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Abstract 

This work introduces a new technique for the determination of quantum phase tran
sitions known as the Conjugate Field Fidelity Susceptibility (CFFS) approach. The 
CFFS method draws highly on the Quantum Information concept of quantum fidelity 
susceptibility. An initial introduction to the computational tricks needed to feasibly cal
culate quantum fidelities will be given. Following this will be a discussion of the nature, 
derivation and applications of the quantum fidelity and fidelity susceptibilities. Then 
the CFFS technique will be described before applying it to identify a BKT(Berezinsky
Kosterlitz-Thouless) transition in the Next-Nearest Neighbour Heisenberg Spin Chain. 
Finally, the method will be applied to confirm the more robust phase diagram of the 
Next-Nearest Neighbour Heisenberg model on an anisotropic triangular lattice. 
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1 Introduction, Frustrated Systems and Exact Diago
nalization 

Since the discovery of high temperature superconductors (i.e. unconventional superconduc
tors) in the late 1980's the theory and study of quantum phase transition has gathered an 
enormous amount of interest. Of particular interest are quantum systems that are confined 
in dimensionality (i.e. one-dimensional and two-dimensional systems), as these systems are 
believed to be crucial in unconventional superconduction. However, despite concerted ef
forts, the determination of quantum transitions in general is still a very difficult task. A 
general methodology for identifying all possible transitions simply does not exist and thus 
an ad hoc series of techniques must be applied, each technique only having limited effec
tiveness at identifying certain specific classes of transitions. None of these techniques have 
been shown to identify all transitions. Especially difficult are transitions of infinite order or 
those topological in nature. These transitions, which are not accompanied by a divergence 
of either the first or second derivative of the ground-state energy, repeatedly resist any form 
of standardized probe. 

rt is the purpose of this work to, at the very least, provide a new tool for the proverbial 
quantum phase transition toolbox. However, the method described herein also shows some 
promise as a means of pinpointing many types of transitions that are notoriously elusive 
and which have previously resisted identification by other methods. 

Our approach draws its inspiration from the quantum information notions of quantum 
fidelity and fidelity susceptibility and expands upon these ideas to yield a new perspective 
on quantum phase transitions. Here we will demonstrate our method's ability to not only 
qualitatively but quantitatively identify a Berezinsky-Kosterlitz-Thouless-type (BKT)[l, 2) 
transition in the one-dimensional J - J' Heisenberg Spin Chain and to qualitatively confirm 
the existence of certain transitions in the Next-Nearest-Neighbour Heisenberg Anisotropic 
Triangular system. 

For reference the Next-Nearest-Neighbour Heisenberg Hamiltonian is 

(1.1) 
<i,j> NNN 

where the J 1 sum over < i, j > represents a sum over nearest neighbours and the h sum is 
over all next-nearest neighbours (J's > 1 represent antiferromagnetic interactions). It can 
more compactly be written as 

H = L: Jij Si . Sj (1.2) 
<i,j> 

where it is understood that the sum < i, j > is now over both nearest neighbours and 
next-nearest neighbours and the value of Jij is either J 1 or J2 accordingly. vVith exception 
of a small perturbative external field described later, the Heisenberg Hamiltonian will be 
the sole Hamiltonian explored herein. vVe will begin with a discussion of the numerical 
considerations and computational techniques employed in our new method, followed by a 
general introduction to the quantum fidelity as well as the fidelity susceptibility for those 
uninitiated. Finally, the specifics of our new Conjugate Field Fidelity Susceptibility (CFFS) 
approach will be described and its application to the spin-1j2 chain and two-dimensional 
anisotropic triangular lattice will be detailed. 
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2 The Lanczos Method 

The numerical crux of this work lies in determining the ground-state energies and eigenvec
tors of a given Hamiltonian. The naive approach to such a problem would be to generate a 
matrix representation of the Hamiltonian and fully diagonalize it to find all its eigenvectors 
and eigenvalues. However, even if the energy spectrum of a system wasn't infinite (which 
they will be) this is completely infeasible on a computational level. To this end the Lanc
zos method is employed. The Lanczos (pronounced LAWN-T-sosh) method is a modified 
power series method. One starts with a random trial guess at the system's ground-state 
eigenvector, then applies the method iteratively, eventually converging (one hopes) to the 
eigenvector corresponding to the smallest eigenvalue. This is the ground-state eigenvector 
and the smallest eigenvalue is the ground-state energy. The method not only determines 
the ground-state eigenvector but can also reliably generate the eigenvectors of the first few 
lowest lying states. It cannot, however, be used to find any but the lowest lying states. In 
general, for complicated numerical reasons, the larger the energy gap between the ground
state and the first excited state the more accurate the first excited state's eigenvector will 
be. 

The Lanczos method consists of a number of distinct steps. First the following Lanczos 
algorithm is allowed to iterate, the more iterations the more accurate: 

Lanczos Algorithm 
v(1)= random_normalized_vector 
v(O)=O 
beta(O)=O 
for j=1 to m 

end 

w(j) = matrix_multiplication(H,v(j)) - beta(j)*v(j-1) 
alpha(j) = inner_product(w(j),v(j)) 
w(j) = w(j) - alpha(j)*v(j) 
beta(j+1) = absolute_value(w(j)) 
v(j+1) = w(j) / beta(j+1) 

It should be noted here that there are many minor variations on the basic Lanczos al
gorithm. The algorithm above is due to early pioneering work by C. C. Paige [3][4] on the 
Lanczos method and has been determined to be the most numerically stable. At the termi
nation of the m loops of this algorithm one then uses the calculated alpha(1) ... alpha(m) 
and beta(1) ... beta(m) to form a tridiagonal matrix called the Lanczos matrix: 

al f32 a 
f32 a2 f33 

Tmm= f33 a3 (2.1) 
f3m-l 

f3m-l am-l f3m 
a f3m am 

The eigenvalues of this Lanczos matrix are the numerical estimates of the m lowest 
eigenvalues of the Hamiltonian with the lowest eigenvalue (i.e. the ground-state) being the 
most accurate and the mth lowest eigenvalue being the least accurate. The corresponding 
eigenvectors are then generated by 

(2.2) 
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where Yi is the ith eigenvector, Vm is the matrix whose column vectors are v(1) ... vern) and 
1l~'m) is the eigenvector corresponding to the ith lowest eigenvalue ofthe Lanczos matrix Tm'm' 

The calculation is complete when the eigenvalues and eigenvectors have been calculated to 
sufficient accuracy. In essence the Lanczos method takes an n x n matrix, which is usually 
sparse, and reduces it, after rn steps, to an m x m tridiagonal matrix whose eigenvalues 
represent the lowest eigenvalues of the much larger n x n system. This m x m matri-x (since, 
m « n) can easily be solved via a more conventional method, such as the Jacobian method 
used in this work, to determine the low lying energy eigenvalues of the system, as well as 
the corresponding eigenvectors. 

There are many obvious advantages to the Lanczos method. For one, it iteratively con
verges most quickly to the lowest eigenvalue/eigenvectors and therefore, one need not even 
attempt to solve for the whole energy spectrum of the Hamiltonian. ·When studying quan
tum phase transitions, these low lying states are by far the most important. [5] For another, 
the fundamental algorithm can be rewritten such that one only has to save/store two eigen
vectors and the Hamiltonian matrix[6]i the extreme utility of this fact will become obvious 
later and is a huge improvement from the rn eigenvectors one need store when applying 
the basic algorithm. There are also many subtle advantages of the Lanczos approach over 
similiar power methods, such as the Schurm or Naive Power Method. For a more compre
hensive discussion see" Lanczos Algorithms for Large Symmetric Eigenvalue Computations" 
by Cullum and Willoughby[7]. However, despite the many advantages of the Lanczos al
gorithm over a more naive approach, all but the smallest systems are still computationally 
intractable to the Lanczos method alone. 

2.1 The Need to Reduce the Hilbert Space 

To see why the Lanczos approach alone is insufficient let's consider a spin-1/2 system. If 
we have, say, a 2 site system then the eigenbasis of our Hamiltonian contains the following 
4 elements (in the z-basis) : 

I tt), I H), I H), Itt)· (2.3) 

If we have a three-site system our eigenbasis is: 

I ttt), I ttt), I tH), I Ht), I ttt), I Ht), I Ut), I Ut), (2.4) 

and so on. In general, for a system of size N there will be 2N possible permutations that form 
the spin-1/2 eigenbasis. Thus, the eigenvectors of a system of size N will have 2N elements 
and a matrix representation of the Hamiltonian will have (2N)2 = 22N components. 

If we now consider a modern computer, it might have 4 GB of RAM. That's 4 x 230 = 
4 294 967 296 bytes. If we assume that we wish to calculate our eigenvalues to double 
precision (approximately 15 digits accuracy) then each numerical value, be it an element of 
the eigenvector or component of the matrix, will take up 8 bytes (32 bits) of space. Even if 
we make the unrealistic assumption that there is absolutely nothing else in our computer's 
RAM then the largest system that could be solved using the Lanczos method (which requires 
2 eigenvectors and the Hamiltonian matrix) is 

N N bytes 
(2 x 2 + 22 ) values· (8 --) 

value 
N 

(2N+4 + 22N+3) bytes = 4294967296 bytes 

14. 

A maximum system size of 14 is far too small to be useful. Fortunately, all is not lost. 
There are a few tricks that can be applied to salvage the situation. Firstly, the Hamiltonian 
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of a Heisenberg system in particular (which are the systems being studied here) can be 
rewritten in a clever way that removes the need to save the Hamiltonian matrix to memory 
at all; secondly, the size of the Hilbert space can be greatly reduced by considering specific 
symmetries of the system; and finally the amount of memory space available can be increased 
through the use of parallel computing. We will now look at these three techniques in more 
detail. 

2.2 Rewriting the Hamiltonian 

By far the largest portion of the total memory space required when performing Lanczos exact 
diagonalization is consumed by storing the Hamiltonian matrix. It requires 22N doubles to 
be saved to memory. This is huge compared to the much smaller 2 x 2N doubles required 
for the two eigenvectors. If one could avoid storing the Hamiltonian matrix it would go a 
long way towards simulating useful system sizes. Fortunately, in the case of the Heisenberg 
Model, there is a way to do just that. 

First we consider the Heisenberg Hamiltonian (we neglect the second-nearest-neighbour 
term but it follows identically) 

H = J l: (Si' Sj) 
<i,j> 

and, for ease of exposition, we consider a two state system whose eigenbasis is then 

I tt), I H), I H), I U). 

The matrix representation of a single interaction term in thi::; Hamiltonian is then 

( 

1 a 
~ ~ 1 0-1 s.. s· --
• J-4 a 2 

a a 

a 0) 2 a 
-1 a . 
a 1 

(2.5) 

(2.6) 

(2.7) 

Now the clever part lies in realizing that this looks very similar to the pivot matrix 

P" ~ 2&, . 0 + ~ [~U ~ ~ n (2.8) 

and in fact, it can be shown that the Heisenberg Hamiltonian for a system of any size can 
be rewritten as 

(2.9) 

where L is the total number of bonds. The reason this restating of the Hamiltonian is so 
useful is because the pivot matrix Pij acts to interchange two components of the vector that 
the Hamiltonian acts on. For example: 
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Xo Xo 

Xl X2 

X2 Xl 
P12 X3 X3 (2.10) 

X n Xn 

Thus the Hamiltonian is reduced to a specific sequence of row interchanges (and addition 
of a constant). Therefore, one can hard-code this sequence of component swaps and not 
bother to save the 2N x 2N Hamiltonian matrix at all. In other words, one can create a 
function in one's program called Hamiltonian that can act on a vector whose end result 
is to swap the various components of the vector in the way the Hamiltonian would. For 
example, one might consider the eigenket al tt -W-); the action of a matrix multiplication 
of a single term of the sum in the Hamiltonian, say the 8 1 . S3 might simply produce the 
state al t -W-t)· Therefore, why perform the matrix multiplication at all (and thus bother 
to save the matrix) when instead one could have a function which swaps the 1st and 3rd 
spins in the system. The end result is the same but this way one need not perform a huge 
matrix multiplication of the form H Xo = Xl or save the matrix H to memory. Although 
this trick frees up a great amount of space there is still more that can be done to increase 
the maximum computable system size. Let us now look at system symmetries. 

2.3 Symmetries 

The complete Hilbert space of a spin-1/2 system has 2N elements. However, for every 
symmetry of the Hamiltonian there are many states that are actually identical. Therefore, 
when storing our eigenvectors we need not save all 2N entries, but only those which are 
distinct. To be more concrete let's focus our discussion on the Heisenberg Hamiltonian and 
for simplicity, we will consider a four site system (though everything discussed can easily be 
generalized). The complete eigenbasis of this system has 24 = 16 elements which are: 

10000), 10001), 10010),10011), 10100) .. ·11111) (2.11) 

where we use a to represent + and 1 to represent t. By exchanging the arrow symbols for 
numbers it is easy to see how one can give a unique index to each state. 10000) is state 0, 
11010) is state 10 and so on. As we reduce the Hilbert space, the task of assigning a unique 
index to each state becomes a great deal more difficult, sometimes prohibitively so. 

2.3.1 Spin Inversion Symmetry 

The Heisenberg Hamiltonian is invariant under the spin inversion operator. In other words, 
if we invert every spin in the system the Hamiltonian 

(2.12) 
<i,j> <i,j> <i,j> 

remains unchanged. Therefore, the physics related to the states 11001) and lalla) are 
identical. This is of great use in terms of storage because, when considering the ground
state of a system, we can assume these symmetric pairs form a singlet/triplet of the form 

10110) ± 11001) 
.j2 

(2.13) 

5 



Michael Thesberg (M.Sc. Thesis) Physics and Astronomy Department 

where the ± is determined by the parity of the system. In general determining the parity 
can be a little bit tricky as it depends on the size of the system, the type of Hamiltonian, 
as well as the total S. To find it one can simply draw out a few small systems for a given 
Hamiltonian and a relatively simple pattern of even and odd parity as a function of system 
size should emerge (for example, for even sized systems in S = ° the parity is negative, in 
odd sized it is positive). 

By symmetrizing ones' states one need only track and store one of the two states since 
the other will have identical coefficients. It is convention to keep the state represented by 
the lowest valued binary number and discard the other (so in our example 10110) is kept 
and 11001) discarded when storing our eigenvector). Thus, the new symmetrized eigenbasis 
for our four-site system (as well as accompanying indices) is 

0·10000),1.10001),2·10010),3·10011),4·10100), 5.10101), 6.10110), 7.10111) (2.14) 

where, for example, the state 11000) is not included since it is really a spin-inversion of 
the state 10111) which has already been accounted for. Indexing the new spin-inversion 
symmetric states is thankfully very easy. There are simply half as many states and their label 
is still their value in binary representation. Unfortunately, none of the other symmetries we 
will discuss here produce states that can be so easily relabelled. As a final word of warning, 
one must always remember, when considering this new eigenbasis, that the "state" 10111) no 
longer simply represents that actual eigenket but instead represents the symmetrized state 

10111) ± 11000) 

V2 
(2.15) 

Also a very common Hamiltonian encountered is one with an external field hz . Such a 
field breaks spin-inversion symmetry and therefore, with such a Hamiltonian spin-inversion 
cannot be used to reduce the Hilbert space. 

2.3.2 SU(2) Symmetry (Total SZ Conservation) 

Another important symmetry of the Heisenberg Hamiltonian is total sz conservation. If 
one expands out the Hamiltonian 

(2.16) 
<i,j> <i,j> <i,j> <;,j> 

into a more transparent form by substituting the ladder operators S+ = Sx + iSy and 
S_ = Sx - iSy one obtains the Hamiltonian 

(2.17) 

In this form it is easy to see that the Heisenberg Hamiltonian never raises (lowers) a spin 
without lowering (raising) one elsewhere. F'rom this we conclude that the total-Sz (2::;:1 SZ) 
is conserved. 

This is extremely useful since if one knows the total-Sz of the ground-state (2::;:1 sz = ° 
for systems with even number of sites and 1 (or -1) for those with odd) then one only need 
consider the region of the Hilbert space with the same total-Sz. In other words, if the 
ground-state lies within total-Sz = ° then only basis states with even numbers of up and 
down spins need be considered since the Hamiltonian does not mix states with different 
total-Szs. In our example of a four-site system our basis which was reduced to 
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0·10000),1.10001),2·10010),3.10011),4·10100), 5.10101), 6.10110), 7.10111) (2.18) 

can be further reduced to 

1.10011),2.10101),3:10110). (2.19) 

By applying both spin-inversion symmetry and total-Sz a 16 member basis has been 
reduced to a 3 member basis. This is a huge improvement! In general the exact factor 
by which the total-Sz symmetry reduces a Hilbert space depends on the Hamiltonian of 
the system and what value of L~l sz the ground-state lies in. Though, it can roughly be 
approximated to be of the order of N. 

The main drawback of the total-Sz symmetry is that once applied it becomes very 
difficult to relabel the states. One can see why this is not easy. There is no obvious way of 
determining the bit-pattern of the third lowest basis state that has exactly as many up spins 
as down spins and is the lower valued member of a spin-inversion pair. In order to label these 
states one is forced to compile a look-up table which maps each possible bit-pattern to its 
index (whether it's the fifth state or the thirteenth). This look-up table must, unfortunately, 
be saved to memory and thus takes up more space. There are however, elaborate, methods 
for reducing the memory space required to save one of these look-up tables by constructing 
them in clever ways. Though, even the most naive approach would produce a look-up table 
that is significantly smaller than 2N and thus the net result is still a huge savings in space. 
For a more thorough discussion of the fine points of indexing states see the excellent paper 
by H.Q. Lin [6J 

2.3.3 Translational Symmetry 

Translational symmetry is another symmetry which is often invoked for the purpose of 
reducing a Hilbert space; and by far the most difficult to implement computationally. For 
this reason it was rarely used in these works. The basic idea, however, is rather simple. 

If, with periodic boundary conditions, a system's Hamiltonian is unchanged by a finite 
translation then the system is said to have translational symmetry. For example, the Heisen
berg chain Hamiltonian is invariant under a translation of a single site to the right or the 
left (i.e. it is unchanged if all spins are moved one site to the left or right): 

N N N N 

H = J 1 L::SHl·S(Hl)+l +J2 L::SiH .S(i+2)+1 = -J1 L::Si·SHl -h L::Si·SH2 (2.20) 
i=l i=l i=l i=l 

Thus the Heisenberg chain has translational symmetry. This can be used to reduce the 
Hilbert space by representing all states that are translations of each other by a single Bloch 
state of the form 

!vI 

P = ~ "" e21rijk/i\lJ Tj 
k 1v1 ~ 

j=l 

(2.21) 

where Tj is the translation operator which translates a given eigenket by one finite transla
tion, k is an integer (for periodic boundaries) related to the Bloch momentum. The period 
of the translations (IvI) is the number of consecutive translations that are required in order 
to return a state to its original form. For example, the state 10001) needs 
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10001) ~ 10010) ~ 10100) ~ 11000) ~ 10001) 

four translation before repeating. The state 10101) only needs two: 

10101) ~ 11010) ~ 10101). 

(2.22) 

(2.23) 

Grouping ones states by translational symmetry has the added advantage of allowing 
one to confine their calculations to specific values of k, i.e. the momentum. However, the 
indexing of translation ally symmetric bases is extremely complicated and it also introduces 
complications in swapping components, thus no attempt will be made to discuss it here. 
For a good introduction see vVeiJ3e and Fehske's chapter in Computational Many-Particle 
Physics. [8] 

However, with translational symmetry our sample four-site system, with its Hilbert space 
already reduced to 

1.10011),2.10101),3.10110). (2.24) 

by means of spin-inversion and total-Sz symmetries, could be further reduced to 

1.10011),2.10101). (2.25) 

This leaves a measly 2 states from an initial 16, a monumental improvement. 

2.3.4 Symmetries; A Conclusion 

The three symmetries discussed here are by no means the only ones that can be employed to 
reduce a Hilbert space; they are, however, the most common. Although it is true that any 
symmetry of the Hamiltonian can be used, most symmetries require enormous amounts of 
effort to implement and often for very little gain. One can easily go too far with symmetry 
applications as there are definite cost/benefit considerations for each new symmetry. For 
example, it is unlikely to be worthwhile to implement a new symmetry that would reduce 
a Hilbert space by a factor of two if it increases computation time by a factor of 20 and 
requires a considerable amount of extra coding. Thus, these three symmetries were the only 
ones considered and, in fact, for the vast majority of this work only the total-Sz symmetry 
was used. This was due to the extreme difficulty in implementing translational symmetry 
and the non-applicability of spin-inversion to systems with an external field (such 'a field 
will be introduced later). 

2.4 The Final Trick: Parallelization 

As is now undoubtedly clear, the primary impediment to computing large system sizes is the 
memory space required to perform an exact diagonalization. Previously it was shown that 
this restriction can be slightly relaxed through a clever rewriting of the Hamiltonian and 
through the exploitation of symmetries. However, additional progress can be made through 
the use of parallelization. 

If one distributes the memory load across, say, 128 computers, each with 4 GB of memory 
then one could foreseeably compute systems that contain roughly 7 (27 = 128) more sites. 
These extra sites could easily make the difference between being able and not being able to 
perform a scaling-relation or finite-size effect analysis. 

However, parallelization is notoriously tricky business. One cannot simply take an al
gorithm written to be run on a single computer and expect it to run identically across 
multiple. For one, a given computation may require all computers to have a complete copy 
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of some dataset (perhaps a matrix or a look-up table). Or perhaps a given computer can 
only continue to a new iteration after having received some information from another node; 
thus bottlenecking operations at the slowest computer. The former case would be a serious 
issue if the Lanczos algorithm were to be performed via repeated matrix multiplications. 
Each computer would need to process (if not store) every element of the matrix for each 
multiplication. This would require for an enormous amount of data to be transferred be
tween computers and with parallelization the slowest point in computation is always in such 
inter-computer communications. 

Fortunately, by rewriting the Hamiltonian, as we did previously, most of the difficulties 
associated with matrix multiplication no longer apply. Each computer, now, simply stores a 
fraction of each eigenvector needed for the Lanczos method. For example, if there are three 
computers being used to store a 9 element Hilbert space then elements 1-3 are stored on 
the first computer, 4-6 on the second and 7-9 on the third. The only communication that 
occurs is when swapping elements of an eigenket produces a new eigenket which is being 
stored on another computer. 

As an example consider a four-site (24 = 16 element) system split between two comput
ers. The first computer contains the coefficients for the 1st to 8th elements, which are the 
eigenkets 10000) to 11000). The second computer then has the 9th to 16th elements (11001) 
to 11111)). Now let's say the eigenket 10011), which is the 4th element of the vector, has the 
coefficient 0:. It is stored on the first computer. If a term of the sum in the Hamiltonian 
leads to a swapping of the Oth and 3rd bits then the new state is 11010), the 11th element 
of the vector, which is stored on the other machine. The value of 0: must then be sent over 
the network to the second computer. 

Though, this requires significantly less communication than dircct matrix multiplication 
it still adds up, for large systems, to an enormous amount of data transferring. Managing 
these sends and receives is not as simple as it may seem and requires a great deal of consid
eration as to load-balancing and queueing structures. However, if properly implemented the 
gain in storage space far exceeds the not inconsiderable loss of speed due to communications. 
Thus, larger systems than before can be computed. 

205 The Tally 

We begun with an initial, dismal, maximum system size of 14. By applying the techniques 
discussed above we can greatly improve upon this. By re-writing the Hamiltonian we no 
longer have to save a 22N matrix and only need store two 2N eigenvectors. Spin inversion 
symmetry halves the Hilbert space; total-SZ reduces it by rv N and translational symmetry 
further reduces the system size by a factor of rv N. We will conservatively say that we can 
combine these for only a reduction of size N (translational symmetry is often too difficult to 
implement). If we now perform the same calculation as earlier we see that the new maximum 
system size is: 

2N bytes 
(2 x ;;r) values· (8 -l-) 

Iv va ue 

2NH 
( ]i.f") bytes = 4 294 967 296 bytes 

N 33. 

This is a huge improvement over 14. However, using parallelization we can roughly compute 
another site for each time we double the number of computers. Therefore, if we assume 
that we are using a relatively standard 128 computers then we can compute an additional 
7 sites (128 = 27 ). Therefore, potentially one could calculate exact diagonalizations of 
Heisenberg systems as large as 40! This is quite large and more than adequate for most 
applications. However, it must be noted that although a system size of 40 can now be stored, 
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a number of the techniques discussed increase processing time. Most notably parallelization. 
Therefore, though it may be feasible from a storage perspective to compute with 40 sites 
such a simulation may take far too long (years potentially). Such large systems will not be 
attempted in this work (the maximum used is 30). 

3 Quantum Fidelity and Quantum Phase Transitions 

3.1 Definition of the Quantum Fidelity 

On the face of it the quantum fidelity is a very straightforward and intuitive quantity. It 
is simply the (absolute) overlap (i.e. inner product) of a quantum state with another state, 
whose Hamiltonian has been slightly perturbed. Thus, if >. represents some variable of 
a system Hamiltonian and 8>' is a small perturbation of that variable the fidelity is then 
written as 

F(>.,8>.) = 1 (w(>')lw(>' + 8>'))1· (3.1) 

As a defined quantity, the quantum fidelity traces its roots to the field of Quantum 
Information. [7-21] In QI (Quantum Information) one often wants to transfer data across 
large distances by entangling quantum states. Ideally, one wants zero information loss 
during these transfers. Thus, in QI, the fidelity represents the " faithfulness" , much like 
in audio reproduction, of the final received state to the initial state. Accordingly, a low 
quantum fidelity represents a great loss of information across an attempted transfer. It's 
from this QI application that the quantum fidelity gets its name. Since its inception the 
quantum fidelity has been re-interpreted many times and has fOlmd many new applications. 
Few of these applications relate directly to loss of quantum information. Thus, as a quantity, 
the quantum fidelity has in many ways outgrown its name, and has found a place in many 
fields where it is used in ways having little to do with its origin as a measure of information 
loss. Perhaps the most recent field to find use for the quantum fidelity is Condensed Matter, 
for it shows great promise as a means of detecting quantum phase transitions. 

3.1.1 The Transverse Field Ising Model: An Example 

A relatively simple situation where the fidelity can be employed to detect a quantum phase 
transition is in the Transverse Field Ising Model (TFIM). The TFIM has the Hamiltonian 

N 

H = - :2)o-j . o-j+1 + ho-j) (3.2) 
j=l 

where, for simplicity, periodic boundary conditions are assumed (o-N+1 = 0-1). This Hamil
tonian represents an Ising-like system where an external field is applied perpendicular 
( transversally) to the chain. The strength of the external field is determined by the constant 
h and thus h is the only parameter that can be varied. This is a simple system for which 
it is known that at a specific value of h a quantum phase transitions occurs. Let's consider 
things more closely. 

When h = 0 there is no external field and thus the states with the lowest energy are 
those for which 

N 

Lo-j· o-j+1 
j=l 

(3.3) 
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is at a maximum. This will occur when all the spins are parallel and directed in the x 
direction. There is no preference for the positive or negative x thus both are equally likely 
and the ground state will be of the form 

1 
IWes(h = 0)) = yI2(I-+-+-+ ... ) + I f--f--f- ... )). (3.4) 

"Vhen h = 0 the system has a long-range ferromagnetic ordering. By looking at the 
action of (Jz on the system's states 

(3.5) 

we can see that the transverse field acts to mix the I -+-+-+ ... ) and I f-f-f- ... ) degenerate 
ground-states. Therefore, as h increases from 0 the degeneracy becomes broken. However, 
the ground-state remains qualitatively the same. This qualitative long-range ordering can 
be made quantitative by considering the correlation function 

(3.6) 

Thus, when the correlation function is non-zero in the limit Irl -+ 00 the system is said 
to show long-range order. If the correlation function vanishes as Irl -+ 00 we say it does 
not. 

If we then consider the other extreme limit h = 00, then states whose spins are oriented 
parallel to the perpendicular field will have the lowest energies and thus the ground-state is 

IWes(h = 00) = I ttt ... ). (3.7) 

Therefore, for some h between h = 0 and h = 00 the ground-state must undergo a 
sudden transition from an ordered ground-state (one where the correlation function does 
not vanish with distance), to a disordered one (one where the correlation function does 
vanish with distance). We call this value of h the critical field strength (he). The difficulty 
then becomes finding the exact value of he. In the case of the TFIM the value can be 
solved exactly and is found to be he = 1 [24]. However, it can also be identified numerically 
through the use of the quantum fidelity. 

In the case of the TFIM the parameter perturbed is the field strength, h, and thus the 
fidelity is 

(3.8) 

where IWa(ha)) indicates the ground-state when h = ha in the Hamiltonian. ·When h « he 
and h» he the overlap between IWa(h)) and IWa(h+ 8h)) will be very nearly 1 since the 
ground-state differs by only an infinitesimal amount when h is perturbed. However, if one 
considers the overlap when the perturbation straddles the transition point he such that 

8h 8h 
critical fidelity = I(wa(he - 2" )IWa(he + 2" ))1, (3.9) 

then the overlap will be significantly smaller (becoming 0 as 8h -+ 0) since the unperturbed 
ground-state will lie within the ordered phase and be qualitatively similar to 

1 
IWes(h = 0)) = yI2(I-+---+-+ ... ) + I f-f-f- ... )) (3.10) 

where the ground-state of the perturbed Hamiltonian will be 
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Fig. 1: The fidelity as a function of h in the TFIM. A sharp valley occurs at the critical 
field strength h = 1. This graph was taken from the Topical Review by Gu[24J 

IWas(h = (0) = I ttt ... ). (3.11) 

Thus, the inner product of the two will be < < 1 and a graph of the fidelity as a function 
h will exhibit a sharp dip as can be seen in Fig. 1. By numerically determining the value of h 
for which the fidelity peaks sharply downwards one can determine he to arbitrary accuracy. 

3.1.2 Quantum Fidelity and Quantum Phase Transitions: A General Discus
sion 

Since the TFIM has a known analytical solution the fidelity approach may seem pointless. 
However, the fidelity can easily be applied to many systems that do not have closed form 
solutions. To be more concrete we must first recognize that any many-body Hamiltonian 
can be written in the form 

H(A) = Ho + AHI (3.12) 

where A is a parameter that varies and may exhibit a phase transition. This Hamiltonian 
is completely general and can easily be extended to include multiple parameters. It then 
becomes 

Though, one rarely sees Hamiltonians with coupled terms of the form AIA2HI2, but 
one can include them if necessary. Once the Hamiltonian is understood to be of this form 
then HI can be interpreted as the portion of the Hamiltonian that drives a quantum phase 
transition. Indeed there is a direct relationship between the linear responses of this driving 
portion of the Hamiltonian and the quantum fidelity. This connection will not be discussed 
further here but can be found in the seminal article by You et al.[25] 
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In general, any system which undergoes a transition driven by a crossing in energy levels 
can be detected using the fidelity method. III fact, it need not be a grOlmd-state crossing. 
For example, in the previously discussed work by Chen et al.[26) the transitions point of the 
Next-Nearest Neighbour Heisenberg Chain was calculated by examining a level crossing of 
the first exc'ited state using the fidelity approach. 

Quantum phase transitions are often marked by sudden changes in the properties of a 
system ground-state. Thus, a measure of the change in a ground-state as a system parameter 
is varied would have great use. Consequently, the appeal of the quantum fidelity as a tool 
for exploring quantum phase transitions is unmistakeable. In addition, since the quantum 
fidelity is an entirely quantum-informational notion it requires no initial assumptions about 
order parameters or system symmetries which can often be difficult quantities to infer (if 
they can be inferred at all). Therefore, any methods based upon the quantum fidelity 
that could be demonstrated to effectively determine quantum phase transitions would be of 
tremendous worth. 

3.1.3 A Brief History 

Before continuing it is worthwhile to briefly discuss the history of the quantum fidelity in 
Condensed Matter. Perhaps the earliest application of the fidelity towards quantum phase 
transitions was due to Quan et al.[27) who used the Loschmidt Echo, a very similar quantity 
to the quantum fidelity, to determine the two previously discussed ground-state phases of 
the Transverse Field Ising Model. Further work by Zanardi and Paunkovic would then 
use the true quantum fidelity to identify transitions in the Dicke and the 1D transverse 
field XY models.[28] Zanardi et al. (most notably with Cozzini) would then go on to do 
much of the early work with the quantum fidelity, applying it to free fermionic systems[29), 

. graphs[30J, matrix-product states[31). Buonsante et al. would also apply it to the Bose
Hubbard Model.[32) It was also around this time that the soon to be introduced fidelity 
susceptibility was developed by You et al.[25) These early successes of the quantum fidelity 
and fidelity susceptibility suggested its promise for identifying transitions outside the typical 
Landau-Ginzburg-vVilson framework such as those topological in nature of BKT-type. 

After these early successes there was a divergence in the studies of the quantum fidelity. 
The first sub-field focused on the quantum fidelity itself and approached it as a Riemannian 
tensor quantity. The first works from this perspective are due to Zanardi et al.[33)' how
ever, significant contributions would then be made by Zhou et al. who would explore the 
relationships between the fidelity, scaling and renormalization [34, 35) and further expand 
upon a geometric interpretation of the fidelity[36). The second sub-field would focus on the 
fidelity susceptibility and its connection, developed by You et al.[25J, to the derivatives of 
the free energy and the structure factors of the Hamiltonian driving terms. These same 
works on the fidelity susceptibility and its relationship to the correlation functions of the 
system would then further confound the issue of whether the fidelity can successfully explore 
non-Landau-Ginzburg-Wilson type transitions. An issue which is still not resolved to this 
day. 

3.2 Fidelity Susceptibility 

A natural extension of the quantum fidelity is the fidelity susceptibility. If one expands the 
ground-state overlap in a differential series expansion one obtains 

(3.14) 
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The squared absolute value of this expression is then 

1 (wo().) Iwo(). + 0).)) 12 = 1 + 0). (Wo ().) 1 aw;~'\)) + (aw;?) IWo().))) 

+0).2 (~(Wo().)la2:~y)) + ~(a2:~J'\)lwo().)) + (aw;?)IWo()'))(Wo().)la~p))) + ... 

The linear term must be zero. There are two reasons for this; firstly, due to the fact that 

(3.15) 

which must be zero since an inner-product of a state with itself is one. Another, more 
intuitive, reason is that if there were a linear term then there would be some value of ). for 
which the fidelity was > 1 which would be unphysical. 

vVe then take the square-root of the above expression and expand in a power series. Since 
there is no linear term it is the quadratic term which is the leading term of this differential 
series expansion and it is this term we call the fidelity susceptibility (XF). Rearranging our 
series we get the following expression for XF: 

where 

l(wo().)lwo(). + 0).))12 = 1- (0;)2 XF 

XF = 2(1-I(Wo().)lwo(). + 0).))12)/(0).)2 

(3.16) 

(to see how this is obtained simply substitute a = _(0).2) :;2 (wo().)lwo().)) into the series). 
Therefore, if 0). is small but non-zero, as it is in a numerical computation, then the fidelity 
susceptibility is easily obtained from a measurement of the quantum fidelity. This procedure 
can be extended to multi-parameter Hamiltonians, however, the fidelity susceptibility then 
becomes a geometric tensor of the different parameters. For further information see the 
review by Gu[24]. 

3.2.1 Fidelity Susceptibility and the Derivatives of the Ground State Energy 

The more traditional quantities used in determining quantum phase transitions are the first 
and second derivatives of the ground state energy. Therefore, it is not surprising that there 
is a direct link between these derivatives and the fidelity and fidelity susceptibility as was 
established by Chen et al. [37] To illustrate this connection we will first examine the case of 
discontinuous phase transitions. 

If a discontinuous phase transition is due to a level crossing in the ground-state as 
discussed previously then the ground-state energy can be said said to be Eo().) for)' < ).C 

and E 1 ().) for ). > ).c; here '\c is the critical value where the level crossing occurs and, for 
simplicity, it is assumed Eo ( ).) < El ().) . In this way we represent a system whose first 
excited state drops to a lower energy then the ground state at some value of a parameter ).. 
Thus we can write the ground-state energy as: 

(3.17) 

Therefore, it follows that: 
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DE (>,) {aEO(>-) 
9 S / _ aA' 
D)" - aEIl>-) 

a>- ' 
(3.18) 

and since, in general, aE;l") i- aEa-1>-) when).. = )..e there is a discontinuity at the transition 
point. Thus the first-order transition is signified by a discontinuity in the first deriva
tive of the ground-state energy. At the transition point the quantum fidelity is given by 
(\]i GS()..e - J /2)1\]i GS()..e + J /2)) which is (\]iO()..e - J /2)I'h ()..e + J /2)). Therefore, as J ---7 0, 
(\]iO()..e)l\]il()..e)) will be much less than one (possibly even 0 if the two states are orthogo
nal). Since (\]io()..)I\]io()..)) and (wl()..)lwl()..)) will be very, very close to 1 in their respective 
regions, a discontinuous transition will be indicated by a sudden and sharp drop in the 
quantum fidelity from 1 to some lower value and back to 1. Through this behaviour the 
quantum fidelity, which spikes downward at a discontinuous transition, is connected to the 
first derivative of the ground-state energy, which has a discontinuity at the same point. 

Next we will consider second-order transitions. In the previous section we defined the 
fidelity susceptibility by expanding the ground-state in a power series. However, we can also 
expand it perturbatively. Doing this, to first order, it becomes 

HnOIWn()..)) 
l\]io().. + J)..)) = c(l\]io()..)) + J).. ~ Eo()..) _ En(/\) + ... ) (3.19) 

where HnO = (\]in()..)IHII\]io()..)) and HI comes from H = Ho + )"HI as discussed previously 
(c is a normalization constant). We assume here that the ground-state is non-degenerate 
(i.e. continuous phase transitions). With a little algebra this can be normalized and by 
acting on it from the left with (W()..)I we can write this in terms of the fidelity to get 

(3.20) 

Therefore, by matching terms with the power series definition discussed previously we 
see that the fidelity susceptibility is 

(3.21) 

Now, if we remember our basic quantum mechanics the second-order perturbation of the 
energy is 

(3.22) 

which differs from the fidelity susceptibility only by the exponent of the denominator. Thus, 
the fidelity susceptibility goes to infinity faster than the second derivative of the ground
state energy and therefore can be said to be a finer and more precise measure of second-order 
transitions. 

The similarities between the quantum fidelity and the fidelity susceptibility and the first 
and second derivatives of the ground-state energy may make one wonder what is the value 
of the fidelity approach. If it can only detect transitions that can also be detected by the 
ground-state energy then it can't really contribute anything new to the field of quantum 
phase transitions. 
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3.2.2 Fidelity Susceptibility and Dynamic Structure Factors; A Connection 

Another insight into the nature of the fidelity susceptibility was gleaned by Gu et al. [25J 
They began by defining a related quantity called the dynamic fidelity susceptibility: 

(3.23) 

which can be Fourier Transformed into 

( ) _ ~ 7rI HnO I2 -(En-Eo)ITI 
XF T - f:o [Eo (A) _ En (A)J2 e . (3.24) 

They then showed that this transformed dynamic susceptibility was related to the dy
namic structure factor of the driving Hamiltonian by the relation 

BX;;T) = -7r[(woIHr( T)Hr(O)IW o)-(W olHrlw 0) 2JB( T )+1f[ (W oIHr(O)Hr( T)IWo) - (woIHrIWo)2JB( -T) 

(3.25) 
where 

Hr(T) = eH()..)T Hre-H()..)T 

and B(T) is the step-function. This can also be rewritten as 

where 

This expression is very close to the expression 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

for the second-order perturbation of the ground-state energy. Thus we see another way in 
which the fidelity susceptibility is connected to the derivatives of the ground-state energy 
and the relation with aX~C:'T), again, suggests that it may be a more sensitive alternative. 

3.2.3 The Fidelity Susceptibility and Higher-Order Transitions 

The obvious question with regard to the quantum fidelity and fidelity susceptibility is 
whether they can detect phase transitions which are difficult or impossible to identify via 
other methods (such as the derivatives of the ground-state energy). Examples of such tran
sitions are: higher-order transitions; infinite-order transitions (BKT-type); and topological 
transitions. 

As wa..c; previously shown the perturbative expression of the fidelity susceptibility 

(3.30) 

differs from the second derivative of the ground-state energy only by the power of the 
denominator. This means that though the fidelity susceptibility will diverge in all situations 
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where the second derivative of the ground-state energy will it may also diverge in other 
situations. Therefore, whether or not the fidelity susceptibility diverges for, say, third-order 
transitions is difficult to determine. However, one would not expect the fidelity susceptibility, 
in general, to be a good probe of third-order and higher transitions. [24] Though, one could 
always consider higher-order fidelity susceptibilities for such situations. 

When the fidelity susceptibility was previously derived it was via a series expansion 
to first-leading-term only. One need not stop there, one could easily define a second-order 
fidelity susceptibility that arises from the second-leading-term and one for the third-Ieading
term and so on. The procedure for defining such higher-order fidelity susceptibilities will 
not be discussed here but can be found in the references.[24] However, whether or not these 
higher-order fidelity susceptibilities have any advantage over the more traditional ground
state energy derivatives is still largely unknown. 

Whether or not the fidelity susceptibility can be used to identify BKT transitions, being 
transitions of infinite order, is still hotly debated. [24, 37, 38] In this work a BKT-type 
transition will be detected in the Heisenberg Next-Nearest-Neighbour Spin Chain using a 
new type of fidelity susceptibility which will be introduced shortly. That particular transition 
in the Heisenberg Spin Chain was also accurately determined by Chen et al using the 
quantum fidelity (not the fidelity susceptibility) by considering a level-crossing in the first
excited state rather than the ground-state.[26] However, in a later paper Chen et al would 
claim that for "the KT transition the criticality is not a sufficient condition to ensure 
divergence of the FS (Fidelity Susceptibility)" .[37]. 

Yet, despite disagreement over whether the fidelity susceptibility can, in general, iden
tify BET-type transitions specific BKT transitions have been successfully detected in the 
XXZ model[38] and the one-dimensional Hubbard model[39]. Therefore, it is safe to say 
that the relationship between the fidelity susceptibility and BKT transitions is still poorly 
understood. 

The issue as to whether topological phase transitions are detectable by a fidelity suscep
tibility approach is also unclear. Preliminary work using variants of the Kitaev model have 
shown that the fidelity, in some cases at least, can identify topological phase transitions. 
Specifically, topological transitions have been correctly identified in the honeycomb Kitaev 
model[40] by Yang et al and in the deformed Kitaev toric model[41] by Abasto et al. These 
early successes demonstrate that a fidelity approach shows promise as a probe of topological 
transitions. However, the exact reason why the fidelity susceptibility is able to detect such 
transitions is still something of a mystery. Thus, as of yet there is little that can be con
cluded about the general effectiveness of fidelity approaches when considering topological 
behaviour. Like the other more exotic transitions the issue is still hotly debated. 

4 The Heisenberg Next-Nearest Neighbour Spin Chain 

The Heisenberg Next-Nearest Neighbour Spin Chain (a.ka. the h-J2 model) is a simple 
system which displays comparatively rich physics. Most importantly, it exhibits a BKT-type 
transition. Despite having a relatively simply Hamiltonian of the form 

(4.1) 
<i,j> NNN 

no analytical solution exists for general values of J2 , though solutions are known for specific 
J2 values. In the limit of J2 = 0 the model reduces to a Heisenberg Spin Chain whose 
exact solution can be found via the Bethe Ansatz[42, 43]. For h = 1/2 the system becomes 
the well studied Majumdar-Ghosh model whose ground-state is known to be an equally 
weighted superposition of nearest-neighbour valence bond states (dimers).[44] 
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In fact, even though there exists no exact solution to the J i - J2 model a great deal 
is known about its ground-state as a function of h/ J i . It has been studied by: analytical 
methods, such as Bosonization[45] and Effective Field Theory[46]; Exact Diagonalization 
methods[47, 48]; and via Density Matrix Renormalization Groups (DMRG) [49, 50, 51]. From 
these DMRG analyses it is known that for J2 / Jis less than some (J2 / Ji)c the frustration 
introduced by the next-nearest-neighbour interaction J2 becomes irrelevant and the system 
renormalizes to the Heisenberg fixed point whose ground-state is known to be a spin liquid 
or Luttinger liquid with massless spinon excitations. Conversely, when Jd J i > (J2 / Ji)c the 
J2 term becomes a relevant interaction and the system renormalizes to a dimerized ground
state with a spin gap. Between the spin liquid and dimerized phases there is a known BKT 
transition and from the previously mentioned Effective Field Theory studies its position is 
known quite accurately to be h/h = 0.2411676 ± 0.000005.[46,48] This transition value 
has been verified to a precision of Jd J i = 0.2411 ± 0.0001 through Conformal Field Theory 
methods. [52, 53] However, in general the h - h transition point is notoriously difficult to 
identify due to logarithmic correction.[54] 

The J i - J2 model's simplicity and the accuracy to which its BKT transition is known 
make it an ideal model for validation of new methods. Therefore, it will be on this model 
that the method introduced in this work, the CFFS, will be initially applied. Since, our 
primary interest is in the BKT transition only the region Jd J i < 0.5 will be considered. 

4.1 The Conjugate Field Fidelity and Fidelity Susceptibility 

Before introducing the Conjugate Field Fidelity Susceptibility (CFFS) it may be prudent 
to briefly introduce, for those unfamiliar, the conjugate field. The conjugate field is de
fined as a field which couples linearly to the variable whose expectation value is the order 
parameter. [55] It could also be described as the specific external force which breaks the 
degeneracy of ground-states in a phase transition. It is from this notion of a conjugate field 
that one can alternately define the order-parameter-susceptibility as the linear response of 
the order parameter to an infinitesimal conjugate field: 

(4.2) 

where <I? is the order parameter and h is the conjugate field. As the order parameter of a 
system changes from zero to a finite numbers through phase transition the order-parameter
susceptibility diverges to infinity. We are perhaps most familiar with these concepts in the 
case of ferromagnetic system where the conjugate field is simply the external z field hz which 
is linearly coupled to the magnetization «(2.:::i Sf)). The order-parameter-susceptibility in 
that case is imply the magnetic susceptibility. For a further review of the order-parameter
susceptibility and its relation to a conjugate field one is referred to a graduate-level statistical 
physics textbooks such as those by Reichl[56] and Huang[57]. 

The CFFS is a very similar quantity to the order-parameter-susceptibility. To construct 
it, first one assumes an order parameter exists, be it local or global, and defines a conjugate 
field which is linearly coupled to it. The CFFS is then the fidelity susceptibility associated 
with a slightly different kind of quantum fidelity called the Conjugate Field Fidelity. The 
normal quantum fidelity is the absolute overlap between the ground-state of a system and 
the ground-state of the same system when a system parameter is perturbed, i.e. 

(4.3) 

The conjugate field fidelity is the absolute overlap between the ground-state of a system 
and a system which has been perturbed by an infinitesimal conjugate field, i.e. 
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~ J=J+b -J=J-b 
Fig. 2: This diagram shows how the Hamiltonian is perturbed when constructing XD. The 
thick bonds have a bond strength of J + oj and the thin bonds have a strength J - oj. This 
perturbs the Hamiltonian such that dimerized states have lower energy. 

conjugate field fidelity = FCF(h, oh) = !(w gs(>-)!w gs(>- + oh))!. (4.4) 

where h is a conjugate field for some order parameter. Obtaining the Conjugate Field 
Fidelity Susceptibility from the Conjugate Field Fidelity is then straightforward (see Section 
3.2): 

conjugate field fidelity susceptibility = X = 2(1- FcF)/oh2 (4.5) 

The rational of the CFFS is simple, if the system of interest is in a phase characterized 
by the given order parameter from which the conjugate field was derived then the CFFS 
will diverge (in the limit of an infinite system size). If the system is not in said phase 
then the CFFS will not. The attractiveness of such a quantity is that if one is unsure 
as to whether a given system is in one phase or another for some particular values of the 
Hamiltonian parameters then one can construct a separate CFFS for each phase. If we say 
there are two possible phases a given system could be in, phase 1 or phase 2 then one can 
determine the conjugate field for each phase (which will be different) and construct two 
conjugate field fidelity susceptibilities, Xl and X2' In the limit of infinite system size the 
CFFS corresponding to the phase the system is in will diverge, the other will not. In as 
much as the conjugate field represents the fluctuations of the order parameter with respect 
to a specific type of order, the CFFS allows one to infer which types of fluctuations are 
dominating for a given set of system parameters. The assumption being that the system 
can be said to be in the phase for which the fluctuations of that phases order parameter 
al'e the largest. To make the concept of the CFFS more clear we will now apply it to the 
h - J 2 model. 

4.2 The Dimerized Susceptibility 

In the h - J 2 model we are interested in whether the CFFS method can do two things: 
firstly, can it identify, given a value of hi J1 , whether the system is in the Luttinger liquid 
phase or the dimerized phase; secondly, can it accurately determine the value of hi J 1 where 
this transition occurs. The first step in applying the CFFS technique is to identify conjugate 
fields for the phases of interest. However, since there is no simple way to implement an order 
parameter that can characterize a Luttinger liquid a slightly different tact will be taken. 

From previous work on the h - h model it is known that the two dominant phases are 
the critical (Luttinger) liquid and dimer phases. Therefore, if the system is not in the dimer 
phase it is in the liquid phase. Thus, one only need to construct a CFFS for the dimer 
phase and then the other phase can be inferred as the region of parameter space for which 
the system is not dimerized. To this end we define the dimerized susceptibility (XD)' 

The dimerized susceptibility, XD, stems from a dimerized conjugate field which promotes 
dimerized order (see Fig. 2). The J 1 - h Hamiltonian after being perturbed by the 
dimerized conjugate field has the form 
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Fig. 3: XD vs. J2. Notice the rise to infinity. In the limit of infinite system size this 
divergence would occur at the transition point. (L=16) 

L L 

H(J1, J2, oh) = J1 :2)Si . Si+1 + (-l)ioh) + J2 LSi' Si+2 (4.6) 
i=l i=l 

where periodic boundary conditions are assumed (8L+1 = 8 1 ). Initially the form of the 
Hamiltonian may seem odd but its physical interpretation is intuitive. 'With the conjugate 
field perturbation a grOlmd-state which has a specific pattern of dimerization will have a 
slightly lower energy. Using this XD we can now apply the CFFS method to the J1 - h 
model. 

4.3 Method and Results 

In order to compute XD a oh of between 0.001 and 0.00001 was used. The variation in 
oh is due to the fact that too small a oh will cause smaller systems to become numerically 
unstable. Therefore, the smallest possible value of oh that did not produce erratic results was 
used to maximize accuracy. In all calculations periodic boundary conditions were applied. 

Computing XD for a sample chain (see Fig. 3) we see that its value is initially small and 
then as J2 increases it grows exponentially. This is consistent with what we would expect 
to see. For a system of infinite size we expect an asymptote at the transition point due 
to XD'S relation to the order-parameter-susceptibility which will be infinite in the phase 
characterized by that order-parameter. For a finite system this manifests as an exponential 
divergence. 

Once XD was computed for the system sizes L=8,10,12, ... ,30 graphs of XD/ L3 were plot
ted. The reason for the increase in system size by 2 is due to the fact that 2 sites must be 
added (not just 1) in order to make a dimer covering that obeys periodic boundary condi
tions. The intersection between these curves and the curves of the Ilext largest system (Le. 
the intersection of XD/L3 and XD/(L + 2)3) were then tabulated (for a sample intersection 
see Fig. 4). At this point it is prudent to discuss the L3 scaling of the system. 
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Fig. 4: This graph shows the intersection of XD/ L3 vs. h for system sizes of L = 12 (solid 
line) and L = 14 (dashed line). The intersection is difficult to see due to the closeness of the 
two curves. In the limit of infinite system sizes this intersection will tend to the transition 
point. 

4.3.1 Scaling of the Fidelity Susceptibility 

From work by Zenuti and Zanardi[58] it is lmown that the fidelity susceptibility scales as 

(4.7) 

where d is the dimensionality, ( is the dynamic exponent and 6. v is the scaling dimension 
of the driving operator in the Hamiltonian. The J1 - J2 chain is in the same universality 
class as a c = 1 conformal field theory and thus d = 1 and ( = 1. It is also known that the 
scaling dimension of the dimerization operator is 1/2. Therefore, for the spin-1/2 chain we 
expect XD to scale as 

(4.8) 

To confirm this L3 dependency a scaling analysis was performed at three points; below 
the critical point (h = 0.1), at the critical point (h = 0.241167) and above the critical 
point (h = 0.4). At these three values XD was calculated as a function of system size and 
then fitted with a line of best fit. In the Luttinger critical phase h = 0.1 the data best fit 
to a power-law of exponent rv 2.81 (the importance of this discrepancy in the non-critical 
region will be discussed in more detail later). In the dimerized phase h = 0.4 the data was 
found not to fit a power-law at all but an exponential (see Fig. 5a). At the critical point 
h = 0.241167, XD was found to fit a power-law with exponent rv 3.02 (see Fig. 5b). This 
scaling analysis strongly supports the theoretically predicated scaling of ex: L3 and thus this 
is the scaling correction that was used. 

4.3.2 Results (cont.) 

By analysing the intersection points of XD/ L3 for increasingly longer chains we see that 
they do not all cross at the same value. This is due to correction to scaling by lower order 
terms in finite-size scaling. Thus, the intersection points as a function of system size were 
fitted with a power-law (See Fig. 6). This power-law (with exponent", -1.82) was found to 
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Fig. 5: Left: The scaling of XD vs. L3 in the dimerized region (J' = 0.4). Notice the 
non-linear fit. This is due to exponential scaling in this region. Right: The scaling of XD 
vs. L3 at the critical point. Notice the excellent fit. 
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Fig. 6: This graph shows the power-law fitting of the XD/ L3 intersection points. In the 
limit of L = 00 the line of best fit is found to converge to h = 0.241. This is in excellent 
agreement with other theoretical results. 

be in excellent agreement with the data and extrapolation to the limit of L = 00 produced 
an intersection point of h = 0.24. This is in very good agreement with the expected value 
of 0.2411676[48]. 

4.4 Discussion 

Although the CFFS method has proven successful at identifying the BKT-type transition 
in the spin-l/2 chain, whether or not it can, in general, describe infinite-order transitions is 
still unclear. It's possible some fortuitous scaling properties of the spin-l/2 chain may have 
allowed a determination to be made in this particular case but not in others. From work 
by Affleck et al.[54] it is known that the spin-l/2 chain scales with logarithmic corrections. 
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-J -J' 
Fig. 7: The anisotropic triangular lattice. Thin lined diagonal bonds have strength J'. Thick 
lined horizontal bonds have a strength of J and a second-nearest neighbour interaction of 
J 2 . In the limit of J' « J this system behaves as a set of loosely couple spin chains. 

These logarithmic corrections to finite-sized scaling makes it difficult to glean accurate 
information with only the small system sizes available from an exact diagonalization study. 
However, at the transition point, a marginal operator produces couplings which vanish under 
renormalization (i.e. they are relevant on one side of the transition and irrelevant on the 
other). Thus, at the critical point in the spin-1/2 chain there are no logarithmic corrections 
and thus the critical point has a simple scaling factor of 3 and can be estimated by looking at 
relatively large systems and extrapolating using a power law. If the system had logarithmic 
corrections to scale that did not vanish at the transition point then the CFFS method would 
be significantly less effective at numerically estimating it. However, as it stands the CFFS 
has been shown to successfully arrive at the expected critical value of Jz = 0.24. 

5 The Anisotropic Triangular Model 

5.1 An Introduction; Cs2CuC14 

Studies of the two-dimensional spin-1/2 Heisenberg triangular model are pervasive in Con
densed Matter physics, however the anisotropic variant has only recently begun to gather 
attention. In essence, the Heisenberg Anistropic Triangular Model (HATM) generalizes the 
standard triangular lattice Hamiltonian 

(5.1) 
NN NNN 

by allowing the bond strength of diagonal exchange interactions to vary (see Fig. 7). 
Thus, the HATM's Hamiltonian has three parameters, the horizontal nearest-neighbour 

interaction J, the horizontal next-nearest-neighbour interaction Jz and the diagonal inter
action J'. vVe can then see that when J' « J the system behaves as a series of nearly 
independent Heisenberg spin chains that are only loosely coupled by a diagonal interaction 
J'. It is important to note that there is no second-nearest-neighbour interaction along the 
diagonal or between loosely coupled chains, only along the horizontal. 
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Fig. 8: The phase diagram of the HATM as suggested by Balents et al.[70j 

It is to the recent observations of a strong inelastic continuum in neutron scattering of 
the quasi-ID inorganic salt Cs2 CuC14 [61] that the HATM owes its new popularity. These 
scattering results are characteristic of a resonating-valence-bond (RVB) state[62] and thus 
suggest that Cs2 CuCl4 may exhibit a two-dimensional spin-liquid phase. [63, 64, 65] Spin
liquid states are of immense current interest and the potential discovery of an experimental 
example is extremely noteworthy. 

That brings us to the HATM which is believed to be a good theoretical model of 
Cs2 CuCl4 with a J' / J value of 0.34.[66] Thus, an exploration of its phase diagram is not 
only theoretically interesting but could potentially shed light on a substance that displays 
a real spin-liquid phase. Previously, the phase diagram of the HATM has been studied by 
means of semiclassical spin-wave calculations[67, 68, 69] and a Renormalization Group (RG) 
analysis by Balents et. al[70, 71, 72]. From these works a rough, and somewhat contentious, 
outline of the HATM phase diagram has been discerned. 

5.2 The Proposed Phase Diagram J2 = a 
'With the strong interest in Cs2 CuCl4 has come much numerical work. However, most of this 
work has been confined to the region J2 = 0 (first-nearest-neighbour only). DMRG work 
by vVeng et al.[73] as well as Variatonal vVavefunction and Monte-Carlo work by Sorella et 
al.[74, 75] have suggested a phase diagram for this particular case. Their findings suggest 
that the HATM exhibits a ID spin liquid phase in the approximate region J' = 0.0 - 0.6, a 
2D spin liquid phase for J' = 0.6 - 0.85 before entering a spirally ordered phase. However, 
other Renormalization Group work by Balents et al. [76] as well as numerical coupled cluster 
calculations by Campbell et al.[77] suggest that subtle fourth-order fluctuations push the 
HATM into a collinear antiferromagnetically ordered phase instead for small values of J' / J. 
The direct relation ofthese fourth-order fluctuations to the actual phase of Cs2 CuCl4 is still 
largely unknown. [78] 

5.3 The Proposed Phase Diagram J2 =J- a 
The proposed phase diagram of the HATM, for J2 f=- 0 contains three distinct extremes 
(See Fig. 8). For small values of J' / J (i.e. loosely interacting spin-chains) the system 
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is known to be in competition between a magnetically ordered collinear-antiferromagnetic 
(CAF) phase and a dimerized phase. "When the next-nearest-neighbour exchange interaction 
is weak (J21 J is small) the CAF wins out and for larger values of hi J the system is in a 
dimerized phase. For the trivial case of J' = 0 (i.e. completely uncoupled spin-1/2 chains) 
the phase diagram is well known (and confirmed early in this work); the system is in a 
(Luttinger) critical state until J21 J = 0.24 before it spontaneously dimerizes. However, 
the transition point between the CAF and dimerized phases for non-zero J' has not been 
quantitatively established in any published work (that this author knows of). 

The final sector of the HATM phase diagram occurs at the limit of large J' I J. In the 
specific case of J'I J = 1, h = 0 the system reverts to the ordinary spin-1/2 triangular 
model which is known to exhibit a strong, geometrical 1200 spiral ordered phase. [79] For 
non-zero values of hand J' < J the system will not have a perfect 1200 spiral ordering, 
however, it is believed that for J' rv J the system is still ordered spiral-like. [80] Again, there 
exists no quantitative estimate of the transition curve between CAF ordering and spiral
ordering nor of the transition curve between spiral-ordering and dimerization which must 
also exist. It is with this state of affairs that we begin our own analysis using the CFFS 
method to confirm the proposed phase diagram. 

5.4 The Susceptibilities 

In order to investigate the three proposed phases of the HATM we must first construct three 
distinct susceptibilities. These susceptibilities will be discussed now. 

5.4.1 The Dimerized Susceptibility 

The first susceptibility that will be used is simply the dimerized XD from before extended 
to two-dimensions. "With the introduction of a second dimension the degeneracy of possible 
dimer coverings increases exponentially with each new added coupled spin-chain (for each 
new row there are 2 possibilities thus there are 2number of rows possible configurations). 
However, symmetry arguments can be used to disqualify most of these as potential ground
states leaving only two types remaining, columnar coverings and staggered coverings. In this 
work staggered coverings are assumed when discussing XD in keeping with the literature, 
but for the sake of thoroughness all data was also generated using columnar coverings with 
negligible effect to results. 

The dimerized susceptibility XD is obtained by perturbing the Hamiltonian in such a 
way that it promotes dimer order (see Fig. 9). Its Hamiltonian is the same as that for the 
spin-1/2 chain studies previously. 

5.4.2 The Collinear-Antiferromagnetic (CAF) Susceptibility 

The CAF CFFS XCAF is constructed by perturbing the system towards CAF order through 
the application of a small external field oh (See Fig. 10). The perturbed Hamiltonian thus 
becomes 

N 

H = L JijSi · Sj + oh L(-l)iSz (5.2) 
<i,j> i=l 

with the external h field flipping directions every other spin in an antiferromagnetic-like 
pattern. It is worth noting that, by adding an external field aligned along the z-axis, spin
inversion symmetry is broken and thus cannot be used to help compute this susceptibility. 
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~ J=J+b -J=J-b 
Fig. 9: A diagram of the Hamiltonian perturbation which forms the dimerized susceptibility 
XD. This generalizes the one-dimensional case to two-dimensions. 

Fig. 10: A diagram of the Hamiltonian perturbation which forms the CAF susceptibility 
XCAF. The arrows represent the orientation of an external field oh. An up arrow indicates 
that that site experiences a field of +oh. A down site indicates -oh. 

5.4.3 The Spiral Susceptibility 

The final CFFS used here is the spiral susceptibility XS' Although the system is not expected 
to show true 1200 spiral-order unless J = J', the ordering is still believed to be spiral-like 
for a region of the phase diagram. Thus, we posit that a susceptibility coupled to the order 
parameter of a 1200 spiral ordering will still show a dominant signal in this spiral-like region; 
as will be seen, this assumption seems to be justified. 

It is quite laborious to include an external field for each site as was done for XCAF since 
coding an external field with an Bx or By component is quite difficult to do while maintaining 
the various hard-coded symmetries and Hamiltonian reduction techniques. Thus, only the 
sites with spins aligned along the z-axis in the 1200 spiral order will be perturbed with a 
field yielding the Hamiltonian 
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(a) True spiral ordering. (b) Spiral ordering with sa; and SY terms neglected 

Fig. 11: Left: A diagram of true 1200 -spiral order. Right: A diagram of the Hamiltonian 
perturbation which forms the spiral susceptibility XS. Field terms with SY or SX components 
are neglected (diagonal fields) due to the difficulty to program. Notice that the patterning is 
distinct from that of XCAF and thus they do not overlap. 

N 

H = L JijHi · Hj - oh 2::>iSz (5.3) 
<i,j> i=l 

where Ei is zero unless i is a multiple of 3, then it is 1. A diagram of this conjugate field can 
be seen in Fig. 11 where it can be seen that, though the spiral conjugate field contains only 
z-3u'{is fields like the CAF, the arrangement is unique to XS and thus XS and XCAF indicate 
entirely separate orderings. 

5.5 The Method 

Our approach to the HATM will differ from that used for the Heisenberg Spin Chain. In the 
Spin Chain we were attempting to numerically determine the exact transition point between 
the Luttinger Liquid phase and the dimerized phase, here, we will expand upon the CFFS 
method and attempt to use it to confirm the speculative phase diagram presented in the 
literature. Thus, we are less interested in the exact curves in phase space which distinguish 
the three phases but more in confirming the existence of these phases as well as transitions 
between them. To this end we adjust our strategy and propose a new use for the CFFS. 

When the HATM system is in a given phase, say the dimerized phase, then perturbations 
of the Hamiltonian that promote dimerized order (like those used in XD) will affect a signif
icantly larger change in the ground-state than a perturbation that is not coupled in any way 
to the order parameter of the dimer state (like perturbations towards spiral-order). Thus, 
it is our contention that, while in the dimer phase, XD will exhibit a strong signal where XS 

and XCAF will have virtually no signal. Therefore, by comparing the relative magnitudes of 
the three susceptibilities we conclude that the system is in, for a certain value of J, J' and 
J2 , whichever phase corresponds to the susceptibility with the largest magnitude. However, 
things are not so simple. 

The difficulty in comparing the relative magnitudes of the susceptibilities is that it is 
somewhat fallacious. For one, when designing the conjugate field susceptibility the magni
tude of the applied perturbations was not standard. For XCAF, each site was given either a 
positive or negative perturbation of size 0, which in numerical simulation is not vanishingly 
small, thus, for a system of size 24, that's 24 perturbations, whereas in XD a perturbation 
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Fig. 12: This diagram shows a vertical cross-section of the HATM phase diagram (J2 = 

0.05). Notice the initial domination of XCAF in the region J' = 0.0 ... 0.7 at which point 
XCAF diminishes to nothing and XS spikes. We would take this as a strong indication of a 
transition from CAF ordering to spiral ordering. 

of size 0 was only applied for every other site and thus only 12 perturbation; for XS only 
every third site. How the disparity in the numerical size of these perturbations correlates to 
the height of the corresponding susceptibility is unknown. Furthermore, when constructing 
our perturbations we only perturb towards a single possible ordering, there are in reality 
degenerately many. There are, in fact, more possible ways to construct a dimer covering 
than a spiral, for example. How these degeneracy issues effect the susceptibilities is again 
unknown. There are other reasons why comparing these susceptibilities on equal footing is 
treacherous (such as the lack of true 1200 spiral ordering until J = J'). However, as we 
will see these issues end up only causing complications in one region of the phase diagram. 
These issues of relative magnitude also mean that the numerical crossing of two suscepti
bilities (i.e. when the height of one susceptibility overtakes another) cannot be said to be a 
remotely accurate estimate of the actual transition point. 

5.6 The Results 

Using a oh of 0.0001 and a system size of 24 the HATM phase diagram was investigated 
by means of cross-sections using the CFFS method. A sample vertical cross-section can be 
seen in Fig. 12, where J2 was taken as a constant 0.005 and J' was varied for a J of 1. 
For reference, the typical fidelity susceptibility for this region is also shown in Fig. 13. For 
small values of J' I J XCAF is clearly dominant over XS and XD confirming CAF ordering 
in this region. However, at '" J' I J = 0.76 XCAF suddenly plummets. We would take this, 
and the sudden rise of XS to indicate a transition to spiral-order. Notice that the difference 
in relative magnitudes becomes huge after this transition point, effectively quashing any 
concerns over the comparison of magnitudes of these susceptibilities. 

If we now look at a horizontal cross-section taken with a constant J' of 0.005 and varied 
hi J (see Fig. 14) we see a different situation. Here, for small values of J21 J XCAF is again 
dominant which is consistent with the proposed phase diagram. However, at a J21 J value 
of approximately 0.35 XCAF dives down and XD soars. This would strongly seem to indicate 
a transition from a CAF phase to a dimer ordered phase. vVe also note that this occurs at 
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0.2 0.4 0.6 0.8 
J' 

Fig. 13: For reference this diagram shows the results for the normal (non-CFFS) fidelity 
susceptibility. Notice the extremely low signal and ambiguous peak (whether it tends to 
infinity in the limit of infinite system size is unclear) and then sudden drop. This behaviour 
is difficult to 'interpret in terms of transitions between CAF, spiral and dimerized states. 
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Fig. 14: This diagram shows a horizontal cross-section of the HATM phase diagram (J' = 
0.05). Notice the initial domination of XCAF in the region J' = 0.0 ... 0.35 at which point 
XCAF plummets and XD rises dramatically. We would take this as a strong indication of a 
transition from CAF ordering to dimer ordering. 

rv 0.35 which is not close to the known value of 0.24 which must occur when J' = O. This is 
evidence that one cannot make exact quantitative estimates of transition points using this 
method of competing magnitudes as is. 

As a final attempt to flesh out the HATM phase diagram an analysis similar to that 
used for the spin-l/2 chain was performed. Intersection points of XD/L3 were extrapolated 
using a power law fit to the limit of infinite system size. However, it is very important to 
note that for computational reasons calculations on increasingly large square lattices is not 
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Fig. 15: This diagram shows the intersection points of XD/L3 in the limit L ---+ infty for 
various values of J' and J2 . Values were obtained by extrapolating power-law fits to infinity. 

possible, they would quickly get far too large. Thus, these computations were performed on 
"triangular lattices" consisting of only two loosely coupled chains. To increase the system 
size the chains were then lengthened by a factor of 2 (meaning a total system size increase 
of 4) in order to produce the next smallest lattice capable of a correct dimer covering given 
periodic boundary conditions. This lack of two-dimensionality of the lattices will almost 
certainly have an effect on the results and thus they should be taken with a grain of salt. 
However, the results, which can be found in Fig. 15, indicate a possible issue. They would 
seem to suggest a transition to a dimerized state at rv J' = 0.28 when moving vertically. This 
would seem to contradict the expectation of spiral ordering as J' is increased at constant 
h. Nevertheless, these results may potentially be correct. By re-examining Fig. 12 we can 
see that XD rises with increasing J' before plateauing at rv J' = 0.7 before dying out. If 
one were to attempt to provide separate weightings to each susceptibility in an attempt to 
make their magnitudes directly comparable then it is possible that XD may briefly overtake 
XCAF in the approximate region of J' = 0.25 - 0.7. If this is true then the system may 
transit first from a CAF state, then to a dimer state before finally entering a spiral state as 
J' is increased. 

5.7 Discussion 

The results of the relative magnitude CFFS method seem to bare out the HATM phase 
diagram proposed in the literature with the possible exception of a temporary transition 
to dimerized order before spiral ordering as one increases J'. We tentatively combine this 
information with additional cross-sections (see Fig. 16) to construct the phase diagram seen 
in Fig. 17a. 

Clearly, this new method shows great promise as a means of establishing rough phase 
diagrams. If given a new substance with a theoretical model and one is unsure which of 
a number of ordered phases the substance is in then one can simply construct CFFS's for 
each phase and compare relative magnitudes. If one susceptibility is clearly dominant it is 
likely the substance is in that phase. Furthermore, one could implicitly identify spin-liquid 
phases by exhausting all possible ordered susceptibilities. 

As to the effectiveness of this technique at identifying topological or higher-order tran-
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Fig. 16: These additional horizontal cross-sections are provided to show the behaviour of the 
phase diagram in the high h, high J' region where it appears to be spiral ordered. 
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(a) New Phase Diagram (b) Old Phase Diagram 

Fig. 17: Left: Our new proposed phase diagram which shows a region of dimerization before 
entering spiral ordering. Right: The old phase diagram suggested by Balents et al.[70j 

sitions that still remains unclear. It has been shown to identify a BKT-type transition 
however, as was discussed previously, this may have been serendipity. Furthermore, the 
success of the CFFS method at identifying phases is contingent on the ability to describe a 
conjugate field and thus an order parameter for a system. However, it is a promising new 
method which may have great potential. 

6 Conclusion and Summary 

In this work we have briefly surveyed the history and construction of the fidelity and fi
delity susceptibility as well as examined the numerical tools necessary to calculate quantum 
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ground-states. From there the Conjugate Field Fidelity Susceptibility (CFFS) was intro
duced as a new method of exploring quantum phase diagrams. It was first applied to the 
oft studied spin-1/2 chain where it successfully identified the J2 = 0.24 transition point 
between the critical (Luttinger) phase and spontaneous dimerization. With some caveats 
this was taken as evidence that the CFFS technique could potentially be used to identify 
BKT-type transitions. The method was then applied to the Heisenberg Anisotropic Trian
gular Model (HATM) that has recently seen much interest due to its relation to Cs2 CuCI4 , 

a material which is believed to exhibit a spin-liquid phase. Application of the CFFS method 
to the HATM confirmed the phase diagram proposed by the literature and possibly sug
gested a new region of dimerization living between collinear-antiferromagnetic (CAF) and 
spiral orderings. This evidences one of the advantages of the CFFS over other techniques 
in its ability to not only identify whether or not a transition occurs but between which two 
phases the system is transiting (by means of which susceptibilities are dominating). These 
results suggest that the CFFS method may be a useful new tool for exploring quantum 
phase transitions. 

7 Future Work 

The CFFS method is brand-new and has much room for improvement and modification. Of 
immediate interest is the ability to weight different susceptibilities such that their relative 
magnitudes can be directly compared. This would allow numerical estimates of transition 
points between phases. The CFFS should also be applied to more systems and phases so 
that its effectiveness at identifying higher-order and topological transitions can be gauged. 
Finally, there is a lot of interesting work that could be done at examining the theoretical 
under-pinnings of the CFFS itself. From this sort of study a better understanding of its 
regime of applicability could be obtained. 
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