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Abstract 

This thesis concerns with recovery of compressive sampled images. Since many natu­

ral signals such as images are non-stationary, the sparse space varies in time/spatial 

domain. Therefore, compressive sensing (CS) recovery should be carried on locally 

adaptive, signal-dependent spaces to answer the fact that the CS measurements are 

not dependant to the signal structures. Existing CS reconstruction algorithms use 

fixed basis such as wavelets and DCT for the signals. To address this problem, we pro­

posed new technique for model guided adaptive recovery of compressive sensing. The 

proposed algorithms are based on two dimensional piecewise autoregressive model 

and can adaptively recover compressive sampled images. In addition, proposed al­

gorithms offer a powerful mechanism to characterize structured sparsity of natural 

images. This mechanism greatly restricts the CS solution space. Simulation results 

show the preeminent effect of our algorithms in the recovery of wide range of natural 

images. In average our best algorithm improves the reconstruction quality of existing 

CS methods by 2dB. 
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Chapter 1 

Introduction and Problem 

Statement 

In our modern information technology era digital images and videos have become 

ubiquitous in all walks of the life. Image data acquisition, storage, and communication 

are indispensable for all applications of digital images. In the current state of the 

art, digital image acquisition devices (e.g., digital cameras, camcorders, scanners) 

typically consist of two cascade modules: 

1. a dense sensor array that takes a large number of samples (pixels) of the light 

field. 

2. a compressor that reduces the large amount of raw data created by the sensor 

array. 

According to Shannon's sampling theorem, the reconstruction of the original contin-

uous image signal requires the sampling frequency to be at least twice as high as the 

highest frequency component of the image. In many high-end applications, such as 
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medical imaging, remote sensing, space, reconnaissance, digital cinema, etc., users 

need to image very fine details and hence demand imaging devices of very high res­

olution. But the cost and complexity of the camera system increase drastically in 

spatial resolution. Furthermore, the amount of energy required to acquire and com­

press images also increases in spatial resolution. In some applications scenarios, such 

as on board of a satellite in outer space, the camera system is limited in computing 

power and energy supply. Under such resource constraints one naturally wonders if a 

mathematical approach exists that allows high-quality recovery of images with a far 

fewer number of samples. 

To answer this question, we first notice a well-known fact in the field of im­

age/video compression. A typical image can be compressed to 10% of the size of the 

original raw format of two-dimensional sample array without inducing perceptible 

loss of quality. This indicates a high amount of data redundancy in the dense sample 

array. Given such high degree of redundancy, why should we adopt the approach of 

oversampling followed by massive dumping, i.e., compression, as in current practice? 

This approach makes the imaging devices complex, expensive and with high energy 

consumption. Recently, the wisdom of above outlined conventional signal acquisi­

tion systems is questioned by researchers in a new field of study in signal processing, 

called compressive sensing (CS). The research on compressive sensing was pioneered 

by Candes and Donoho [1, 2]. It addresses the inefficiency of the conventional sample­

then-process technique by introducing a new data acquisition method that captures 

and compresses data simultaneously. The CS theory claims that under certain con­

ditions, it can reconstruct a signal with high probability from a small number of 

random measurements. The conditions on which CS relies are signal sparsity and 
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incoherentness of the random measurements to the original signal. 

One can represent any signal x E lRN in terms of a basis {1h}~1 where each 'l/Ji 

is a vector of length N. Defining basis matrix \II = ['l/Jll'l/J21 ... I'l/JN] with vectors 'l/Ji as 

columns of W, the signal x can be represented in this basis as 

x=ws 

where s is the coefficient vector of length N. 

A signal x = {Xi}~l of length N is said to be sparse in basis W = {'l/Ji}~l' if the 

transform coefficients (x, 'l/Ji), 1 ~ i ~ N, are mostly zero. Incoherence means that 

sampled sparse signal should have spread out representation in the domain in which 

it is acquired. Putting differently, if <I> is defined as the random measurement matrix 

used to acquire the signal, then the rows {<Pi} of <I> should have an extremely dense 

representation in W. CS can exactly recover a K -sparse signal of length N, which 

is a signal with exactly K nonzero coefficients in W, from M = O(Klog(N/K)) 

measurements with high probability. 

CS recovers signal x of length N from M measurements, y, by solving the following 

constrained optimization problem: 

min IlwT xliII such that y = <I>x, (1.1) 
x 

where <I> is the random measurement matrix of size M x Nand W is the basis in which 

signal x has sparse representation. One of the most challenging research topic in com-

pressive sensing is the design of recovery algorithm. Different CS recovery algorithms 
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were recently proposed: gradient projection sparse reconstruction [3], matching pur­

suit [4], and iterative thresholding [5]. 

The outstanding property of es is that it can compactly encode a signal x inde­

pendent of the structure of the signal, i.e., es can use the same random measurement 

matrix <l> on all signals which might have different characteristics. On the other hand, 

es recovery process should be optimized for a specific type of signals to recover the 

signal x with higher quality. Indeed, the tricky part of recovery step of es is the 

selection of the space W in which a particular signal x has sparse representation. 

Thus, es transfers the task of signal-dependent code optimization from the encoder 

to the decoder. For optimal es recovery, finding the space W in which signal x has 

sparse representation is as challenging as finding an adaptive transform to completely 

decorrelate x. The disappointing performance of es recovery methods asserts the 

major challenges es faces, despite the fact that es introduces the brilliant idea of 

changing the dominant practice of "oversampling followed by massive dumping" III 

image acquisition and compression. 

Nevertheless, by shifting the burden of code optimization to the decoder the es­

based data acquisition devices can be greatly simplified. The encoder simply makes 

a small number of random projections of the signal, quantizes and transmits the 

projection values. This asymmetric design is highly desired when the data acquisition 

devices must be simple and operate on limited power budget. 

Wireless sensor networks (WSN) is one of the applications that can greatly benefit 

from es. WSN is a collection of low-cost, low-power sensor nodes that communicate in 

short distance and collaborate together to reach the objective of a WSN application. 

Some applications of WSN are environmental monitoring, biomedical research, human 
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imaging and tracking and military applications [6J. In cases where the number of sam-

pIes are large, compression must be done prior to transmission. In these applications 

there are limitations on computational power of sampling devices or communication 

channel bandwidth. Therefore reducing the complexity and power consumption of 

the senors is desirable. Since sampling process of a compressive sensing device is sim-

pIe and the collected measurements are already compressed, the devices built based 

on compressive sensing need less computational power and have cheaper embedded 

hardware. Another advantage of CS based sensors is that the encoder can be designed 

in such a way that data stream is robust against packet loss when the communication 

channel is noisy. The reason is that signal information is evenly distributed amongst 

the measurements and if some measurements are dropped during communication, it 

is still possible to recover the signal using received measurements[7J. 

CS based simple data acquisition devices that require fewer number of samplers 

are also highly desired when very expensive sampling sensors are used in the capturing 

device (e.g., infrared imaging) or when high-density sampling can harm the object 

being captured (e.g., medical imaging). Medical imaging devices cannot have as many 

sensors as needed to capture samples from whole patient's body either because of 

costly sensors or harmful high-density sampling. Therefore, the patient is required to 

be moved through the device during data capturing process which could add artifacts 

to the captured image due to patient movements. Since CS based devices require 

fewer number of sensors, it is possible to build devices that can take images from the 

whole body at once. 

To see how CS can reduce the number of sensors in the capturing device a practical 

example of a single-pixel compressive digital camera is presented. The CS based 
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camera is introduced by Baraniuk in [8]. Figure 1.1 shows the model of this CS based 

camera which requires only one photo diode instead of millions of sensors used in 

a conventional digital camera. Instead of having N photodiode sensors, this camera 

uses a digital micro-mirror device (DMD) which consists of an array of N tiny mirrors. 

The light-field is reflected off the DMD and is then collected by a second lens and 

focused onto the single photodiode. The direction of each mirror is randomly set 

to or away from the photo diode by using a random number generator (RNG). The 

orientation of the mirrors creates a measurement vector that is used to calculate 

one measurement of the desired image. The process of setting the orientation of 

the mirrors and calculating the measurement of the image is repeated M times to 

obtain all desired measurement values. These measurements will later be used at 

the decoder to regenerate the image by solving an optimization problem. Figure 

1.1(b) is the image taken by conventional digital camera and Figure 1.1(c),(d) are 

the 64 x 64 images taken by the single-pixel compressive camera using 800 and 1600 

measurements respectively. 

Despite the enthusiastic idea of CS which challenges the wisdom of conventional 

data acquisition systems, the performance of existing CS-based compression meth­

ods is not satisfactory. The poor performance of current CS recovery techniques 

compared to conventional coding techniques is caused by oversimplified assumption 

in the problem formulation (1.1) for CS recovery. A natural signal x is typically 

non-stationary, and there exists no space W in which all parts of x have sparse repre­

sentation. The problem is particularly intense for images. For a non-stationary two 

dimensional m x n image signal x( i, j) E Nmxn, in two different areas Ak and Al of 

the spatial domain, sub-images Xk( i, j) and Xl(i, j) can have very different waveforms 
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Figure 1.1: (a) The model of single-pixel compressive camera. (b) Original64x 64 image taken by conventional digital 
camera. (c) 64x64 image taken by single-pixel camera with 800 measurements. (d) 64x64 image taken by single-pixel 
camera with 1600 measurements. The image in (b) is not meant to be aligned with images in (c) and (d). 

(e.g., smooth shade vs. strong edge), and hence they are sparse in different spaces 

W k and WI. Thus, performing CS recovery in a fixed space W, such as that of DCT, 

a wavelet, or total variation, can and do fail in parts of the image. To address this 

problem we use locally adaptive strategy to recover CS-acquired images. 

In this thesis we propose a new framework of model-based adaptive recovery of 

compressive Sensing (MARX) to solve the problem current CS recovery formulation 

(1.1) faces. The feature of MARX which makes it distinguished from other CS recov-

ery methods is a locally adaptive sparse signal representation based on a piecewise 

autoregressive (PAR) model. The PAR model is defined by 

X=AX+E. (1.2) 

where x is the vector representation of an image x( i, j) E Nmxn by stacking all 

N = m x n pixels of it, and A E ~NxN is a real-valued square matrix with all 
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elements on the main diagonal being zero. The term E E RN is a random vector that 

is the excitation of the 2D autoregressive process. ak is the kth row vector of A where 

akk = 0, 1 ::; k ::; N. Assuming an image to be a random Markov field (RMF) of a 

modest order, the number of nonzero elements of each row vector ak is very small, i.e., 

it is sparse. The nonzero elements of ak comprise the 2D support of the regression 

relation Xk = akX + E for pixel Xk. The image waveform at the pixel location k gives 

the spatial configuration and the order of the regression support for Xk [9]. 

Assuming that a natural image is a non-stationary RMF, MARX allows the PAR 

model parameters ak to vary in k. The PAR model offers a sparse and yet adaptive 

representation of image signal x. Thus, the following problem of h minimization can 

be used for the CS recovery of x: 

N 

min L Ilakllh subject to y = <I>Ax 
A,x 

k=l 

(1.3) 

Note that A in (1.3) is variable where as W in (1.1) is predetermined. The pro­

posed MARX sparsity mechanism can fit image local structures (e.g., edges, textures, 

smooth shades, etc.) much better than wavelet, curvelet, DCT or whatever predeter-

mined basis of W [9]. 

Clearly, the proposed MARX objective function is computationally more complex 

than the current CS problem formulation. MARX jointly estimates the pixel values 

of the image and PAR model parameters in contrast to current CS problem formu-

lation which estimates x in a fixed space W. The added search space of A makes 

the inverse problem of CS recovery severely under-determined. In our research we 

developed algorithm techniques to overcome this difficulty, making the MARX solu­

tion feasible and robust. To achieve maximum bonds on the solution space for (1.3), 
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we used structured sparsities due to self similarities of natural images. The resulting 

technique makes the MARX process computationally tractable and greatly improves 

the performance of existing CS recovery algorithms. Indeed, experimental results 

show the superior recovery quality of MARX over other CS methods. 

The results of proposed MARX algorithm have superior quality specifically along 

the edges where there is high frequency in the local window. However, since MARX 

algorithm is not robust to noise, it generates worm-like artifacts in areas where no 

dominant edge is present (e.g., smooth or noisy areas). In this thesis we also proposed 

hybrid TV-MARX algorithm that addresses the problems of MARX algorithm. This 

algorithm dynamically switches between TV and PAR depending on the characteris-

tics of the local context. The pixels in the image are put into two categories: 1) XPAR 

which is the set of pixels on dominant edges and 2) XTV which is the set of pixels in 

smooth or noisy neighborhood. For the pixels in XPAR, PAR model is applied during 

recovery process and for the ones in XTV TV is used. 

To further improve the quality of recovered image, weighted PAR models are used 

during restoration process. The weights are calculated such that they favor the PAR 

models that are in the dominant edge direction. Experimental results showed that 

in average the quality of proposed hybrid TV-MARX recovery algorithm is 0.6dB 

higher than the results of MARX algorithm in peak signal-to-noise ratio (PSNR). 

1.1 Literature Review 

Signal processing is an area of applied mathematics that deals with operations on 

discrete or continues signals. Data compression, data transmission, denoising, predic-

tion, filtering, smoothing and deblurring are examples of such operations [10]. Signals 
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that these operations are applied on include sound, image and sensor data. Signal 

processing is used in a wide range of applications such as medicine, communications, 

entertainment and military systems. As communications systems become wireless, 

mobile and multi-functional, the importance of sophisticated signal processing grows. 

Rapid evolution of digital computers and development of important theoretical al-

gorithms such as fast fourier transform (FFT) attracted more attentions to the field 

of digital signal processing from 1960s. The fundamental part of digital signal pro-

cessing is signal sampling during which a continuous-time signal is converted into a 

discrete-time signal through sampling [l1J. 

The sampling process is based on sampling theorem proposed by Shannon in 1949. 

He stated the theorem as: 

If a function f(t) contains no frequencies higher than W cps, it is completely 

determined by giving its ordinates at a series of points spaced 1/2W seconds apart. 

"cps" is cycle per second which Shannon used instead of Hertz. Shannon named 

the upper band on the signal frequency Nyquist frequency due to his important con­

tributions to the communication theory. As Shannon admitted himself, it was not the 

work he did himself rather it is a fact which is common knowledge in communication 

art [12J. Nonetheless Shannon should get a full credit for formalizing it for the first 

time. Similar theorem also appeared in mathematical literature due to the works 

done by Whittaker in [13J. Also in Russian literature, Kotelnikov in [14J introduced 

this theorem to communication theory [15J. 

This sampling theorem, regardless of who proposed it first, imposes a lower bound 

on the sampling rate. This requirement should be satisfied during the sampling 

process to avoid aliasing effect which corrupts signal characteristics. In certain cases 
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it might be impossible or difficult to build sampling devices that meet Nyquist rate 

requirement due to hardware limitation, i.e. it is practically impossible to design 

an analog to digital converters (ADC) that samples at Nyquist rate using state-of­

the-art technologies or it is simply too expensive to design such devices. Therefore, 

many sampling schemes with different properties have been investigated in digital 

signal processing field to address this issue. Most of these researches are based on 

nun-uniform sampling strategies [16, 17, 18, 19, 20, 21, 22]. 

Bilinskis in [21], states that for some signals, it is possible to acquire samples be­

low required Nyquist rate without suffering from aliasing effect by using non-uniform 

sampling. In an example in his book Bilinskis showed that a signal with highest 

frequency equal to 1.185 GHz can be fully reconstructed by using non-uniform sam­

pling with sampling at a mean rate of 80 MS/s (megasamples per second). Note that 

uniform sampling rate for this signal should be at least 2.370 GHz. He then says 

that once aliasing is somehow eliminated the rate of sampling doesn't depend on the 

highest frequency component of the signal and non-uniform sampling is one way of 

removing aliasing effect. The problem of high sampling rate for uniform sampling is 

that the excessive sampling values don't add information and are only used to remove 

overlapping signal spectral components. 

Compressive sensing (CS) also known as compressed sensing and compressive sam-

pIing is a data acquisition technique developed in recent years that acquires data with 

sampling rate below the Nyquist rate. The idea was first used in earth sciences during 

1970s where seismologists used it to construct images of reflective layers in the earth 

from data that did not seem to satisfy the Nyquist rate. The idea of CS as is known 

today is originated from the works done by Emmanuel J. Candes, a mathematician at 

11 
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Caltech, in 2004. While working on a problem in magnetic resonance imaging (MRI), 

Candes discovered that a test image can be exactly reconstructed even though the 

available data is less than what is required by Nyquist criterion. To make sure this 

result is not accidental, he collaborated with Justin Romberg and published much of 

the underlying theory in [23, 24, 2, 25]. Candes also started to work with Terence 

Tao of UCLA and published a series of papers [26, 27, 28, 29, 30, 31] to set forth the 

basic principles of compressive sensing. 

The results from Candes works attracted wide attention even before Candes, 

Romberg and Tao published their papers. David Donoho, Candes' Ph.D. advisor 

at Stanford University, made outstanding contributions to the theory and applica-

tions of CS [1, 32, 33, 34, 35, 36, 37]. Richard Baraniuk at Rice University leads a 

large and active group in CS research area and published wide range of papers on 

this topic [38, 39, 40, 41, 42]. Now there is a worldwide community that conducts 

workshops and conferences to contribute to this rapidly expanding research area [43]. 

Unfortunately, given the same compression ratio, the image quality of CS recov­

ery algorithm is not as good as the result of state-of-the-art compressing techniques 

such as JPEG-2000. The quality of reconstruction depends on signal compressibility, 

incoherence of measurement matrix with sparsity basis and chosen reconstruction al-

gorithm [39]. One of the most challenging research topic in compressive sensing is the 

design of recovery algorithm. One category of recovery algorithms builds approximate 

signal in each step by making locally optimal choices. Orthogonal matching pursuit 

(OMP) [4], stage-wise OMP [34] and regularized OMP [44,45] are some examples of 

this type of algorithms. Convex relaxation algorithms such as interior-point method 
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[28, 46], projected gradient methods [3] and iterative thresholding [5] are other tech-

niques that solve a convex program with known minimizer. Fourier sampling [47,48]' 

chaining pursuit [49] and heavy hitters on steroids (HHS) pursuit [50] are a third type 

of algorithms that support rapid reconstruction via group testing [51]. 

The focus of all these algorithms described above is on improving image quality 

during signal recovery step of CS. Another way of improving the quality of recon­

structed image is to use a recovery algorithm on the CS acquired images. In other 

words, we use one of the algorithms mentioned above to reconstruct the image from 

its measurements and further improve the quality of the image using a recovery al-

gorithm. In this thesis we proposed two recovery algorithms to improve the quality 

of the CS reconstruction. Our algorithms are based on non-linear estimation for 

adaptive restoration (NEAR) algorithm proposed in [52]. 

1.2 Contributions 

In this thesis, we proposed model-based adaptive recovery (MARX) for CS. This 

algorithm is a modification of NEAR that uses measurement matrix as the degrading 

function. It uses axial and diagonal piecewise autoregressive (PAR) models for each 

pixel to recover the CS acquired image using the measurement matrix as the matrix 

representation of a degrading function. 

The second algorithm is hybrid TV-MARX CS recovery algorithm. The core of 

this technique is very similar to the MARX algorithm. Some improvements are made 

in hybrid TV-MARX to address the problems MARX has. 

Due to the sensitivity of MARX algorithm to the noise, this algorithm generates 

worm-like artifacts in smooth and noisy local context because of data over-fitting. 

13 
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Hybrid TV-MARX algorithm solves this problem by mixing TV and PAR during re­

covery process and dynamically switches between TV and PAR based on the presence 

of edge( s) near the current pixel. 

Hybrid TV-MARX further improves MARX algorithm by applying weights on 

PAR models to favor the ones that are in the dominant edge direction. The direction 

of dominant edge is determined using an edge detector algorithm. The weights are 

chosen using Gabor function in four direction (0°, 45°, 90°, 135°). 

The comparison study verifies that MARX algorithm improves the quality of CS 

reconstruction by 1.7dB in average. Hybrid TV-MARX algorithm achieves superior 

results compared to MARX algorithm and removes most of the artifacts created by 

this algorithm. 

1.3 Organization 

This thesis is organized as follows. Chapter 2 presents mathematical background 

of compressive sensing and NEAR restoration techniques. Details of MARX and 

hybrid TV-MARX algorithms are proposed in Chapter 3. Chapter 4 presents the 

experimental results to compare the proposed algorithms. Finally, conclusion and 

future work remarks are presented in Chapter 5. 

14 



Chapter 2 

Mathematical Background 

2.1 Introduction 

In this chapter the mathematical background for our proposed algorithms is presented. 

The first section is a mathematical overview of compressive sensing theory. The 

necessary conditions for a measurement matrix to recover signal x of length N from 

M < < N measurements are discussed. Different types of measurement matrices used 

in CS applications are reviewed. The description of the CS reconstruction algorithm 

is also presented. The second section starts with a brief introduction of the image 

restoration problem and talks about mathematical approaches to solve it. Then it 

proceeds to outline the NEAR restoration technique on which the proposed MARX 

algorithm is based. 
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2.2 Compressive Sampling 

Conventional data acquisition systems are based on Shannon-Nyquist sampling the­

ory. This theorem imposes lower bound on the number of samples that should be 

taken from a signal in order to fully recover it. According to Shannon-Nyquist sam­

pling theory, for a bandlimited signal the sampling rate should be at least twice as 

high as the highest frequency component of the signal. For signals such as images 

and videos the number of samples is still so high that working directly with sampled 

data is inefficient. Thus, the large body of samples have to be compressed prior to 

transmission or storage. 

For an image x(i,j) E Nmxn, lets represent it by a vector x whose elements are 

stacked N = m x n pixels. Suppose W is an N x N orthonormal basis matrix. x can 

be defined in W as 

x=Ws 

where s is the coefficients vector of length N which represents signal x in domain W. 

A signal x is K -sparse in basis W if all but K number of coefficients are zero in W. 

The compression can be done by transforming the signal into W basis and sending 

just those K nonzero coefficients and their location instead of sending all N samples. 

In real world it is almost impossible to find natural signals that are strictly K-sparse. 

However, most signals can be approximated well by a sparse signal by truncating 

small coefficients of the signal to zero. This approximation will not degrade the 

reconstruction quality and is used in practice, which is in fact the foundation of 

transform coding [53]. 

As an example let examine image compression in wavelet domain. As illustrated in 
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Figure 2.1 (b), the transformed image generates lots of very small coefficients. During 

compression all coefficients less than specified threshold are set to zero. Incrementing 

the threshold increases the compression ratio but reduces the quality of compressed 

image. Because of high rate of redundancy in natural images wavelet domain can be 

used to generate high quality images with very low bit-rate (Figure 2.1(c, d)). 

The steps of a typical digital acquisition system are: 

1. Acquire N samples from continuous signal to generate discrete signal x. 

2. Transform signal x into basis W where the representation of the signal is nearly 

sparse. 

3. Keep K largest coefficients and their locations and discard all other (N - K) 

small coefficients. 

4. Encode these K values and their locations. 

Baraniuk in [8] called this procedure the sample-then-compress framework. This 

framework requires to capture all N samples, which is very large, even though the 

number of coefficients being kept is small. Also to calculate K large coefficients, all 

other ones should be calculated even tough they will be discarded later. Finally, 

the location of K large coefficients should be encoded along with the values of these 

coefficients. This adds an overhead to the system. 

Compressive sampling addresses these inefficiencies by introducing a new data 

acquisition process that combines sampling and compressing in one step. The basic 

idea behind this theory is that one can reconstruct a signal from fewer number of 

measurements than what is required by Shannon-Nyquist theorem if 

1. the signal is sparse in some basis W 
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(a) (b) 

(e) (d) 

(e) (f) 

Figure 2.1: Comparison of lossy JPEG2000 encoder with different bit-rates. (a) Original image. (b) Wavelet coeffi­
cients for two level of transforms. (c) Compressed image with 0.08 BPP bit-rate (Compressing ratio = 1:100). (d) 
Compressed image with 0.4 BPP bit-rate (Compressing ratio = 1:20). (e) Compressed image with 0.8 BPP bit-rate 
(Compressing ratio = 1:10). (f) Compressed image with 4 BPP bit-rate (Compressing ratio = 1:2). Images are taken 
from [54] 
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2. the measurement matrix <P is stable so that it can capture almost all the im-

portant information in any K-sparse signal without damaging it by the dimen­

sionality reduction from x E RN to y E RM. 

For now we focus on signals that are K-sparse, i.e., all other (N - K) coefficients 

of the signal are exactly zero. Later we will discuss how CS theory can be applied on 

nearly K-sparse signals. A signal is said to be nearly K-sparse in basis W if it has 

K large coefficients in wand all other (N - K) coefficients are small values but not 

necessarily zero. 

Suppose XK is the sampled signal of length N which is K-sparse in basis wand 

<P is an M x N measurement matrix. If we define y as measurement vector, the 

calculation can be written in matrix form as 

y = <PXK 

using sparse representation of signal XK in W we can write above equation as 

y = <PWSK = eSK (2.1) 

where SK is the K-sparse representation of signal XK and e = <PW is an M x N 

matrix. The goal of CS is to use measurement vector y and matrix e to regenerate 

coefficients vector SK. Once SK is known the original signal XK can be recovered as 

The following questions should be answered in order to define a practical CS based 
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data acquisition system: 

1. how to design a measurement matrix cp such that the ill-posed inverse problem 

in (2.1) has stable solution 

2. what is the reconstruction algorithm that can recover signal XK from M ::::::: 

K < < N measurements 

The first question is concerned with the design of a stable measurement matrix <l? that 

can capture almost all the information about signal XK. The measurement matrix cp 

should allow the reconstruction of signal XK of length N from M < N measurements. 

The problem of finding N unknowns from M measurements is ill-posed. The sparsity 

of signal XK can be used to reduce the number of unknowns from N to K ::; M. If the 

places of K nonzero coefficients are known, a necessary and sufficient condition for 

the ill-posed inverse problem in (2.1) to have stable solution is that for any vector VK 

sharing the same K nonzero elements as SK the following inequality holds for some 

E> 0 [8] 

(2.2) 

However, the assumption of knowing the positions of nonzero elements of SK is not 

desired since it adds overhead to the encoding process and wastes bandwidth. Candes, 

Romberg and Tao in [28] proposed restricted isometry property (RIP) to define a 

sufficient condition for stable solution for SK when the position of nonzero elements 

are not known. RIP states that a sufficient condition to have a stable solution for a 

K-sparse signal is that e satisfies (2.2) for any 3K-sparse vector V3K. If matrix e 
satisfies the (2.2) for K-sparse signal, we say that e obeys RIP of order K. 

To construct a measurement matrix cp which obeys RIP of order K, one needs 
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to verify (2.2) for each of the (fK) possible combinations of 3K nonzero elements of 

vector V3K. Unfortunately, for a large N this approach is not practical. Also, checking 

matrix e to have RIP, makes encoder dependent to the type of signal. This is because 

the encoder should know the basis W in which the signal has sparse representation in 

order to generate matrix E>. 

In [55] Candes stated that if <I> is a Gaussian measurement matrix and 

N 
M> CKlog-- K (2.3) 

for some constant C, then the measurement matrix <It has RIP with probability 

1- O(e->-N) for some A> O. Therefore, if the measurement matrix is a Gaussian pro­

jection and if the number of measurements M satisfies the inequality in (2.3), then one 

can recover any K-sparse signal XK with high probability. The measurement matrix 

<I> is Gaussian matrix if the elements of it are independent and identically distributed 

(IID) random variables from a Gaussian probability distribution function (PDF) with 

zero mean and variance 11M, By using the Gaussian measurement matrix, signal XK 

can be exactly recovered with probability 1 - O( e->-N) for some A > O. 

Another random measurement matrix that has RIP is Fourier measurement ma-

trix. Fourier measurement matrix is a partial Fourier matrix obtained by selecting M 

rows uniformly at random. The columns of the M selected rows should be normalized 

so that they have unit norm. In case of Fourier measurement Candes stated that if 

M::::: CKlog4 N (2.4) 
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then Fourier measurement matrix has RIP with 'overwhelming probability'. Specifi­

cally the 'overwhelming probability' here means that given constant C = 22(0" + 1), 

the probability of exactly recovering XK exceeds 1 - O(N-a). Therefore, using a 

Fourier measurement matrix with enough number of measurements M that satis­

fies the inequality in (2.4), then one can recover any K-sparse signal XK with high 

probability. 

The above discussions address how to choose a measurement matrix that is inco­

herent to the representation basis. The measurement matrix can be a random matrix. 

If the number of measurements, M, satisfies the inequality in (2.4), the representation 

matrix W is incoherent to the sensing matrix <P with high probability. Therefore we 

can expect to recover the signal with high probability. 

Once measurements are made by using some random measurement matrix such 

as Gaussian measurement matrix or Fourier measurement matrix, then the problem 

becomes how to recover full-length signal from these measurements. This requires 

to solve an under-determined system of equations with some constraints. The recon­

struction algorithm needs measurement vector y, random measurement matrix <P and 

basis W as input. Notice that the whole random measurement matrix does not have 

to be sent to the reconstruction algorithm. Instead, a pseudo random measurement 

matrix with a seed can be used. The seed is used during reconstruction to regenerate 

matrix <P. Since M < N the equation 8s = y has infinite number of solutions in 

H = N(8) + SK space, where N(8) is the null space of 8. The reconstruction 

algorithm needs to search for the sparse coefficient vector of signal XK in space H. 

The classical way of solving an under-determined system of equations uses l2 

minimization to find a solution with minimum energy. The l2 minimization has 
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a closed-form solution § = 8 T (88T tly. However for CS reconstruction, the l2 

minimization solution ia not sparse, not satisfying the K -sparsity property of the 

signal. 

Since we know that the the signal is sparse in space W, the following lo minimiza-

tion is the optimal criterion for CS reconstruction 

§ = argminllsllo such that 8s=y (2.5) 

The lo minimization selects a solution from solution space H which has the minimum 

number of nonzero elements. Unfortunately, the problem (2.5) is known to be NP­

complete [56]. An alternative algorithm is needed to make the problem tractable. 

Surprisingly, the following optimization problem based on h minimization can 

exactly recover K-sparse signal with high probability [28]. 

§ = argminllslll such that 8s=y (2.6) 

The difference between (2.6) and (2.5) is that the former uses the sum of magnitudes 

instead of size of support [57]. This optimization problem can be recast to one of 

linear programming which can be solved in O(N3) [55, 1]. 

In summary, the CS-based data acquisition and communication consist of as fol-

lows components: 

1. Design a random sampling device that directly generates measurement vector 

y (A single-pixel camera is an example of such device that was described in 

introduction chapter), bearing in mind to take at least the minimum number of 

measurements required. 
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H= {s: <I>s='ljJ} H={s:<I>s='ljJ} 

s 
I I 

(al (bl (el 

Figure 2.2: Geometry of h minimization. (al h ball finds desired sparse vector s from solution space H in two 
dimensional space. (bl 12 ball finds a solution with many nonzero elements instead of the sparse vector in two 
dimensional space. (cl h minimization in three dimensional space. The graphs are taken from [53J 

2. Send the measurement vector y along with the random seed used to generate 

random measurement matrix to the decoder. 

3. Decoder uses basis W that represents signal in sparse form to generate matrix 

e = <I>w. Then the decoder solves convex optimization problem in (2.6) to 

exactly recover signal XK with 'overwhelming probability'. 

One of the interesting characteristics of CS is that during signal capturing the encoder 

does not need to know what basis is used to recover signal. Selection of basis W can 

be done at decoder and even different basis can be used on different parts of the image 

to increase the performance of the reconstruction algorithm. 

A geometrical intuition on why b minimization fails to find the sparse solution 

in contrast to It minimization can be had as follows. Precise mathematical proofs 

can be found in [29, 58, 59]. Figure 2.2(a) shows an h minimization process in two 

dimensions. The gray square is the It ball in ill? The gray region contains all 8 E ill? 

such that 18(1) + 8(2)1 :S r where r is the radius of the h ball. The line marked with 

H is the solution space and point 8K is the desired sparse solution. One can imagine 
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h minimization process as blowing h ball by starting from small radius and gradually 

expanding it until it hits line H for the first time. The first intersection of h ball and 

line H is the solution to the h minimization problem. As illustrated in the Figure 

2.2(a), h minimization finds the desired sparse vector. 

Figure 2.2(b) shows an l2 minimization process in two dimensions. The gray 

circle is the l2 ball with radius r and the gray region contains all S E ill? such that 

s(1)2 + S(2)2 ~ r2. The line marked with H is the solution space. The process of l2 

minimization can be imagined to be expanding a circle by gradually increasing the 

radius. The first intersection between the l2 ball and line H is the solution to the l2 

minimization problem. But this solution is not necessarily sparse. 

So far we considered signal XK to be K-sparse but in real world applications 

signals are nearly sparse. Also in any real applications measured data is corrupted by 

some amount of noise (such as quantization noise and sensor noise). To be practical, 

CS needs to deal with the cases where signals are approximately sparse and noise 

is presented during the capturing process. The question, however, is weather it is 

possible to accurately reconstruct nearly sparse signals with the presence of noise 

from highly under-sampled measurements? 

We first examine the accuracy of CS for nearly sparse signals without the presence 

of noise. Then, noise element is added to the system and the error bound for CS 

reconstruction is determined based on the theorems provided in [29]. Suppose <P is 

a measurement matrix that obeys the RIP in (2.2). For K-sparse signals x}( and 

x~ with sparse representations Sk and s~ in W, the following inequality holds for all 

K -sparse signals when 02K is sufficiently less than one (which is the case when stable 

measurement matrices such as Gaussian or Fourier measurement matrices are used) 
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[60J 

(2.7) 

where E> = tPW. Suppose x is a nearly K-sparse signal and s is its representation in 

W. Define SJ( as the K-sparse approximation of x in W by truncating all (N-K) small 

coefficients of s to zero. Without the presence of noise the measurement vector y of 

signal x is calculated as 

y = tPx = tPWs = E>s 

and following optimization problem is solved to find sparse representation of signal x 

§ = argminllslll such that E>s = y (2.8) 

Theorem: 

Assume that 02J( < V2 - 1 in (2.7). Then the solution § to (2.8) obeys 

and (2.9) 

for some constant Co. The above theorem was proposed by Candes, Romber and Tao 

in [29J to characterize the CS recovery of nearly sparse signals as well as sparse ones. 

If x is K-sparse, that is x = XJ(, then the recovery would be exact. If signal x is 

not K-sparse, then (2.9) states that the quality of the recovered signal is as good as 
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the one that would be obtained by knowing everything about the s and selecting its 

K largest entries [29J. Therefore, a nearly sparse signal can be recovered from its 

random measurements with high accuracy by solving the h minimization problem. 

Suppose that we are given a noisy measurement vector y of a nearly sparse signal 

x 

y = <I>x + z = <I>ws + z = 8s + z, 

where z is an unknown noise term added to the system and s is the nearly sparse 

representation ofx in w. The h minimization problem in (2.6) with relaxed constraint 

can be written as 

§ = argminllsl11 such that (2.10) 

where E is the bound on the noise element. The following theorem in [29J shows that 

even for noisy measurements of a nearly sparse x, the reconstruction error is bounded. 

Theorem: 

Assume that 02K < V2 -1 in (2.7). Then the solution § for (2.10) obeys 

(2.11) 

for some constants Co and C1 . The above theorem declares that the reconstruction 

error is bounded by two error terms. One term is the error due to the fact that the 

signal is nearly sparse (other than being fully sparse) and the other is because of the 

added noise and is proportional to the noise level. 

Being able to recover nearly sparse signal in the presence of noise with high prob-

ability and acceptable error makes CS a practical and robust sensing mechanism. It 
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can work with all types of signals including nearly sparse ones and can handle noise 

elegantly [60]. 

In image processing applications the total variation (TV) method, which is closely 

related to the h minimization, is widely used for solving inverse problems and it is 

also used as the criterion for CS reconstruction. TV was originally proposed by 

Rudin, Osher, and Fatemi in [61] and gained popularity in the literature. For a two 

dimensional image x(i,j), TV is defined 

TV(x) = L J(x(i + 1,j) - x(i,j))2 + (x(i,j + 1) - x(i,j))2 
i,j 

which is the sum of the gradient magnitude at every pixel 

TV(x) = L l\7x(i,j)1 
i,j 

Let x be the vectorized representation of x(i,j), then the TV-based CS reconstruction 

can be stated as 

x = argmin (TV(x)) such that (2.12) 

The TV criterion favors signals of bounded variation (e.g., smooth images), with­

out sufficient consideration of signal transients (e.g., image edges). Due to the fact 

that most natural signals have an exponentially decay power spectrum, TV performs 

better than the h minimization in most cases. However, the TV performance deteri-

orates quickly in signal segments of discontinuities and high frequency components. 
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To overcome this drawback of TV, we introduce a methodology of model-based adap­

tive recovery of compressive sensing (MARX). The defining feature of MARX, which 

distinguishes it from other CS recovery techniques, is a locally adaptive sparse signal 

representation facilitated by a piecewise autoregressive (PAR) model. This algorithm 

is based on the non-linear estimation for adaptive restoration (NEAR) technique pro­

posed in [52]. In the next section the NEAR technique is briefly reviewed. 

2.3 Non-linear Estimation for Adaptive Restora­

tion 

Restoration is the process of recovering an image from its degraded version by using 

prior knowledge of the degrading function [62]. Suppose x( i, j) is the original image 

and h is the degrading function in spatial domain. The degraded image y is given by 

(2.13) 

where TJ is the additive noise and * indicates convolution. A restoration technique 

obtains an estimate x of the original image x by applying an inverse process to 

the degraded image y. A model of image degradation and restoration processes is 

illustrated in Figure 2.3. 

For an image x(i,j) of size m x n, lets represent image x(i,j), degraded image 

y( i, j) and additive noise TJ( i, j) in vectorized forms as x, y and TJ respectively. Suppose 

H is an mn x mn matrix which corresponds to degrading function h. The elements 

of H are given by the elements of the convolution in (2.13). The matrix form of the 
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Original Image f Degradation Function 
. h 

Noise'l1 

Restored Image f Restoration Filter 

} 

Degradation 
Process 

Degraded Image g 

} 

Restoration 
Process 

Figure 2.3: A model of image degradation and restoration processes. 

degradation process is 

y=Hx+7] 

The objective of restoration process is to find restored image z using some pre-

knowledge about degrading function and additive noise. The more we know about 

Hand 7] the closer z will be to x [62]. The simplest approach to find z is to apply 

inverse filtering. If H is known the restored image can be calculated as 

(2.14) 

where H-1 is the inverse of H. Without presence of noise the above equation can 

exactly restore x since the last term in (2.14) is zero. In general, however, there 

is always some additive noise in the system. It means that even if we now the 

degradation function, the degraded image y cannot be exactly recovered because of 

the presence of noise. 

Different restoration algorithms are proposed to restore degraded image y in pres-

ence of noise. The general restoration algorithm is constrained least square filtering. 
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This method requires the knowledge of the mean and the variance of the noise which 

can be determined from a given degraded image. The sensitivity of H to noise is 

the issue that should be considered in this algorithm. One way of reducing the im­

pact of noise over H is to base the optimality of restoration process on a measure of 

smoothness. A typical measure of smoothness, which is used in restoration process, is 

the second order derivative of the image [62]. Two dimensional discrete second order 

Laplacian operator can be defined as 

\72(x) = I)x(i + 1,j) + x(i -l,j) + x(i,j + 1) + x(i,j -1) - 4x(i,j)] 
i,j 

by using above equation as the criterion function the problem of restoration process 

can be defined as 

such that (2.15) 

where E is the bound on the noise element. Using criterion functions that model the 

image as close to the reality as possible can improve the performance of the restoration 

process. NEAR is a powerful restoration technique proposed in [52]. This algorithm 

models an image as a piecewise autoregressive (PAR) process. Since most images are 

far from being stationary, models that assume images as stationary autoregressive 

processes are ill in practice [63]. However, most images are highly correlated in local 

windows, i. e., formed by spatially coherent contiguous pixels. This property of natural 

images makes it possible to model images as PAR processes and to estimate the PAR 

model parameters using sample statistics in a moving window. For an image x(i,j), 
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the PAR model can be defined as 

X( i, j) = L L au,vx( i - u, j - v) + 7]( i, j) 
(i,j)EW U,v 

where W is the local window, au,v are PAR model parameters and 7](i,j) is the 

measurement noise. In [52] it is stated that if image x( i, j) is a two dimensional au­

toregressive(AR) process and is degraded by degrading function h, then the degraded 

image y(i,j) is a two dimensional autoregressive moving average (ARMA) process. 

AR part of the degraded image has the same parameters as those of the original 

image, but its MA part is determined by h. The question is how one can estimate 

the PAR parameters to use during restoration process. Original image cannot be 

used as we only have the degraded image. Also, since the degraded image has signal 

dependent MA part, the PAR parameters au,v cannot be estimated from it either. 

To resolve this problem NEAR restoration technique jointly estimates the parame-

ters of the PAR model and the pixels of the restored image [52]. The constrained 

optimization problem for NEAR restoration technique can be defined as 

min L (X(i,j) - L au,vx(i - u,j _ V)) 2 
x,a 

(i,j)EW U,v 

such that (2.16) 

iiHx - yii2 :::; E 

where E is the bound on noise element, x, yare vectorized representation of x( i, j) 

and y( i, j) respectively and H is the convolution matrix which is generated based on 

degrading function h. 
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• t.~ • 
~} 

~X(ij) 

• ® • 
Figure 2.4: Two PAR models of Order 4 proposed in [52]. The pixel at center is image pixel at ith row and jth 
column. Black pixels are diagonal model and gray pixels are axial modeL 

If the size of window I W I and the order of AR process t are not chosen with caution, 

data over-fitting might occur because of fewer number of equations compared to the 

number of unknowns. To overcome this problem, Wu and Zhang [52], suggested to 

use multiple PAR models in different direction. They proposed two PAR models of 

order 4 which are called diagonal model and axial model. Figure 2.4 show spatial 

configuration of the two PAR models. For the image pixel at (i, j), we define Xx (i, j) 

as diagonal model which consists of four 8-connected neighbors of pixel x( i, j) 

xx(i,j) = [x(i -l,j -l),x(i -l,j + l),x(i + 1,j + l),x(i + 1,j -l)f 

x+(i,j) is the axial model of the image which consists of four 4-connected neighbors 

of x(i, j) 

x+(i,j) = [x(i,j -l),x(i -l,j),x(i,j + l),x(i + 1,j)]T 

If we define ax and a+ 

as diagonal and axial model parameters, the modified restoration problem in (2.16) 
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can be written as 

such that (2.17) 

where Wx and w+ are optimal weights of the two models. The above equation can 

be converted to an unconstrained nonlinear least square problem which can be solved 

by an iterative algorithm of structured total least squares (STLS) [52]. 

In this thesis we applied NEAR restoration technique in proposed MARX and 

hybrid TV-MARX algorithms to recover CS reconstruction results. To reduce the 

artifacts generated in the recovered image, a stronger criterion function is defined 

in hybrid TV-MARX that mixes TV and PAR. Details of our algorithms will be 

discussed in the next chapter. 

34 



j 

t 
! 

Chapter 3 

Compressive Sensing Recovery via 

Piecewise Autoregressive Modeling 

3.1 Introduction 

In this chapter details of the MARX algorithm are presented. The first section de­

scribes model-based adaptive recovery of compressive sensing (MARX) algorithm. 

MARX uses piecewise autoregressive model (PAR) to recover the CS-acquired sig­

nals (images specifically in this thesis). It is an iterative process that jointly estimates 

the PAR model parameters and pixel values of recovered image. The second section 

discusses about how we improve the MARX algorithm by combining the TV prior 

with the PAR model. This hybrid TV-MARX CS recovery algorithm dynamically 

switches between TV and PAR depending on whether there is presence of edge(s) 

near the current pixel, and as such improves the reconstruction quality over either 

TV or PAR alone. It also uses weighted PAR parameters based on edge structure of 

a local window to further improve the results of recovery process. In order to run the 
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hybrid algorithm on large image blocks, we use Fourier measurement matrix instead 

of Gaussian measurement matrix. 

3.2 Model-based Adaptive Recovery of Compres-

sive Sensing 

As stated in the introduction the performance of current CS recovery techniques is 

poor compared with conventional coding techniques. This is because existing CS 

recovery techniques assume the signal to be a stationary, which is not true for natural 

images. In contrast, the proposed MARX algorithm is a locally adaptive algorithm 

that can recover the image in different sparse spaces by altering model parameters. 

For an image x the TV optimization for CS reconstruction is 

x = argmin (TV(x)) such that II<l>x - YI12 ::; E (3.1) 

where <[> is the measurement matrix and y is the measurement vector. 

The MARX algorithm considers the measurement matrix <l> as the matrix rep­

resentation of a degrading function h and the output of TV reconstruction x as the 

degraded image. It solves the following optimization problem to recover the original 

image from x 

min [ ')"' w x . (z(i,j) - a~zx(i,.j))2 + ')"' w+. (z(i,.t) - aT+Z+(i,.t))21 
z,ax ,a+ l (i~W ,. -. .. - . (i~W - . . -. F J 

such that (3.2) 
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where z is the restored image, ax and a+ are diagonal and axial PAR model param­

eters of pixel z(i,j) and zx(i,j) and z+(i,j) are four 8-connected and 4-connected 

neighbors of pixel z( i, j) respectively. Wx and w+ are the optimal weights of the two 

PAR models. The recovery algorithm is an iterative process that solves a nonlinear 

least square optimization problem to jointly estimate the unknowns z, ax and a+. 

This algorithm recovers CS-acquired image x by solving the optimization prob-

lem defined in (3.2). The optimization problem can be rewritten in unconstrained 

nonlinear least square form as follows 

min L Wx (z(i,j) - a~zx(i,j))2 + 
z,ax,a+ 

(i,j)EW 

L w+ (z(i,j) - a~z+(i,j))2 + 
(i,j)EW 

AII<I>z - xll~ 

The Lagrangian multiplier A is adjusted such that the solution z satisfies II<I>z-xI12 :s; 

E. 

We can define matrices C x and C+ of size W x W to represent the above sum-

mations in the matrix form 

(3.3) 

The elements of matrices C x and C+ can be determined from the elements of ax and 
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a+. Lets define residue vector r(z, ax, a+) as 

where 

rx(z,ax) 

r(z,ax,a+) = r+(z,a+) 

rcp(z) 

with this definition, equation (3.3) can be represented in quadratic from as follows 

(3.4) 

The above problem can be solved using structured total least square (STLS) iterative 

algorithm. If .6.z, .6.ax and .6.~ represent small changes in z, ax and a+ respectively, 

then the linearized residue vector r(z, ax, a+) can be written as 

rx (z + .6.z, ax + .6.ax) 

r(z, ax, a+) = r+(z + .6.z, a+) + .6.a+ 

r cp (z + .6.z) 

rx (z, ax) + 8;; .6.z + ~:: .6.ax 

( ) 8r+ A + 8r+ A r+ z, a+ + azuz 8a+ ua+ 

rcp(z) + 8;:.6.z 

(3.5) 

Therefore, given the current estimates of z, ax and a+ the problem in (3.4) reduces 
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to 
2 

arx arx a ~z -rx(z, ax) 8z aax 

mm ar+ a ar+ ~ax + -r+(z, a+) (3.6) 
6.z,6.ax ,6.a+ 8z 8a+ 

arip a a ~a+ -rq;(z) az 2 

For the next iteration estimated z, ax and a+ are updated using ~z, ~ax and ~a+ 

from (3.6). 

The remaining question is what are the initial estimates for the image and PAR 

model parameters. The initial estimates for ax and a+ can be obtained from the 

degraded image x by solving the following least square problems 

a~ = argmin { L (x(i,j) - a~Xx(i,j))2} 
(i,j)EW 

a~ = argmin { L (x(i,j) - arX+(i,j))2} 
(i,j)EW 

where Xx and x+ are four 8-connected and 4-connected neighbors of x( i, j). The initial 

estimate for the image can be calculated using initialized PAR model parameters and 

CS reconstruction output x as follows 

2 

zO = argmin a (3.7) 

2 

Having the initial values for the image and two PAR model parameters, an iterative 

restoration process can be executed to recover the image that has been degraded by 

the measurement matrix. Even though the MARX recovery algorithm outperforms 
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existing CS recovery methods by 0.5-3dB, it can be further improved if we resolve the 

issues this algorithm suffers from. In the next section hybrid TV-MARX is proposed 

that improves the performance of MARX algorithm. 

3.3 Hybrid TV-MARX Algorithm 

As demonstrated in [9] the MARX algorithm drastically improves the quality of CS 

reconstruction. However, this algorithm has the following weaknesses 

1. MARX algorithm uses two PAR models in diagonal and axial directions sep-

arately, and weights the two PAR models equally. Using the same weight for 

PAR models is not optimal since the structure of a dominant edge in a local 

context cannot be described by equal contributions of the PAR models. For 

example, suppose the current pixel in a local context is on a strong edge in the 

45° direction. It is not optimal to assign same weight to the 90° PAR model as 

the model in the 45° direction. 

2. The MARX algorithm is not robust against noises. In particular in smooth 

regions the MARX algorithm tends to over-fit noises and creates work like 

artifacts. 

In Figure 3.1 the output of CS and MARX algorithms are shown. The weaknesses of 

MARX algorithm can be seen in this figure. Figure 3.1(c) clearly shows the worm-like 

artifacts created by MARX algorithm. 

Proposed hybrid TV-MARX algorithm improves MARX performance by address­

ing these issues. In hybrid TV-MARX algorithm the first problem of MARX is ad­

dressed by giving more weight to the PAR model that is in the strong edge direction. 
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(a) 

(b) (e) 

Figure 3.1: MAK'C drawbacks. Ca) is the original 255 X 255 image. Cb) is the output of TV reconstruction algorithm 
for cs. The block size used for this algorithm is 15 X 15. Cc) is the output of MARX algorithm. The local window 
size is 5 x 5. 
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(a) (b) 

Figure 3.2: Blocking effect in TV reconstruction algorithm for es. (a) The output of TV reconstruction algorithm for 
es with small block size. The size of blocks is 15 x 15. (b) The output of TV reconstruction algorithm for es with 
large blocks of size 128 x 128. 

To do so, an edge detection algorithm is used on the CS acquired image. The edge 

detection algorithm finds the orientation and the strength of the edges for each pixel. 

First, the gradients of the pixels in horizontal and vertical directions are calculated 

by convolving the image with [-1 0 1J and [-1 0 1JT masks respectively. Horizontal 

and vertical gradients of an image at position (i, j) can be calculated as 

dx(i,j) = x(i,j + 1) - x(i,j -1) 

dy(i,j) = x(i + 1,j) - x(i -l,j) 

The orientation of the edge e( i, j) and its gradient magnitude r( i, j) are computed 

e( ' .) (dx(i,j)) 'if 
1,,) = -arctan dy(i,j) + '2 
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and (3.8) 

r( i, j) and O( i, j) are used along with Gabor functions to calculate weights for each 

PAR model in different directions. Gabor function is basically a Gaussian function 

modulated by a complex sinusoid 

G(x, y, 0, 1) = exp __ (_)2 + (_)2 cos(21f Jx') (
lx' Y') 
2 (lx, (ly' 

where 

x' = x cos(O) + ysin(O) 

y' = y cos(O) - x sin(O) 

Four Gabor functions are in directions (00, 45°, 90°, 135°) are used to compute 

the weights. The gradient directions are first rounded to the nearest 45° direction. 

Rounded gradient directions are then used to select the corresponding Gabor func-

tion. For example if the gradient direction of a pixel is 45° then the Gabor function 

with 0 = 45° is used to compute the weights for the PAR model for that pixel. The 

least square problems that finds the initial weighted PAR models parameters can be 

written as 

o . { ~ (d A( .. ) TGd ( .. ))2} ax = argmzn ~ gc· x 2,J - ax XX Z,J 
(i,j)EW 

(3.9) 

o . { ~ (d A( .. ) TGd ( .. ))2} a+ = armzn ~ gc.x Z,J - a+ X+ Z,J 
(i,j)EW 
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where g~ is the weight given to the center pixel by the Gabor function and G d is a 

diagonal matrix. The elements of main diagonal of G d are the weights given to the 

neighborhood of the center pixel using the corresponding Gabor function. d in g~ and 

Gd specifies the gradient direction of the center pixel ( d E {0°, 45° , 90°, 135°} ). For 

example if the gradient direction of a pixel is 45° then G 45 matrix is used in (3.9). 

The elements in the main diagonal of G45 are computed using Gabor function with 

e = 45°. Solving updated least square problems for PAR models gives new initial 

PAR model parameters that are regularized based on the direction of the edge at each 

pixel. 

To address the low performance of MARX algorithm on smooth regions, mixed 

TV and PAR are used in criterion function of the nonlinear least square problem. 

Hybrid TV-MARX algorithm dynamically switches between TV and PAR. If the 

neighborhood of the current pixel is smooth then TV is used but if the current pixel 

resides on a dominant edge, then PAR is used to recover that pixel value. To dis­

tinguish between these neighborhoods, the edge detection algorithm described before 

is used. The gradient directions are categorized in four groups: (0°,45°,90°, 135°). 

If the gradient magnitude of the current pixel x( i, j) in the local window is above a 

threshold then that pixel is marked as being on a strong edge. All other pixels that 

are not marked are either in a smooth or a noisy neighborhood. 

During recovery process PAR model is used for the marked pixels. TV is used for 

all other pixels that has a smooth or noisy neighborhood. If we define ZD as the set 

of pixels in image x that are on a strong edge and Zo as the set of all other pixels 
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then, the constrained optimization problem for hybrid TV-MARX can be written as 

. { ~ (~ ( (..) T (. .))2 z,T,}~+ L L W x · Z ~,J - axzx 't,J + 
z(i,j)EzD (i,j)EW 

(3.10) 

L w+. (z(i,j) - a~z+(i,j))2) + L TV(Z(i,j))} 
(i,j)EW z(i,j)EzQ 

such that 

Hybrid TV-MARX algorithm addresses MARX issues using the above constrained 

optimization problem and the least square problems in (3.9). 

Theoretically, CS reconstruction and MARX algorithms don't impose any limita­

tion on the size of the image being processed. However, because of the computational 

constrains, it is impractical to work with the whole image. Therefore, the image has 

to be split in two smaller blocks and the CS reconstruction and MARX algorithms 

are executed on each block separately. Using small blocks creates blocking effect 

artifacts in the results of CS and MARX algorithms. The blocking effect is clearly 

visible in the result of CS reconstruction algorithm in Figure 3.1 and 3.2. The MARX 

algorithm can highly reduce the blocking effect in the recovered image (see Figure 

3.1 (c)) .. However, since MARX algorithm is sensitive to the noises, the noise added 

to the results of CS algorithm due to the blocking effect degrades the performance of 

MARX algorithm. 

The blocking effect is solved by changing Gaussian measurement to Fourier mea-

surement matrix. Using Fourier measurement matrix instead of Gaussian measure-

ment matrix makes it possible to increase the size of the blocks to the image size. 
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The reason is that one can define Fourier measurement matrix as a function. Since 

the measurement matrix is defined as a function, we don't need to store the whole 

matrix in the memory. Whenever we need to multiply the measurement matrix by 

a vector, the Fourier measurement function is called which returns the result of the 

multiplication. But for the Gaussian measurement matrix one needs to store the 

whole matrix in the memory. In such case, when the block sizes is large, the com­

putational complexity of OS reconstruction increases drastically which makes the OS 

implementation impractical. 

To clarify why Gaussian measurement matrix cannot be used on large blocks an 

example is provided. Suppose we want to use CS on an image of size 512 x 512. If the 

measurement ratio (the ratio of the number of measurements to the size of the image) 

is r = 20%, then the number of measurements is M = rO.20 x 512 x 5121 = 52429. 

To work with the whole image, i.e., using one large block of the image size, the size 

of the measurement matrix would be 52429 x (512 x 512) = 13743947776. If the 

elements of the matrix are defined as double which takes 8 bytes, then the amount 

of memory needed to store measurement matrix is 13743947776 * 8 ~ 100Gbytes. It 

is clear that it is impractical from both physical and computational points of view to 

run the algorithms that require this amount of memory. Thus, the image has to be 

split into smaller blocks to make CS algorithm feasible to implement. 

To apply Fourier measurement matrix in CS reconstruction step, we used the 

code written by Justin Romberg that defines the measurement matrix as a function. 

The new code can deal with large blocks using Fourier measurement matrix instead 

of Gaussian measurement. By using this code we were able to increase the size of 

the blocks to reduce the blocking effect in CS reconstruction. This change in CS 
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algorithm removed the artifacts, which were related to the blocking effect, from the 

results of recovery step. Figure 3.2 shows the differences between the results of CS 

reconstruction algorithm with different block sizes. The output of CS reconstruction 

algorithm that uses blocks of size of 15 x 15 is shown in Figure 3.2(a). The blocks are 

visibly separated by boundaries due to the blocking effect. In contrast, Figure 3.2(b) 

shows the output of CS reconstruction algorithm that works with large blocks. Since 

it processes the whole image at once no blocking effect can be seen in the output 

image. 

In the next chapter we compare the experimental results of MARX, hybrid TV­

MARX and CS algorithms. The comparisons are conducted from both objective and 

subjective points of views. 
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Chapter 4 

Experimental Results 

In this chapter, we report experimental results of the proposed MARX and hybrid TV­

MARX recovery algorithms and discuss our findings. To emphasize the importance 

of spatial adaptability of a CS recovery method and the effectiveness of MARX and 

hybrid TV-MARX, we conduct a comparative study between these algorithms and 

the total variation (TV) method. First we report the experimental results for the 

MARX algorithm. Considering that the CS method that uses Gaussian measurement 

matrix cannot handle large blocks due to high computational complexity, we divided 

the image into 15 x 15 blocks in our experiments. Table 4.1 is the comparison of the 

MARX algorithm with the TV method for the images in Figure 4.1. The number of 

measurements is 25% of the number of total pixels in each image (M = 0.25 x h x w for 

an image of size h x w). The curves of PSNR versus the number of CS measurements 

(presented as the percentage of the total number of pixels) are plotted in Figure 4.2 

for the TV and MARX recovery methods. In the comparison, the MARX algorithm 

is clearly outperforming the TV method over all numbers of CS measurements as 

shown in Figure 4.2. 
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For an evaluation of tested methods in terms of visual quality Figures 4.3-4.6 

are presented. These images confirm the superiority of the MARX algorithm in 

preserving the structures and details of edges and textures. The ability of the MARX 

algorithm in preserving the structure of edges is attributed to the underlying piecewise 

autoregressive model that adapts to spatially varying second-order statistics of image 

signal. However, the worm-like artifacts in the smooth areas of the images can be 

seen in Figures 4.3-4.6. The sensitivity of the MARX algorithm to the noises creates 

these artifacts in the recovered images. Also using small blocks during reconstruction 

decreases the quality of TV and MARX recovery methods. 

Table 4.1: PSNR of TV and MARX recovery methods. The block size is 15 X 15 and measurement ratio is 25%. 
PSNR unit is dB. 

Illlages TV MARX Illlprovelllent 

Boats 28.1446 28.9744 0.8298 
House 31.0171 31.4712 0.4541 

Old Plane 33.2489 35.2488 1.9999 
Lena 28.7057 30.9070 2.2013 
Barb 23.7171 26.4794 2.7623 

To alleviate the blocking effect we need to increase the block size in TV recon-

struction algorithm. For this we use Fourier measurement matrix instead of Gaussian 

measurement matrix, because the former has a far more computationally efficient 

implementation [64]. In our experiments we used the software provided in [64] to 

compare the results of TV and MARX recovery methods with small blocks versus 

the the ones with large blocks. The proposed hybrid TV-MARX algorithm is also 

compared with the other recovery methods. The block size for the recovery methods 
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Figure 4.1: Images used to compare TV and MARX recovery algorithms. (a) Boats image of size 255 X 255. (b) 
House image of size 255 x 255. (c) Old Plane image of size 255 X 255. (d) Lena image of size 255 X 255. (e) Barb 
image of size 510 X 510. 

50 



J 
I 

M.A.Sc. Thesis - Reza Pournaghi McMaster - Electrical Engineering 

Comparing TV and MARX for'Boats' Image Comparing TV and MARX for 'House'lmage 
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Figure 4.2: PSNR of TV and MARX recovery algorithms for four images with different measurement ratios. 
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(b) (e) 

Figure 4.3: CS recovered Boats image (measurement ratio is 25%). (a) Original image. (b) MARX recovery. (c) TV 
recovery. 

Figure 4.4: CS recovered House image (measurement ratio is 25%). (a) Original image. (b) MARX recovery. (c) TV 
recovery. 
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(b) (e) 

Figme 4.5: CS recovered Lena image (measmement ratio is 25%). (a) Original image. (b) MARX recovery. (c) TV 
recovery. 

Figme 4.6: CS recovered Barb image (measmement ratio is 25%). (a) Original image. (b) MARX recovery. (c) TV 
recovery. 
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with small blocks is 15 x 15 and for the ones with large blocks, including hybrid TV­

MARX method, is 128 x 128. Table 4.2 is the comparison of the five recovery methods 

(TV with small blocks, MARX with small blocks, TV with large blocks, MARX with 

large blocks and hybrid TV-MARX) for the images in Figure 4.1. The number of 

CS measurements is 25% of the number of total pixels in each image. The curves 

of PSNR versus the number of CS measurements are plotted in 4.8 for TV, MARX 

and hybrid TV-MARX recovery methods that uses large blocks. In comparison, the 

performance of TV recovery method is greatly improved when using large blocks 

nonetheless MARX algorithm performs better than TV in most cases (the PSNR of 

MARX is higher than the PSNR of TV by 1dB in average). However, it can be seen 

in Table 4.2 that the PSNR of MARX method is less than the PSNR of TV method 

by O.15dB for Old Plane image. The large smooth areas in this image degrades the 

performance of MARX algorithm since MARX is sensitive to the noises in such areas. 

On the other hand, the performance of TV recovery method is increased since the 

blocking effect is removed due to the use of large block size. 

Comparing the hybrid TV-MARX algorithm with other methods manifest the 

superiority of this hybrid algorithm. However, comparing the results of hybrid TV­

MARX method with the results of MARX algorithm with large blocks shows that the 

improvement in the PSNR for the image Lena is not as good as the improvements 

for other images. The reason is that the edges in this image are not strong enough 

(look at the texture of the hat and furs). This makes it hard for the edge detection 

algorithm to find the edges. To solve this problem a more sophisticated edge detection 

algorithm should be used in the hybrid method. On the other hand, the superiority 

of the hybrid TV-MARX approach in preserving the structures and details of edges 
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and textures is clear in Barb image. This is because in contrast to MARX algorithm, 

hybrid TV-MARX uses weighted PAR models that gives more weight to the PAR 

models in the dominant edge direction which preserves the edge structures better 

than equally weighted PAR models. 

Figures 4.9-4.12 are presented for an evaluation of tested methods in terms of 

visual quality. The worm-like artifacts created by MARX algorithm are reduced in 

hybrid method (see Figures 4.9-4.11) and edge structures are preserved better in 

hybrid TV-MARX algorithm compared to other recovery methods(See Figure 4.12). 

Table 4.2: PSNR of TV and MARX with small and large blocks and hybrid TV-MARX. Measurement ratio is 25%. 
PSNR unit is in dB. 

Images TV With MARX With TV With MARX With Hybrid 

Small Blocks Small Blocks Large Blocks Large Blocks TV-MARX 

Boats 28.1446 28.9744 30.1539 31.0645 31.2975 
House 31.0171 31.4712 34.4211 34.3413 34.7080 

Old Plane 33.2489 35.2488 40.4268 40.2790 40.8630 
Lena 28.7057 30.9070 30.3692 32.1493 32.0865 
Barb 23.7171 26.4794 24.6116 27.5200 28.3940 

Average 28.9667 30.6161 31.9965 33.0708 33.4698 
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(c) 

Figme 4.7: Original images used to Compare CS recovery methods. (a) Inflow image of size 224 X 112. (b) Jelly 
Beans image of size 256 X 256. (c) Plane image of size 512 X 512. 
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Figure 4.8: PSNR of TV, MARX and hybrid TV-MARX recovery methods with large blocks with different measure­
ment ratios. 
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(el (f) 

Figure 4.9: OS recovered floats image (measurement ratio is 25%). (a) Original image. (b) TV recovery with small 
blocks. (c) MARX recovery with small blocks. (d) TV recovery with large blocks. (e) MARX recovery with large 
blocks. (f) Hybrid TV-MARX recovery 
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(el (f) 

Figure 4.10: OS recovered House image (measurement ratio is 25%). (a) Original image. (b) TV recovery with small 
blocks. (c) MARX recovery with small blocks. (d) TV recovery with large blocks. (e) MARX recovery with large 
blocks. (f) Hybrid TV-MARX recovery 
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(el (f) 

Figure 4.11: CS recovered Lena image (measurement ratio is 25%). (a) Original image. (b) TV recovery with small 
blocks. (c) MARX recovery with small blocks. (d) TV recovery with large blocks. (e) MARX recovery with large 
blocks. (f) Hybrid TV-MARX recovery 
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(e) (f) 

FigUl'e 4.12: CS recovered Barb image (measUl'ement ratio is 25%). Ca) Original image. (b) TV recovery with small 
blocks. (c) MARX recovery with small blocks. (d) TV recovery with large blocks. (e) MARX recovery with large 
blocks. (f) Hybrid TV-MARX recovery 
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More experiments are conducted to compare the results of hybrid TV-MARX, TV 

and MARX recovery methods with large blocks. Table 4.3 is the comparison of the 

TV, MARX and hybrid TV-MARX recovery methods for the images in Figure 4.7. 

The number of CS measurements is 25% of the number of total pixels in each image. 

Figures 4.13 - 4.15 are presented for the comparison of the visual quality of these 

recovery methods. Again, these images recovered from CS sampling by the three 

methods manifest the superiority of the hybrid TV-MARX performance. 

Even though the gain in the PSNR of the recovered Plane image for hybrid method 

is not extensive compared to the PSNR of TV recovery method, however the visual 

quality of recovered image for hybrid TV-MARX is better than the TV method (see 

Figure 4.15 (b) and (d)). 

Table 4.3: PSNR of TV, MARX and hybrid TV-MARX with large blocks. Measurement ratio is 25%. PSNR unit is 
in dB. 

Images 

Jelly Beans 
Inflow 
Plane 

TV 

41.2091 
27.9172 
39.2904 

MARX hybrid TV-MARX 

41.5937 43.2553 
32.1083 
38.3716 

62 

33.5621 
39.1874 

Improvement 

1.6616 
1.4538 
0.8158 
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(a) 

(e) (d) 

Figure 4.13: CS recovered In Flow image (measurement ratio is 25%). (a) Original image. (b) TV recovery. (c) 
MARX recovery. (d) Hybrid TV-MARX recovery 
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(a) 

(e) (d) 

Figure 4.14: OS recovered Jelly Beans image (measurement ratio is 25%). (a) Original image. (b) TV recovery. (c) 
MARX recovery. (d) Hybrid TV-MARX recovery 
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Figure 4.15: OS recovered Plane image (measurement ratio is 25%). (a) Original image. (b) TV recovery. (c) MARX 
recovery. (d) Hybrid TV-MARX recovery 
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Chapter 5 

Conclusion 

In this thesis we investigated the problem of recovering CS-acquired images and pro­

posed two CS recovery methods: MARX and Hybrid TV-MARX. Both techniques 

belong to the class of edge-directed image restoration methods. 

In the proposed MARX algorithm, a diagonal and an axial PAR models are used to 

constrain the image to be recovered. The model parameters are jointly estimated with 

the pixels in a constrained nonlinear least square process. This nonlinear estimation 

problem is solved by an iterative structured total least square (STLS) algorithm. 

The hybrid TV-MARX algorithm improves the performance of MARX by adap­

tive weighting of multiple PAR models and by choosing between the TV and PAR 

constraints depending on the context of the current pixel. It can preserve edge struc­

tures better than MARX and eliminate worm-like artifacts that plague the MARX 

algorithm in smooth regions. The adaptive weights on different directional estimates 

are computed using Gabor functions. 

The proposed model-based recovery algorithms are implemented and tested on 

a wide range of images. Experimental results show superior performance of these 
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algorithms over the popular TV-based CS recovery method. 
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