
VERIFICATION AND REFINEMENT

THEORY OF ACTION INHERITANCE

VERIFICATION AND REFINEMENT

THEORY OF ACTION INHERITANCE

FOR CONCURRENT OBJECTS

By

UPASANA PUJARI, M.e.A., B.Sc.(HoNS.)

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree of

Master of Computer Science

McMaster University

© Copyright by Upasana Pujari, September 2009

MASTBR OF COMPUTBR SCIENCB (2009)

(Department of Computing and Software)
McMaster University

Hamilton, Ontario

TITLB: Verification and Refinement Theory of Action Inheritance for Concur
rent Objects

AUTHOR: Upasana Pujari, M.C.A. (N.I.T., Rourkela, India),

B.Sc.(Hons.) (Utkal University, India)

SUPERVISOR: Dr. Emil Sekerinski

NUMBBR OF PAGBS: vii, 152

ii

Abstract

Lime is an action-based concurrent object-oriented programming language.

Lime treats concurrency and object-orientation as a single concern and encap

sulates concurrent features within objects. In Lime objects, concurrency is

expressed with guarded methods and actions. Inheritance is a characteristic

feature of object-oriented programming languages. Lime supports inheritance

of methods.

In this thesis we extend class inheritance in Lime to include inheritance of

actions. This ensures that autonomous behavior of the class is also inherited.

Class inheritance also aids in verification and refinement of classes. We estab

lish class refinement rules for class inheritance. When these rules are satisfied,

the subclass is a subtype as well as a refinement of the parent class. Lime

uses modules as a means to define classes in terms of action systems. In our

research, we extend the modules to support class inheritance. In this extended

form, class modularization is useful for verification and class refinement.

Concurrent object-oriented programming languages are affected by the In

heritance Anomaly - a conflict between inheritance and concurrency. We show

that Lime's support for atomicity of methods and actions up to method calls

allows our model of classes' inheritance to avoid the problem of the Inheritance

Anomaly.

iii

Acknow ledgements

I am very grateful to my advisor, Dr. Emil Sekerinski, for giving me this

opportunity to work on the area that greatly interests me. I sincerely thank

Dr. Sekerinski for his thoughtful guidance, constructive criticism and constant

support throughout my study.

Many thanks to Dr. Ridha Khedri and Dr. Ryszard Janicki for examining

the thesis and for providing insightful comments for further improvement of
the thesis.

I would also like to thank my family for their long time support for my
studies.

IV

Contents

Abstract

Acknowledgements

1 Introduction

2 Related Work

2.1 Inheritance of Actions

2.2 Inheritance Anomaly

2.2.1 History-Sensitive Methods

2.2.2 Modification of Acceptable State

2.2.3 Solutions

3 Introduction Of Lime

3.1 Syntax Of Lime . .

3.2 Methods and Actions

3.3 An Example in Lime

3.4 Inheritance in Lime .

4 Mathematical Fundamentals

4.1 Verification of Statements .

iii

iv

1

5

5

6

7

9

10

16

16

18

18

20

22

22

4.2 Action System Model of Concmrency 27

4.3 Action System with Procedmes . . . 28

4.4 Parallel Composition of Action Systems. 29

4.5 Data Refinement 30

4.6 Superposition Refinement of Action Systems with Procedmes 34

v

CONTENTS

5 Concurrency and Modularization 37

5.1 Action Systems and Modules. 37

5.1.1 Module Representation of Parallel Composition of Ac-

tion Systems. 42

5.1.2 Module Representation of Data Refinement 45

5.1.3 Module Representation of Superposition Refinement. 47

5.2 Modules and Module Refinement 50

5.3 Classes and Class Refinement 53

6 Inheritance of Actions 63

6.1 Rationale for Inheritance of Actions . 63

6.1.1 To inherit actions or not . 63

6.1.2 To override actions or not

6.2 Role of Action Name and Guard.

6.3 Subclass Action and Superclass Action

6.4 Visibility Rules for Actions.

6.5 Module Representation of Class with Inherited Actions

6.6 Class Inheritance and Class Refinement.

6.7 Class Refinement Rules for Inheritance

6.8 Discussion .

7 Lime Examples

7.1 Food Court

7.2 Collection of Elements

8 Inheritance Anomaly

8.1 History-only Sensitive Methods

8.2 Modification of Acceptable States

8.3 Solution to Inheritance Anomaly with Guarded Actions

9 Conclusions

A Verification and Refinement of Inherited Lime Classes

A.1 Sum of number series to n

VI

67

69

69

72

73

79

80

83

84

84

90

102

102

104

105

111

113

113

CONTENTS

A.1.1 Class Definitions

A.1.2 Module Definitions

A.1.3 Verification and Refinement

A.2 Detail Proof.

A.3 Discussion

vii

113

115

117

118

148

CONTENTS

viii

Chapter 1

Introduction

Inheritance is a key feature of object-oriented programming languages. It

allows us to define new classes using existing classes. Each new class, also

known as child class, can inherit both data and behavior of the existing class,

also known as parent class. The child class can also extend the data and

behavior of the parent class by adding its own data and behavior elements.

Inheritance lets us establish a parent-child hierarchical relationship between

classes. Since inheritance allows code reuse in the subclasses, it can be a means

to faster program development and more reliable programs.

Inheritance lends itself to iterative form of program development. In each

iteration, existing classes can be extended to add new functionality. Step

wise refinement, developed in [31], is an approach to program development in

which a sequence of refinement steps is applied to the initial abstract speci

fication, transforming it to the final concrete implementation. The program

at each of the intermediate steps is more concrete than at the previous step.

Each refinement step brings the program closer to its final implementation by

adding new functionality while preserving the behavior of the program from

the previous step. When inheritance is constrained by Liskov and Wing's

requirement for behavioral notion of subtyping, the child class is assured to

preserve the behavior of the parent class. When inheritance is restricted to

a correctness-preserving form, then it can be applied as a refinement step in

program development.

1

Master's Thesis - U.Pujari McMaster - Computing and Software

Liskov and Wing's requirement for constraining the behavior of subtypes [19]

is stated as:

Let ¢(x) be a property provable about objects x of type T. Then

¢(y) should be true for objects y of type S where S is a subtype

of T.

In a concurrent system several processes can execute at the same time.

These processes can execute on different processors, potentially leading to

faster execution of the program. Concurrency also allows programs to be more

responsive by reducing waiting time. Since processes in a concurrent system

share resources and interact with each other, the behavior of a concurrent

system can be quite complex and difficult to replicate.

Lime is an action-based concurrent object-oriented programming language

developed in [27, 28]. Lime is based on the concepts of object-orientation

and action-system model of concurrency. In an object-oriented programming

language, objects are self-contained units that evolve independently of each

other. Each object has its own state space. In principle, all objects can

be concmrent as long as they do not refer to any global variables in com

mon. In Lime, both concurrent and object-oriented featmes are encapsulated

within objects. Therefore, in Lime an object is considered as a unit of concur

rency [27]. Benefitting from its concurrent and object-oriented features, Lime

presents class structure and process structure as a single design view. Lime

does not treat concurrency as a separate concern from objects and therefore

simplifies the design of concurrent object-oriented programs. Lime's model of

concurrent object-oriented programming allows concurrency to be treated as

an implementation issue that can be introduced in subclasses.

Concmrency in Lime classes is expressed in terms of actions that execute

autonomously. An action is a guarded command of the form A = g -+ S,

where g is a predicate known as the guard of the action and S is the body of the

action. In Lime, condition synchronization is achieved through method and

action guards. A Lime program can have active methods and actions in several

objects that can execute in parallel thus achieving intra-object concurrency.

Lime supports inheritance and behavior specifications in classes [18]. Classes

2

Master's Thesis - U .Pujari McMaster - Computing and Software

in Lime have two kinds of operations - methods and actions. During class

inheritance, methods can be inherited and overridden, and new actions can be

introduced in the subclass.

Unlike semaphores, monitors or condition variables, which lock an object

until an operation completes execution, Lime offers a finer-grained model of

concurrency by including the following three features - (i) atomicity of oper

ations upto method calls, (ii) allowing the operations to be enabled multiple

times and (iii) having several operations enabled at the same time while only

one progresses.

Inheritance Anomaly is a conflict between inheritance and concurrent fea

tures of Concurrent Object-Oriented Programming languages. Matsuoka and

Yonezawa first coined the term Inheritance Anomaly in [22]. When inheri

tance and concurrency are used together, it leads to a breakage of encapsu

lation - this is the phenomenon known as Inheritance Anomaly. The core

of the problem is the difficulty in inheriting behavior from a class that com

bines behavioral and synchronization code in its definition. Several researchers

have presented different solutions to this problem. Some of these solutions are

discussed in the next chapter.

The goal of this thesis is to extend Lime programming language by adding

inheritance of actions. In our research we extend class inheritance in Lime

to include inheritance of actions. Our design of class inheritance also allows

introduction of new behavior in terms of new methods in subclasses. We also

define the visibility rules for actions. We update the way Lime classes are orga

nized into modules and extend the module syntax to support inherited actions,

invariants and visibility specifiers. We also specify the class refinement rules

for class inheritance. These rules are justified with respect to superposition

refinement of action systems. The class refinement rules limit class inheri

tance with actions to a correctness preserving form. In this constrained from,

class inheritance can be viewed as a refinement of concurrent classes. Class

inheritance as class refinement is illustrated with formal proof in an example

of a sum of number series. We also present class inheritance with actions to

gether with Lime's class structure as a solution to the known manifestations

of Inheritance Anomaly.

3

Master's Thesis - U .Pujari McMaster - Computing and Software

Chapter 2 provides a brief introduction to inheritance of type-bound ac

tions in Action-Oberon. This chapter also provides an overview of Inheritance

Anomaly and gives the existing solutions of the problem. Chapter 3 gives

an overview of Lime as an action-based concurrent object-oriented program

ming language. Chapter 4 reviews the verification rules for Lime language

constructs as well as data refinement and superposition refinement of action

systems. In chapter 5, we present modularization of Lime classes. In this

chapter, we also specify module representation of Data Refinement, Superpo

sition Refinement and Lime Class Refinement. The remainder of this thesis

focuses on inheritance of actions. Chapter 6 develops the rules and designs the

specification for inheritance of actions. The class refinement rules for inheri

tance of actions are also presented in this chapter. Chapter 7 contains a small

collection of Lime programs that illustrate the use of inheritance of actions.

Chapter 8 of the thesis presents inheritance of actions in Lime classes as a

means to avoid the problem of Inheritance Anomaly. We conclude in Chapter

9 with a discussion on the contributions of this thesis and the future direc

tion in which inheritance of actions might go. In Appendix A, we present a

complete proof of verification and refinement of inheritance from a class with

actions.

4

Chapter 2

Related Work

2.1 Inheritance of Actions

Action-Oberon, which is an extension of Oberon-2, provides type-bound ac

tions along with type-bound procedures and plain actions in order to model

action systems [3].

Type-bound actions are bound to one or more types. A type bound action

declared as ACTION A(t : T) is an action A bound to the type T. Every

time an object of type T is created, an instance of the action A is also created

for the newly created object.

Action-Oberon allows inheritance of type-bound actions. However, the

language does not permit overriding of the type-bound actions. Since type

bound actions can be bound to more than one types, overriding of type-bound

actions would require multiple dispatch. As discussed in [3] the solution to

multiple dispatch would clash with independent extensibility of the system.

Instead, Action-Oberon achieves the effect of overriding by replacing the body

of the type-bound action with a type-bound procedure and by overriding the

type-bound procedure.

We illustrate this process of overriding with the fish example from [3]:

PROCEDURE (f : Fish) MoveRight ;

BEGIN INC (f.x)

END MoveRight;

5

Master's Thesis - U.Pujari McMaster - Computing and Software

PROCEDURE (s : Shark) MoveRight ;

BEGIN s.MoveRight ; INC(s.hunger)

END M oveRight ;

PROCEDURE (f : Fish) WantToMoveO BOOLEAN;

BEGIN RETURN TRUE

END WantToMove ;

PROCEDURE (s: Shark) WantToMoveO BOOLEAN;

BEGIN RETURN s.hunger < 10

END WantToMove;

ACTION (me: Fish) MoveRight

WHEN me. right & (me.x =J. width) & me. WantToMove ;

BEGIN me. MoveRight

END MoveRight;

In this example, overriding of the action M oveRight is effectively achieved

by the overridden procedures MoveRight for Fish and Shark. In contrast, Lime

actions are not bound to multiple types. Therefore we permit actions in Lime

classes to be inherited and overridden without any translations into procedure

or method calls.

2.2 Inheritance Anomaly

Inheritance Anomaly is a specific problematic condition that has been observed

in Object-Oriented Concurrent Programming languages. Object-oriented con

current programming languages draw on the benefits of both concurrency and

object-oriented programming. However, object-oriented concurrency and in

heritance have conflicting properties. The set of methods that can be invoked

on a concurrent object depends on the state of the object. Concurrent ob

jects specify synchronization constraints to restrict the methods that can be

6

Master's Thesis - U.Pujari McMaster - Computing and Software

invoked on the object in a given state. When a class inherits from a concurrent

class, it should inherit the synchronization code of the parent class in order

to preserve the concurrent behavior of the class. The problem condition is

characterized as - when the child class does inherit the synchronization code

it needs to non-trivially redefine the methods of the parent class. This leads

to a breach in encapsulation. Therefore, during inheritance, the presence of

concurrent features in a class causes a conflict in the object-oriented feature of

the class. This conflict between inheritance and concurrent objects is known as

Inheritance Anomaly. This term was first coined by Matsuoka and Yonezawa

in [22].

Since the synchronization scheme of Lime is based on guarded methods

and guarded actions, so we focus on the occurrence of Inheritance Anomaly in

methods with guards. In the next sections we discuss two conditions in which

Inheritance Anomaly can occur in methods with guards as presented in [22].

2.2.1 History-Sensitive Methods

When the synchronization scheme is based on method guards, the synchro

nization code for the method is a boolean expression known as the guard of

the method. When a guarded method is invoked, first the guard of the method

is evaluated. The method is executed only if its guard evaluates to true.

Inheritance Anomaly has been observed in guarded methods when the

new method added to the subclass is history-sensitive. A method is history

sensitive when its synchronization constraint depends on the past history or

trace behavior of the object.

We consider the example of bounded buffer from [22] to illustrate the

occurrence of Inheritance Anomaly in classes with history-sensitive methods.

This implementation of bounded buffer is not exactly a FIFO buffer as in and

out need to be incremented modulo SIZE. However, this is a classic example

used in the literature for discussions on Inheritance Anomaly. Therefore, in

our literature review we choose to use the example as such.

7

Master's Thesis - U.Pujari McMaster - Computing and Software

int in, out, buJ[SIZE] ;

pUblic:

}

void b_bufO {in = out = a ; }
void put(int i) when (in < out + SIZE)

{ buJ[in] = i ; in + + ; }
int getO when (in ~ out + 1)

{ int result = buf[out] ; out + +; return result; }

class gb_buf : b_buf {

bool after _put ;

public :

}

void gb_bufO { in = out = 0; after _put = false; }

int ggetO when (! after _put && (in ~ out + 1)) {

int result = buJ[out]; out + +; after _put = false; return result; }

/ / The following methods are redefined.

void put (int i) when (in < out + SIZE)

{buf[in] = i ; in + +; after_put = true; }

int getO when (in ~ out + 1) {

int result = buf[out]; out + +; afteLput = false; return result;}

The class b_buf represents a bounded buffer. It has a method putO that

adds an integer value to the buffer when it is not full; and a method getO

that retrieves an integer value from the buffer when it is not empty. The class

gb_buf inherits from the bounded buffer class b_buf and adds a new history

only sensitive method ggetO. The method ggetO is similar to getO except

that it cannot be invoked immediately after invoking putO. The guard of

ggetO needs to check if the method called immediately before it was the putO

method. The class gb_buf adds a new flag, after _put, to keep track of the

invocations of the putO method.

In the class gb_buf, addition of the history-sensitive method ggetO, makes

it necessary to redefine the methods putO and getO in order to set and reset

the newly added boolean flag after _put. Therefore, addition of a history-

8

Master's Thesis - U.Pujari McMaster - Computing and Software

sensitive method in the subclass of a concurrent class leads to a breakage in

encapsulation, thus resulting in Inheritance Anomaly.

2.2.2 Modification of Acceptable State

Inheritance Anomaly can also occur in classes with guarded methods when the

acceptable state of a method is changed. The next example is of the bounded

buffer along with the Lock mixin class from [22]. The Lock mixin class changes

the acceptable states under which the putO and getO methods are invoked.

class b_buf {

int in, out, but[SIZE] ;

public:

}

void b_bufO { in = out = 0 ; }

void put(int i) when (in < out + SIZE)

{ but[in] = i ; in + + ; }
int getO when (in ?:': out + 1)

{ int result = but[out] ; out + +; return result; }

class Lock {

bool locked ;

public:

}

void LackO { locked = false; }

void lockO when (! locked) { locked = true; }

void unlockO when (locked) { locked = false; }

/ / Ib_buf inherits from b_buf with Lock mixin class.

class lb_buf : b_buf, Lock {

public:

void lb_bufO ;

/ / The following methods are redefined.

void put(int i) when (! locked && (in < out + SIZE))

{but[in] = i; in++;}

9

Master's Thesis - U.Pujari McMaster - Computing and Software

int getO when (!locked && (in;:::: out + 1))

{ int result = buJ[out] ; out + +; return result; }

}

The class lb-buf inherits from b_buf and is with the mixed-in class Lock.

In the class lb_buf, in addition to their original synchronization constraints,

the methods putO and getO can only be executed when the locked attribute is

not true, i.e. when the object is not locked. The putO and getO methods from

b_buf must be redefined in class lb_buf in order to inherit the synchronization

code of the two methods and to add to it the locked constraints. This is the

Inheritance Anomaly observed in the case when an existing acceptable state

is modified by the presence of a mixin class.

2.2.3 Solutions

The problem of Inheritance Anomaly persists in many of the modern con

current object-oriented programming languages such as Java and eU [23]. In

the literature there are several approaches to solving or minimizing the prob

lem of Inheritance Anomaly. We discuss two of these approaches relevant to

Inheritance Anomaly in classes with method guards.

Synchronization Patterns [21]: This approach appeals to the notion of

aspect-oriented programming paradigm. Aspect-oriented programming focuses

on the concept of separating out cross-cutting concerns. Following this ap

proach, the solution to Inheritance Anomaly is achieved by separating out the

synchronization code from the rest of the implementation of the class. Synchro

nization pattern is one such methodology that expresses the synchronization

constraints separately in a concurrency block:

sync_patternname

add_structure . ..

add-func ...

mutex .. .

sync .. .

/ / additional data structures

/ / additional operations

/ / Locks

/ / Synchronization scheme

10

Master's Thesis - U .Pujari McMaster - Computing and Software

In this approach there are three building blocks: a structural block, a be

havioral block and a concurrency block. The structural block describes the rela

tionship between the classes, behavioral block describes the operations and the

concurrency block specifies the synchronization constraints. The structural,

behavioral and the concurrency blocks together generate the final program.

When a history-sensitive method or a change in acceptable state is introduced

in the child class, only the concurrency block of the child class needs to be

changed.

As discussed in [21, 23], the concurrency blocks for the classes b_buf and

gb_buf are given by b-bufSync and gb_bufSync as:

sync_pattern b_bufSync

add-Btructure / / empty

add_func / / empty

mutex per _object xl

sync

operation int get()

at b_buf exclusive xl

requires (@ ! empty @) false (wait)

operation void put(int i)
at b _buf exclusive xl

requires (@ !full @) false (wait)

sync_pattern gb_bufSync : inherit b_bufSync

add_structure after _put: boolean

sync

operation int get()

at gb_buf exclusive xl

requires (@ ! empty @) false (wait)

on_exit (@ after _put = false @)

operation void put(int i)
at gb_buf exclusive xl

requires (@ !full @) false (wait)

11

Master's Thesis - U.Pujari McMaster - Computing and Software

on_exit (@ after _put = true @)

operation int gget()

at gb_buf exclusive xl

requires (@ ! empty && ! after _put @) false (wait)

on_exit (@ after _put = false @)

Similarly, in the case of lb_buf, we only need to add the expression !locked

in the requires clause of the operations of the concurrency block lb_bufSync.

We observe that in both the cases, only the concurrency block is changed

with inheritance of classes. The structural and behavioral blocks are inherited

without any changes to existing methods. Therefore there is no breach of

encapsulation and Inheritance Anomaly is avoided.

Lime does not appeal to the notion of aspect-oriented programming. There

fore, this solution cannot be applied to class inheritance in Lime.

Guarded Methods as Conditional Critical Regions [15]: This ap

proach is based on nested guarded method calls with open call mechanism.

It also relies on super calls to invoke methods from the parent class. In

this approach, a guarded method is interpreted as a Conditional Critical Re

gion (CCR). Each guarded method establishes a critical region for accessing

a resource of the class, based on a conditional expression-the guard of the

method. Nested guarded method are interpreted as nested CCRs.

The solution to Inheritance Anomaly is realized by invoking the parent

class methods using super calls in a nested guarded method structure. The

nested method calls should be open calls - if the execution of a guarded

method M reaches a nested method call, the method M should release the

critical resource and execution of method M should be suspended at the point

of the nested method call. This restriction is essential in order to avoid dead

locks. Further, when the execution of the method is suspended, the invariant

for the resource should hold and when the suspended method resumes execu

tion, all the nested method guards upto the point of suspension must evaluate

to true.

12

Master's Thesis - U.Pujari McMaster - Computing and Software

Solution for History-Sensitive Methods

class b -buf {

int in, out, buf [SIZE] ;

public:

}

void b_bufO {in = out = 0 ; }

void put(int i) when (in < out + SIZE) { buJ[in] = i ; in + + ; }
int getO when (in ~ out + 1)

{ int result = buf[out] ; out + +; return result; }

class gb_buf : b_buf {

bool after _put ;

public :

}

void gb_buf 0 { after _put = false; }

int ggetO when (!afteLput && (in ~ ont + 1)) { return getO ; }

/ / The following methods are trivially redefined.

void put(int i) when (in < out + SIZE)

{ super.put(i) ; after _put = true; }

int getO when (in ~ out + 1)
{ int result = super.getO ; after _put = false; return result; }

Solution for Modification of Acceptable State

class b_buf {

int in, out, buf[SIZE] ;

public :

void b_bufO { in = out = 0 ; }

}

void put(int i) when (in < out + SIZE) { buJ[in] = i; in + + ; }
int getO when (in ~ out + 1)

{ int result = buf[out] ; out + +; return result; }

class Lock {

bool locked ;

13

Master's Thesis - U .Pujari McMaster - Computing and Software

public :

}

void LockO { locked = false; }

void lockO when (!locked) { locked = true; }

void unlockO when (locked) { locked = false; }

/ / lb_buf inherits from b_buf with Lock mixin class.

class lb_buf : b_buf, Lock {

public :

}

void lb_buf 0 ;
/ / The following methods are trivially redefined.

void put(int i) when (!locked) {super.put(i) ; }
int getO when (!locked) { return super.getO ; }

In both examples, the methods putO and getO in the classes gb_buf and

lb_buf achieve their functionality by invoking the super.putO and super.getO

methods. Therefore, the redefinition of these methods is trivial in nature.

Inheritance Anomaly is avoided in both the examples by using nested guarded

methods with open calls. In Chapter 8, we discuss how Lime has a similar

approach to solving Inheritance Anomaly with guarded methods and actions.

In literature, there are other approaches to alleviate the problem of Inher

itance Anomaly. For example, Jeeg [24] is a dialect of Java based on method

guards. It specifies the synchronization constraints in linear temporal logic

and appeals to the notion of aspect-oriented programming in its approach to

addressing Inheritance Anomaly. Fournet et al. [16] approach to dealing with

Inheritance Anomaly extends join calculus with classes and objects and applies

class inheritance for behavioral and synchronization inheritance. JAC [20] is

another extension of Java that relies on concurrency annotations to address

the problem of Inheritance Anomaly. It achieves condition synchronization

by using precondition annotation and guard annotation. A language indepen

dent aspect-oriented solution to Inheritance Anomaly is developed in [30].

This approach uses Microsoft Intermediate Language to specify the functional

components and aspects. It uses an aspect model to decompose and a weaver

14

Master's Thesis - U.Pujari McMaster - Computing and Software

model to compose the synchronization constraints and functional components.

15

Chapter 3

Introduction Of Lime

In an object-oriented programming language, objects are self-contained units

that evolve independently of each other. Since it is also an object-oriented

language, in Lime, an object is considered as a unit of concurrency [27]. Lime is

an object-oriented language that has concurrent features built into its classes,

and is based on the action system formalism.

Concurrency is introduced in Lime classes by adding actions to classes and

by adding guards to methods. The level of concurrency in Lime is classified as

quasi-concurrent, as at any given time several methods or actions in an object

may be enabled, but only one method or action can be executed. The method

or action, that is allowed to progress, is chosen non-deterministically. In an

object, methods as well as actions may be enabled repeatedly.

In a Lime program, an object corresponds to an action system with proce

dures as defined in [8, 29]. The Lime program itself corresponds to a parallel

composition of actions systems. The next section discusses Lime syntax and

its language features.

3.1 Syntax Of Lime

The formal syntax of the language is given in extended BNF below [28]. The

construct a I b stands for either a or b, [a] means that a is optional, and {a}

means that a can be repeated zero or more times:

16

Master's Thesis - U.Pujari McMaster - Computing and Software

class .. - class identifier ..
{ attribute 1 initialization 1 method 1 action} end

attribute .. - var variableList ..

initialization .. - initialization [(variableList)] statement ..
method .. - method identifier [(variableList[, res variableList])] ..

[when expression do] statement

action .. - action identifier [when expression do] statement ..
statement .. - assert expression 1 ..

designator List : = expressionList 1

designatorList :E expression 1

[designator : =] designator. identifier

[(expressionList)] 1

designator := new identifier [(expressionList)]1

var variableList; statement

begin statement { ; statement} end 1

if expression then statement [else statement] 1

while expression do statement

variableList .. - identifier List : type {, identifier List : type} ..

identifier List .. - identifier {, identifier} ..
designator List .. - designator {, designator} ..
expressionList .. - expression {, expression} ..

A class is declared by giving it a name and then listing all the attributes

(instance variables), initializations, methods, and actions. Both methods and

actions must have a name. Methods names need not be unique as methods

can be overloaded. However, action names must be unique. Both methods and

actions may optionally have a guard. The guard is a Boolean expression that

must only refers to attributes of the object itself and cannot contain method

calls. A method or action is enabled if its guard is true or missing, otherwise it

is disabled. A guarded object is an object with guarded methods. An object is

active if its class definition includes one or more actions, otherwise it is passive.

An active object with at least one enabled action is called an enabled object,

otherwise it is a disabled object.

17

Master's Thesis - U .Pujari McMaster - Computing and Software

Lime supports behavior specifications within its class definition. In a Lime

class, expressions are provided with a specialized assertion language that is

useful for writing behavior specifications. [18]

3.2 Methods and Actions

In a Lime program, methods can be invoked by name. Only enabled methods

can be executed. Actions, on the other hand, cannot be invoked by name. In

stead, when an action is enabled, it is executed autonomously. While methods

may have value parameters and may return a result, actions do not have any

parameters and they do not return any results, but they can affect the state

space of the object.

Methods and actions are atomic upto method calls. Execution of an action

or method gets suspended at the point where a method is called. Method

call may result in control being passed to another object. In that case, in the

original object, another enabled action or enabled method call can be executed

or a suspended method or action can resume its execution. This is in contrast

with Seuss approach [25], where only one call to a guarded method is allowed

and that method call has to be the first statement in an action or method.

3.3 An Example in Lime

We consider a simple example to demonstrate the various language features of

Lime. In this example, the Lime class represents a cup that can be filled and

emptied.

class Cup

var state : (full, half, empty)

var f, p : boolean

initialization state,!, p := empty,!alse,!alse

method fill

when 'f 1\ 'p 1\ (state =1= fUll) do

f := true

18

Master's Thesis - U .Pujari McMaster - Computing and Software

method pour

when of /\ op /\ (state i- empty) do

p := true

action doFill

whenf do

begin

f := false;

if state = half then state := full

else if state = empty then state := half

end

action doP our

end

whenp do

begin

p := false;

if state = full then state := half

else if state = half then state := empty

end

var c : Cup, n : integer;

begin n := 0; while n < 7 do c := new Cup end

In this example, the Lime class represents a cup that can hold some liquid.

At any given time, the cup can be in one of the following three states: full,

half (half-full or half-empty) and empty. Upon initialization, the state of the

cup is set to empty. The two activities that can be performed on the cup are

to fill it up or empty it out. The methods fill and pour are used to fill the cup

with liquid and pour the liquid out of the cup respectively. We assume that

the cup is filled up and emptied in steps of half a cup. For example, when fill

is called on an empty cup, after the method and the corresponding action are

executed, the state of the cup becomes half (half-full).

The method fill is enabled if the cup is not currently being filled or emptied

and also if the cup is not already full. Method fill then enables the action

19

Master's Thesis - U.Pujari McMaster - Computing and Software

doFill. Action doFill fills up the cup by changing the state from empty to

half or from half to full. Similarly, the method pour is enabled if the cup is

not currently being filled or emptied and also if the cup is not already empty.

Method pour then enables the action doPour. Action doPour empties the cup

by changing the state from full to half or from half to empty.

If the Lime program consists of a collection of such cups, at any given

time, each cup in the collection can have at the most one method or action

executing. Concurrent behavior of the program is expessed as follows: each

cup in the collection can have at most one method or action that can execute

concurrently with methods and actions being executed by the other cups in the

collection. If there are N cups in the collection, then there can be maximum

N number of operatons executing concurrently.

3.4 Inheritance in Lime

Apart from the usual benefits of inheritance, class inheritance is also useful in

Lime programs for introducing concurrency in subclasses. Given a class imple

menting (part of) a sequential program, a subclass of this class can implement

a corresponding concurrent program.

Lime differentiates between sub classing and subtyping [18]. Single sub

classing is achieved by the extend clause. Multi-subtyping is achieved by the

implement clause. Sub classing and subtyping together is achieved by the in

herit clause.

Lime uses three access modifiers to specify the visibility rules: public,

protected and private. Public variables and methods are visible to the class,

its subclasses and their objects. Protected variables and methods are visible

to the class itself and its subclasses. Private variables and methods are only

visible to the class itself and not its subclasses.

D extend c:
If a class D extends the class C, then D inherits all non-private variables of

C; D also inherits each of the non-private method of C such that it inherits

the method's signature and implementation. Since D does not inherit the

20

Master's Thesis - U.Pujari McMaster - Computing and Software

method's behavior, it can override the method without having to preserve the

superclass method's behavior.

D implement C1 , C2 ,··· Cn:
If a class D implements the classes C1 , C2 , ... Cn, then D preserves the

invariants of all the supertypes (C1 , C2 , . .. Cn); D inherits all non-private

variables from all the supertypes (Cll C2 , ••. Cn); D also inherits each of

the non-private method of all the supertypes, such that it inherits the

method's signature and behavior specifications. Since D does not inherit the

method's implementation, it should provide the method's implementation

or be declared as abstract. The method's implementation must preserve the

method's inherited behavior specifications.

D inherit c: It is equivalent to D extend C implement C.

If a class D inherits from the class C, then D preserves the invariants of C; D

inherits all non-private variables of C; D also inherits each of the non-private

methods of C, such that it inherits the method's signature, implementation and

behavior specifications. D may either keep the method's original implementa

tion or D may choose to override the method to provide a new implementation.

The new implementation for the method must preserve the method's inherited

behavior specifications.

Class inheritance in Lime should reflect Lime's model of concurrency that

views object-orientation and concurrency as a single design issue. Therefore,

in Chapter 6, we expand class inheritance in Lime using inherit clause to

include inheritance of actions.

21

Chapter 4

Mathematical Fundamentals

In this chapter, we review from related work, the verification rules and action

system formalism which form the mathematical foundation for verification and

refinement in Lime. In addition, we specify some new verification rules.

4.1 Verification of Statements

In this section we discuss the statements in Lime and their rules for verifica

tion as given in [28]. The correctness of all atomic statements of Lime can

be analysed by using Dijkstra's weakest precondition predicate transformer:

wp (S, c) is the weakest precondition such that S terminates and establishes

postcondition c. It is also assumed that all statements are monotonic, for any

statement S and any Boolean expressions b, c:

(b::::} c) ::::} (wp(S, b) ::::} wp(S, c)) (4.1)

At its core, Lime has the following atomic statements: the empty statement

skip, the assertion statement { b}, the guard statement [b], the multiple assign

ment x := e, the nondeterministic assignment x :E s, the nondeterministic

choice S n T between statements Sand T, the unbounded choice nx E s • S

and the sequential composition S; T. f[x\ e] denotes the expression f with

all free occurrences of x substituted bye, where x is a list of variables and e

a list of expressions. These rules apply when the evaluation of all expressions

22

Master's Thesis - U.Pujari McMaster - Computing and Software

succeeds.

wp(skip, c) c (4.2)

wp({b}, c) b/\c (4.3)

wp([b], c) b =? c (4.4)

wp(x := e, c) c[x\e] (4.5)

wp(x :E s, c) (\lxESoC) (4.6)

wp(S n T, c) wp(S, c) /\ wp(T, c) (4.7)

wp(nx E S 0 S, c) (\Ix E So wp(S, c)) x not free in c (4.8)

wp(nx 0 S, c) (\Ix 0 wp(S, c)) x not free in c (4.9)

wp(S; T, c) wp(S, wp(T, c)) (4.10)

When evaluation of expressions does not succeed, a different set of rules apply

factoring in the undefinedness of expressions. These rules are discussed later.

The nondeterministic ally initialized local variable declaration var x E

S ; S stands for nx E S 0 S. The local variable declaration var x : T; S

stands for nx 0 S, where x ranges over all elements of type T. The local vari

able declaration with initialization var v = Vo stands for var v E {vo}. The

corresponding derived rules are:

wp (var xEs ; S, c)
wp(varx: T; S,c)

wp(var v = vo, c)

\Ix E So wp(S, c) x not free in c (4.11)
\Ix 0 wp(S, c) x not free in c (4.12)

\Iv E {vo} 0 wp(S, c) v not free in c (4.13)

The guarded statement when b do S, the assert statement assert b do S

and the conditional statements are defined as:

when b do S

assert b do S

if b then S

if b then S else T

These are some derived rules:

wp(when b do S, c)
wp(assert b do S, c)

wp (if b then S, c)

[b] ; S
{b} ; S
([b] ; S) n [---,b]
([b] ; S) n ([---,b]; T)

b =? wp(S, c)
b /\ wp(S, c)
(b =? wp(S, c)) /\ (---,b =? c)

23

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Master's Thesis - U.Pujari McMaster - Computing and Software

wp(if b then 8 else T, c) - (b =? wp(8, c)) 1\ (-,b =? wp(T, cX)4.21)

Given the procedure declaration procedure p(x; res y)8; T with body

8 and scope T, the call p(e, v) within T is defined by var x, y ; x :=

e; 8; v := y

When evaluation of expressions does not succeed, the undefinedness of

expressions in statements should be taken into account. Let.0.. e represent the

definedness of a program expression e. A statement terminates if evaluation of

all expressions succeeds. The redefined weakest preconditions for statements

factoring in possibly undefined expressions are:

wp({b}, c)
wp([b], c)
wp(x := e, c)

.0..bl\bl\c

.0..bl\(b=?c)

.0.. e 1\ c[x\e]

(4.22)

(4.23)

(4.24)

The enabledness domain of 8 is defined by en 8 = -,wp(8,jalse) and the

. termination domain by tr 8 = wp (8, true). We have:

en({b}; 8)

en([b] ; 8)
en(nx E s • 8)
tr({b}; 8)

tr([b] ; 8)

en8

b 1\ en 8

(:3x E s • en 8)
b 1\ tr 8

en8

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

An iteration statement while 9 do S can also be expressed as: do 9 ---7 80d

where 9 ---7 8 is a guarded command with guard 9 and body 8. Here, 8 can be

executed repeatedly as long as the boolean condition 9 (the guard) evaluates

to true. We can generalize this to the following form for iteration over guarded

commands:

do go ---7 80

n gl ---7 81

od

24

Master's Thesis - U .Pujari McMaster - Computing and Software

We can also write the iteration statement as [26]:

An iteration statement can be expanded as:

do 9 -----+ Sod

if 9 then

S;

do 9 -----+ Sod

fi

We give the proof rules for iteration statement in terms of an invariant I and

a variant Vas:

=? WP(Si, 1), \Ii • 1 ::; i ::; n

=? V>O

I 1\ gi 1\ V = v =? wp (Si, V < v), \Ii· 1 ::; i ::; n

Then, I=? wp(do (ni • gi -----+ Si) od , I 1\ ,G).

(4.30)

(4.31)

(4.32)

where V is an integer expression, v is an auxiliary integer variable and

G = Vi gi is the disjunction of the guards of the guarded commands in the

iteration statement. Each iteration decreases the value of V and the iteration

statement becomes disabled when V = O.

We justify these proof rules based on the treatment of do loops in terms

of an invariant and a bound function in [17].

Partial correctness is sufficient for proving invariance properties. Partial

correctness is defined in terms of weakest liberal preconditions as: Statement S

preserves the invariant I means I =? wlp(S, 1). While the predicate wp(S, c)

is the weakest precondition for a statement S to terminate and establish the

postcondition c, the weakest liberal precondition wlp(S, c) is the weakest pre

condition for the statement S to establish c provided S terminates, defined as

wlp(S, c) = tr S =? wp(S, c). If all program expressions are defined, we have:

wlp({b},c)

wlp([b]' c)
b =? c

b =? c

25

(4.33)

(4.34)

Master's Thesis - U.Pujari McMaster - Computing and Software

wlp(x := e, c)
wlp(x :E S, c)
wlp(S; T, c)

c[x\e]

(Vx E S • c)
{= wlp(S, wlp(T, c))

(4.35)

(4.36)

(4.37)

Taking into account the undefinedness of program expressions, we have:

wlp({b},c)

wlp([b], c)
wlp(x := e, c)

.6.b/\b-:=>c

.6.b/\b-:=>c

.6. e -:=> c[x\e]

(4.38)

(4.39)

(4.40)

The (finite) conjunctivity of wlp follows from the (finite) conjunctivity of

wp. These wlp rule may be used in invariance proofs:

wp(S, b /\ c) wp(S, b) /\ wp(S, c)
wlp(S, b /\ c) _ wlp(S, b) /\ wlp(S, c)

(4.41)

(4.42)

The declaration of a class C translates to the declaration of a global variable

C that holds the set of all objects of class C and for each variable 1 of type

F, a global variable C.f mapping objects of C to values of F:

var C : set of Object

var C.f : Object -7 F

(4.43)

(4.44)

It is assumed that the type Object contains infinitely many elements, in

cluding the unique element nil. Accessing a variable 1 of object 0, written o.f

amounts to applying the function 1 to o. A variable assignment is equivalent

to a function update:

o.f

o.f := e

1(0)
1 :=J[o ~ eJ)

(4.45)

(4.46)

The expression 1 [a ~ r] is used for modifying function 1 to return r for

argument a. We have:

a.f[a ~ r]

b.f[a ~ r]

r
b.j, b =1= a

(4.47)

(4.48)

The nondeterministic assignment x := 7, defined as nh • x := h, assigns to

x an arbitrary value of its type:

wp(x := 7, c) = (Vx· c) (4.49)

26

Master's Thesis - U .Pujari McMaster - Computing and Software

wp(o.j := 7, c) - (Vh· c[I\l[o f- h]]) (4.50)

If I is the body of the initialization of class C, or skip if no initialization

is declared, M is the body of method meth of C, and A is the body of action

act. Let C.init represent this. a := 7 ; I, where a are the variables that are not

assigned to in I. The declaration of class C results in the following definitions,

for each method meth and action act:

C.new

C.meth

C.act

this :tf. C U {nil}; C:= C U {this}; C.init

{this E C} ; M

(nthis E C • A)

(4.51)

(4.52)

(4.53)

The class name is also used as a prefix for the method and actions names.

The expression x :tf. s replaces x :E s, where s is the complement of set s. The

action C. act is defined in terms of a nondeterministic choice in order to model

concurrency through interleaving: when two actions operating on disjoint state

spaces are enabled, they can be executed in parallel.

A new element of class C is created by finding an unused element of C,

adding that to C, and executing the body of the initialization. If v are the

formal parameters of the initialization:

o := new C(e) = var this, v ; v := e; C.new; 0:= this (4.54)

To illustrate parameter passing with methods calls, an atomic method call

is defined as follows: Suppose method m of class C is declared with value

parameters v and to return a result r. Then an atomic call c.m(e, r) for

c E C makes c and e to be the actual value parameters and r the actual

result parameter:

c. meth(e, r) var this, v, result ; (4.55)

this, v := c, e; C.meth; r := result

4.2 Action System Model of Concurrency

The action system formalism [4, 5, 2] is used to model the concurrent behav

ior of parallel and distributed programs. The behavior of the distributed and

27

Master's Thesis - U .Pujari McMaster - Computing and Software

parallel programs is described by the actions that can take place in the pro

cesses executing in the system. Each action is a guarded command of the form

A = g -----+ S, where g is a predicate known as the guard of the action and S is

the body of the action. Whenever the guard of the action is true, the action is

enabled. Only enabled actions can be chosen for execution. Execution of an

enabled action is achieved by executing the body of the action. In an action

system, more than one action can be enabled at the same time. Since actions

are atomic, these enabled actions can be executed in parallel as long as they do

not have any variables in common. The enabled action to be executed next is

chosen non-deterministically. One or more enabled actions are executed until

the action system terminates. An action system terminates when it does not

have any enabled actions.

An action system is a statement of the form:

A = begin var x := xv; do Al n ... n Am od end z

where x are the local variables of A, z are the global variables of A and AI,

... , Am are the actions of A. The local variables and global variables do not

overlap, x n z = 0. The state variables, w, of an action system are the union

of the local and global variables: w = x U z.

Two or more actions are independent if they do not have any state vari

ables in common. Otherwise they are termed as competing actions. Since

actions are atomic, and two or more actions can be executed in parallel only if

they are independent actions, therefore parallel execution of an action system

is guaranteed to give the same results as a sequential and non-deterministic

execution.

4.3 Action System with Procedures

An action systems with procedures [8, 29, 9] is a statement of the form:

A = I[var y*, x := Yo, XV ;

proc p; = PI ; .,. ; p~ = P n ;

28

Master's Thesis - U.Pujari McMaster - Computing and Software

ql = QI ; ... ; qm = Qm ;

do Al n··· n Ak od

II : z, r

The local variables x are local to the action system A. The variables y*

are exported global variables that can be used locally in A or globally by other

action systems in parallel with A. The variables z are imported global variables

that can be referred to in A but are not declared in A.
Similarly, the local procedures qi are local to the action system A and can

only be called by actions of A. The procedures pi are exportable procedures

that can be used locally by actions of A or by actions of some other action

system put in parallel with A. The procedures r are imported global procedures

that can be called by actions in A but are not declared in A. The variables

x, y, and z are pairwise distinct. The local and global procedures are also

distinct.

4.4 Parallel Composition of Action Systems

Individual action systems can be composed in parallel to construct a larger

system of interacting components. A and B are two action systems of the

form:

and

A = 1 [var v*, x := va, XO ;

* p * P proc PI = I;"'; Pn = n;

dl = DI ; '" ; di = Di ;

do Al n··· n Ak od

II : z, r

B = 1 [var w*, y := wo, Yo ;

proc q{ = QI ; ... ; q~ = Qn ;

el = EI ; ... ; ej = Ej ;

do BI n ... n Bh od

II : z', r'

29

Master's Thesis - U.Pujari McMaster - Computing and Software

where the module A has global variables z and global procedures r and the

module B has global variables z' and global procedures r'. In addition, xny =

0, v n w = 0, d n e = 0 and p n q = 0.

The parallel composition of A and B is defined as C = An B:

C = I[var '" g', x, y := go,:Eo, Yo ;

* p * P * Q * Q proc PI = I;"'; Pn = n; ql = I;" . ; qm = m;

dl = DI ; ... ; di = Di ; el = EI ; ... ; ej = Ej ;

do Al n ... n Ak n BI n ... n Bh od

]1 : a, b

where a = z U z' - (v U w) and b = r U r' - (p U q) are the imported global

variables and imported global procedures of the action system C. The exported

global variables of the two action systems are merged together into g = v U w.

The assumption here is that the action systems A and B do not have any

local variables in common, x n y = 0. If the two action systems do have

some local variables in common, the common variables can be renamed in one

action system to keep the local variables distinct.

In the parallel composition of two action systems, the local variables of the

two participating action systems are kept distinct unlike the global variables.

The global variables are shared among all the actions in parallel composition

in the resultant action system. The resultant action system has all the actions

from both action systems in parallel composition as well as all the local and

exportable procedures from both the action systems.

4.5 Data Refinement

Data refinement, as discussed in [1, 2], is a method of refinement of an ac

tion system which involves a change in the state space of the action system.

The technique of data refinement involves replacing the more abstract state

variables with more concrete state variables.

Ordinary (algorithmic) refinement of statement S by T, written S C T is

defined as:

S G:;; T - \:Ie· wp(S, c) => wp(T, c) (4.56)

30

Master's Thesis - U .Pujari McMaster - Computing and Software

This implies that T can be used for whatever S can be, but T may be "more de

terministic" , may have a weaker termination domain, and may have a stronger

guard.

Data Refinement of Statements: Data refinement S ~R T generalizes

algorithmic refinement by allowing Sand T to operate on different variables,

related through coupling invariant or refinement invariant R. Let S be a

statement over variables sand T a statement over variables t, where sand

t are disjoint. Let R be a predicate over sand t, known as the abstraction

relation between the variables. Data refinement of statement S by T through

R, written S L R T is defined as:

S LR T _ Vc· R 1\ wp(S, c) =} wp(T, 3s • R 1\ c) (4.57)

An equivalent formulation of data refinement is given in terms of the con

jugate weakest precondition predicate transformer wp [13J. Conjugate weakest

precondition is defined as wp(S, c) -,wp(S, -,c) . If all program expressions

are defined, we have from [28J:

wp({b}, c)
wp([b], c)
wp(x := e, c)

wp(x :E s, c)
wp(S; T, c)
wp(S n T, c)
wp(nx E s • S, c)

b =} c

bl\c

c[x\eJ

(3x E s • c)
wp(S, wp(T, c))

wp (s, c) V wp (T, c)

(3x E s • wp(S, c)) x not free in c

If program expressions are possibly undefined we have:

wp({b}, c)
wp([b], c)
wp(x := e, c)

~bl\b=}c

~b=}bl\c

~ e =} c[x\eJ

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)

(4.66)

(4.67)

In [13J data refinement is formulated in terms of the conjugate weakest

precondition predicate transformer wp, as:

S ~R T = R 1\ tr S =} wp(T, wp(S, R)) (4.68)

31

Master's Thesis - U .Pujari McMaster - Computing and Software

In case Sand T have variables x in common, the definition of data re

finement needs to be generalized to account for the common variables x. Let

S[x\x] stand for statement S with variables x substituted by variables x. It

is assumed that x are fresh variables:

S LR T R /\ tr S =? wp(T[x\x], wp(S, R /\ x = x)) (4.69)

A useful special case is the refinement of skip:

skip !:R T = R =? wp(T, R) (4.70)

Components of a sequential composition can be refined individually:

(4.71)

Data Refinement of Actions: [1, 2] Let A and A' be actions on the

state variables x, z and x', z respectively. Let R(x, x', z) be an abstraction

relation between the variables. If A is defined as gA -----+ sA and A' is defined

as gA' -----+ sA', then A LR A', if

(a) R /\ gA' =? gA

(b) (V c . R /\ gA' /\ wp(sA, c) =? wp(sA/, :3 x . R /\ c))

The first condition represents the refinement of guards. It requires that a

refinement step may strengthen the guard of an action. The second condition

represents the refinement of bodies. It requires that a refinement step expand

the domain of termination and decrease the non-determinism of the body.

Data Refinement of Action Systems with procedures: [8, 29, 9] Let

A and A' be two action systems of the form:

A= I[var z*,x:=Zo,X(J;

* p * P proc PI = 1;···; Pn = n;

qI = QI ; ... ; qm = Qm

do Al n··· n Ak od

]1: u, r

32

Master's Thesis - U.Pujari McMaster - Computing and Software

A' = I[* I I var z, x := Zo, Xo ;

proc p; = P~ ; ... ; p~ = p~ ;

q - Q' . . q - Q' 1- 1'"'' m- m

do A~ n ... n A~ n HI n ... n Hj od

]1: u, r

where Hj are the stuttering actions which correspond to a skip statement on

the global state of A. It is assumed that every exportable global procedure p is

locally enabled. Then A I;:R A' if there exists an abstraction relation R(x, x',
z, u, f) on local variables x and x', exported global variables z, imported global

variables u and the formal parameters f of the exportable global procedures

p, such that

(a) Initialization: R(Xo, x~, Zo, u, f),

(b) Procedures: Pi I;:R PI,

(c) Procedure enabledness : R /\ gPi =} gPI V gA' V gH,

(d) Main actions: A LR A',

(e) Continuation condition: R /\ gA =} gA' V gH,

(f) Auxiliary actions: skip LR H,

(g) Internal Convergence : R =} wp (do H od , true),

(h) Non-interference: R /\ wp(E, true) =} wp(E, R) for every action E of

an action system £ where A occurs in a parallel composition with the

action system £.

where Vi en Ai = gA is the disjunction of enabledness domains of the main

actions of A, Vi en A~ = gA' is the disjunction of enabledness domains of the

main actions of A', Vi en Hi = gH is the disjunction of enabledness domains

of the auxiliary actions of A' and niHi = H denotes the combined action for

the auxiliary actions of A'.

33

Master's Thesis - U .Pujari McMaster - Computing and Software

Condition (a) requires that initialization establish the abstraction relation.

Condition (b) requires that the body of each global procedure Pi is data re

fined by the body of the corresponding global procedure Pi. Condition (c)

requires that whenever R holds, if a global procedure Pi is enabled in A then

either the corresponding global procedure Pi or an action in AI is enabled.

Condition (d) requires that action A is data refined by the action AI using R.

Condition (e) requires that whenever R holds, the continuation condition of A
implies the continuation condition of AI. Condition (f) requires that the stut

tering action H acts as skip statement on global variables u, z. The stuttering

actions do not have any effect on the global state of the action system being

refined. Condition (g) requires that execution of stuttering actions in isolation,

must terminate. Condition (h) requires that upon parallel composition of the

action systems A and £, interleaved execution of actions from £ preserve the

abstraction relation.

4.6 Superposition Refinement of Action Sys

tems with Procedures

Superposition refinement [7] of action systems as a special case of data re

finement. With superposition refinement new function ali ties are added while

preserving the original computation of the action system. Adding new func

tionalities involves adding new state variables and modifying existing actions

or adding new actions or both.

In the superposition refinement of A, an action system with procedures, the

refining action system AI adds new local variables and new actions to modify

the new variables, but it has to retain all the old variables from A. The action

system AI may also modify the existing actions and global procedures of the

action system A.
Let A and AI be two action systems of the form:

A= I[var
proc

z*, x := Zo, Xo ;

* P PI = 1;

qI = QI ;

ok P ... ; p~ = n;

... ; qm = Qm

34

Master's Thesis - U.Pujari McMaster - Computing and Software

do Al n··· n Ak od

]1: u, r

A' = I[var z*,x,x' := Zo,Xo,x~;

proc p~ = P{ ; ... ; p~ = P~ ;

q - Q" . q - Q' 1- 1'"'' m- m

do A~ n ... n A~ n Bl n ... n Bj od

]1: u,r

Both A and A' have the same global variables. A' has new local variables

x'. A' also retains the old local variables x. For each old action Ai in A

there is a corresponding action A~ in A'. In addition, A' also has auxiliary

actions Bj that do not correspond to any actions in A. The existing actions

or global procedures of A may be modified by corresponding actions or global

procedures of A'.
If R(x, x', z, u, f) is an abstraction relation on local variables x and x',

exported global variables z, imported global variables u and the formal pa

rameters f of the global procedures p, then A LR A' under the following

conditions:

(a) Initialization: R(Xo, x~, Zo, u, f),

(b) Procedures: Pi L R Pi,

(c) Procedure enabledness : R A gPi :::} gPi V gA' V gB,

(d) Main actions: A LR A',

(e) Continuation condition : RAgA:::} gA' V gB,

(f) Auxiliary actions: skip ~R B,

(g) Internal Convergence : R:::} wp (do B od , true),

(h) Non-interference: R A wp(E, true) :::} wp(E, R) for every action E of

an action system [; where A occurs in a parallel composition with the

action system [;.

35

Master's Thesis - U .Pujari McMaster - Computing and Software

where Vi en Ai = gA is the disjunction of enabledness domains of the main

actions of A, Vi en A~ = gA' is the disjunction of enabledness domains of the

main actions of A', Vi en Bi = gB is the disjunction of enabledness domains

of the auxiliary actions of A' and niBi = B denotes the combined action for

the auxiliary actions of A'.
These conditions can be summarized as follows: Initialization must es

tablish the abstraction relation, R. The global procedures and actions of A
are data refined by the corresponding global procedures and actions of A'.
Whenever a global procedure is enabled in A, either the corresponding global

procedure or an action of A' is enabled. When R holds, the continuation con

dition of A implies the continuation condition of A'. The auxiliary actions Bj

do not have any effect on the old variables x,z, when R(x, x', z) holds. Also,

each auxiliary action establishes the abstraction relation. The execution of

auxiliary actions Bj eventually terminates. Execution of the action system A
in parallel composition with another action system E preserves the refinement

invariant for execution of any action of E

36

Chapter 5

Concurrency and

Modularization

On one hand we have classes that model object-oriented features and on the

other hand we have action systems that model concurrent behavior of pro

grams. In order to model concurrent object-oriented programs, Lime classes

are translated into a form analogous to action systems. We achieve this by

extending modules to correspond to action systems with procedures and by

translating each class in Lime into an equivalent module representation.

5.1 Action Systems and Modules

An action system with procedures includes variables, procedures and actions.

The variables in the action system can be exported global variables, imported

global variables or local variables. The procedures in the action system can be

exportable global procedures, imported global procedures or local procedures.

Consider the action system A:

A = I[var y*, x := Yo, Xo ;

* p * P proc PI = 1;···; Pn = n;

qI = Ql ; ... ; qm = Qm ;

do Al n··· n Ak od

II : z, r

37

Master's Thesis - U.Pujari McMaster - Computing and Software

In A, x are the local variables, y* are the exported global variables and z

are imported global variables, qi are the local procedures, p; are the exportable

global procedures and r are the imported global procedures.

An action system can be represented as a module in Lime using the syntax

for module definition in [27]. We extend this definition of modules to add visi

bility modifiers to its variables and procedure declarations. The local members

of the action system can be modeled by private members of the module, the

exported global members of the action system can be modeled by public mem

bers of the module and the imported global members (u) of the action system

can be modeled by importing another module where u are declared as public

members. A module also names the actions.

Since a class in Lime can specify a class invariant, the module represen

tation of the class must have a corresponding invariant. Therefore we extend

the definitions of modules to introduce invariants.

We define a module as:

module M import N, ...

private var v E V

public var w E W

invariant I

private procedure p(. ..) P

public procedure q(...) Q

action aA

end

A module is well-formed if-

(a) within the module, statements only refer to public variables and public

procedures of other modules.

(b) the invariant refer to only the variables of the module and of directly

or indirectly imported modules. It may also refer to private variables of

other modules

38

Master's Thesis - U.Pujari McMaster - Computing and Software

A module is correct if-

(a) Initialization: the initialization establishes the invariant

vE V/\WE W==}-I

(b) Procedure Correctness: all public procedures preserve the invariant

{I}Q{I}

(c) Action Correctness: all actions preserve the invariant

{I}A{I}

If these three conditions are satisfied, then I is the module invariant.

The invariant for a module is a predicate I(x, y, z,f) over the private vari

ables, public variables, imported public variables and formal parameters of the

public procedures.

With these additions, now the module is formally a structure with a set

of imported modules, a set of private variable declarations, a set of public

variable declarations, an invariant, a set of public procedure declarations, a

set of private procedure declarations and a named set of actions. The action

system with procedures A is represented as a module of the form:

module A import G

private var x := 10

public var y := Yo

invariant I(x, y, z)
public procedure Pl(SI : 81 , res tl : T1)

PI

public procedure Pn(sn : 8n, res tn : Tn)

Pn

private procedure ql (Ul : U1, res VI : VI)

Ql

private procedure qm(Um : Um, res Vm : Vm)

Qm

39

Master's Thesis - U.Pujari McMaster - Computing and Software

action al

Al

end

In the module A, the imported global variables z and the imported global

procedures r are imported from the module G where z and r are public vari

ables and procedures respectively.

As we are introducing invariants in modules, we define refinement in terms

of invariants as well. We consider first the data refinement of statement S by

statement T through the abstraction relation R as:

S C R T - R 1\ tr S =? wp(T, wp(S, R))

We decompose the abstraction relation R into an abstract invariant I over

the variables of S and a coupling invariant J over the variables of Sand T.

We define the data refinement of statement S by statement T through I and

J as:

S C 5 T = S 1;:1/\J T

and

S 1;:5 T = I 1\ J 1\ tr S =? wp(T, wp(S, I 1\ J))

Theorem 1. If S preserves I, then S 1;:5 T 11\ J 1\ tr S =? wp(T, wp(S, J))

Proof:

SCI T
-J

< definition >
I 1\ J 1\ tr S =? wp(T, wp(S, I 1\ J))

< conjunctivity >
I 1\ J 1\ tr S =? wp(T, wp(S, 1) 1\ wp(S, J))

< T preserves wp(S,1) as wp(S, 1) does not refer to variables of T;

conjunctivity >
I 1\ J 1\ tr S =? wp(S, 1) 1\ wp(T, wp(S, J))

40

Master's Thesis - U .Pujari McMaster - Computing and Software

< assumption: S preserves I >
I 1\ J 1\ tr S =? wp(T, wp(S, J)) D

Let S be a statement over variables v and I a predicate over v. Let

T be a statement over variables wand J a predicate over both v and w,

where v and ware disjoint. Using the formulation for data refinement based

on the conjugate weakest precondition predicate transformer wp defined as

wp(S, c) owp(S,oc) [13], and from Theorem 1, statement S is refined by

T through I and J, written S r;;;} T, is defined by:

S ~5 T = I 1\ J 1\ tr S =? wp(T, wp(S, J)) (5.1)

In case Sand T have variables x in common, the definition needs to be

extended. Let S be a statement over variables x and T be a statement over

variables x and y. Let T[x\x] stand for statement T with variables x substi

tuted by variables x. Assume that x are fresh variables:

S ~5 T I 1\ J 1\ tr S =? wp(T[x\x], wp(S, J 1\ x = x)) (5.2)

We present an equivalent notation for S ~5 T when Sand T have variables

x in common:

S(x) "5:~~:~y) T(x, y) ~ S(x) ~~~~y)/\x=x T(x, y) (5.3)

The special case is the refinement of skip is defined by:

skip "5:5 T - I 1\ J =? wp(T, J) (5.4)

Components of a sequential composition can be refined individually:

(5.5)

Invariant preservation is defined in terms of refinement as:

I {S} I S "5:[S (5.6)

41

Master's Thesis - U .Pujari McMaster - Computing and Software

5.1.1 Module Representation of Parallel Composition

of Action Systems

Consider the module representation of two actions systems A and B:

and

module A import G

private var x := :zo
public var v := Vo

invariant J(x, v, Z,jA)

public procedurepl(sl: 81 , res tl: T1)

PI

public procedure Pn(Sn : 8n, res tn : Tn)

Pn

private procedure d1 (Ul : U1 , res II : L1)

Dl

private procedure di (Ui : Ui , res li : Li)

Di

action al

Al

end

module B import H

private var y := Yo

public var w := Wo

invariant J (y, w, Z',jE)

public procedure ql(S~ : 8{, res t{ : Tn
Ql

42

Master's Thesis - U.Pujari McMaster - Computing and Software

public procedure qm(s~ : 8~, res t~ : T~J

Qm

private procedure el(u~ : U{, res Z~ : VI)
EI

private procedure ej (uj : U;, res Zj : L~)
Ej

action bl

Bl

end

where the module A's global variables z and global procedures r are imported

from module G; the module B's global variables z' and global procedures r'
are imported from module H. fA are the formal parameters of the public pro

cedures of nlOdule A and fB are the formal parameters of the public procedures

of module B. In addition, x n y = 0, v n w = 0, d n e = 0 and p n q = 0.

I(x, v, Z,jA) is the module invariant for A and J(y, w, Z',jB) is the module

invariant for B.

The module representation of parallel composition of A and B is defined

as C = AnB:

module C import G, H

public var g := go

private var x, y := XQ, Yo

invariant K(x, y, g, a,j)

public procedure Pl(SI : 81 , res tl : TI)

PI

43

Master's Thesis - U .Pujari McMaster - Computing and Software

Pn

public procedure ql(sf : S{, res tf : T{)
Ql

public procedure qm(s:n : S:n, res t:n : T:n)
Qm

private procedure d1 (Ul : U1 , res II : L1)

Dl

private procedure di (Ui : Ui , res li : Li)

Di

private procedure el(u{ : U{, res l{ : L~)

El

private procedure ej (uj : U;, res lj : Lj)
Ej

action al

Al

action ak

Ak
action b1

Bl

end

where g = v U w are the exported global variables of C. a = z U z' - (v U w) are

the imported global variables and b = r U r' - (p U q) are the imported global

procedures of the action system C. I = IA U IE are the formal parameters of

the public procedures of C.

44

Master's Thesis - U .Pujari McMaster - Computing and Software

5.1.2 Module Representation of Data Refinement

Let A and A' be two action systems of the form:

module A import G

private var x := XO

public var z := Zo

invariant I(x, z, u,f)

public procedure Pl(SI : 81 , res tl : T1)

PI

public procedure Pm(sm : 8m, res tm : Tm)

Pm

private procedure Ql(Ul : U1 , res VI : VI)

Ql

private procedure qn(Un : Un, res Vn : Vn)

Qn

action al

Al

end

module A' import G
. t I I prlva e var x := Xo

public var z := Zo

invariant J(x, x', z, u,f)

public procedure PI (SI : 81 , res tl : T1)

P' 1

public procedurepm(sm: 8m, res tm: Tm)
pI

m

45

Master's Thesis - U .Pujari McMaster - Computing and Software

private procedure qi (UI : Ul, res VI : VI)

Q{

private procedure qn(Un : Un, res Vn : ~1)

Q~
action al

A' I

action ak

A' k

action hI

HI

action hz

Hz

end

It is assumed that every exportable global procedure Pi is locally enabled.

I(x, z, u, f) and J(x, x', z, u, f) are the invariants of A and A' respectively, on

local variables x and x', exported global variables z, imported global variables

U and the formal parameters f of the exported global procedures p. Then A
is data refined by A', written A c) A', if the following conditions hold:

(a) Initialization: I(Xo, 20, u,j) 1\ J(Xo, x6, 20, u,j),

(b) Procedures: Pi C) PI,

(c) Procedure enabledness : I 1\ J 1\ gPi =? gPI V gA' V gH,

(d) Main actions: A 1;:) A',

(e) Continuation condition : I 1\ J 1\ gA =? gA' V gH,

(f) Auxiliary actions: skip 1;:) H,

(g) Internal Convergence: I 1\ J =? wp(do H od , true),

46

Master's Thesis - U.Pujari McMaster - Computing and Software

(h) Non-interference: 1/\ J /\ wp(E, true) =?- wp(E, J) for every action E of

an action system E where A occurs in a parallel composition with the

action system E.

where Vi en Ai = gA is the disjunction of enabledness domains of the main

actions of A, Vi en A~ = gAl is the disjunction of enabledness domains of the

main actions of A', Vi en Hi = gH is the disjunction of enabledness domains

of the auxiliary actions of A' and niHi = H denotes the combined action for

the auxiliary actions of A'.

5.1.3 Module Representation of Superposition Refine

ment

In superposition refinement of action systems [7] new non-public state variables

may be added; existing actions or procedures may be modified and new actions

or procedures may be added in the concrete action system.

Let A and A' be two action systems of the form:

module A import G

private var x := Xo

public var z := Zo

invariant I(x, z, u,j)

public procedure P(SI : 81 , res tI : TI)

PI

public procedure p(sm : 8m, res tm : Tm)

Pm
private procedure qI (UI : Ull res VI : VI)

QI

private procedure qn(Un : Un, res Vn : 11;1)

Qn

action aI

Al

47

Master's Thesis - U .Pujari McMaster - Computing and Software

end

module A' import G
. t I I prIva e var x, x := Xo, Xo

public var z := Zo

invariant I(x, x', z, u,j)

public procedure P1(Sl : 81 , res t1 : T1)
pi

1

public procedure Pm(sm : 8m, res tm : Tm)
pi

m

private procedure q1 (U1 : Ul, res VI : VI)

Q{

private procedure qn(Un : Un, res Vn : Vn)

Q~
action a1

A' 1

action ak

A' k

action b1

B1

action bl

BI

end

Both A and A' have the same exported global variables. A' has new local

variables x'. A' also retains the old local variables x. For each old action Ai in

48

Master's Thesis - U.Pujari McMaster - Computing and Software

A there is a corresponding action A~ in A'. In addition, A' also has auxiliary

actions Bj that do not correspond to any actions in A. The existing actions

or global procedures of A may be modified by corresponding actions or global

procedures of A'.
I(x, z, u, f) and J(x, x', z, u, f) are the invariants of A and A' respec

tively, on local variables x and x', exported global variables z, imported global

variables u and the formal parameters f of the exported global procedures p.

Then A is refined under superposition by A', written A 1;;;;5 A', if the following

conditions hold:

(a) Initialization: I(:rv, 20, u,j) 1\ J(:rv, x~, 20, u,j),

(b) Procedures: Pi 1;;;;5 P~,

(c) Procedure enabledness : I 1\ J 1\ gPi =} gP~ V gA' V gB,

(d) Main actions: A 1;;;;5 A',

(e) Continuation condition : I 1\ J 1\ gA =} gA' V gB,

(f) Auxiliary actions: skip 1;;;;5 B,

(g) Internal Convergence: I 1\ J =} wp(do B od ,true),

(h) N on-interference : I 1\ J 1\ wp (E, true) =} wp (E, J) for every action E of

an action system £ where A occurs in a parallel composition with the

action system £.

where Vi en Ai = gA is the disjunction of enabledness domains of the main

actions of A, Vi en A~ = gA' is the disjunction of enabledness domains of the

main actions of A', Vi en Bi = gB is the disjunction of enabledness domains

of the auxiliary actions of A' and niBi = B denotes the combined action for

the auxiliary actions of A'.

49

Master's Thesis - U .Pujari McMaster - Computing and Software

5.2 Modules and Module Refinement

In Lime, module representation is used to represent a program in an action

system format in order to model the concurrent behavior of the program.

Module actions are executed atomically - either an action is enabled and can

be executed to completion or it is not enabled, which is unlike class actions

that are atomic only up to method calls [27].

A Lime program P is a collection of modules Mi representing the classes

and a main statement S. We write the program P as:

program P import MI , M2 , •.• ; S

A program is well-formed if -

(a) the statement S refers to only the public variables and public procedures

of the imported modules.

(b) the import structure of modules is acyclic.

In this formulation, a program is an action system in which S is the initial

ization, and the action system contains all variables, actions and procedures

of all (transitively) imported modules. Thus, a program with imported mod

ules is a parallel composition of action systems represented by the imported

modules.

program P import M I , ... ; S =
var v, W, ... ;

procedure p(...) P, procedure q(...) Q, ... ;
S;

do Ai n ... od

The invariant of the program is a predicate I such that S establishes I

and all actions Ai preserve I. This condition is only on actions and not on

procedures as procedures are ultimately called from actions and actions are

atomic.

Let M be a module with invariant I. A module N does not interfere with

M if initialization of N preserves I and all actions of N preserve I. Again,

this condition is only on actions and not procedures.

50

Master's Thesis - U.Pujari McMaster - Computing and Software

Theorem 2. Let M be a module with invariant I. If all other modules do not

interfere with M, then I is an invariant of the program.

Proof: Let a program P be defined as: program P import M, N I , N2 , ••. ; S

(a) Initialization of M establishes I and each action and procedure of M

preserves I, as I is the invariant of module M.

(b) Each of the other modules Ni imported in P does not interfere with the

module M. Therefore, for each module Ni of P, the initialization of Ni

preserves I and all the actions of Ni preserve I.

Since program P is a parallel composition of the modules M, NI, N2 , .•. ,

from (a) and (b) above, the initialization S of the program P establishes the

invariant I and all actions of the program P preserve the invariant I. Thus,

I is the invariant of the program.

o
Some special cases in which a module invariant can become a program invari

ant:

(a) If the invariant I of M refers to only the private variables of M.

(b) If the invariant I of M refers to public variables of M, and the modules

directly importing M do not interfere with M.

(c) If the invariant I of M refers to variables of an imported module N, and

all the modules directly importing N do not interfere with M.

Module Refinement Let M be a module of the form:

module M import ...

private var v E V

public var w E W

invariant I (v, w, u, 1)
public procedure ql("') QI

51

Master's Thesis - U .Pujari McMaster - Computing and Software

end

The module M is refined by another module MI. The invariant J of module

MI establishes the relation between the variables of M and MI. u are the global

imported variables, f are the formal parameters of the public variables.

module MI import . .. refines M

private var VI E VI

public var w E W

invariant J(v, VI, w, u,j)

public procedure ql("') Q{

action al A~

action bl B{

end

Module MI is well-formed if it includes the public variables, public proce

dures, and actions of M (though with possibly different bodies) and is oth

erwise a well-formed module. Module M is refined by module MI, written

M C MI, if

(a) Initialization: v E V 1\ VI E VI 1\ w E W ~ J

(b) Procedure Refinement: Qi c5 Qi,··.

(c) Procedure Enabledness: I 1\ J 1\ en Qi ~ en Qi V en AI V en BI

(d) Main Action Refinement: Ai c5 A~

(e) Main Action Enabledness: I 1\ J 1\ en Ai ~ en AI V en BI

(f) Auxiliary Action Refinement: skip ~5 BI

(g) Auxiliary Action Termination: I 1\ J ~ tr(do BI od)

52

Master's Thesis - U.Pujari McMaster - Computing and Software

where en A' stands for disjunction of enabledness domain of all A~ actions and

en B' stands for disjunction of enabledness domain of all BI actions.

Theorem 3. Let P be a program that imports (directly or indirectly) module

M. Let module M' be a refinement of module M. If all other modules do not

interfere with M' and M' does not interfere with all other modules, then P is

refined by replacing M with M'.

Proof: Let a program P be

programP import M, N I , N2 , ... Nk ; S. Let the set N
denote the set of other modules other than M in program P.

defined as:

{NI ,N2 , .•• Nd

Let the program P' be obtained by replacing the mod-

ule M by M' in program P. The program P' is defined as:

program P' import M', Nl, N2 ,··. Nk ; S

For each module Ni E N, module M' does not interfere with module Ni ;

module Ni does not interfere with module M', by assumption. Therefore,

program P' preserves the invariant of program P.

Module M' is a refinement of module M, M [: M', by assumption. For

each module Ni E N, N eN, as refinement relation is reflexive. Therefore,

program P (which is a parallel composition of modules M and N i) is refined by

program P' (which is a parallel composition of modules M' and N i), P [: P'.

o
If the invariant J of M' refers to only the private variables of M and

M', then no other module can interfere with M'. If M' does not import any

modules, then M' does not interfere with other modules.

5.3 Classes and Class Refinement

Lime classes are translated into action systems formalism by defining the class

within a module using module syntax with procedures and actions.

A class in Lime contains a set of variable declarations, an invariant, an

initialization statement, a set of method declarations, and a named set of

actions. The variables and methods of the class can be declared with public,

53

Master's Thesis - U .Pujari McMaster - Computing and Software

private or default visibility. We write a class C in Lime as:

class C

varu: U

private var v : V

public var w : W

invariant I

initialization K (e : E)

method m(q: Q, res b : B) M

private method n(s : S, res g : G) N

public method o(t : T, res h : H) a

action aA

end

The variables and methods with no access modifiers associated with them

are known as default variables and default methods respectively. In class C

above, variable u is a default variable and method m is a default method.

Default members of a class are not visible outside of the module where the

class is defined. Within the module containing the class definition, the default

members of the class are visible to all members of the module.

As discussed in [27], each Lime class can be defined within a module with

one module variable for each class variable, one procedure for each method,

a procedure for initialization and an extra variable for the objects populating

that class. The class invariant is translated into the invariant for the class

declaration within the module. Each action in the class is translated into a

corresponding action in the module. The variables map each object of the

class to the corresponding variable values. Each procedure takes an additional

value parameter, this, for the object to which the procedure is applied. In

contrast, for an action, this is assigned nondeterministically any object of

that class before the action is executed. All objects are of type Object. It is

assumed that type Object is infinite and contains an unique element nil. Class

initialization is translated to a procedure new that takes an additional result

54

Master's Thesis - U.Pujari McMaster - Computing and Software

parameter this. The parameter this returns a newly created object which is

not nil and which is not in the set of existing objects of this class. x :1:- s is

used as a shorthand for x :E s.
The class definition for G within a module amounts to following module

declarations:

private var G : set of Object = {}

var u : Object ----+ U

private var v : Object ----+ V

public var w : Object ----+ W

invariant (V this E G • I)
public procedure G.is(x : Object; res r : boolean)

r:= x E G

procedure G.new(e : E, res this: Object)

this:1:- GU{nil}; G:= GU{this}; K

procedure G.m(this : Object, q : Q, res b : B)
{this E G} ; M

private procedure G.n(this : Object, s : S, res g : G)

{this E G}; N

public procedure G.o(this : Object, t : T, res h : H)

{this E G}; 0
action G.a

var this : E G • A

In the class definition within the module we introduce a procedure G. is for

a class G, which performs a type test. It is commonly invoked as r := x is C

rather than C.is(x, r). This procedure is useful for performing a type test from

outside of a module. However, this also means that refinement only works for

programs that do not contain type tests in general: If a program includes the

test x is C and C is replaced by C', even if C' is a refinement the resulting

program is not.

If a class is defined as private in a module, then all variables and procedures

become private to the module. If C is defined public, then private and default

variables and methods become private variables and procedures outside of

55

Master's Thesis - U .Pujari McMaster - Computing and Software

the module and public variables and methods become public variables and

procedures. The default and public variables of a class may be modified by

other procedures and methods of the module.

A class is well-formed if the resulting module is well-formed and the private

variables and methods of the class are only referred to within the class. A class

is correct if following three conditions hold:

(a) Constructor Invariant Preservation:

{Vthis E C· I} (this :~ C U {nil}; C '- C U {this} ; K) {Vthis E

C· I}

(b) Public Method Invariant Preservation:

{V this E C • I} ({this E C} ; M) {V this E C· I}

(c) Actions Invariant Preservation:

{Vthis E C • I} (nthis E C • A) {Vthis E C • I}

Theorem 4. Suppose I is an invariant of class C in module M. If (after

translating all methods to procedures) all other procedures and all other actions

of M preserve (l/this E C • I), then (l/this E C • I) is a module invariant.

Proof: Within the module M, the initialization of C with {} trivially estab

lishes (Vthis E C • I). All methods and actions of C preserve (V this E C • I),
since (V this E C· I) is the invariant of class C. By assumption, all other

procedures (after translation) and actions of M preserve (V this E C· I) as

well. Therefore, (V this E C • I) is an invariant of the module M. D

As a consequence, if I is only over the private variables of C, then (Vthis E

C • I) is a module invariant if it is a class invariant. In general a method

needs to not only to preserve the class invariant, but also the globally stated

module invariant.

We allow a module to contain more than one class definitions. In that

case, a module is allowed to have several invariant clauses. Each class defined

within the module contributes one invariant clause. All the invariant clauses

from all the classes in the module are conjoined to form the module invariant.

Each class defined within a module has to preserve the module invariant.

56

Master's Thesis - U .Pujari McMaster - Computing and Software

Class Refinement Class refinement is based on the notion of data refine

ment of action systems with procedures [28]. A class D refining another class

C is well formed if it includes the public variables, public methods, and actions

of C (though with different bodies).

Consider the classes C and D declared below:

class C

varu: U

private var v : V

public var w : W

invariant I

initialization K

method m1 M1

public method 01 0 1

end

class D refines C

var u' : U'

private var v' : V'

public var w : W

invariant J

initialization K'

method m1M{

public method 01 O{

action a1 A~

57

Master's Thesis - U .Pujari McMaster - Computing and Software

end

In order to establish the conditions under which class C is refined by class

D, we translate the Lime classes into action systems with procedures. This

translation into action systems is achieved by defining the classes C and D in

a module M. Class refinement is verified under the conditions for data refine

ment between action systems. We can then reason about refinement of class

C by class D in terms of refinement of the corresponding class declarations

within the module M under the conditions for data refinement.

The class definition of C within a module M amounts to following module

declarations:

private var C : set of Object = {}

var u : Object -7 U

private var v : Object -7 V

public var w : Object -7 W

invariant (V this E C • 1)
procedure C.new(res this: Object)

this :tJ- C U {nil}; C:= C U {this} ; K

procedure C. ml (this: Object)

{this E C}; Ml

public procedure C.ol(this : Object)

{this E C}; 0 1

action C.al

var this :E CoAl

The class definition of D within a module M' amounts to following module

declarations:

private var D : set of Object = {}

var u' : Object -7 U'

private var v' : Object -7 V'

58

Master's Thesis - U .Pujari McMaster - Computing and Software

public var w : Object -------+ W

invariant (Vthis ED· J)
procedure D.new(res this: Object)

this :¢:. D U {nil} ; D := D U {this} ; K'

procedure D.ml(this : Object)

{this E D} ; M{

public procedure D. 01 (this : Object)

{this E D}; O~

action D.al

var this :E D • A~

action D.b1

var this :E D • HI

We extend the definition of Class Refinement from [28] so that the abstract

class is refined by the concrete class through the class invariants instead of the

refinement invariant.

Definition 5.1 (Class Refinement). Let C be a class with default variables

u, private variables v, and public variables w. Let D be a class with default

variables u', private variables v', and public variables w. We assume that

both classes have the same method names and parameter and return types,

and that each action defined in C is also defined in D . However, class D

may have additional actions, called auxiliary actions, B. Let J(u, v, w) and

J (u, u', v, v', w) be the class invariants of classes C and D respectively. Class

C is refined by D through J and J, written C c::: 5 D, if following conditions

hold:

(a) Program Initialization: When no objects exists, the invariants holds:

c={}J\D={}=?JJ\J

59

Master's Thesis - U .Pujari McMaster - Computing and Software

(b) Object Creation: The creation of a C object is refined by the creation of

a D object:

C.new cj D.new

(c) Method Refinement: Every public method 0i of C is refined by the cor

responding method in D:

Method Enabledness: For every public method 0i in C J either the cor

responding method of D or some action in D is enabled:

11\ J 1\ en C.o i 1\ tr C.oi ::::} (enD.oi V enD.a V enD.b)

(d) Main Action Refinement: Every action ai of C is refined by the corre

sponding action in D:

Main Action Enabledness: For every action ai in C J some action in D

is enabled:

I 1\ J 1\ en C. ai 1\ tr C. ai ::::} (en D. a V en D. b)

(e) Auxiliary Action Refinement: Every new action bi of D refines skip:

Auxiliary Action Termination: The computation of auxiliary actions ter

minates eventually:

I 1\ J ::::} wp(do D.b od ,true)

60

Master's Thesis - U .Pujari McMaster - Computing and Software

where Vi en D. ai = en D. a is the disjunction of enabledness domains of the

main actions of D} Vi en D. bi = en D. b is the disjunction of enabledness

domains of the auxiliary actions of D and niD.bi = D.b denotes the combined

action for the auxiliary actions of D.

The conditions for data refinement of action systems with procedures and

invariants require that the invariants hold even before any instances of the

classes are created. The creation of object instances preserve the invariants.

Each public method and main action in C is data refined by the correspond

ing public method and main action of D. This means that the corresponding

methods and actions of D have the same effect on the state space of C as the

methods and actions of C. The auxiliary actions of D do not have any effect

in the state space of C. Each method and action of D also preserves the in

variants. The continuation condition for C implies the continuation condition

for D. In other words, whenever the action system representing C terminates,

the action system representing D terminates. Therefore, refinement increases

the domain of termination. The auxiliary actions D do not have any effect

in the state space of C, and their computation eventually terminates. So the

auxiliary actions do not introduce non-termination in class D.

This definition of class refinement is based on the concept of the refinement

of action systems with procedures, in [9, 10, 11] and the treatment of object

identities in [27].

In general, a module can consist of several classes. It is possible to simul

taneously refine more than one class. Consider for example,

module M

/ / class definition for class C1

/ / class definition for class C2

/ / class definition for class Dl

/ / class definition for class D2

end

Module M contains class definitions for Cll C2, Dl and D2 where classes

Dl and D2 simultaneously refine classes C1 and C2 respectively.

61

Master's Thesis - U.Pujari McMaster - Computing and Software

In the next chapter we present the design issues and rules for class inheri

tance in Lime that includes inheritance of actions and allows new methods to

be added in the inheriting class.

62

Chapter 6

Inheritance of Actions

6.1 Rationale for Inheritance of Actions

In Lime, inheritance of classes using inherit clause establishes a subtype rela

tionship between the child class and the parent class. One of the requirements

for a subtype relation between the classes is that a child class object can be

substituted for a parent class object.

When only syntactic conformance is taken into account, inheritance for

subtyping is limited to matching the method signatures of the parent and child

classes. For semantic conformance, subtyping by inheritance must include

preservation of behavior of the objects in subtyping relation. A child class

that is a subtype of a parent class must preserve the behavior of the parent

class so that an instance of the child class can replace an instance of the parent

class without any change in the observable behavior.

The goal of our research is to extend the design of class inheritance in Lime

to include inheritance of actions. As the first step, we need to establish the

necessity of inheritance of actions during class inheritance, so that a subtype

relation holds between the child and parent classes.

6.1.1 To inherit actions or not

Let us consider a Lime class with only methods and no actions. The behavior

of this class is expressed in terms of the behavior specifications of its methods.

63

Master's Thesis - U .Pujari McMaster - Computing and Software

In this case, class inheritance with inherit clause as specified in [18] is sufficient

for ensuring behavior preservation from parent to child class.

In Lime, a class definition can include methods as well as actions. Part of

the functionality of this class is achieved by the execution of enabled methods.

The remaining part of the functionality is achieved by the autonomous execu

tion of enabled actions. Therefore, behavior of this class is expressed in terms

of the behavior specifications of its methods and actions. Class inheritance re

stricted to inheritance of methods alone, is not sufficient for ensuring behavior

preservation from parent to child class. In that case, the child class inherits

and preserves only the behavior specified by the methods of the parent class.

Instead, the child class should be able to inherit and preserve the reactive as

well as autonomous behavior of the parent class by inheriting methods as well

as actions from the parent class.

To illustrate our point, we present the following example of a Card.

The class Card represents the membership card to a club. The class stores

information on the cardholder, issue date, expiry date, and the status of the

membership. For simplicity, we focus only on the expiry date and membership

status. The variable dtOjExpiry represents the date of expiry for the card. The

variable status represents the membership status for the cardholder. The status

can be valid, renew (card membership needs to be renewed before expiry date)

and invalid (when the membership has expired without being renewed by the

expiry date).

It is assumed that the Lime program containing this class has access to a

method that returns the current date and stores it in a global variable Today.

The value nullDate is used as the nil value for Date variable which sets all the

fields of the Date variable to zeros. Without specifying the implementation,

it is assumed that two Date values can be assigned to each other, compared

and subtracted. The result of an assignment operation is that individual fields

of the Date (day, month and year) are assigned to the corresponding fields of

the date on the right hand side of the assignment statement. The result of

subtraction operation is the number of days between the two dates. A Date

value can also be compared with the nullDate.

64

Master's Thesis - U.Pujari McMaster - Computing and Software

class Card

public var dtOjExpiry : Date

public var status: (valid, renew, invalid)

public var c : boolean

initialization dtOjExpiry, status, c := NullDate, valid,false

public method setExpiry(de : Date)

when de =J. NullDate do

dtOjExpiry := de

public method chkExpiry

when dtOjExpiry =J. NullDate do

c := true

action doCheck

end

when c do

begin

assert Today =J. NullDate ;

c := jalse ;

if dtOjExpiry < Today then status := invalid

else if dtOjExpiry - Today> 10 then status := valid

else stat'LLs := renew

end

Upon initialization, dtOjExpiry is set to NullDate and status is set to valid.

The method setExpiry sets the date of expiry in the dtOfExpiry variable. It

is enabled only if the date parameter to the method is not NullDate. Method

chkExpriy is enabled only if dtOjExpiry is not NullDate, Method chkExpiry

enables the action do Check. Action doCheck first asserts that the variable

Today does not contain a NullDate. Then doCheck sets the card's status to

valid, invalid or renew according to the following rule - if dtOjExpiry is less

than Today the status should be set to invalid; if dtOjExpiry is more than 10

days ahead of Today the status should be set to valid; otherwise if dtOjExpiry

is somewhere between Today and the next 10 days, the status should be set to

65

Master's Thesis - U .Pujari McMaster - Computing and Software

renew. For brevity, the implementation of the method renew is not specified

here.

The class CardIM inherits from the class Card in order to add calculations

for membership renewal fees. If the inheritance is limited to inheritance of

methods only, then do Check cannot be part of the definition of CardIM.

class CardIM inherit Card

public var fees, days : integer

initialization fees, days := 0,0

public method chkExpiry

when dtOfExpiry =I- NullDate do

fees, c := 400, true

end

When chkExpiry is invoked on a Card object, it enables the action doCheck

which computes the card's status. When chkExpiry is invoked on a CardIM

object, the fees variable is set to the basic fees, but the status of the card is

not computed. Therefore, if a Card object is replaced by a CardIM object,

there is a change in the observable behavior. In this case, inheritance does not

establish a subtype relationship.

Therefore inheritance of classes in Lime should also include inheritance of

actions. The class CardIMA inherits the methods and actions of the class Card

as follows:

class CardIMA inherit Card

public var fees, days : integer

initialization fees, days := 0,0

public method chkExpiry

when dtOfExpiry =I- NullDate do

fees, c := 400, true

action doCheck

when fees = 400 1\ c do

begin

66

Master's Thesis - U .Pujari McMaster - Computing and Software

end

assert Today =1= NullDate ;

c := false;

if dtOfExpiry < Today then status,jees := invalid,jees + 15

else

end

begin

days := dtOfExpiry - Today;

if days > 10 then status, fees : = valid, 0

else status,jees := renew,jees - days

end

The class CardIMA adds a variable fees which stores the amount of mem

bership fees for the cardholder. Since methods can be inherited, class CardIMA

inherits and overrides the method chkExpiry from the class Card. It is enabled

if dtOfExpiry is not NullDate, and sets the basic fees for one year's membership

to 400 dollars and also enables the action do Check.

Action do Check asserts that the variable Today does not contain a NullDate.

It sets the cardholder's status according to the same rules as in the class Card.

Action do Check also calculates the amount of fees according to the status -

if status is 'invalid' then the cardholder has to pay an additional fine of 15

dollars; if the status is 'renew' then the cardholder has to pay the annual fee

less an amount proportional to the number of days left to expiry; otherwise if

the status is valid then the cardholder does not have to renew or pay any fees.

6.1.2 To override actions or not

Let us again consider the classes Card and CardIMA from the previous section.

The class CardIMA introduces membership fees as an additional variable. The

methods and actions of CardIMA should implement additional functionality

to calculate the membership fees while preserving the behavior of the corre

sponding methods and actions of Card. The method chkExpiry in CardIMA

overrides the corresponding parent class method to set the value of fees to 400.

Similarly, the action do Check overrides the corresponding parent class action

67

Master's Thesis - U .Pujari McMaster - Computing and Software

to add computation of fees.

We give the following example to illustrate the necessity for overriding

actions when the child class action provides an alternate implementation.

Class SumSquare takes two positive integers a and b and calculates the

square of their sum as result = a2 + b2 + 2ab. Class sumSquareR inherits from

SumSquare and provides an alternate (more efficient) way of calculating the

square of their sum as result = (a + b)2.

class SumSquare

public var a, b, ss : integer

public var r, f : boolean

initialization a, b, ss, r,f := 0,0, O,false,false

public method setAB(c, d : integer)

begin

assert { c > 0 /\ d > O} ;

a, b := c, d

end

public method calcSumSquare

ss, r := 0, true

public method getSumSquare (res result: integer)

whenf do

result,f := ss,false

action doSumSquare

when r do

ss, r,f := a2 + b2 + 2 * a * b,false, true

end

Class SumSquareR inherits and overrides the action doSumSquare ~s follows:

class SumSquareR inherit SumSquare

action doSumSquare

when r do

ss, r,f := (a + b)2,false, true

68

Master's Thesis - U .Pujari McMaster - Computing and Software

end

Therefore, a child class action should be able to override the corresponding

parent class action when -

(1) the child class action implements additional functionality or

(2) the child class action provides alternate implementation.

6.2 Role of Action Name and Guard

For each inherited method, the name and type signature of the parent class

method and the corresponding child class method must match. The method

names should match because methods are identified and invoked by their name.

The type signature of the methods should match, otherwise it would be a case

of overloading and not overriding.

Actions, on the other hand, do not take any parameters and are not invoked

by name. However, action names are still useful for distinguishing between

overridden actions and newly added actions. Class inheritance also needs to

identify the corresponding child class action for each inherited parent class

action. Therefore, for each inherited action, the name of the parent class

action and the corresponding child class action must match.

An action can execute autonomously when its guard evaluates to true. In

order to preserve the observable behavior of the parent class, the guard of a

child class action must establish a specific relationship with the guard of the

corresponding parent class action. For now, we state that the guard can be

strengthened in the child class action. We will establish the details of the

relationship between the two guards during the design of the class refinement

rules.

6.3 Subclass Action and Superclass Action

When a child class action overrides the corresponding parent class action it

preserves the behavior of the parent class action while, possibly, providing

69

Master's Thesis - U .Pujari McMaster - Computing and Software

additional functionality. In a child class the overridden action should replace

the corresponding parent class action. If the child class does not specify a

corresponding action, the parent class action is used instead.

In Lime, a parent class method can be invoked from within the body of the

corresponding child class method. This is achieved by a super.mtdName call

in the child class method. The child class method can then specify additional

functionality to augment the behavior of the parent class method.

Similarly, a child class action can override and augment the behavior of

a parent class action. However, if the parent class action accesses private

variable of the class, then the child class action cannot override to augment

and duplicate the behavior of the parent class action as it cannot access private

members of the parent class. If the child class action could invoke the parent

class action, it would solve this problem. However, actions cannot be invoked.

Therefore we present a construct E9 ('fusion' operator) which is specified as

follows:

If the parent class action aa is of the form when 91 do 81 and the corre

sponding child class action aa is of the form when 92 do 82 where 82 is the

additional functionality specified in the child class action then the fusion of

the two actions is defined as

super.aa E9 this.aa _ when 91/\ 92 do 81 ; 82

Why do we choose to implement the body of the fusion action as 81 ; 82

and not as 81 n 82? Consider the case when 81 and 82 may be composed of

one or more method calls. Then 81n82 is equivalent to putting the constituent

method calls in a parallel composition. Since actions in Lime are atomic up

to method calls, in the implementation such a parallel composition of method

calls is translated into sequential composition of the method calls. Therefore,

we choose to implement the body of the fusion action as 81 ; 82.

Let us consider the following example,

class A

70

Master's Thesis - U.Pujari McMaster - Computing and Software

private var a : integer

initialization a := 1

action aa

end

when a > ado

begin

a := a + 1 ; x.pO

end

class B inherit A

private var b : integer

initialization b := 1

invariant a = b

action aa

end

when b > ado

begin

/ / super. aa ;

b := b + 1 ; y.qO

end

As the parent class action aa cannot be invoked as super. aa, so class B can

be rewritten using the EEl operator as:

class B inherit A

private var b : integer

initialization b := 1

invariant a = b

action aa EEl super. aa

end

when b > a do

begin

b := b + 1 ; y.qO

end

71

Master's Thesis - U .Pujari McMaster - Computing and Software

The action aa EEl super.aa is implemented as

when b > 01\ a > 0 do

begin

a := a + 1 ; x.pO ; b:= b + 1 ; y.qO

end

6.4 Visibility Rules for Actions

In Lime, visibility rules are applied to variables and methods in order to specify

access control. The two access modifiers used now are: public and private. A

private method can be invoked only from within the class itself and a public

method can be invoked from a class, its subclasses and their objects. A method

declared without any access modifiers is a default method. A default method

is visible to all members of a module but it is not visible outside of the module.

Since actions execute autonomously, the usual meaning of these access

modifiers cannot apply to actions. We categorize actions into final and public

actions. A final action is defined as an action that can be inherited but cannot

be overridden. A public action is defined as an action that can be inherited

and overridden. By default, actions in Lime are public. One scenario when an

action can be declared as final is when the action refers to private variables

or invokes a private method of the class. Another application of final actions

is to ensure that a critical behavior does not change from parent to child class

while still being available to the child class.

In Lime, classes are translated into modules to give the classes an action

system representation. In modules, either a member (variable or procedure)

can be exported (public member) or not (private member). However, in its

current syntax, modules cannot export a member for a specific purpose, as

in the case of protected members. Therefore, we longer support protected

variables or protected methods.

The syntax of Lime is extended to include specification of access modifiers

(This is not the full syntax for Lime; we have only shown that part of the syn

tax that has been affected by introduction of access modifiers). Also included

72

Master's Thesis - U .Pujari McMaster - Computing and Software

in the syntax are the inheritance clause:

class 00- class identifier { extend identifier I 00

inherit identifier I implement identifier}

{ attribute I initialization I method I action} end

attribute 00- [accessM od 1 var variableList 00

initialization 00- initialization [(variableList) 1 statement 00

method 00- [accessM od 1 method identifier [(variableList 00

[, res variableList]) 1 [when expression do 1
statement

action 00 - [accessModAction 1 action identifier

[when expression do 1 statement

accessMod 00- public I private 00

accessM odAction 00- public I final 00

6.5 Module Representation of Class with In

herited Actions

Since we have extended class inheritance in Lime to include inheritance of

actions, the translation of classes into modules must account for inherited

actions 0 Consider a class D that inherits some of the methods and actions of

73

Master's Thesis - U .Pujari McMaster - Computing and Software

a class C. The class definition for the classes C and Dare:

class C

varu: U

private var v : V

public var w : W

invariant I

initialization K

method PI PI

public method ml Ml

public method 01 0 1

end

class D inherit C

var u' : U'

private var v' : V'

invariant J

initialization K'

public method 01 O~

public method nl Nl

action tl T{

end

Class D may have its own private and default methods. However, we are

concerned with the public methods as D can only inherit public methods of

C.

The class definition for C within a module M amounts to following module

declarations:

private var C : set of Object := {}

var u : Object --+ U

private var v : Object --+ V

public var w : Object --+ W

invariant (V this E C • 1)
procedure C. new(res this: Object)

this :tt C U {nil}; C:= C U {this} ; K

procedure C.Pl(this : Object)

{this E C} ; PI

74

Master's Thesis - U .Pujari McMaster - Computing and Software

public procedure C. ml (this: Object)

{this E C} ; Ml

public procedure C.o1(this : Object)

{this E C}; 0 1

action C.s1

var this :E C' 81

action C.tl

var this :E C' Tl

The class definition for D within the module M amounts to following mod

ule declarations:

private var D : set of Object := {}

var u' : Object ~ U'

private var v' : Object ~ V'

public var w : Object ~ W

invariant (Vthis ED' J)
procedure D.new(res this: Object)

C.new(this) ; D:= D U {this}; K'

procedure D,Pl(this : Object)

{this E D}; C.Pl

public procedure D.ml(this : Object)

{this E D}; C.ml

public procedure D. 01 (this: Object)

{this ED}; O{

public procedure D. nl (this: Object)

75

Master's Thesis - U .Pujari McMaster - Computing and Software

{this ED} ; Nl

action D.Sl

var this :E C • 81

action D.tl

var this :E D • T{

action D.bl

var this :E D • Bl

In the module declarations, every time an object of class D is created, the

object is added to the set of objects D as well as to the set of objects C. The

set of objects C contains all objects that have been created as instances of

class C along with all objects that have been created as instances of class D.

On the other hand, the set of objects D contains only those objects that have

been created as instances of class D. Therefore, the sets of objects satisfy the

relation: C:2 D.

Let C' be a subset of C such that C' contains only those objects that have

been created as instances of class D. Then C' = D. Class D is now defined

in terms of C' as:

private var D : set of Object := {}

private var C' : set of Object := {}

var u' : Object ~ U'

private var v' : Object ~ V'

public var w : Object ~ W

invariant (Vthis ED· J)
procedure D.new(res this: Object)

C.new(this); C':= C' U {this};

D := D U { this} ; K'

procedure D.Pl(this : Object)

76

Master's Thesis - U .Pujari McMaster - Computing and Software

{this E D}; G'.Pl

public procedure D. ml (this: Object)

{this E D}; G'.ml

public procedure D.ol(this : Object)

{this ED}; Of

public procedure D. nl (this: Object)

{this ED} ; Nl

action D.sl

var this :E G' • 81

action D.tl

var this :E D • T~

action D.bl

var this :E D • Bl

77

Master's Thesis - U.Pujari McMaster - Computing and Software

Inherited Class with super Calls : A class D inherits from the class G

such that D contains super calls for methods or actions.

class G

varu: U

private var v : V

public var w : W

invariant I

initialization K

method PI PI

class D inherit G

var u' : U'

private var v' : V'

invariant J

initialization K'

method PI P{

public method 01

public method ml Ml begin super.Ol; O{ end

public method 01 0 1 public method nl Nl

action SI 81 action tl EB super. tl

T' 1

end

end

The class definition of class D within a module amounts to the module decla

rations:

private var D : set of Object := {}

private var G' : set of Object := {}

var u' : Object ---7 U'

private var v' : Object ---7 V'

public var w : Object ---7 W

invariant (Vthis ED· J)

procedure D.new(res this: Object)

G.new(this); G':= G' U {this} ;

D := D U {this} ; K'

public procedure D. ml (this: Object)

78

Master's Thesis - U .Pujari McMaster - Computing and Software

{this ED}; C' . ml

public procedure D. 01 (this : Object)

{this E D}; C' .01 ; O~

public procedure D.nl(this : Object)

{this ED} ; Nl

action D.s1

var this :E C' • 81

action D.tl

var this :E D • T1 ; T{

action D.b1

var this :E D • Bl

6.6 Class Inheritance and Class Refinement

From a syntactic point of view, subtyping involves matching the method sig

natures of the parent and child classes. However, substitutability of objects

must take into account the behavior of the objects. The subtype relation be

tween the parent and child classes should be such that the child class must

imitate the behavior of the parent class [12]. From a semantic point of view,

subtyping requires that a parent class object can be replaced by a child class

object without any change in the observable behavior. This requirement is

addressed by semantic conformance of behavior during subtyping in [19, 6].

This form of subtyping while preserving behavior includes matching the type

signatures as well as the behavior specifications of the parent and child classes.

Both class inheritance and refinement appeal to the notion of child class or

refined class being able to replace parent class or original (less refined) class

while preserving the behavior of the class it is inheriting from or refining.

79

Master's Thesis - U.Pujari McMaster - Computing and Software

We have presented the various design features of class inheritance with

actions that establishes a subtype relationship between the child class and its

parent class. The child class is guaranteed to preserve the behavior of the

corresponding parent class so that an instance of parent class can be replaced

by an instance of the child class.

Taking it one step further, if we restrict class inheritance so that it preserves

total correctness, then the child class will also be a refinement of the parent

class. In the total correctness preserving form, class inheritance establishes

a subtype as well as a refinement relationship between the child class and its

parent class.

In order to establish the conditions under which parent class C is refined

by child class D, we translate the Lime classes into action systems with proce

dures. This translation into action systems is achieved by declaring the classes

C and D in a module M. We can then reason about refinement of class C by

class D in terms of refinement of the module representation of class C by the

module representation of class D within module M.

In the next section we present the class refinement rules for inheritance of

classes in Lime. If each of the C' objects and D objects satisfy these rules for

class refinement rules for inheritance, then a D object can replace a C object

without any change in observable behavior. Therefore, we can conclude that

class C is refined by class D; also class D is a subtype of class C.

6.7 Class Refinement Rules for Inheritance

Superposition refinement of action systems requires that the global state space

of the action systems remain unchanged and that the local state space of the

concrete action system expands the local state space of the abstract action

system with new local variables. In other words, if the action system A'
refines the action system A under the conditions of superposition refinement,

then A' has all the local variables x of A and additionally A' has new local

variables x'.

In case of class inheritance, we require that the global state space of the

parent and child classes remain unchanged. This condition is satisfied as the

80

Master's Thesis - U.Pujari McMaster - Computing and Software

child class inherits the public variables of the parent class. The child class can

refer to the default variables of the parent class as both the classes are defined

in the same module. The child class operates on the same local state space

as the parent class and expands it by adding new local variables (private

and default variables). Therefore, class refinement for class inheritance in

Lime is verified under the conditions of superposition refinement of modules

as presented in section 5.1.3.

Definition 6.1 (Class Refinement for Inheritance). Let C be a class with de

fault variables u, private variables v and public variables w. Let D be a class

with default variables u', private variables v', and class D inherits from class

C. C operates on the state space determined by u, v, w. D operates on the

state space determined by the variables u, u', v, v', w, either directly or indi

rectly through superclass method calls. Class D inherits all public variables w,

all public methods, M, and all actions, A, from class C. We assume that the

public methods in both classes have the same method names and parameters

and return types. Class D may have additional actions, called auxiliary ac

tions, auxA, and new methods, newM. Let I(u, v, w) be the invariant of class

C and J (u, u', v, v', w) be the invariant of class D. Class C is refined by D

through I and J, written C '.5.5 D, if following conditions hold:

(a) Program Initialization: C = {} !\ D = {} ::::} I !\ J

(b) Object Creation: C.new '.5.5 D.new

For every state in the statespace after creation of C and D objects,

(c) Main Method Refinement: C.Mi '.5.5 D.Mi

Main Method Enabledness:

I !\ J !\ en C. Mi !\ tr C. Mi ::::} (en D. Mi V en D . A V en D. auxA)

(d) New Method Refinement: {I!\ J} D.newMi {I !\ J} D.newMi '.5.5
D.newMi

(e) Main Action Refinement: C.Ai '.5.5 D.Ai

81

Master's Thesis - U .Pujari McMaster - Computing and Software

Main Action Enabledness: I 1\ J 1\ en C.Ai 1\ tr C.Ai =? en D.A V

enD.auxA

(f) Auxiliary Action Refinement: skip ~5 D.auxAi

Auxiliary Action Termination: I 1\ J =? wp(do D.auxA od ,true)

where Vi en D .Ai = en D.A is the disjunction of enabledness domains of the

main actions of D J Vi en D. auxAi = en D. auxA is the disjunction of enabled

ness domains of the auxiliary actions of D and niD. auxAi = D. auxA denotes

the combined action for the auxiliary actions of D. D

Condition (a) states that when no objects exist, the invariants of C and D

hold. Condition (b) states that creation of a C object is refined by creation

of a D object. First part of condition (c) states that every public method Mi

of C is refined by the corresponding method in D. Second part of condition

(c) states that for every public method Mi in C, either the corresponding

method of D or some action in D is enabled. Condition (d) states that every

new method newMi of D preserves the invariants of C and D. First part of

condition (e) states that every action Ai of C is refined by the corresponding

action in D. Second part of condition (e) states that for every action Ai in

C, some action in D is enabled. First part of condition (f) states that every

new action auxAi of D refines skip. Second part of condition (f) states that

the computation of auxiliary actions terminates eventually.

As discussed in section 6.5, let C' be a subset of C such that C' contains

only those objects that have been created as instances of class D. In other

words, C' considers only those objects that participate in the inheritance rela

tionship between C and D classes. Then, the refinement can be more precisely

established between the classes C and D as:

C <I(C,u,v,w,z,J) D = C <I(C',u,v,w,z,f) D
-J(C,D,u,u',v,v',w,z,J) - -J(C',D,u,u',v,v',W,z,J) (6.1)

Condition (b) on object creation does not include a check for enabledness,

as we assume that initializations are always enabled: the syntactic structure

of initializations does not allow for guards.

82

Master's Thesis - U .Pujari McMaster - Computing and Software

Condition (f) implies that the auxiliary actions are stuttering actions: they

refine skip, they do not cause any state change in C. The auxiliary actions

eventually terminate, they do not introduce (observable) divergence.

This definition of class refinement is based on the concept of the refinement

of action systems with procedures, in [9, 10, 11] and the treatment of object

identities in [27].

6.8 Discussion

The conditions for superposition refinement of action systems with procedures

and invariants require that the invariants hold even before any instances of the

classes are created. The creation of object instances preserve the invariants.

Each of the methods and actions of class C that are inherited, are refined by

the corresponding methods and actions of class D. The inherited (and possibly

overridden) methods and actions of child class D preserve the behavior of the

corresponding methods and actions of the parent class C. Each new method

in D must preserve the invariants of C and D. This ensures that the new

methods do not introduce any inconsistencies in behavior in the presence of

subtype aliasing and when the objects are shared by multiple users. This is

based on the notion of consistent methods of [6]. The auxiliary actions in the

child class D act as skip statement in the state space of the parent class C.

The execution of the auxiliary actions must terminate. Thus auxiliary actions

do not introduce non-termination, when there was no pre-existing divergence

in the parent class. When all these conditions are satisfied, the child class D

is a subtype as well as a refinement of the parent class C.

In Appendix A we present a simple Lime examples with class inheritance

and its proof of correctness as a refinement step.

83

Chapter 7

Lime Examples

In this chapter, we present a small collection of Lime programs to illustrate the

features of the language. In particular, we highlight the use of class refinement

and class inheritance including inheritance of actions. Each of the following

three sections contains one Lime example with explanation.

7.1 Food Court

In this example we model the behavior of a food court. This example is

motivated by the Ticket Algorithm. In the abstract implementation, the food

court has NSHOP number of shops and NCUST number of customers. When

customers enter the food court they choose one of the shops in the food court.

The customer is then added to the chosen shop's list of customers. At any point

in time, the customers are served in no particular order. A shop has MAX

number of customers. The shop is in busy state as long as there are customers

waiting to be served, otherwise the shop is idle. The customer can be in three

states: entered, when the customer enters the food court, waiting, when the

customer has chosen a shop and is waiting to be served, and served,when the

customer has been served by the chosen shop.

class Customer

var s: Shop

84

Master's Thesis - U.Pujari McMaster - Computing and Software

var state : (entered, waiting, served)

invariant Invc

initialization

s, state := nil, entered

public method getState (res st : (entered, waiting, served))

st := state

public method chooseShop(sh : Shop)

when sh #- nil do

begin

s:= sh;

s. addCustomer(this) ;

state := waiting

end

action getServed

end

when state = waiting do

state := served

class Shop

var noC : integer

var state: (idle, busy)

var n : integer

var C : array MAX of Customer

invariant Invs

initialization

begin

noC, n, state := 0,0, idle;

while n < MAX do

C [n], n := nil, n + 1 ;
end

public method addCustomer(c : Customer)

begin

assert c #- nil ;

85

Master's Thesis - U.Pujari McMaster - Computing and Software

state, C[noC], noC := busy, c, noC + 1 ;

end

action checkState

end

when state = busy do

var j : integer

var finished: boolean

begin

j,finished := 1, true;

while j ::; noC do

finished,j := finished A C[j - l].getStateO = served,j + 1;

if finished then state := idle

end

/ / Main Program: FOOD COURT

var Sh: array NSHOP of Shop

var Cust : array NCUST of Customer

var m, p, j : integer

invariant Invp

begin

m,p:= 0,0;

while m < NSHOP do

begin

Sh[m] := new Shop;

m:= m+ 1

end

while p < NCUST do

begin

Cust[p] := new Customer;

j := rand(O, NSHOP - 1) ;
assert Sh[j] =I- nil;

Cust[p].chooseShop(Sh[j]) ;

86

Master's Thesis - U.Pujari McMaster - Computing and Software

end

p:= p + 1

end

The class CustomerI inherits from the class Customer and the class ShopI

inherits from the class Shop. In this more concrete implementation, when the

customer chooses a shop, the customer gets a token from the shop that is

held in the turn variable of CustomerI class. The customer is served when

the token held by the customer matches the next token to be served by the

shop. The main program now uses the classes CustomerI and ShopI instead

of Customer and Shop.

class CustomerI inherit Customer

var turn, next: integer

invariant InVeI

initialization

/ / Here implicitly, the initialization of class Customer is called first.

turn, next := 0, -1

action getServed

end

when turn = next do

begin

state := served;

s. updateN ext

end

class ShopI inherit Shop

var number, next: integer

invariant InvSI

initialization

/ / Here implicitly, the initialization of class Shop is called first.

number, next := 1,1

method addCustomer(c : Customer)

87

Master's Thesis - U.Pujari McMaster - Computing and Software

var el : Customerl

begin

assert e =I- nil ;

if e is Customerl then

begin

cI:= e;

cI.turn, el.next, number := number, next, number + 1 ;

C[noC], noC, state := el, noC + 1, busy

end

end

method updateN ext

var i : integer

begin

i, next := 0, next + 1 ;

while i < noC do

C[i].next := next

end

action eheekState

end

when state = busy 1\ next = number 1\ next> 1 do

var j : integer

var finished : boolean

begin

j,finished:= 1, true;

while j < noC do

j,finished := j + 1 ,finished 1\ C[j - l].getStateO = served;

if finished then state := idle

end

/ / Main Program: FOOD COURT

var Sh : array NSHOP of Shop

var Cust : array NCUST of Customer

88

Master's Thesis - U .Pujari McMaster - Computing and Software

var m, p, j : integer

invariant InvPJ

begin

m,p:= 0,0;

while m < NSHOP do

begin

Sh[m) := new ShopI ;

m:=m+1

end

while p < NCUST do

begin

Cust[p) := new CustomerI ;

j := rand(O, NSHOP - 1) ;
assert Sh[j) -=1= nil;

Cust[p).chooseShop(Sh[j)) ;

p:= p + 1

end

end

The default variables of a parent class are visible to the child class. To

distinguish between the values assigned to the default variables in an instance

of the parent class and in an instance of the child class, we rename the default

variables as follows:

For an instance of the parent class, each default variable names vN ame is

written as vNameo. For an instance of the child class, each default variable

names vN ame is written as vN ame!. This naming scheme is used only for

specifying invariants.

The invariants Invc, Invs, and Invp for the classes Customer, Shop and

the corresponding main program respectively are given as:

Invc : stateo = waiting::::} So -=1= nil/\ this E so. Co

Invs : (stateo = busy::::} (Vk • ° ::; k < noCo ::::} Co[k) -=1= nil)) /\

(stateo = idle::::} (Vh· ° ::; h < noCo ::::} Co[h).stateo = served))

Invp : (Vp E Cust • p.stateo = waiting::::} p.so -=1= nil/\ p E p.So· Co) /\

89

Master's Thesis - U.Pujari McMaster - Computing and Software

(V q E Sh • (q.stateo = busy =? (Vr • 0 :s:; r < q. noCo =? q. Co[r]

i- nil)) /\ (q.stateo = idle =? (Vt· O:s:; t < q.noCo =?

q. Co[t].stateo = served)))

The invariants InVGIl InvSI, and InvPJ for the classes CustomerI, ShopI

and the corresponding main program respectively are given as:

InVCI : (so = Sl) /\ (stateo = statel) /\

(statel = waiting =? Sl i- nil/\ this E Sl· Cl) /\

(statel = served =? turnl :s:; Sl. next)

InvSI: (noCo = noCl) /\ (stateo = statel) /\ (no = nl) /\ (Co = Gl) /\

(statel = busy =? (Vk • O:S:; k < noCl =? Cr[k] i- nil)) /\

(statel = idle =? (Vh· 0 :s:; h < noCl =? Cl[h].statel = served))

/\(Vu, v • O:s:; u, v < noCl /\ u < v=? Cl[u].turnl < Cr[v].turnl)

InvPJ : (Vp E Cust • (p.so = P.Sl) /\ (p.stateo = p.statel) /\

(p.statel = waiting =? P.Sl i- nil/\ p E P·sl. C1) /\

(p.statel = served =? p.turnl :s:; p.sl.next)) /\

(Vq E Sh· (q.noCo = q.noCl) /\ (q.stateo = q.statel) /\ (q.no =

q.nl) /\ (q.Co = q.Cl) /\ (q.statel = busy =? (Vk • 0 :s:; k <
q.noCl =? q.Cl[k] i- nil)) /\ (q.statel = idle =? (Vh· O:S:; h <
q.noCl =? q. Cl[h].statel = served)) /\ (Vu, v • O:s:; u, v < q.noCl
/\ u < v =? q. Cl [u] . turnl < q. Cl [v] . turnr))

In this example, the class Customer is refined by the class CustomerI. The

refinement invariant Rc for this refinement is given by Rc - Invc /\ InvCI.

Similarly, the class Shop is refined by the class ShopI. The refinement invariant

Rs for this refinement is given by Rs - Invs /\ InvSI.

7.2 Collection of Elements

In this example we start with an abstract implementation of a Bag into which

elements can be inserted and deleted by the add and remove operations respec

tively. The bag also offers the isEmpty, hasMember and get Total operations.

The isEmpty operation returns true if the bag doesn't have any elements, false

90

Master's Thesis - U.Pujari McMaster.- Computing and Software

otherwise. The hasM ember operation checks if a given element is a member

of the bag. The get Total operation returns the sum of all elements of the bag.

class Bag

var b : bag of integer

var sum : integer

invariant InvBag

initialization

b, sum := [], 0

public method isEmpty(res r : boolean)

r:= b = []

public method add (e : integer)

b,sum:= b+ [e], sum + e

public method remove (e : integer)

var r : boolean

begin

hasMember(e, r) ;

if r then

b, sum:= b - [e], sum - e

end

public method hasM ember(e : integer, res found: boolean)

found:= e E b

public method get Total (res s : integer)

s:= sum

end

The invariant InvBag for the class Bag is given as:

InvBag : sum = I:e E b • e

As a refinement of the class Bag, we present the class Tree that supports

inserting an element, deleting an element and sum of all elements by the

operations add, remove and get Total respectively. Class Tree also offers the

operations isEmpty and hasMember 'for checking, respectively, if the tree is

91

Master's Thesis - U.Pujari McMaster - Computing and Software

empty and if the given element is a member of the tree. The sum of all elements

is obtained by traversing the tree and adding all the elements encountered. We

first define the class Node which serves as the building block for Tree. The

algorithm for class Tree is based on the binary search tree algorithm from [14].

class Node

var lNode, rNode, pNode : Node

var data, d : integer

var state : (idle, adding, searching, deleting)

initialization (e : integer)

lNode, rNode, pNode, data, d, state := nil, nil, nil, e, 0, idle

public method add (e : integer)

when state = idle do

begin

if e ::; data A IN ode = nil then

begin

lNode := new Node(e) ;

lNode.pNode := this

end

else if e > data A rNode = nil then

begin

rNode := new Node (e) ;
rNode.pNode := this

end

else

state, d : = adding, e

end

action doAddElement

when state = adding do

begin

state := idle;

if d ::; data then

lNode.add(d)

92

Master's Thesis - U .Pujari McMaster - Computing and Software

else

rNode.add(d)

end

public method search(e : integer, res n : Node)

when state = idle do

begin

if e = data then

n := this

else if e < data /\ IN ode =I=- nil then

begin

state := searching;

lNode.search(e, n)

end

else if e > data /\ rNode =I=- nil then

begin

state := searching;

rNode.search(e, n)

end

else

n := nil

state := idle

end

public method next (res n : Node)

var cur Node : Node

begin

curNode := this;

if curNode.rNode =I=- nil then

begin

n := curNode.rNode ;

while n.lNode =I=- nil do

n:= n.lNode

end

else

93

Master's Thesis - U.Pujari McMaster - Computing and Software

end

begin

n := curNode.pNode ;

while n #- nil A curNode = n.rNode do

curNode, n := n, n.pNode

end

public method calc Total (res s : integer)

var l, r : integer

end

begin

l, r, s := 0,0, data;

if IN ode #- nil then
begin

IN ode. calc Total (l) ;

s := s + l
end

if rNode #- nil then
begin

rNode.calcTotal(r) ;

s:= s + r

end

end

class Tree

public var root: Node

invariant InvTree

initialization

root := nil

public method isEmpty(res r : boolean)

r := (root = nil)

public method add (e : integer)

if root = nil then

root := new Node (e)

94

Master's Thesis - U .Pujari McMaster - Computing and Software

else

root. add (e)

public method remove (e : integer)

when root #- nil do

var r) x) y : Node

begin

r := nil;

root.search(e) r) ;

if r #- nil then

end

begin

r.state := deleting;

if r.lNode = nil V r.rNode = nil then

y:= r

else

r. next(y)

if y.lNode #- nil then

x:= y.lNode

else

x:= y.rNode

if x #- nil then

x.pNode := y.pNode

if y.pNode = nil then

root := x

else

if y = y.pNode.lNode then

y.pNode.lNode := x

else

y.pNode.rNode := x

if y #- r then
r.data := y.data

r.state := idle

end

95

Master's Thesis - U.Pujari McMaster - Computing and Software

public method hasMember(e : integer, res found: boolean)

var n: Node

begin

n := nil;

if root = nil then

found := false

else

end

begin

root. search (e, n) ;

found := n =I- nil

end

public method get Total (res s : integer)

begin

end

s:= 0;

if root =I- nil then

root. calc Total (s)

end

As a second refinement, each node in a tree stores the sum of the subtree

. rooted at that node. Therefore, instead of traversing the entire tree to calculate

the sum, we just need to retrieve the sum stored at the root node. Class TreeST

inherits from the class Tree and the class NodeST inherits from the class Node.

The class N odeST defines a variable subtotal that stores the sum of the subtree

rooted at that node. Class TreeST calculates the sum by retrieving the value

for root. subtotal. The class NodeST serves as the building block for TreeST.

Class Node is refined by NodeST and the class Tree is refined by TreeST.

class NodeST inherit Node

var subtotal : integer

initialization (e : integer)

II Here implicitly, the initialization of class Node is called first.

96

Master's Thesis - U .Pujari McMaster - Computing and Software

subtotal := e

public method add (e : integer)

when state = idle do

var x : N odeST

begin

x := nil;

if e :::; data 1\ IN ode = nil then

begin

x := new NodeST(e) ;

lNode, lNode.pNode := x, this

end

else if e > data 1\ rNode = nil then
begin

x := new NodeST(e) ;

rNode, rNode.pNode := x, this

end

else

state, d := adding, e

if x i- nil then

begin

while x.pNode i- nil do

if x.pNode is NodeST then

x, x.subtotal := x.pNode, x.subtotal + e

end

end

action doAddElement

when state = adding do

begin

state := idle;

if d :::; data then

lNode.add(d)

else

rNode. add(d)

97

Master's Thesis - U.Pujari McMaster - Computing and Software

end

public method search(e : integer, res n : NodeST)

when state = idle do

begin

if e = data then

n := this

else if e < data 1\ IN ode =I- nil then

begin

state := searching;

lNode. search (e, n)

end

else if e > data 1\ rNode =I- nil then

begin

state := searching;

rNode.search(e, n)

end

else

n := nil

state := idle

end

public method next(res n : NodeST)

var curNode : NodeST

begin

curNode := this;

if curNode.rNode =I- nil then

begin

if curNode.rNode is NodeST then

n := curNode.rNode ;

while n.lNode =I- nil do

end

else

if n.lNode is NodeST then

n:= n.lNode

98

Master's Thesis - U.Pujari McMaster - Computing and Software

end

begin

n := curNode.pNode ;

while n =1= nil A curNode = n.rNode do

if n.pNode is NodeST then

curNode, n := n, n.pNode

end

public method calcTotal(res s : integer)

s := this.subtotal

end

class TreeST inherit Tree

invariant InvTreesT

public method add(e : integer)

if root = nil then

root := new NodeST(e)

else
root.add(e)

public method remove (e : integer)

when root =1= nil do
var r, x, y : NodeST

begin

r := nil;

root.search(e, r) ;

if r =1= nil then
begin

r.state := deleting;

if r.lnode = nil V r.rNode = nil then

y:= r

else

r. next(y)

if y.lNode =1= nil A y.lNode is NodeST then

x := y.lNode

99

Master's Thesis - U.Pujari McMaster - Computing and Software

else if y.rNode is NodeST then

x:= y.rNode

if x =I- nil then

x.pNode := y.pNode

if y.pNode = nil then
root := x

else

begin

if y = y.pNode.lNode 1\ y.pNode.lNode is NodeST

then

y.pNode.lNode := x

else if y.pNode.rNode is NodeST then
y.pNode.rNode := x

var oldVal, new Val: integer

var temp : N odeST

oldVal, newVal, temp := y.subtotal, 0, y ;

if x =I- nil new Val := x.subtotal ;

while temp.pNode =I- nil do

end

if temp.pNode is NodeST then
begin

temp := temp.pNode ;

temp. subtotal := temp.subtotal - old Val +
new Val

end

if y =I- r then
begin

var rOldData : integer

var temp: NodeST

rOldData, temp := r.data, r ;

r.data := y.data ;

r.subtotal := r.subtotal - rOldData + y.data ;

while temp.pNode =I- nil do

100

Master's Thesis - U .Pujari McMaster - Computing and Software

end

end

end

if temp.pNode is NodeST then

begin

temp := temp.pNode ;

temp. subtotal := temp. subtotal + y.data

rOldData

end

r.state := idle

end

In order to specify the invariants, we rename the variables in classes

Tree,Node, TreeST and NodeST using the same naming scheme as in the Food

Court example in the previous section.

The invariant InvTree for the class Tree is given as:

InvTree : (this.getTotalO = ~n E nodeOf(this) • n.datao) 1\

this.getTotal() = sum

The InvTreeST for the class TreeST is given as:

InvTreeST: (Vm E node Of (this) • m.datao = m.datal) 1\

(rootl.subtotall = ~n E nodeOf(this) • n. datal) 1\

(rootl . subtotah = sum) 1\ (V p E node Of (this) • p. subtotah =

~c E inSubtree(p) • c. datal)

where node Of (t) returns the set of nodes in the tree t and inSubtree (p) returns

the set of nodes in the subtree rooted at the node p. Functions nodeOf() and

inSubtree () are used only for specifying the invariants.

In this example, the class Bag is refined by the class Tree. The refinement

invariant RB for this refinement is given by RB InvBag 1\ InvTree' The class

Tree is refined by the class TreeST. The refinement invariant RT for this

refinement is given by RT - InvTree 1\ InvTreesT'

101

Chapter 8

Inheritance Anomaly

In Chapter 2, we discussed the problem of Inheritance Anomaly and its

manifestations in concurrent classes with guarded methods. In this chapter,

we present the approach taken by Lime to avoid the problem of Inheritance

A nomaly using its guarded methods and guarded actions.

There are two cases in which Inheritance Anomaly can occur in classes with

guarded methods: when the child class introduces a history-sensitive method

and when an acceptable state is modified in the child class. The synchroniza

tion code of the parent class needs to be inherited and augmented with addi

tional conditions that reflect the modifications in state of the child class. The

child class should be able to achieve this without non-trivial re-definition of its

methods, so that Inheritance Anomaly is avoided. As a solution, we present

how class inheritance in Lime avoids the problem of Inheritance Anomaly.

8.1 History-only Sensitive Methods

As discussed in chapter 2, Inheritance Anomaly can occur in the presence of

history-sensitive methods. We consider the example of bounded buffer from

[22]. The class b_buf represents a bounded buffer. The method putO adds an

integer value to the buffer when it is not full; and the method getO retrieves

an integer value from the buffer when it is not empty.

102

Master's Thesis - U .Pujari McMaster - Computing and Software

The Lime class implementing b-buf is defined as:

class b_buf

var buf : array of integer

var in, out, n, size: integer

initialization (m : integer) in, out, n, size := 0,0,0, m

method put(x : integer)

when n < size do

in, buf[in], n := (in + l)mod size, x, n + 1

method get(res x : integer)

when n > 0 do

out, x, n := (out + l)mod size, b[out], n - 1

end

The class gb_buf inherits from the bounded buffer class b_buf. The history

sensitive method ggetO of class gb_buf cannot be invoked immediately after

the method putO. The method ggetO retrieves an integer value from the buffer

when it is not empty. The class gb_buf uses a flag, after _put, to keep track of

the invocations of the putO method. The Lime class implementing gb_buf is

defined as:

class gb_buf inherit b_buf

var after _put : boolean

initialization (m : integer)

begin super (m) ; after _put := false end

method gget (res x : integer)

when ,after _put 1\ n > 0 do

begin super.get(x) ; after_put:= false end

method put(x : integer)

when n < size do

begin super.put(x) ; after_put:= true end

method get(res x : integer)

when n > 0 do

begin super.get(x) ; after _put := false end

end

103

Master's Thesis - U .Pujari McMaster - Computing and Software

In the class gb_buJ, the methods putO and getO are overridden in order to

set and reset the newly added boolean flag after _put. Since putO and getO

in gb_buJ use super calls to invoke the putO and getO methods of b_buJ, it is

ensured that there is no breakage in encapsulation. The programmer of gb_buJ

class does not need to have access to the implementation of putO and getO

methods of b_buf.

In the presence of history-sensitive method ggetO, the methods putO and

getO of gb_buJ have been redefined but it is achieved in such a manner that

there is no breach in encapsulation and the redefinition is trivial. Therefore,

Inheritance Anomaly does not occur in Lime classes implementing b_buJ and

gb_buf.

8.2 Modification of Acceptable States

The second case where Inheritance Anomaly has been observed in classes with

guarded methods is when the acceptable states of methods in the class are

modified. We illustrate this with the example of bounded buffer along with

the Lock mixin class from [22J. The class lb_buJ inherits from b_buJ and

extends the class Lock. In the class lb_buJ, the methods putO and getO can

only be executed when the locked attribute is not true.

In Lime, we use the extends clause to implement the Lock mix-in class.

When a class A extends a class B, then the methods of A can refer to the

attributes of B. However, A does not inherit the methods of B and it cannot

make super-calls to methods of B.

The Lime classes for Lock and lb_buJ are defined as:

class Lock

var locked: boolean

initialization locked := Jalse

method lock

when .locked do locked := true

method unlock

when locked do locked := Jalse

104

Master's Thesis - U.Pujari McMaster - Computing and Software

end

class lb_buf inherit b_buf extend Lock

method put(x : integer)

when .locked 1\ n < size do super.put(x)

method get(res x : integer)

when .locked 1\ n > 0 do super.get(x)

end

We observe that the methods putO and getO from the superclass are re

defined in the lb_buf class. But, instead of using the implementation of putO

and getO from the superclass and redefining them, we choose to invoke the su

perclass method from within the corresponding child class method. Therefore,

in this case, the redefinition of the methods is trivial and inheritance does not

lead to a breakage in encapsulation.

8.3 Solution to Inheritance Anomaly with

Guarded Actions

So far we have discussed a solution to Inheritance Anomaly using guarded

methods in Lime classes. vVe consider the following example to illustrate a

solution to Inheritance Anomaly using guarded actions of Lime classes:

We define a class Gl that stores the coordinates of two points. It also has

a method draw 0 that enables an action drawLine to draw a line between two

distinct points and a method resetO that resets the coordinates of the two

points to (0,0).

class G1 {

int Xl, Yb X2, Y2 ;

void G10 {

Xl = 0 ; YI = 0 ; X2 = 0 ; Y2 = 0 ;

}

105

Master's Thesis - U .Pujari McMaster - Computing and Software

}

void setPtAandB(int aI, bl , Gil, b2) {

}

if ! (al == 0 && bl == 0 && Gil == 0 && b2 == 0)

Xl = al ; YI = bl ; :q = Gil ; Y2 = b2 ;

void drawO {

if ! (Xl == :q && YI == Y2)

/ / draw a line between PtA(XI, YI) and PtB(:q, Y2)

}
void resetO {

}

/ / resets the coordinates of the two points to (0,0)

Xl = 0 ; YI = 0 ; :q = 0 ; Y2 = 0 ;

Next, we define a class G2 that inherits from the class G1. In addition to

the functionalities inherited from G1, the class G2 also introduces a method

drawQ 1 0 which checks that the two distinct points are in the first quadrant

of the X-Y plane, and draws a line between them. We assume that the two

points for drawQ 1 0 cannot be on the X and Y axes. The additional restriction

is that drawQ10 cannot be called after drawO.

The class G2 is defined as:

class G2 : G1 {

bool afterDraw ;

void G20 {

Xl = 0; YI = 0 ; :q = 0 ; Y2 = 0; afterDraw = false;

}
void setPtAandB(int aI, bl , Gil, b2) {

if! (al == 0 && bI == 0 && a2 == 0 && b2 == 0)

Xl = al ; YI = bl ; :q = Gil ; Y2 = b2 ; afterDraw = false;

}
void draw 0 {

if! (Xl == :q && YI == Y2) {

106

Master's Thesis - U .Pujari McMaster - Computing and Software

}

afterDraw = true;

/ / draw a line between PtA(xI, YI) and PtB(X2, Y2)

}
}
void resetO {

/ / resets the coordinates of the two points to (0,0)

Xl = 0; YI = 0 ; X2 = 0 ; Y2 = 0; afterDraw = false;

}
void drawQ 1 0 {

}

if!afterDraw &&!(Xl == X2 && YI == Y2) &&

(Xl > 0 && YI > 0 && X2 > 0 && Y2 > 0)

/ / draw a line between PtA (Xl , YI) and PtB(X2, Y2)

We observe that in class G2, the methods setPtAandBO, drawO and resetO

of Gl need to be redefined in order to account for the changes in synchroniza

tion constraints due to the newly added method drawQI0. The presence of

the history-sensitive method drawQI0 introduces Inheritance Anomaly in this

example.

The Lime classes implementing Gl and G2 are defined as:

class Gl

var Xl, YI, X2, Y2 : integer

var dL: boolean

initialization Xl, YI, X2, Y2, dL := 0,0,0, O,false

method setPtAandB(al, bl'~' b2 : integer)

when -,(al = O!\ bl = O!\ a2 = O!\ b2 = 0) do

~,~,X2,~:=~,~,~,~

method draw

when -,(Xl = X2 !\ YI = Y2) do

dL:= true

method reset

107

Master's Thesis - U.Pujari McMaster - Computing and Software

/ / resets the coordinates of the two points to (0,0)

Xl, YI,:q, Y2 := 0,0,0,0

action drawLine

end

when dLdo

begin

dL:= false;

/ / draw a line between PtA (Xl , YI) and PtB(:q, Y2)

end

class G2 inherit G1

var ajterDraw : boolean

initialization begin superO ; ajterDraw := false end

method setPtAandB(aI, bl , ~, b2 : integer)

when -,(al = 0/\ bl = 0 /\ ~ = 0/\ b2 = 0) do

begin super.setPtAandB ; ajterDraw := false end

method draw

when -,(Xl = :q /\ YI = Y2) do

begin super. draw ; ajterDraw := true end

method reset

/ / resets the coordinates of the two points to (0,0)

begin super. reset ; ajterDraw := false end

method drawQ 1

end

when -,ajterDraw /\ -,(Xl = :q /\ YI = Y2)/\

(Xl > 0 /\ YI > 0 /\ :q > 0 /\ Y2 > 0)

super. draw

As actions are inherited along with methods, cll1ss G2 does not need to

redefine the action drawLine. Even though all the methods of G2 are redefined,

the redefinition is achieved by superclass method calls and does not result in

a breakage in encapsulation. Therefore Inheritance Anomaly does not occur

in this example.

108

Master's Thesis - U.Pujari McMaster - Computing and Software

In the process of inheritance, if a child class action in Lime has to redefine

the parent class action, it can be achieved through the EB operator. We consider

Lime classes C1 and C2 to illustrate this case. Class C1 defines the actions a

and b. Class C2 inherits from class C1 and adds another action d. Action d

is a history-sensitive action and cannot be executed immediately after action

a. To achieve this condition, child class C2 introduces a boolean flag afterA.

The classes C1 and C2 are defined as:

class C1

varp:P

initialization I

action a

when gA do

A

action b

when gB do

B

end

class C2 inherit C1

varq:Q

var afterA : boolean

initialization begin superO ; afterA:= false; J end

action a EB super. a

when gA' do

afterA := true

action b EB super.b

when gB' do

afterA := false

action d

end

when -,afterA do

D

109

Master's Thesis - U .Pujari McMaster - Computing and Software

Here, action a EB super. a is interpreted as,

when gA' /\ gA do begin A; afterA:= true end

and action b EB super. b is intepreted as,

when gB' /\ gB do begin B ; afterA:= false end

Even though in class C2 the actions a and b are redefined, the redefinition is

trivial and does not cause a breakage in encapsulation. Therefore, Inheritance

Anomaly does not occur in this example.

In Lime, both guarded methods and guarded actions help avoid the prob

lem of Inheritance Anomaly. This solution to Inheritance Anomaly is applica

ble only if the method calls are open calls, i.e., when the execution of a method

or action encounters a method call, control is transferred to the object that

would execute this method call, and the original method or action releases

lock on the object so that another operation can be initiated on the object.

In Lime, methods and actions are atomic upto method calls - when an ac

tion or method execution encounters a method call nestedM, it releases its

exclusive control on the object and passes control to another object contain

ing the method nestedM. Therefore, actions and methods in Lime classes are

executed as open calls. However, for verification purposes, Lime considers the

module actions and methods execute atomically upto completion, establishing

closed calls.

The capability of Lime classes to invoke guarded methods and actions from

their superclasses either using super calls or by using the EB operator combined

with the execution of the guarded methods and actions as open calls together

provides a solution to the problem of Inheritance Anomaly.

110

Chapter 9

Conclusions

The design of class inheritance in Lime now includes inheritance of actions.

During class inheritance, both actions and public methods can be inherited

and overridden. The only exception are the final actions which can only be

inherited. Class inheritance now helps preserve the reactive as well as au

tonomous behavior of the parent class. Inheritance of Lime classes fits the

requirements for superposition refinement of action systems. Therefore, we

have developed class refinement rules for class inheritance based on the notion

of superposition refinement of action systems. Under these conditions, class

inheritance is also a class refinement. We can now achieve stepwise refinement

approach of program development by successive application of class inheri

tance. Each inheritance step can introduce some additional functionality in

the child class while preserving the behavior of the parent class thus taking

the program from a more abstract to a more concrete representation.

Classes in Lime are translated into modules. The module representations

of the classes resemble action systems with procedures. We have added in

variants and visibility specifiers to Lime modules. We have also broadened

modules to support classes with inherited and possibly overridden actions and

methods. The class refinement and verification rules can now be applied to

the module representation of Lime classes in order to formally prove the re

finement relationship between the classes.

Lime class structure allows invoking superclass methods and accessing su-

111

Master's Thesis - U.Pujari McMaster - Computing and Software

perclass action via the newly added fusion (EB) operator. This class structure

is useful in presenting the extended model of class inheritance in Lime as a

means to avoid the problem of Inheritance Anomaly. This is possible mainly

because Lime supports atomicity of methods and actions only up to method

calls.

For verification and refinement we assume atomicity of methods and ac

tions. An interesting direction for future research would be to model veri

fication and refinement for the case when atomicity of methods and actions

is limited only up to method calls. At present, module syntax of Lime does

not support importing or exporting of variables for a specific purpose. There

fore, the module syntax cannot model protected variables. Modularization of

Lime classes can be further improved by extending module syntax to pro

vide a means for modeling protected variables. We leave implementation of

inheritance of actions as future work.

112

Appendix A

Verification and Refinement of

Inherited Lime Classes

In this chapter, we present a simple example of class inheritance in Lime. In

the example, the class C1 inherits from and refines the class CO. This chapter

also includes a complete formal proof of correctness for this refinement step

based on the conditions for superposition refinement of classes from 6.7.

A.1 Sum of number series to n

In this example, we calculate the sum of first n positive integers. This is

achieved first by adding all the n integers one by one. Then, in the child

class which is also a refinement of the parent class, the sum of first n positive

integers is calculated by using the formula n(n
2
+1) instead. This example is

along the lines of the vector summation example from [28].

A.I.1 Class Definitions

In the class CO, the sum of the first n positive integers is calculated by the

method calcSum. The method calcSum calculates the sum by adding the

integers one at a time in repeated execution of the action doSum. The method

setN sets the value of n. The method getSum returns the sum in the result

113

Master's Thesis - U .Pujari McMaster - Computing and Software

parameter. The invariant for class CO is

I co : (s ~ 0) 1\ (0 ::; m ::; n) 1\ (n = 0 =? s = 0).

class CO

var n, s, m : integer

initialization

n, s, m := 0, 0, 0

public method setN (k : integer)

begin

assert k ~ 0 ;

n:= k

end

public method calcSum

when n > 0 do

s,m:= O,n

public method getSum(res result: integer)

when m= Odo

result := s

action doSum

when m > 0 do

s, m:= s + m, m-1

end

The class C1 inherits from the class CO. The public methods setN,

calcSum, and getSum are inherited from CO. However, class C1 overrides

the action doSum to use the formula n(n
2
+1) for calculating the sum of first n

positive integers. In C1, the sum is calculated by a single execution of the

action doSum. The invariant for class C1 is

1Cl : (s ~ 0) 1\ (0 ::; m::; n) 1\ (n = CO.n) 1\ (n = 0 =? s = 0) 1\

(CO CO.m(CO.m + 1))
m < n =? s = .s + 2

class C1 inherit CO

114

Master's Thesis - U.Pujari McMaster - Computing and Software

action doSum

end

when m > 0 do

s,m:= m(m+1),0
2

A.1.2 Module Definitions

The class definition of class CO within a module amounts to the module dec

larations:

private var CO : set of Object := {}

var n, s, m : Object -----+ integer

invariant (Vthis E CO • leo)

procedure CO.new(res this: Object)

this :tf- CO U {nil}; CO:= CO U {this} ;

this.n, this.s, this.m := 0,0,0

public procedure CO.setN(this : Object, k : integer)

{this E CO} ;

{k 2: O} ; this.n:= k

public procedure CO.calcSum(this : Object)

{this E CO} ;

[this.n > 0] ; this.s, this.m := 0, this.n

public procedure CO.getSum(this: Object, res result: integer)

{this E CO} ;

[this.m = 0] ; result := this.s

public action CO. doSum

var this :E CO •

[this.m> 0] ; this.s, this.m:= this.s + this.m, this.m-1

The class definition of class C1 within a module amounts to the module dec

larations:

private var C1 : set of Object := {}

private var CO' : set of Object := {}

var n, s, m : Object -----+ integer

115

Master's Thesis - U.Pujari McMaster - Computing and Software

invariant (V this E Cl • Je1)

procedure C1.new(res this: Object)

CO. new (this) ; CO':= CO' U { this} ;

Cl := Cl U {this}

public procedure C1.setN(this : Object, k : integer)

{this E Cl}; CO'.setN(this, k)

public procedure C1. calcSum(this: Object)

{this E Cl}; CO'.calcSum(this)

public procedure C1.getSum(this: Object, res result: integer)

{this E Cl}; CO'.getSum(this, result)

public action Cl. doSum

var this :E Cl •

. .. this.m(this.m + 1)
[th'ls.m> 0] ; th'ls.s, th'ls.m := 2 ,0

Since Cl inherits variables n, sand m from CO, we rename the variables

as follows: CO.n = no, CO.S = so, CO.m = mo, C1.n = nl, C1.s = Sl,

C1.m = ml

Using these renamed variables, the invariants of classes CO and Cl can be

written as:

and

I: Vp E CO· (p.so 2 0) /\ (0 ::::; p·mo ::::; p.no) /\ (p.no = 0 =? p.So = 0).

J : Vp E Cl • (P.Sl 20) /\ (0 ::::; p.ml ::::; p.nl) /\ (p.nl = p.no) /\ (p.nl =

p.mo(p.mo + 1) o =? P·Sl = 0) /\ (p.ml < p.nl =? P·Sl = p.So + 2)

Combining these two class invariants, we have the invariant R given as:

R 1/\ J

CO' = Cl /\ Vp E Cl • (p.so 2: 0) /\ (p.Sl 20) /\ (p.nl = p.rto) /\

(0::::; p·mo ::::; p.no) /\ (0::::; p.ml ::::; p.nl) /\ (p.no = 0 =? p.So = 0)
/\ (p.nl = 0 =? P.Sl = 0) /\

p.mo(p.mo + 1)
(p.ml < p.nl =? P·Sl = p.So + 2)

116

Master's Thesis - U.Pujari McMaster - Computing and Software

A.1.3 Verification and Refinement

According to the rules for class inheritance in Lime, when class Cl inherits

from class CO, the class Cl also refines the class CO under the conditions of

superposition refinement, written as CO ~5 Cl. In order to establish this, the

following class refinement conditions must hold:

(a) Program Initialization:

CO' = {} 1\ Cl = {} =? I 1\ J

(b) Object Creation:

CO. new ~5 Cl.new

(c-l) Main Method Refinement - setN:

CO.setN ~5 Cl.setN

Main Method Enabledness - setN :

(I 1\ J 1\ en CO.setN 1\ tr CO.setN) =?

(en Cl.setN V en Cl.doSum)

(c-2) Main Method Refinement - calcSum:

CO.calcSum ~5 Cl.calcSum

Main Method Enabledness - calcSum :

(I 1\ J 1\ en CO.calcSum 1\ tr CO.calcSum) =?

(en Cl. calcSum V en Cl. doSum)

(c-3) Main Method Refinement - getSum :

CO.getSum ~5 Cl.getSum

117

Master's Thesis - U.Pujari McMaster - Computing and Software

Main Method Enabledness - getSum :

(I /\ J /\ en CO.getSum /\ tr CO.getSum) =?

(en C1.getSum V en C1. doSum)

(d) New Method Refinement: Class C1 does not define any new methods.

(e) Main Action Refinement - doSum :

CO. do Sum ~5 C1. doSum

Main Action Enabledness - doSum :

I /\ J /\ en CO. doSum /\ tr CO. doSum =? en C1. doSum

(f) Auxiliary Action Refinement: Class C1 does not define any auxiliary
actions.

A.2 Detail Proof

Program Initialization:

CO' = {} /\ C1 = {} =? I /\ J

Since at the point of program initialization, both CO' and C1 are empty, so

the above condition holds trivially over the empty sets.

Object Creation:

CO. new ~5 C1.new

this:tJ- CO U {nil}; CO:= CO U {this}; this.no, this.so, this.'TI7{j :=

0,0, 0 ~5 this :tJ- CO U {nil}; CO := CO U {this}; this.nl, this.s1 ,

this.ml := 0,0,0; CO' := CO' U {this}; C1 := C1 U {this}

(Using 5.2, 5.3 and R = I /\ J)

118

Master's Thesis - U.Pujari McMaster - Computing and Software

R 1\ tr(this :tf- CO U {nil}; CO:= CO U {this}; this. no, this.so,

this.mo := 0,0,0) =? wp(this :tf- CO U {nil}; CO:= CO U {this};

this.nl, this.sl , this.ml := 0,0,0; CO' := CO' U {this}; Cl := C1 U

{this}, wp(this :tf- CO U {nil}; CO := CO U {this}; this. no, this.so,

this.mo := 0,0,0, J))
(Step-1)

tr(this :tf- CO U {nil}; CO:= CO U {this}; this. no, this.so, this.mo

:= 0,0,0)

(Using tr S - wp(S, true))

wp(this :tf- CO U {nil}; CO := CO U {this}; this. no, this. so, this. mo
:= 0, 0, 0, true)

(Using 4.10)

wp(this :tf- CO U {nil}; CO:= CO U {this}, wp(this.1io, this.so,

this.mo := 0,0,0, true))

(Using 4.46, 4.5)

wp(this :tf- CO U {nil}; CO:= CO U {this}, true[no\no[this f--- 0],

So \ So [this f--- 0], mo \ mo [this f--- 0]))

wp(this :tf- CO U {nil}; CO := CO U {this}, true)

(Using 4.10)

wp(this :tf- CO U {nil}, wp(CO := CO U {this}, true))

(Using 4.5)

wp(this :tf- CO U {nil}, true [CO\ CO U {this}])

wp(this :tf- CO U {nil}, true)

(Using 4.6)

119

Master's Thesis - U.Pujari McMaster - Computing and Software

Vthis tf; CO U {nil} • true

true

Substituting this result in (Step-I), we have

CO. new ~5 Cl.new

R 1\ true =;:. wp(this :tf; CO U {nil}; CO:= CO U {this}; this.nI,

this.sI, this.mI := 0,0,0; CO':= CO' U {this}; Cl:= Cl U {this},

wp(this :tf; CO U {nil}; CO := CO U {this}; this. rI{J, this.so, this. rna
:= 0,0,0, J))

R =;:. wp(this :tf; CO U {nil}; CO:= CO U {this}; this.nI, this.sI ,

this. mI := 0,0,0; CO' := CO' U {this}; Cl := Cl U {this}, wp(this

:tf; CO U {nil}; CO := CO U {this}; this. rI{J, this.so, this. rna := 0,0,0,

J)) (Step-2)

wp(this:tf; CO U {nil}; CO:= CO U {this}; this.rI{J, this.so, this.rna
:= 0,0,0, J)

(Using 4.62)

wp(this:tf; CO U {nil}; CO:= CO U {this}, wp(this.rI{J, this.so,
this.rna := 0,0,0, J))

(Using 4.46, 4.60)

wp(this:tf; CO U {nil}; CO:= CO U {this}, J[rI{J\rI{J[this f---- 0],

So \ So [this f---- 0], rna \ rna [this f---- 0]])

(Using 4.62)

wp(this:tf; CO U {nil}, wp(CO:= CO U {this}, J[rI{J\rI{J[this f---- 0],

So \ So [this f---- 0], rna \ rna [this f---- 0]]))

(Using 4.60)

120

Master's Thesis - U.Pujari McMaster - Computing and Software

wp(this :t}. CO U {nil}, J[no\no[this f--- 0], so\so[this f--- 0],
mo \ mo [this f--- 0]][CO\ CO u { this}])

(Using 4.61)

3this t}. CO U {nil}· J[no\no[this f--- 0], so\so[this f--- 0],
mo \ mo [this f--- 0]][CO\ CO u { this} 1

Substituting this result in (Step-2), we have

CO.new ~5 Cl.new

R =? wp(this :t}. CO U {nil}; CO:= CO U {this}; this.nl, this.sl ,

this.ml := 0, 0, 0; CO' := CO' U {this}; C1 := C1 U {this}, (3this t}.
CO U {nil}' J[no\no[this f--- 0], so\so[this f--- 0], mo\mo[this f--- all
[CO\ co u {this }]))

(Using 4.10)

- R =? wp(this :t}. CO U {nil}; CO:= CO U {this}; this.nl, this.sl ,

this.ml := 0, 0, 0; CO' := CO' U {this}, wp(C1 := C1 U {this},

(3this t}. CO U {nil}' J[no\no[this f--- 0], so\so[this f--- 0],

mo \ mo[this f--- 0]][CO\ CO u {this}])))

(Using 4.5)

- R =? wp(this :t}. CO U {nil}; CO:= CO U {this}; this.nl, this.sl ,

this. ml := 0, 0, 0; CO' := CO' U { this}, (3this t}. CO U {nil} •

J[no \ no [this f--- 0], So \ So [this f--- 0], mo \ mo [this f--- all
[CO\ co u {this}][C1 \ C1 U {this }]))

(Using 4.10)

R =? wp(this :t}. CO U {nil}; CO:= CO U {this}; this.nr, this.sl ,

this. ml := 0, 0, 0, wp(CO' := CO' U {this}, (3this t}. CO U {nil} •

J[no \no[this f--- 0], So \so[this f--- 0], mo \mo[this f--- all
[CO\ co u {this}][C1 \ C1 U {this }])))

121

Master's Thesis - U .Pujari McMaster - Computing and Software

(Using 4.5)

- R =? wp(this:tj. CO U {nil}; CO:= CO U {this}; this.nl, this.s1 ,

this. ml := 0, 0, 0, (3this tj. CO U {nil} • J[no \ no [this f-- OJ,
So \so[this f-- 0], mo \mo[this f-- 0]][CO\ CO u {this}]

[C1\C1 U {this}][CO'\CO' U {this}]))

(Using 4.10)

- R =? wp(this:tj. CO U {nil}; CO:= CO U {this}, wp(this.nl, this.s1 ,

this. ml := 0, 0, 0, (3this tj. CO U {nil} • J[no \ no [this f-- 0],
So \so[this f-- 0], mo \mo[this f-- 0]][CO\ CO u {this}]

[C1 \ C1 U {this}][CO'\ CO' u {this }])))

(Using 4.46, 4.5)

- R =? wp(this :tj. CO U {nil}; CO:= CO U {this}, (3this tj. CO U {nil}

• J[no \ nor this f-- OJ, So \ So [this f-- 0], mo \ mo [this f-- 0]][CO\ CO u
{this}][C1 \ C1 U {this}][CO'\ CO' u {this }][nl \nl[this f-- OJ,
Sl \ Sl [this f-- 0], ml \ mIl this f-- 0]]))

(Using 4.10)

_ R =? wp(this :tj. CO U {nil}, wp(CO := CO U {this}, (3this tj. CO U

{nil} • J[no \ no [this f-- 0], So \ So [this f-- 0], mo \ mo [this f-- 0]]
[CO\ CO u {this}][C1 \ C1 U {this}][CO'\ CO' u {this}]

[nl \nl[this f-- 0], Sl \sl[this f-- 0], ml \ml[this f-- 0]])))

(Using 4.5)

_ R =? wp(this:tj. CO U {nil}, (3this tj. CO U {nil}' J[no\

no[this f-- 0], so\so[this f-- 0], mo\mo[this f-- O]][CO\CO U {this}]

[C1 \ C1 U {this}][CO'\ CO' u {this }][nl \nl[this f-- 0],

Sl\Sl[this f-- O],ml\ml[this f-- 0]]))

(Using 4.6)

- R =? Vthis tj. CO u {nil} • 3this tj. CO U {nil} • J[no \ nor this f-- 0],
So \ So [this f-- 0], mo \ mo [this f-- 0]][CO\ CO u { this}]

122

Master's Thesis - U .Pujari McMaster - Computing and Software

[C1 \ C1 U {this}][CO'\ CO' U {this }][n1 \ n1[this ~ 0],

sl\sdthis ~ 0], m1\m1[this ~ 0]]

j[11o\11o[this ~ 0], so\so[this ~ 0], mo\mo[this ~ Oll
[CO\ CO U {this}][C1 \ C1 U {this}][CO'\ CO' U {this}]

[n1 \n1[this ~ 0], Sl \sl[this ~ 0], m1 \m1[this ~ Oll

(Step-3)

Vp E C1 • (P.S1 2 0) /\ (0 ::; p. m1 ::; p. n1) /\ (p. n1 = p. 110) /\ (p. n1
p.mo(p.mo + 1)

= 0 ::::} P·S1 = 0) /\ (p.m1 < p.n1 ::::} P·S1 = p.So + 2)

[110 \ 110 [this ~ 0], So \ So [this ~ 0], mo \ mo [this ~ 0]][CO\ CO U { this}]

[C1 \ C1 U {this}][CO'\ CO' U {this }][n1 \n1[this ~ 0],
Sl\Sl[this ~ 0], m1\m1[this ~ Oll

Vp E C1 U {this}· (p.s1[this ~ 0]20) /\ (0::; p.mtlthis ~ 0]::;
p.n1[this ~ 0]) /\ (p.n1[this ~ 0] = p.11o[this ~ 0]) /\
(p.n1[this ~ 0] = 0 ::::} p.s1[this ~ 0] = 0) /\ (p.m1[this ~ 0] <
p.n1[this ~ 0] ::::} p.s1[this ~ 0] = p.so[this ~ 0] +
p.mo[this ~ 0] (p.mo[this ~ 0] + 1))

2

Substituting this result in (Step-3) and performing a case analysis with p =

this and p =1= this, we have,

When p = this

CO.new ::;5 Cl.new

R ::::} Vthis t/:. co U {nil} • 3this t/:. CO U {nil} • (0 2 0) /\ (0 ::; 0 ::;
0*1

0) /\ (0 = 0) /\ (0 = 0 ::::} 0 = 0) /\ (0 < 0 ::::} 0 = 0 + -2-)

R ::::} Vthis t/:. CO U {nil} • 3this t/:. CO U {nil} • true

true

When p =1= this

CO.new ::;5 Cl.new

123

Master's Thesis - U.Pujari McMaster - Computing and Software

R ::::} Vthis ¢:. CO U {nil} • -::Jthis ¢:. CO U {nil} • Vp E C1 • (P.Sl 2:
0) /\ (0 ::; p. ml ::; p. nl) /\ (p. nl = p. no) /\ (p. nl = 0 ::::} P.Sl = 0) /\

p. rTI{J (p . rTI{J + 1)
(p.ml < p.nl ::::} P·Sl = p.So + 2)

true

Therefore, CO. new ::;5 C1.new.

Main Method Refinement - setN :

CO.setN ::;5 C1.setN

{this E CO}; {k 2: O}; this.no:= k

::;5 {this E C1}; {this E CO'}; {k 2: O}; this. nl := k

(Using 5.2, 5.3 and R = I /\ J)

R /\ tr({this E CO}; {k 2: O}; this. no := k) ::::} wp({this E C1};

{this E CO'}; {k 2: O}; this.nl := k, wp({this E CO}; {k 2: O};

this·no := k, J)) (Step-4)

tr({this E CO}; {k 2: O}; this. no := k)

(Using 4.28)

this E CO /\ tr({k 2: O}; this.no := k)

(Using 4.28)

this E CO /\ k 2: 0/\ tr(this.no := k)

(Using tr S = wp(S, true))

this E CO /\ k 2: 0/\ wp(this. no := k, true)

(Using 4.46, 4.5)

this E CO/\ k 2: 0/\ true[no\no[this f- k]]

124

Master's Thesis - U .Pujari McMaster - Computing and Software

this E CO!\ k ~ 0 !\ true

this E CO!\ k ~ 0

(Result-1)

Substituting this result in (Step-4), we have

CO.setN ~5 C1.setN

R!\ this E CO!\ k ~ 0 ~ wp({this E C1}; {this E CO'}; {k ~ O};

this.nl := k, wp({this E CO}; {k ~ O}; this.11D := k, J))

(Step-5)

wp({this E CO}; {k ~ O}; this.11D := k, J)

/

(Using 4.62)

wp({this E CO}; {k ~ O}, wp(this.11D := k, J))

(Using 4.46, 4.60)

wp({this E CO}; {k ~ O}, J[11D \11D[this f- k]])

(Using 4.62)

wp({this E CO}, wp({k ~ O}, J[11D\11D[this f- k]]))

(Using 4.58)

wp({this E CO}, (k ~ 0 ~ J[11D\11D[this f- k]]))

(Using 4.58)

(this E CO ~ (k ~ 0 ~ J[11D \11D[this f- k]]))

(Using a ~ (b ~ c) = (a !\ b) ~ c)
(this E CO!\ k ~ 0) ~ J[11D\11D[this f- k]]

125

Master's Thesis - U.Pujari McMaster - Computing and Software

Substituting this result in (Step-5), we have

CO.setN ~5 Cl.setN

- R A this E CO A k;:::: 0 =} wp({this E C1}; {this E CO'}; {k;:::: O};

this.nl := k, ((this E CO A k ;:::: 0) =} J[TI{)\TI{)[this f- klJ))

(Using 4.10)

- R A this E CO A k;:::: 0 =} wp({this E C1}; {this E CO'}; {k;:::: O},

wp(this.nl := k, ((this E CO A k ;:::: 0) =} J[TI{)\TI{)[this f- k]])))

(Using 4.46, 4.5)

- RA this E COA k;:::: 0 =} wp({this E C1};{this E CO'};{k;:::: O},

((this E CO A k;:::: 0) =} J[TI{)\TI{)[this f- k]][nl \nl[this f- klJ))

(Using 4.10)

- R A this E CO A k;:::: 0 =} wp({this E C1}; {this E CO'}, wp({k;::::

O}, ((this E CO A k ;:::: 0) =} J[TI{) \TI{)[this f- k]][nl \nl[this f- k]])))

(Using 4.3)

- R A this E CO A k ;:::: 0 =} wp({this E C1}; {this E CO'}, k ;:::: 0 A

((this E CO A k;:::: 0) =} J[TI{)\TI{)[this f- k]][nl\ndthis f- k]]))

(Using 4.10)

- R A this E CO A k ;:::: 0 =} wp({this E C1}, wp({this E CO'}, k ;:::: 0

A ((this E CO A k ;:::: 0) =} J[TI{)\TI{)[this f- k]][nl \nl[this f- k]])))

(Using 4.3)

- R A this E CO A k;:::: 0 =} wp({this E C1}, this E CO' A k;:::: OA

((this E CO A k ;:::: 0) =} J[TI{)\TI{)[this f- k]][nl \nl[this f- kJ]))

(Using 4.3)

- R A this E CO A k ;:::: 0 =} this E C1 A this E CO' A k ;:::: 0 A

((this E CO A k ;:::: 0) =} J[TI{)\TI{)[this f- k]][nl \nl[this f- kJ])

126

Master's Thesis - U.Pujari McMaster - Computing and Software

(Since R /\ Al /\ A2::::} Bl /\ B2 /\ A2 /\ ((AI /\ A2) ::::} Jl)

R /\ Al /\ A2 ::::} Bl /\ B2 /\ Jl)

R /\ this E CO /\ k 2: a ::::} this E Cl /\ this E co' /\
J[71{) \71{)[this f- k]][nl \nl[this f- k]]

(Step-6)

Vp E C1 • (P·Sl 2: 0) /\ (0 :::; p.ml :::; p.nl) /\ (p.nl = p.71{)) /\ (p.nl =

p.mo(p.mo + 1) a ::::} P.Sl = 0) /\ (p. ml < p. nl ::::} P·Sl = p.so + 2)

[71{)\71{)[this f- k]][nl \nl[this f- k]]

Vp E C1· (P.Sl 2: 0) /\ (0:::; p.ml:::; p.nl[this f- k)) /\ (p.nl[this f

k] = p.71{)[this f- k)) /\ (p.nl[this f- k] = a ::::} P'Sl = 0) /\ (p.ml <
. p.mo(p.mo + 1)

p.nl[th'ls f- k] ::::} P·Sl = p.So + 2)

Substituting this result in (Step-6) and performing a case analysis with p =

this and p =1= this, we have,

When p = this

CO.setN :::;5 C1.setN

R /\ this E CO /\ k 2: a ::::} this E Cl /\ this E co' /\ (this.sl 2: 0) /\
(0:::; this.ml :::; k) /\ (k = k) /\ (k = a ::::} this.Sl = 0) /\ (this.ml < k

h' h' this.mo(this.mo + 1))
::::} t 'lS.Sl = t 'lS.So + 2

true

When p =1= this

CO.setN :::;5 C1.setN

R /\ this E CO /\ k 2: a ::::} this E Cl /\ this E co' /\ Vp E Cl • (P.Sl

127

Master's Thesis - U.Pujari McMaster - Computing and Software

~ 0) 1\ (0 ::; p. ml ::; p. nl) 1\ (p. nl = p. no) 1\ (p. nl = 0 ::::} P.Sl = 0)
p. rrI{j (p . rrI{j + 1)

1\ (p.ml < p.nl ::::} P·Sl = p.so + 2)

true

Therefore, CO.setN ::;5 C1.setN.

Main Method Enabledness - setN :

(I 1\ J 1\ en CO.setN 1\ tr CO.setN) ::::} (en C1.setNV

en C1.doSum)

en CO.setN en({this E CO}; {k ~ O}; this.no := k)

(Using 4.25)

en({k ~ O}; this.no := k)

(Using 4.25)

en(this.no:= k)

(Using en S - ,wp(S,jalse))

,wp(this.no := k,jalse)

(Using 4.46, 4.5)

,(jalse[no \no[this f- kJ])

,false

true

(Step-7)

(Result-2)

tr CO.setN - tr({this E CO};{k ~ O}; this.no:= k)

128

Master's Thesis - U.Pujari McMaster - Computing and Software

(From Result - 1)
this E CO 1\ k 2:: 0

en C1.setN = en({this E C1}; CO'.setN(this, k))

en({this E C1}; {this E CO'}; {k 2:: O}; this. nl := k)

(Using 4.25)

en({this E CO'};{k 2:: O};this.nl:= k)

(Using 4.25)

en({k 2:: O}; this.nl := k)

(Using 4.25)

en(this.nl := k)

(Using en S ,wp(S,jalse))

,wp(this.nl := k,false)

(Using 4.46, 4.5)

,(false[nl \nl[this f- k]])

,false

true

en C1.doSum

(Using 4.53)

en(nthis E C1 • [this.ml > 0]; this.sl, this.ml :=

129

(Result-3)

(Result-4)

Master's Thesis - U.Pujari McMaster - Computing and Software

this.ml(this.ml + 1) 0)
2 '

(Using 4.27)

3this E C1 • en([this.ml > 0]; this.s1 , this.ml :=

this.ml(this.ml + 1) 0)
2 '

(Using 4.26)

3this E C1 8 this.ml > 0/\ en(this.s1 , this.ml :=
this.ml(this.ml + 1) 0)

2 '

(Using en S .wp(S,jalse))

3this E C1 • this.ml > 0/\ .wp(this.s1 , this.ml :=
this. ml (this. ml + 1) 0 f l)

2 ' lJase

(Using 4.46, 4.5)

3this E C1 • this.ml > 0/\
this.ml(this.ml + 1)

.(jalse[sl \sl[this f- 2]][ml \ml[this f- 0]])

3this E C1 • this.ml > 0/\ .false

3this E C1 • this.ml > 0

(Result-5)

Substituting Results 2, 3, 4, and 5 in (Step-7), we have

(I /\ J /\ true /\ this E CO /\ k 2: 0) =? (true V 3this E C1 • this.ml
> 0)

(I /\ J /\ this E CO /\ k 2: 0) =? true

true

130

Master's Thesis - U .Pujari McMaster - Computing and Software

Therefore, the enabledness condition for the method setN is satisfied.

Main 'Method Refinement - calcSum :

CO.calcSum ~5 Cl.calcSum

{this E CO}; [this.7I{) > 0]; this.so, this.mo := 0, this.7I{) ~5

{this E C1}; CO'.calcSum(this)

{this E CO}; [this.7I{) > 0]; this.so, this.mo := 0, this. 71{) ~5

{this E C1}; {this E CO'}; [this.nl > 0]; this.sl , this.ml := 0, this.nl

(Using 5.2, 5.3 and R = I 1\ J)
R 1\ tr({this E CO}; [this.7I{) > 0]; this .So, this. mo := 0, this .71{)) =?

wp({this E C1}; {this E CO'}; [this.nl > 0]; this.sl , this.ml:= 0,

this.nl, wp({this E CO}; [this.7I{) > 0]; this.so, this.mo:= 0, this. 71{) ,

J)) (Step-8)

tr({this E CO}; [this. 71{) > 0]; this.so, this.mo:= 0, this.7I{))

(Using 4.28)

this E CO 1\ tr([this.7I{) > 0]; this.so, this.mo := 0, this.7I{))

(Using 4.29)

this E CO 1\ en(this.so, this.mo := 0, this.7I{))

(Using en S = ,wp(S,jalse))

this E CO 1\ ,wp(this.so, this.mo := 0, this.7I{),jalse)

(Using 4.46, 4.5)

this E CO 1\ ,(Jalse[so\so[this f- O]][mo\mo[this f- this.7I{)]])

this E CO 1\ ,false

131

Master's Thesis - U.Pujari McMaster - Computing and Software

this E CO

(Result-6)

Substituting this result in (Step-8), we have

CO.calcSum ~5 Cl.calcSum

R/\ this E CO =? wp({this E C1};{this E CO'}; [this.nl > OJ;

this.s1 , this.ml := 0, this.nl, wp({this E CO}; [this.no > OJ; this.so,
this.rna := 0, this.no, J))

(Step-9)

wp({this E CO}; [this. no > 0]; this.so, this. rna := 0, this. no, J)

(Using 4.62)

wp({this E CO}; [this. no > 0], wp(this.so, this.rna := 0, this. no, J))

(Using 4.46, 4.60)

wp({this E CO}; [this. no > 0], J[so\so[this f-- 0]]
[rna \ rna [this f-- this. no]])

(Using 4.62)

wp({this E CO}, wp([this.no > 0], J[so\so[this f-- 0]]
[rna \ rna [this f-- this. no]]))

(Using 4.59)

wp({this E CO}, this. no > 01\ J[so\so[this f-- 0]]
[rna\rna[this f-- this.no]])

(Using 4.58)

this E CO =? this. no > 0 /\ J[So \ So [this f-- 0]]

[rna \ rna [this f-- this. no]]

Substituting this result in (Step-9), we have

132

Master's Thesis - U .Pujari McMaster - Computing and Software

CO.calcBum :5:5 C1.calcBum

R /\ this E CO::::} wp({this E C1}; {this E CO'}; [this.nl > 0];

this.s1 , this.ml := 0, this.nl, (this E CO::::} this.no > 0/\

l[so\so[this f--- O]][mo\mo[this f--- this.no]]))

(Using 4.10)

R /\ this E CO ::::} wp({this E C1}; {this E CO'}; [this. nl > 0],

wp(this.s1 , this.ml := 0, this.nl, (this E CO::::} this.no > 0/\

1 [so \so[this f--- O]][mo \ mo[this f--- this. no]])))

(Using 4.46, 4.5)

R /\ this E CO::::} wp({this E C1}; {this E CO'}; [this.nl > 0], (this

E CO::::} this.no > 0/\ l[so\so[this f--- O]][mo\mo[this f--- this.noll

[Sl \ Sl [this f--- 0]][ml \ md this f--- this. nl]]))

(Using 4.10)

R/\ this E CO::::} wp({this E C1};{this E CO'},wp([this.nl > 0],
(this E CO ::::} this. no > 0 /\ 1 [so \ So [this f--- Oll

[mo \ mo [this f--- this. no]][Sl \ sd this f--- 0]][ml \ md this f--- this. nl]])))

(Using 4.4)

R/\ this E CO::::} wp({this E C1};{this E CO'}, (this.nl > O::::}

(this E CO::::} this.no > 0/\ l[so\so[this f--- 0]]

[mo \ mo [this f--- this. no]][Sl \ Sl [this f--- 0]][ml \ ml [this f--- this. nl]])))

(Using 4.10)

R /\ this E CO ::::} wp({this E C1}, wp({this E CO'}, (this. nl > 0 ::::}

(this E CO::::} this.no > 0/\ l[so\so[this f--- Oll

[mo\mo[this f--- this.no]][Sl \sdthis f--- O]][ml \mdthis f--- this.nl]]))))

(Using 4.3)

133

Master's Thesis - U.Pujari McMaster - Computing and Software

R /\ this E CO =? wp({this E C1}, this E CO' /\ (this.n1 > 0 =?

(this E CO =? this.no > 0/\ l[so\so[this f---- 0]]
[17/{) \ 17/{) [this f---- this. no]][Sl \ Sl [this f---- 0]][m1 \ m1 [this f---- this. n1]])))

(Using 4.3)

R /\ this E CO =? (this E C1/\ this E CO' /\ (this.n1 > 0 =?

(this E CO =? this.no > 0/\ l[so\so[this f---- 0]]

[17/{) \ 17/{) [this f---- this. no]][Sl \ Sl [this f---- 0]][m1 \ m1 [this f---- this. n1]])))

(Since a =? b =? c (a /\ b) =? c)
R /\ this E CO =? (this E C1 /\ this E CO' /\ (this. n1 > 0 /\ this E

CO) =? this.no > 0/\ l[so\so[this f---- 0]][17/{)\17/{) [this f---- this.no]]

[Sl \ Sl [this f---- 0]][m1 \ m1 [this f---- this. n1]])

(Step-l0)

1 [so \ So [this f---- 0]][17/{) \ 17/{) [this f---- this. no]][Sl \ Sl [this f---- 0]]

[m1 \ m1 [this f---- this. n1]]

Vp E C1 • (P.S1 2: 0) /\ (0 ::; p. m1 ::; p. n1) /\ (p. n1 = p. no) /\ (p. n1 =

p.17/{)(p.17/{) + 1) o =? P·S1 = 0) /\ (p.m1 < p.n1 =? P·S1 = p.So + 2)

[so \ So [this f---- 0]][17/{) \ 17/{) [this f---- this. no]][Sl \ sd this f---- 0]]

[m1 \ m1 [this f---- this. n1]]

Vp E C1 • (p.s1[this f---- 0] 2: 0) /\ (0 ::; p.m1[this f---- this.n1] ::; p.n1)

/\ (p. n1 = p. no) /\ (p. n1 = 0 =? P·S1 [this f---- 0] = 0) /\

(p.m1[this f---- this.n1] < p.n1 =? p.s1[this f---- 0] = p.so[this f---- 0]+
p.17/{)[this f---- this. no] (p. 17/{) [this f---- this.no] + 1))

2

Substituting this result in (Step-10) and performing a case analysis with p =

this and p =I- this, we have,

When p = this

CO.calcSum ::;5 C1.calcSum

134

Master's Thesis - U.Pujari McMaster - Computing and Software

R /\ this E CO =? (this E C1 /\ this E CO' /\ (this. nl > a /\ this E

CO) =? this.no > a /\ (0::; this.nl) /\ (this.nl = this.no) /\ (this.nl =

a =? a = 0))

true

When p =1= this

CO. calcSum ::;5 Cl. calcSum

R /\ this E CO =? (this E C1 /\ this E CO' /\ (this. nl > a /\ this E

CO) =? this.no > 0/\ ('Vp E C1 • (P.Sl ~ 0) /\ (0 ::; p.ml ::; p.nl) /\

(p.nl = p.no) /\ (p.nl = a =? P·Sl = 0) /\ (p.ml < p.nl =? P·Sl =

p. rno (p. rno + 1)))
p.So + 2

true

Therefore, CO.calcSum ::;5 Cl.calcSum.

Main Method Enabledness - calcSum :

(I /\ J /\ en CO. calcSum /\ tr CO. calcSum) =?

(en Cl. calcSum V en Cl. doSum)

en CO.calcSum en({this E CO}; [this. no > 0];

this.so, this.rno := 0, this. no)

(Using 4.25)

en([this.no> 0]; this.so, this.rno := 0, this.no)

(Using 4.26)

this. no > 0/\ en(this.so, this.rno := 0, this.no)

135

(Step-ll)

Master's Thesis - U .Pujari McMaster - Computing and Software

(Using en S = ,wp(S,false))

this.no > 01\ ,wp(this.so, this.rna := 0, this.no,false)

(Using 4.46, 4.5)

this.no > 01\ ,(false[so\so[this f-- O]][rna\rna[this f-- this.no]])

this. no > 0 1\ ,false

this.no > 0

(Result-7)

tr CO.calcSum - tr({this E CO}; [this.no > OJ; this.so, this.rna:= 0,

this. no)

(Prom Result - 6)
this E CO

(Result-B)

en C1. calcSum - en ({this E C1}; CO'. calcSum (this))

en({this E C1}; {this E CO'}; [this.nl > OJ; this.sr, this.ml := 0,

this.nl)

(Using 4.25)

en({this E CO'}; [this.nl > OJ; this.s1 , this.ml := 0, this.nl)

(Using 4.25)

en([this.nl > OJ; this.s1 , this.ml := 0, this.nl)

(Using 4.26)

this.nl > 01\ en(this.s1 , this.ml := 0, this.nl)

(Using en S = ,wp(S,false))

136

Master's Thesis - U .Pujari McMaster - Computing and Software

this.nl > 0/\ ,wp(this.s1, this.ml := 0, this.nl,false)

(Using 4.46, 4.5)

this.nl > 0/\ ,(Jalse[sl \sl[this ~ O]][ml \ml[this ~ this.nl]])

this. nl > 0 /\ ,false

this.nl > 0

(Result-9)

Substituting Results 5,7,8 and 9 in (Step-ll), we have the method enabledness

condition as

(I/\ J /\ this.'T1{J > 0/\ this E CO) =? (this.nl > 0 V 3this E C1·

this.ml > 0)
true

Therefore, the enabledness condition for method calcSum is satisfied.

Main Method Refinement - getSum :

CO.getSum ~5 C1.getSum

{this E CO}; [this.1TI{} = 0]; resulto := this.so ~5 {this E C1};

CO'. getSum (this , result1)

{this E CO}; [this.1TI{} = 0]; resulto := this.so ~5 {this E C1};

{this E CO'}; [this.ml = 0]; result1 := this.s1

(Using 5.2, 5.3 and R = I /\ J)
R/\ tr({this E CO}; [this.1TI{} = O];resulto:= this.so) =? wp({this E

C1};{this E CO'}; [this.ml =0];result1 := this.s1,wp({this E CO};

[this.1TI{} = 0]; resulto : = this. so, J))
(Step-12)

137

Master's Thesis - U .Pujari McMaster - Computing and Software

tr({this E CO}; [this.rna = 0]; resulto:= this.so)

(Using 4.28)

this E CO!\ tr([this.rna = 0]; resulto := this.so)

(Using 4.29)

this E CO!\ en(resulto := this.so)

(Using en S_ ,wp(S ,false))

this E CO!\ ,wp(resulto := this.so,false)

(Using 4.5)

this E CO!\ ,(false [resulto \this.soJ)

this E CO!\ ,false

this E CO

(Result-l 0)

Substituting this result in (Step-12), we have

CO.getSum ~5 C1.getSum

R!\ this E CO::::} wp({this E Cl}; {this E CO'}; [this.ml = 0];

result1 := this.s1 , wp({this E CO}; [this. rna = 0]; resulto := this.so,

J)) (Step-13)

wp({this E CO}; [this.rna = 0]; resulto := this. so, J)

(Using 4.62)

wp({this E CO}; [this.rna = 0], wp(resulto := this.so, J))

138

Master's Thesis - U.Pujari McMaster - Computing and Software

(Using 4.60)

wp({this E CO}; [this.rna = 0], J[resulto\this.so])

(Using 4.62)

wp({this E CO}, wp([this.rna = 0], J[resulto\this.so]))

(Using 4.59)

wp({this E CO}, this. rna = 0/\ J[resulto\this.soD

(Using 4.58)

this E CO =?- this.rna = 0/\ J[resulto\this.sol

Substituting this result in (Step-13), we have

CO.getSum :5:5 Cl.getSum

R /\ this E CO =?- wp({this E Cl}; {this E CO'}; [this.ml = Ol;

result1 := this.s1 , (this E CO =?- this. rna = 0/\ J[resulto\this.soD)

(Using 4.10)

R /\ this E CO =?- wp({this E Cl}; {this E CO'}; [this.ml = 0],
wp(result1 := this.s1 , (this E CO =?- this.rna = 0/\

J[resulto \ this. soD))

(Using 4.5)

R /\ this E CO =?- wp({this E Cl}; {this E CO'}; [this.ml = 0],
(this E CO =?- this. rna = 0 /\ J [resulto \this. so][result1 \ this .sID)

(Using 4.10)

R /\ this E CO =?- wp({this E Cl}; {this E CO'}, wp([this.ml = 0],
(this E CO =?- this.rna = 0/\ J[resulto\this.so][resultl \this.s1D))

(Using 4.4)

139

Master's Thesis - U.Pujari McMaster - Computing and Software

R /\ this E CO ==? wp({this E Cl}; {this E CO'}) (this.ml = 0 ==?

(this E CO ==? this.rna = 0/\ J[resulto\this.so][result1 \this.s1])))

(Since a ==? b ==? c _ (a /\ b) ==? c)
R /\ this E CO ==? wp({this E Cl}; {this E CO'}) ((this.ml = 0 /\

this E CO) ==? this.rna = 0/\ J[resulto\this.so][result1 \this.s1]))

(Using 4.10)

R /\ this E CO ==? wp({this E Cl}) wp({this E CO'}) ((this.ml = 0

/\ this E CO) ==? this. rna = 0 /\ J [resulto \ this. so] [result1 \ this. SI])))

(Using 4.3)

R /\ this E CO ==? wp({this E Cl}) (this E CO') /\ ((this.ml = 0/\

this E CO) ==? this. rna = 0 /\ J [resulto \this. so][result1 \ this. SI]))

(Using 4.3)

R /\ this E CO ==? this E Cl /\ this E CO' /\ ((this. ml = 0/\

this E CO) ==? this.rna = 0/\ J[resulto\this.so][result1 \this.s1])

R /\ this E CO ==? this E Cl /\ this E CO' /\ ((this. ml = 0 /\ this E

CO) ==? this. rna = 0/\ J)

true

Therefore) CO.getSum ~5 C1.getSum.

Main Method Enabledness - getSum :

(I /\ J /\ en CO.getSum /\ tr CO.getSum) ==? (en Cl.getSumV

en Cl. doSum)

(Step-14)

en CO.getSum - en({this E CO}; [this.rna = 0]; resulto := this.so)

140

Master's Thesis - U.Pujari McMaster - Computing and Software

(Using 4.25)

en([this.rna = 0]; resulto := this.so)

(Using 4.26)

this.rna = 01\ en(resulto := this.so)

(Using en S .wp(S,jalse))

this.rna = 01\ .wp(resulto := this.so,jalse)

(Using 4.5)

this.rna = 01\ .(false[resulto\this.soD

this. rna = 0 1\ ·false

this.rna = 0

(Result-ll)

tr CO.getSum = tr({this E CO}; [this.rna = 0]; resulto := this.so)

(From Result - 10)

this E CO

(Result-12)

en C1.getSum = en({this E Cl}; CO'.getSum(this, resultl)

en({this E Cl}; {this E CO'}; [this.ml = 0]; resultl := this.sl)

(Using 4.25)

en({this E CO'}; [this.ml = 0]; resultl := this.sl)

(Using 4.25)

en([this.ml = 0]; resultl := this.sl)

141

Master's Thesis - U .Pujari McMaster - Computing and Software

(Using 4.26)

this.ml = 01\ en(resultl := this.s1)

(Using en S = ,wp(S,jalse))

this.ml = 01\ ,wp(result1 := this.s1,jalse)

(Using 4.5)

this.ml = 01\ ,(false [result1 \this.s1])

this. ml = 0 1\ ,false

this.ml = 0

(Result-13)

Substituting Results 5, 11, 12 and 13 in (Step-14), we have the method en

abledness condition as

(I 1\ J 1\ this.'fTI{j = 01\ this E CO) =? (this.ml = 0 V 3this E Cl •

this.ml> 0)

true

Therefore, the enabledness condition for method getSum is satisfied.

Main Action Refinement - doSum :

CO.doSum <j Cl.doSum

(Using 4.53)

nthis E CO· [this.'fTI{j > 0]; this.so, this.'fTI{j := this.so + this.'fTI{j,

this.'fTI{j - 1 sj nthis E Cl • [this.ml > 0]; this.s1, this.ml :=

this.ml(this.ml + 1) 0
2 '

(Using 5.2, 5.3 and R = I 1\ J)

142

Master's Thesis - U .Pujari McMaster - Computing and Software

R /\ tr(nthis E CO • [this.mo > 0]; this. so, this.mo := this. So +
this.mo, this.mo - 1) =? wp(nthis E C1 • [this.ml > 0]; this.s1 ,

this.ml(this.ml + 1)
this.ml := 2 ,0, wp(nthis E CO· [this.mo > 0];

this.so, this.mo := this.so + this.mo, this.mo - 1, J))
(Step-15)

tr(nthis E CO· [this.mo > 0]; this.so, this.mo := this.so + this.mo,

this.mo - 1)

(UsingtrS _ wp(S, true))

wp(nthis E CO· [this.mo > 0]; this. so, this.mo := this.so + this.mo,

this. mo - 1, true)

(Using 4.8)

Vthis E CO· wp([this.mo > 0]; this. so, this.mo := this.so + this.mo,

this.mo - 1, true)

(Since tr S _ wp(S, true))

Vthis E CO· tr([this.mo > 0]; this.so, this.mo := this.so + this.mo,

this.mo - 1)

(Using 4.29)

Vthis E CO • en(this.so, this.mo := this.so + this.mo, this.mo - 1)

(Using en S = ----.wp (S ,false))

Vthis E CO· ----.wp(this.so, this.mo := this.so + this.mo, this.mo - 1,

false)

(Using 4.46, 4.5)

Vthis E CO· ----.(false[so\so[this f- this.so + this.mo]]

[mo\mo[this f- this.mo -1]])

143

Master's Thesis - U .Pujari McMaster - Computing and Software

Vthis E CO • -false

true

(Result-14)

Substituting this result in (Step-15), we have

CO.doSum ~5 C1.doSum

R 1\ true::::} wp(nthis E Cl • [this.ml > 0]; this.s1 , this.ml :=

this.ml(this.ml + 1)
2 ,0, wp(nthis E CO· [this.rna > 0]; this.so,

this.rna := this.so + this.rna, this.rna - 1, J))

(Step-16)

wp(nthis E CO· [this.rna > 0]; this.so, this.rna := this.so + this.rna,

this.rna - 1, J)

(Using 4.64)

3this E CO • wp([this.rna > OJ; this. so, this.rna := this.so + this.rna,

this.rna - 1, J)

(Using 4.62)

3this E CO· wp([this.rna > OJ, wp(this.so, this.rna := this. So +
this.rna, this.rna - 1, J))

(Using 4.46, 4.60)

3this E CO· wp([this.rna > 0], J[so\so[this f- this.so + this.rna]]

[rna \ rna [this f- this. rna - 1]])

(Using 4.59)

3this E CO· this.rna > 01\ J[so \so[this f- this.so + this.rna]]

[rna\rna[this f- this.rna -1]]

Substituting this result in (Step-16), we have

144

Master's Thesis - U.Pujari McMaster - Computing and Software

CO.doSum :::;5 Cl.doSum

R::::} wp(nthis E Cl • [this.m1 > 0]; this.s1, this.m1 :=

this.m1(this.m1 + 1) 0 (3 h' CO h' 0 J
2 "t zs E • t zs·rna > A

[so\so[this f- this.so + this.rna]][rna\rna[this f- this.rna -1]]))

(Using 4.8)

R ::::} Vthis E Cl' wp([this.m1 > 0]; this.sl, this.m1 :=

this. m1 (this. m1 + 1) 0 (3 h' CO h' 0 J
2 "t zs E • t zs·rna > A

[So \ So [this f- this. So + this. rna]][rna \ rna [this f- this. rna - 1]]))

(Using 4.10)

R ::::} Vthis E Cl • wp([this.m1 > 0], wp(this.s1, this.m1 :=

this. m1 (this. m1 + 1) 0 (3 h' CO h' 0 J
2 "t zs E • t zs·rna > A

[so \ So [this f- this. So + this. rna]][rna \ rna [this f- this. rna - 1]])))

(Using 4.46, 4.5)

R ::::} Vthis E Cl • wp([this.m1 > 0], (3this E CO, this.rna > 0 A J

[so\so[this f- this.so + this. rna]][rna \ rna [this f- this.rna -1]]

[\ [h · this.m1(this.m1 + 1)]][\ [h' 0]]))
Sl Sl t ZS f- 2 m1 m1 t zs f-

(Using 4.4)

R ::::} Vthis E Cl • this.m1 > O::::} (3this E CO • this.rna > 0 A J

[so\so[this f- this. So + this.rna]][rna\rna[this f- this.rna -1]]

[\ [h · this.m1(this.m1 + 1)]][\ [h' 0]])
Sl Sl t ZS f- 2 m1 m1 t zs f-

(Expanding J)

R ::::} Vthis E Cl • this.m1 > O::::} (3this E CO, this.rna > 0 A (Vp

E Cl • (P·S1 :::::: 0) A (0 :::; p.m1 :::; p.n1) A (p.n1 = p.no) A (p.n1 = 0

145

Master's Thesis - U.Pujari McMaster - Computing and Software

p.rna(p.rna + 1) =>- P·S1 = 0) 1\ (p. m1 < p. n1 =>- P·S1 = p.So + 2))

[so \ So [this ~ this. So + this. rna]][rna \ rna [this ~ this. rna - 1]]

[\ [h' this.m1(this.m1+1)]][\ [h']]) Sl Sl t 'lS ~ 2 m1 m1 t 'lS ~ 0

R =>- Vthis E C1 • this.m1 > 0 =>- (3this E CO • this.rna > 01\ ('lip
this. m1 (this. m1 + 1)

E C1 • (p.s1[this ~ 2] :2: 0) 1\ (0 :::; p.m1[this ~

0] :::; p.n1) 1\ (p.n1 = p.no) 1\ (p.n1 = 0 =>- p.s1[this ~
this.m1(this.m1 + 1) ,

2] = 0) 1\ (p.m1[th'ls ~ 0] < p.n1 =>- p.s1[this ~
this.m1(this.m1 + 1) "

2] = p.so[th'ls ~ th'ls.so + this. rna] +
p.rna[this ~ this.rna - l](p.rna[this ~ this.rna - 1] + 1))))

2
(Step-17)

Performing a case analysis at (Step-17) with p = this and p #- this, we have,
When p = this

CO.doSum :::;5 C1.doSum

R =>- Vthis E C1 • this. m1 > 0 =>- (3this E CO • this. rna > 0/\
this.m1(this.m1 + 1) '"

((2 :2: 0) 1\ (0 :::; 0 :::; th'ls.n1) 1\ (th'ls.n1 = th'ls.no
this. m1 (this. m1 + 1)

) 1\ (this. n1 = 0 =>- 2 = 0) /\ (0 < this. n1 =>-
this.m1(this.m1 + 1) h' h' (this.rna -l)this.rna)))
----'----------'-- = t 'lS .So + t 'lS. rna + -'-------'------

2 2

true

When p #- this

CO. do Sum :::;5 C1. doSum

R =>- Vthis E C1 • this.m1 > 0 =>- (3this E co· this.rna > 01\ ('lip

E C1 • (P.S1 :2: 0) 1\ (0 :::; p. m1 :::; p. n1) 1\ (p. n1 = p. no) 1\ (p. n1 = 0

p.rna(p.rna + 1) =>- P·S1 = 0) 1\ (p. m1 < p. n1 =>- P·S1 = p.So + 2)))

146

Master's Thesis - U .Pujari McMaster - Computing and Software

- true

Therefore, CO. do Sum ~5 C1.doSum.

Main Action Enabledness - doSum :

I /\ J /\ en CO. doSum /\ tr CO. doSum ::::} en C1. doSum

(Step-18)

en CO.doSum = en(nthis E CO· [this.mo > 0]; this. so, this.mo :=

this.so + this.mo, this.mo - 1)

(Using 4.27)

3this E CO· en([this.mo > 0]; this.so, this.mo := this.so + this.mo,

this.mo - 1)

(Using 4.26)

3this E CO· this.mo > 0/\ en(this.so, this.mo := this.so + this.mo,

this.mo - 1)

(Using en S = -,wp (S, false))

3this E CO· this.mo > 0/\ -,wp(this.so, this.mo := this.so +
this.mo, this.mo - l,false)

(Using 4.46, 4.5)

3this E CO· this.mo > 0/\ -,(jalse[so\so[this +-- this.so + this.moll

[mo \mo[this +-- this. mo - 1]])

3this E CO • this. mo > 0/\ -,false

3this E CO· this.mo > 0

(Result-15)

tr CO.doSum - tr(nthis E CO • [this.mo > 0]; this.so, this.mo :=

147

Master's Thesis - U.Pujari McMaster - Computing and Software

this.so + this.mo, this.mo - 1)

(Using (Result - 14))

true

(Result-16)

Substituting Results 15, 16 and 5 in (Step-18), we have the action enabledness

condition as

I 1\ J 1\ :3 this E CO· this. mo > 0 1\ true ::::} :3this E Cl • this. ml >
o

I 1\ J 1\ :3this E CO· this. mo > 0 ::::} :3this E Cl • this. ml > 0

true

Therefore, the enabledness condition for action doSum is satisfied.

A.3 Discussion

When class Cl inherits from class CO, their invariants are preserved by ini

tialization. Object creation in CO is refined by object creation in Cl. The

methods setN, calcSum and get Sum of CO are refined by the corresponding

methods in Cl. The method enabledness condition for each of these methods

is also satisfied. The action doSum of CO is refined by the overridden action

doSum of Cl. The enabledness condition of the action doSum is also satisfied.

Therefore,

co::::;5 Cl

148

Bibliography

[1] R-J. R Back, "Refinement Calculus, Lattices and Higher Order Logic,"
in Program Design Calculi (M. Broy, ed.), vol. 118 of Springer NATO AS!
Series, Series F : Computer and System Sciences, (New York, NY, USA),
pp. 53-71, Springer-Verlag, 1993.

[2] R-J. R Back, "Refinement of Parallel and Reactive Programs," in Pro
gram Design Calculi (M. Broy, ed.), vol. 118 of Springer NATO AS! Se
ries, Series F : Computer and System Sciences, (New York, NY, USA),
pp. 73-92, Springer-Verlag, 1993.

[3] R-J. R Back, M. Biichi, and E. Sekerinski, "Action-Based Concmrency
and Synchronization for Objects," in Proceedings of the 4th AMAST
Workshop on Real-Time Systems, Concurrent and Distributed Software,
Lectme Notes in Computer Science, pp. 248-262, Springer-Verlag, May
1997.

[4] R-J. R Back and R Kmki-Suonio, "Decentralization of process nets
with centralized control," in PODC '83: Proceedings of the second annual
ACM symposium on Principles of distributed computing, pp. 131-142,
ACM, 1983.

[5] R-J. R Back and R Kmki-Suonio, "Distributed co-operation with action
systems," ACM Transactions on Programming Language and Systems,
vol. 10, no. 4, pp. 513-554, 1988.

[6] R-J. R Back, A. Mikhajlova, and J. V. Wright, "Class Refinement as
Semantics of Correct Object Substitutability," Formal Aspects of Com
puting, vol. 12, pp. 18-40, 2000.

[7] R-J. R Back and K. Sere, "Superposition Refinement of Reactive Sys
tems," Formal Aspects of Computing, vol. 8, no. 3, pp. 324-346, 1993.

149

BIBLIOGRAPHY

[8] R-J. R Back and K. Sere, "Action Systems with Synchronous
Communication," in PROCOMET 'g4: Proceedings of the IFIP
TC2/WG2.1/WG2.2/WG2.3 Working Conference on Programming Con
cepts, Methods and Calculi, (Amsterdam, The Netherlands, The Nether
lands), pp. 107-126, North-Holland Publishing Co., 1994.

[9] M. M. Bonsangue, J. N. Kok, and K. Sere, "An Approach to Object
Orientation in Action Systems" ," in Mathematics of Program Con
struction (J. Jeuring, ed.), Lecture Notes in Computer Science 1422,
(Marstrand, Sweden, June 1998), pp. 68-95, Springer-Verlag, 1998.

[10] M. M. Bonsangue, J. N. Kok, and K. Sere, "Developing Object-based Dis
tributed Systems," in 3rd IFIP International Conference on Formal Meth
ods for Open Object-based Distributed Systems (FMOODS'99) (P. Cian
carini, A. Fantechi, and R Gorrieri, eds.), pp. 19-34, Kluwer, 1999.

[11] M. Biichi and E. Sekerinski, "A Foundation for Refining Concurrent Ob
jects," Fundamenta Informaticae, vol. 44, no. 1, pp. 25-61, 2000.

[12] T. A. Budd, An Introduction to Object-Oriented Programming. New York,
NY: Addison Wesley, 2002.

[13] W. Chen and J. T. Udding, "Towards a Calculus of Data Refinement," in
Mathematics of Program Construction, 375th Anniversary of the Gronin
gen University (J. 1. A. v. d. Snepscheut, ed.), Lecture Notes in Computer
Science 375, (Groningen, The Netherlands), pp.197-218, Springer-Verlag,
1989.

[14] T. H. Cormen, C. E. Leiserson, R L. Rivest, and C. Stein, Introduction
to Algorithms. The MIT Press and McGraw Hill, 2001.

[15] S. Ferenczi, "Guarded methods vs. inheritance anomaly: inheritance
anomaly solved by nested guarded method calls," SIGPLAN Not., vol. 30,
no. 2, pp. 49-58, 1995.

[16] C. Fournet, C. Laneve, 1. Maranget, and D. Remy, "Inheritance in the
join calculus," 1. Log. Algebr. Program., vol. 57, no. 1-2, pp. 23-69, 2003.

[17] D. Gries, The Science of Programming. Secaucus, NJ, USA: Springer
Verlag New York, Inc., 1987.

[18] J. Liang, Inheritance, Specification and documentation support for an
Object-Oriented language. Master's thesis, McMaster University, 2004.

150

BIBLIOGRAPHY

[19] B. Liskov and J. M. Wing, "A behavioral notion of subtyping," ACM
transactions on Programming Languages and Systems, vol. 16, no. 6,
pp. 1811-1841, November 1994.

[20] K-P. Lohr and M. Haustein, "The Jac System: Minimizing the Differ
ences between Concurrent and Sequential Java Code," Journal of Object
Technology, vol. 5, no. 7, pp. 43-56, 2006.

[21] C. V. Lopes and K. J. Lieberherr, "Abstracting process-to-function rela
tions in concurrent object-oriented applications," in Object-Oriented Pro
gramming, vol. 821 of Lecture Notes in Computer Science, pp. 81-99,
Springer Berlin / Heidelberg, 1994.

[22] S. Matsuoka and A. Yonezawa, "Analysis of inheritance anomaly in
object-oriented concurrent programming languages," Research directions
in concurrent object-oriented programming, pp. 107-150, 1993.

[23] G. Milicia and V. Sassone, "The inheritance anomaly: ten years after," in
SAC '04: Proceedings of the 2004 ACM symposium on Applied computing,
(New York, NY, USA), pp. 1267-1274, ACM, 2004.

[24] G. Milicia and V. Sassone, "Jeeg: temporal constraints for the synchro
nization of concurrent objects: Research Articles," Concurr. Comput. :
Pract. Exper., vol. 17, no. 5-6, pp. 539-572, 2005.

[25] J. Misra, "A Simple, Object-Based View of Multiprogramming," Form.
Methods Syst. Des., vol. 20, no. 1, pp. 23-45, 2002.

[26] C. Morgan, Programming from Specifications. Prentice Hall International
Series in Computer Science, Prentice Hall, 1994.

[27] E. Sekerinski, "Concurrent Object-Oriented Programs: From Specifica
tion to Code," in Formal Methods for Components and Objects, First In
ternational Symposium, FMCO 02 (F. S. d. Boer, M. Bonsangue, S. Graf,
and W.-P. d. Roever, eds.), Lecture Notes in Computer Science 2852, (Lei
den, The Netherlands), pp. 403-423, Springer-Verlag, 2003.

[28] E. Sekerinski, "Verification and refinement with fine-grained action-based
concurrent objects," Theoretical Computer Science, vol. 331, no. 2-3,
pp. 429-455, February 2005.

[29] K Sere and M. Walden, "Data Refinement of Remote Procedures," tech.
rep., 1997.

151

BIBLIOGRAPHY

[30] A. Shahen, "An Aspect-Oriented Approach for Solving the Inheritance
Anomaly Problem," in Proceedings of the World Congress on Engineering
and Computer Science 2007} WCECS }07} October 24 - 26} 2007} San
Francisco} USA (S. I. Ao, C. Douglas, W. S. Grundfest, L. S chrub en ,
and X. Wu, eds.), Lecture Notes in Engineering and Computer Science,
pp. 285-293, International Association of Engineers, Newswood Limited,
2007.

[31] N. Wirth, "Program development by stepwise refinement," Communica
tions of the ACM, vol. 14, no. 4, pp. 221-227, April 1971.

152

5966 07

