant-modeLeqns(x, u, p), x); 

plant_states j 

output_plant_equations j 

plant_outputs j 

%collecting constrai.nt infonnation 

constraints2 i 

gans1 (i , j ) g (1); 

gans2 (i , j ) g(2) ; 

gans3 (i , j ) g (3); 

gans4 (i , j) g(4); 

gans5 (i , j ) g (5); 

gans6(i ,j) g (6); 

%tracking plant cost function 

cost i 

fans(i ,j)=-hf; 
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41 

42 

43 

44 

45 

46 

47 end 

48 

49 

50 

51 end 

52 

u(l) 

%tracking inputs 

ul(i ,j) (u(l)*lOO); 

u2 (i , j) = (u (2)); 

u(l) - lh(range(2)-range(1))/10; 

McMaster University - Chemical Engineering 

53 %creating contour plots for cost function and const1'aints 

54 Ie, fJ = contour(ul,u2,fans); 

55 set(f, 'LeveIStep' ,0.025) 

56 set (f , 'ShowText I I 'on' 1 I TextStep , I get (f 1 I LevelStep , ) * 2) 

57 colormap cool 

58 hold on 

59 

60 [0, f] = contour(ul, u2, gans!) i 

61 set (f, 'LeveIStep' ,500000) 

62 set (f I 'ShowText' I 'on' . 'TextStep' ,get (f I I LevelStep ')* 2) 

63 colormap cool 

64 hold on 

65 

66 Ie, fJ = contour(ul,u2,gans2); 

67 set (f , 'LevelStep , ,500000) 

68 set (f , 'ShowText I , 'on I , I TextStep , ,get (f , I LevelStep , ) * 2) 

69 color map cool 

70 hold on 

71 

72 Ie, fJ = contour(ul,u2,gans3); 

73 set (f, 'LeveIStep' ,500000) 

74 set (f I 'ShowText 1 I 'on' I 'TextStep I ,get (f , I LevelStep ')*2) 

75 colormap cool 

76 hold on 

77 

78 Ie, fJ = contour (ul, u2, gans4); 

79 set (f, 'LeveIStep' ,500000) 

80 set (f t 'ShowText ' , Ion I , I TextStep , ,get (f , 1 LevelStep , ) * 2) 

81 color map cool 

82 hold on 

83 

84 Ie, fJ = contour(ul,u2,gans5); 

85 set (f , 'LeveIStep' ,500000) 

86 set (f I 'ShowText I I 'on' I I TextStep I I get (f 1 I LevelStep ')*2) 

87 colormap cool 

88 hold on 

89 

90 Ie, fJ = contour(ul,u2,gans6); 

91 set (f , 'LeveIStep' ,500000) 

92 set (f I 1 ShowText' I '011',' TextStep I ,get (f I 'LevelStep ')*2) 

93 colormap cool 

94 hold 011 

95 

96 end 
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D.2 Offline Design of Dual Modifier Adaptation 

Only a couple of functions are shown here for brevity. They are intended to demonstrate 

the basic framework for the calculation. 

function combo_search () 

2 

3 %This function .. >tarts a dual modi.fi.er adaptation design run by designating 

4 %which modifiers should be updated (note the other nectors are t01' the 

5 %'i1nplcmentat-ion of the two-step approach). 

6 

7 param_var_num = [1 j 

8 yparam_var_llum = [] j 

9 mods_var_num = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ... 

10 28 29 30 31 32 33); 

11 [best bbest, bias_best I var_hest I final_backoffJ = problem_coordinator ... 

12 

13 

14 disp (best) 

15 disp (bbest) 

16 disp (bi as_best) 

17 disp (val'_best) 

18 disp( finaLbackoff) 

19 

20 end 

2 

3 

function [best_cost, bbest_real, best_bias, best_var, final_backoff 1 
(param_var_llum J yparam_var_num I mods_var_num) 

problem_coordinator ... 

4 %This function co ordinates the design procedure run. It starts wHh setting 

5 %up the different uncertain parameter scenarios that will be used in the 

G %design cost optimization. Then it runs the model generation function 

7 %which sets up all the cost and constra·i.nt functions and models and their 

8 %derivatives. Next it computes the plant optimum (using the benchmark 

9 %model) and then runs ideal modifier adaptation usi.ng the benchmark model. 

10 %Finally, 1.t carries out the design cost optimization. 

11 

12 %creating unce1·tain parameter scenarios (shown here for maximum 2 uncertain parameters) 

13 count = Ij 

14 params_to_vary [7) j 

15 pLvect = [a); 

16 p2_vect = [0); 

17 for i = 1:1ength(pLvect) 

18 for j = 1:1ength(p2_vect) 

19 p_vect (count.:) = [pLvect (i) 

20 count = count + 1; 

21 end 

22 end 

23 

24 %1'unning model generation functi.on 

25 [nu, llyp, nym, nxp, nxm, ng) = model_gen_final(param_var_num, yparam_var_num, mods_var_num); 

26 

27 %running the benchm.ark plant model optimization and ideal modifier 

28 %adaptati.on 
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29 [row,col] = size{p_vect); 

30 for i = l:row 

31 [u_plant_opt (: , i ), lagrange_plant (: , i )] = MainIvlodAdapt_new_plant (pararns_to_vary I p_vect (i ,;» i 

32 [u(:,i), lambdacost(:,i), zn(:,i), lagrange(:,i), BR(:,((l+nu*(i-l»:nu*i», C(:,i), K, p, ... 

33 pp(:, i), dydp(: ,((1+nu*(i -l»:nu*i», rhov, max_it, viol) = lvlainModAdapt-new_final. .. 

34 

35 nxp, nxm, ng) j 

36 end 

37 

38 %run.ni.ng design cost optimization to obta'in estimates of opti.mal dual. 

39 %constraint parameters (dual const7"aint parameters are LJl.Lscaled) 

40 bstart = [log(80) log(30»); 

41 [bbest, best 1 = optimizer_h (param_var_llum, yparam_var_llum, mods_var_llum, nym, nu J u, K, rhov I p, ... 

42 

43 

44 

lambdacost, ng I nxffi, bstart, BR, dydp J C, lagrange, ll_plant_opt, pp, nyp, nxp, row, ZU, ... 

max_it I viol) 

45 %runn'ing design cost calculat-ion function to generate bi.as and 'l1ariancc 

46 %cost and constraint backoff lC'llcl at optimal dual constrai.nt pa1'amctcrs 

47 [best_cost, best_bias, best_var, final_backoff] = cost_fun_b (bbest, param_var_num, ... 

48 

49 

50 

yparam_var_num, mods_var_num, nyrn, nu, u, K, rhov, p, lambdacost, ng, n.xrn, ... 

BR, dydp, C, lagrange, u_plant_opt, pp, nyp, nxp. row, zn. max_it, viol)i 

51 b best-real = exp( bbest); 

52 

53 end 
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Data for the Propane Furnace Case 

Study 
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Table E.1: Sale values for products 

Product $ per lb 

Hydrogen 0.24 

Methane 0.06 

Ethylene 0.25 

Ethane 0.08 

Propylene 0.20 

Propane 0.08 

Butadiene 0.20 

Butylene 0.14 

Butane 0.08 

Gasoline 0.14 

Table E.2: Process costs 

Process Input Cost ($) 

Steam 0.03 per lb 

Energy 3.00 per MBTU 

Feed 0.08 per lb 
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Component 

Hydrogen 

Methane 

Ethylene 

Ethane 

Propylene 

Propane 

Butadiene 

Butylene 

Butane 

Gasoline 

Component 

Hydrogen 

Methane 

Ethylene 

Ethane 

Propylene 

Propane 

Butadiene 

Butylene 

Butane 

Gasoline 

Table E.3: Empirical model parameters (simulated and benchmark plant 

models) 

(!o (!1 (!2 (!3 (!4 

0.00494724 -0.03664829 0.04069737 0.01985993 -0.00096988 

0.10800515 -0.05257238 0.078125 -0.11417276 0.32732886 

0.49278340 1.66945817 -1.875 -1.96640751 1.57652801 

0.007192032 -0.29770971 0.31808035 0.29177888 -0.20391955 

-0.23375930 -4.10452339 4.55357143 3.33199429 -2.22807667 

0.478230614 2.60884693 -2.89871881 -1.0000 -1.2868E-11 

0.043096185 0.52087513 -0.60267857 -0.42756684 0.31626235 

-0.02657149 -0.31383828 0.3515625 0.26808088 -0.17433718 

-0.00040414 0.00215427 -0.00339508 -1.5808E-5 0.00025839 

0.053389638 0.36941098 -0.36830357 -0.40355106 0.38692570 

Table E.4: Empirical model parameters (process model) 

(!o (!1 (!2 Q3 (!4 

0.00494724 -0.03664829 0.04069737 0.01985993 -0.00096988 

0.10800515 -0.05257238 0.078125 -0.16417276 0.37732886 

0.49278340 1.66945817 -1.875 -1.46640751 1.07652801 

0.007192032 -0.29770971 0.31808035 0.34177888 -0.25391955 

-0.23375930 -4.10452339 4.55357143 2.83199429 -1.72807667 

0.478230614 2.60884693 -2.89871881 -1.0000 -1.2868E-11 

0.043096185 0.52087513 -0.60267857 -0.42756684 0.31626235 

-0.02657149 -0.31383828 0.3515625 0.26808088 -0.17433718 

-0.00040414 0.00215427 -0.00339508 -1.5808E-5 0.00025839 

0.053389638 0.36941098 -0.36830357 -0.40355106 0.38692570 

(!5 

-0.00267788 

-0.04603417 

0.06001020 

0.00132619 

0.01178271 

-7.4232E-13 

0.03427697 

-0.00168324 

0.00168324 

-0.05868400 

Q5 

-0.00267788 

-0.04603417 

0.06001020 

0.00132619 

0.01178271 

-7.4232E-13 

0.03427697 

-0.00168324 

0.00168324 

-0.05868400 

Note that the parameters that were altered between the simulated plant and process models are indicated 

in boH 
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