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Abstract 

Probability Hypothesis Density (PHD) filter is a unified framework for multitarget tracking 

that provides estimates for a number of targets as well as individual target states. Sequential 

Monte Carlo (SNIC) implementation of a PHD filter can be used for nonlinear non-Gaussian 

problems. However, the application of PHD based state estimators for a distributed sensor 

network, where each tracking node runs its own PHD based state estimator, is more challeng­

ing compared with single sensor tracking due to communication limitations. A distributed 

state estimator should use the available communication resources efficiently in order to avoid 

the degradation of filter performance. In this thesis, a method that communicates encoded 

measurements between nodes efficiently while maintaining the filter accuracy is proposed. 

This coding is complicated in the presence of high clutter and instantaneous target births. 

This problem is mitigated using adaptive quantization and encoding techniques. The perfor­

mance of the algorithm is quantified using a Posterior Cramer-Rao Lower Bound (PCRLB), 

which incorporates quantization errors. Simulation studies are performed to demonstrate 

the effectiveness of the proposed algorithm. 
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Chapter 1 

INTRODUCTION 

1.1 Motivation and Contribution of the Thesis 

The use of a large number of networked sensors, which can be deployed all over the surveil­

lance region, in tracking applications has become feasible because of the availability of cheap 

sensors. Hence the importance of the research on distributed tracking has attracted many 

researchers in tracking community. Quantization and encoding play important role in dis­

tributed tracking as information needs to be shared. 

Sensor networks provide large area of coverage and utilize a network of sensing devices 

to gather useful information. Further, the network provides the synergistic use of more 

information from multiple sources as sensing devices are densely deployed in the desired 

environment. A sensor node, which acts like a hub, connects a number of sensing devices 

and perform computations and communications. Sensor network is widely used in many ap­

plication areas including target tracking. Centralized and distributed tracking architectures 

are commonly used in sensor networks for target tracking. The sensor data need to be fused 

in order to fully utilize the information obtained in the network. Distributed processing 

1 



CHAPTER 1. INTRODUCTION 2 

over the sensor network can be used to alleviate the problems inherent to the centralized ar­

chitectures especially the communication bandwidth issue. Distributed approach, since the 

processing tasks are performed over multiple fusion nodes, requires lighter computational 

power and communication bandwidth. 

Distributed algorithms based on particle filters to track a single object have gained much 

attention. One of the first developments for nonlinear/non-Gaussian systems was in [12] 

and it proposes two methods to use the distributed sensor network. One of them is based 

on likelihood factorization of particles of the filter and the other one based on adaptive 

data-encoding scheme. An improvement to this approach using a better encoding scheme 

and measurement vectorization has been presented in [13]. lVIore particle based implemen­

tations are given in [14, 15]. The adaptive data-encoding scheme uses the histogram of 

expected measurements to encode the target generated measurements effectively. However, 

the effectiveness of the encoding scheme might degrade dramatically if no method is in place 

to identify and remove false measurements before transmitting over the network, since the 

false measurements might end up transmitting larger number of bits than transmitting raw 

measurements. 

In this thesis, a decentralized version of the Probability Hypothesis Density (PHD) fil­

ter, a data-association free method, in contrast to the typical decentralized versions of data 

association techniques, is considered . The PHD filter has been shown to be an effective 

way of tracking time-varying multiple number of targets that avoids model-data association 

problems. The proposed algorithm uses a sensor network to track multiple targets based on 

the SequentiallVIonte Carlo(SMC) implementation of the PHD filter. There are a number of 

options available to perform distributed tracking with SMC-PHD filter in a sensor network. 

The first option is to send all the particles, which represent the posterior density of targets. 
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The second is to send Gaussian mixture representation of posterior density. The first and sec­

ond options require high bandwidth communications, which can not be handled by practical 

wireless sensor networks. The third option is to send most appropriate measurements, after 

eliminating the false alarms, to update the global estimates of the targets. In this thesis, 

measurements are communicated among nodes to update the filters. Sharing the measure­

ment directly is preferable over sharing of estimates, because when measurements are shared 

fusion can be done optimally as possible. In the later case, data transmission requires higher 

bandwidth channels unless the quantization of those data are done intelligently [16, 17]. 

Non-uniform quantization scheme could be made to match the distribution of the quantity 

to be discretized. Companding is a widely used method of implementing non-uniform quan­

tizers[18]. It is observed in non-uniform quantization the communication is considerably cut 

with the right selection of the compander [16]. Quantized measurement need to be encoded 

before transmitted. It is assumed that an optimal noiseless source code will be employed 

to minimize transmission needs between nodes. In this thesis, Huffman coding is used to 

encode the quantized measurements. Handling multiple target originated measurements at 

the quantization stage and producing identical symbols for encoding and decoding at each 

node are challenging. This thesis proposes "cascaded companders" to non-linearly quantize 

multiple target measurements. Predicted probability density is used in generating identical 

set of symbols and to place the companders at right positions. 

Among the various methods to quantify the performance, checking the closeness of its 

mean square error matrix to the lower bound is a commonly known method in target track­

ing applications. The Posterior Cramer-Rao Lower Bound (PCRLB) is defined to be inverse 

of the Fisher Information Matrix (FIM) for random vector and provides lower bound on 

the performance of unbiased estimators of the unknown target state [19]. PCRLB for state 
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estimation with quantized measurements is complicated due to non-linearity of the quan­

tizer. Previously, in [20J the PCRLB for dynamic target tracking with measurement origin 

uncertainty and in [21J the PCRLB for state estimation with quantized measurement were 

developed. In this thesis, the PCRLB calculation with quantized measurement is extended 

to incorporate measurement origin uncertainty for bearing only tracking. 

1.2 Organization of the Thesis 

This thesis is structured as follows. Chapter 2 describes the overview of target tracking and 

Chapter 3 explains PHD filter in detail and its implementation using particle filter. The­

oretical background of quantization and encoding methods and its implementation details 

are reviewed in Chapter 4. Chapter 5 provides the derivation of the PCRLB with quan­

tized measurements and measurement origin uncertainty. Simulations are presented that 

demonstrate the effectiveness of the proposed quantization strategy and modified PCRLB 

in Chapter 6. 

1.3 Related Publications 

1.3.1 Journal article 

"Distributed ']}acking with Probability Hypothesis Density Filters Using Efficient Measure­

ment Encoding", To be submitted to IEEE transactions on Aerospace and Electronic Systems. 

1.3.2 Conference publication 

A. Aravinthan, R. Tharmarasa, Tom Lang, ~/Iike McDonald and T. Kirubarajan, "Dis­

tributed Tracking with Probability Hypothesis Density Filters Using Efficient Measurement 
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Encoding", Proceedings of the SPIE Conference on Signal and Data Processing of Small 

Targets, San Diego, CA, Aug. 2009. 



Chapter 2 

TARGET TRACKING 

2 .1 Introduction 

Tracking is described as the task of estimating the state at the current time and at any point 

in the future of a target from incomplete, inaccurate and uncertain observations. Also it 

produces the measure of the accuracy of the state estimates in addition to the state estimates 

[1 J. Application of target tracking can be found in wide variety of areas ranging from tracking 

people on ground to tracking missiles on air. A typical tracking system, which is shown 

in figure 2.1 , has sensors, signal processing modules and information processing module. 

Depending on the complexity of the tracking system and number of sensors, the system 

can have multiple modules of signal processor and information processor either collocated 

or separated. vVhen the sensors and/or information processor are separated, measurements 

and/ or estimates need to be communicated efficiently to achieve better performance. 

6 



CHAPTER 2. TARGET TRACKING 7 

Information Processor Target state estimates 

ata Associator / Track Filte Estimate uncertainties 

jHeasurements 

j\'IeaSllrements 

Figure 2.1: A typical tracking system 

2.2 A target tracking system 

Though a target tracking system consists of many different modules, which function together 

to achieve better results, the focus of this chapter is mainly on acquiring measurements and 

performing filtering. lVIost of the filtering algorithms are model based and depends on two 

models: a model describes the behaviors of the target called target model and the other for 

sensing the target behaviors called measurement model. The accuracy of tracking output 

significantly depends on these models [2]. 

2.2.1 Linear and nonlinear models 

A Target in tracking is treated as a point object where the target model describes the 

evolution of the state with time. The most commonly used target models are in the following 

forms: 

• nonlinear model 

(2.1) 
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• linear model 

(2.2) 

Where Xk denotes the state at time k, fk is a nonlinear function of state, Fk is a known 

matrix and Vk is the process noise at time k. Target motions are broadly classified into two 

types: maneuver andnonmaneuver [2]. Measurement models describe how the target states 

are coupled to noisy measurements. The measurement model can be linear or nonlinear as 

given below. 

• nonlinear measurement model 

(2.3) 

• linear measurement model 

(2.4) 

Where hk is a nonlinear function and Hk is a known matrix. Measurement vector is denoted 

by Zk and- measurement noise is by Wk at time k. For simplicity it is assumed that Vk and Wk 

are Gaussian with zero means and covariances r k and ~k respectively. 

2.2.2 The Bayesian approach 

The Bayesian approach to dynamic state estimation constructs the posterior probability 

density function of the state based on all the past measurements and the measurements 

obtained in the current time. It can be considered the complete solution to the estimation 
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problem as this pdf contains all available statistical information. An optimal estimaLe of the 

state may be obtained from the pdf in principle. Recursive filtering approach eliminates the 

necessity to store the complete data set nor to reprocess existing data for a new measurement 

update. In other wards, when a new measurement becomes available, the received data can be 

processed sequentially rather than as a batch. Such a filter consists of two stages: prediction 

and update. System model is used in prediction stage to predict the state pdf forward from 

one revisit to the next. Due unknown disturbances in state, prediction generally translates, 

deforms and spreads the state pdf. Suppose that the required pdf p(xkIZk) at time k is 

available, where Zk = [Zl' Z2, . .. ,ZkJ. The prediction stage involves uSIng the system model 

2.3 to obtain the prior pdf of the state at time k + 1 and given by 

(2.5) 

The update operation uses the latest measurement to modify the prediction pdf. At the 

next time k + 1, a measurement zk+l becomes available and will be used to update the prior 

via Bayes' rule: 

(2.6) 

In the above the likelihood function p(Zk+llxk+l) is defined by the measurement model (2.3). 

The above recursive propagation of the posterior density is only a conceptual solution, and in 

general it cannot be determined analytically. Analytical solution exists only in a restrictive 

set of cases. This single target Bayesian filtering can be extended to multitarget state and 

multitarget measurement. 
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Sensor Data Processing Observation-to Track Maintenance 

and Measurement -Track (Initiation, 

Processing Association 
Confinnation and 

Deletion) 

1 ~ 
~ Gating Filtering and 
Computation Prediction 

Figure 2.2: Basic elements of a conventional multitarget tracking system 

2.3 Multitarget tracking 

In the tracking system, a track is a state trajectory estimated from each new set of mea­

surements, which is associated with the same target. It is a symbolic representation of a 

target moving through an area of interest. Basic elements of a conventional Multiple Target 

Tracking (MTT) are arranged as in Figure 2.2. A signal processing unit converts the signals 

from thc sensor to measurements, which then become the input data to the MTT system. 

Track is maintained using incoming measurements. A track is maintained in one of the 

following states: initialized track, confirmed track or dead track [3]. An observation not as­

sociated to any existing tracks can initiate a new tentative track. A tentative track becomes 

confirmed when it meets confirmation criteria defined in the form of quality and number 

of measurements. Similarly, a track get degraded when not updated and the track not up-

dated within some reasonable interval must be deleted. Gating tests evaluate which possible 

measurements-to-track pairings are reasonable and a more detailed association technique is 

used to determine final pairings. Tracks are predicted ahead to the arrival time for the next 

set of observations, after inclusion of measurements available in current time. Gates are 

placed around these predicted positions for track to measurement association and process­

ing cycle repeats. If the true measurement conditioned on the past is normally (Gaussian) 
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distributed with its Probability Density Function (PDF) give by 

(2.7) 

\I\There Zk+l is the measurement at time k + 1, Zk = [Zl, Z2, . .. , Zk], Zk+llk is the predicted 

(mean) measurement at time k + 1 and S (k + 1) is the measurement prediction covariance, 

then the true measurement will be in the following region 

(2.8) 

with the probability determined by the gate threshold "y. The region defined by 2.8 is called 

gate or validation region (V) or association region. The validation procedure limits the region 

in the measurement space where the information processor looks to find the measurement 

from the target of interest. Measurements outside the validation region can be ignored, 

since they are too far from the predicted location and very unlikely to have originated from 

the target of interest. It can so happen that more than one measurement is found in the 

validation region. 

2.3.1 Data association 

The data association problem is that of associating the many measurements of a sensor with 

the underlying states or tracks that are being observed. Often the problem of tracking mul­

tiple targets in clutter considers the situation where there are possibly several measurements 

in the validation region of each target. The set of validated measurements consists of: 

• the correct measurement 

• the undesired measurements: false alarms 
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The simplest possible approach is to use the measurement nearest to the predicted measure­

ment as if it were the correct one, which is called Nearest Neighbor(NN). An alternative 

approach, called Strongest Neighbor (SN), is to select the strongest measurement among the 

validated ones [3]. Since any of the validated measurements could have originated from the 

target, this suggests that all the measurements from the validation region should be used in 

some fashion. A Bayesian approach, called Probabilistic Data Association (PDA), associates 

probabilistically all the "neighbors" to the target of interest [3]. PDA is the standard tech­

nique used for data association in conjunction with the Kalman filter or the extended Kalman 

filter. The Kalman filter can be applied only if the models are linear and measurement and 

process noises are independent and white Gaussian. 

2.4 Filtering Algorithms 

Filters are used to estimate the target states at each time interval with appropriate available 

measurements. The recursive Bayesian type filters are easy to implement and well estab­

lished. Here some well known recursive filters are reviewed. The Kalman filter is given in 

Section 2.4.l. Extended Kalman filter (EKF), a variant of the Kalman filter, is given in Sec­

tion 2.4.2. Finally particle filter, which has proven to be effective for nonlinear non-Gaussian 

problems, is given in Section 2.4.3. 

2.4.1 Kalman Filter 

The Kalman filter assumes that the state and measurement models are linear and the initial 

state error and all the noises entering into the system are Gaussian and, hence, parameterized 

by a mean and covariance [1]. Under the above assumptions, if p(xkIZk) is Gaussian, it can 

be proved that p(Xk+lIZk+l) is also Gaussian. Then, the state and measurement equations 
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are given by 

FkXk + Vk 

HkXk +Wk 

13 

(2.9) 

(2.10) 

If Fk and Hk are known matrices, Vk rv N(O, r k ) and Wk rv N(O, I:k), the Kalman filter 

algorithm can then be viewed as following recursive relationship [1] 

p(xkIZk) N(Xk; mklk, Pklk) (2.11) 

p(Xk+lI Z k) N(Xk+l; mHllk, PH1Ik) (2.12) 

P(XHIIZHl) N(Xk+l; mk+1IHl, Pk+1Ik+1) (2.13) 

where 

mk+llk Fk+1mklk (2.14) 

PH1 1k r k + FHIPklkFI+l (2.15) 

mk+1lk+l mk+llk + K k+1(ZHl - H k+1m k+llk) (2.16) 

Pk+llk+l PH1 1k - KHIHHIPk+1lk (2.17) 

with 

Sk+1 Hk+lPk+llkHl+l + I:Hl (2.18) 

K k+1 Pk+llkHl+lSk~l (2.19) 

In the above, N(x; m, P) is a Gaussian density with argument x, mean m and covariance 

P. This is the optimal solution to the tracking problem if the above assumptions hold. The 



CHAPTER 2. TARGET TRACKING 14 

im.plication is that no algorithm can perform better than a Kalm.an filter 111 this linear 

Gaussian environment. 

2.4.2 Extended Kalman Filter 

In many situations of interest, neither of these sets of assumptions hold. It is then necessary 

to make approximation. Ifp(xo), p(Xk+llxk) andp(Zk+llxk+l) are approximated as Gaussian 

and hk(Xk) and fk(Xk+l) are approximated as linear, then the recursion above becomes the 

Extended Kalman Filter, EKF. 

p(xkI Z1:k) ~ N(mklk, Cklk) 

p(xk+lI Z1:k) ~ N(mk+1lk, Ck+1Ik) 

~ N(ak(mklk), Ek + AkCklkAf) 

p(Xk+lI Z1:k+l) ~ N(mk+llk+l, Ck+1Ik+1) 

~ N(mk+llk + WkZk+1Ik, Ck+llk - vVkHk+1Ck+1lk) 

(2.20) 

(2.21) 

Such a local approximation of the equations may be a sufficient description of the non­

linearity. However, it is common that it is not. A better approximation can be made by 

considering the above approximation as using the first term in Taylor expansions of the 

nonlinear functions, hk(Xk) and fk(Xk). A higher order EKF that retains further terms in 

the Taylor expansions exists and results in a closer approximation to the true posterior. 

However, the additional complexity has prohibited its widespread use. 

2.4.3 Particle Filter 

Anotller approach, which also yields such an improvement over the EKF, is particle filtering. 

Rather than approximating the models in order to be able to fit a distribution of a given 
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type to the posterior, a particle filter explicitly approximates the distribution so that it can 

handle high nonlinear non-Gaussian models. The approach has also been known as sequential 

Monte Carlo filtering [9]. 

In particle filtering, the required posterior density function is represented by a set of 

random samples ("particles") with associated weights [7,10]. Let xr) : P = 1, ... m, with as­

sociated weights w~ : P = 1, ... m be the random samples representing the posterior density 

P(Xk!Z1:k) of the state vector Xk at time epoch k, where Z1:k is the set of all measurements 

available at time k. The weights are normalized such that 2.:;~1 w~ = 1. We use Sam­

pling Importance Resampling (SIR) [11] to propagate and update the particles in which the 

p(Xk!Z1:k) is represented by equally weighted particles. Then 

(2.22) 

where 5(.) is the Dirac Delta function. The Importance Density is chosen to be the prior 

density, P(Xk!Z1:k-l)' The propagation and update of the particles in SIR method are given 

as follows. 

Prediction Take each existing sample, xr) and augment it with a sample x~~f rv 

p(Xk+l!Xr)), using the system model. The set x~~f : P = 1, ... ,m gives an approximation of 

the prior, P(Xk+l!Z1:k)' at time k + 1, i.e. 

(2.23) 

Update 

Importance Weights: At each measurement epoch, to account for the fact that the sam­

ples, x~~~ are not drawn from p(Xk+l!Zl:k+l), the weights are modified using the principle 

of Importance Sampling. When using the prior as the Importance Density, it can be shown 
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that the weights are given by 

(2.24) 

Reselection: Resample (with replacement) from x~~i : p = 1, ... ,m, using the weights, 

wz~i : p = 1, ... , m, to generate a new sample, xrL : p = 1, ... , m, then set W~+l = 11m for 

p= 1, ... ,m. Then: 

(2.25) 

At each stage the mean of the posterior distribution is used to estimate, Xk of the target 

state, Xk, i.e. 

2.5 Architectures 

lE[Xk+lI Z1:k+l] 

1 Xk+1 p(Xk+1I Z1:k+l) dxk+l 
Xk+l 

1 ~ (p) 
~ - ~xk+l 

m 
p=l 

(2.26) 

(2.27) 

(2.28) 

Centralized, distributed and decentralized are three major types of architectures used in 

multisensor-multitarget tracking. The details of these architectures are given in the following 

sections. 
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2.5.1 Centralized Tracking 

The centralized architecture in general has more than one sensor monitoring the region of 

interest in detecting and tracking the targets. All the sensors generate the measurements at 

each revisit time and report those measurements to a central fusion center that fuses all the 

measurements and updates the tracks. This architecture gives optimal tracking performance. 

However in a very large surveillance region with many sensors, this architecture may not be 

feasible because of limited resources such as communication bandwidth and computation 

power. Centralized architectures are generally simpler to execute since the processing of 

data at one location can reduce the computational requirement of the algorithm. 

2.5.2 Distributed Tracking 

An alternative architecture called distributed architecture, also called as "hierarchical archi­

tecture" , is used alleviate heavy communication and computation requirements of centralized 

architecture and it is shown in Figure 2.3. Distributed architecture, sensors are connected to 

Local Fusion Centers (LFCs). Each LFC updates its local tracks based on the measurements 

from the local sensors and sends its updates to other LFCs. Then, the LFCs performs the 

track-to-track fusion and may sends back the updated tracks to the other LFCs, if feedback 

path is available. 

2.5.3 Decentralized Tracking 

,iVhen there is no fusion center that can communicate with all the sensors or LFC in a 

large surveillance region, neither centralized nor distributed tracking is possible. In this case 

another architecture called decentralized architecture, in which one has multiple FCs and no 

CFC, is used. In this architecture, each FC gets the measurements from one or more sensors 



Chapter 3 

THE PROBABILITY HYPOTHESIS 

DENSITY FILTER 

3.1 Background 

In tracking multiple targets, if the number of targets is unknown and varying with time, it is 

not possible to compare states with different dimensions using ordinary Bayesian statistics 

of fixed dimensional spaces. However, the problem can be addressed by using Finite Set 

Statistics (FISST) [23] to incorporate comparisons of state spaces of different dimensions. 

FISST facilitates the construction of multitarget densities from multiple-target transition 

functions by computing set derivatives of belief-mass functions [23], which makes it possible 

to combine states of different dimensions. The main practical difficulty with this approach is 

that the dimension of the full state space becomes large when many targets are present, which 

increases the computational load exponentially in the number of targets. Since the PHD is 

defined over the state space of one target in contrast to the full posterior distribution, which 

is defined over the state space of all the targets, the computational cost of propagating the 

19 
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full posterior density over time is much lower than propagating the full posterior density. In 

general, a PHD-based multitarget tracker will experience more difficulty in resolving closely-

spaced targets than the tracker based on the full target posterior. However, if the probability 

density functions of individual targets is highly concentrated around their means compared 

to the target separation, so that the individual target pdfs do not overlap significantly, it will 

become possible to resolve targets using the PHD filter as well. A theoretical explanation 

about the capability of the PHD filter to resolve closely-spaced targets in Gaussian context 

is given in [23J. By definition, the PHD Dk1k (Xk!Zl:k), with single target state vector Xk, 

and given all the measurements up to and time step k, is the density whose integral on any 

region S of the state space is the expected number of targets Nklk contains in S. That is, 

(3.29) 

Since this property uniquely characterizes the PHD and the first-order statistical moment 

of the full target posterior distribution possesses this property, the first-order statistical 

moment of the full target posterior, or the PHD, given all the measurement Z1:k up to time 

step k, is given by the set integral [22J. 

(3.30) 

More detailed mathematical explanations and derivation of the PHD filter can be found 

in [22J. The approximate expected target states are given by the local maxima of the PHD. 

The prediction and update steps of one cycle of PHD filter are given in the following section. 
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3.1.1 Prediction 

In a general scenario of interest, there are target disappearances, target spawning and entry 

of new targets. We denote the probability that a target with state Xk-l at time step (k - 1) 

will survive at time step k by eklk-l(Xk-l), the PHD of spawned targets at time step k from 

a target with state Xk-l by bklk-1(Xklxk-l), and the PHD of new-born spontaneous targets 

at time step k bY'Yk(xk). Then, the predicted PHD, Dklk- 1(XkI Z1:k-l) , at time k given all 

measurements up to time k - 1 is given by 

Dklk- 1 (xkIZl:k-l) 

= 'Yk(Xk) + j[eklk-l(Xk-l)!klk-l(Xklxk-l) + bklk-1(Xklxk-l)] 

xDk-1lk - l(Xk-lI Z 1:k-l)dxk-l (3.31) 

where !klk-l(Xklxk-l) denotes the single-target lVlarkov transition density. The prediction 

equation 3.31 is lossless since there are no approximations. 

3.1.2 Update 

The predicted PHD can be corrected with the availability of measurements Zk at time step k 

to get the updated PHD. It is assumed that the number of false alarms is Poisson-distributed 

with the average rate of Ak and that the probability density of the spatial distribution of 

false alarms is Ck(Zk). Let the detection probability of a target with state Xk at time step k 

be PD(Xk). Then, the updated PHD at time step k is given by 

(3.32) 
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where the likelihood function 'ljJ(-) is given by 

(3.33) 

and ikIK(Zklxk) denotes the single-sensor/single-target likelihood. The update equation 3.32 

is not loss less since approximations are made on predicted multi target posterior to obtain 

the closed-form solution 3.32. The reader is reffered to [22] for further explanation. 

3.2 Sequential Monte Carlo PHD Filter 

This section describes the S1/IC approach to the PHD filter. This approach provides a mech-

anism to represent the posterior probability hypothesis density by a set of random samples 

or particles, which consist of state information with associated weights, to approximate the 

PHD. The advantage of this method is that the number of particles can be adaptively al-

located in a way that a constant ratio between the number of particles and the expected 

number of targets is maintained. This has a significant effect on the computational com-

plexity of the algorithm that the complexity does not increase exponentially but linear with 

the increasing number of targets. The SMC implementation considered here is structurally 

similar to the Sampling Importance Resampling (SIR) type of particle filter [10]. Let the 

posterior PHD Dk-llk-l(Xk-lIZ1:k-l) be represented by a set of particles {Wi:~l' Xi:~l}Lk-l. 
p=l 

That is 
Lk-l 

Dk-llk-l(Xk-lIZ1:k-l) = L Wi:~lO(Xk-l - Xi:~l) (3.34) 
p=l 

where 0(-) is the Dirac Delta function. In contrast to particle filters, the total weight 

~~!11 Wi:~l is not equal to one; instead, it gives the expected number of targets nf-l at 

time step (k - 1), which follows from the property that the integral of the PHD over the 
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state space gives the expected nUlTlber of targets. 

3.2.1 Prediction 

We now apply importance sampling to generate state samples that approximate the predicted 

PHD Dklk-1(XkIZ1:k-l). We generate {X~I~_l}~!ll state samples from the proposal density 

qkClxk-l, Zk) and i.i.d. state samples {X~Ll} ~!L~~:~l corresponding to new spontaneously 

born targets from another proposal density PkCIZk). That is 

P = 1, ... ,Lk - 1 
(3.35) 

P = Lk- 1 + 1, ... , L k- 1 + Jk 

Then, the weighted approximation of the predicted PHD is given by 

Lk-1+Jk 

D klk- 1(XkI Z1:k-l) = L W~LIO(Xk - X~Ll) (3.36) 
p=l 

where 

wk1k- 1 -

( (p)f (p) I (p) ) + b (p) I (p) ) eklk-l x k1k - 1 klk-l x k1k_ 1 X k _ 1 klk-l x k1k_ 1 X k - 1 (s) 

( (p) I (p) z) W k - 1 
qk x k1k- 1 X k - 1 ' k 

p=1, ... ,Lk - 1 
(p) - { 

P = L k- 1 + 1, ... , L k- 1 + Jk 

(3.37) 

The functions that characterize the Markov target transition density !klk-l (.), target spawn­

ing bk1k- 1 and entry of new targets ')'k(') in 3.37 are conditioned on the target motion model. 
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3.2.2 Update 

vVith the available set of measurements Zk at time step k, the updated particle weights can 

be calculated by 

[ 

Nf (x(p))1 (zi Ix(p) )] 
*(p) _ (1 _ (p) )) '"' PD klk-l klk k klk-l (p) 

W k - PD x k1k- 1 + 6 A C (Zi) + \[J .(Zi) w k1k - 1 
i=l k k k k k 

(3.38) 

where 
Lk-l+h 

,T, ( i) '"' (p))1 (i I (8) ) (p) 
'±' k Zk = 6 PD x k1k- 1 klk Zk x k1k- 1 ' wk1k - 1 (3.39) 

p=l 

and !klk(-) is the single-targetjsingle-sensor measurement likelihood function. 

3.2.3 Resample 

To perform resampling, since the weights are not normalized to unity in PHD filters, the 

expected number of targets is calculated by summing up the total weights, i.e., 

(3.40) 

Then the U1)dated I) article set {w*(P)jnX x(p) }Lk-l+h is resampled to get {w(P)jnX x(p)}L
k 

. k k, klk-l ' k k, k 
p=l p=l 

such that the total weight after resampling remains nf. Now, the discrete approximation of 

the updated posterior PHD at time step k is given by 

Lk 

Dk lk (XkI Z 1:k) = L wi:\5(Xk - xi:)) (3.41) 
p=l 



CHAPTER 3. THE PROBABILITY HYPOTHESIS DENSITY FILTER 25 

3.3 SMC-PHD Filter in Distributed Tracking 

Distributed processing over the sensor network can be used to alleviate the problem inherent 

with the centralized architectures. Among several distributed algorithms implemented using 

different filters, recently, the particle filter implementation of distributed algorithm have 

gained much attention. One of the first developments for nonliner/non-Gaussian systems 

was in [12]. Efficient utilization of communication resources is essential to all distributed 

algorithms operated in sensor networks. 

3.3.1 Distributed Tracking Framework 

The underlying sensor network architecture consists of two different types of devices: sensors 

and nodes. Sensors collect measurements from the targets and report them to computational 

nodes. Nodes are responsible for running filters to track targets. Information gathered at 

nodes are shard among nodes. The nodes are interconnected using wireless communication. 

3.3.2 Proposed Distributed Algorithm 

Our objective in this thesis is to create distributed algorithm based on SlVIC-PHD filter, 

which minimizes communication requirements relating to sensor data fusion when multiple 

time varying targets are present in the region of interest. We assume optimization of sensor 

resources to collect data and communication issues such as network protocols are already ef­

ficient enough. The proposed algorithm maintains SMC-PHD filters in all the computational 

nodes. This may seem to have high communication costs than centralized computational 

node due to the maintenance of a.dditional PHD filters that are not needed in centralized 

architecture. However, a proposal can be given to maintain lower communication cost com­

pared to centralized fusion approach. There are a number of different options available to 
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perform distributed tracking with SMC-PHD filter in a sensor network. The first option 

is to send all the particles, which represent the posterior density of targets. The second is 

to send Gaussian mixture representation of posterior density. The first and second options 

require high bandwidth communications, which can not be handled by practical wireless sen­

sor networks. The third option is to send most appropriate measurements, after eliminating 

the false alarms, to update the global estimates of the targets. In this thesis, we use the 

option of communicating measurements among nodes to update the filters. In sensor net­

work, it is quite possible that each node may have enough active sensors to track an object 

by itself with reasonable tracking accuracy. Therefore, a PHD filter can be used to obtain 

estimates based on the measurements collected from sensors local to that node. Since these 

nodes maintain PHD filters based on local measurements, they can also be used in encoding 

strategy. The proposed framework will be performed in two layers. The first layer collects 

the measurem.ent daLa that are local to each node and maintain a local PHD filter using 

its associated sensors. In the second layer, all the measurement are exchanged to all other 

nodes in the network and the global PHD filters are maintained. 

3.3.2.1 Algorithm 

In the proposed algorithm, identical copy of the SMC-PHD filter is maintained at each node. 

Initially, this is achieved by initializing all the filters using the same random seed. In order 

to encode the measurement data an intelligent quantization and encoding strategy is used. 

From the time step k - 1 to k, particles are propagated while taking into account of mea­

surement prediction covariance. The range of expected measurements is divided into bins 

depending on the accuracy level required. The contribution of each propagated particle's 

distribution is integrated over the bins to form the probability density. The measurements 

are quantized with a nonuniform quantizer where companders are used to perform nonlinear 
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quantization. The probability density in the measurement space is then transformed to com­

panded measurement space. Then, the quantized measurements are encoded using Huffman 

encoding algorithm with the transformed bin probabilities. The encoded measurements are 

transmitted to all the other nodes and each node decodes and decompands the data to obtain 

the quantized measurements. The details of quantization and encoding strategy used in this 

algorithm is presented in chapter 4. 

Each node performs filtering using quantized measurements to obtain the target state 

estimates. All the nodes use the same set of measurement data to update the filter and thus 

identical copy of filter is maintained. 

The distributed SMC-PHD filter is detailed below. 

1. Initialization k = a 

• Initialize SMC PHD filter on each node n = 1, ... ,N using the same random seed 

to generate identical particle distribution on all the nodes. 

• For each node n = 1, ... , N 

- Generate samples {x~)} ::0 
2. Quantization and Encoding (For the detail implementation of this step the reader is 

referred to Section 4.3 of Chapter 4) 

• Local Estimation 

- Perform filtering using the SlVIC PHD filter acting only on the measurements 

local to the node. 

• Quantization 

- For each node n = 1, ... ,N 

* For s = 1, ... ,Lk - 1 , predict X~Ll 
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* Calculate the bin probabilities, p(zklbj, zi~Ll)' in the measurement space 

using predicted measurements and construct the probability density. 

* Identify the regions where the companders need to be placed and the 

number of companders needed. We use one compander per each target 

and width of the companding region is limited to 30"~, where the O"~ is the 

standard deviation of the c th cluster. The compander is placed on the 

mean value, M~, of the cluster. In other regions linear quantizer is used. 

* Quantize the measurements, Zk 

• Encoding 

- For each node n = 1, ... ,N 

* Calculate the bin probabilities, p(zklbj, zi~Ll)' in the transformed mea­

surement space. 

* Use the bin probabilities to form Huffman tree H;-l and encode quantized 

measurements. 

3. Reducing the false measurements transmitted over the network 

• Remove the measurements from the queue, if the number of bits in each encoded 

measurement exceeds a predefined threshold, l. This process is done using the 

local estimates of the target. 

4. Global Estimate 

• For each node n = 1, ... ,N, create the Huffman tree Hj-l and the quantizer, to 

reconstruct the quantized data, z~. 

• Using set of measurements obtained, perform filtering to obtain the global state 

estimates. 



Chapter 4 

QUANTIZATION AND ENCODING 

"Measurements reported by sensors in a sensor network need to be transmitted in order to 

perform tracking at high computational nodes called fusion centers. Quantization and encod­

ing play crucial role whereby measurcmcnts are quantized and encoded before Lransmitted. 

Intelligent quantization and encoding scheme is important to effectively use the communica­

tion resources. The goal of this chapter is to provide the necessary theoretical background 

on quantization and encoding. In addition, this chapter also explains how quantization 

and encoding can be effectively implemented to perform distributed target tracking with 

SMC-PHD filters. 

4.1 Quantization 

An one dimensional quantizer Q with L levels may be defined by a set of L+ 1 decision levels 

aO,al, ... ,aL and a set of L out put levels Yl,Y2, ... ,YL, as shown in Figure 4.1. When a 

sample x, the quantity to be quantized, lies in the ith quantizer interval Si = ai-l < x :; ai 

the (Jllantizer produces the output value Q(x) = Yi [24]. The value of Yi is usually chosen to 

lie within the interval Si. The end levels ao and aL are generally chosen to be the smallest 

29 
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Yl Y2 
~I __ i--+I __ ~'L' --;I--~--~--i---r-~--~--~--+-~~-+I----~:x 

ao al a3 aD 

Figure 4.1: Quantization 

and largest values the input samples may obtain. The L output levels generally have a 

finite value and if L = 2n , a unique n-bit binary word can identify a particular output level. 

The input-output characteristic of a one-dimensional quantizer resembles a staircase. The 

quantizer intervals, or steps may vary in size. 

4.1.1 Uniform Quantization 

In the uniform quantization, the step sizes are identical, and the size is determined by the 

maximum error of the quantizer. The output points are located at the mid-point of these 

intervals. If the step size is denoted by L:., then the maximum absolute error is given by 

L:./2. In general, uniform quantization is not the most effective way to obtain good quantizer 

performance. 

4.1. 2 Nonuniform Quantization 

The nonuniform quantization essentially has a nonuniform spacing of decision levels based 

upon the input probability density [16J. The general model used to represent the nonuniform 

quantizer is shown in Figure 4.2. The combined function of compression, quantization and 

expansion is termed companding [18J. It is simply an equivalent way of viewing the operation 

of a nonuniform quantizeI'. The quantized samples are transmitted over the network and 

at the receiver end of the network the quantized samples are decompanded to its original 

values plus the quantization noise. The variance of the quantization noise associated with the 

received samples are related to the shape of the companding function G(.) and the number 

of the bits used for quantization,n. A typical companding function is shown in Figure 4.3. 
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Figure 4.2: Nonuniform quantization 

With reference to the Figure 4.3, it is noted that 

G(y + ~y) - G(y) (4.42) 

in which the right hand side is the resolution of the uniform quantizer. Using standard 

companding techniques, we get 

where G denotes differentiation. 

4.2 Encoding 

o 
~y~-.-

G(y) 
(4.43) 

In information theory, an entropy coding is a lossless data compression scheme that is inde­

pendent of the specific characteristics of the medium. A common method of entropy coding 

defines a codebook through assigning a code to each symbol. By assigning smaller codes to 

the more frequent symbols, the average size of each coded symbol can be minimized. This 

leads to compression over sufficiently large number of encoded symbols. This technique is 
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G(y) 

y 

Figure 4.3: A typical compander 

known as variable length coding. Generally, variable length coding shows a better perfor­

mance thall fixed-length codes where same size is assigned to all symbols [25]. Two widely 

used entropy coding techniques are Huffman coding and arithmetic coding. Huffman coding 

is very simple to implement and it is very efficient when the probabilities of symbols to be 

sent can be calculated in advance. Hence it is best suited for our application in this thesis. 

4.2.1 Huffman coding 

Huffman coding assigns a variable length codes to each input symbol where the code and its 

size are based on the probability of occurrence of the associated symbol. It is necessary to 

calculate probability of symbols beforehand to the assignment and construction of dictionary. 

By sorting and analyzing the probability of symbols, a conversion table is constructed so 

that the symbols with higher probability have the fewest number of bits and no symbol is a 

prefix to another symbol [25]. Greater compression can be achieved with accurate probability 

distribution. 

4.2.2 Building Huffman codes 

The construction of Huffman encoding table is a lengthy process. The probabilities must 

be sorted so that the lowest two probabilities can be found. These probabilities are added 
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Symbol & Probability Reduction Bit Value 

A ~O.4 0.4 ~/'l0.6~0~ /1 1 

S ~ 0.3 0.3r°.4~1~00 00 

F ~ 0.2 0.3/ "01 ."-... 
010 

D~O.l~ ~011 

Figure 4.4: Canstructian af Huffman Encading Table 

tagether to' create a new prabability table. This table is sorted, and the prO' cess repeats until 

anly twa probabilities are left. These probabilities are assigned a value af zerO' and ane. The 

pracess is nnw reversed. At each stage the two expanded probabilities are given a ane or 

zerO' as they are expanded. The pracess cantinues until the table is expanded to' its ariginal 

state. Far example assume the message "ASAFAFDAS" is being encaded. The first step 

is to' find the probability for each symbal. A has a prabability af 0.4, while S is 0.3, D is 

0.1 and F is 0.2. These prababilities are sarted and added to' create the table as in Figure 

4.4. Once the table has been canstructed, the data can be campressed. The campressian 

prO' cess is accamplished by a direct canversian af symbals. The entire message is encaded as 

"10010101010011100" , which requires 17 bits. The message normally require 18 bits. 

4.3 Measurement quantization and encoding with cas-

caded companders 

The praposed algorithm needs an efficient nanlinear quantizatian far measurements. There-

fare, "cascaded cam panders", which can quantize measurements fram multiple targets, is 

propased. This sectian briefly explains the pracess af develaping the campander. The first 

step is to' canstruct a prabability density af expected measurements to' identify the regians 
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where the target originated lTl.easurements would lie. The details of this process is given 

in Section 4.3.1. Measurements that fall in this region is quantized with minimum quan­

tization error via Gaussian companders. Section 4.3.2 explains the cascaded companders. 

Details of encoding and decoding process using Huffman coding are given in Section 4.3.3. 

Sections 4.3.5 and 4.3.4 provide details on false alarm elimination process and incorporation 

of quantization errors into tracking, respectively. 

4.3.1 Construction of a Probability Density 

The necessity to have identical and accurate probability densities of targets at each nodes, 

where global SIVIC-PHD filter is running, is eminent from the fact that the measurements are 

quantized, encoded and communicated between these nodes based on the probability density. 

The construction of probability density commences by propagating the densities of particles 

from the time step k - 1 to k, taking into account of measurement prediction covariance. 

The range of expected measurements is divided into bins depending on the accuracy level 

required. The contribution of each propagated particle's distribution is intergraded over 

the bins to form the probability density. The Figure 4.5 shows distribution of few sample 

particles and the quantizer decision boundaries ai-l and ai. 

The probability density of predicted particles p(z%J in the measurement space are given 

by 

(4.44) 

where hk(') IS a nonlinear function and Sk is the measurement prediction covariance. 
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, 
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Figure 4.5: Calculation of bin probablities 

Then the bin probability is given by 

(4.45) 

4.3.2 Measurement Quantizer 

Two quantizer strategies are investigated in t.his thesis: uniform and nonuniform. Uniform 

quantizer is simple where the measurement space is divided into equal bins based on the 

number of bits used to encode. The nonuniform quantizer is complex and proposed based 

on probability density of the targets. Figures 4.6 and 4.7 show quantizers at two different 

time steps, when one and two targets were present in the environment respectively. The 

companders are placed in measurement space such that the target originated measurements 

have less quantization errors than other measurements. In this thesis a Gaussian compander 

law is used, which is centered on the expected target position and whose curvature is dictated 

by the standard deviation of the expected position [16]. The compander and expander 

functions are as follows: 

• Compander: erf(aj6) 

• Expander: (J.J6 erf(~) 
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Figure 4.6: A 32 bins compander with one target 
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where erf(~) = 211Pi Jo~ cxp( -e)dt. We use one compander per each target and witlth 

of the companding region is limited to 30"~, where the O"~ is the standard deviation of the 

c th cluster. The compander is placed on the mean value, J-L~, of the cluster. A maximum 

quantization error is set in other regions of the measurement space, where the compander 

is not placed, by a liner quantizer. The companders are cascaded when multiple targets 

measurements are to be quantized. 

4.3.3 Measurement encoding and decoding 

The original probability density constructed based on expected measurements is transformed 

to companded measurement space in order to create global Huffman dictionary for encoding. 

The term global refers to the process or information that is related to global SMC-PHD filter 

running on every node. Companded measurements are encoded and transmitted over the 

network. In the receiver, the measurements are decoded before expanding. Same steps are 
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Figure 4.7: A 32 bins compander with two targets 

followed to construct a decoding dictionary. 

4.3.4 Incorporating Quantization Errors 

37 

3 

The insertion of quantized measurement to the SMC-PHD filter is done by updating the 

current particles by the quantized measurements while taking into account the extra error 

introduced by the quantization. The error arising from quantization has a uniform distribu-

tion. The variances of errors introduced due to quantization is given by, 

• Uniform quantization 

(4.46) 
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• Non-uniform quantization 

(4.47) 

4.3.5 False Alarms Elimination 

Reducing the number of false measurements communicated over the network is important 

as it will consume much communication resources otherwise. The number of bits in each 

encoded measurements, based on local Huffman dictionary, can effectively be used to reduce 

the number of false measurements transmitted over the sensor network. In this approach, 

we assume since the local PHD filters have most updated information including a birth of a 

new target and the target generated measurements are most likely to be in a region in which 

the value of the probability is high. Thus the target generated measurements are most likely 

to have lesser number of bits in their encoded form compared to false measurements when 

encoded with local Huffman dictionary. We may assume the measurements that have higher 

number of bits are not target generated and, by having a threshold value on the number 

of bits, they can be removed from the set of measurements that are transmitted over the 

network. Once the measurements are selected to be transmitted, those measurements are 

encoded with global Huffman dictionary in order to transmit over sensor network. However, 

when measurements corresponding to new targets are encoded with global Huffman dictio-

nary may produce higher number of bits. It could be noted that the new targets can be 

identified by the global PHD filter quickly. An indicator function, It,i) is used to identify 

whether the measurement has been communicated or not. 

I(k,i) 
h 

Hk - 1(Zi) < l f k-

Htl(zk) > l 
(4.48) 
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H;-l(zi) is a function that generates Huffman codes for each measurement. l is the cutoff 

number of bits per measurement. If a measurement in their encoded form is less than the 

cutoff number of bits, then the measurement is communicated else not. 



Chapter 5 

POSTERIOR CRAMER-RAO 

LOWER BOUND 

In this Chapter, the posterior covariance of the target state is derived to assess the per­

formance bounds for the proposed algorithm. The recursive Riccati-like formula for the 

Posterior Cramer-Rao Lower Bound (PCRLB) for state estimation with quantized measure­

ments [21] is used to derive the posterior covariance with measurement origin uncertainty. 

The fundamental theory behind the CRLB for dynamic trarget tracking can be found in [20]. 

The Section 5.1 provides a brief review on PCRLB. Incorporating the measurement origin 

uncertainty in PCRLB is discussed in Section 5.2. In Section 5.3 the PCRLB with quantized 

measurements is derived. 

5.1 Background 

Consider the estimation of the state of a dynamical system given by 2.2 and 2.3. The 

quantized measurements at time k are denoted by Zk. Let xklk denote the updated state 

estimate at time instant k, using measurement Z1:k. The estimation error covariance matrix, 

40 
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Pk1k , for unbiased estimator is bounded as follows, 

(5.49) 

where A is the Fisher information matrix. This bound is called PCRLB. The information 

matrix, Jk , can be computed using Riccati-like recursion: 

where 

D12 
k 

D21 
k 

J - D22 D21(J + Dll)-lD12 k+l - k - k k k k 

E[ -fl~~logp(Xk+llxk)] 

E[_~~~+l 10gp(Xk+llxk)] 

(D~2f = E[-~~~+l 10gp(xk+1lxk)] 

E[-~~~:~ 10gp(Xk+llxk)] + E[-~~~:~ 10gp(ZkIXk+l)] 
\ J 

v 
Jk(Z) 

For linear Gaussian systems, it can be shown that [19] 

with J0
1 = Po. 

(5.50) 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

(5.55) 

5.2 PCRLB with Measurement Origin Uncertainty 

Let us consider nsC2 1) sensors, and let zk be the quantized measurement vector from 

sensor s. It is assumed that measurement noises of sensors are independent. Also due to 
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false alarms, the total number of measurements can vary among sensors at each time step k. 

Let Tn", be the total number of measurements from sensor s at time k. Let the observation 

set at time k from sensor s be 

{- (')8 }mr., 
Z '/, k i=l (5.56) 

where Tnk in general is random quantity. The are three different possibilities that could 

make Tn", number of measurements. First, these Tnk observations can all be false alarms. 

Second, there is one true detection and (Tnk - 1) false alarms and third possibility is that 

there might be no observations (Tnk = 0). 

Using measurement independent assumption, the measurement information, Jk(Z), is 

given by 

8=1 
118 

LJJ:(z) (5.57) 
8=1 

Now, from [26] and [20] we get 

00 

Jk(z) L p(Tnk)JJ:(z,Tnk) (5.58) 
mr.,=l 

where 

Jk(z, Tnk) (5.59) 
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and 

(5.60) 

We assume that false alarms have a uniformly distributed over the observation volume V. 

Then po(zk(i)) is given by 

Equation 5.60 then becomes 

po(zk(i)) 
1 

V 

[
(1 - c(mk)) c(mk) Lm~ (is (i))] 

V
mS + sVms-1 PI k 

k m k 
k i=1 

(5.61) 

(5.62) 

where, PI(zk(i)) is the pdf of the true observation, which is depend on Xk. The details of 

obtaining PI(zk(i)) with the quantized measurement are given in following section. 

5.3 peRLB with Quantized Measurement 

Due to the essence of quantization, we know that zk( i) has a discrete distribution and the 

only thing we can infer from zHi) = Q(zk(i)) about zk(i) is that a(i,k) S; zHi) < a(i+I,k) [21J. 

The encoding algorithms gives priority to send quantized measurements that can be encoded 

with less number of bits. Lets assume the cutoff length for encoded measurement is l bits. 

The equation 4.48 from Chapter 4 can be used to define PI (zk( i)), 

I,~k>i) x P{zk(i)) = Q(Yk(i))lxd 

(5.63) 
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For bearing only tracking, 

(5.64) 

where (Xb Yk) is the position of the target at time k and (xL yt.) is the location of the 8th 

sensor at time k. The measurement error vi:: is assumed to be a zero mean Gaussian random 

variable with standard deviation (J~. Then 

(5.65) 

where 

(5.66) 

It has been proven that the Jk(z) is related to Jk(z) by following proposition. Where Jk(z) 

is the counter part of Jk(z) when there is no measurement origin uncertainty [26]. 

(5.67) 

where Q2(Pd, A, ~k, V) is a constant scalar dependant on the probability of detection, the 

false alarm density, the covariance of observation noise and on the volume of the observation 

region. Now we calculate the Jk(z) with quantized measurements. From equation 5.65 we 
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Jk(Z) E [-~~~log Pl(Zk(i)lxk)] 

E [-~~~lOg It,i) x f~,S(Xk)] 

The equation 5.68 can be reduced to following form [21J. 

where 

fJ2log(j~'S (Xk)) 
8x~8xk 

8f~,S(Xk) 

8x~ 

EJ2]og(j~'S (Xk)) 
a(x)y 

a2 ]Og(jk,S(Xk)) 

axtax~ 

a2]Og(j~,S(Xk)) 

axtax~ 

a2]Og(j~'S (Xk)) 
a(x~)2 

f
i,s(X ) a2 fk,S(Xk) _ af~'s (Xk) afk,S(Xk) 
k k ax~ax'/, ax~ ax'/, 

(j~'s (Xk))2 

2<T~ - exp 2<T~ 
(a(Hl,k) -h(xk))2 (a(i,k) -h(xk))2 ) 

[a(Hl,k) -h(xk)]2 
2a~ [a(i,k) - h( xk)] exp 
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(5.68) 

(5.69) 

(5.70) 

It is not easy to obtain E [-~~~lOgpl(Zk(i)lxk)] analytically. So a numerical method is 
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used with J\!{-run Monte-Carlo simulation. 

!vI mis,j) 

-~ L L ICk,i) ( -8(')) 1 ~ 111 h x g Xk, zk '/, _.i -SC,)--Cs,j)C') 
" Xk- X k , Zk ~ -Zk ~ 

j=l i=l 

(5.71) 

where x{ and z~8,j) (i) are the realizations of state and measurement during the jth Monte­

Carlo simulation run. Using equations 5.71 and 5.57 we can write, 

71S A1 miS,j) 

-~LLLICk'i) ( -8(')))1 ~ 111 h x g Xk, zk '/, _ j -sC·)--CS,j)C·) 
" Xk-X k , Zk ~ -Zk ~ 

8=1 j=l i=l 

(5.72) 

where the Jk(z) is information contribution of measurements from all the sensors. From the 

equations 5.72 and 5.67 the following equation for calculating Jk(z) with measurement origin 

uncertainty and quantized measurement is derived. 

(5.73) 



Chapter 6 

SIMULATION STUDIES 

In this chapter, results of the simulation studies for the proposed distributed algorithm and 

the quantization and encoding strategy are presented. 

6.1 Simulation setup 

In the simulations studies we consider a two dimensional typical tracking example to show 

the effectiveness of the proposed algorithms. As shown in Figure 6.1, it consists two compu­

tationalnodes placed at (-15 x 103 ,15 x 103) and (15 x 103 ,15 X 103 ). Each node has three 

sensors reporting braring-only observations at a time interval of T = 308. The target motion 

model, which is nearly constant velocity, has the following linear-Gaussian target dynamics, 

(6.74) 
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Figure 6.1: The simulation environment 

where the target transition matrix F is given by 

F= 

1 TOO 

o 1 0 0 

o 0 1 T 

000 1 

and Vk is zero-mean white Gaussian noise with covariance Q given by 

I ~T3 lT2 0 0 

L 
2 

lT2 T 0 0 
n- 2 

"" -

l ~~2 r 0 0 lT3 
3 

0 0 IT2 
2 
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(6.75) 

(6.76) 
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Figure 6.2: Position RMSE with 64 bins quantization for target 1 

where q = 0.001 is the level of process noise in target motion. 

49 

Targets have different stating time and starting positions within the surveillance region. 

Target 1 and target 2 are present at k = 0, and their initial target positions are (-10 x 

103 , -15 X 103 ) and (-5 X 103 ,9 X 103 ) m. Target 3 enters late at time k = 10 from the 

position (15 x 103
, -10 x 103

) m. The targets' initial velocities are (5,5), (-4,3), (-5,2) 

ms-l. The target trajectories and sensor network arrangement are shown in Figure 6.1. 

The target generated measurements corresponding to target j on sensor i 

(6.77) 

where v1 is i.i.d sequence of zero-mean Gaussian variables with standard deviation 0.01 rad. 

The target jth location is dented by (x{, yt) and of ith sensor are denoted by (x~, y1). 

Additional parameters used in the simulations: The probability of target survival = 0.99; 



CHAPTER 6. SIlVIULATION STUDIES 

BOO 

700 

600 

:§: 
w 
(/) 
:;; 
0:: 500 
c 
2 
.~ 

n. 

400 

300 

200 
10 15 20 

lime steps 
25 30 

: 1\ 
. - _. _ .... :.,_ t .. 

:1 \,\. 
j , 

35 40 

Figure 6.3: Position RMSE with 64 bins quantization for target 2 
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Figure 6.4: Position RMSE with 64 bins quantization for target 3 
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The probability of target birth = 0.05; The probability of target spawning = 0; Number of 

particles representing one target = 1000; The average false alarm rate A = 4 x 1O-3rad-1
. 

The simulation results are based on 100 Monte Carlo runs. 

6.2 Simulation results 

Figures 6.2, 6.3 and 6.4 show position Root Mean Square Errors (RMSEs) when the mea­

surements quantized with uniform and nonuniform quantizations are used in tracking target 

1, 2 and 3. It is evident from the figures that the proposed non-linear quantization per­

forms better than linear quantization when same number of bins are used to quantize the 

measurements. 

To achieve the same tracking performance as uniform quantization, the proposed nonuni­

form quantization requires less number of bits for quantization than uniform quantization. 

This intern reduces the communications significantly. The Figures 6.5, 6.6 and 6.7 show that 

RMSEs of 64 bins nonuniform quantization and 128 bins uniform quantization are close. 

The Figure 6.8 shows the number of bits transmitted when false alarms are eliminated 

compared with no false alarm elimination and number of bits transmitted without any en­

coding. The figure indicates that the average number of bits transmitted is substantially 

reduced. When new targets are introduced the number of bits transmitted increases as the 

global estimates of the targets are not available. Once the target is initialized the Huffman 

dictionary takes into account of new target so the encoded measurements have less number 

of bits. Figures 6.9, 6.10 and 6.11 show that the performance does not change even when 

false alarm elimination process is in place. PCRLB bounds plotted with estimates of the 

targets confirms the effectiveness of the proposed distributed SMC-PHD filter algorithm. 

Figure 6.12 displays the results for Target-I. 
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Figure 6.8: Number of bits transmitted with and without false alarms elimination when 
A = 3.183 X 1O-lmd-1 
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Figure 6.12: Position RIVISE and PCRLB with 64 bins uniform quantization for target 1 



Chapter 7 

SUMMARY 

7.1 Conclusions 

In this thesis we have considered a distributed implementation of SMC-PHD filter and an 

efficient quantization and encoding for communicating measurements. Communication re­

sources need to be handled efficiently in sensor networks while maximizing the tracking 

performance. False alarms take significant communication resources unless it is handled 

properly. A nonuniform quantization via companding was implemented taking the advan­

tages of the filter properties. It ensures that the target originated measurements are quan­

tized with less errors than others. An effective way of eliminating the false alarms was 

also implemented. Posterior covariance was derived to access the algorithm using recursive 

formula for the Fisher Information Matrix. Simulation studies confirms, that the proposed 

quantization, encoding and false alarm elimination are shown to be more efficient in terms 

of communication resource utilization and tracking performance. The proposed distributed 

algorithm for SMC-PHD filter is also shown effective when the results were compared to its 

performance bound. 
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