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- ABSTRACT .

- . | o -
. This thesis has the objective.of establishing - =
" the stability behaviour of a th1n clamped -ended’ p1pe w1th
internal flow. The unsteady f1u1d forces on the pipe; wall
- is determined by u51ng classxcal potent1al flow theory for
an 1nconpre531b1e, 1nV1sc1d fluid and the mot1on of the p1pe
'Is r¢presented by Flugge Kempner shell equatlon The solutlon
is obtalqed using Fourier integral th\gry and the method
- of Galefkin. It is found that the pipe: Efcomes unstable
statlcally in a mode bélng comprlsed of one axial half*&ave
2and a number of c1rcumferent1al waves depend1ng on the length

- and thicknesslratxos. Fo'r the 1im1t1ng case of a Telatively

'long thin pipe the. mode of 1nstab111ty is the f1rst hean

mode and a part1£ular 51mp1e expresszon is found for the f_‘
cr1t1ca1 flow velocity.’ “urthermore, the node shape at . ‘
1nstabilxty'always corEJ;ponds to that of ‘the lowest natural
frequendy of the pipe. S : .

‘The theoretical results i}e coupared -with etperxﬁchts
‘and prév1qus-work developed by different-methods and the

o . .

agreement found is good.
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' CHAPTER 1 R . |
) INTRODUCTLON I3
L . ‘\ = ‘
1.1, General ! a _;ﬁ‘ﬂ

~

. ' ??e problem of the dynamlc behav1our of a flexible
tube ‘with an—1n§prna1 ?r external® flowing fluid is of funda-
mental‘in;erest and importance in a vafiety of engiheq;ing
#pplicatiohs. ExampleE are found,ih the bending'oscillations~in a
long pipe as observed in 011 pipe lines (1], dynamic or statlc :\i
1nstab111ty of steel condults for hy&ro elecquc plants: 2] and..

A
7liquid fuel propellant 11nes [3] External flow on cylindrical

_shells as in the cool1ng flow of a nuclear reactor causes

-

oscillatlon of -the fuel bundles f4], - [5].1 The latte: phenomencn %%
is malnly.fhe respit og hydrodynamic fb(ces-c§used_bv uﬁgfégdy

:fluid flow ahd;is of particular ihtefést in'boilingfggfgr R
reaé&ors. £1m11ar problems exist in the stean generhtors

'presently used in the CANDU-PHW®. reautors, where the two- phase J
ax1al flom on the shell 51de of the ;ﬁfam generator causes the

heated t&ges carrvxng the heavy.water to vxbrate. Other examples '
are the numerous observed 1nstab111t1es of the shell conponents .
of aircraft at a veloczty both above and below the ‘speed of

Jiund {6).. The “Korotkoff sounds in the arteﬁxal system occuring

during strenubus'exercises,is a Similar‘instabii§ty_{7].

»

& CANDU-PHW:' CANADA'Eeu;brium_gr;ggum - gressurized teavy Water

A
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The above problems w1th 1nstab111t1es of shells due

-to fluld forces have received con51derah1e analytlcal an&

q_

LR

e a
experrﬁental attention in. Tecent years. The ﬁncreaslng.desir“

abilitylof higher’ fluid velocities coupled-with more flexible
structures will require the “design engineer to havé’kﬂowlédge
of the aboVe problems. He must be inja'poéition'to prédict

' \

‘their occurrence for the1r ex1stence is 1nev1tab1e.

1.2, Théore;iéal Approach

The phenomenha of flow indubed instability of shells

as encountered above are characterized by the’f;;éraétion of -

"

Fa

—~elastic, 1nertla and hydrody amic¢ or aerodynamlc forces and

f£alls within the general classification of "hydroelast1c1tv"

or "aerocelastic¢ity". -In hydro- aeroelast1c problems the opera-

tive forces are nonconservative since they cannot be derived
- . ' '~‘
from a potential function, -i.e., they are dependent on the

path tréﬁelled. This-reSUIts in the possibility of the shell
extraéting energy from the flu%d in such a wéy'thai i; becones
‘unstable. b | ‘ 7 ‘

In examining the 5tab111tv of problens involving non- ™~
conscrvative forces it has been found that it is not always
-suf£1cxent to use the statzg or Euler method }thCh looks for
tho snallest force unde; wh1ch the system can be in cqulllbrxun
not only in its orxg:nal configuration but also in_an ing ztcly
closccCOnfigupatioa. An alternative is to uge-the;ﬁyn“m1c
method which invelves the investigatior of the stability of

i



P

1nf1n1tes1ma1 OSC111at10ns of the system about ‘its gqu111hr1uﬁ
-p051t1on. The trltlcal force by th1s crlzerlon is the smallest’
_force dnder whlch a Small dlkturbance Wlii increase with t1me.
In certain problems the- stab111ty may beAJost in a 5tat1c sense ~
'1n Wthh case the Euler nethod would g1ve the correct answer.
*However th1s 15 d1ff1cﬁlx to determlna in advance and since -a
static method cannot predlct dynam1c ;nstablllty a dynanlc . " ": e
method should always be-used. ~

The instaﬁilities]of égellg cdntaining floﬁing:flnid
.ﬁfe.diffprent depeg&ing on.. the boundary c&nditions, the lepgth
and. the wall thickness of thg\shélI;_ For fiXeﬂrbouﬁdariéé i
‘and.£/a>a/h; where 2 is the len;:L of the shell, a the ;adi s
and 'h the wall thiqknéss;.the-instaﬁii{ty is similar to the
buckling of an “Eulcr"'co}uﬁh at a-suffiéiehtly ﬁigh flow L;/

velocity [8] The mode of instability 15 always the first

bean mode. The analytical appsgéch in estab11shang the buckling
boundary or "d1vergence“ ds it 15 called in aeroelasticity _ .

- is by using a stagxc method.( However before 1t was established (
'that the stabxlxty was lost in a static sense, a dvnamxc nethod,

‘-,
J
Q@

was used A dynamxc solutlon is of the form
~N .rz.(x‘.'.;z,t) . Y(xj) et (1.1)
-s . “_? ; ) . 'l . . l- ‘ /-J .
where o is the natural frequency of the shell.. The analysis
corisists in ‘determination of thc natural freqéencies gs a

* function of fluid velocity. For sufficiently snall flow
velocities the frecuencies are real and the systerm is thus

-
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‘ natural frequency for a cant11evered shell is of the form

- - -~ -
« 7 » Lo 3

» . " -ty Lo ' .o
’ : » . + - .

stable under an arbltrary small d1sturbance, exh1b1t1ng buﬁ%ded

4

harmonlc OSClllationS. As the veléclty ‘is increased, 1nstab111tv
‘o¢curs when the natural frequency becomes ZeTo (buck11ng) at

the cr1t1cal flow‘véloc1ty. . For a cantllevered shell a dynamxc

- (‘\

method is necessarf’torestablxsh the 1nstab111ty boundary The

1

R + iS at =& su£f1c1ent1y hlgh flow velockty. The dynam;c
solutlon is now of the form v

L W /-

r

L ‘.*w(_x'._,t)~='Y(x.-)'_e13"—'e'st.'- o lany

’ v
. (1‘

As the flow ve10c1ty 1ncreases the 1mag1nary part of the complex

frequency decreases and eventually becomes negazive at which
-p01nt the systenm becomes unstable by exponent1a11y growing
oscillations. However due to,non11near elastic constraxnts the

amphtude of osc111at10n w111 be of f1n1temagni:tude. The Y _

. boundary of 1nstab111ty OCCUTS when the 1magznary part S is

\ ,
zero and‘the frequency of osczllation R is £1n1te.‘ This kind

of” 1nstab111ty has been gzven the name "Flutter“ in the field

of aeroelast1cxty. - - T \-Q_'g,

- For a short thin shell where a/a<a/h the instabilities

b

are associated with circumferent1al deformatxon of “the she11

wall. Xn establlshxng the stabxllty boundary a d1fferent1a1
equatxon of motion of %hency11ndr;ca1 shell_zs,nseé. ‘The

dyﬁam;c selutioncisfof tﬁe,fgrg
. W(x;,0,¢) = Y(x;) cosno . givt | L a3

where cos no represents the variotion in the radial displacement

. - . ’ ‘ 1
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_bf the cylihdrical wal;, n being the circumf;rential modé .

‘Jnumber. In addition to the insfabilitieE-réported for the
longer s &?ell C1rcumferent1al OSC111at10n\now exists, at.

sufficieptly high flow VElOCltleS.;

.

1.3. Statement of Problen

| The instabilities of pipes cogtéining_a flowing fluid
have b?en analytically iﬂvestigated by -a number of authors

[11, (21, [91. However in the area of circumferential ’
1nstab111t1es. analytical solutlon have only been reported by
two authors [10], {11]. In thls thesis the behaV1§ir of a
clamped ended cylindrical shell is examxned'w1th particular

attentlon paid.to d1vergence boundaries both for c1rcumferent1al

) and beam like 1nstab111t1es ‘and the relatlonshxp of the natural
‘.frpquencxes at zero flow velocities to the crxtlcal mode sﬁape.
‘The-s lﬁtién.is obtained using Fourier Integrdl theory and the -
‘method of Falerkin, and i; sipilar tb'that‘used in referencé f11]
whicﬁhegamines pinned-ended sﬁells.' Although this approach is
nét without shortcomings.(discussed'helow), it offers the
_advantage that the resulting algebrazc equatxons facilitate a
complecte parametrxc s@ud} and allow a sipple analyt:cad ﬂxnrcssxon
to be obtained for the 11n1t1ng case of a long thin shell. 1In
Pdditiony the f{pw ébuditiohfat the ends of the length of shell
béing considered ave quite different from those = implicit in

'the travellxng wave type analysis of rcference [10}. ,This may

e

have apg4;;1ablc 1nf1utnce when the shells arc{fhort.

S
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N CHAPTERZ_ e
C HISTORICAL REVIEW S

. "The early study of the’ dynamlc Stablllty of plpes -

,convey1ng f1u1ds was 1n1t1ated by the observed transverse
vibration ‘in the.teans-Arablan p1oe11ne; ‘The trans:Arablann L
pipeline is .a’'30 ihéh’diametei'pipe which'iq'supnorted nt 66 ftr
'1ntervals and has about 20 inches clearance between the -
-bottom of the p1pe and the ground At a wind veloczty of
'approxlmately 20 m.p.h. the pipe was observed to vibrate Mlth

a frequéncy of vibration of approx1mate1y 1.2 cycles per sec

and a max1mum amplltude of v1brat10n of 3/16 1nches at thé .~-7 o
mid span. Durlng V1bratlons “the adgacent spans moved in® ;ppoeite

dxrect1ons with nodes the supports.) S

The f:rst analyt1ca1 1nvest1gatlon of the above :
¥
| phenomena was done by Ashley and Havzland [1] stng 'a bean

- theory they found that ‘the flow of f1u1d in such a p1pe11ne

-
\

'-produces marked dampzng tendencies and thus reduCes the ™ -~

sever1ty of loadxng eé%ountered Further, the1t\calculotron5-

-showed that ' the frequency of osclllatxon staye& constant wiile g’

e'the damplng 1ncreased rapxdly over'the flow range consadered.
s
Their analys:s, by treat1ng tho flux of the £luid in the pipe to

"1nduce a’ shear forco at each section due to tho laternl motion %’
of the pzpe, underest;mated tho 1nf1uence of : the fluid velocxty

] . - ’ "~ z Q ¢

and thexr dxfferentzel equataon of notion for the pxpeline\\ﬁo their

-
. N N . N . . - . .
. . : : o o . & . 2 - -
1 g - " . o - - . * : - -
N < . A .
. » . . ' ' . a i
. . i Lo . . - A
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f1nd1ngs have been disputed by later authors. However théir
‘general approach is of value and thelr main error lies 1n the

approach to flnd a- sdlutlon to the differential equatxon of

! s
J .

" . sotion. o ' |
_The first ‘solutions which correctly predlcteG the
, effect of fluid- flow on V1brat&on frequency and statxc (buckling)\
‘ylnstab1lxxy were ngenAby G. W. Housner 5’] and F, I N. N;ordson
'\\7 ;LE]. They showed "that the flulds have no benefxc1al effect upon
'the V1brat10n of the p1pe. The. fluid veloc1ty causes a dynam1c
coup11ng of the simple modes of vibration so thit. normal modes
x'pffy4b;at1on are of complex shape w1th 90 out. of phase components.
Also, in contrast to the resu1t$ of Ashley and Havxland the__
frequency of v1brat10n of the pipe decreases Wlth 1ncreased

fluid velocity unt11 it becomes equal to zero where-stat1c-

divergence occurs. This work'reViqed nost of that.done by

Ashley and Hav;}and and- the dxfferentxal equat1on of motion
S der1ved for a pipe conveying flu;d has been ver:fxed and
~ used by later authors as their starting p01nt fog ;nvestigatingi
differént confﬁgufations. Niordson also foimulated"the .
__— probiem in terms éf the shellﬁequétign butldid not proceed to - -
solve 1t.u‘ ‘ . o
Thége first substantial contrxbutors 0 the olution
of the stabxlity of a pipe conveying fluid: had dnffxculty in
/////ﬂ obtaxn1ng an exact iplutlon to the dxfférentxal ‘equation of | - .
motion wh:ch is not qgszly obtaxned without an electronzc
campnter. Ashley and ‘Haviland approached ﬁhe solutzon,by using

a_po}&nomxal whxch approx;qgte;y_rcpresented,tpa node shapaqand ’



., cob

satisfied the equation of motjon and the boundarf éghditions
'(‘{pinned-pinhed ends]. | éousner regarded the distorted modes
(also for the special cas;%bf plnned pinned ends) as a linear
combination gf apgropr1ate quant1t1es of each of xhe classical
normal modes for an Euler beam, By éigrggarding the contribu-
‘tion from classical"ﬁodes higher than the sécénd a frequenéy
-equafion’was obtained . A paper by Long [12] used an 1terat1ve
procedare based on the method used. by Ashley and: Haviland but
included more terms 1n‘the mode shape‘polynom1al. After the f;
intfo&uétion of the electronic computer authors like Nagubswaran °
and Williams [4] have developed "exact'solutions-foglthe
natural frequencies and modé shapes. Their results have
verified the work done by earlier authors and supplemented .
thq data avallable. ‘They were also the first to report on tﬁe

1nf1uence of 1nterna1 pressure on the natural frequencles o‘

vibration. - As the pressure 1ncrease$ the natural frequencies’

Qecreasé until buckling occurs. = |
- T. Bs Ben;amln [1;] dealing with the general dynam1c
_ problenm of a chain of art1culated plpes conveying f1u1d was . : -
the - firse to report on the phenomena of unstableegscxllatlon
thch is p0551b1e when such a system possesses one free end. -
He prcduced a complete ‘theory supported bv exper1ments for

art;culated plpcs. Although his theoret1cal modcl posse;ses

F

on‘y a few degrees of freedom it demonst*ated a2ll thet essent131
features of th1s form of 1nstab111ty.' Benjamin showed chat

when the pxpc is vertxcal boﬂp unstablc oscillation und buuklxng
. R by -

. (éj’
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1ncreas1ng the fluid ve10c1ty the system became unstable in”

instability are possible in general, whereas when the motion

is confined to a horizontal plifj/puckling cannot occur, i.e.,

when gravity forges are insignificant.

. ~
s

r

of a continuous system by\Gregéry aﬂd Paidqussis [14]. Théy

. found that. a tubular canfi%eVer containing fluid developed

unstable oscillation at a gé&tain fluid velocity, which grows

into lateral ostillation of 1arge'ahp1itude. The systém was

‘

" : _
shown to become unstable first in its second mode. The

system could however be unstéble in other modes,ui'e..'by :

'another mode. The node shapes for higher fluid. veloc1t1es were

more complex and conta1ned components of several normal modes.

-

o
They ver1f1ed thelr theory by doing experlments on fubber,

tubes. convev1ng water and air. Some d15crepan¢1es were found
however near the critlcal fIOWIV810C1tleS. As they uSed a
11near theory uhzch applles -ofily to small osc111at10n they
suggested thatfa non-linear theor{ should be used near the‘

cr1t1cal f1u1d velocztxes. To predxct the boundpry of

1nstab111t1es however their 11n£ar theory gave good results.

In the above papers two d1£ferent svatens have been

considered, Dependlng oh the support at the ends ;hc

Y

systens nay be grouped as conservat1ve systems and non-"

conservative systems_[lsl. It has bcen shown by Housner [9]‘,

and‘Ldﬁg‘[IZAfthat the anservat1ve system which has no

displacement -at the ends loses’s{ability only by buckling while

I H
—

-

{ The work-of Benjamin was extendad to cover instabilities
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the non-conservat1ve systen rep;esénted by a tilever tube,f~

‘studied by BenJamIn [13}/aﬁé/hregory and Paxdou551s [14]

* loses stabzlztz/oﬁly by unstable OSC111at1on. In a paper by g
Shoe1_§bgng Chen [15] cons1derat1on is given to the transi- B
tioﬁf;ochanism o£ thesoitwo instabilities. ‘For th1s purpose
he studied a cantilevered tube(convey1ng £1u1d with a d15place-
mentispring attached to its free end. ~The variation in the
spring constant peroits carrying dut”grédual traositiOn from
‘unstable osc1llat10n 1nstab111ty to bﬁtkllng 1nstab111ty. It
was shown that depend1ng on. the spr1ng constant, the tube,
lost stabllxty by unstable osc1llat1on, buck11ng or both thh
mu1t1p1e stable and unstable range of flow velocxtxes. However,
bucklxng can only occur above a crltxcal value of the spr1ng :

constant. Thus the types of 1nstab111ties apparently are

; assocxated ‘with the boundary condxtxons. " ' L
' ; _All of the ;§2ve authors con51dered the shell .as a
foeéﬁ and its notion @s be1ng exc1u91ve1y.1qte;a1, 1:e., tﬁo
so-called first. circuﬁferential or beam-typermodes.frkeccﬁg;y
,'Paxdoussls and Denxse {91 and Veaver and Unney [10] have
1nveat1gotod the so- called circunferential type of 1nstab111t1c4
-of cylandrxcal shells conveylng fluid This cxrcumﬁerential |

abxlzty was apparently fzrst reported in 1969 by Paxdodssx;

b
and Dcnxse {7] when conduct:ng exper1nents with vertical .
cantilevers nade of rubber convoyxng low pressure axr._ They -
. observed that xf the cantilevers had sufficiently thick walls B
the only forn of . 1nstabxlxty wgk that of unotoble oscillation
. N
> ' . . ) - . -.‘ i
o w .4_.-.-_. . . . - o . ‘?—ﬁ/
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which has been reported earlier. However if the rubber canti-

" Yever tubes had fairly thihrwalls and were sufficiénfly .
shorr so\tQ?t they remained stable with respect ;g the‘laterai
iaaxability to fairly high flow relocities, another form of ’
1nstab111ty occurred spontaneously at a certa1n critical flowu

veloc1ty. Theicant11ever was seen to V1brate in the second

circumferential mode and generate a shrill sound. For longer
: }

5

tubes this instability was superimoosed on the lateral .
one. In thelr theoretqcal ana1y51s Paldou551s and Denlse used
’the three Flugge equations of” motzon for a cyllndrlcal stll
‘and the f1u1d pressure on the shell wall was deraved using ,3
classical potentlal theory.; Ehey solved the differential _ -
equat1on by assuming a travelllng wave solution, - This‘has

e s ;

some shortcom1ngs as 1t leads to a characteristic equation

belng transcendental1n the wave number. ‘The complete solution -

~ ’

. is therefore an infinite°ser§es and requires an infinite
humberoaf bouhdarf conditions to establish the frequency . ; .
equation. ‘Therefore they have to disregard-tﬁe contribution
of mode shapes higher than the numher'ofiﬁoundary conditions,
urther;.thoirzsolution of'thc frequenéy equation is rather.
cunbersone, as- an 1terat1ve procedure nust be used.

Weaver and Unny have also used the Flugge equation
.-of motion for a-cyllndrlcal shell but in a fom that.contalnsr
onlv the radial dxsplacement. Thxs sxmpler forn of.- the shell
equation was der1Ved by Kempncr [16], by makrng the assumptlon»

that_}ho\oxxal and circunferential -inertias are neglxgiblc

and that the shell is thin. - The flu:d fcrces were der1vcd
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3 Although this approach réquires the numerical ‘evaluation

13

-~

. . T - K
from classical potential theory and the “solution was obtained

&

using Fourier Integral-theory and the method of Galerkin.-

of several 1mproper 1ntegrals, the complex frequency and

thereby the stab111ty behav1our may be examined by the exact_

b B

' 501ution of relat1ve1y simple algebralc equations. The
‘behaviour reported was qualxtat1ve1y the same as that glven

beraldou551s and Domise. ——- . . ‘ ,

& | . ’

——

£




CHAPTER 3
"~ THEORETICAL INVESTIGATION

—_—— L

I8 : 4
i i

. 3.1, General

: The mathematical madel uséd in this’ thesis tor™

establish the instabil{ry boundaries of-a clamped ended
,CYllndr1C31§§h811 sub;ected to hydrodynam1c forces, is essentially
of the same form as that deVeloped by Weaver and Unny [11]1, [17] |
for a flathplatu_eno-a plnned ended cylxndrxcal,shell réspectively.
'Og}y tﬁe‘general outline of—this mooelkis therefore presentedgg '_'
here. i o
’ | " The important charaoreristics-ofgthis nodel are as
‘foltows: Only the 11m1t1ng case of small oscillation is
"con51dered, i.e., the thepry is 11nearrzed and 15 therefore
'only capable of descr1b1ng the behaV1our of the system up to

h \
and 1nc1ud1ng the threshold ‘of 1nstab111ty. HomeJer, the

1nstab111ty boundary given by a linearized analv ;is is the same
- as that given by afnonlrnear analysis. - ThlS is glVen in a

theorem by Lrapunov wthh‘states that.;f the behav1our of a

f11near1’ed systeﬁ is asyﬁptot1cally atab}e, or unstable, then

the'stablllty-boundary)of th1s system is \the same as that |
'*der1ved by a nonlinear analysis [18]. Furthermore the shell

is conszdered to be thin, and thdfshell naterial to ‘be purcly | d
elastic homogeh;;;L and 1sotop1c. The fluid forces are ,
dérived from potential flow rheory;f i.e., on the assuzption

that the fluid is inviscid irrotatienal and indompressible,

14 ; . ' ’ | — .




3.2. Theoretical Development . : - T .
The specific configu;ation studied is shoﬁn in

Figure 3.1 together w1th the firﬁt couple of c1rcumferentlal

mede shapes. The d1fferenf1£¥fequatlon of'motlon used for the

shell is essentxally the - f@rm of Flugge equatlon ngen by “ﬂ\

Kempner [16].? Kempnef showed that the three Flugge equat1ons

Whiéh cbntéin;e;press19ns for the-.axial, cirpgmferentlal and

—

rédial‘diSplacementS'can be expiessed in a form similar to

the Donnell equatlon for a shell contaxnxng only. the: radial an
dxsplacement, and the ax1a1 and c1rcumferent1§1 dlsplacementsl
are absent from it. When the’ assumpt1on is made that the shell
is thin, I%'(EJ << 1 a somewhat s1mp11f1ed equat;on is

‘ obta1ned Hoff [19] has’ recommended the use of this equatzon

over that of Donnell unless the shell is vefy short and a

- nunber: of c1rcumferent1al nodes are considered n > ﬁ

4 - 1 -4 12(1-v7) 3w "2 2=v 3 W -1 d'w
D {Vw + v o [= : + g
@ 'ﬁ?fl*ﬁ B
o ® ,
6 6 .6 6. 2
2w 3w . 2(d-v) 3w 2 3w 2%
+ 2vR + 6 . + + ]} <o _h = p
YUt Uax%ael  RE oaxPeed RS 200 B a2 @
- (3-1)
Qhere v is thé7radia1‘disp1acement of‘the{éhell,’

. P N '.‘J

D is the flexural Jtszness,
O i the densxty ‘of the shell mnterxal and
Pd is the dfnam:c pressure of the £1uxd on the shell

resulting from the motion of the latter.
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For clamped ends, the shell boundéry coﬁ&itions'afe
given- by: | | _ -

. w(0) =w(2) =0

| | (3.2)
w(0) . M) _ o S A-
< 9K IX . ST .

- The dynamlc pressure on the shell wall as a Tesult

4

of the shell wall's vibration can be determ1ned by. solving a
boundary value problenm for the veloc1ty potentzal of the f1u1d
flow. The f1u1d 1n31de";he shell Wlth velocity vectors,

Vx, Ve, Vr. density p and preSSure p is govemed by the follow-

-

1ng system of equatzons.‘

Continuity equation:

- a(pV) EIATEEIC A N A
= -‘_. apvr > B ’r rﬁ 3
";,;.Q,'ﬁ'* ax 'r L - s S

t, -

)

wh1ch is der1ved by the cqnd1t1on of mass conéifv§t1on.

Eiler equat1on of motxon-
N |
o, _— | _ . .

2V, (Vv a(V, v,y sV V. v .V
X s (x)+£-(x°)¢ (x'r"-o XT..13p
9t - X T A - C} J T p 9K

e
| i

" ’ L . . - z. - - 4 .
vy . (VV) _}a{ve] .a(vsvr) 2V, V.

3] . . R 1 o a . la !
L i ax . ¥ T 28 ,"’-._ ar _°‘ T ¥y 5‘% (3-4)’:
’ .' \4\-‘ > . . . '
e aevny w2 g2 - o
s :}‘Vr¢ a(vrvx) l B(V V) . a;(vr ) é-vr o .1-3%
B TR T r ‘%e kL - e 3

The velocxty 1nszde the shell is everywhere close ‘

“to the free strean velocity U.. wg can therefore-expreas the e
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total ve10c1ty at any point in the flow as the free stream

velocity plus a sm<11 perturbat1on velocrty, 1nd1cated by

"; "4

primes. ‘ : i . e

Ve = U+ Vo VU <<]

.o 1 r .
ve ,ve . [} Vélu <<! P ~
~ | AN
AR VU <] .

U51ng (3 4) and (3 5) ana’llnear121ng g1VeS°5

- 4

it S G Ty S & SR
3t 7 x ; = p X

3“6' fa | - (1 9

=t * U5V R
v )

T 3 1723

3t +U3'f_v;".§ --'p'_'"a%

If\the veIOC1tv f1e1d (V' V') is‘irrotational. i. e.’,

18

~J

that the fluxd part1c1es have zeTo angular Eomentum about thexr g

own centre d?‘gravzty,_lt can be expressed in terms of a

,perturbat1on velocity poteg¥1a1 deflned as. :

e o X
IX Vx 9 B Vk
196 _ ye -
355" Vo N
H 3% oy '
: 5T © Vr
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Substituting (3.7) in (3.6) and integrating with respect to
x gives an arbitrary function of time £(t), which.héﬁ n6 . e
,_a - B ‘ .
effect upon the flow pattern. For parallel streamlines of .
. 2 .
velocity U, £(t) can be set equal to %r and the pressure on \

the shell wall is found to be:

2 , 4y 3¢

P, = -0y Gz + U= (3.8
dl ox o g} 3x | . (3.8)

~

This is the unsteady Bernoulli equation.

The deternmining equation for the perturbation velocity
. . £~
potential ¢ is found by substituting the expression for the

velocity field (3.7) into (3.3). For inf&mpreséib1é £luid this

operation yields the Laplace equation in cylindrical co-

ordinétes.
2. T2 2 :
3% , 1230, 1 3% 3% g S
v t*rIixwx gt — = r < R {3.9)
T AT, %8¢ ot |

T :

This is the continuity EQuatidn for an incompressible, irrota-

s ’

tional, inviscid fluid.

To solve .the LapiaceAequation'for the problen of
interest‘here it i;>;ecessary to'estabiish'the aﬁpropriate
boundary conditions. The conditioﬁ-ﬁt the sheil wall is
simply that thé perpendicuiér cozponent of the fiuid velociéy
is fixed'to the wall's mofibn, as no fluid garticle can pass =
through the sheil wail, The equation for the shell wall is‘\
given by: | o

F(x,7,0,t) = 0 o o L (3.10)

2 .
~ : . . : ’ . . o

T



_the equatlon for the surface then takes the form-

the boundary condition is: S (;; o, ST

In other words the mater1al Tate of change of the value of the
function F is zero when we follow a partxcle that cont1nu0usly

touches" the surface F = 0. - L B ,
3 ' ~; . .

ks the shell ‘wall. 11es very close to dzstance T

>
a

from origln,_r may be separated out from equatzon (3 10) and

A .
F(x,a T t);E*V*- w(x e t) . : .fi '-a-\7  A.-'#(3.12)

and the bgnndary cond;txon is:

\'A : ' )
~ oW oW ) =
A Ve - 3% *'Yx 3 ' T 38 - 0
. v “

us1ng (3 5) and (3 7) and 11near121ng since the perturbataon

¥

velocitxes are ‘assumed 1o be very small the boundary condztxon

-becomes. - ) q 
' 1) = EE.; U = 3w :l\a-t'k < g . o (3 ia)‘
' h > . . [ ] ,
. ‘ar]rﬂR at . 3xX ) S, \) .-,

\For the rxg:d cy11nder adyacent to. the shell the~normal fluud é .

:,velocity nust be equal to aero, so that equatxon (3 14) Teduces

Kl

~

L

=, 0> x §~a'. ;%*‘ S Lo _(3;15)
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3.3. ,Problem-Solution :
- ' An,assumed soluticn for the radial dlsplacement of ]

the shell must sat1sfy aIl the boundary condxtxons (3. 2)
and be 1n a 51mp1e enough form t0 make the problem tractable.-

Thls 1sxnot very easy for the clamped ended shell cons1dered

_.,"\
L I

A solut1cn assumed was a polynom1a1 of the form. - 5

b = [ 1, . '2 p+2 . - ‘ . .
. B w(x;e,t) = - I _{A "Sz'x) f cos ne et¥t . - (3.16) .
. , . pﬁnﬂ\ % p . £4+p A c o . ) , ‘.. - _ o . ):
< ;e ” o .. S -
Although using. onlf’the f1rst two terms of the : e

’1nf1n1te serles, th1s results 1n a very lengthy express;on fog

the dynanmic pressure. Also this leads to s1gn1f1cant computatxonal

o

:d1ff1culty when us1ng th;s express1on in the shell equatlon

(. 1). As 4 result the solutidn,adopted 15'

‘_th 5

_ w(x,e.t);,= z"c§ cos ne (1-cds 32%53 elut Gan -

R L

;where P, is the numher of ax1a1 half waves. and n is the number

of c1rcum£erential waves. This solut1on has the: unfortunauah

character1st1c that 1t only represents odd axial mode shapes.‘ fﬁ
: Therefore.xt cannot predxct "flutter” 1nstab11ity as this is | B
prpduced b; f1u1d dynamxc couplxng of odd and even. modes. |
.Hdwevere it has heen shown by Pa:douss1s and ‘Denise [10] and . 'T;
Weaver and Unny {117 that flutter occurs ‘only for flow velqczties
higher than requ1red for static buc&lxng 1n the fxrst ax1al |
mode and the latter is satxsfactorzly represented by equation (3. 17).
'-For the purpose of establzshing the stabxlxty boundary,

“equat;gn;(3,1?) is thdrgfore‘quitegugcful. Sincd the;dnstabil?ﬁy

- ’ - : ’ 1
[3 . . ~ . - -, . .



%nVestigatgﬁ is of the divergence type_thé pi;big;,could_be{
analyzed by using'a "static method". HoweGer, the solution

will ‘be obtained using the "dynamlc nethod" since it 1s of
'1nterest to compare the mode shape of the. fundamentalijrequency

at zero flow velocity with that at the critical divergence
'féldcityi | | |

The Laplace equation (3 9) and the boundary cond1t1on ‘; v

(3.14) represent a boundary value problenm in the perturbat1en
mveloczty potentla% ¢. If the v;brap1on‘of.the shell is assumed

harmonic, the-parturbation‘Velocity potential takes the

form:
~

6(x,r,6,t) = T (x,7,0) e3¢t L Gag

-

i

The ﬁfoblea_of finding the dynamic'préssure on the
. . AU
~shell wall reduces therefore to determining the perturbation

‘velocity potential §. Using the metﬁod of separation - of

&

variables, let

6 = R(r) 8(8).X(x) N SO
and substituting (3.19) into (3.9) gives = -
1 {dZR L1 dR}.; 1 - de ; 1 dzk -0 o (3.26)
R%a? T 72 qf Yol o -
Now let = ‘ A ‘
1 dzelq» nz a { | {3.21)
5 as?
2 .
ax , 2.y
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3 ’ ' . %
where n and k are arbitrary separation constants.
Then - .

e = A(ﬁ) sin ne¢” + B(nl €0s no.

(3.22)
and . . ! 2 o
X = C(k) sin kx + D(k) 'cos kx
. ' P
Hence (3.20) becomes | -
.2 - 2 . 5 -
d“R 1 dR 2 n", -5 y
+ == - (kK + 2 R=0 (3.23
g TIT e 3,230
This is_the modified Bessels equation which has a solution
- of‘the_fofm“ ' |
| R = E(K) I, (kr) + F(K) Ky(kn) RN
& : ) v " oA

»

of the first

where I, and X are the modified Bessel functions
and second kind of order n respectively. The general *

solution to (3.9) satisfying the conditipn'of being finite

at origin and periodic circumferentially is therefore

1

“

¥ = cos ne {I_(kr) [A(K) cos ke+ B(H) sin kel - (3.25) .

fSince‘this is a solution for any particﬁlar value of
. _ _ T e i ' ,
k, ‘the most general solution will be a linear combination of all-
_values of k.. . | B

F)

-

B(x,7,0) = cos no £ I_(kr) [A(K) cos kx +-B(k) sin kx] dk
S - 0 : ] | _

T S ‘ L (5.28)
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The constants A,'B~are“determined by using‘the boundary
conq;tioq-(3.14)a\ Taking the partialfderivativé of equation

2

(3.26) with fespect to r and eduatingfit to (3.14) gives:

w Py
'-‘57:‘-"“5?

; k It (kR){A(k) cos kx + B(k) sin kx}‘\de cos ne
.. 0 ‘ _

-

_, | T € B 1)
where Ia{kR) is the derivative of the modified Bessel function
with respect to r. e ' .

N ﬂ ! . ) 1 .-
Equation (3.27) is in a form similar to:

£(x) = {/ cos kx & 7 £(g) cos x¢ dg + / sin kx L/ £(g)sin kEQE) Ak,

4
<

. . : .. (3.28)
Relation (3.28) is called the Fourier Integral .,
theorem and represents the generalization of the Fourier expansion

-

‘for an infinite interval. ‘The quantities:

4 1 o ’ o ' .
= f £(g) cos kg dg ,
- : e - ©(3.29)
1 @ . N .)“'p R , . i
are the Fourier coefficients.. - - - gﬂ'

. The constants A, B are then readily evaluated using
(3.29). Introduc:ng the assumed solution (Sql?)_the ‘unknown

constants are:

ﬂl""'.

g -
KI (KR)A = g [a - cos -P-- iv e U (-P-) sin -P-’:‘-’El)( oe? kx dx

AR T R o | cotﬁy>
s . _ ; ) ',.'7 . ’

ki
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L - . . N )
_ 1 ; 2puxX, . ) : : .
) kIﬁ(kR)B == _éi[(l'cos _E%_g,lm + U(EB%EJ sin gB%Ec-]/\{sin kx dx.

~ - B = R (3.30)
integrating (3.30) and simplifying: o L f e
. R . N ' ’J {J

- - S ¢
A = b 1 { (ZP“)

‘ ez ke - U ke -
p=1 TrkIl'I(kR) (pr) (k!) X -k sin {cos 2. 1)}

1

. - ) g\
E ' 1 _ (ZP )
*B'Em{ {T 1 - k2) - U
s p=1 ""ip! (Zpu) (kz) )< ( cos k1) sin kl}

. o T a

) These constants are now substituted into equation
. 2

(3.26) which after considerable‘simplifipatidﬁ?'becomes:

o o 'In(kr) (an) C
¢ = I [ °2 - )({1@ sin k(z -x} ¢ sin kx}
- p=1 ok"I}(kR) [2pm)* Cka) 1.

| (3.32)
+ kU [éqs'kx - €Os k(ﬁ-x]fi“dk cos no

T

Using now the unsteady Bernouli equat1on (3.8) together w1th

the different1al equatxon of notion for the shell, after

ésubstituting for_;hc assuned radial displacement, result in

the following equation: - o L ; !

_ 2. % 25
TTCMPAN R IS (LR W L ll “ v) (Zpnt
. 2(2-v)n’ 252 . n® _ 2y (2psy6 ;'en2~(323)4
- ) =z 5% 3 5%
R® _ R R
!4 V! 4 (enﬂ - 2“61 .1 2:§cos ZE;E -
R® 2psy 2, n= 2 .
‘ N 8 ¢ N }”° = % .
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_ , n o (3.33)
_n ? Inéfr)‘Ap . (%pﬂ)z >
=l o 1k Iﬁ(kR) [(2p=) - (k&))"

X '{(NZ + kZU) (sin k(!.;x) + sin kx)

+ 2k U iw (cos k(2<x) - cos kx} dk

* The method of Galerkin is now used to obtain the
frequency“eqﬁation, i.e., multipiying each term by (1 - cos 3%15

-4 and integrating'oker theflenggh'of the shell.

' Non-dimensionalizing, the reference frequency is

introduced: * ' e ‘
m = (3—)2' / ——HD' S .l - . - (3.38) N
. o F. ' -'Dm o P ' . ’ -'\:

and the following dimensionless variables defined:

e

length ratio” 1 = f% \\3
thickness ratio  H = %_ -
complex frequency ¢ - 2 | |
| S0
' : . o
“mass ratio = 8 = == .
b : n
. ‘- . . _.‘ 2
S 12(1-v )po
velocity : Vel —
L. ' t E ’

- infegration constant ¢ = ki
R

W,
A
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The solution thus found is:

2> 0h4 s (pleni? e L 2_12(;-v2)(2p14x4
| | [(2p)“+(mn)“1° - " @t
+ 2(2-9) (2p) 022 « 08 8-20(2p) 622 - 6n(2p) 4 (3.36)
. ' | S i, |
2 4.6 6,8 e 2 ' - i
- 24-v)Y (2p)"n 27 - 2nTATY -3 C . -
. P: ) _ g.c ] 5 qu “ | \
= 4;74Al | I .'(Zp)-2(2q)z {B('.,‘éF \ + ;\2 \fzp } C.* 1.2 \. ‘
H pe1 “lpg T pZ T T2zpqt tp ATTRSe-
whérg qu isﬁfhe Kroneckér delta and Fipq’ i=1,2 are_the.;
improper integrals: - . . S : \'
- . M . . } I‘I
L e B , 1
| e LGz - ' T |
Flpq =F L — (1_2 £os t) g dt (3.37{)-
I, (50 to12pn) S 8] [(2qu) 5o %) .
‘ t T : .
- 1 -
7 Iy - (1 - cos. t) it

F = iR
A R N C S S

i

.

These integrals are of the same form as the improper

integrals given by Weaver and Uany [11], [17]. The singularities

. are aill reﬁovgble exﬁppt gt'theﬂiower li?it t=0,n=0,In
this case, the‘probiém'reduées to that of -the uniform gxpagsioﬂ
of a bubﬁ{g-iﬁ a two-dimensional,.inCOmp;éssiblc £1¢w for which
this pathenatical model is inadequate'(sée fo; examplé,

Birkhoff {311 or Whitmén [32])."Thc\ia;egrafs are numericaliy

A

1~ . - % k{
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evaluated by u51ng the same routine as deVeloped by heaVer [20],

whlch utilizes an elght p01nt Newton Cotes quadrature fornula.

>

The numerlcal values for the 1ntegrals are llsted 1n Appendix II

as a functlon of the c1rcumferentral mode number n. and the

\iv

-

d1mens1on1ess length ratlo A,

Equation (3.36) is an infinite set of equations'ana

represents an ezgenvalue problem in the comp,ex frequency c

with the undeterm1ned general1zed co- ord1nates Cp as- the
eigenvector. For 3 non-trivial solutlon, the’ matr1x of the .

coefficients Cp must be equal to zero.

3.4. Results and Discussion _3,- o i

To deternine the stability behaviour of the’ﬁ'gil, -
two terms of the series'(3;36) were taken to give*a 2 x

matrlx, ‘and the frequency equat1on found by sett1ng the deter-,
Hm1nant of the coefficients equal to eero.//}he K?lldlty of using
only two terms in the series to accurateiy represent the "

ok
system will be dlscussed in a later par: raph The frequency

“hhggzizign thus found has the sinple biquadratic form -

N

2
B4 cL + B2 ¢’

*By=0 B | .-(3'.38)

vhere

o PP /. RS N T
_B& = (3 +\ §4ﬂ K+ BFlll) (.) . :IDZM B 8F122

- 256%

\ cont.

-

i
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. ead A - 2 4 Tigr o1ed 2
B% = -‘(IB * 64u\ " BFlly).- 2 (nsz) 2 x‘[ﬁ@+ (nx{j +

\

3072 (1-v2)?

1 | 2,6 . 4.8 2
2 + 32 {2-v)n“2" + A° -
f;;:f;;;?j He . - {2-v) S+ 8192va
o o ,_ , )
4 2 . 1024u413F ve Bk
- 1536a"n% - 32 (4-v)n*a6 - 2 n6:8 . 222
| | ) | le
1! s ' " ) - : ) s .
- 2(n2-13214 e [4+ )52 4 } . 2_‘192 gl-v_la 2
B [4+(n2) 7] H o o
+ 8(2 v)n2 6, n4A8,- 128v12 - 96n214 - 8(4-u)n4A6 .
6.8 64w4A3:F21i v2 " o 43 "\ o N VE
- -2n 7; - 3 _ _ X 3 + 1024+« " 3?122) | :;
. N L: ) 1, ' 1 . . : . ‘;
. ﬁléwé 2 " gF RS st«“ 2> F 2.}
TR Pz ) S 212 ve

- Voo s | . '
B, = .; )( 17 ‘-<:2%6F4 %w Fll ? | | -
Thisyeqdation is solQed exactly-fpr the frequency c, o§er
a widélrange of-fiou velocitr v, aésuming various values
for the parameters ‘A, H and n. Real ¢ gives the fgcquency -
of osc111at1on whxle negatlve imaginary ¢ reprcsents non-
OSC1llatory dzvergcncewlndtab111ty. |

Typ;cal results for the frequency of the first



mode as a funct1on of flow veloc1ty is shown 1n Figures 3,2
and 3.3. The frequency gradually decreases with 1ncre351ng
flow velocity until it flnally becomes zero, where static.
divergepce occurs, This is similar to that distussedfin
refereoce‘[lll.for pin-ended shellsé.and the corresponding
vargg;gén.of“the frequency as a function of flow velocity is
aleo shown'in theselfigﬁres.i For thé shell %‘= 45 aod % = 0.02
in Figure 3:2 the instability is lost in the bean. mode, i.e.,
n=1, p=1. Howegver depending on the length and tﬁickness
‘ratios, the stab111ty 1s generally lost in a mode correspondlng
- to some number of cxrcumferent/?I waves greater thao one, -
n>1l. For the shell K = 5 and E = 0,02 in Figure:-3.3 the
“"critical mode" is n = 3 p=1l. To ascertain the effect of
circumferential mode number, n, on the divergence velocity,

numerous calculations were made. " A typical result is shown

h in’Figure 3.4. Clearly tﬁe divergenCe velocity ie'quite
‘sensitive to n. For this shell, é = 10 and % = 0.02, the
lowest velocity at which 1nstab111ty occurs corresponds to the'
_mode ahape p=1,n=2, ogigh_ls the critical mode shape

for thxs particular shell. This nxnlmum flow velocity is the
one of. 1nterest and is called the cr1t1cal divergence veloczty

v Generally the number of - c1rcumferent1a1 waves ossocxated o

C.
with tho cr1t1cal dxvergenco velocitv 1ncreases for decreas1ng
thickness ratio andg’or length ratio. '

To obtein a.better understandzng of the node Jhape

associated with the critical &1vorgenco velocity, a comparrson
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was made with the mode'shape of the lowest natural frequenEy. "
at zero flow Velocityf' Numerous calculat1ons of the d1Vergence
velocity V and the natural frequency ¢ as a functxon of the
circumferential mode number n werelcarr1ed out. - Typical
results for a specific thicknees-ratio Bu;'variOUS length
ratios are shown ianigure 3.5 and Figure 3.6. Figure 3.6
shows that the mlnlmun, or fundamental frequency for the
shells mlth length ratios of 45, 10 and S is associated with
11 2 and 3 C1rcumferent1a1 waves respect1ve1y- _Clearly, the
minimum, or <ritical, dzvergence veloc1ty for each of these n
shells co responds to the sane mode shape.

Tyat this is true is 'not really surprising when"the
strain energy in the shell duringfdefo;paiion'isﬁéonei&ered.

The stretching energy is strongly dependent on the nunber af”

axial half-waves while the bending energy defendé largely on
the number of'circumferbntial'waves.as,demenstrated schemafically
in Figure 3.7. The ﬁode_shepe corre5pond§ng to the nininum
total strain energy for any. pafticuiar shell will then be fher
one requiring the minimun flew #élociiy forinstabilit;, i.e.,
the cr1t1ca1 flow veIOC1ty of that shell.

Thzs niode shape is also that correspondzng to the

lowest natural frequency of the shell In add1t10n, for a .
g1ven number of cxrcumferent1al waves, - the natural frequency
increases monotonlcallxﬁas the number of axial pglf-waves o
increases. (Th{s is noe generally true for an xncrease in

thc nunber of czrcumferentzal wavcs) Thereforc the cr:txcal
mode shape for divergénce will always have one axial half-wave

a



o s

1

p=1 and a number of c1rcumferent1a1 waves dependxng on the
:1ength and thlckness ratlos. Only’ relatxvely long shells -
“ will have a critical mode shape“corresﬁonding to an Eulerr
column p = 1, n = 1. o o

. o The convergence of the §olution was investigated
by tak1ng one, two and’ three terms of the 1nf1n1te serles
'(3 36) and typical results are shown in Figure 3. 8 It 15:'
seen that add1tlopal term5'do not improve the selution for the . ;
beam mode n = 1, p = 1. However when a-number of c1rcumferent1al
waves are cons1dered more than one. term is necessary
Apparently for higher numbers of circumferential anes, more

terms’ are required- dependlng on the length ratzo. However,

it appears, at least for the Tange of parameters studied hore,‘

‘!a

that two terms are suffrcxent fOr determrnlng the cr1t1cal

«

stab111ty boundary _ —

The. mrnxrum flow velocity to give d1vergence

-

instability regardless of the number oﬁ C1rcumferent1a1 waves

have been plotted in Fxgure 3.9 for various values of length

\
ratios. Clearly for shorter and\fhinner shells, the critical

flou velocities are assoc1ated with higher number of cir- .

cunferential waves. Furthermore for thicker and longer shells
the lower are the number of c1roumferent1a1 waves as socioted
with fhe critlcal flow veloc1t1es unt11 n=1 wh1ch is thc

s1mple bean mede. . . ﬂ —~

- e

3,41, Liniting Case of a Long,Shéil | ';éﬂ;

In reference f11} the generol theory foﬁ a pio-ended_;'

'_shelr'1s considered in the liniting case of- a.long shell where

- - " N
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the beam modelis'the critical mode shape (n:z1). As was
discussed in reference [11] and has been seen in Figure 3,9,
for relatively large length ratios the critical mode is the

beam mode. The critical divergence velocity for a pin:ended

~ shell in the limiting case is

/. EL S (3.40)

. w
. 2 e
Upm [2 n .

)
It is of interest to consider the same limiting
case for the present ‘theory. At the divergence boundary the_l
natural frgqugncy:bf the shell is zer§ and the desired
velocity may be foﬁﬁd ﬁy &onsiderihg B in equation (3.32).
For the fir$%;beam_mode,ﬁhis Teduces to p

Ty

<

A >>1 and'n = 1, equation (3.&1J-becomes

E

) n _
y2 - 12 {1-v ) H E o o | (3.42).

4 .3

1}

~ . Then using the def:nxtlon for the varxous parameters

(3.35) and 1ntroducxng the monent of inertia for 2 thxn cylxnder

-

I = oR°h . ' . .. o (3.43)

: : e ST
and nass pf fluid per unit ‘length of shell

“a



m = R , (3.44)

B

equation (3.42) becomes

This expression for the critical divergence velocity,
=4

is twice that for a pin- ended shell except: far the term - .

1 . Since ‘the effective length for 2 clamped-ended

472 Fonn o : Foe

) ., o . | : o
column is 3 it is Teasonable to expect in view of equation

(3.40) that

2 “_-A: , .
4 IJ - -

Uclamp'n T

“The first ternm in equation (3.45) is called £ v . :@
“end fiow“faétof" {11] ahd afisés fron the pérticular aiiZmptxon |
nade in the present analyg1s regardxng the flow condxt1on\at

the ends ‘of the shell As such it is exuected to becone

neglxglble for longerwshells. In~Fzgure 3. lo-thxs factor

is plotted versus -% .- It is 1nterest1na to see that for a -

length ratxo of K = 16 the effect on the d1vergencc VQlOCltV\r

is less than one pcrcent _ ‘

: Fxgure 4 Z conmpares plots of the full théory and the

approxihation ngen by equation (a 46)., It is seen that for |
. this particular shell the approxznato solution is 1ndxvt1nguzshablc

fren the full solutxon Eor shells longer than about fxfteen-



d1ameters.\— For shells about ten dlameters 1ong the beam
approx1mat10n predlcts a d1vergence velocity about 7% hlgh
_ Nete that thlS s1mp1e solution will aqnly. gzve*the .

correct dlvergence veloclty as long as the cr1t1ca1 node is
.the beag mode n = 1 For very th1n shells, the cr1t1ca1 mode -
may be associa;g&\f?th n > 1 ¢Ven.for rplat{vely 1qu:shells.
as shown in:Flgure 3.9, in such cases, even though the correct
‘veloéify may Bé'predicted for instaﬁility.in the n = i mode,'
the critical- flow veloc1ty w111 generally be much lower.‘ An
example can_be taken, from Flgure 3.8 where~¢he dlvergence ;

veloc1ty for g =20 and n =1 is about 0.04 whereas the

cr1t1cal dlvergence ve10c1ty occurs for n = 2 at dbout VC = 0.025.

<

o



 REAL FREQUENCY, R,

lo ‘

o= . 0.005 . "
L "~ DIMENSIONLESS FLOW VELOCITY,V

P

PRESENT THEORY (CLAMPED ENDS)

Y

lot MODE

-\ ,——“:’DNER GENCE

¢ w M 5 D07

20.02

= 45

o |
- 2850 Ib/in?
al.7
°05

\ 1ot MODE
“\[" DIVERGENCE

N LY

4

.0l

0.

0I5

0.02

-— b. -



" REAL FREQUENCY, Rge.

s W

N

"FiG. 3.3

PRESENT THEORY (CLAMPED ENDS )
h =0.02
R ‘. )
g: =5 —
A v
-n =3 '
" E- =850Ib/in?
B =T
Y 36.5'
e
: N % L. i
0.0! 0.0z 0.03 0.04
"  DIMENSIONLESS FLOW VELOCITY, V - v




0.08 }
0.07}

006 \

STATIC

0.05} | | /.
 DIVERGENCE

004 -

DIVERGENCE VELOCITY

g — — i : nd' 5 y
[ 2 3 4 8 - 6
CIRCUMFERENTIAL MODE NUMBER,n |

" FI6. 3.4



09

39

q_

9 AONINO

O

9¢ 914

J44 IWHUNLYN SS3TINOISNINIA
. 0

“1s

200

18d 0gg =3

600

.
-
B e

v

Mﬂiglx_nuua_ﬂﬂn_dr_

e old

200

‘A *ALIDOT3A 3ONIOHINIG
_£00

A

]

s

e

L 1
od o —

UK
m.

'
1o I

ﬂ.ﬂmﬁo_

¥ |
- 300N TYLLNIYS3INN0Y

>

/



STRAIN ENERGY

T

S ~ TYPICAL STRAIN ENERGY © |
| CONTRIBUTIONS FOR A
SHORT THIN SHELL -

| L AXIAL wAVE

i -—--——-_-'-—I%AXl L WAVES - "I'_ :
\ S\ . B ¥
T~ | Sn
| . STRETCHING ‘\

CENERGY ~al\ T ]

- WUMBER OF CIRCUMFERENTIAL WAVES |

FIG 3.7

i



STABLE

1,2,3 TERMS

» | = B ™ ~v
CO8}— UNSTABLE - § E =850 psi
) K £ B = l?
oloy Wy J
| {TERM
3 TERMS |
3 TERMS‘

IR I A R L I
—12 6 20 '>4 28 32 36 40 44 .
LENGTH RATIO Y FlG 38 « -




42

Fl

' STABLE:

" THICKNESS RATIO

i
1
@l
Au
* N
@1
=1

e
,.—.’_

0
Q-

Q .. ,. . | . ’ Q - .r‘..f . 0
ALIDOT3A JONIOHIAIQ WOILID |




A

£

.o? &. \. - .o

—

P el e o e TS GYD SR e N SN SR Al SRS el S WG g, .i-l“l'I‘Iiaﬁgaiaanlil“l
—p . f .

I

Q

l
o
. ) . N ’ . . 7 N .
i Sy HOLOV4 MO14 N3

.1.-I.\




CHAPTER 4 “ »
EXPERIMENTAL ANALYSIS |

k)

4.1. General\l

" The a;m of the experiments was to confirﬂ theh
va11d1ty of the theoretical results obta1ned above, conce;n1ng
the stability assocxated with = clampe&”' ded tube conveying
'f1u1d and to observe the d1fferent 1nstab111tv phenomena,
‘p0551b1e for a cyllndrzcal shell. These a&e divergence in the_
beam mode, circumferential divergence and‘"flhtter", although
the latter was not predlcted by the theory gzven above. |

.Unfortunately the only quant1tat1ve results obta1ned which are

considered to be reliable are of the beam mode instabxlzty;

v

-

. 4.2. Description of the Experimental Apparatus

°’Figuré 4.1 showé diagrammatically the.appar;tus

used 1n the experxments w1th tubes conveying water. The tubes
were fxtted over aluminum adaptors with the external diameter
slightly larger than the internal dianeter’ of the tube. The *

inlet adaptor was made one foot long to act as a flow stralghtner

e

This adaptor was 's creﬁéd onto the pipe supplyzng the water and
the pipe 1tse1f was securoly attachcd to a metal frame, s0
thatf'he wholé structure was'qultc,rzgxd. ‘The outict adaptor
was fztted into a linear ball bearing to ensure that no aX1aI

. sércsses wers set up in the tube, exther when scttann up the~
J

experzment, or whcﬂ the tube becane unstable. - By. this arrangenent

=z -~
A .

44
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the*boundary cond1t10n was 1dent1cal to the one used in the’

Fl

theory. | . - -7
A5

o A centrlfugal punp capable of dellver‘ng 100

IGPM at a head of 740 feet was used to supply the water. Flow

veloc1t1es up to s0 ft. /sec. weTe therefore available in the

one 1nch diameter tube. The water,. after 1eav1ng the* outlet

. adaptor, was collected in a tank with a,v-notch fltted to measure

the volume flow. The water flow was controlled by a manually

operated valve in the supply 11ne. The flow velocity in the
tube wes calculated by dividing the volume flow by the area
of the tube.‘ fhe tubes used'were either latex rubber or' ’
commerc:ally ava11ab1e Tygon tubing. The latex tubes were
spec1ally made for thzs experiment by using a dipping‘methodi
A one inch ¢ diameter steel tod was emerge:iznto a 11qu1d Iatex
bath and qu1ck1y w1thdrawn. This method allowed onlv one
dlpplng and’ the resu1t1ng tube had a wall thickness of only

Y

0.010 inches. By uszng~a coagulant a second dlpplng could be

' performed but this resulted in a vary;ng wall thxckness. The

experlments conducted with these thln latex tubes were

a Violent fluttering at'the 1oweq end. Non 5 cxperzments'
gave any reliable quontitative results, therefore the results
reported Here weye obtained by using the Tygon tubes.

The observation of the dvnamxc behav1our of the tube

with inerea 1ng flow - ve10c1ty was nade vis ually.

L/ , <
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4.3, Correlation beiween-Theo:y and Experiments

T?efdritical flow velocity V. was obtained by increas-
~ing the fluid veloéity in small stepé, allewing sufficient |
time at each step for!a steady state condition to be achieved
and the new flow velocity to be read until instability occurred
whére the measureﬁegt of Vé was géde. . The behaviour_of the
tube 'at each step’ﬁas-asseiied by;giving the tube a small

pusﬁ and observing tﬁe resulfing motion. for increasing flow
the natural frequency of the tube was observed to decrease
until becom1ng zero. At that point the tube buckled similar

to the buckling' of a '‘column and the tube had to be supported
lateraliy. ; At 511ght1y hlgher velocities flutter occurred

The flutter mode seemed to be a simple flattengng of the tube

s [ 3

iin one-direetioﬁ,_ The same flapping can be produced by pinching

the-tube'at flow velocities' someﬁhat below the critical. It

appears that the theoretical pred1¢ted flutter modes [10],
S
[11] are not those observed exper1mentally and that the 1atter
hr} s
may be an entxrel».dlfferent phenomenon.

L 3

[y
These experinents were repeated for varigus length

ratios between ilR = 12.8 and t/R = 43. Shorter tubes were

-~

- not testeé due to the extremely high dlvergence veloczt:cs fo

these tubes, wthh nakes the experxmen% ha"ardous. For a 1engtﬂ

rutio of ¢/R = 12,8 the d1vergencc ve10c1ty was found to be

£ .
. ¥ 4 a

45:6 ft./fec.

The experlmental values for the dinensionless:

crxtxcal flow velocity are congpred in Flgurc 852 uith the
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theoret1cal Valueq for dlfferent length rat1os.r'As seen from
Figure 4,2, the results are quite- ‘Teasonable, 'the agreement.
being within 10%. It is felt that the discrepancy between
theory and experiments is due tO‘the"exéeesive“thickness
‘ratio of the tubes testeduand tﬁatnfor the bean mode and
thickness ratios less than about-o .1, the theory will give
very accurate predictions. Note that for th1s partxcular tube
the beanm approx1mat1on-;eems to deterrorate tor tubes’ 1ess
than about ten diameters long.

i

4.4. Comparison with PreviouyWork
: -

As there already existed theoretical and experimental

results for a clamped-ended tube conveying fluid [iD] it was

considered desirable to compare the present predictions with
these results. Calculations were'theo’performed'fof'the tube
considered in reference [10] using the present.theOry aelwell
as the theory for plnned-ended tubes of reference [11] The
'results are-. shown in F1gure §.3. '

For: long tubes /R >. 38 the predlctrons of the present
theory are 1dent1ca1 wzth those of reference [10], .e., uhen
tHe 1nstab111ty is. lost in the beam node p = 1, n = 1. For
, shorter tubes, when the 1nstab111ty is Iost in c1rcumfcrent1a1
" nodes greater thon one, thewpresent'theory gives hxgher
orrtical flow velotitiee than tho'c given by‘Paidouseis and -
Denlse, although the d1fference is quxte snall for sone - lengtn'

ratios. It is nterestrnb to note that the osxratron bc Lwoen

S - I

2
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the two thedries_is highesé at length ratios where a changeﬁ
in the critical Circumf%rential modefoccure.f The difference
may be attributed to the fact that in reference [10] the full
Flugge equatlons are used and to- the dlfferent flow condltlons
assumed at the,epds of~the tube-1n the*two;theorxes. These
‘are shown sehemaﬁically in;Figuref4.4; ‘As the‘fﬁil'Eluggé\.
equation is usedain reference EID],'one would;expect“better
results compared w1th the present theory on that account.
However, as shown in F1gure 4.4 the boundary condition assumed
at the ends of the tube in the present theory, more closely
resembles the actqal_case, -Anothe: aqyantege of the.preeent
theory is its relative\simplicityxl . e |

hs—expected the pinned-ended sclution fepresentsﬂ
1ewer bound on the experimental .results and can be used |

as a conservat1ve estimate of the critical flow veIOC1ty.

Note also that as shown in F1gures3 2 and 3 3 the dlfference
between tﬁe’pinned-ended solutlon and the clamped-ended, .

decreases for shorter shells.

-
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CHAPTER 5
CONCLUSION AND RECOMMENDATIONS .

Ly
R

" The theory used by'Uﬁ;y and Weévér [11] has been
extended to determine the stablllty behaviour of clamped ended
 }she11s conveying 1nternal ;pcompre551b1e flow. Such a shell
.is found to become unstable through static divergence whlle
'flutter occurs for hlgher flow velocxtles. Depending:@g\the
th1ckness and length ratios of the- shell the mode of 1nstab111ty

is a combination of the beam mode p= 1, and a nunmber of

circumferen;1al-waves. Thg}shorter and th1nnerﬂxhe shell the

" higher the number of,c;rcumfere ial waves. For suff1c1ent1y
long shells the c;itiéal mode r/}the beam mode p =1, n=1
-and a very simple analytxcal expre551o%_may be: used to accu%ately
predict the cr1t1ca1 dxvergence velocity Thé mode shapeiat
the cr1t1ca1 divergence ve10c1ty is the same as that correspondxng
to the’ fundamental frequency of the shell |

The theoretical results haverbeen compared with -
experimehts as well as with préyioﬁ? theoretical and-expér;ment;1¢
work aﬁd thepagrecmeﬁt was found to be reasonably good, In
connection with the last. point it is noted that the neasured
critical dxvergence velocxtxes are hlgher than the theoretxcal
ones; One reason for this as given in sectxon 4.4, could be <
the extensxte/;hzckness ratio of the tubes tested. It is
expected that for thickness-ratiosdbelow-o...the theory will .

-

A Y
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give-quite accurate results. This should be confirmed by

new experiments. When the theoretical results are compafea

with the results of reference [10] they give h1gher values

for the cr1t1ca1 divergence veloc1t1es In reference {10)

the full Flugge equation of_motion_for a shell is used and'on‘
that eccount one would expect the theory to give better results.“
However, the.boundary conditioné_essumea in the present theory
nore closely resembles the actual'case. The experiﬁental
values g1ven by reference [10] are on the low s1de of the

"theoret1ca1 results, whlle our exper1mentsxglve h;gher values
than predlcted by the theory. ’It is therefore d1ff1cu1t to

o

judge which theory is the most accurate.

" The present analysis has the unfortunate characteristic

that it cZdnot predict "flutter™. This is due.to the assumed

S

_ : A A ;
solution which contains only odd ax' 1 modes. As fluttey”

is produced by couplxng of odd and even nodes 1t cannot be
predicted by tho present solutlon. "The theory can be refined
to include:theée:instabilitiee by assuming a solution that

contains odd and efen modes. A suitable solution would be:

T ftos_izl%lzﬁ - cos iE:%AEEJ_ R (5.1)
P ' "
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APPENDIX I D
- NOMENCLATURE -
C , :j%cﬂmplex frequencf\f m/mo‘/
_Cﬁ © generalized cﬁofdinafe é
h ‘ o | . Eh
D - flexpra; s;1ffness, I;Eit:?;
E | | .= ‘ﬁéduluskof é;asticity
Piﬁq | : .-,‘oifﬂil,z‘ imﬁtbpef integrals
) = thickpeés of shell .
, | = thickness-rétio = ;}R , 7
i o - /-1 - LT
1 | = 'ﬁomegt 6f inertia of thin cylinder
c = uRsﬁ o, | .
I (kr) S modified'Be;sel function of first kind
K% ‘. s ‘separation-conSFant \5 | |
z - = length of shell . g%ﬂ o
?m'-' o S = mass of fluid per,unif%i;ngih of shell
- . amlezpov o | | B
o L : = circumferential mode number )
P B 7 = axial poaé nunber = ¥
pa.’ .= dynamic pféssuré' | o  '; 
R , - . =  zadius of shell -
t ) - P_-‘ diﬁensionless intcératioﬁ constant ‘ f
v drwm ol
R | = flow velocity - '
.



Li)

'y

.= dinensionless flow velocity -
\’12!1-0 )
=y
y 2“E. .-
w\ radial deflection of sheil
- p R " -

= mpass ratio = -2 o
. e ’ pm '

~

LY
;\ Kronecker delta

= ?oiséoh's data

= lengkh of ratio = 2/&% -

= dghsity of shell mﬁterial‘i

. density of—fiuid |

= pér;urbation vélocit} potential

= f?équency )

o ; ‘ i ('D )1/2
=  Telerence 1irequency =
[ referenes freauener ® 7o

;é 1 ;z 2
= (5 =)
ax R® 2e

_ : -4
@ inverse of vd, CACRAIS

‘u
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* APPENDIX II

N ’ SRAL \N] S
TABLE OF INTEGRAL Fy . AND F;Eq VALUE

L, 00003353

- ,00001679

o

-

111
' 1 2 3 4 5 6 |
1 | .00076191 | -00050707 | .00038504-| .00031213 | 060026187 | .00022532
2 | .00053080 | .00031807 | .00022750 .00017670 | .00014419 | ",00012164
3 | .00040642 | .00022938 | .00015943 | .00012189 | .00009852° | .00008261
¢ | .00032753 }00017s§o | .o0012210 | 00009267 | -.00007459 | .00006239
s [ -.00027321 [.,00014536 | .00009872 .00007463 | .00005995 | 00005078
7 |..00020386 .00010516 .00007120. 3;00005363_. ;oooo4soof ".opoosssé
10 | -00014665 .oood#§7a .~ .00005011 .00003767 | .00003017 | .00002515
15 | .00009936 | .00005014 | .00003350 | .00002516 ‘| .00002613 | .00001678
20 | .00007497 | .00003768. | .00002516 | .00001888 00001511 | .00001259
30 | .00005020 | .00002516 |- .0000i678 | .00001259° | .00001007 | .00000840
a5 -.00001119 | 00000840 | .00000672

.00000560

\
e

09 -



neo SIS 2 3 4 ; 6
1\ . ?)“’yﬁﬁv 1 S —
» = 1 | .0046fis8 | .00406339 | .00355363 | .00313428 | .00278758 | .00250110
;" '.004{5125 ‘| .00325311 | .00255440 .00208559 .00175340 | .00150778
3 _.003§zo$2 .00260238 | ,00192372 400151558 | .00124585 | .00105549
4 | So0346256 | ..00213103 -.001§zz55-z ,00117829 | .00005858 | 00080684
s | .00305082 [ .00178905 | .00125258 | .00095986 | .00077661 | .00065147
7 | .onzassso | .0UT34030 | .00001869 | .00069718 | .00056111 .00046924
10 | .00183020 | .00096510 | .00065285 00049258 | .00039527 ;.oob@}%ﬁ;
15 | .o0127460 .000653921 | 00043888 ©,00032092 | .00026430 | .00022042
20 | .00097199 | .00049332 ..00033000 | .00024789 00019846 | .00016546
30 | .00065610 "] .00033014 | .00022047 - 00016547 ,00013245.,,‘.00011038"
a5 | .o00043080 | .00022052 | .00014712 .00011038 | ,00008832 [ .00007360
) o . ,

+

«i

—
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!P_.
W=
K

F112.° F121 “
me 1 B2 3 4 5 Y6
el .00016315 ‘-;:;;-;000_19265 00007511 - | 00005899 ~ | .00004835 | .00004090
2 | .o0010671 | .00005973 | .00004111 | .00003119 | .00002507 | .00002094
.3 | .00007797 | .00004127 | 00002784, | .00002083 | .00001676 - | .00001399
| -4 | .00006074 ;',oouosxzs- .00002094 | .00001572 | 00001258 | ,00001049
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20 ,00001258 | .00000629. | .00000419 .obooq314 .00000252. | .000002i0
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