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Abstract 

The problem of estimation when the data are interval censored has been investi­

gated by several authors. Lindsey and Ryan (1998) considered the application of 

conventional methods to interval mid (or end) points and showed that they tended to 

underestimate the standard errors of the estimated parameters and give potentially 

misleading results. MacKenzie (1999) and Blagojevic (2002) conjectured that the es­

timator of the parameter was artificially precise when analyzing inspection times as if 

they were exact when the "time to event" data followed an exponential distribution. 

In this thesis, we derive formulae for pseudo and true (or exact) likelihoods in the 

exponential regression model in order to examine the consequences for inference on 

parameters when the pseudo-likelihood is used in place of the true likelihood. We pay 

particular attention to the approximate bias of the maximum likelihood estimates in 

the case of the true likelihood. In particular we present analytical work which proves 

that the conjectures of Lindsey and Ryan (1998), MacKenzie (1999) and Blagojevic 

(2002) hold, at least for the exponential distribution with categorical or continuous 

covariates. 

We undertake a simulation study in order to quantify and analyze the relative per­

formances of maximum likelihood estimation from both likelihoods. The numerical 
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evidence suggests that the estimates from true likelihood are more accurate. We ap­

ply the proposed method to a set of real interval-censored data collected in a Medical 

Research Council (MRC, UK) multi-centre randomized controlled trial of teletherapy 

in the age-related macular disease (the ARMD) study. 
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Chapter 1 

Introduction 

Interval censoring occurs mainly in longitudinal studies and clinical trials, where, 

repeated measurements are taken on individuals, usually at pre-specified inspection 

times. In these studies it is often the case that some individuals may develop the 

event of interest between two inspection times, say U and V. In such a case the exact 

time to event, t, is unknown, i.e., U < t :-:; V, which is called interval censoring. 

Three special cases of interval-censored data have been well-studied: (a) if U = 0, 

we have left-censored survival data; (b) if V = 00, we have right-censored sur­

vival data, and three types of right censoring, Type I censoring, Type II censor­

ing and independent random censoring were shown in Law less (2003); (c) if either 

U = 0 or V = 00, the data are usually referred to as current status data (Kalbfleisch 

and Prentice (1980)). Left censoring is rare and is not considered in this thesis, also 

we do not consider the current status data. The interval censored (IC) and right 

censored (RC) data are of interest. 

Interest in interval censored data analysis has increased recently because the data 
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involved in HIV / AIDS studies are often interval censored (Satten (1996) and Hart 

et a1. (2002)). In practice, clinicians (e.g., Bergink et a1. (1998)) utilize the mid or 

end-point, as if they were actual times to event. The common method of analyzing 

such data is to assume that the event occurred at the end (or midpoint) of each 

interval and then to apply standard survival methods for time to event data (Turnbull 

(1976), Lindsey and Ryan (1998)). Application of conventional methods to interval 

mid (or end) points may tend to underestimate the standard errors of the estimated 

parameters and give potentially misleading results (Lindsey and Ryan (1998)). Also, 

an investigation of the exponential distribution showed that the estimator of the 

parameter was artificially precise when analyzing inspection times as if they were 

exact (MacKenzie (1999) and Blagojevic (2002)). 

This thesis is concerned with various aspects of the analysis of interval censored 

data, but the main focus is on the precision of the resulting estimators. 

1.1 Aims 

In this thesis, we consider the exponential regression model and investigate the con­

sequences of inference on parameters when a pseudo-likelihood is used instead of the 

true likelihood to interval censored data. Such data arise often in longitudinal studies 

such as randomized controlled trials where the regression parameter measures the 

effect of treatment and is then of special interest. 

The main goal of this thesis is to compare the precision of the estimators, espe­

cially, the regression parameters, in an exponential regression model when using the 

correct interval-censored likelihood and a pseudo-likelihood. 
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More specifically, we aim to 

1. identfy, and interpret any clear structural differences or similarities that may 

arise between the two likelihoods and in different quantities derived from them. 

2. study the use of first term approximation of the conditional odds on the survival 

in the case of the true likelihood. 

3. conduct simulation to obtain numerical comparison between estimates from two 

likelihoods methods. The comparison is regarding to means and mean square 

errors of the estimators. 

4. apply to a set of real interval-censored data arising in a MRC randomized clinical 

trial of teletherapy in age-related macular degeneration (ARMD). 

1.2 Overview 

In Chapter 2, we brief the theory for analysing interval-censored data using survival 

distributions to model the time to failure. Chapter 3 derives the forms of maximum 

likelihood estimates from the true likelihood and pseudo-likelihood respectively, which 

will be used to fit the exponential regression distribution to interval-censored data. 

In Chapter 4, we show the estimate from pseudo-likelihood is artificially precise when 

compared to the true likelihood; and we find the form of the Fisher information for 

the interval-censored data. In Chapter 5, we first make a simulation-based estimation 

from true likelihood and pseudo-likelihood for interval censored data, and analyze 

the results. Finally, we apply the proposed method to a real data obtained from an 
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age-related macular disease macular disease (ARMD) study (Hart et al. (2002)) in 

Chapter 6. Concluding remarks and future study are summarized in Chapter 7. 
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Chapter 2 

Review of Basic Survival Analysis 

2.1 General Concepts 

Let T be a continuous random variable representing the time to failure, so T 2: o. 

The probability density function (pdf) f(t) of T is defined via 

j
t+ot 

p{t < T < t + 6t} = t f(u)du ~ f(t)6t 

for t 2: 0, and the cumulative distribution (cdf), F of T, which is based on aggregating 

probability, is given by 

F(t) = P{T:::; t} = it f(u)du, 

again for t 2: o. 

Any distribution in survival analysis can also be characterised by its survival 

function, S(t), and the hazard function, ).(t). The survival function is the probability 

that an individual survives at least time t, so that 

S(t) = 1 - F(t) 
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for t ;::: O. The hazard (or instant hazard) function is defined in terms of the proba-

bility that, given its survival until t, an item then fails in the interval (t, t + M]. Since 

this probability is, via the conditioning argument, 

we see that 

P(t < T < t+ot) 
P(t < T s; t + otl T > t) = P(T -; t) 

S(t) - S(t + M) 
S(t) 

f(t)ot 
f'V __ 

- S(t) , 

A(t) = lim {S(t) - S(t + M)}/S(t) 
at--+O ot 

= lim {F(t + ot) - F(t) }_1_ 
ahO M S(t) 
f(t) 
S(t) . 

Thus the hazard function is sometimes called a "conditional failure rate", since the 

denominator reflects the conditional probability given survival to time t. The cumu-

lative hazard function is given by 

A(t) = it A(u)du, 

from which 

S(t) = exp{ - A(t)} = exp{ - it A(U)dU}. (2.1.1) 

In survival analysis, estimation and inference of the survival function S(t) at each 

time t are of interests. The method for implementing this depends on whether the 

form of the probability density function (pdf) f(t) or cumulative function F(t) is 

known or not. 
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2.2 Non-parametric Method 

In practice, we must have estimators that can be used for censored data and, in 

particular, with right censored data and unknown form of the distribution. For this 

purpose, the Kaplan-Meier estimator (refer to Lawless (2003)) ofthe survival function 

is a popular and useful method. 

Suppose that from n independent units on test, the r distinct failure times t(l) < 

t(2) < ... < t(r) (r :::; n) are observed. At time t(j), nj units are "at risk", that is, 

in operation, and dj units fail before time t(j) immediately. This number nj covers 

all the units that are observed for a duration at least t(j), including those that will 

subsequently fail as well as those that will subsequently be censored. 

We will now estimate the survival function S(t) at each time t(i) as follows, 

S(t(i») = P(T > t(i») 

= P(T > t(I»)P(T > t(2)1 T> t(I»)'" P(T > t(i) I T > t(i-I»). 

This is derived by re-expressing, for example, the probability of the event {T > t(2)} 

using the basic identity in conditional probability, P(A n B) = P(A)P(BIA), with A 

as the event {T > t(I)} and B as the event {T > t(2)}' 

The simple estimator of P(T > t(I») is, 

where PI is the relative frequency of failures in the interval [0, t(I») and nl is the 

number of units that are at risk just before time t(I)' Then, by the same logic, the 

conditional probability for failure in the next interval [t(I)' t(2») is 

d2 n2- d2 
P(T> t(2)1 T> t(I») = 1 - P2 = 1 - - = , 

n2 n2 
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where P2 is the relative frequency of failures in the interval [t(l), t(2)) and n2 is the 

number of units that are at risk just before time t(2)' and so on. Proceeding in this 

way, we finally obtain 

This is the Kaplan-Meier estimator of the survival function. Observe that this is a 

non-parametric estimator since it does not assume any particular functional form for 

the curve S(t). This makes the estimator important and useful. 

Since S(t) is a sample statistic, it is desirable to have an estimate of its standard 

deviation, called the standard error. The formula usually employed for this purpose 

is the so-called Greenwood's formula 1 (refer to Lawless (2003)) given by 

2.3 Parametric Models 

The estimators introduced in Section 2.2 are non-parametric estimators, since we did 

not assume any particular functional form for the survival or hazard functions. This 

freedom from assumptions is often very desirable. On the other hand, it may be 

better to use the functional form when we know what it is. Typically, parametric 

models tend to have smaller standard errors when estimating quantities such as the 

median and hazards than models without a specified distribution. 

1 Major Greenwood (188D-1949) was Professor of Epidemiology and Vital Statistics at the London 

School of Hygiene and Tropical Medicine and also worked on distrib1dion theory for accident data. 
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In estimating the parameters of statistical distributions so that they can be fit-

ted to the survival data, several methods have been established, such as the method 

of moments, the maximum likelihood estimation, the least squares method, and the 

Bayesian method. See Casella and Berger (2001) for an overview of estimation meth-

ods. However, the emphasis has fallen heavily on maximum likelihood estimation. 

The method of maximum likelihood is, by far, the most popular technique for 

deriving estimators. The likelihood function can be used to examine the whole range 

of possible parameter values, and determine which values are most consistent (or, in 

common parlance, "likely") with respect to the data (complete or censored). There 

are a lot of different statistical distributions that have been found to be most useful for 

describing survival data. These have also been used in the literature as base models 

to build more general models possessing a lot of flexibility to fit different forms of 

data. The following are a number of parametric distributions commonly used. 

2.3.1 Exponential Distribution 

The probability density function of the exponential distribution2 is 

f(t) = Ae-At
, t> 0, A> O. 

As seen in Section 2.1, the survival function is 

S(t) = e-At
, t> 0, A> 0, 

and the hazard function is 

f(t) 
A(t) = S(t) = A. 

2 The exponential distribution OCCUTS naturally when describing the lengths of the inter-arTival 

times in a homogene01ts Poisson process. 
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The expected value and variance of the survival time T are then readily obtained to 

be 

E(T) = l 
respectively. 

2.3.2 Weibull Distribution 

and 
1 

V(T) = A2 ' 

The Weibu1l3distribution is one of the most used lifetime distribution models. It is a 

versatile distribution that can take on characteristics of other types of distributions 

based on the value of its parameter,. The probability density function of the Weibull 

distribution is given by 

f(t) = A,fy-1exp( -Aft), t> O. 

The probability density function has two parameters both of which are greater than 

zero. If, = 1, the density function becomes Ae-At and then the survival times have 

an exponential distribution. The shape of the density function depends on , which is 

known as the shape parameter, while A is known as the scale parameter. The survival 

3 "It is named after Waloddi Weibull who described it in detail in 1951, alth01Lgh it was first 

identified by Frechet (1927) and first applied by Rosin and Rammler (1933) to describe the size 

distribution of parlicles"(Wikipedia (2009)). 
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function is 

[ -v] 00 = - e (At')') 

and the hazard function is, therefore, 

For 'Y i- 1, the hazard function increases and decreases monotonically. 

The first and second moments of the survival time T are then readily obtained to 

be 

which yields the variance of the survival time T to be 

where ro is the gamma function. 

2.3.3 Gumbel Distribution 

The Gumbel distribution4 has the pdf 

j(t) = ~ exp{ (t - fL)/(J} exp [ - exp{ (t - fL)/(J}] , -00 < t < 00, 

4 One of the jiTst scientists to apply the the01'y was a German rnathematician Emil Gumbel (1891-

1966). Gmnbel's focus was p'rimaTily on applications of extTeme value theory to engineering pmblems. 
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where p, is the location parameter and 0" is the scale parameter. The survival function 

is 

and so the hazard function is 

'\(t) = ~ exp{ (t - p,)/O" } 

which is clearly monotonously increasing. 

The expected value and variance of T can be shown to be 

E(T) = p, - ,0" and 

respectively, where, = 0.5772 ... is the Euler's constant given by 

,= -f'(l) = -100 

e-Xlnxdx. 

The special case with p, = 0 and 0" = 1 is called the standard extreme value distribu-

tion. 

The greater importance of the Gumbel distribution lies in its relationship to the 

Weibull distribution. It can be shown that 

T rv Weibull(,\, ,) In T rv Gumbel (p" 0") , 

where p, = log(,\) and 0" = 1/" 

2.3.4 Gompertz Distribution 

Applications of the Gompertz5 distribution are most notable in the analysis of mor-

tality and actuarial data. Its simplest description is through the hazard function 

5 Benjamin GompeTtz (1779-1865), was a self ed1Lcated mathematician who was elected a Fellow 

of the Royal Society in 1819. 
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given by 

'\(t) = exp(,\ + "It) 

which is decreasing for "I < 0, increasing for "I > 0, and constant for "I = 0 (in which 

case it simply reduces to the exponential distribution). 

In this thesis the exponential distribution is considered. Models in which covari-

ates have a multiplicative effect on the hazard function playa prominent role in the 

analysis of survival data (Lawless (2003)), hence, we will consider proportional haz­

ards (PH) exponential regression model. Comparison with semiparametric PH model 

is also considered. 

In practice, we can obtain the Kaplan-Meier estimate S(t) and plot it against t or 

a suitable function of t, in order to see if it takes nearly the same shape as assumed 

function S(t) (Collett (2003)). We will show this in Section 6.1. 

2.4 Some Formulas 

We will use some well-known formulas in calculus and algebra in this thesis. 

1. Taylor expansions, refer to Abramowitz and Stegun (1970). 

The Taylor expansion of a real or complex function f(x) that is infinitely differ-

entiable in a neighbourhood of a real or complex number a, is the power series 

f'(a) f"(a) 2 f (3) (a) 3 f (x) = f (a) + - (x - a) + -- (x - a) + (x - a) + ... 
I! 2! 3! 

which in a more compact form can be written as 

00 fCn) (a) 
f(x) = L I (x - at, 

n=O n. 
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where n! denotes the factorial of nand fCn)(a) denotes the n-th derivative of f eval­

uated at the point a; the zero-th derivative of f is defined to be f itself and (x - a)O 

and O! are both defined to be 1. 

In the particular case where a = 0, the series is also called a Maclaurin series. 

Especially, the Taylor series for the exponential function eX at a = 0 is 

Xl x2 x 3 X4 x 5 

eX = 1 + - + - + - + - + - + ... 
I! 2! 3! 4! 5! 

2. Block partitions, refer to Barndorff-Nielsen (1988). 

Consider an m x m matrix M, partitioned into blocks as 

where A is p x p and D is q x q. Suppose IAI =1= o. 

We then have 

(a) 

A B 
= IAIID - BA-ICI . 

C D 

(b) If M is symmetric (whence C = B') then 

where 

(c) If IDI =1= 0 then 

l A-I + FE-I pi 
M-I = 

-E-IF' 

14 
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Chapter 3 

Interval Censoring (IC) 

3.1 The Interval Censored Likelihood 

A longitudinal study is a correlational research study that involves repeated obser-

vations of the same items over long periods of time, then, longitudinal studies are 

observational. Especially, the cohort studies, a form of longitudinal study, sample 

a cohort, defined as a group experiencing some event (typically birth) in a selected 

time period, and studying them at intervals through time. Thus, in such a setting we 

often look at time to some event of interest, correspondingly, these times are interval 

censored. Consider a schematic set-up for longitudinal studies as follows 

t* o t* 1 t* 2 t* 3 t* 
k 

t* 
m 

1- - - -]- - - -1- - - -I' .... '1- - - -I" ... '1- - - -1- - - -I , 

(3.1.1) 

where ti, t;, ... ,t::n are inspection times and t~ is the baseline time. Suppose that 

n individuals with failure times in intervals following a continuous distribution with 
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density function j(t; 8), where 8 is a parameter vector. Denote by 7i=failure time 

of individual i and treat it as a random variahle, and ti=exact failure time (not 

observed), i = 1,2,· .. , n. 

In this scheme we assume that any patient is either IC or RC, just two possibilities 

when we analyzing the data at the end of this study. If a patient is IC, we observe 

the particular interval (ti-I' til, j = 1,2,· .. , m, where her/his failure time occurred; 

if the patient is RC, we only know that her/his failure time occurred beyond t:n. 
Usually, the RC failure time will be a scheduled time point, therefore, this scheme 

should be extended when the RC occurs before t:n. Also we assume that the censoring 

is non-informative. 

For the i-th patient, define the vector 

where 

Wij = { 1 
o otherwise. 

In other words, 

{ 

1 if ti E Ii> 

Wij = 0 otherwise, 

where, Ij = (tj_l, tjL j = 1,2,· .. , m + 1, and from Lawless (2003) we know 

where Pj = P(T E I j ) = P(tj_1 < T ::; tj). 
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For the interval censored data, we only observe the frequencies among I1 = 

(t~, ti], I2 = (ti, t;],· .. ,h = (tic-I' tic],·· . ,Im = (t:n-I' t;n], Im+1 = (t~p 00) in which 

the exact failure time falls. 

The data available are denoted in the vector form 

Since these random vectors are independent, the exact likelihood function for 8 con-

ditional on W1, W2,' .. ,Wn will be 

n n m+1 

L(8) = IT !(Wi; 8) = IT IT pti 

i=1 i=1 j=1 n Cfi { ( fit; O)dt } "''') {S(t;,,; 0) } w,,"+, 

n (fi {F(t,; 0) - F(ti-1; 0) r") {S(t~; 0) r m

" 

n (fi {S(t,_l; 0) - S(t,; 0) r') {S(t~; 0) r'·m+" (3.12) 

where, t:n is the RC time. 

3.1.1 Another Representation of the Ie Likelihood 

Consider another representation of the exact likelihood. By the calculus Mean Value 

Theorem, for every (tj_I' tj) there must be a point tj (tj_1 < tj < tj) such that 

17 



then 

D(O) U (f! {itt;; 6)(t; - t)_I) r j

) {S(t;"; 0) f"'+' 

n (f! {t; - t)_1 r" uf! {J(t;; olf") {S(t;"; 0) r,m" 
Since IT~=l IT7=l {tj - tj_l} Wij does not depend on the parameter (), we have 

(3.1.3) 

3.2 The Pseudo-Likelihood 

If we take ij = tj in (3.1.3), alternatively the midpoint of the j-th interval, we obtain 

the pseudo-likelihood function 

n m 

L(O) = II II {f(tj;O) }Wij {S(t:n;O) }Wi,rn+l (3.2.4) 
i=l j=l 

which is commonly used in practice. In some longitudinal studies the end-point is 

used as if it were the true time at which the event of interest occurred, while in other 

studies the mid-point is used. In most studies the interval-censoring is ignored, and 

the pseudo likelihood is treated as if it is true likelihood. 

Throughout this thesis, we denote any association with pseudo likelihood with sub-

script mis and with true likelihood with the subscript true. In general, if covariates 

are available, (3.1.2) and (3.2.4) can be written as follows 

n m 

Ltrue(ex, (3) = II II { S(tj_l; ex, (3, Xi) - S(tj; ex, (3, Xi) } Wij {S(t:n; ex, (3, Xi) } Wi,rn+l, 

i=l j=l 
(3.2.5) 
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n m 

Lmis(a, (3) = II II {j(tj; a, (3, Xi) } Wij {S(t:n; a, (3, Xi) } Wi,m+l, (3.2.6) 
i=l j=l 

where a is the unconstrained parameter vector, {3 is the parameter vector correspond-

ing to covariate vectors Xi for the i-th subject. 

3.3 An Exponential Regression Model 

Let T be a continuous non-negative random variable denoting the time to an event of 

interest. In our investigation, we let T follow exponential distribution in a regression 

model with X as a p x 1 vector of fixed covariates. The properties of this model are 

outlined below. The hazard function for T for the i-th individual takes the form 

(3.3.7) 

where AD is a constant unknown underlying hazard to be estimated and {3 is p x 1 

vector of regression coefficients. Clearly this is a parametric proportional hazard 

regression model. Let X be the n x p matrix with (i, j) entry Xij, j = 1,2, ... ,p, then 

x~{3 = Xi1{31 + ... + Xip{3po Of course, A(ti ) > 0, so a restriction must be placed on AD, 

namely 0 < AD < 00. We could also consider AD = ell: which would guarantee positive 

hazard for all ex and {3. Let us now briefly address the case when AD = ell: where ex is 

some unconstrained parameter. 

The hazard for the i-th individual becomes 

(3.3.8) 

Integrating both sides of (3.3.8), 

lti A(u)du = ell:+x;f:J lti duo (3.3.9) 
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Multiplying by -1 and exponentiating both sides of (3.3.9), 

(3.3.10) 

From (2.1.1) 

where S(ti) is the survival function of i-th individual. So, (3.3.10) may be written as 

where 

is the baseline survival function defined at x~ = 0 for V i. 

3.4 Estimate of Maximum Pseudo-Likelihood 

Assume that a censored random sample consisting of data (t;,k-l' t;k' Oi, Xi) , i = 

1,2, ... , n, is available, where t; k-l' ttk are the lower and upper points of the k-, 

th censored interval, and k is the generic subscript which means that i-th individual 

falls in the k-th interval. The survival time ti is only observed to lie in the interval 

(t;,k-l' t;k] according to whether Oi = 1 or 0, respectively, hence, Wij in Section 3.1 

has the same meaning as Oi when j = k, for an event (Ie), but Oi = 0 can handle any 

right-censored event. In addition, Xi is p x 1 covariate vector, Xi = (Xil,'" , Xip)'. 

Let's suppose that the end points of the interval is used as "exact" time to event. 
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Then we would like to reexpress the pseudo-likelihood (3.2.4) as follows 

Lmis(e) = IT { ,\(t:k; e)s(t:k; e) } Ii; {S(tf; e) } 1-8
i

, (3.4.11) 
i=l 

where ti, i = 1,2, ... ,n, denotes any right censored time, e.g., ti ~ t::n, and 

{ 

1 for an event, 

Oi = a for a right censored observation. 

In (3.4.11), '\(tik)S(tik) is the probability of an interval censored observation and 

S(ti) is the probability of associated with the right censored observation. Thus, 

(3.4.11) is a more general form of the pseudo-likelihood. For the exponential distri­

bution with p covariates we may write (3.4.11) as 

(3.4.12) 

Taking the logarithm on (3.4.12), it yields 

For simplicity, we sometime denote .emis (a, f3) as a.emis ' The first order partial deriva-

tive with respect to a is 

(3.4.13) 

At the maximum, 
n n 

L 0i = eO< L exJ3 [Oit:k + (1 - Oi)tf] , 
i=l i=l 
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hence, the explicit analytic form of maximum likelihood estimate of a is 

where Oitrk + (1 - oi)ti implies some time, so we may let it be ti, 

The first order partial derivatives with respect to the component of f3 are 

n { } 8/!mis O+X' * O+X' c -- = """' o·x·· - o'x"e ,f3t. - (1- o·)x··e ,f3t. 8{3. 6 t tJ t tJ tk t tJ t' 

J i=1 

j = 1,2"" ,po (3.4.14) 

At the maximum, 

n n 

L OiXij = L Xijeo:+x;f3 [Oitrk + (1 - Oi)t'j] , 
i=1 i=1 

yielding, 
n n 

L OiXij = eO: L Xijex;!3k (3.4.15) 
i=1 i=1 

Substituting from (3.4.13), we reach 

n ,\",n 0 n 

L J: L...-i=1 i L x'f3 u·x·· = x··e ' t· t tJ ,\",n x'f3 tJ t, 

i=1 L...-i=1 e , ti i=1 

j = 1,2"" ,p 

which is a system of equations for the MLE of {3j, ~j, j = 1,2"" ,po 

3.5 Estimate of Maximum True Likelihood 

Under the same assumption and notation as in Section 3.4, similarly, we would like 

to show the true likelihood (3.1.2) as follows 

Ltrue(e) = IT { S(tr,k_l; e) - S(t:k; e) } Oi {S(t'j; e) } 1-0
i

, (3.5.16) 
i=1 
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where, t: k-l and t:k are the starting and end points of the intervals for the i-th , 

individual, and 

{ 

1 for an event, 

(\ = 0 for a right censored observation. 

MacKenzie (1999) proposed a form of the true likelihood function which fully accounts 

for interval censored, as well as for right censored observations like (3.5.16). 

Since 

t~ t~ tik _ r >,k-l '( )d _ r t,k-l '()d - Jt~ .>.(u)du = e Jo "u u _ e Jo "u ue >,k-l 

_ r >,k-l '( )d - Jt~ A(u)du t~ [ tik ] = e JO "u u 1 - e >,k-l 

then (3.5.16) can be re-written as 

L"',e(O) ~ IT {S(t:,k-1; 0)[1- S(t;,k-l< t;k; 0) 1 r {S(t;; 0) t'; 
n { S (t~ . e) } Oi { } l-oi 

= II S(t;,k_l; e) [1 - (~ tk'. )] S(t~; e) 
i=1 S tt,k-l' e 

Hence, the true likelihood for the exponential regression with p covariates can be 

written as 

where dik(t) = t:k - t; k-l is the width of the k-th interval. , 

The log-likelihood is 

I! (ex (3) = ~ { - o·eD:+x:f3t~ + o·log [1 - e-ea+X;J3dik(t)] - (1 - o.)eD:+x:f3tr;} true, ~ t t,k-l t e t t . 

i=1 
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For simplicity, we sometime denote .eture(a, (3) as a.etrue . The first order partial deriva-

tive with respect to a is 

But the second term of this derivative makes it impossible to find the explicit form 

for &, the best we can do is to find an approximate value serving as a starting point 

in any Newton-Raphson method. So, in the following expansion of conditional odds 

on surviving in the interval (tr k-l' trk], , 

e-en+X;fJ dik(t) 

n+x' fJ 

1 - ea+x~f3dik(t) + ~e2a+2x~f3dt(t) - ie3a+3X~f3dr(t) + - .. . 
1 - e-e i dik(t) ea+x~f3dik(t) - ~e2a+2x~f3dt(t) + ie3a+3x~f3dHt) - + .. . 

we take the first order approximation, i.e., 

(3.5.18) 

Substituting (3.5.18) back into (3.5.17) 

a.etrue = ~ { _ ea+x;f3t'. + 6.ea+x;f3d. (t) 1 - ea+x;f3dik(t)} 
~ ~ t t tk a+x'f3d (t) , ua i=l e t ik 

(3.5.19) 

where t~ = 6itr k-l + (1 - 6i)ti is some time. At maximum, we have , 

n n 

L e&+x;f3 [t~ + 6idik (t)] = L 6i, 
~l ~l 

from which the approximate analytic form of a is 

A 1 [ 2:~=1 6i ] 
ao = og "n x'f3.' 

L...-i=l e t tt 
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indicates that we are only dealing with an approximation. 

It is interesting to note that this is the same as & resulting from the pseudo-

likelihood. 

The first order derivatives with respect to the component of {3 are 

(3.5.20) 

As with &, it is not possible to obtain the analytical expression for (3, so, once more, 

we make the assumption (3.5.18), and then at maximum 

'" x. ·ea+x~f3t~ = '" 8.x .. ea+x~f3d'k(t) - e ' ik n n { 1 a+x'f3d (t)} 
L.... ~J ~ L.... ~ ~J ~ a+x'f3d. ( ) 
i=l i=l e , ~k t 

t Xijea+x;f3t~ = t {OiXij - OiXijea+x;f3 dik (t) } 
i=l i=l 

yielding 
n n 

L OiXij = ea L Xijex;f3ti (3.5.21) 
i=l i=l 

which is the same as (3.4.15). 

3.6 A Connection between the Likelihoods 

For the sake of a clearer connection between the two likelihoods, we could write 

(3.4.15) as 
n n 

L OiXij - L Xije&.+x;f3ti = 0, 
i=l i=l 
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where we have only substituted Ii for Q, then 

~n [s: &+x',6] X " u· - e ,t· - 0 2J 2 2 - , 

i=l 

n 

~ Xij [Oi - ti~(ti)] = 0, (3.6.22) 
i=l 

where Oi -ti~(ti) has the structure of a Martingale residual with Oi being the observed 

number of desired events, for the i-th individual, in the interval (0, ti), and ti~(ti)' 

the estimated integrated hazard, is the Cox-Snell residual (see Cox and Snell (1968)), 

which we can regard as the stochastic expectation of the number of desired events in 

the interval (0, ti ) for the i-th individual. 

Similarly, for the case of true likelihood, we can write (3.5.21) as 

n 

""" [s: &+x',6t ] 0 L....J Xij Ui - e 'i = , 
i=l 

i.e., 
n 

~ Xij [Oi - ti~(ti)] = 0 
i=l 

which is an identical form to (3.6.22). 

3.7 Observed Information Matrix: Pseudo-Likelihood 

Case 

Differentiating (3.4.13) with Q again 

n 

= _ ~ eD:+x;r3ti . (3.7.23) 
i=l 
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Differentiating (3.4.14) with the component of {3 again, 

(3.7.24) 

Now, from either (3.4.13) or (3.4.14), the mixed second partial derivatives are observed 

n 

= - 2.:= Xijecx+x~f3ti' 
i=l 

The observed information matrix is, in the form 

(3.7.25) 

From (3.7.23), (3.7.24) and (3.7.25), the observed information matrix evaluated at & 

and /3 under pseudo-likelihood has the form 

(3.7.26) 

3.8 Observed Information Matrix: True Likelihood 

Case 

Let us first find the exact observed information matrix. 

For simplicity, we write the first order partial derivative with respect to ct, (3.5.17), 

as 
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where ~ = e-e"+X~tldik(t); differentiating with respect to a again, we have 

f h · h b t't t' l_e"+x~tI d'k(t) Ii; h rom w lC ,upon su s 1 u mg + ttl ' ~ 1 D.' we ave 
e" Xi dik(t) -Hi 

(3.8.27) 

which clearly has a similar form to (3.7.23), except for the difference between the 

combinations of times, i.e., here we have t~ and in (3.7.23) we had t i . 

Writing the first order partial derivatives with respect to the component of (3, 

(3.5.20), as 

and differentiating with respect to the component of (3 again, we get 

and after the first order approximation of ~, we have 

(3.8.28) 
i=l 

except for t~, this is of identical structure as in the likelihood case (3.7.24). 
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Finally, the mixed second partial derivatives are 

and, again, we impose the approximation of ~ to get: 

(3.8.29) 

which is the same as (3.7.25) except for t~. 

From (3.8.27), (3.8.28) and (3.8.29), the observed information matrix evaluated 

at & and /!J under true likelihood has the form: 

[ 

"'~ e&+x;f3f "'~ x'e&+xJ3f 1 
I [oJ (A (3A) = u2=1 2 u2=1 2 2 

true a, . . 
"'~ x·e&+x;f3t~ "'~ x'x~e&+x;f3f u2=1 2 2 u2=1 2 t t 

(3.8.30) 

Let us now find the approximate observed information matrix. Differentiating 

(3.5.19) with respect to a again, we have 

n 

= - L eo+x;f3ti (3.8.31) 
i=l 

which is the same as (3.7.23). 

After the implementation of approximation (3.5.18) to (3.5.20), differentiating 

with respect to the component of {3 again, we have 

(3.8.32) 
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which is the same as (3.7.24). 

Differentiating (3.5.19) with respect to the component of (3, we obtain the mixed 

second partial derivatives: 

n 

= - ~ XijeQ+x~f3ti' 
i=l 

(3.8.33) 

From (3.8.31), (3.8.32) and (3.8.33), the observed information matrix evaluated at 0: 

and /3 under approximated true likelihood has the form 

and it does not come as a surprise that this is identical to I~t (0:, /3) . 
The results obtained in these sections are indeed remarkable. With the true 

likelihood, we cannot find the exact analytical expressions, however, their approxi-

mate expressions are the same as the exact analytical expressions arising from the 

pseudo-likelihood. Accordingly, the MLEs from the pseudo-likelihood could be used 

as starting values for the numerical estimation procedures required to estimate the 

the MLEs in the true likelihood. 
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Chapter 4 

Precision of the Estimators 

MacKenzie (1999) and Blagojevic (2002) who first focused on precision, found that 

in the exponential distribution, the MLE of model parameter A, from the pseudo­

likelihood (mis-specified likelihood), was artificially precise, i.e., 

where, Vmis(.~) is the variance of ~ from the pseudo-likelihood, and vtTue(~) is the 

asymptotic (i.e., first order) variance of ~ obtained from the true likelihood, respec­

tively. This result is referred to as the GB conjecture. The Principle of Induction 

will be used in Section 4.2 to show whether this conjecture is true or not for an ex­

ponential regression model. Due to the identical MLEs for the parameters from both 

likelihoods, we will set the same values for & and /!3 in the structure of variances. 
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4.1 Estimation of Covariance Matrix 

The approximate variance-covariance matrix cov( a, /3) is obtained by inverting the 

observed information matrix I[o](a,/3), i.e., 

cov(a f3~) '" [1[0] (a f3~)] -1 = 1 adJ' [1[0] (a, f3~)], 
,- , det[I[o](a,/3)] 

(4.1.1) 

where, det and adj denote the determinant and adjugate matrix, respectively. 

4.1.1 No Covariates 

When p = 0, i.e., no covariate in the exponential regression model, from (3.7.26) we 

have 
n 

1[0] (A) '" at mis iY = De i, 

i=l 

then 

Vmis(a) = 2:n 1 at. 
i=l e t 

(4.1.2) 

and from (3.8.30) we have 
n 

Il~Le(a) = L eat~, 
i=l 

then 

(4.1.3) 

4.1. 2 One Covariate 

When p = 1, i.e., only one covariate in the exponential regression model, the (3.7.26) 

can be written as 

1[0] (A (3A) 
mis iy, = 
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and from (3.8.30) we have 

where Eil = eO+Xi.B is the estimated hazard in this case. Let 

n n n 

All = L,Eilti' A12 = A21 = L,xiEilti' A22 = L,X;Eilti' 
i=l i=l i=l 

n n n 

A~l = L,Eilt~, A~2 = A~l = L,xiEilt~, A~2 = L,X;Eilt~, 
i=l i=l i=l 

we get 

and 

[

AI 
. [oj A A _ 22 

adJ[Itrue (a,,6)] - I 

-A12 

then the inverse information matrix based on pseudo-likelihood and true likelihood 

are as follows, 

[ 
A22 -A12 

1 
Covm is(a,/3) = AU A 22-AY2 AU A 22-AY2 

-A12 Au 
AU A 22-AY2 AllA22-A f2 

(4.1.4) 

and 

[ 
A~2 -A:, 1 

COVtrue( a, /3) = A~lA~2-A~~ A~lA~2-A~~ 
-A~2 A~l 

A~lA~2-A~~ A~lA~2-A~~ 

(4.1.5) 
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4.1.3 Two or more Covariates 

When p = 2, i.e., x~(3 = Xil{3I + Xi2{32, the (3.7.26) and (3.8.30) can be written as: 

L:~=I Edi L:~=I XilEdi L:~=I Xi2Ei2ti 

I[aJ C ~)-mis a, - L:~=I XilEi2ti L:~=I X;I Edi L:~=I XiI Xi2E i2t i 

L:~=I Xi2Ei2ti L:~=I Xil Xi2 E i2t i L:~=I x;2Ei2ti 

L:~=I Ei2t~ L:~=I XiI Ed~ L:~=I Xi2Ed~ 
[oj ~ A _ 

I true (a, (3) - L:~=I Xil Ed~ L:~=I X;I Ed~ L:~=I XilXi2Ed~ 

L:~=I Xi2Ed~ L:~=I XiIXi2Ei2t~ L:~=I x;2Ei2t~ 

where Ei2 = e&+Xilt31 +Xi2t32 is the estimated hazard in this case. Let 

we have 

n n n 

All = 2.:= E i2ti , AI2 = A2I = 2.:= Xil E i2t i, AI3 = A3I = 2.:= Xi2 E i2t i, 
i=1 i=1 i=1 

n n n 

A22 = 2.:= X~I E i2ti , A23 = A32 = 2.:= Xil Xi2 E i2t i, A33 = 2.:= x~2Ei2ti' 
i=1 i=1 i=1 

n n n 

A~I = 2.:= Ed~, A~2 = A;I = 2.:= XiIEd~, A~3 = A~I = 2.:= Xi2Ed~, 
i=1 i=1 i=1 

n n n 

A;2 = 2.:= X;I Ed~, A;3 = A32 = 2.:= XiIXi2Ei2t~, A~3 = 2.:= x;2Ei2t~, 
i=1 i=1 i=1 

(4.1.6) 

AllA22 - AI2 

(4.1.7) 
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and 

A' A' A'2 22 33 - 23 -(A~2A~3 - A~3A~3) 

adj [Il~Le(&, 13)] = -(A~2A~3 - A~3A~3) A' A' A'2 11 33 - 13 -(A~lA~3 - A~2A~3) 

A' A' A'2 11 22 - 12 

(4.1.9) 

The corresponding variance-covariance matrixes can be obtained easily from (4.1.6) 

to (4.1.9). We have 

V, . (A) = A22A33 - A~3 
m2S a A11A22A33 + 2A12A13A23 - A22Ar3 - A33Ar2 - A11A~3 ' (4.1.10) 

V, . ((3 ) = A11A33 - Ar3 
m2S 1 A11A22A33 + 2A12A13A23 - A22Ar3 - A33Ar2 - A11A~3 ' 

(4.1.11) 

V, . ((3 ) = A11A22 - Ar2 
m2S 2 A11A22A33 + 2A12A13A23 - A22Ar3 - A33Ar2 - A11A~3 ' 

(4.1.12) 

A' A' A'2 V; ( A ) 22 33 - 23 

true a = A' A' A' 2A' A' A' A' A'2 A' A '2 A' A'2' 11 22 33 + 12 13 23 - 22 13 - 33 12 - 11 23 
(4.1.13) 

A' A' A'2 V; ((3A) 11 33 - 13 
true 1 = A' A' A' 2A' A' A' A' A'2 A' A '2 A' A'2' 11 22 33 + 12 13 23 - 22 13 - 33 12 - 11 23 

(4.1.14) 

A' A' A'2 V; ((3A) 11 22 - 12 
true 2 = A' A' A' 2A' A' A' A' A'2 A' A '2 A' A'2 . 11 22 33 + 12 13 23 - 22 13 - 33 12 - 11 23 

(4.1.15) 

When we have p covariates in the model, i.e., x~f3 = Xi1(31 + ... + Xip(3p, the (3.7.26) 

and (3.8.30) can be written as 

(4.1.16) 
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2:~=1 Eipt~ 2:~=1 XilEipt~ 2:~=1 XipEipt~ 

2:~=1 XiI Eipt~ z=n 2 E t" 2:~=1 XilXipEipt~ [0] A A _ 
i=1 XiI ip '/, 

( 4.1.17) Itrue(a, (3) - , 

2:~=1 xipEipt~ 2:~=1 XilXipEipt~ 2:~=1 xfpEipt~ 

where Eip = e,Hxil.Bl+oo+Xip.BP is the estimated hazard in this case. 

The corresponding estimated asymptotic covariance matrix COVmis( &, {J) and COVtrue( &, (J) 

can be obtained from (4.1.16) and (4.1.17) respectively. 

4.2 Comparative Inference 

As mentioned above, the comparative inference envisioned is to compare the variances 

obtained from the pseudo-likelihood with that from the true likelihood for the interval 

censoring exponential regression model. Since the non-linear conditional odds on 

surviving in the interval exists in the score functions (3.5.17) and (3.5.20) in the true 

likelihood case, we could not obtain the explicit estimates for the parameters a and 

{3, however, the first order approximate estimates are identical to that from pseudo­

likelihood (see Chapter 3), then we set the same estimates of parameters at & and (J 

when we do the analytical comparison next. 

Let us start with no covariate in the exponential model. From (4.1.2) and (4.1.3), 

we have 

tor based on pseudo-likelihood under-estimates the true variance vtrue(&) when the 

observed inspection times are analyzed as if they were exact. 
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Next we think about only one covariate Xi in the exponential model and let Xi = 

0,1 be a binary variable, from (4.1.4) and (4.1.5), we have A12 = A22,A~2 = A~2' 

then 

Vmis (&) A22 AI AI A'2 
11 22 - 12 

vtrue( &) AllA22 - Ar2 x AI 
22 

A~1 - A~2 
(4.2.18) 

All - A12 

and 

Vmis (/3) All AI AI A'2 
11 22 - 12 

vtrue(/3) AllA22 - Ar2 x AI 
11 

All(A~1A~2 - A~~) 
(4.2.19) 

A~l (AllA12 - Ar2) 

Denote i1 = {i: Xi = l},io = {i: Xi = O}, from (4.2.18), we get 

n n 

= L Ei1(ti - t~) - LXiEi1(ti - t~) 
i=l i=l 

n 

= L Ei1(ti - tD(l - Xi) 
i=l 

= Le&(ti - t~) > 0, 
io 

thus Vmis (&) < vtrue(&). 
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From (4.2.19), we have 

= A~l (Au - A12)A12 - Au (A~I - A~2)A~2 

= ( ~ e&+{3t~ + ~ e&t~) ( L e&+{3ti + ~ e&ti - ~ e&+{3ti ) ~ e&+{3ti 
tl to tl to tl tl 

- ( ~ e&+{3ti + ~ e&ti) ( ~ e&+{3t~ + ~ e&t~ - ~ e&+{3t~) ~ e&+{3t~ 
tl to tl to tl tl 

= ( ~ e&+{3t~ + ~ e&<) ~ e&ti ~ e&+{3ti 
tl to to tl 

- ( ~ e&+{3ti + ~ e&ti) ~ e&t~ ~ e&+{3t~ 
tl to to tl 

Further more, we consider two categorical covariates XiI and Xi2 in the model, 

where 

and 

1 for the first classification, 

o otherwise, 

Xi2 = { 1 for the second classification, 

o otherwise, 

in this case, XiIXi2 = 0 Vi = 1,2, ... , n, which means that XiI and Xi2 are orthogonal. 

Look back to (4.1.10) to (4.1.15), where, A12 = A22 ,A13 = A33,A~2 = A;2,Ais = 
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Vmis (&) 
vtrue(&) 

Vmis (,61) 

vtrue(,6d 

Vmis (,62) 

vtrUe(,62) 

A22A33 A' A' A' A' A'2 A' A'2 11 22 33 - 22 13 - 33 12 

2 2
X 

A'A' AllA22A33 - A22 A13 - A33A12 22 33 

A~1 - A~3 - A~2 
All - A13 - A12 

(4.2.20) 

A A A2 A' A' A' A' A'2 A' A'2 11 33 - 13 11 22 33 - 22 13 - 33 12 

AllA22A33 - A22Ar3 - A33Ar2 X . A~1 A~3 - A~~ 
(All - AI3)(A~IA~2 - A~2A~3 - A~~) 
(A~1 - A~3)(AllAI2 - A12A13 - Ar2) 

(4.2.21) 

A A A2 A' A' A' A' A'2 A' A'2 11 22 - 12 II 22 33 - 22 13 - 33 12 

AllA22A33 - A22Ar3 - A33Ar2 X A~1 A~2 - A~~ 
(All - AI2)(A~IA~3 - A~2A~3 - A~~) 
(A~1 - A~2)(AllAI3 ~ A12A13 - Ar3) (4.2.22) 

Denote ilO = {i : XiI = l},iol = {i : Xi2 = l},ioo = {i : XiI = 0 & Xi2 = O}, from 

(4.2.20), we have 

n n n 

= L Ei2(ti - t~) - L XilEdti - t~) - L Xi2Edti - tD 
i=1 i=1 i=1 

n 

= L eO:+Xil.Bl +Xi2.B2 (ti - tD (1 - XiI - Xi2) 
i=1 

iaa 
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From (4.2.21), we have 

= (A~l - A~3)(Au - A12 - A13)A12 - (Au - A13)(A~1 - A~2 - A~3)A~2 

= (~eMfht~ + ~ e&t~) ~ e&ti ~ e&+i'hti 
tIO too too t 10 

- ( ~ e&+t31 ti + 'L e&ti) ~ e&t~ ~ eMt31t~ 
tlO too too tlO 

ilO ilO ioo ioo ioo ilO 

from which, we see, Vmis (,61 ) < vtrue(/3r). 

From (4.2.22), by symmetry, it is easily to show that 

Consider p = k categorical covariates in the model, in this case, we let 

_ { 1 for the j-th classification, j = 1,2, ... , k, 
Xij -

o otherwise. 

The corresponding variances are 

h Aj h Ak 
... , Vmis (f3j ) = A' ... , Vmis (f3k) = A 

(4.2.23) 

and 

h A;2A~3 ... A~k h A~ hA'· h A~ 
vtrue(a) = A' ; vtrue(,61) = A" ... , vtrue(f3j ) = .;{" ... , vtrue(f3k) = A" 

(4.2.24) 
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where 

A" = AUA22A33" . A""A "+2 "+2' .. A k+ 1 k+1 J JJ J ,J , 

- A33A44' .. A""A "+2 "+2' .. A k+ 1 k+1 A2 
JJ J ,J ,12 

- A22A33 ... A""A "+3 "+3' .. A k + 1 k+1 A2 " JJ J ,J ,1,J+2 

A' A' A' A' A' A' A' A' A'2 = U 22 33'" k+1,k+1 - 33 44'" k+1,k+1 12 

A' A' A' A'2 A' A' A' A'2 - 22 44'" k+1,k+1 13 - ... - 22 33'" kk 1,k+1 
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A' A' A' A' A' A' A' A' A'2 1 = 11 33 44'" k+1,k+1 - 44 55'" k+1,k+1 13 

A' A' A' A'2 A' A' A' A'2 - 33 55'" k+1,k+1 14 - ... - 33 44'" kk l,k+1 

A' A' A' A' A' A'2 - 33 44'" jj j+2,j+2'" k+1,k+1 12 

A' A' A' A' A' A'2 - ... - 22 33'" . -1 . -1 . 2' 2'" k k 1 l' J ,J J+ ,J+ +1, + J 

A' A' A' A' A' A'2 - 22 33'" jj j+3,j+3'" k+1,k+1 l,j+2 

A' A' A' A' A' A'2 - . . . - 22 33'" .. . 2 . 2'" kk 1 k 1 JJ J+ ,J+ , + 

A' A' A' A' A' A' A' A' A'2 k = 11 22 33'" kk - 33 44'" kk 12 

A' A' A' A'2 A' A' A' A'2 - 22 44'" kk 13 - ... - 22 33'" k-1 k-1 1k , 

and 
n n n 

Au = L Eikti' A1,j+1 = L xijEikti = Aj+1,j+1 = L X;jEikti' 
i=l i=l i=l 

n n n 

A~l = L Eikt~, A~,j+1 = L xijEikt~ = Aj+1,j+1 = L X;jEikt~, 
i=l i=l i=l 

for j = 1,2··· ,k. Where, Eik = e&+Xil/h+xi2!~2+·+XihJ~k. These structures of variance 

in k categorical case were obtained from p = 1, p = 2 cases, especially from p = 3 

with the Block partition shown in Section 2.4 used. 

Then we have 

Vmis (&) 
vtrue( &) 

A22A33 ... Ak+1,k+1 A' 
= A x AIA' A' 

22 33'" k+1,k+1 
A~l - A~2 - A~3 - ... - A~,k+1 

All - A12 - A 13 - ... - A1,k+1 
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Denote i lO ... O = {i : XiI = I}, iOlO ... O = {i : Xi2 = I}"" ,iOO ... lO ... O = {i : Xij 

I}, . .. ,io ... Ql = {i : Xik = I}, i oo ... o = {i : Xil = 0, Xi2 = 0, . .. ,Xik = O}, we have 

n n 

= ~ Eik(ti - t~) - ~ Xi1Eik(ti - t~) 
i=l i=l 

n n 

- L Xi2 E ik(ti - <) - ... - L XikEik(ti - <) 
i=l i=l 

n 

= L e')+Xil.Bl+Xi2.B2+"+Xik.Bk(ti - t~)(l - XiI - Xi2 - ... - Xik) 
i=l 

ioo ... o 

From (4.2.23) and (4.2.24), we have 

(All - A12 - A 13 - ... - A1,k+l)A1j 

(A~l - A~2 - A~3 - ... - A~ k+l)A~2 
x AI AI AI AI ' AI 

II - 12 - ... - 1j - 1,j+2 - ... - 1,k+1 

(4.2.25) 

(All - A12 - ... - A 1j - A 1,j+2 - ... - Al,k+l)(A~l - A~2 - A~3 - ... - A~,k+l)A~j 

(AI - AI - ... - AI . - AI. - ... - AI )(All - A12 - A 13 - ... - Al k+l)A1·' 11 12 I) 1,)+2 l,k+l , ) 
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from which, we have 

(A~l-A~2-' .. - A~j-A~,j+2-' .. - A~,k+1)(All-A 12- A 13-· .. - A l ,k+1)Alj 

- (All - A12 - ... - A lj - A l ,j+2 - ... - Al,k+1)(A~l - A~2 - A~3 - ... - A~,k+1)A~j 

= (. ~ eo:+/3
j t~+.~ e&<) .~ e&ti . ~ eo:+/3

j 
ti 

too ... lQ .. ·o too···o too···o toO···lQ···O 

- (. ~ eO:+/3jti+.~ e&ti) .~ e&t~ . ~ eo:+/3jt~ 
tOO···lO···O too···o too···o too···lQ···o 

ioo···lQ···o 

(4.2.26) 

for j = 1,2"" , k. We have demonstrated that Vmis (&) < vtrue(&) and Vmis(~j) < 

vtrue(~j),j = 1,2,,,, ,p, hold at p = 0,1,2. Assume this is true for p = k, then 

consider p = k + 1 where we have 

and 

Vmis(~j) 
vtrue(~j) 

Vmis (&) 
vtrue(&) 

A~l - A~2 - A~3 - ... - A~,k+2 

All - A12 - A13 - ... - A l ,k+2 
(4.2.27) 

(All - A12 - ... - A lj - A l ,j+2 - ... - Al,k+2)(A~1 - A~2 - A~3 - ... - A~,k+2)A~j 

(A' - A' - ... A' . - A'. - ... - A' ) (All - A12 - A13 - ... - Al k+2)Al · ' 11 12 lJ 1,J+2 1,k+2 , J 

(4.2.28) 

for j = 1, 2, ... , k + 1. 
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From (4.2.27) we have 

n 

= ~ e&+Xil.61+Xi2.62+'+Xik.6k+Xi,k+1.6k+1(ti - tD(1- XiI - Xi2 - ... - Xik - Xi,k+1) 

i=l 
n 

= [~eMXi1.61 +Xi2.62 + .. +Xik.6k (ti - tD (1 - Xil - Xi2 - ... - Xik)] I {i : Xi,k+1=O} 
i=l 

= ~ e&(ti - t~)I{i : Xi,k+I=O} [by the assumption] 
ioo .. ·o 

ioo·.·oo 

where ioo ... oo = {i : XiI = 0, Xi2 = 0,· .. , Xik = 0, Xi,k+1 = O}. 

Also from (4.2.28) it is easy to show 

(A~I-A~2-' .. - A~j-A~,j+2-' . . -A~,k+2)(Au-A12-A13-· . . -AI,k+2)A1j 

- (Au - A12 - ... - A lj - A I,j+2 - ... - Al,k+2)(A~1 - A~2 - A~3 - ... - A~,k+2)A~j 

= [(A~l - A~2-' .. - A~j-A~,j+2 - ... - A~,k+1) (Au-Al2 - A13 - ... - AI,k+I)Alj 

-(Au -A12-·· ·-A1j -A1,j+2-·· .-AI,k+1)(A~I-A~2-A~3-·· .-A~,k+l)A~j] I{i: Xi,k+1 = O} 

= [. ~ eM.6jti. ~ eM.6jt~.~ e&(ti -<) 
100···10···0 100···10 .. ·0 100···0 

+ .~ e&ti .~ e&t~. ~ e&+.6j (ti - t~)] I{i: Xi,k+l = O} [by the assumption] 
100·.·0 100···0 100·· ·10···0 

iOO···1O···00 iOO···1O···00 ioo .. ·oo ioo···oo ioo· .. oo iOO···1O···00 

From the Principle ofInduction, we have proved that Vmis (&) < vtrue(&) and Vmis (/3j) < 

vtrue (/3j) hold for the categorical covariates case. 

Suppose p becomes large in such a way that p ::; n. Then we need to guarantee 

that the observed (p + 1) x (p + 1) information matrices (including XiO == 1) are 
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invertible. This will be the case if they are of full column rank. But in the case of 

a categorical variable, the structure of the information matrix involved comprises a 

principal diagonal, a first row and a first column (see next section). Such a matrix 

may be shown to be of full column rank (and hence possess an inverse which can 

in this case be calculated in closed form) provided there is at least one observation 

per category. We note in passing that any continuous covariate can be represented 

in p ::; n categories and hence for such a representation of a continuous covariate we 

4.3 Information Matrix 

4.3.1 Derivation of Information Matrix 

In Sections 3.7 and 3.8, only the observed information matrix J[ol(a,,6) was found. 

In this section, let us try to find the expected information matrix I(a,f3). 

The primary use of I( a, (3) is for design purpose; the matrix I-I (a, (3) at specified 

values of a and f3 can be used to estimate the precision of estimators based on a given 

sample size and censoring pattern. 

For the sake of simplicity, let us denote the vector of parameters, a and f3, by 8, 

so that (j is a vector of maximum likelihood estimates. Let us also denote by U(8) 

the vector of the first derivatives (called the efficient scores), we know that U(8) is 

asymptotically distributed as N[O,I-I(8)]. The expected information matrix, I(8), 

is such that the (j, k )-th element is 
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For the observed information matrix 1[0] (0) evaluated at 8 and the expected in­

formation matrix I(O), we do know that 

lim E [1[0] (8)] = I( 0) 
n--->oo 

and 

lim V [1[0] (8)] = O. 
n--->oo 

In other words, 1[0] (8)/n is a consistent estimator of I(O)/n. 

Usually, the Fisher information matrix I( 0) = E [1[0] (0)] is not available unless 

the censoring process is fully specified, but, we know that it is not possible to observe 

fixed censoring time for all individuals when interval censoring is present in the data. 

For this reason, we can find the observed information matrix instead. Actually, we 

have found them. However, for the exponential regression model we still want to find 

a form of expected information matrix I(O). 

Let us look back to the second partial derivatives obtained in the Section 3.8 in 

Chapter 3. For simplicity, we would consider (3.8.27), (3.8.28) and (3.8.29), which 

were got by using the first order term approximation of ~. Taking the expectation 

on these three second derivatives, we have the expected information matrix in form: 

where E(t~) = E [Oitr,k_l +(l-oi)tf], tr,k-l are fixed, Oi and tf are linked to the specified 

censoring process. Clearly, it is not easy to obtain this expectation. However, since 

t~ implies any time, so we may let it be some time ti, then 
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therefore 

I(a, (3) = 

Especially, if Xi is p categorical covariates, we have 

where nj = 2:~=1 Xij for j = 1,2,··· ,p. The inverse of I(a, (3) above, after some 

direct algebras, is 

[ ]

-1 1 
I(a, (3) = ([y .)( _ 2:P .) X 

j=l nJ n j=l nJ 

I1~=1 nj - I1~=1 nj - I1~=1 nj 

- I1~=1 nj (I1#1 nj)(n - 2:#1 nj) I1~=1 nj 

- I1~=1 nj I1~=1 nj (I1#2 nj)(n - 2:#2 nj) 

When p = 1, the (4.3.29) becomes 
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- I1~=1 nj 

I1~=1 nj 

I1~=1 nj 

(I1#p nj)(n - 2:#p nj) 

(4.3.29) 



Thus 

(4.3.30) 

(4.3.31) 

The above analysis is an approximation and other lines of attack are possible in which 

E(tD = E[Oitt,k_l +(l-oi)ti] where this time E[Oit;,k_l] is treated as a constant (i.e., 

as part of the fixed schedule) and E[(l- oi)ti] is replaced by the future expectation 

of the censored exponential random variable, i.e., by (1 - oi)[ti + l/A(ti)] whence 

L = Lu +Lc. 

4.3.2 Hypothesis Testing 

Lets now discuss possible hypothesis testing procedures. Usually, we would be inter-

ested in testing 

Ho : e = eo Vs H1 : e =I- eo. 

Popular hypothesis tests are the likelihood ratio test, score test and Wald test, and 

we now describe each one briefly. 

In general, a likelihood ratio test is test given by the critical region C of the form 

{ 
L(Ho)} 

C = X: A = L(H
1

) < k , 

for some constant k (the value of k is determined by fixing the size a of the test, so 

that P(X E CI Ho = a)). The likelihood ratio test statistic in our case is 

( 
L(eo) ) 

-210g maxeL(e) 

and we know that this is asymptotically distributed as X~ under Ho. 
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Both Wald test and score test assume that {j rv N [e ,I-I (e)]. The Wald test 

statistic is 

if Ho : e = 0 then W = (j' [1-1 ({j)] {j and under Ho, W is asymptotically distributed 

2 
as Xp' 

The Score test statistic is 

which is also asymptotically distributed as X; under Ho. 

In all three tests, the calculated value of the test statistic would be compared to 

the tabulated value, and rejection or non-rejection of Ho would follow accordingly. 

We would like be very interested in comparing the pseudo and the true likelihood 

with regard to the significance of parameters. This analysis has been carried out in 

the simulation study and the real data study. 
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Chapter 5 

Simulation Study 

Simulation is a technique for performing sampling experiments on the model of the 

system. The experiments are calculated using a computer model rather than on the 

real system as the latter would be inconvenient, expensive and time consuming. The 

simulated experiments should be based on statistical theory (Hillier and Lieberman 

(1995)). 

In this thesis, a simulation study was conducted to evaluate the finite sample 

performance of the pseudo and true models by estimating the bias and precision of 

the MLEs in the exponential distribution with covariate. The simulation will be 

data directed based on an age-related macular disease (ARMD) study by Hart et al. 

(2002). The goal is to quantify the degree to which inference about the parameters 

differs in the models, especially to check the results of the analytical work obtained in 

Section 4.2, and the relationship between the observed information and the expected 

information in Section 4.3 in the interval censored setting. 
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5.1 Simulation Settings 

5.1.1 Generation of the Exponential Regression Model 

Simulation involves generating vector U = (Ul, U2, ... , Un) using random number 

generator with Ui rv Uniform(O,l) and then using the inverse function to find t = 

F(t; a, {3, x) = 1 - S(t; a, (3, x), 

where F(t;a,{3,x) = U rv Uniform(O,l) and S(t;a,{3,x) is the survival function of 

exponential regression model with parameters a and {3 and covariate x. Then 

from which 

t. = -loge(l - Ui) 
2 ea+x i/3 

Thus, we obtain a random sample of observations from the density of the exponential 

regression with pre-specified values of parameters a and {3 and Xi, i = 1,2, ... , n, is 

set to take values ° and 1, say. We then use both the pseudo and the true likelihood 

to analyze the data. By varying the sample size, percentage of observations right 

censored, the range of parameters, the scheduled inspection times and the points 

(mid or end) of the interval, we can study how inference on parameters is affected by 

the use of a pseudo-likelihood. 

5.1.2 Parametric Settings 

To set the simulation, we should handle some key points as follows: 
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1. Dealing with the inspection times 

The object (3.1.1) shown in Chapter 3 is called the schedule, which fixes the 

inspection times of patients. It is all idealistic object. Patients are humans and do 

not observe the schedule, in reality, every patient has his own pattern of attendance 

in the study. Many may come a few days/weeks earlier or later, e.g. ARMD study. 

Finkelstein (1986) argued that the same fixed follow-up schedule was required for each 

individual and this approach was echoed by Collett (2003). However, this approach 

does not respect everyday experience in clinical trials where, typically, individuals 

do not observe the fixed follow-up schedule. Accordingly, this restrictive assumption 

was relaxed. We have allowed for this in our simulation study, by adding a normally 

distributed component to each inspection time. For the i-th individual, the actual 

visit time will be (schedule time + ei) rather than the schedule. Where ei is normally 

distributed about 0 with standard deviation (J determined as follows. A maximum 

error of ± month was allowed. Thus, using the normal distribution, 6(J = 2 months 

and therefore (J = 1/3 of a month. So, ei rv N(O, 1/3) where i = 1,2, ... , n. In this 

way, for the schedule (3, 6, 12,24) in ARMD, the simulated visit time is (3,6,12,24)+ 

ei. The generated failure times ti were classified into regular and irregular intervals 

as defined above. 

As we have seen in Section 3.5, the relative performance of the estimators from 

the true likelihood depends on the widths of the intervals between inspection times. 

Therefore, we vary the frequency and regularity of inspection times within the 24 

months of follow up period. 

2. Control of censoring percentage and selection of parameters 

We let percentage of right censored times varied since it too has impact on infer-
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ence. We look at 0.05, 0.10 and 0.30. Let us now explain briefly how, for example, 

10 percent right censoring was generated. 

Consider the two sample case, Le. Xi = 0 or 1, we have 

For a fixed time t e , if ti ::; t e , we let the corresponding ti be uncensored (meaning 

an event in pseudo-likelihood, and interval censored in the true likelihood) so that 

the indicator Oi = 1. If ti > t e , the corresponding ti is said to be right censored (Le. 

Oi = 0). Then the probability of right censored pis 

Let p = 0.10, we have 

then 

0.10 = exp( -e",+OX,Bte ) 

0.10 = exp( -e",+1 X,Bte ) , 

(5.1.1) 

Thus, for the selected value of f3 we can get the corresponding value of a by solving 

equation (5.1.1). This procedure can never guarantee exactly 10 percent of right 

censoring, but in all cases it will be very close. For our data directed simulation, 

te = 24 is used, where we assumed a Type I censoring process. 

3. Technical settings for the true likelihood 

Let &(0) be log [2:t:-eI",~~ti] , the approximate (and an exact in the case of a pseudo­

likelihood) maximum likelihood estimate of a; and let & be the true maximum like-
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lihood estimate of a. This notation is somewhat inconsistent with that used so far, 

but will serve the purpose of providing clearer understanding. 

Lets expand 8£true(&,f3) about a/D) 
8a ' 

(5.1.2) 

we know that a satisfies O£true(&,f3) = 0 so 
8a ' 

8.etrue ( &(0), fJ) + ~ ~ 8n.etrue [8.etrue ( &(0), fJ)] [& _ &(0)] n = 0, 
8a ~n! 8an 8a 

t=l 

from this, we would need to express & as 

& = &(0) _ B , 

where B is bias. But it is not possible to see if (5.1.2) is invertible, so we cannot 

obtain the bias in its closed form. Therefore, we make the following approximation, 

on which the Newton-Raphson iterative method is based 

from which 
O£true (&(0) ,(3) 

A _ A(O) _ 8a 
a - a 82£true(c,(0) ,(3) (5.1.3) 

. &a2 

This is the iterative process of the Newton-Raphson (N-R) method. The RHS of 

(5.1.3) will yield the second approximation, a(1), to a. The iterative process, with each 

step using an improved estimate, is continued until we get desired accuracy, i.e. until 

our approximations converge to &, which could be checked by assessing the relative 

change in the log-likelihood. A useful "bonus" of the N-R method is that, upon 
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convergence, the approximate variance-covariance matrix of parameter estimates can 

be obtained by inverting the corresponding observed information matrix. 

The last term of (5.1.3) is the approximate bias for a which can be found by 

evaluating the derivatives (already found) at &(0). Similarly, we can obtained the 

approximate expression between {J and (J(O). 

However, caution is required when employing N-R method to the true likelihood. 

Several requirements are needed to ensure that we get true convergence. Firstly, 

the starting points (&<O),{J(O») should be reasonably close to (a,{J). Since (&<O),{J(O») 

are the same as the exact estimators from pseudo-likelihood (a, {J)mis, then we used 

(a, {J)mis as the starting points to the (a, (J) from true likelihood. And secondly, the 

log-likelihood should be approximately quadratic in vicinity of (a,{J). Otherwise, we 

may observe convergence to a local maximum, or not observe convergence at all. 

In addition, to avoid infinity appearing in the log true likelihood due to 1 -

S(t:k) / S(t:,k_l) '::::' 0, we set S(t:k) / S(t:,k_l) = 0.999 a constant when S(t:k) / S(t:,k_l) > 

0.999 in the simulation. 

Based on the things involved in the simulation discussed above, the following 

simulation settings were chosen to be varied simultaneously 

(a) Sample size: n = 100,200,500; 

(b) Approximate percentage of right censored times: p = 0.05,0.10,0.30; 

(c) Scheduled inspection times (in months): (3,6,12,24) and (3,6,9,12,15,18,21,24); 

(d) 1.0 : 0.1 or a = log(Ao) : -2.3026; 

(e) (J : 0.668, -0.0807, -1.27. 
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5.1.3 Computational Methods 

As mentioned previously, end points or mid points of the observed intervals are treated 

as if they were exact failure times and are analyzed using the pseudo-likelihood. The 

results are compared with those obtained using the true likelihood which utilizes the 

interval information directly. Interest was focused on the treatment effect (3 rather 

than the scale parameter Ao = exp(a). 

Therefore, the use of these two likelihoods enables one investigate the effect of 

mis-specification for any survival model which has a closed form survivor function. In 

this situation, the exponential regression distribution was investigated. The observed 

inspection times rather than the scheduled times were used in both likelihoods. 

As a simulation size of N = 1000 iterations was used, the estimates of the pa­

rameter a and {3 were expected to be Normally distributed, according to the classical 

asymptotic theory. Thus, one may compare the estimate of the parameter and its 

variances between pseudo and the true likelihood models. 

The variances were compared by computing the ratio, of the variance obtained 

from the pseudo-likelihood and the true likelihood. When the ratio is less than 1, the 

variance obtained from the pseudo likelihood is less than that obtained from the true 

likelihood, i.e., it is artificially precise. 

The Mean Square Error (MSE) for a, (3 was calculated as follows 

MSE( a, (3) = Var( a, (3) + (Bias( a, (3)) 2, 

where the bias is defined as 

Bias(a,{3) = (&,~) - (a,{3), 
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where & and /3 are expectations of MLEs. If, MSE( a,,6) = Var( a, (3), then the bias 

is zero, otherwise the bias was calculated as 

Bias(a,(3) = V(Bias(a,(3))2 = JMSE(a,(3) - Var(a,(3). 

5.2 Results of Simulation 

Programmes for simulations were created in R and one such program is presented in 

Appendix A where the procedure for calculating different components is explained in 

detail. The results of simulation with the end points used in the pseudo-ikelihood are 

listed in Table 5.1, Table 5.2, Table 5.3 and Table 5.4. 

5.3 Findings 

We already know that, in general, the performance of estimators is better with larger 

sample size and smaller percentage of right censored times. This is true for the 

estimate on (3 in our investigation, but for a, its performance was not affected by the 

censoring rate due to our regulation of censoring rate control. 

It seemed reasonable to assess the performance of estimators within each schedule 

of inspection times in order to get more insight into the effects of the frequency 

and regularity of inspection times. And within the two schedules, it was decided 

to investigate not the absolute performance of the MLEs from the two likelihoods, 

though this is certainly of great importance too, but the difference between the two. 

For the sake of outlining the adopted approach as clearly as possible, let us consider 

the assessment of MLEs of a from the two likelihoods for the two schedules. To this 
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Table 5.1: The maximum likelihood estimates when p 0.05, Ao 0.1 or ex 

log(Ao) = -2.3026, (3 = 0.668. 

Scheduled inspection times (in months) 

Values ( 3, 6, 12, 24 ) ( 3, 6, 9, 12, 15, 18, 21, 24 ) 

n 100 200 500 100 200 500 

amis -2.5876 -2.5895 -2.5938 -2.4486 -2.4515 -2.4500 

extTUC -2.294,5 -2.2980 -2.3040 -2.2969 -2.3012 -2.3000 

f31nis 0.5385 0.5399 0.5421 0.5385 0.5399 0.5319 

/3tTUC 0.6677 0.6696 0.6718 0.6741 0.6773 0.6661 

V;nis(a) 0.0220 0.0110 0.0044 0.0220 0.0110 0.0044 

l-'tnLe( a) 0.0229 0.0114 0.0046 0.0222 0.0111 0.0044 

1/;nis(/3) 0.0422 0.0211 0.0084 0.0422 0.0211 0.0084 

VtTue(/3) 0.0448 0.0224 0.0089 0.0430 0.0215 0.0086 

lVISEmis ( a) 0.1032 0.0933 0.0892 0.0433 0.0332 0.0261 

.MSEtTue ( a) 0.0230 0.0115 0.0046 0.0222 0.0111 0.0044 

lVISEmis (/3) 0.0589 0.0374 0.0242 0.0594 0.0374 0.0269 

lVISEtnteCB) 0.0448 0.0224 0.0089 0.0431 0.0216 0.0086 

aim, we wish to test the hypotheses Ho : E(atTUe) = E(amis) vs. Ha: E(atTue) =1= 

E(amis). We first define the difference as &tTue - &mis, where &tTue is the mean of the 

1000 x 1 vector of true likelihood values of ex for each simulation of the two schedules 

in Table 5.1, Table 5.2 and Table 5.3. Similarly for &mis. We then perform a paired 

t-test on this difference to see whether there is sufficient evidence for or against the 

null hypothesis of zero difference. 

Since all the p-values with respect to the 18 paired t-tests (at 5 percent significance 

level) on the difference between the MLEs of ex from the two likelihoods are less than 

2.2e-16
, we can see that the null hypothesis: Ho : E(atTue) = E(amis) was rejected. 
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Table 5.2: The maximum likelihood estimates when ]J 0.10, Ao 0.1 01' CY 

log(Ao) = -2.3026, (3 = -0.0807. 

Scheduled inspection times (in months) 

Values ( 3, 6, 12, 24 ) ( 3, 6, 9, 12, 15, 18, 21, 24 ) 

n 100 200 500 100 200 500 

&mis -2.5876 -2.5895 -2.5938 -2.4486 -2.4515 -2.4500 

&tr1te -2.2945 -2.2980 -2.3040 -2.2969 -2.3012 -2.3000 

!3mis -0.0702 -0.0652 -0.0633 -0.0693 -0.0651 -0.0726 

j3lr1te -0.0867 -0.0809 -0.0776 -0.0806 -0.0758 -0.0844 

I7mis (&) 0.0220 0.0110 0.0044 0.0220 0.0110 0.0044 

1"tT1!e(&) 0.0229 0.0114 0.0046 0.0222 0.0111 0.0044 

1!;nis (/3) 0.0446 0.0223 0.0089 0.0445 0.0222 0.0089 

Vtr1te(/3) 0.0463 0.0231 0.0092 0.0449 0.0224 0.0090 

lVISEmis ( &) 0.1032 0.0933 0.0892 0.0433 0.0332 0.0261 

NISEtrue (&) 0.0230 0.0115 0.0046 0.0222 0.0111 0.0044 

IVlSEmis (/3) 0.0447 0.0225 0.0092 0.0447 0.0225 0.0090 

MSEtT1!e (/3) 0.0463 0.0231 0.0092 0.0449 0.0224 0.0090 

We concluded that there is sufficient evidence to suggest that there is a difference 

between E(&tr1te) and E(&mis). 

The procedure is the same for the two schedules, as well as for analyzing Ho : 

E(/3tr1te) = E(/3mis)' We found that there is also sufficient evidence to suggest that 

there is a difference between E(/3true) and E(/3mis) since all the p-values with respect 

to the 18 paired t-tests (at 5 percent significance level) on the difference between the 

MLEs of (3 from the two likelihoods are also less than 2.2e-16 . 

Another important comment that needs to be made is that of lack of consistency 

shown by &mis as estimator of CY. It is clear from both schedules, that &mis does not 
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Table 5.3: The maximum likelihood esti17wtes when p 0.30, Ao 0.1 or a 

log(Ao) = -2.3026,{1 = -1.27. 

Scheduled inspection times (in months) 

Values ( 3, 6, 12, 24 ) ( 3, 6, 9, 12, 15, 18, 21, 24 ) 

n 100 200 500 100 200 500 

amis -2.5876 -2.5895 -2.5938 -2.4486 -2.4515 -2.4500 

atrue -2.2945 -2.2980 -2.3040 -2.2969 -2.3012 -2.2300 

i3111is -1.1004 -1.0885 -1.0839 -1.1728 -1.1644 -1.1684 

/3t'1"LLe -1.2868 -1.2736 -1.2677 -1.2810 -1.2715 -1.2757 

V;nis( a) 0.0220 0.0110 0.0044 0.0220 0.0110 0.0044 

1;frue( a) 0.0229 0.0114 0.0046 0.0222 0.0111 0.0044 

~nis(lJ) 0.0637 0.0315 0.0126 0.0636 0.0316 0.0126 

Vtrue(,fJ) 0.0647 0.0321 0.0128 0.0636 0.0317 0.0126 

MSEmis(a) 0.1032 0.0933 0.0892 0.0433 0.0332 0.0261 

IvISEtrue (a) 0.0230 0.0115 0.0046 0.0222 0.0111 0.0044 

MSEmis (/3) 0.0921 0.0641 0.0468 0.0729 0.0425 0.0227 

MSEtrue(/J) 0.0651 0.0321 0.0128 0.0640 0.0317 0.0127 

approch a as n increases. 

In Section 4.2, we have shown that the MLEs from pseudo-likelihood have smaller 

variance than MLEs from the true likelihood. Here we also have ;;;7niS((~)) < 1 and 
vtrue Q 

~:::~ < 1. Further, one sample t-tests (5 percent significance level) on log (~:::~~) 

and log (~:::~) have been carried out for each schedule to check whether or not the 

differences between them are significant. The results are accordant to what was ex-

pected; there is significant evidence that the variances ofMLEs from pseudo-likelihood 

are not equal to those from the true likelihood for both schedules, where the Null: 

log(~:::~~) = 0 or log(~:::~) = 0 was rejected because all the p-values of these 
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Table 5.4: VaTiance compaTisons jTOm the tme likelihood and jTOm FisheT injoTmation 

with laTge sample size. 

Scheduled inspection times (in months) 

Values ( 3, 6, 12, 24 ) ( 3, 6, 9, 12, 15, 18, 21, 24 ) 

n 100 200 500 100 200 500 

V(a) 0.0200 0.0100 0.0040 0.0200 0.0100 0.0040 

(vt?'1w(&) - V(a))0.05 0.0029 0.0014 0.0006 0.0022 0.0011 0.0004 

(l!true(&) - V(a))O.lO 0.0029 0.0014 0.0006 0.0022 0.0011 0.0004 

(vtTue(&) - V(a))0.30 0.0029 0.0014 0.0006 0.0022 0.0011 0.0004 

V(p) 0.0400 0.0200 0.0080 0.0400 0.0200 0.0080 

(vtrue (/3) - V (p) )0.05 0.0048 0.0024 0.0009 0.0030 0.0015 0.0006 

(1!t,·ue (/3) - V (p) )0.10 0.0063 0.0031 0.0012 0.0049 0.0024 0.0010 

(1!tTue(/J) - V(P))0.30 0.0248 0.0121 0.0048 0.0238 0.0117 0.0046 

tests are less than 2.2e-16 . 

Look at Table 5.1 to Table 5.3 again, we found that even though both ratios 

~mis«~)) and ~mis«(3(3)) are less than 1, but MSEtTue (&) < MSEmis (&) and MSEtrue (/3) < 
Vtrue a vtrue 

MSEmis(/J) , and from (5.1.3) we know that Bias(a, P) from the true likelihood were 

less than that from the pseudo-likelihood which means that the MLEs from the true 

likelihood are more accurate. Throughout the simulation, Tables 5.1-5.3, the bias in 

the parameter (a, p) were relatively invariant to an increasing censoring rate in the 

true likelihood. 

Figure 5.1 showed the distribution of the estimated parameters which are nearly 

normal ones. Look at Table 5.4, the estimated variances from the true likelihood are 

close to their theoretical values (obtained from Fisher information matrix by using the 

forms (4.3.30) and (4.3.31)). This confirmed that the expected information matrix 
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Figure 5.1: The histograms of estimated parameters. 

derived in Section 4.3 is reasonable. 

In conclusion, the results show that the conjecture, that the likelihood leads to 

over-precise estimates is true for the the exponential regression model and for both 

schedules, regular or irregular. The simulation results support the theoretical work 

that has been presented in Chapter 4. 

There are strong evidence to show the significant difference between the MLEs 

and the variances from both likelihoods and for both schedules, regular or irregular. 

The tests relied on the usual standard errors available from a numerical estimate of 

the inverse of the observed information matrix. 

From Table 5.lto Table 5.3 we noted that estimate under a frequent and regular 
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schedule is better than a rare and irregular schedule. 

It is, however, true that the use of the proposed form of the true likelihood, led, 

when the model performed satisfactorily, to results which were better in terms of 

precision and bias. Overall, the true likelihood is to be preferred. 

Also we used mid points in the pseudo-likelihood to do the simulation, and found 

that all the conclusions are the same as those obtained by using the end points in the 

pseudo-likelihood above (The corresponding results are not shown in the thesis), but, 

estimators of pseudo-likelihood with the mid points used are more accurate than the 

estimators with the end points used. 
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Chapter 6 

Application 

In this chapter, we demonstrate the proposed estimation procedures by applying 

it to a set of interval-censored data obtained from an age-related macular disease 

(ARMD) study (Hart et al. (2002)). The original objective of the study was to 

determine whether teletherapy with 6-m V photons (Population 1, 101 patients) can 

reduce visual loss in patients with subfoveal choroidal nerovascularization in ARMD. 

Our R codes for computation are in Appendix B. 

6.1 Description of Data 

Two hundred and three patients were randomly assigned to radiotherapy or obser­

vation. Treatment was undertaken at designed radiotherapy centers and patients 

assigned to the treatment group received a total dosage of 12-Gy of 6-m V photons 

in 6 fractions. Follow-up was scheduled at 3, 6, 12 and 24 months. After excluding 

protocol violators, the data from 199 patients were analyzed. 

The primary outcome measure was the loss of distance visual acuity in the study 

eye at 12 and 24 months. Other clinical outcomes of importance were the time to 
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loss of 3 or more or 6 or more lines of distance visual acuity from baseline. Here we 

keep the same notations given in Hart et al. (2002), see Table 6.1. 

Variables 

tlost3 

slost3 

event 3 

tlost6 

slost6 

event6 

rx 

Table 6.1: Description of variables. 

Interpretation 

end of the interval in which 3 lines were lost 

beginning of the interval in which 3 lines were lost 

event indicator (1=3 lines lost, 0= 3 lines not lost) 

end of the interval in which 6 lines were lost 

beginning of the interval in which 6 lines were lost 

event indicator (1=6 lines lost, 0=6 lines not lost) 

treatment indicator (l=teletherapy, O=control) 

6.2 Results of Analysis 

Step 1. Graphical checking for the distribution 

Graphical method is an intuitive way to check whether the real data follow some 

parametric distribution. In survival analysis, the graphical checking is to obtain the 

Kaplan-Meier estimate S(t) and plot it against t or a suitable function of t, in order to 

see if it takes nearly the same shape as assumed model survivor function S(t). Some 

diagnostic graphs can be derived for some distributions by examining the specific 

form of S(t) in each case. Table 6.2 lists some of these. In all cases, S(t) refers to the 

model based estimator. We denote <p(z) as the standard normal distribution function. 

For example, for the exponential distribution, we know that 

S(t) = e-At and lnS(t) = -At, t> 0, (6.2.1) 
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this means that a scatter plot of the values of InS(t) against x = t should give a 

straight line if the assumption of an exponential distribution is correct. 

Table 6.2: Useful functions for graphic diagnosis for some distTibutions. 

Distributions 

Exponential 

\i\Teibull 

Gumbel 

Log-normal 

Gamma 

Normal 

Logistic 

Log-logistic 

Pareto 

For the ARMD data, taking 

timd3 ~ { 

Functions 

In S(t) with 

In{ -In S(t)} with 

In{ -lnS'(t)} with 

<1>-1(1- S'(t)) with 

<1>-1 (1 - S(t)) with 

<1>-1(1- S(t)) vvith 
1 (l~S(t)) 
n S(!) 

with 

1 C~S(t)) n S(t) with 

In S'(t) with 

tlost3+s10st3 if event3 = 1 '2 '. 

tlost3 if event3=O, 

t 

In t 

t 
In t 

It 
t 

t 

In t 

In t 

where, we see that the mid points were used in the pseudo-likelihood since we know 

from the simulation that estimates at them are better. Making the Kaplan-Meier 

estimate on the pair (timd3, event3), we obtained the estimated survivor function 

st3 (Figure 6.1). To find a possible distribution for st3, some graphical checking was 

done. See Figure 6.2. 

From Figure 6.2, we found that an exponential distribution for the data is a 

reasonable choice. A similar procedure was performed on the pair (timd6, event6), 

and the exponential distribution was selected again. 
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Overall Survival Functions 
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Fignre 6.1: The Kaplan-Meier Estimate Curve. 

Step 2. Parametric estimate 

According to the results obtained in Chapter 3, we did the estimate by using 

the pseudo-likelihood to get the starting points for the estimation using the true 

likelihood, then we did the exact estimate. The results were listed in Table 6.3. 

For comparison, we also conducted the Cox proportional regression analysis (Cox 

and Hinkley (1974)), and the results obtained are as follows, 

## coxph(Surv(timd3, event3)-rx, data=data2) 

Call: coxph(formula =Surv(timd3, event3) - rx, data data2) 

coef exp(coef) se(coef) z p 

rx -0.0867 0.917 0.163 -0.532 0.59 
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Exponential Weibull 
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Figure 6.2: Graphical Diagnosis. 

Likelihood ratio test=0.28 on 1 df, p=0.595 n=199 (4 observations 

deleted due to missingness) 

## coxph(Surv(timd6, event6)-rx, data=data2) 

Call: coxph(formula =Surv(timd6, event6) - rx, data data2) 

coef exp(coef) se(coef) z p 

rx -0.326 0.722 0.206 -1.58 0.11 
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Table 6.3: Estimates when loss of;] and 6 lines distance. 

Estimation Loss of 3 lines Loss of 6 lines 

amis -0.1337 -0.8921 

flrnis -0.1084 -0.3448 

Cttrue -0.1072 -0.8854 

fltrlle -0.1161 -0.3483 

V;nis(a) 0.0130 0.0185 

vtrue( a) 0.0133 0.0186 

l;;nis(/3) 0.0265 0.0423 

l!frue(fl) 0.0271 0.0425 

Likelihood ratio test=2.53 on 1 df, p=O.112 n=199 (4 observations 

## deleted due to missingness) 

Looking at the estimates of parameter {3 from both methods, we found that they are 

close, and the tests showed the same conclusion that the treatment is not significant 

for the ARMD, where, we did the likelihood ratio tests for Cox PH model, and the 

Wald tests with respect to the likelihood estimates of the proposed parametric model, 

and the p-values at loss of 3 lines distance and loss of 6 lines distance were 0.78 and 

0.24 respectively. 

Also from Table 6.3 we found that the variances obtained from the true likeli-

hood are greater than that from likelihood which coincides with the results from the 

previous previous theoretical work. 

Step 3. Diagnostic checking on the assumed model 

We made the histogram on the Cox-Snell residuals to see whether the proposed 

model suitable. From Figure 6.3 we found that the proposed model was relatively 

close to the theoretical one. The calculated mean of the Cox-Snell residuals was 
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0.78, not far from the exponential distribution with mean 1. This confirms that an 

exponential assumption for the data of ARMD is reasonable. Obviously, since we can 

not use the exact data for the calculation, there must be some difference between the 

proposed model and the true model. 

Cox-Snell residuals 
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Figure 6.3: Cox-Snell Tesiduals. 

71 



Chapter 7 

Discussion 

The work carried out in this thesis can be divided into two parts. The first part dealt 

with analytical comparison and numerical comparison regarding estimators from the 

pseudo and true likelihoods. 

We have demonstrated that when the non-linear function R;, (the conditional odds 

on surviving in the interval) arising in the true likelihood is approximated by the 

first order, we get identical maximum likelihood estimates of ex or Ao and (3 as in 

the pseudo-likelihood. Thus it is reasonable to conclude that the pseudo MLEs are 

only useful as the starting values in a numerical estimation procedures for parame­

ters in the true likelihood. We then show that the pseudo-likelihood produces smaller 

variances for ~o and f3 than does the true likelihood, in the case of the exponential dis­

tribution with categorical or continuous covariates. Thus, the results obtained from 

the pseudo-likelihood are misleadingly better. Throughout the thesis, the end (or 

mid) points of the interval were used as exact times to event in the pseudo-likelihood. 

For the simple exponential case with S(t) = e-At , from (4.1.2) one can show that the 
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use of the mid point of the interval as exact time to event yields a bigger standard 

error of 5.; making it closer to the standard error of 5. obtained from the true likelihood. 

The second part, which implemented much of the theory developed in the first part, 

consisted of a simulation study which enabled a numerical comparison of the MLEs 

obtained using the two likelihoods. Due to time restriction, only a limited number 

of statistical analyses could be performed, and therefore only a partial assessment 

of the consequences on basing inference on the pseudo-likelihood was obtained. The 

difference between estimates from the two likelihoods have been analyzed by two dif­

ferent schedules of inspection times. We have demonstrated that there is significant 

evidence of difference between E(atrue) and E(amis) when the inspection times are 

frequent and regular or rare and irregular. Also Ho : E({Jtrue) - E({Jmis) = 0 was 

rejected for the two schedules. The estimates obtained from the true likelihood with 

the frequent and regular schedules are more accurate than estimates from the pseudo 

likelihood with rare and irregular schedules. 

At first sight these results are re-assuring. It seems sensible that the unwarranted 

assumptions of exactness about "time to event" should lead to artificial precision in 

the MLEs. However, it is clear that further work is required in this area and it is 

too early to assume that this will always be the case. Meanwhile the current findings 

will be of interest to the statistical community, alerting trial designers to some of the 

pitfalls associated with various aspects of this method of analysis, especially the use 

of the pseudo-likelihood. 
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The exponential result might lead one to anticipate that the finding would be a 

general property of the PH family. This can be similarly investigated by further an­

alytical work and simulation on other PH models such as the Weibull and non-PH 

models. 
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Appendix A: R Code for Exponential Distribution 

with one Binary Covariate 

## irregular schedule (3,6,12,24) 

nsim <-1000 

nsamp<-100 #nsamp=c(100,200,500) 

## control censoring rate 

p<-c(0.1,0.2,0.6) 

## given l~bda to find true beta 

lambda <- 0.1 

alpha <- log (lambda) 

f<-function (x,a)exp(-24*a*(exp(x)))+exp(-24*a)-p[1] 

str(xmin<-uniroot(f, c(-10, 10), tol = 0.0001, a = lambda)) 

beta<-xmin$root 

## matrix for storing the results 

storemis <- matrix (nrow=nsim, ncol=4) 

storetrue <- matrix (nrow=nsim, ncol=5) 

## generate the covariarte 

b<- rep(0:1, nsamp/2) 

xbeta<- alpha+b*beta 

hazard<- exp(xbeta) 

## generate the time 

set.seed(123456789) 

for (j in 1:nsim) { 

u <- runif(nsamp) 

st <- (-log(1-u))/hazard 

## generate the observed data 

e1<- rnorm(nsamp,0,1/3) 

e2<- rnorm(nsamp,0,1/3) 

e3<- rnorm(nsamp,0,1/3) 

e4<- rnorm(nsamp,0,1/3) 

to <- 0 

t3 <- 3+e1 
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t6 <- 6+e2 

t12 <- 12+e3 

t24 <- 24+e4 

## set the initial values 

stbeg <- rep(NA, nsamp) 

stmid <- rep(NA,nsamp) 

stend <- rep(NA,nsamp) 

deltai <- rep(l,nsamp) 

## get the observed values 

for (i in l:nsamp) { if (to <= st[i] & st[i] <= t3[i]) 

{stbeg[i] <- 0 

stmid[i] <- (O+t3[i])/2 

stend[i] <- t3[i]} 

else if (t3[i] < st[i] & st[i] <= t6[i]) 

{stbeg[i] <- t3[i] 

stmid[i] <- (t3[i]+t6[i])/2 

stend[i] <- t6[i]} 

else if (t6[i] < st[i] & st[i] <= t12[i]) 

{stbeg[i] <- t6[i] 

stmid[i] <- (t6[i]+t12[i])/2 

stend[i] <- t12[i]} 

else if (t12[i] < st[i] & st[i] <= t24[i]) 

{stbeg[i] <- t12[i] 

stmid[i] <- (t12[i]+t24[i])/2 

stend[i] <- t24[i]} 

else if (st[i] > t24[i]) 

{stbeg[i] <- t24[i] 

stmid[i] <- t24[i] 

stend[i] <- t24[i] 

deltai[i] <- O} 

censp<-(nsamp-sum(deltai))/nsamp # calculate censoring rate of sample 

} 

## pseudo-likelihood 
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mydata1<-cbind(stend,b,deltai) 

expmis<-function (x,mydata) 

{ 

p1<-x[1] 

p2 <-x[2] 

x<-c(p1,p2) 

stend<-mydata1[,1] 

b<-mydata1[,2] 

deltai<-mydata1[,3] 

expp <- exp(b*p2) 

hazd <- (exp(p1))*expp 

survend <- (exp(p1))*stend*expp 

logmis <- -sum(deltai* (log(hazd))-(deltai*survend)-(1-deltai) *sur vend) 

} 

resexpmis<-nlm(expmis,c(-O.1,O.1),mydata=mydata1,hessian=TRUE,print.level=1) 

fit1<-resexpmis$estimate 

hess1<-resexpmis$hessian 

cov1<-solve(hess1) 

varerr1<-diag(cov1) 

stderr1<-sqrt(diag(cov1)) 

storemis[j,1:2]<-fit1 

storemis[j,3:4]<-varerr1 

## true likelihood 

mydata2<-cbind(stbeg,stmid,stend,b,deltai) 

expture<-function(x,mydata) 

{ 

p1<-x[1] 

p2<-x[2] 

x<-c(p1,p2) 

stbeg<-mydata2[,1] 

stmid<-mydata2[,2] 

stend<-mydata2[,3] 

b<-mydata2[,4] 
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deltai<-mydata2[,5] 

expbeg<-exp(-(exp(p1+b*p2))*stbeg) 

expend<-exp(-(exp(p1+b*p2))*stend) 

expstar<-exp(-(exp(p1+b*p2))*stmid) 

r<-expend/(expbeg) 

c1 <- r 

c2<- ifelse(c1 < 0.999, c1 ,0.999) 

logtrue<--sum(deltai*(log(expbeg))+deltai*(log(1-c2)) 

+(1-deltai)*(log(expstar))) 

} 

resexptrue<-nlm(exptrue,c(fit1[1] ,fit1[2]),mydata=mydata2,hessian=TRUE) 

fit2<-resexptrue$estimate 

hess2<-resexptrue$hessian 

cov2<-solve(hess2) 

varerr2<-diag(cov2) 

stderr2<-sqrt(diag(cov2)) 

storetrue[j,1:2]<-fit2 

storetrue[j,3:4]<-varerr2 

storetrue[j,5]<-censp 

} 

## end main simulation loop above 

## store the results 

lmis<- storemis[,1] 

bmis<- storemis[,2] 

varlmis<- storemis[,3] 

varbmis<- storemis[,4] 

ltrue<- storetrue[,1] 

btrue<- storetrue[,2] 

varltrue<- storetrue[,3] 

varbtrue<- storetrue[,4] 

hatcensp<- storetrue[,5] 

## calculate the bias 

## pseudo 
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hatalpha_m<- mean(lmis) 

biaslm<- hatalpha_m - alpha 

hatvarl_m<- mean(varlmis) 

mselm<- hatvarl_m + (biaslm~2) 

hatb_m<- mean(bmis) 

biasbm<- hatb_m - beta 

hatvarb_m<- mean(varbmis) 

msebm<- hatvarb_m + (biasbm~2) 

## true 

hatalpha_t<- mean(ltrue) 

biaslt<- hatalpha_t - alpha 

hatvarl_t<- mean(varltrue) 

mselt<- hatvarl_t + (biaslt~2) 

hatb_t<- mean(btrue) 

biasbt<- hatb_t - beta 

hatvarb_t<- mean(varbtrue) 

msebt<- hatvarb_t + (biasbt~2) 

## censoring rate 

hatp<-mean(hatcensp) 

## variance from Fisher information 

fishvarl<-1/(nsamp*(1-(sum(b)/nsamp))) 

fishvarb<-1/(sum(b)*(1-(sum(b)/nsamp))) 

## calculate the differences between estimated variances 

## and inverted fisher information 

difffishl<-hatvarl_t-fishvarl 

difffishb<-hatvarb_t-fishvarb 

## list estimators and true values 

c(hatalpha_m,hatb_m,hatalpha_t,hatb_t,alpha,beta,hatp) 

## list the estimated variances and inverted Fisher information 

c(hatvarl_m,hatvarb_m,hatvarl_t,hatvarb_t, 

stovarl_m,stovarb_m, stovarl_t , stovarb_t ,fishvarl,fishv arb) 

## list the calculated mse 

c(mselm,msebm,mselt,msebt) 
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## list the differences between estimated variances and inverted 

## fisher information 

c(difffishl,difffishb) 

## hypothesis test on the estimators from two likelihoods 

t.test(x=lmis,y=ltrue,paired=T) 

t.test(x=bmis,y=btrue,paired=T) 

ratiol<-log(varlmis!varltrue) 

ratiob<-log(varbmis!varbtrue) 

t.test(ratiol) 

t.test(ratiob) 

## figures of distribution 

op <-par(mfrow = c(1, 2)) 

hist(ltrue,main=1I1I ,xlab=1I1I ,ylab=1I1I ,sub="Distribution of II) 

text(-1.9,220, expression(Std.Dev==O.15),cex=O.8) 

text(-1.9,210,expression(Mean==-2.29),cex=O.8) 

text(-1.98,200,expression(N==1000),cex=O.8) 

mtext(expression(hat(alpha)),adj=O.80,line=-29.68) 

hist(btrue,main=lIlI,xlab=lIlI, ylab=lIlI,sub=IIDistribution of II) 

text(1.2,170, expression(Std.Dev==O.21),cex=O.8) 

text(1.2,162,expression(Mean==O.67),cex=O.8) 

text(1.13,155,expression(N==1000),cex=O.8) 

mtext(expression(hat(beta)),adj=O.80,line=-29.69) 

par(op) 
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Appendix B: R code for Analysis of the Real Data 

(ARMD) in Section 6.2 

library(foreign) 

library (survival) 

data<-read. spss (II ARMD_data_peng. savll) 

data<-data.frame(data) 

dim (data) 

## get the middle pOint 

timd3<-(data[,3J+data[,4J)/2 

timd6<-(data[,6J+data[,7J)/2 

event3<-data[,5J event6<-data[,8J 

rx<-data[,9J 

is.factor(rx) 

rx<-as.numeric(rx) 

rx<-ifelse(rx==2,1,O) 

data<-cbind(data,timd3,timd6) 

names (data) 

data1<-cbind(timd3,event3,timd6,event6) 

data1<-data. frame (data1) 

timd3<-ifelse(event3==O,data[,3J,timd3) 

timd6<-ifelse(event6==O,data[,6J,timd6) 

data2<-cbind(timd3,event3,timd6,event6) 

data2<-data.frame(data2) 

## fit at timd3,overall K-M estimate 

fit3<-survfit(Surv(timd3,event3), data=data2) 

summary(fit3) 

st3<-fit3$surv 

plot(fit3,main=IIOverall Survival Functions ll , 

ylab=IICum Survival ll ,xlab=lItimd3 11
) 

## graphical checking 

op<-par(mfrow=c(2,2)) 

plot(fit3$time,log(st3),main=IIExponential ll ) 
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abline(lm(log(st3)-fit3$time),col=l red") 

plot(log(fit3$time),log(-log(st3)), main=IWeibull") 

plot(log(fit3$time),log(st3), main=IPareto") 

plot (log(fit3$time) ,log((1-st3)/st3), main=ILog-logistic") 

par(op) 

## cox proportional regression model 

coxph(Surv(timd3, 

event3)-rx,data=data2) 

## estimate by using the pseudo-likelihood 

mydata1<-cbind(timd3,rx,event3) 

mydata1<-na.omit(mydata1) 

expmis <- function (x,mydata) 

{ 

p1<-x [1J 

p2<-x [2J 

x<-c(p1,p2) 

stend<-mydata1[,1J 

b<-mydata1 [,2J 

deltai<-mydata1 [,3J 

expp <- exp(b*p2) 

hazd<-(exp(p1))*expp 

survend<- exp(p1))*stend*expp 

logmis<- -sum(deltai* (log(hazd))-(deltai*survend)-(1-deltai) *su rvend) 
} 

resexpmis<-nlm(expmis,c(O.O,O.O),mydata=mydata1,hessian=TRUE,print.level=1) 

fit1<-resexpmis$estimate 

hess1<-resexpmis$hessian 

cov1<-solve(hess1) 

stderr1<-sqrt(diag(cov1)) 

varerr1<-diag(cov1) 

##estimate by using the true likelihood 

stbeg3<-ifelse(event3==O,data[,3J,data[,4J) 

stend3<-ifelse(event3==O,data[,3J,data[,3J) 
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mydata2<-cbind(stbeg3,stend3,rx,event3) 

mydata2<-na.omit(mydata2) 

exptrue <- function (x,mydata) 

{ 

p1<-x [1] 

p2<-x [2] 

x<-c(p1,p2) 

stbeg<-rnydata2[,1] stend<-mydata2[,2] 

rx<-mydata2 [,3] 

event3<-mydata2[,4] 

expbeg <- exp(-(exp(p1+rx*p2))*stbeg) 

expend <- exp(-(exp(p1+rx*p2))*stend) 

expstar <- exp(-(exp(p1+rx*p2))*stend) 

r<-expend/(expbeg) 

c1 <- r 

c2 <- ifelse(c1 < 0.999, c1 ,0.999) 

logtrue<- -sum(event3*(log(expbeg))+event3*(log(1-c2)) 

+(1-event3)*(log(expstar))) 

} 

resexptrue<-nlm(exptrue,c(fit1[1] ,fit1[2]),mydata=mydata2,hessian=TRUE) 

fit2<-resexptrue$estimate 

hess2<-resexptrue$hessian 

cov2<-solve(hess2) 

stderr2<-sqrt(diag(cov2)) 

varerr2<-diag(cov2) 

## results list 

c(fit1[1] ,fit1[2] ,fit2[1] ,fit2[2] ,varerr1[1] ,varerr1[2] ,varerr2[1] ,varerr2[2]) 

st_hat3<-exp(-(exp(fit2[1]+(fit2[2])*(mydata2[,3])))*(mydata1[,1])) 

## Cox-Snell residual graph 

hist(-log(st_hat3),prob=T,main=IICox-Snell residuals") 

curve(dexp(x),add=T,col=lred") 

mean(-log(st_hat3)) 

## Wald test 
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wl<-((fit2[2])~2)/(varerr2[2]) 

pvaluel<-1-pchisq(wl,df=2) 

## fit at timd6 (omitted) 
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