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SCOPE AND CONTENTS:

An approximate non-linear self-consistent calculation
of the charge density distribution about a point charge of
2=3, appropriate to lithium, imbedded in an electron gas of
mean density equal to the free electron gas density of metal-
lic lithium has been carried out. The ma{br difference
between this and prévious work on lithikm now in the literature
is the manner'in which the two core electrons have been treated.
The previous work simply considexed the screened potential of
an Lit ion and solved for the "valence" charge density in the
éresence of that potential. The present procedure has included
these bound electrons in obtaining self-consistency; these
states therefore have the wave functions appropriate to the
metal instead of theifree atom.

We have also gone beyond the previous work in that’
approximate corrections for correlation as well as exchange
effects among the electrons have been included.

Because the neighbouring ions present in the solid

affect the electron charge distribution, these results repre-
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sent an approxiﬁatioh to the true density distribution of~the
metal. However, to a large extent, ghe ions are well separa-
£ed, so this is expected to be a reasonable approximation,

in particular in regions very near the ion. Because of this,
the results are used to calculate the Knight shift, and good

agreement with experiment is obtained.
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CHAPTER I

INTRODUCTION

l.1 SCOPE OF THESIS

The development of the density functional formalism
by Hohenberg and Kohn (1964) and Kohn and Sham (1965) has
provided a new approach to studying the ground state proper-
ties, such as electronic charge distributions, and tptal
energies, of metals as well as free atoms and even nuclei.
From a variational approach equations have been developed
whicﬁ would ideall§ produce the exact ground state density
distribution and total ene;gy of the system in the presence
of any external potential. 1In fact, the solution is not
exact only because the exchange-correlation contribution to
the energy is not treated exactly. In this formalism, as
the name suggests, thé local dehsity n(E) plays a cen;ral
Jole, and the terms contributing to the energy are shown to
be functionals of n.

Using a method based on this work, we have calculated
the charge displaced by a lithium nucleus when imbedded in an

AN

electron gas of mean’ density which is the same as that of
lithium metal. The resulting charge distribution should be
a good approximation to the actual distribution in the metal,

especially useful for considering non-structural properties



of lithium. 1In order to obtain a reasonable total electron
density distribution in the metal, one couldﬁsimply imagine
the calculated distribution to be located around each nucleus
in the solid, and sum over these nucléi, in the spirit of ,

the neutral atom model (Ziman 1964,1967) . «

nT(f) x T n(f—ga)
a

where n(f) is the electron distribution presented here and
the sumﬂis over all the ionic positions R, - Although this
of course will not give the exact n (f) because of the per-
turbing effeéts neighbouring ions have on each other, one
would expect it to be quite good, especially in regions close
to the nuclei, as the relative effect of the neighbouring
potentials becomes very small in those regions. In particu-
lar, the density right at any nucleus should be very well
represented. l
In the first section of Chapter II, an outline of the
density functional formalism,‘along with the main results of
it, are presented in a form useful to this thesis. The
significance of the Hartree-Fock type pd%ameters entering
this theory, and the relation of‘this to the present work, are
. also briefly discussed. In section 2.2, the form taken for
the exchange and correlation poﬁentials used here is described.
Following this chapter the procedure used in the
approximate non-linear self-consistent calculation is described.

Following this, some further problems which should be



approachable in this general way are sﬁggested.

The results of the work on lithium are ;resented and
discussed in Chapter 1IV. First,the self-consistent potential
and the electron density n(r) are exhibited; the latter is
compared both with the free atom electron density, and also
with the work of L. Dagens (1972) who performed a similar type
of calculation on lithium. The results obtained by us for ‘
the valence density are qualitatively similar to those ob-
tained by Dagens, but guantitatively different. The ls2
bound state electron density for the metal does not differ
much from that for the free atom, justifying the usual
assumption that for a metal, the core orbitals can be taken
to be just those of the free atom.

In section 4.2, the'atomic structure factors for this
work, and for both the free atom and for Dagens' results are
exhibited. At the present time, we are not aware of any
experimental measure of this_quantfty, but such a measurement
would provide a useful test of the distributions n(g) as cal-
culated by Dagens, and by the preseént method.

In the last part of this chapter, the Knight shift is
discussed, and through it results are compared with experimen-
tal values. Although it is not clear that the usual ex-
pression in the Knight shift\forAula is exactly applicable
when wave functions whicﬁ are produced by the density functio-

1

! . . .
nal formalism are used, still,good agreement with experiment
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is obtained. This result seems to shed some light on the
suggestion (Harrison 1970 and Hedin and Lundgvist 1971) that
the one electron parameters for states near the Fermi sur-
face are significant. In any case, the agreement with experi-
ment indicates the self consistent potential, and hence the
electron distribution obtained here are accurate.

As mentioned earlier, similar work on lithium has been
performed by Dagens (1972). He imbedded a fully screened
ionic potential in an electron gas, and then solved self-
consistently for the "valence” eleétron distribution displaced
by that potential.' The screening‘density was then taken into
account by first order perturbation theory. This procedure
does not allow for changes in the bound state electron density
distribution, and hence restricts to some degree the allowed
form of the potential. Because the actual 152 density turns
out to be not very different in the metal, this is in practice
probably not a serious restriction; on the other hand, it
is probably better to show this is the case than to assume it.
Also, as he points out, the valence density whieh he calculates
is dependent on the way in which the potential is screened
in the first step of his calculation.

There is another potential difficulty with his proce-
dure which is avoided here, and that refers to the fact that
the déngity functional fo;malism involves the complete electron

density at any point. It is then difficult to assess the sig-

nificance of attempts to separate out what part of the density



is due to the bound electrons and what part is due to the
"valence" electrons. By inclusion of all the electrons in
the density, this difficulty has been avoided in the present
work; we expect therefore this work to be of a somewhat
more Eﬁndamental nature than that done previously.

An improved form of.the exchange and correlation poten-

tials has also been used in this work.

Throughout this thesis the atomic system of units with

¥=e = m =1 is employed.



CHAPTER 1I

THE ELECTRON GAS IN THE PRESENCE OF AN EXTERNAL POTENTIAL

2.1 THE DENSITY FUNCTIONAL FORMALISM

A new approach to dealinrg with the ground state of an
interacting electron gas has been provided by Hohenberg and
Kohn (1964) and Kohn and Sham (l1965), with their development
of the density functional formalism. The local electron
density n(E) plays a central role in this theory, and equations
are developed which lead in principle to the exact total ener-
gy and density distribution n(E) for the ground state of the
system. -

In the first paper, it is proven that there is a uni-
versal functional of the density F[n(f)] which, except through
the displaced density n(r), 1is independent of any/sexternal
applied field v(r), and also has the property tHat the

following expression for the total enerxgy /

ks

EV[n] = J v{r)n(x)dr + Fln(r)] ! (2.1)

/
has as its minimum value the correct ground state energy

associated with v{r), and this minimum occurs when n(r) is
the correct grdund state density distribution.

There are basically two steps in the proof of this;,

the first showing that the external potential v(r) is, within

' 6
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a constant, a unique functional of n(r). Since v(r) deter-

mines the Hamiltonian H, which in turn determines the full
many particle ground state, this establishes that all ground
state properties are a hnique fuctional of n(r).

In the second step it is shown that EV[n] assumes
its minimum value relative to all density functions n'(rx)
associated with some other external pétential v’(E), under
the restriction that the total number of particles remains
constant, so that Ev[n(g)] attains its minimum value for
the correct ground state density distribution n(x).

-
Having established the minimal p?ﬁﬁérty of (2.1), the

next step is rewriting F{n] as a sum of terms. Because of the

long range of the Coulomb interaction, the classical Coulomb

energy of the electrons can be separated out:

1 nlrin(c')

F[n] -= G[n] + 5 ——]'—I-_TE—,—]-—— dEdE' .

(2.2)

-

Similarly, the kinetic energy of a system of non-interacting

electrons of density n(r) can be specified:

G[n}] = Ts(n(f))df + Exc[n] (2.3)

Exc[n] is the exchange and correlation energies of a system

of interacting electrons with density n(r). It will be
discussed further in the next section, but for the present

we use the result that for a slowly varying density n(r), it

can he written as

RS

N e R >
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Excln] & { n(g)exc(n(g))dg _— (2.4)

" where sxc(n(g)) is the exchange and correlation enexgy per
electron of a uniform electron gas of density n.

So far, as was anticipated in Chapter I, the only
approximation used consists of assuming i2.4) represents

.

Exc[n] adequately.

p
The total energy can now be {approximately) written
' 1 n{r)n(r')
E[n] = v(r)n(r)di: + 3 —r;_—_—r—,i—— drdr’
| ~ - T " (2.5)

3

+ Ts(n(f))df + [ n(f)exc(n(g))dg .

-

From the stationary property of E[n], dE = Q.- Applying

this to (2.5) we obtain N
. - \
1 n(r)én(x") L1 (6n{r))n(c')
V(E)Gn(f)df + 5 rt_{,l drdr' + 3 Tz ] drdr

(2.6)

GTS(n) ,
+ EETET_ én{r)dr + “xc(n(f))dn(f)df = 0

Hence
§T_(n(x))
6n(£) (¢(£) + _m;;_— + ch(n(g)))dz =0 (2.7)
where nir')
et = vitn) + | ST A (2.8)
And

«6(n(§)exc(n(g)))
uxc(n(f)) = 6n(§) (2.9)




uxc(n(r)) is thus the exchange and correlation contribution

to the chemical potential of a uniform electron gas of density

[y

n, i

Because the total number of particles must be conserved

in the variation én(r), there is the following constraint on

this variation

) J Gn(f)df =0 . (2.10)

Equations (2.7) and (2.10) are just those one obtains

for a sytem of non-interacting electrons moving in the poten-
tial ¢{(xr) + uxc(nif)). Therefore, for a given potential ¢(r),
and chemical potential u, one obtains the n(g) which satis-
fies these equations through
N 2
v nlr) = I lwi(r)l , (2.11)
- i=1 -

where the wi(r) are obtained from the local, one-particle

Schrodinger equation

(- 3 9%+ 400 +u e 1v () = ey, (0) . (2.12)

From the expression for the énergy, (2.5), one can then

show

n(r)n{x")

N .
1 ‘ . : A
" 'il T JJ TR drdr' + | n(x) (e, (n(x))~-p _(ntr)))dx

It should be emphasized at this point that the con-
stants €, which enter into (2.12) do not have any direct
physical meaning even within the approximation made for vxc(g).

‘g
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This is perhaps best illustrated by comparison with the
Hartree—Focfjappgqach to this type of calculation. In fact,
the derivation of these equations is similar to the procedure
outlined above, with the results looking formally the same,

and so we give a brief description of the Hartree-Fock theory

to illustrate this €®imilarity. *

In that theory, one starts with the following many
particle Hamiltonian
N .
- He= I (29 °+viz)) +321 = (2.14)
. i ~1 2 . ox,.
i=1 ij 715
For example, for an atom V(Ei) = - %— .
i
One approximates the many electron wavelfunctions by

an antisymmetrizéd product of .one particle wave functions

¥ = Awl(E )...wN(r (2.15)

~N)
To find the best one-particle wave functions wi(r),

the expectation value of <Y|H|Y> is minimized, subject to the

N2 conditions

*
by (g)wj(g)dr =85 - (2.16)

This introduces N2 Lagrange multipliers Aij' Then minimizing

'

<¥|H|¥> subject to (2.16) becomes

S<Y|H|¥> + T A,

- 0%
IRSE 5<¢i|¢j> 0%, (2.17)

This leads to the Hartree-Fock equation
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1 2 [ by enl® ™
Vvt e v )
by e
- ;‘: q’j({) ‘Ir_rtl df = €i‘1’i(£) (2-18)
and the total density is given by ,
N 2
nl{r) = lwi(r)] . (2.19)
- i=1 =

These last two equations look very similar to (2.12)
and (2.11), with ¢(£) in {(2.12) corresponding to the second
and third terms in (2.18), and the exchange part of uxc(n(f))
corresponding to the last term, so it is seen that the form
of the two theories is the same. ‘

In (2.18), the parameters Ei are intrinsically related
to the Lagrange multipliers Aij' and hence appear to have no
direct p;ysical meaning, as is the case for the density
fuqctional formalism. However, by considering the expectation
value of the Hamiltonian in the N particle state, and then
in a state with a particle removed from state j, Koopmans (1933)
has shown that within the Hartree-~Fock model, and assuming
the removal of one electron does not change the wave functions
?f,all the other electrons, as one would expect to be approxi-
mately the case for a crystal, then the parameter Ej can be
regarded as the negative of the ionization'energy for the
corresponding state in the crystal. Thus we are ’able to

atEach physical meaning to parémeters which originally entered

‘theory simply as Lagrange multipliers.
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In the density functional formalism however, there is
nothing corresponding to Koopmans' theorem, so the signi-
ficance of the one-electron pafameters € v and hence the
calchilated wave functions wi(f) arising from (2.12) is not
clear. Of course, the total energy and total density n(E)
are still well defined in the theory, in spiéé of the difficulty

in interpreting these one-electron states.

2.2 THE EXCHANGE AND CORRELATION POTENTIALS

It ié*because the exchange and correlation energies of
an electron gas are not yet known exactly that the density
functional formalism produces only approximate results. In
this section the approximaéion used in this work is described.

As mentioned in the.previous section, we assume this

contribution to the energy can be written
E ,.[n] = | nir)e  (n(c))dr (2.2{1)

where exc(n) is the exchange and correlation energy of a
uniform electron gas of density n, but Exc(n(f)) is evaluated
for the local density n at r. We expect that (2.20) should
represent a good approximation to Exc[n], if n(r) is sléwly
varying. Certainly it is exact in the limit that n(r) is
uniform.

-

The exchange and correlation potential is then given
by

: Ve lr) = u (x) (2.21)

X )
= exc(n(f)) + n(f) m sxc(n(g)) (2.22)



vxc(g) is thus approximated by the/gzghénge and correlation
part u _ of the chemical potential (evaluated for the local
density n(r)). With this approximation, work done on the
uniform electron gas can be directly applied here.

We first consider the exchange term. This can be
calculated from considefing only the first order effects
from the electron-electron interactions, which is equivalent
to a Hartree-Fock approximation (Pines and Noziéres 1966).
The expressidn for the total energy of an electron gas then
contains the total kinetic energy of the system, a HaEtree
energy, which is cancelled by the background of positive
charges of the host lattice, and a third term which is the
exchange. This is the term which appears because the ground
state wave function is taken to be an antisymmetric p;gduct

of one electron wave fupgtion.
L3

This gives an average exchange energy per particle of

Ve
. 2m
= - I 2.23
T L TeeT 2-23)
P<Pp - %
t
p <PF
’ 1/3
_ . (3 9w 1 ‘
i I (2.24)

Here we have introduced the-electron gas radius parameter

defined by

== (3" n) : (2.25)

[0}



Equation}(2.24) is then équivalgnt to

’ 3 2 1/3 ‘
e, = - (IF)(BH n) . (2.26)
Then from (2.22) we have
vx(g) & ux(g)
/3
= -3 Grtaan (2.27)

which is the result often referred to as the Kohn-Sham
exchange potential. It should be noted here that this exchange
potential is not the average felt by all electrons, but rather
the exchange potential felt by electrons right at the Fermi
level. This is a reasonable result since it is expected that
most density adjustments are accomplished by the redistri-
bution of electrons near this level.

The corrélation energy has normally been defined
as the difference between the energy as calculated in a
Hartree-Fock approximation and the actual energy of the system.
It arises because in the Hartree-Fock theory, the electrons

are assumed t® move in the average field of all the other

electrons; except for this average field, the electrons are
thus pictured as moving independently of each other. 1In ac-
tual fact, as one would'expect, this is not the case; the

electrons tend to stay away from each other because of the
Coulomb repulsion. This would suggest the true energy is
lower than what the Hartree~Fock theory gives, so the corre-

lation energy is negative.
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To our knowledge, the best available calculation for
this has been performed by Singwi et al. (1970). With his
results for this energy, Hedin and Lundqvist (1971) have
developed an expression for the exchange and correlaéion.po—

tential. They write
b N
uxc(rs) = B(rs)ux(rs) e, (2.28)

4

A

where M is again the Kohn-Sham exchange potential, and B8
is known as the correlation enhancement factor. The form

of this is

% |

B(rs) = 1 + Bx2n(l + =) (2.28)
Ls
where x = 3
' Then
- 1 .
uxc(rs) = ux(rs) + Bx&n(l + x)ux(rs) K\Q
(2230)

(il

p (r ) + u_(r))

The constants A ahd B are then chosen to fit uc(rs)
to the results of Singwi et al, and an essentially perfect
fit is obtained for A = 21, B = .3867 (a.u.). This gives

an exchange-correlation potential of

_ - 21 21
uxc(rs) = .02909Irs + .7734 n(l + rs)J- . (2.31)

In ordexr to make the pbtential vanish as r-+eo, vxc(rs)

is redefined as

Voo lrg) = u . (n +an(x)) - UKF(nO) (2,32)

This is the form used in this calculation.‘



It should be mentioned) that this approximation for
gvxc(r) is expected to be valid in regions where the density is
y slowly varying. In the present case, where we are dealing
with two bound electrons plus an electron gas surrounding a
lithium nucleus, there will clé@yly be regions; nea¥y the

nucleus, where this is not valid% However, the tot&l poten-

tial, given by

3
(I‘)="-l:+

Veff dr' + vxc(r) (2.33)

is dominated by the Coulomb part in this region, so this
'should not lead to any serious errxor. Note that n(r') has
been replaced in (2.8) by A4n{r') in (2.33), again in order to

make the potential vanish as r-+«,

v



CHAPTER III

APPROXIMATE NON-LINEAR SEL?—CONSISTENT;PROCEDURE -

3.1 GENERAL THEORY

In this chapter, the procedure used to calculate the
electron density in a metal is discussed, making particular
reference to lithium, and in the ?ext chapter the results
obtained for lithium are presented.

The calculation is performed in the philosophy that

/
each ion in the metal 5; sufficiently isolated from all the
others, such that the only large effect of the others is the
contribution of v valence electrons to the electron gas, pro-

1

\\\gucéng a mean density for\ the gas of n, = gﬁ where N 1is
the number of atoms in the crystal of volume V. Thus we cohsider
one nuclels in an infinite electron gas of mean density ng»
and calculate the electron density n(E), including any bound
state electrons, in the presence of that nucleus. This ap-
proximation should be especially good very close to any
nuclear position in the solid, and probably remains quite
good a fair distance from the nucleus, as the ions in the
metal are in fact weli separated.

It should then be possible to construct a good approxi-

mation to the total electron density in the metal nT(r) by

17

\
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simply summing

nplr) = I nlz-R,) (3.1)

where the R_ are the ionic positions in the metal.

In order to approach the problem in the most general
way, and to calculate the electron density as accurately as
possible we shall not make the assumption that the bound state
wave functions for the solid are the same for the free atom.
It is not unreasonable to take this care with the core elec-
trons when we have made the approximation of treating
the rest of the metal as a uniform electron gas, becguse, as
has been stated, this approximation is expected,to be parti-
cularly good close to the nuclei, which is of course where
the electrons in the bound state are located.

In addition to enabling a test of the usual assumption
that the core orbitals do not change from those of the free
atom, this step avoids the risk of imposing an arbitrary
constraint on the form of the potential felt by the electron
gas; if the core orbitals are different, then the Coulomb
repulsion between the core and "valence" electrons, and hence
the potential felt by the latter, would not be properly
represented by taking the f;ee atom core state.

Also, from the point of view of the density functional
formalism this is a more satisfying approach. As has been
emphasized, it is only the total density n(r) which is sig-

nificant in this formalism; the individual wave functions

P 4
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corresponding to any Hartree-Fock like parameter € do‘not
necessarily have any direct physical meaning. Hence it is
difficult to assess the significance of attempts to separate
out what part of the density at any point is due to the bound
electrons, and what part is due to the electron gas. By
tréating all the electrons contributing to n(rx) in the same
way, this potential problem is avoided.

The alternative approach has been used in an earlier
work on lithium by Dagens (1972). He imbedded a fully screened
ionic potential in an electron q;s of the same mean density,
and then solved for the "valence" density about it. Thus
the present work has gone somewhat beyond that, and is some-
what more fundamental. We have also gone beyond that work
in that in addition to exchange, an approximate correlation
potential has been included whereas the previous calculation
included only the Kohn-Sham exchange potential. Also, the
present scheme is an improvement because it avoids the neces-
sity of having to correct for an arbitrary, initial screening-
density by perturbation theory.

In view of the above considerations, a comparison of
the results of the two methods will be interesting; this com-
parison is made in the following chapter. .

The results of Chapter II will now be put into the form
appropriate to the problem of a nucleus of charge Z imbedded

in an electron gas of mean density ng- In this case the

external potential felt by the electron gas is
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vir) = - % ) (3.2)

~

Clearly, the problem is now’spherically symmetric. The
effective potential becomes
r =]

4wr'2An(r')dr' + 4nr'An(r‘)dr'+vxc(r).

i

Z
Veff(r) =-7t

© * (3.3)

The one-particle Schrddinger equation then reduces to

2
d_ 4

2(2+1)
- v —s
dr2 eff

r2 - ek)rle(r) =0 (3.4)

(-

N

(r) +

where Rzk(r) is the radial wave function with angular momentum

2 and k labelling the electronic states. For the non-

localized states €k = % k2.

As discussed above, in constructing the electron

density n(r) .the bound states must be included. The displaced

electron density is thus, from .(2.11) -
1 F o2 *max 2 2
Anir) = = k“dk T A2+0) [|R,, (x)|“-]3, (kx) |“])
2 & 2k 3
m 2=0
o (3.5)

v i),
i

Here jl is a spherical Bessel function of the first kind, and
w?}r) is a bound state wave function. Because of the spheri-
cal éymmetry of the problem, the angular parts of the wave
fuﬁctions, which are spherical harmonics, summed over the
magnetic quantum number m give a constant, so only the

radial parts need be considefed. In the case of lithium, the

bound state wave function is of s character, so is equal to
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the radial function Ry (r).

For large r, where rveff(r) + 0 which is the condition
of complete screening of the nucleus by the displaced charge
density, the asymptotic form for the positive eneégy states
must have the form well known from the partial wave solution

of the scattering problem
Rzk(r) v cosn,j, (kr) - sinn n, (kr) (3.6)

where n, is a spherical Bessel function of the second kind,
and the phase shifts ny depend on k. For the bound state,
the asymptotic solution must be of the form

kr 13.7)

rR (r) ~ e
/
with !
k = ¥/-2¢ (3.8)
where €y plays the role of the bound state energy.

The sum over 2 in (3.5) should theoretically go to

lmax + o, However for large £, the effective potential in
(3.4) will be dominated by the centrifugal term £L&§ll '
r

so the wave function le(r) will not differ substantially
from j2(¥r). For lithium the phase shift g is very small
{of the order 10—4) so. it seems reasonable to expect that
taking only six terms in the sum, (setting lmax = 5) will
result in no appreciable error.

For Veff(r) to be a physically realistic potential,
it must displace a number of electrons equal to the charge

Z of the nucleus. To ensure this condition, we can use the

well known Friedel Sum Rule, which states that the following
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sum 0
5 max
F = 5 E 2£+l)nl(kF) (3.9)
2=0
{
which is equal to the diSp%hced charge, must equal the
H
charge of the nucleus 2. Xn (3.9), nl(kF) are the phase

shifts evaluated for momentum equal to the Fermi momentum.

3.2 NUMERICAL PROCEDURE

To begin the calculation, me anaiytic form for a
B8
trial potential, such as thr(r)= 78— is assumed. A value

for B is chosen and then a is determined in such a way that

Vtr(r) satisfies the Friedel sum rule. Then, through (3.4)

and (3.5), using Vtr(r) in (3.4) in place of Veff(r)' the
charge density distribution 8n{x) displaced by Vtr(r) is found.
From this An{(r), a new potential Veff(r) is generated through
(3.3). In general, this new potential is quite different

from Vtr(r)' and will not have the correct Friedel sum.
Therefore, the above procedure is repeated, but with a dif-

\
ferent value of B in Vtr(r), which hopefully results in coming

closer to achieving self consistency between V;r(r) and

-Veff(r), while at the same time producing a better Friedel

sum for Veff(r). The procedure is {epeated with different

values of the parameters a and 8, and also with vérious/

forms for-ﬂtr(r), until a Vtr(r) is found which generates a

Veff(r) which is self-congistent with Vtr(r), and such that
i

the Friedel sum rule is satisfied for both the potentials.:

When this has been achieved the procedure is terminated.
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In the work done on lithium the Schrddinger equation
~ 1s solved in steps of .05 out from‘thg origin to a distance
r = 20. Because of the singularity in the potential &t r = 0,

near the origin a power series solution is employed. A nu-

It

merical solution is used out to r 15, where for the positive
energy states, this solution is matched to the partial wave
asymptotie form (equation (3.6)), which is used out to r = 20.
This form is valid in regions where rveff(r) = 0; this is
initially assumed to be the éase, and this assumption is justi-
fied by the result that for r > 15, rV_c.(r) is of the order
of 10-4. In matching the solution ng(r) to the form (3.6),
the phase shifts nz(kF) for use in calculating the Friedel
sum are obtained.

To calculate the contribution to the density arising
from all the positive energy states, radial wave functions
for 0 <k < kF are required. For the integration over k, a
gauss integration formula of 48th order is used, and as
previously mentioned, the sums over % terminated aftér 6
terms.

Bound sfhtes of the potential show up automatically in -

the calculation of the phase shifts for small values of k.

From Levinscon's theorem we have

( lim nz(k) = nB(L)v - (3.10)
k+0

where nB(l) is the number of bound states of éngular momen-
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\> N
tum number’ { possessed by the potential. The bound state
wave function is found by integration of the Schrodinger
equation,and determining eb<0 in suéh a way that the solu-
tion for large r is of the form given by (3.7) and (3.8).

IQ actual fact, no satisfactory analytic trial solution

(x)

which generated a second self-consistent potential Veff

was found, although one may indeed exist. Instead a trial
potential which consisted of a table of ngmbérs was used to
generate a new Veff(r), which was then used;to generate a
third potential V;ff(r) in a second iteration. The original

potential Vtr(r) was varied until a pair of potentials V (x)

eff

1
and Veff(r) was found that were self-consistent and had

correct Friedel sums.
In the final solution, the potential Vtr(r) had little

t

in common with Veff(r) and Veff(r). The first potential was
not close to bejng self-consistent with the generated poten-
tials, nor did it have a correct Friedel sum. Its sole virtue

(x).

was that it generated a correc; Veff
It appears likely that the forms tried did not work

on the first iteration because they did not contain any oscil-

lations for large r, which are directly related to the Friedel

oscillations in the density, and are a major feature of

Veff(r) and V;ff(r). For the ca;e of a proton imbedded in

the electron gases appropriate to Mg and Al, Popovic and Stott

(1975) were able to achieve approximate self-consistency

for the screening cloud with a trial potential of the form
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B
-e % , but it appears that for lithium, whigch is a stronger

potential, the asymptotic oscillations must be included.

There is no obvious reasbn why the scheme outlined
above could not be applied to other metals, or to considering
various impurities in metals. As mentioned, Popovic and
Stott (1975) have used this approach for the hydrogen impurity
problem. They used the calculated screening cloud around the
proton to calculate the activation energies for diffusion of
hfdrogen in Al and Mg, and fouﬁ% good agreement with experi-
mental results, which were available only for Al. At the
present time, we are preparing to apply the approach to
helium impurities in metals, and Qo not expect results of less
accuracy than those obtained for hydrogen.

There are two considé;:%ions that should be kept in
mind in dealing with metals or impurities of higher charge Z.
The first problem that might arise is basically one of dif-
ficulty. Achieving self-consistency was substantially more
difficult in the case of lithium than in that of hydrogen, and
in continuing to higher Z, one should probably expect, further
difficulties.

The other potential difficulty refers to the approxf:
mate form taken for the exchange and correlation potential.

It has been argued that the form used here should be good for
regions of slowly varying density, and tﬁat for regions where

L3 ¢

this is not the case, in particular near the origin, the

inaccuracy of this assumption should not lead to serious error
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because the potential is dominated by the Coulomb part.

However, it is possible that for higher Z there may be regions
where rapidly varying density might lead to serious errors {k\
in Veff(r), and hence the density distribution.

In performing the calculation for different nuclei in
different electron gas densities, one would also expect tg
have to change certain parameters in the numerical scheme,
such as the size of the integration step in solving the
Schrddinger equation, at what distance from the origin the
asymptotic solution should be valid, or even how faf out from
the origin to continue the calculation. These modifications,
though probably important, should pose no problem.

The scheme outlined above assumes that each orbital
is occupied by two electrons, and treats them symmetrically.
For this reason, the method would require some modification
before it could be applied to a case where each orbital is
not occupied symmetrically by spin up and spin down electrons.
This change should be possible following the work of von
Barth and Hedin (1972). In place of an exchange and correla-
tion potential vxc(r), they have supplied two potentials,
v;c(r) and v;C(r), which are the exchange-correlation potentials
félt by spin up and spin down electrons, and these are given
as functions of n+(r), n+(r), and n(r), the spin up, spin
down, and total electron density distributions. Such a poten-

tial should allow the study of problems such as the early
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N

peaking of the soft X-ray emission spectrum of metallic
lithium. In this case, there is 5n1y one electros in the
bound state orbital, the valence density distribution of\‘
n+(r) will not be the same as that of n+(r), and the poten-
tials felt by spin up and spin down electrons will be different.

This should be a very good problem to apply this scheme to.

-f‘
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CHAPTER 1V

RESULTS OF CALCULATIONS ON LITHIUM

4.1 ELECTRON DENSITY DISTRIBUTION

In this section the displaced electron density
distribution and self-consistent potential in lithium are
presented. In the next'section the atomic structure faétors
for the metal are exhibited with a brief discussion of their
role in X-ray diffraction. Finally the derivation of the
Knight shift formula is outlined, and the results obtained
here for this sbift presented.

» The main result of the calculation, 4nr2An(r); is
bresented in figure 1, where we also present the work of Dagens
for comparison. Because of the question of the significance
of separating out the con@uction electrons from the)total
'electron density distribution, we choose to present first the
total nlr). Therefore, to compare with the work of Dagens, his’
results have been combined with a Hartree-Fock calculation
of the 1s2 electron density in the free atom (Herman and
Skillman 1963), also illustrated in figure 1. Of course,
where the bound state density is negligible, which is seen
to be the case for r > 1.5, a direct comparison of the

valence density distributions is valid.

28



Fig. 1 Displaced electron density 4nr2An(r). The
solid curve is the result of the present calculation. The
dotted curve is the free atonxlszelectron density, to
which has been added the "valence" density of Dagens,

to produce the dashed curve.
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Before discussing this density, the self-consistent
potential is givgn, illustrated in figure 2. The Fermi level
phase shifts nz(kF), along with a normalized Friedel sum,
F/3, are presented in table 1. This normalized sum, which
ideally should equal 1.0, is seen to be correct to within
.07%. In figure 2, the oscillations in the potential for

large r are readily apparent; they are of course related to

the Friedel oscillaticens in the density by

*

4mnlr) = - V2Vc(5) (4.1)

where Vc(f) is the Coulomb contribution to the total potential
Veff(r). It can also be seen here that for r > 15, where the
agsymptotic form for the wave functions has been used, the
potential is very small, so the use of this solution is
justified.

The lithjum lattice is bcc with‘iittice constant 6.60,
s0 the nearest neighbour distance is 5.71. From the first two
figures we see that most of the charge density about any
nucleus is well separated from ‘any other nuclei, so our approxi-
mation of replacing the rest of the metal by a free electron
gas should be reasonable. The mean electron,gas density is
n, = .00070.

The calculation has produced a bound state density
veéy close to that in the free ion; however the Hartree-Fock
like parameter €y, is given by this calculation as €y = -1.66.

For a free atom, the energy of the ls state is -2.20 (Herman

and Skillman 1963) and for an LiT ion it is -2.78 (Kuhn 1962).



Fig. 2 The effective potential, -rV{(r), about a lithium

nucleus iqﬂ;he electron gas.
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Table 1

The Fermi level phase shifts and normalized
Friedel sum

"o 4! Na ns3 N4 Ns F/3

3.237 .4753 .0096 -.00025 .00022 -.00018 0.9993
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One would expect that for the metal, the energy of this state
would be very close to these values, not substantially less.
Therefore, as might be expected following the discussion of
Section 2.1, the density functional formalism has given a value
for the parameter € which does not appear to be a physical-
ly significant energy.

In discussing the density, the region of r 512.0 is
considered first. As can be seen from comparing the curve
in figure 1 corresponding to the 152 electron density in the
free atom, and the curve consisting of this density plus the
valence density due to Dagens, the conduction electrons make
very little contribution to the total density 4An({r) in this
region; except for the small region 0.3 < r < 0.6, the density
essentially consists entirely of the bound state density. Thus
if we make a very small correction for the valence density
in that region, we can compare our calculated curve directly
with that of the bound state.

What is apparent from figure 1 is that the 152 density
in the metal is almost exactly the same as in the free atom.
It is often assumed that this is the case for the core orbitals
in a metal, and here we have a calculation, which we expect
to be particularly good 'in the regions of small r, justifying
this assumption. It is probably also reasonable to suggest
that this result is not just true for lithium, but also fpr
other metals. Because lithium has only two'core electrons,

it is expected that the difference in these states between a
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metal and a free atom should be larger for lithium than

is the cgée for other simple metals. Since the;épre elec-
trons for lithium are little changed, we expect a similar
result for other simple metals. Of course, this ig just what
is often assumed.

' It should also be mentioned at this time that this
means that the work of Dagens does not impose any unphysical
constraint on the form of the potential felt by the valence
electrons. His calculated density will still depend on how
he screens the ionic potential, and the other approximations
made, but the ionic potential used should be accurate.’

Farther out from the origin, a direct comparison of
our results with those of Dagens becomes more meaningful. The
main feature of the solution here is the asymptotic form,

shown by Friedel (1962) to be

An(x) =

3 c05(2kFr+¢) + O('l_f ). (4.2)
kFr

anr
It is seen that both sets of results have this form,
but are different quantitatively. We find a value for the
amplitude A of about .92, whereas for Dagens' work it appears
to be about .57. Also, the friedel oscillations have been
pulled in towards the origin in our work by a distance of
about Ar = .5.

As yet it is hard to make a definite statement regar-

ding the significance of these differences. Dagens, Rasolt
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and Taylor (1975) have used the results of Dagens (1972) to
construct pseudo-potentials for lithium and sodium, and from
these have calculated phonon dispersion curves. For sodium
they found very good agreement with experiment, but for lithium
they obtained results disagreeing by about 5%. They list

a number of reasons why this discrepancy may exist, but are
unable to make a definite statement regarding them. It is

quite possible that a pseudopotential produced from our re-
sults would produce tPese curves more acéurately; it would

be interesting to see if this is the case.

Formally ohe can of course make another comparison
between the two results. 1In our calculation a bound state
with a density distribution nb(r) is obtained, which can
formally be subtracted out from the total density n{(r), to
obtain a "valence" density An'(r), and this is presented in
figures 3 and 4. In the first figure, this is compared direct-
ly with the results of Dagens, and again there are gquantitative
differences. The adpparent node which he finds at r = .7 we
find to be serwhat different. Thé electron density has a
minimum at ¥ = .85, but the density at this distance is
actually less than thaé of the free electron gas. Also, the
first local maximum which he finds at r = .4 with a value of
.03 is found at r = .30 with a value of .056; similarly
the main maxima are different in the two cases. Where Dagens

found this to occur at r = 3.2 with a value of about .38, it



Fig. 3 Displaced "valence" electron density‘«hrrzAn' (r).
The dashed curve comes from Dagens. The solid curve has
been obtained by subtracting from our totai 4nr2An(r),

what formally is the bound state electron density in

this scheme. The figure is drawn out to only r = 4.0, since

for larger r, this wthd merely reproduce figure 1.
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Fig. 4 Displaced "valence" electron density 4ﬂr2An‘(r).
The solid curve comes from the present results as described
in figure 3. The dotted curve-is the valence electron

density of the free lithium atom..
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is found in this work to be located at about r = 2.8 with
a value of .44. Farther out from the origin, the valence
is represented in figure 1.

In figure 4 these results are compared with the 2s'
electron density of the free atom. It is interesting that for
r < 5, the distribution has the same general features in the
metal as in the free atom, although of course it differs

quantitatively.

4.2 THE ATOMIC STRUCTURE FACTOR

In this section we discuss briefly the formula for
the intensity of fast X-ray waves scattered from a perfect
crystal,and show how the atomic structure factor appears.
This factor is calculated and presented for the electron ggn-
sity calculated here, as well as for the free atom and the
results of Dagens.

If we consider X-rays of unit intensity of wave vector
k incident in a perfect crystal, then the intensity of the

scattered wave with wave vector k' 1is given by

2 -ige

]Agl = || nplx)e™ 37| (4.3)
J
=]z dr n(r-(R.+R__)) -iq‘rlz
x = (BRptRpglle < -
n -ig*R 2 N ig*R, |2
= |z £ (Qe ~.~LK[ | ¢ = ~p| (4.4)
k=1 = L=1
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n -ig*R 2
§{g-GY| ¢ £, {qle ~ T

= (21')3 X
=] ~ -

(4.5)

<=z

where q = k'-k.

BL refers to the position of the Lth unit cell, of
which there are N in the crystal.

Rk is the position of the Kth atom in the Lth unit
cell, with n atoms/unit cell.

v is the volume of the unit cell.

G are the reciprocal lattice vectors of the crystal.
The quantity fk(g) is known as the atomic structure

[
factor, or form factor. For a monatomic crystal such as

lithium,fq is the same for all the atoms. It is defined as

~

~
»

£ = } n(r)e“ig'f dr. (4.6)
g ~ .
If-rall the electrons were located right at the origin, then

for an atom of 2 electrons, wé would have

Py

£f =2 G(r)e-lg'f dr
q ~ ~ (4.7)
= Z

Therefore fq is the ratio of the radiation am%litude scat-
tered by th; actual electron distribution in an atom to that
scattered bf one electron localized at the origin.
For a sphérically symmetric charge distribution
n(r), (4.6) reduces to
P
£ ;.l anx? §é§ﬂ£ n(r)dr . (4.8)

o
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This factor has been calculated for our results for
n{r) in lithium and is presented in figure 5. In addition, we
present the structure factors for the free atom, and for the .
metallic. density due to Dagens. The results have been plotted
against half the scattering angle, 6, divided by the wave-

length of the radiation A. These are related to q by

-~

. g = 2ksin®
(4.9)
= %1 sin6
or
§-§-‘le-= & (4.10)

Also labelled are the positions o# the diffraction
lines one might expect from a bcg lattice such as lithium.
Note that, because of the geomagtrical structure factor of
the basis, no reflections occur for which the suam of the in-
dices is odd, and these have been left off the figure.

| Unfortunately, to our knowledge there are no experimen-.
tal Galues of the factor for lithium now in the literature.

It has been suggested {(Stott, private communication} that

this would be a difficult measurement to make because of the
lightness of the metal. On the other hand, the results of
such a scattering experiment cduld be a valuable test of

-

the density distribution we have presented.



Fig. 5 The atomic structure factors fG. The solid

L
curve is for the present results. The dotted curve is
for the free atom, and the dashed curve comes from com-

bining the results of Dagens with the free atom core

electrons.
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4.3 THE KNIGHT SHIFT

Thus far we have not compared our results with any
experimental information now available. This is now done
through the Knight shift. i

The Knight shift refers to the fact that at a given
applied magnetic field Ho, the nuclear magnetic resonance
frequency of a nucleus differs depending upon whether it is
in a metal or a diamagnetic solid. For the metallic state,
the frequency is almost always higher than for the correspon-
ding diamagnetic solid. The correct explanation of this
éffect lies in considering the field the nucleus experiences
as a result of its interaifion with the conduction electrons
through the s-state hyperfine coupling. In fact, the Knight
shift can equivalently be described by the fact that at a
given frequency, the NMR resonance occurs at a static magnetic
field which is shifted by an amount AH. B

We give here®a brief derivation of the Knight shift
formula, in order to illustrate the origin of the terms en-
tering it.

We consider a system of nuclei and weakly interacting

electrons, with a Hamiltonian given by

H=H, +H +H (4.11)

where He descriq?s a system of weakly interacting electrons,

Hn is the nuclear Hamiltonian and includes the Zeeman energy

in the static field H, as well as the magnetic dipole coupling
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among the nuclei, and Hen is the magnetic interaction
between the nuclei and the electron spins.

The Hamiltonidﬁ\ﬂen is given by

Hen = 3 Ye'n z Ej.gl $(r ~§j) (4.12)
3.2
where ry is the position of the 2th electron, and Rj the

position of the jth nucleus, S, and }j are their respective
spins, and Ye and Yn their respective gyromagnetic ratios.
The nuclei and electrons are treated as weakly interac-

ting and so the wave function is written in product form

Y = wewn (4.13)
where we is tﬁe wave function of the electrons, and wn that
of the nuclei. Because the electrons are assumed to be
weakly interacting, we is taken to be an antisymmetrized
product of single-particle wave functions.

We are interested in transitions in the nuclear system
£rom wn to @n-, so from a perturbation viewpoint we are in-
terested ih matrix elements' of the form

*
Eon = ¥ H Y dr dr . (4.14)

‘In fact what is happening can be understood by just considering

o

the electronic integral

w
Egy = | Ve Hop Ve 97 - ?\ (4.15)

en

In order to evaluate this, the contribution to {(4.15)

due to only one, say the. jth nuclear spin is'requiredq which
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is given by

] 8m *
Eenj -3 YeYnEj Ye E S 8 {x )wech . (4.16)
Now we assume the static applied field is H_ = Hog’
3 . ~ -~
so the electrons are quantized along the z-direction. Then
L
{(4.16) becomes
' _ 8 2
Bens =3 Ye'n Tzj I_ les(o>l m £ (k,s) (4.17)

-~

where wks(o) is the wave function of momentum k and spin s
right at the nucleus, and f(k,s) is the Fermi function. The

sum over the spins can be removed by rewriting (4.17) as

! _ _ 871 s 2
Eenj = 3 Ye¥n Izj i Xk H0|w§(o)[ (4.18)
where )
- 1 1 1 1l
Uzk = ""Ye ('zf(}.('h_) ET(]S'—E)) (4.19)

~
4

is the average contribution of the state k to the z~component
of electron magnetization of the sample in the static applied

field HO, and

-  _ s
uz)i = Xk HO {4.20)
The only remaining difficulty is the evaluation of
the sum in (4.18). This is done by first transforming into

an integral

-~

z [y () 12§ = J<1wk(o)|2 >x°(E, ) p(E,)dE,  (4.21)

where qwk(o)|2> is the average value of [tbk(O)I2 over the

surface of constant energy Ek' and p(Ek) is the number of

~
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states between Ek and Ek + dEk' xs(Ek) is zero for all values

-~ ~ ~

of E, not near the Fermi surface, since for small E " the

k
two spin states are completely occupied. Thus <]wk(o)|2> can

~

be taken outside the integral, and (4.21) becomes

2 2
2y o) [xg = <ly, (@) [“>x3 (4.22)
k= F
where s
/ x5 = ’ x5 (E, ) p (E, )dE (4.23)
T e A '

is the total electronic spin susceptibility.
Thus we obtain

. 2,
Eenj -3 Ye¥n IZj <lka(°), >XeHo - (4.24)

This is seen to be equi&alent to an extra applied field AH

aiding Ho’ of magnitude

AH _  8m 2_. s
ﬁ;— = - 3= <|ka(o)[ >Xa - (4.25)

Equation (4.25) is known as the Knight shift formula.
What is involved is the wvalue of the wave function averaged
over the Fermi surface evaluated at r = 0, and the total spin
susceptibility of the electrons. For lithium Schumaclier
and Slichter (1956) have measured x: which thus allows an
experimentally determined value of <|ka(o)]2> from a measure-
ment of AH/HO.

The results are usually quoted in the form
2 2
£ = <Iwkp(o)| >/ ¥, (o) | (4.26)

where wA(o) is the value of the 2s wave function of ti; free
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atom evaluated at the nucleus. Ryter (1960) has obtained an
experimental‘value of Ee = ,442%+,015. |
In order to make a comparison with the wvalue of
<|wk (o)|%>calculated here, a good value of |wA(o)|2 is needed.
Baseg on measurements by Fox and Rabi (1935), Kohn (1954)
has deduced value of IwA(o)I2 = ,231. From the present
calculation a value of Iwk (o)l2 = ,104%.003 is extracted,
where the error is the progable numerical uncertainty . (For a
spherical Fermi surface such as we have assumed, there is
no need to average over this surface). This ;ives a theoreti-
cal value of Et = ,455, in good agreement with expeiiment.
This compares with a previously obtained value (Kohn 1954)
of Et = ,49+,05.
It should again be pointed out that the value of
ka(o) used in the Knight shift formula refers to the correct
one~electron wave function right on the Fermi surface, and
there is no guarantee that the value of ka(r) obtained from
the density functional formalism is appropriate. Still, the
good agreement with experiment obtained here indicates the
trial potentigl, and hence the electron density n(r) obtained
are accurate, and in addition lends suppori to the suggestion
(Harrison 1970, Hedin and Lundgvist 1971) ‘that the states

near the Fermi surface produced in this way are physically

significant.



CHAPTER V

GENERAL DISCUSSION AND COSCLUSIONS
' 1

This thesis has dealt with an improved scheme for
calculating the electron density distribution in a metal,
and reported results on metallic lithium. The method goes
beyond other work on lithium in a number of ways. First,
the bound state electrons have been free to vary as self-
consistency is attained; second, there is no need to correct
by perturbation theory for the presence of an assumed screening
cloud; third, we have included a correction for the correla-
tions of electrong, as well as for exchange effects.‘

The nature of the Hartree-Fock like parameters which
enter into the density functional formalism has been dis-
cussed; it was pointed out that they have not been shown to
have any direct physical significance. However,bearing in
mind the possibility that states right near the Fermi surface
may be significant, the Knight shift has been calculated,
and good agreement with experiment obtained.

The total electron density distribution calculated
here has been ;ompared with two relevant sets of data. The
inrst of these is the density in the free atom. It has been

shown that the 1ls wave function is similar to that in the free

47
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atom, which justifies the usual assumption that this is the

case. On the other hand, the energy eigenstate‘fo;\khis state(L\
was not represented well by this method, as one might expect

for the density functional formalism.

The valence electron density has also been compared
with that of the free atom; for regions close to the nucleus
the densities are of similar form, but farther out, of
course, quite different.

The other set of data the present results have been
compared with is the valence density calculated by Dagens.

The two methods have produced results which are qualitatively
similar, but are quantitatively different; perhaps the
results of Dagens could be made to agree more closely with the
present results if a different form of the screening potential
were chosen. '

The fast X-ray atomic structure factors have also been
calculated and illustfated.‘ The two different densities have
lead to different structure factors, and it has been sugges-
ted that a measurement of this factor might provide a éood
test of these differences.

In addition to the above work, a small number of other
applications of this scheme has been suggested. It should
be possible to approach these other problems in this way with
the only real difficulties anticipated being numerical. For
example, for higher charge 2 self-consistency might be more

N

difficult to achieve. In addition to impurity problems,'the

4
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feasibility of studying the soft X~ray emission Spectrum
of lithium, involving unequal numbers of spin up and spin

down electrons, will be considered as a further extension of

this scheme.

b 1o



50

BIBLIOGRAPHY

Dagens, L. 1972. J. Phys. C.: Solid Sst. Phys. 5, 2333-234(4.
Dagens, L., Rasolt, M. and Taylor, R., 1975, Phys. Rev. Bll

2726-2734. . '
Fox, M. and Rabi, I.I. 1935. Phys. Rev. 48, 746-751.
Friedel, J. 1962. J. Phys. Radium 23, 692-700.

Harrison, W.A. 1970. Solid State Theory (New York: McGraw-Hill)

Hedin, L. and Lundgvist, B. I. 1971. J. Phys. C:Solid St. Phys.
4, 2064-2083.
Hohenberg, H. and Kohn, W. 1964. Phys. Rev. 125, 1832-1842.

James, R. W.| 1948, The Optical Principles of the Diffraction

of X-Rays, (London: Bell and Sons).

Kittel, C., 1971, Introduction to Solid State Physics , (New

York: Wiley & Sons). A
Kohn, W. 1954. Phys. Rev. 96, 590-592,
Kohn, W. and Sham, L.J., 1965. Phys. Rev. 140, Al1133-38.
Koopmans, T., 1933, Physica 1, 104-113.

Kuhn, H.G. 1962. Atomic Spectra (London: Longmans).

Pines, D. and Noziéres, P., The Theory of Quantum Liquids,

(New York:Benjamin).
Popovic, Z2.D. and Stott, M.J. 1975. Phys. Rev. Lett. 33,
1164-1167. | |
Rasolt, M. and Taylor, R. 1975, Phys. Rev. Bll, 2717-2725.
Ryter, Ch. 1960. Phys. Rev. Lett. 5, 10-11l.

Schumacher, R.T. and Slichter, C.P. 1956. Phys. Rev. 101, 58-65.



51

Seitz, F., 1940, Modern Theory 0f\Solids, (New York:

McGraw-Hill).

Singwi, K.S., Sj8lander, A., Tosi, M.P. and Land, R.H. 1970.
Phys. Rev. B 1, 1044-1053.

Slichter, C.P. 1963. Principles of Magnetié Resonances

-
(New York: Harper and Row). .

von Barth, V. and Hedin, L. 1972. J. Phys. C: Solid St.
Phys. 5, 1629-1642.

Ziman, J. M. 1972. Principles of the Thecry of Solids.

(Cambridge University Press).
Ziman, J.M. 1964. Adv. Phys. 13, 89-138.

Ziman, J.M. 1967. Proc. Phys. Soc. 91, 701-723.





