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Abstract 

Let F be a totally real number field of degree d and let n 2': 2 be an even integer. We 
denote by W K~_2(F) the n-th motivic wild kernel of F) which acts as an analogue to 
the class group of F. Assuming the 2-adic Iwasawa Main Conjecture) we prove that 
the there are only finitely many totally real number fields F having I W K~_2 (F) I = 1 
for some even integer n 2': 2. In particular we show that there are no totally real 
number fields having trivial n-th motivic wild kernel for n 2': 6) and that there is 
precisely one totally real number field having trivial 4th motivic wild kernel) namely 
Q( y'5). We prove that all totally real number fields having trivial 2nd motivic wild 
kernel must be of degree d :::; 117 (respectively d :::; 46 under the assumption of the 
Generalized Riemann Hypothesis). Using Sage mathematical software) we enumerate 
all totally real fields of degree d < 10 having trivial 2nd motivic wild kernel) finding 21 
such fields. Under restrictions on the local properties of F) we enumerate all relevant 
fields having trivial 2nd motivic wild kernel. 

iii 



Acknow ledgements 

I would first and foremost like to thank my advisor Manfred for his limitless supply 
of patience, guidance and humour. As both mentor and friend he has had a profound 
impact on my time at McMaster and my future in mathematics. 

Thanks to Julia and Lina for always making me feel at home in Hamilton; I will 
definitely miss our movie/TV nights and your random visits to my office. Thanks as 
well to my great friends in Ottawa for their frequent trips to Hamilton and constant 
encouragement from home. 

Finally I must thank my family and ski family for all of their help, love and 
support. Thank you so much for providing me with meals, visits and much-needed 
snowboarding time. Special thanks to my parents Bonny and Don, my sister Mellen, 
and my grandmother Dot. 

iv 



Contents 

Descriptive Note 11 

Abstract ..... . 111 

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. IV 

Introduction 1 

1 Zeta Functions 6 

1.1 

1.2 

Riemann Zeta Function. 

Dedekind Zeta Function 

1.2.1 Estimating the values of the Dedekind Zeta function 

2 Cohomology 

2.1 Group Cohomology 

2.1.1 

2.1.2 

Definition of Cohomology Groups 

The Standard Complex .. 

v 

6 

7 

9 

11 

12 

12 

14 



----- ------

2.2 

2.3 

Galois Cohomology 

Etale Cohomology 

2.4 Motivic Cohomology 

2.5 Motivic Class Number Formulae. 

2.6 Totally Positive Cohomology. . . 

3 The Wild Kernel 

3.1 

3.2 

Definition of Wild Kernel . 

Poitou-Tate Duality Sequence 

4 Number Fields of Bounded Discriminant 

4.1 Odlyzko Bounds. . . . . . . . . . . . . . . 

4.2 Enumeration of Totally Real Number Fields 

4.2.1 Enumeration Process . . . . . . . . . 

5 Main Theorem 

5.1 Estimating Wn (F) 

5.2 Estimating Local Factors . 

5.3 Bounding the Root Discriminant 

5.4 Finding the Maximum Degree 

VI 

15 

16 

17 

17 

18 

22 

22 

23 

27 

27 

29 

29 

32 

32 

33 

35 

37 



5.5 

5.4.1 

5.4.2 

The Easy Case 

The Hard Case 

Enumerating the Fields . 

6 Some Special Cases 

6.1 

6.2 

Assuming GRH . 

Restricting Local Factors . 

7 Computations 

7.1 Enumerating NFa(n) 

7.2 Results ........ . 

Bibliography 

Vll 

38 

39 

42 

44 

44 

45 

49 

49 

51 

54 



Introduction 

In Article 303 of Disquisitiones Arithmeticae, Gauss first posed the problem of 
determining all imaginary quadratic fields F of small class number hF, and in partic
ular, all such fields having h F = 1. 

Let F be a number field of degree d = rl + 2r2, where rl, r2 denote the number 
of real places and pairs of complex conjugate places respectively. We denote by (F (s) 
the Dedekind zeta function of F. The Dedekind zeta function admits a functional 
equation relating the vales (F(S) and (F(l - s). This functional equation gives the 
result that for an integer n :::: 1, the order of vanishing of (F(S) at S = 1- n, denoted 
dn , is equal to 

{ 

rl + r2 - 1 if n = 1 

dn = rl + r2 if n :::: 3 is odd 

r2 if n :::: 2 is even 

Thus it can be seen that the value of (F(O) is non-zero precisely when F = Q or F is 
an imaginary quadratic field. 

For such a number field F, Dirichlet's Analytic Class Number Formula provides a 
relation between the value (F(O) of the zeta-function and the class number hF, given 
by 

hF 
(F(O) = --, 

WF 

where WF denotes the number of roots of unity in F. A complete list of imaginary 
quadratic number fields F having hF = 1 was determined by Stark in 1967 ([24]). 
In 2004, Watkins computed a complete list of all imaginary quadratic number fields 
with claRs number:::; 100 ([30]). 

An analogue to the Gauss class number problem arises if we consider the values 
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(F(1 - n), for even integers n ~ 2. Again by the functional equation, it is clear that 
the value of (F(1 - n) is non-zero precisely when n ~ 2 is even and F is totally real. 
In this situation, the value of (F(1 - n) was proven to be rational by Klingen and 
Siegel ([7], [23]). 

As a consequence of the Main Conjecture of Iwasawa Theory, this value is given 
by 

Theorem. (Wiles) Assume F is a totally real number field and that n ~ 2 is an even 
integer. Then 

where hn(F) denotes the order of the motivic cohomology group H1(oF,71(n)) of 
the ring of integers OF of F, and Wn (F) denotes the order of the Galois cohomology 
group HO(F, Q/71(n)). We note that for n = 1, the group HO(F, Q/71(I)) consists of 
the roots of unity in F, and hence wl(F) = WF in our previous notation. 

The Iwasawa Main Conjecture has been proven by Wiles (d. [31]) for odd primes 
p. The 2-primary part of the conjecture has been proven by Wiles for abelian number 
fields, but remains open in general. The general 2-adic Iwasawa main conjecture will 
be assumed throughout the paper. 

The analogue of the Gauss class number problem is to determine all totally real 
number fields F having hn (F) = 1 for even integers n ~ 2. It can be shown that if F 
is of degree d = [F : Q], then hn(F) ~ 2d

, and hence can never be trivial. A better 
candidate for the analogue of the class number is therefore given by the order h-:;:t (F) 
of WK~_2(F), the n-th motivic wild kernel of F, which is a canonical subgroup 
of H1(OF, 7l(n)) determined by local conditions. This subgroup is analogous to the 
Tate-Shafarevich group of an abelian variety A defined over a number field F. 

The functional equation of the Dedekind zeta function relates the values (F(S) 
and (F(1 - s) to the discriminant D of F. For a totally real number field F and an 
even integer n ~ 2, we then obtain the inequality 

where d = [F: QJ. 
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The above theorem of Wiles is used to restate this inequality in terms of co
homology groups: 

The index of Ti\! K~_2(F) in H'1(OF, Z(n)) is determined by local conditions and 
can be estimated as follows: 

Combining these two estimates gives the following bound on the root discriminant 
OF of F, defined as OF = D 1/ d , 

Therefore, for any positive integer a, all totally real number fields F having 
h:;:t(F) = a must be of bounded root discriminant. 

The subject of number fields of bounded root discriminant dates back to Minkowski, 
who determined the first discriminant bounds geometrically (cf. [15]). Through an
alytic methods, Odlyzko has developed a set of lower bounds Eo (d) defined such 
that for all totally real number fields F of degree d, OF > Eo(d) ([17]). Using these 
Odlyzko bounds, Voight has developed a process to enumerate totally real number 
fields of bounded root discriminant, and has provided lists of all totally real number 
fields F having OF < 14 ([27]). 

By comparing our estimates with the Odlyzko bounds, it can be seen that our 
above bound is quite effective for even integers n ~ 4, and eliminates all but a very 
small number of possible fields. However, for the classical case n = 2 the bound 
does not yield a reasonable set of possible fields, and so we consider these two cases 
separately: 

We establish that the set of totally real number fields F having h:;:t(F) = a is 
finite for all even integers n ~ 4 and all positive integers a :s; 32. As well, we use the 
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enumeration process described by Voight to show that in the case n 2 4 there is pre
cisely one totally real number field F having h-:t(F) = I, namely the field F = CQ( V5). 

For the case n = 2, we modify the upper bound on 6F through improved esti
mates using the local properties of F. With this modified bound, we are able to 
prove that the set of totally real number fields having h~ (F) = 1 is finite as well, 
and contains only fields of degree d S 117. 

Combining these results yields our main theorem: 

Theorem. There are finitely many totally real number fields F such that h;:t(F) = 1 
for some even integer n 2 2. 

Through computations performed in Sage and Pari/GP ([25], [19]), we enumerate 
all totally real number fields F of degree d < 10 having h~(F) = 1. Within this list, 
we find no number fields of degree d > 5, and we predict that only isolated cases of 
higher degree may exist. We present two special cases to support this prediction.: 

Under the assumption of the Generalized Riema.nn Hypothesis, we show that 
the set of all totally real number fields F having h~(F) = a is finite for all positive 
integers as 756, and that h~(F) > 1 if [F : CQJ 2 47. 

For our second special case, we let F be a totally real number field which contains 
at most unramified local cyclotomic extensions. That is, for all odd primes p and all 
vip in F, CQp((p) ct- Fv, and for all vl2, CQ2(i) ct- Fv' Under this assumption, the index 
of vVK~(F) in HL(OF,Z(2)) is given by 

h2(F) = 2#(vI2)+d-l 
h~(F) , 

where #(vI2) denotes the number of primes above 2 in F. Thus, we obtain an 
improved bound on 6F via the functional equation of (F(S), 

This bound is sufficient to show that h~(F) > 1 if [F : CQJ > 9, and we obtain 
via our previous computations that there are precisely 14 such number fields having 
h~(F) = 1. 

4 
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In Chapter 1 we review the theory of zeta functions. Chapter 2 provides the nec
essary cohomological background, while Chapter 3 introduces the motivic wild kernel. 
In Chapter 4 we summarize research done by o dlyzko , Voight and others concerning 
minimal root discriminants of number fields and the enumeration of number fields 
of bounded discriminant. The main results of our thesis are presented in Chapter 5, 
and some special cases are discussed in Chapter 6. Finally, Chapter 7 provides the 
algorithms used to compute h:;;:t(F) and the results of such computations. 
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Chapter 1 

Zeta Functions 

We begin this Chapter by introducing the Riemann zeta function and some of its 
important properties in Section 1.1. Once established, Section 1.2 describes a gener
alization of this function, called the Dedekind zeta function, 

The theory of zeta functions presented in this paper is taken primarily from [15]. 

1.1 Riemann Zeta Function 

The Riemann zeta function is defined by the infinite series 

00 1 
((s) = L nS ' 

n=l 

where s is a complex variable. This series is absolutely and uniformly convergent on 
the domain Re(s) 2: 1 + 0, for every 0 > 0, and hence represents an analytic function 
in the half-plane Re( s) > 1. On this half plane, the Riemann zeta function can also 
be represented by Euler's identity 

where p runs through the prime numbers. 

6 



M.Sc. Thesis - Caroline Junkins McMaster - Mathematics and Statistics 

The Riemann zeta function admits a meromorphic continuation throughout the 
complex plane with a single simple pole at 8 = 1 and residue 

lim(8 - 1)((8) = 1. 
s--t 1 

Furthermore, it satisfies a functional equation, which relates the values at 8 and 1- 8: 

S (8) s~l (1 - 8) 
1f-Zr "2 ((8) = 1f~2 r -2- ((1 - 8), (1.1 ) 

where r(8) denotes the r-function, a meromorphic function having simple poles at 
8 = -m, m = 0,1,2, ... , with residues (-l)m /m!. 

1.2 Dedekind Zeta Function 

The Riemann zeta function is associated to the field of rational numbers, but 
can be generalized to an arbitrary number field F of degree d = [F : Q]. This 
generalization is called the Dedekind zeta function and is defined by 

where OF denotes the ring of integers in F, and for any non-zero ideal I C OF, 
N(I) = IOF/II denotes the number of elements in the finite quotient ring OF/I. This 
series again represents an analytic function on the half-plane Re(8) > 1, and has the 
identity 

1 
(F(8) = II 1- N(p)-s' 

}J 

where p runs through all non-zero prime ideals of F. 

The Dedekind zeta function also admits a meromorphic continuation throughout 
the complex plane with a single simple pole at 8 = 1. 

The residue of the Dedekind zeta function at 8 = 1 is given by 

1. ( l)r () 2Tl . (21fy2 . hF . RF 
nTI 8 - SF 8 = ~~~"-----===-~-

s--tl WF . .JfDT (1.2) 
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where hp is the class number of F, Rp is the regulator of F and Wp denotes the 
number of roots of unity in F. 

The Dedekind zeta function satisfies a functional equation relating the values 
at sand 1 - s. Let 

A = 2-r27f-%VfDT, 
where D denotes the discriminant of F, and d = rl + 2r2 (where rl, r2 denote the 
number of real places and pairs of complex conjugate places respectively). Then the 
functional equation reads 

The functional equation implies that the order of vanishing of (p(s) at s = 1- n, 
denoted dn , is equal to 

{ 

rl + r2 - 1 if n = 1 

dn = rl + r2 if n 2: 3 is odd 

r2 if n 2: 2 is even 

(1.4) 

If we denote by (;.( s) the first non-vanishing coefficient in a Taylor expansion 
of the Dedekind zeta function around s and call this the special value of the zeta 
function at s, then the residue (l.2) yields an important result of Dirichlet, called the 
Analytic Class Number Formula: 

Theorem 1.1. (Dirichlet) For a number field F, 

(;'(0) = - hp 
. Rp . 

Wp 

In the special case that F is an imaginary quadratic field, we see from equation 
(1.4) that the Dedekind zeta function of F does not vanish at s = 0, and hence 
(;.(0) = (p(O) in this case. Thus, 

8 



M.Sc. Thesis - Caroline Junkins McMaster - Mathematics and Statistics 

The Analytic Class Number Formula is a deep result connecting a special value 
of the Dedekind zeta function of a number field F to the class number of F. As can 
be expected, this result can be extended to other special values of the zeta function, 
which can in tmn be related to other important arithmetic properties of OF. We will 
return to one of these results after developing the necessary background in the next 
chapter. 

1.2.1 Estimating the values of the Dedekind Zeta function 

For a totally real number field F and an even integer n ~ 2, equation (1.4) implies 
that (F(S) does not vanish at s = 1- n, and hence (;;(1- n) = (F(l- n). This value 
can be estimated via the functional equation, which in this specific case is given by: 

Lemma 1.2. Let F be a totally real number field of degree d and discriminant D J 

and let n ~ 2 be an even integer. Then 

( )

d 
dn n- l 2(n - I)! 

( -1) 2 (F (1 - n) = D 2. • (F (n ). 
(21f)n 

Proof. Since F is totally real, (1.3) reads 

s -s S l-s s-l 1 - S 

( )
d ( )d D'i 7[-zr("2) . (F(S) = D-2 7[-2. r(-2-) . (F(l - s). 

Let s = n = 2m. Then r(~) = r(m) = (m - I)! and as a consequence of Legendre's 
duplication formula, 

The result follows. D 

For real s > 1, we have that (F(S) ~ 1, and 

as s ---t 00. 

9 



-, 

M.Sc. Thesis - Caroline Junkins M cM aster - Mathematics and Statistics 

Since n is defined to be a positive integer, taking absolute values in the above equation 
and replacing (F (n) by 1 will yield a valid lower bound on the values of the Dedekind 
zeta function of F. 

Corollary 1.3. 

10 



Chapter 2 

Cohomology 

The values of the Dedekind zeta function (F(S) of a totally real number field F at 
odd negative integers are non-zero rational numbers ([23]). An interpretation of the 
value at S = -1 was suggested by Birch and Tate in 1970 in terms of algebraic K
theory, and was generalized to all number fields and negative integers by Lichtenbaum. 

The "correct" version of these Lichtenbaum conjectures should involve motivic 
cohomology rather than K-theory, the difference being of 2-power order. We present 
in Sections 2.1 to 2.4 the necessary cohomological background. In Section 2.5 we 
discuss the Lichtenbaum Conjecture in the special case of totally real number fields 
F and values of (F(S) at negative integers. Finally in section 2.6 we present a refor
mulation of the conjecture using totally positive cohomology groups. 

The cohomology theory presented here is taken primarily from [22], [15] and [1]. 

11 
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2.1 Group Cohomology 

2.1.1 Definition of Cohomology Groups 

Let C be a sequence of abelian groups or modules connected by group homomor
phisms di : Ci - 1 -+ Ci , 

The sequence C is called a cochain complex if the composition of any two maps 
is zero, i.e. dn+1 0 dn = 0 for all n. It follows that im(dn) ~ ker(dn+1) for all 
n, hence we can define the nth cohomology group of C to be the quotient group 
Hn(c) = ker(dn+1)/im(dn). It is clear that the sequence C is exact if and only if 
Hn(c) = 0 for all n. Thus, the nth cohomology group can be interpreted as a mea
surement of the failure of exactness of C at the nth stage. 

Consider a group G with its integral group ring A = Z[G). A G-module A is the 
same as a A-module. If A, Bare G-modules, the group of all group homomorphims 
A -+ B is denoted Hom(A,B), while the group of all G-module homomorphisms 
A -+ B is denoted HomG(A, B). The subset of elements of A which are invariant 
under the action of G is denoted A G. As well, we have the equality 

HomG(A, B) = (Hom(A, B))G, 

and in particular, 
HomG(Z,A) = (Hom(Z,A))G ~ AG, 

where Z is regarded as a G-module on which G acts trivially. Since Hom is a left-exact 
functor, we can view A f---7 AG as a left-exact functor taking G-modules to abelian 
groups. Hence, if 

0--1-A--1-B--1-C--1-0 

is an exact sequence of G-modules, then 

is an exact sequence of abelian groups which does not, in general, terminate with a 
surjective map. 

By constructing a cohomological extension of the functor A f---7 A G we form the 

12 
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right derived functors denoted by Hn(G, A), with HO(G, A) = AG. These functors 
are called the cohomology groups of G with coefficients in A. To construct these 
functors we first need the notion of a projective resolution. 

Considering Z as a G-module, a projective resolution is an exact sequence 

P dn p dl P, E '7l 0 . . . ----+ n ~ n-l ----+ . . . -----=-+ ° ----+ ID----+ 

such that each Pi is a projective G-module. From this, we obtain a cochain complex 
of G-module homomorphisms from the projective resolution into A, 

0----+ HomG(Z,A) -=--+ HomG(Po,A) ~ ... d
n

- t HomG(Pn-1,A) ~ ... 

keeping in mind that this reverses the direction of the homomorphisms. The first four 
terms of the sequence 

are exact, and hence 

Replacing H omG(Z, A) by a does not affect the cochain property of the sequence, 
which can then be written as 

The cohomology groups defined by Hn(G, A) = ker(dn+1)/im(dn) ofthis sequence do 
not depend on the choice of projective resolution, and satisfy the required properties 
to be a cohomological extension of the functor A t---+ AG. That is, HO(G,A) = AG, 
and for any exact sequence 

O----+A----+B----+C----+O 

we can define connecting (or boundary) homomorphisms 

resulting in a long exact sequence 

13 
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2.1.2 The Standard Complex 

Since the cohomology groups are independent of the choice of projective resolution, 
we are able to work with a particular choice of resolution P, called the standard 
resolution. Let Pi = Z[Gi +1], i.e. Pi is the free Z-module with basis G x ... x G (with 
i + 1 factors), where an element s E G acts on each basis element by 

The homomorphism di : Pi ---+ Pi- 1 is given by 

di(go,'" ,gi) = 2.::)-l)j(go, ... ,gj-l,gj+1,'" ,gi)' 
j=O 

The elements of H omG(Pi , A) are functions 1: GHl ---+ A such that 

These elements form a co chain complex with boundary homomorphisms d : H omG (Pi- 1 , A) ---+ 
HomG(Pi , A) given by 

+ 2.:) -l)j l(g1,· .. ,gj-l, gjgj+l, gj+2,' .. ,gHl) 
j=l 

(2.1) 

We can verify that these definitions satisfy the required property that HO( G, A) = 
A G . We note HO(G,A) = ker(d), and HomG(G,A) is given by all constant maps 
1 = a, a E A. By (2.1), we have 

(dJ)(g)=g·a-a, 

so 1 E ker(d) if and only if 9 . a = a, hence if and only if a E AG. 

When discussing the cohomology groups of G without specifying a G-module A, 
we write Hn(G,.). 

14 
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2.2 Galois Cohomology 

An application of group cohomology arises when we consider G to be the Galois 
group of a field extension KIF. In particular, we can choose K = F, the separable 
closure of F. The Galois group GF = Gal(F I F) is the inverse li~lit 1j!E: Gal(LI F) of 
the Galois groups of the finite extensions L of F contained in F, and is a compact 
topological group. A discrete GF-module A is a GF-module with the discrete topology 
such that the action of GF on A is continuous. The cohomology groups Hi( GF , A) 
computed using continuous cochains are called the Galois cohomology groups of F, 
and are denoted simply by Hi(F, A). 

Let F be a number field, and fix a prime p. Let ~Lprn denote the group of pm-th 
roots of unity, and let ~L:;:; be the n-fold tensor product of this group. We define the 
projective limit 

(2.2) 

and the injective limit 
(2.3) 

Defining diagonal G-action on ~L:;:; by g(( ® ... ® () = g(() ® ... ® g((), we can 
examine the elements of M:;;:; invariant under the action of GF = Gal (F(MpCXJ )1 F). 
These elements are precisely those contained in the Galois cohomology group 

HO(F, (Q>pIZp(n)) = ~ HO(F, M:;:;). 

To find the order of this group, we look more closely at the action of G on the tensor 
product. If 9 E Gal(F(~LpCXJ)IF), then g(() = (a for some integer a. Hence, 

g((i9n ) = g(() ® ... ® g(() 

In other words, the action of 9 on M:;:; is identical to the action of gn on Mpm. SO, 
~L:;:; is fixed under Gal(F(Mpm)1 F) precisely when this group is of exponent n (in 

15 
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the sense that for all g E G, gn = 1). Relating this to the previously defined Galois 
cohomology groups, we have 

Finally we define 

HO(F, Q/Z(n)) = II HO(F, Qp/Zp(n)), (2.4) 
p 

where p runs through all primes. We denote the order of this finite group by wn(F). 

Remark 1. For a totally real field F, the Galois group Gal(F(~lpm)/ F) must contain 
an element of order 2 corresponding to complex conjugation. Thus, for any odd integer 
n 2: 1, we have wn(F) = 2. 

, 
2.3 Etale Cohomology 

Motivated by the desire to prove the Weil Conjectures, Grothendieck defined etale 
cohomology geometrically for schemes with values in certain sheaves. In our situation 
the scheme will be the affine scheme spec( R) for a certain Dedekind ring R, and the 
sheaves will consist of roots of unity. Milne ([13], ex. 3.16) shows that in this case, 
etale cohomology can be interpreted as a certain Galois cohomology, described as 
follows: 

Let F be a number field with ring of integers OF and let p be a prime num
ber. Let o'p = OF [1.]. The etale cohomology groups of spec( o'p) with values in the p 
n-fold twisted sheaf of pm-th roots of unity are isomorphic to the Galois cohomology 
groups Hi(G~), M~::), where G~) = Gal(D,~) / F). We will denote these groups simply 
b H i (' ®n) y et OF' Mpm . 

Following the previous notation, we define the p-adic cohomology groups 

H~t(o~, Zp(n)) = ~H~t(o~, M~:;) 

and 

From [9], we have the following properties: 

16 
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• For n ;::: 2, H;t(o'p, Zp(n)) is finite and trivial for almost all primes p 

• For i ;::: 3: H~t(o'p, Zp(n)) = 0 if p is odd 

2.4 Motivic Cohomology 

if i + n is even 

otherwise 

While the p-adic cohomology groups are defined for a single prime p, we would 
like to view them as the p-parts of a 'global' cohomology. The two candidates for this 
'global' cohomology are Algebraic K-Theory and Motivic Cohomology. The Bloch
Kato conjecture, which has been proved by Rost and Voevodsky implies that there 
are isomorphisms 

K 2n- i (OF) ~ H~(oF,Z(n)) 

up to 2-torsion for all n ;::: 2 and i = 1,2. In general, the 2-torsion is different, and it 
is motivic cohomology which has the property that 

for all primes p. 

We will be particularly interested in the 2nd motivic cohomology groups H1 (OF, Z( n)) 
of OF for n ;::: 2. These groups are finite, as a consequence of the properties of the 
corresponding etale cohomology groups listed in Section 2.3. 

2.5 Motivic Class Number Formulae 

In the previous chapter, we saw that for a number field F, the special value (;(s) 
at s = 0 contains important arithmetic information about the ring of integers OF. A 
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natural question to ask is whether the special values (];.(1 - n) for integers n ~ 2 are 
also of significance. 

By equation (1.4), we can see that the value (F(l - n) for n ~ 2 does not 
vanish if and only if F is a totally real number field and n is even. In this case, 
(;,(1 - n) = (F(l - n) is known to be a rational number ([23], [7]). 

A consequence of the Main Conjecture of Iwasawa theory for all primes p is the 
following theorem from [9] 

Theorem 2.1. Let F be a totally real number field and let n ~ 2 be an even integer. 
Then 

up to multiples of 2. 

The Main Conjecture has been proven by Wiles ([31]) for odd primes p and for 
p = 2 if F /Q is abelian. For the rest of the paper we assume the Main Conjecture 
for p = 2 is valid in general, in which case the 2-primary part of Theorem 2.1 is true 
as well. 

We can now modify Corollary 1.3 to give the following bound on the discrimi
nant. 

Corollary 2.2. 

2.6 Totally Positive Cohomology 

For a totally real number field F and an even integer n ~ 2, we consider the map 

(2.5) 

where v runs through all real infinite primes of F. 
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Since H1(Fv, Z(n)) can be described by its p-parts, we consider the etale cohomology 
groups Hit(Fv,7lp(n)), which we have defined as projective limits of Galois cohomol
ogy groups. 
For a real infinite prime v, we have that Gal(Fv/ Fv) = Gal(C/F1.) is a cyclic group of 
order 2. Hence H2(Gal(Fv/ Fv), J-L~;::) can be described via the equality 

where NGA is the image of the norm map 

NG: A -1- A, 

For even n 2: 2, (J acts trivially on J-L~;::, hence N G is simply multiplication by 2. 
This implies that 

H? (R ®;::) = {o for p odd 
et v, J-Lp Z/2Z for p = 2 

Hence, 

Since Hit (o'p, Zp(n)) ~ ker(cfJ) for all odd p, we are thus reduced to only the 
2-primary part of the map: 

which will require more careful consideration. 

The short exact sequence 

gives rise to the long exact sequence 

(2.6) 
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For a totally real number field F and an even integer n ;::: 2, the groups H~t(o'p, Z2(n)) 
are finite for i = 1,2 by the properties described in Section 2.3, so we have 

Thus the long exact sequence (2.6) gives an isomorphism 

(2.7) 

The totally positive etale cohomology groups Ht(o'p,.) defined in [2] provide a 
long exact sequence 

(2.8) 

In [2], it is shown that H~(o'p, (h/Z2(n)) vanishes for all even n ;::: 2. Thus (2.8) 
and (2.7) give the exact sequence 

... ---+ H;t(o'p, Z2(n)) ---+ EBv realH;t(Fv, Z2(n)) ---+ O. 

providing surjectivity of our original map 

¢ : H1(OF, Z(n)) ---+ EBv realZ/ 2Z. 

The kernel of this map is called the positive motivic cohomology group Hi ( OF, Z( n)), 
whose order we denote by h~ (F). 

As a consequence of the surjectivity of ¢, we obtain the following result. 

Lemma 2.3. For any totally real number field F of degree d, and any even integer 
n;::: 2, 

hn(F) = 2d . h~(F). 

This allows a restatement of the bound given in Corollary 2.2 
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Corollary 2.4. 

Dn-~ < h~(F) ( (21f)n )d 
- 1Un (F) (n - I)! 
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Chapter 3 

The Wild Kernel 

In this chapter we begin Section 3.1 by defining the wild kernel of a number field 
F. In the spirit of the previous chapter, we then continue by defining both the etale 
wild kernel and the motivic wild kernel of F as well. In Section 3.2 we use the Poitou
Tate duality sequence to develop an equation for the order of the motivic wild kernel 
of F. 

The background for the material in this chapter is taken primarily from [14] and 
[16]. 

3.1 Definition of Wild Kernel 

For a number field F, the classical wild kernel W K2(F) fits into Moore's exact 
sequence 

where v runs through all finite and real infinite primes of F, and p,(F) and p,(Fv) 
denote the roots of unity in F and Fv respectively. 

To relate this to K2(OF), we look at the p-part of WK2(F), denoted WK2(F)(p), 
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which turns out to be the kernel of the map 

where v runs through all primes in F above p and if p = 2, also through the real 
infinite primes. 

The analogue of this in etale cohomology would be the higher etale wild kernel 
for the prime p, denoted by VV K~~_2(F), which is defined by 

VV K~~_2(F) = ker(Hit( o'p, Zp(n)) -----t EBvlpHit(Fv, Zp(n)) , 

where again v runs through all primes in F above p, as well as the real infinite primes 
if p = 2. 

In the interest of again working with a 'global' model, we define the motivic 
wild kernel W K;{_ 2 (F) by 

W Kt;{_2(F) = II W K~~_2(F). (3.1) 
p 

3.2 Poitou-Tate Duality Sequence 

Let S be a nonempty set of primes of a number field F containing the infinite 
primes and let A be a finite G s module. There exists a 9-term exact sequence called 
the Poitou-Tate duality sequence (cf. [16]), given by: 

-----t H2(GS , A) -----t EBvEsH2(Fv, A) -----t HO(Gs , A')* -----t 0 (3.2) 

where A' is the dualizing module of A, and Hi(Gs,A')* = Hom(Hi(Gs,A'),Q/Z) 
denotes the Pontryagin dual of Hi( Gs , A'). 
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For a finite prime v E S, local duality yields the following isomorphism for 
o ::; i ::; 2: 

Hi(R A) ~ H 2
- i (R A')* v, - v,· 

We specialize now to the following situation: For a fixed prime p, let S be the finite 
set of all primes above p including the infinite primes if p = 2, and let A = It::::. Then 
the dualizing Gs-module of A is given by (1£::::)' = It:!.-n (d. [21]), and therefore the 
local duality isomorphism is given by 

H 2 (D ®n) rv HO( D ®l-n)* et I'v,l£pm = I'v,l£pm . 

Furthermore, the last 3 terms of (3.2) now read 

Since this is an exact sequence of finite abelian groups, we can take projective limits 
with respect to m to obtain the exact sequence 

Here we used the fact that 

By the definiton of the motivic wild kernel (3.1), the p-part of WK~_2(F) fits 
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into the exact sequence (3.4) as follows: 

For a totally real number field F and even integer n ;::: 2, we can replace Hit (o~, Zp( n)) 
by the p-part of H~(oF' Z(n)). The sequence (3.5) will remain exact if the set S is 
reduced to include only the finite primes vip. This yields 

Since for any t and any m the Galois action on /-":n-;t is inverse to the action on 1-":::' 
we obtain 

(3.7) 

as well as 

= IT wn-l(Fv)(p). (3.8) 
vip 

Finally by (3.6), (3.7) and (3.8) we have the following formula for computing the 
order of the p-part of the motivic wild kernel: 

IWKM (F)()I = (F)( ). IH~(oF,Z(n))(p)1 
2n-2 P Wn-l P IT (R)()' 

vip Wn-l v P 
(3.9) 

Let h;;: (F) denote the order of the motivic wild kernel of F. Taking the product over 
all primes p and using Remark 1 we obtain from (3.9): 
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Theorem 3.1. For a totally real n'umber field Fand an even integer n 2. 2, 

where p runs through all prime numbers and v runs through all primes in F above p. 

By Corollary 2.4, we have the following estimate of h{:I(F). 

Corollary 3.2. 
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Chapter 4 

Number Fields of Bounded 
Discriminant 

Before proceeding to the Main Theorem of the paper, we pause to explore the 
connection between the discriminant and degree of a number field. In section 4.1 
we discuss the evolution of lower bounds for discriminants, a notion pioneered by 
Minkowski and advanced by Stark, Odlyzko and others. In section 4.2 we provide an 
application of these bounds, the process of enumerating all totally real number fields 
of bounded discriminant described by Voight in [27]. 

The material for discriminant bounds presented in this paper is taken primar
ily from [18] and [3]. 

4.1 Odlyzko Bounds 

Let F be an algebraic number field of degree dover Q with rl real and 2r2 complex 
conjugate fields, so that d = rl + 2r2. Let D denote the discriminant of F. 
We define the root discriminant 6 F of F by 

K _ Dl/d UF -
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For F = Q, we have D = 1, and Minkowski proved the fundamental result that 
IDI > 1 for all d > 1. Subsequently, he was able to obtain a lower bound for IDI 
given by 

(
1T) 2r2 (dd) 2 IDI> - -. 

- 4 d! 

This bound was improved by numerous authors, primarily through methods of geom
etry of numbers. 

An alternative approach using analytic methods was introduced by Stark in [24], 
based on a relation between the discriminant of a number field and the zeros of its 
Dedekind zeta function. Specifically, for s real, s > 1, he gives 

where r denotes the Gamma function. 

By taking s = 1 + d-1/ 2 , we obtain from (4.1) the estimate 

as d ----+ 00, 

where 'Y = 0.5772156 ... denotes Euler's constant. This bound was then improved by 
Odlyzko in a series of papers, resulting in substantially improved bounds in various 
situations, both under the assumption of the Generalized Riemann Hypothesis and 
in the unconditional case. 

For totally real number fields, an explicit bound is given by Poitou in [20], which 
reads 

(4.2) 

This inequality provides a lower bound 6 F 2 B (d) which is increasing monotonically 
with d, i.e. B(d + 1) > B(d) for any degree d 2 2. For small degrees, this bound 
has been improved upon, resulting in complete tables of bounds for degrees d :s; 200 
vvhich are provided in [3]. For the remainder of the paper, we define Bo(d) to be 
the unconditional lower bound given in [3] for the root discriminant of a totally real 
number field of degree d :s; 200. For totally real number fields of higher degree, we 
define Bo(d) to be the lower bound given by equation (4.2). By this definition, we 
retain the property that Bo(d + 1) > Bo(d) for any degree d 2 2. 
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4.2 Enumeration of Totally Real Number Fields 

Our goal of characterizing the set of all totally real number fields with trivial 
motivic wild kernel clearly relies on the enumeration of all totally real number fields 
of bounded root discriminant. In fact, we must first start by assuring ourselves that 
this is in fact possible, i.e that there are only finitely many totally real fields of 
bounded root discriminant, up to isomorphism. 

Given B E :iR>o, let N F(B) denote the set of totally real number fields F with 
root discriminant OF::; B, up to isomorphism. For each d E Z>o we define a subset 
of NF(B) given by NF(d, B) = {F E NF(B)I[F : Q] = d}. 

Theorem 4.1. For B < 60.840, N F(B) is finite. 

Proof For each d E Z>o, the set NF(d, B) is finite, due to Minkowski. The Odlyzko 
bound (4.2) states that for 0 < 41fe/+l we must have NF(d, B) = 0 for d sufficiently 
large. Thus the set N F(B) is a finite union of finite sets for B < 41fe/+l ~ 60.839. 0 

It is important to note however, that for large enough B, the set N F( B) is in fact 
infinite. Infinite towers of totally real number fields with fixed root discriminant have 
been constructed by Martin and Martinet, with OF ~ 913 and OF ~ 1059 respectively. 

The general method for enumerating number fields is well-known. We give an 
overview of the method used in [27] for enumerating totally real number fields of 
bounded root discriminant. We define a number field F to be primitive if it contains 
no proper sub fields E i= Q, and imprimitive otherwise. 

4.2.1 Enumeration Process 

Building NS(d, B) 

Let F = Q( ex) be a field of fixed degree d and fixed discriminant D. This fixes 
the degree and discriminant of the minimal polynomial of ex as well, thus bounding 
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its coefficients. Running through all discriminants D ::; B d ) the bounded coefficients 
yield a finite ::let NS(d) B) of polynomials f(x) E Z[x] such that every field F E 

NF(d)B) is represented as Q[xJl(J(x)) for some f(x) E NS(d) B). It must be noted 
here that this process may not capture all imprimitive fields in NF(d) B)) but these 
fields can be added later in the process. 

Filtering NS(d) B) 

The following algorithm is used to reject all polynomials in NS(d) B) which do not 
represent totally real number fields with discriminant D ::; Bd. Each f E NS(d) B) 
is tested in turn. 

1. Check "easy" irreducibility; that is) discard f if it is divisible by any of the 
following factors: 
x) x ± 1) x ± 2) x 2 ± x-I) x 2 

- 2 

2. Compute the polynomial discriminant disc(J). If disc(J) ::; 0) discard f. 

3. For f to represent a field FEN F(d) B)) we require Bo(d)d < D = disc(J)/ a2 
::; 

Bd for some a E Z. If no such a2 Idisc(J) exists) discard f. 

4. Check irreducibility. Discard f if reducible. 

5. Compute OF. If disc(OF) = D > B) discard f. 

6. Compute a small element O'.red E OF such that Q(O'.red) = F. 
Add the minimal polynomial fred(X) of O'.red to NF(d) B)) along with its dis
criminant D) if it does not already appear. 

Once the list N F( d) B) is complete) it is ordered by discriminant.) and any isomor
phic fields are discarded. Taking a union over all relevant d gives a list of all primitive 
fields in NF(B). 
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Adding Imprimitive fields 

Since not all imprimitive fields will be caught by the above process, they must be 
included separately. Any imprimitive field FEN F( B) must be an extension of a 
field E E N F(B), and thus can be found by the following process: 

For each E E NF(B), let f(x) be the minimal polynomial of an element a such 
that F = E(a), and the coefficients of f(x) are in DE. For a fixed relative degree 
[F : E] and bounded discriminant, the coefficients of f (x) are again bounded, and the 
above process applies mutatis mutandis to this relative case. Repeating this process 
for all necessary relative degees produces all extensions F of E of bounded discrimi
nant. These fields along with their discriminants are then added to the existing list. 
After being resorted and divested of any isomorphic fields, the final list yields N F( B). 

By this process, Voight was able to enumerate all totally real number fields with 
root discriminant 6p ~ 14. He concluded that #NF(14) = 1229. 
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Chapter 5 

Main Theorem 

Recall that for a totally real number field F and even integer n 2 2, we can deter
mine the order of the motivic wild kernel h;: (F) by the equation given in Theorem 
3.1. For each such n, let N F a (n) denote the set of totally real number fields F having 
h;:(F) = a, where a is a positive integer. Our goal is to characterize NFa(n) for 
a given value of a. In particular, we focus on the set NF1(n), which consists of all 
totally real number fields having trivial n-th motivic wild kernel. 

Corollary 3.2 provides a bound on the order of the motivic wild kernel dependent 
on specific properties of the field itself. To establish a more general lower bound, we 
begin by forming estimations of these properties. In Section 5.1 we bound the possi
ble values of wn(F), while in Section 5.2 we estimate the local conditions governing 
the index of W KfnI_2(F) in H~(OF' Z(n)). Section 5.3 defines an upper bound on the 
root discriminant, which is then used in Section 5.4 to restrict the possible number 
fields having trivial motivic wild kernel. Section 5.5 provides our main theorem. 

5.1 Estimating wn(F) 

We begin by bounding the possible values of wn(F) = IHO(F, Q/Z(n))I. 
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Lemma 5.1. FaT any number field F of degree d and any integer n ~ 1 we have 

Proof. vVe have 

HO(F, Q/7L(n)) rv II HO(F, Qp/7Lp(n)) , 
p 

hence for the right-hand inequality it is enough to compare the orders of HO(F, Qp/7Lp(n)) 
and HO(Q, Qp/7Lp(dn)) for each prime p. 
Let wn(F)(p) = m. Then Gal(F((m)/ F) = Gal(Q((m)/Q((m) n F) has exponent n, 
and we have the following exact sequence of abelian groups: 

Consider an element a E Gal(Q((m)/Q). We must have d·(3(a) = 0, since [Q((m)nF : 
QJ ::;; d. Now, d· (3(a) = (3(da), so da E ker((3). By exactness, this implies da = a(b) 
for some b E Gal(F((m)/F), and hence n· da = O. Thus Gal(Q((m)/Q) must have 
exponent dn. 

For the left-hand inequality, the result follows immediately from the fact that for 
any field F and any prime p, Gal(Q((pk)/Q((pk) n F) ~ Gal(Q((pk)/Q). 0 

5.2 Estimating Local Factors 

Next we examine the local behaviour of our field F. Namely, we are concerned 
with the values wn-l(Fv)(p), where v is a prime in F above p. It is important to note 
that these values contain only the p-primary part of wn-l(Fv), and thus will be of the 
form pk for some integer k ~ O. 

For an arbitrary totally real number field F of degree d with discriminant D, 
we prove the following claims for an even integer n ~ 2: 

f"'11 ~ ~ YYlI 1 
'---'.lc!'~.!..!..!. ...!... = 

II Wn-l (Fv)(2) ::;; 2d. 
vl2 
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Proof. vVe have wn-l(Fv)(2) = wl(Fv)(2), since adjoining 2-power roots of unity is 
a 2-power extension. Suppose there exists a totally real number field F of degree d 
such that ITvl2 wl(Fv)(2) > 2d. Since there are at most d primes above 2, this implies 
that wl(Fv)(2) > 2 for some v12. If this is true then <Ql2(i) s: Fv, and so e(vI2) 2: 2. 
Thus there can be at most d-2 other primes above 2, each with wl(Fv)(2) = 2. Thus 
we have ITvl2 wn-l(Fv) (2) ::; 22. 2d- 2, a contradiction. D 

Claim 2. For all odd primes p 1 D, 

II wn-l(Fv)(p) = 1. 
vip 

Proof. n - 1 odd implies ITvlp wn-l(Fv)(p) can only be non-trivial if <Qlp((p) n Fv is 
non-trivial for at least one vip. Thus p must be ramified in F, which requires piD. D 

Claim 3. For an odd prime p, let n -1 = pa. b, where p 1 b. Then for any prime vip 
in F, 

Proof. If either p 1 D or gcd(b,p - 1) = 1, then both wn-l(Fv)(p) and wb(Fv)(p) are 
trivial, so the inequality holds. Suppose instead that wb(Fv)(p) = pk for some k 2: 1. 
Then by definition, Gal(Fv((pk)/Fv) has exponent b. Now, Gal(Fv((pk+a)/Fv((pk)) 
has exponent pa, so we can conclude that Gal (Fv ( (pk+a ) / Fv) has exponent pa . b, as 
required. D 

Claim 4. Let S be the set of all ramified primes p 2: 3 in F. Then 

II II wn-l(Fv)(p) ::; (n - 1)d/2. D 
pES vip 

Proof. Fix an odd prime p and let n - 1 = pa . b. Suppose there are r primes 
Vi above p in F such that wb(FvJ(p) = pki, ki 2: 1 for i = 1, ... ,r. Let G = 

Gal(<Qlp((pkJ/<Qlp((pkJ n FvJ, which is a subset of 7L/(p - 1)7L EB 7L/pki- l7L. If G has 
exponent b, which is prime to p, then we must have [<QlP((pki) n FVi : <Qlp] 2: pki-l. 
Since p is totally ramified in <Qlp((pkJ n FVi' e(vilp) 2: pki-l. 
For all ki > 1, the inequality ki + 1 ::; pki-l implies that e(vilp) 2: ki + 1. If instead 
ki = 1, then wb(FvJ(p) = P implies the intersection <Qlp((p) n FVi is non-trivial, and 
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hence e(vilp) :2: 2. 
Therefore we have e ( Vi Ip) :2: ki + 1 for i = 1, ... , r, and hence 

r 

For each odd prime p, there can be at most r = d/2 ramified primes above pin F, so 
we obtain by Claim 3 

r 

II wn-1(Fv.)(p) :::; (pa)d/2 . D(p). 
i=l 

where D(p) denotes the p-primary part of D. 
Taking the product over all pES gives the desired result. o 

The above four claims are sufficient to bound the local factors of F for any prime 
p. Taking the product over all primes gives a general bound for the local factors of 
F. 

Theorem 5.2. Let F be a totally real number field of degree d and discriminant D) 
and let n :2: 2 be an even integer. Then, 

II II wn-1(F)(p) :::; 2d. (n - 1)d/2 . D. 
p vip 

5.3 Bounding the Root Discriminant 

For each even integer n :2: 2, the estimates defined in the previous section allow 
us to place an upper bound on the root discriminant of all totally real number fields 
having motivic wild kernel of a given order. 

Proposition 5.3. Let F be a totally real number field of degree d with discriminant 
1 

D. Let 6F = D(l, and let n :2: 2 be an even integer. Then a necessary condition for 
h;:I (F) :::; a is given by 

( 

2a . (27r )n ) 2n

2

_3 

(n - 1)1/2 . (n - 2)! 
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Proof. Set h!;:i(F) ::; a. By combining the bound on local factors given in Theorem 
5.2 and the bound on the order of the motivic wild kernel from Corollary 3.2, we have 

Taking roots gives 

For an arbitrary number field F, we have 2wn(F) ;::: 2wn(Q) ;::: 48 for all n ;::: 2. We 
note that as d --+ 00, we have 481/d --+ I, so (2wn (F))1/d > 1. As well, a1/d ::; a for 
any degree d ;::: 2 so replacing (2w:CF))1/d by a gives an upper bound independent of 
the degree. D 

Comparing this estimate to the Odlyzko bounds described in Section 4.1 provides 
our first main result. 

Theorem 5.4. Let F be a totally real number field such that [F : QJ ;::: 2. For any 
integer a ;::: 1 there exists an even integer N ;::: 2 such that h!;:i(F) > a for all even 
n>N. 

Proof. We define a function on all even integers n ;::: 2 by 

2a(27r)n 
fa(n) = (n - 1)1/2(n - 2)!' 

By Stirling's approximation, 

( 
27re )n-1 

fa(n) ::; 2a~ __ 2. 

n-1 

The function 

( 
27re )X-~ 

g(x) = --1 
x-

is continuous for all x > I, decreasing for all x > 6.761, and g(x) ---+ 0 as x ---+ 00. 

Thus, for any value of a, there exists an even integer N such that g(N) < (2aV21l)-1. 
By proposition 5.3, a necessary condition for h!;:i(F) ::; a is that OF < Ua(n)) 2n

2

_3. 

For all n > N, we have fa(n) ::; 2aV'2if. g(n) < I, and hence OF < 1 as well. D 
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Corollary 5.5. Let F be a totally real number field such that [F : QJ ::::: 2. Then 
h;;:(F) > 1 for all even integers n ::::: 12. 

Proof. We have h(n) < 1 for all even integers n ::::: 20. The unconditional Odlyzko 
bounds state that for any totally real number field F with [F : QJ ::::: 2, we must 

2 

have 6F > 2.222. By direct computation, we observe that h(n)2n-3 < 2.222 for even 
integers 12 ~ n ~ 18 as well. 0 

5.4 Finding the Maximum Degree 

In the previous section, we determined that for any integer a ::::: I, there are finitely 
many even integers n ::::: 2 such that NFa(n) is possibly non-empty. Now we will show 
that for certain choices of n and a, this set must be finite. 

Proposition 5.6. For even n ::::: 4 and a ~ 32, NFa(n) is finite. 

Proof. Let fa(n) be defined for all even integers n ::::: 2 as in the proof of Theorem 
5.4. Then, 

2 2 
Thus, for n ::::: 8, fa(n + 2) < fa(n), and hence fa(n + 2) 2n+l < fa(n) 2n-3. By 
direct computation, we can see that fa(8)2/13 < fa(6)2/9 < fa( 4)2/5 as well. For 
any value B < 60.840, Theorem 4.1 states that the set N F(B) is finite. If a ~ 32, 
fa(4)2/5 < 60.785, and hence NFa(n) c NF(60.785) for all even integers n::::: 4. 0 

In the case of characterizing totally real number fields with trivial motivic wild 
kernel, we have shown that NFl(n) = 0 for even integers n ::::: 12. By Proposition 
5.6, NFl(n) is finite for 4 ~ n ~ 10, and contains only fields of bounded degree. 

For a given even integer n ::::: 2, Proposition 5.3 states that h;;:(F) > 1 for all 
totally real number fields F having 6F > B for some positive value B. If B < 60.8, 
then by the unconditional Odlyzko bounds we can define a finite maximal degree 
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dmax(n) such that Eo(d) > E for all d > dmax(n). Hence if F is a totally real number 
field of degree d > dmax(n), then OF > E and so h~vt(F) > 1. 

We begin by computing dmax(n) for 4 S n S 10, which can be done almost 
immediately, and is termed "the easy case". Subsequently, we consider "the hard 
case" n = 2, which requires more careful consideration. 

5.4.1 The Easy Case 

For 4 S n S 10, dmax(n) can be computed by comparing the bound given in 
Proposition 5.3 with the Odlyzko bounds. 

Table 5.1: Preliminary Degree and Root Discriminant Bounds 

n 4 6 8 10 
OF < 15.194 < 5.582 < 3.343 < 2.380 

dmax 12 4 2 2 

With the maximum degree dmax (n) set for each value of n, upper bounds on the 
root discriminant can be calculated for each degree d S dmax(n) by reintroducing the 
factor of (2wn(Q))~ to the bound given in Proposition 5.3: 

(5.1) 

If we denote by Ed the upper bound on OF for degree d, the set possible fields is 
contained in the finite set u~:~x(n) N F(d, Ed), the elements of which are enumerated 
by Voight (cf. Section 5.5). 

For n = 8,10, equation (5.1) states that Ed < 1.971 for all d 2: 2, hence for any 
totally real number field F, both h;t(F) and h{(1(F) must be non-triviaL 

The bounds Ed for the cases n = 4 and n = 6 are listed in Tables 5.2 and 5.3 
respectively. Table 7.2 lists the calculations performed on all possible fields, with the 
result being as follows: 
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Table 5.2: Degree and Root Discriminant Bounds for n = 4 

d 6F ~ Bo(d) > D~ #NF(d,Bd) 
2 4.417 2.223 19 5 
3 6.671 3.601 296 6 
4 8.195 5.067 4509 17 
5 9.272 6.523 68520 5 
6 10.068 7.941 1041084 13 
7 10.678 9.301 15817853 0 
8 11.159 10.596 240332382 0 
9 11.548 11.823 0 

10 11.869 12.985 0 
11 12.139 14.083 0 
12 12.368 15.121 0 

Table 5.3: Degree and Root Discriminant Bounds for n = 6 

d 6F ~ Bo(d) > D~ #NF(d, B d) 
2 2.589 2.223 6 1 
3 3.345 3.601 0 
4 3.802 5.067 0 

Proposition 5.7. Let F be a totally real number field of degree d. Then h;;:t(F) > 1 
for even integers n 2': 6. There is only one totally real number field F with h;t (F) = 1; 
namely, the field F = Q( V5). 

5.4.2 The Hard Case 

For the case n = 2, the original bound given by Proposition 5.3 is not able to 
produce a finite maximal degree dmax (2), and so must be refined in order to provide 
any information about NF1 (2). Fortunately, we can make improvements on this 
bound by modifying the statements of the claims given in Section 5.2. 

Claim 5. For all primes p 2': 3, 

II wl(Fv)(p) ~ pP~l. 
vip 
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Proof. Let p be an odd prime. Suppose there are r primes above p in F such that 
wl(Fvi )(p) = pki, ki 2: 1 for i = 1, ... , r. Then we must have Qp((pki) ~ FVi and 
hence e(vilp) 2: pki~l(p - 1) for i = 1, ... , r. We then have 

r 

d = ~ e(vilp)f(vilp) 
i=l 

r 

2: ~pki~l(p - 1), 
i=l 

which gives the result that 
r d 
~ ki~l < __ 
D P - 1· 
i=l p-

The inequality ki ::; pki~l can then be used to obtain 
r IT pki ::; p(L:~=lpki-l) 

i=l 

d 
:::;p~. 

o 

Claim 6. For all primes p 2: 3, 

IT wl(Fv)(p)P~2ID(p), 
vip 

where D(p) denotes the p-primary part of D. 

Proof. Suppose there are r primes above p in F such that wl(FvJ(p) = pki, ki 2: 1 
for i = 1, ... , r. Then as before, e(vilp) 2: pki~l(p - 1) for i = 1, ... , r. Thus, 

r IT ppk,-l(p~l)~lID. 
i=l 

The inequality pki~l(p - 1) - 1 2: ki(p - 2) can then be used to obtain 
r 

ITpki(P~2)ID. 

i=l 
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Through the use of these claims, we obtain a more accurate estimate of the local 
factors of htt (F) . 

Theorem 5.8. 

II II w1(Fv)(p) -::; (2.34/ 9 .51/ 6 . 72/27 )d. D1/9 

p vip 

Proof. By Claim 6, 

II 'WI (Fv)(p) -::; D(p)1/9 for all primes p ::::: 11, 
vip 

so we need only consider the primes p = 2,3,5, 7. The 2-primary part of the inequality 
is immediate from Claim 1, so we proceed to p = 3. 
Let ITvl3 'W1(Fv)(3) = 3k . By Claim 6, 3k ID(3), and so 3k / 9 -::; D(3)1/9. By Claim 

5, 3k -::; 3d/2, and so 38k/ 9 -::; 34d/9. Combining these two properties gives 3k -::; 34d/9 . 
D(3)1/9. The argument applies mutatis mutandis to the primes 5 and 7. D 

With this inequality, we obtain a refinement of the bound given in Proposition 
5.3, to yield the following proposition. 

Proposition 5.9. Let F be a totally real number field of degree d with discriminant 
D. Let OF = D~. Then a necessary condition for htt(F) = 1 is given by 

( )

18/25 
OF -::; 2.34/9.51/6.72/27. (21f)2 . 

This bound is now sufficient to obtain a maximum degree dmax (2) = 160 from the 
Odlyzko bounds. As before, this allows us to replace the factor of (2'W2(Q))1/d in the 
denominator of the bound, yielding the following result. 

Theorem 5.10. htt(F) > 1 for all totally real number fields F of degree d::::: 118. 

Proof. An upper bound on the root discriminant of a totally real number field F of 
degree d is given by 

(5.2) 
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For 118 :::; d:::; 160, this yields OF < Eo(d). o 

5.5 Enumerating the Fields 

The results given by the various bounds defined in this chapter provide a complete 
picture of all totally real number fields with the possibility of having trivial motivic 
wild kernel. Summarizing this information provides us with the main theorem of the 
paper. 

Main Theorem. There are finitely many totally real number fields F such that 
h;;: (F) = 1 for some even integer n 2: 2. 

Proof. Let NFl(n) denote the set of totally real number fields F with h;;:(F) = 1, 
and let NFl (d, n) denote the subset of NFl (n) consisting of fields of degree d. 
Proposition 5.7 and Corollary 5.5 state that NFl(n) = 0 for all n 2: 6, and that 
#NFl (4) = 1. By Theorem 5.10, NFl (d, 2) = 0 for all d 2: 118. For each degree 
d < 118, NFl(d, n) is a finite set, which gives the result that 

00 117 

UNFl(2i) = NFl (4) U UNFl (d, 2) 
i=l d=2 

is a finite union of finite sets, hence finite itself. 0 

Through the use of the enumeration process described in Section 5.5, we are able 
to compute all fields in NFl (2) of degree d < 10. 

Corollary 5.11. There are precisely 21 fields of degree d < 10 in NFl (2). 

Proof. For each d < 10, we define an upper bound Ed on the root discriminant OF by 
equation (5.2). h-tt(F) is then computed for all F E NF(d, Ed). The results of these 
computations are shown in Table 7.1. 0 
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In the specific case that n = 2 and d = 2) ltV Kf1(F) is equivalent to the classical 
wild kernel ltVK2 (F) (cf. Section 3.1). The result that there are precisely 7 real 
quadratic fields F having IWK2 (F) I = 1 was shown by Hurrelbrink in [5]. 
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Chapter 6 

Some Special Cases 

While we have developed a clear and complete picture of NFl (n) for even integers 
n 2: 4, the set NFl(2) remains more ambiguous. We have established that it is a 
finite set consisting of number fields of degree d :::; 117. The results of the computa
tions performed for d < 10 seem to suggest that the presence of a large number of 
fields of higher degree is rather unlikely. 

In this chapter we explore two slight variations on the original question in an 
attempt to better characterize this set of fields. 

6.1 Assuming GRH 

The Generalized Riemann Hypothesis (GRH) for a field F is the conjecture that 
all zeros of the Dedekind zeta function CF(S) found in the critical strip 0 < Re(s) < 1 
actually lie on the critical line Re( s) = 1/2. 

As mentioned in Section 4.1, discriminant bounds established by Odlyzko rely on 
a relation between the discriminant of a number field and the zeros of its Dedekind 
zeta function. Since the GRH restricts the possible locations of these zeros, this 
restriction yields improved bounds on the root discriminant, known as GRH bounds. 
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In rough asymptotic form, 

OF ~ (215.3325 .. .ydd(44.7632 ... )2r2 /d - O((log d)-2). (6.1) 

These bounds are again increasing with the degree d; tables of explicit bounds for 
d ::; 100 can be found in [17]. 

Using these GRR bounds, we can reformulate two of our previous results. 

Proposition 6.1. Under the assumption of the Generalized Riemann Hypothesis, 
NFa(n) is finite for even n ~ 4 and a ::; 756. 

Proof. By equation (6.1), the set N F(B) is finite for any value B < 215.333. Let 
fa(n) be defined for all even integers n ~ 2 as in the proof of Theorem 5.4. Then, for 
a::; 756, we have fa (4) 2/5 < 215.314, and hence NFa(n) c NF(215.314) for all even 
integers n ~ 4. 0 

Proposition 6.2. If the Generalized Riemann Hypothesis is assumed to be true, then 
htt-(F) > 1 for all totally real number fields F of degree d ~ 47. 

Proof. Comparing the bound given in Proposition 5.9 to the GRR bounds gives the 
result that htt- (F) > 1 for all d > 50. By replacing the factor of 481

/
d in the 

denominator of the bound, we can reduce the maximal degree to d = 46. 0 

6.2 Restricting Local Factors 

All of our estimates so far have taken into account the possibility that F contains 
ramified local cyclotomic extensions, i.e. for some odd prime p, there exists some 
vip such that Qp((p) ~ Fv, or there exists some vl2 such that Q(i) ~ Fv. This is 
equivalent to the condition that for some odd prime p, 

II wl(Fv)(p) > 1, 
vip 

or that for p = 2, 
II wl(Fv)(p) > 2#(vi2) , 
vi2 
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where #(vI2) denotes the number of primes above 2 in F. 

While this would not appear to be a rare occurrence, we observe from the claims 
made in Section 5.4 that for an odd prime p: 

and for the prime p = 2, 

II wl(Fv)(2) > 2#(vI2) 21D and Q2(i) ~ Fv for some v12. 
vl2 

Thus F may contain ramified local cyclotomic extensions for only finitely many 
primes p, all of which must be contained in the interval [2, d + 1]. It is therefore not 
surprising that of the 21 number fields listed in Table 7.1, only 7 contain a ramified 
local cyclotomic extension, and we find no fields containing such extensions for mul
tiple primes. 

An interesting case to consider arises if we assume F contains no ramified lo
cal cyclotomic extensions. Specifically, let F be totally real number field having the 
properties that for all odd primes p, ITvlp wl(Fv)(p) = 1, and ITvl2 wl(Fv)(2) = 2#(vI2). 

Under this assumption, the index of W K;t(F) in H!(OF, Z(2)) is given by 

ht(F) = 2#(vI2)-1 
htt(F) . 

As before, we wish to bound the root discriminant of any such fields having trivial 
motivic wild kernel. The following bound is obtained via the functional equation of 
(F(S). 

Proposition 6.3. Let F be a totally real number field of degree d with root discrim
inant OF = Dt If it is assumed that for all odd primes p and all vip, Qp((p) ct. Fv 
and that Q2(i) ct. Fv for all vl2, then a necessary condition for h;t(F) = 1 is given 
by 
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Proof. Combining Lemma 1.2 and Theorem 3.1, we obtain the following equality for 
a totally real number field F having htt (F) = 1. 

(6.2) 

Under the necessary assumptions on F, 

II wl(Fv)(p) = 1 
vip 

for all odd primes p. However, for p = 2, wl(Fv)(2) = 2 for each v12. Since there are 
at most d primes above 2, we have 

II wl(Fv)(2) :::; 2d. 
vl2 

Substituting this estimate for the local factors in equation (6.2) yields, 

(6.3) 

The result follows immediately from the inequality 2W2(F) . (F(2) > 1. D 

This bound is sufficient to yield a maximal degree dmax (2), which can then be 
improved using equation (6.3), resulting in dmax (2) = 11. 

We make the following claim concerning the value of (F(2). 

Claim 7. If F contains no ramified local cyclotomic extensions and ITvl2 wl(Fv)(2) = 
2d

J then (F(2) 2: (4/3)d. 

Proof. Suppose ITvl2 wl(Fv)(2) = 2d. Under the assumptions on F, this implies that 
2 splits completely in F. Therefore the Euler product expansion of (F(2) contains the 
factor (1 - i2) -d = (~) d. Since all Euler factors of (F (2) lli'e > 1, the result follows. 

D 
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Using this claim, we can make a slight improvement on the previous bound to 
yield our final result. 

Theorem 6.4. There are precisely 14 fields in NFl(2) containing no ramified local 
cyclotomic extensions. 

Proof. If 2 splits completely in F, we obtain by Claim 7 and equation (6.3) 

which yields dmax (2) = 8 in this case. On the other hand, if 2 does not split completely 
in F, then 

II wl(Fv)(2) ::; 2d
-\ 

vl2 

and (F(2) 2': I, so the inequality in (6.3) can be rewritten as 

which yields dmax (2) = 9. All possible fields are therefore contained in the list enu
merated in Corollary 5.11 and displayed in Table 7.1. D 
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Chapter 7 

Computations 

We have seen in the previous chapter that for any positive integer a ::; 32 and even 
integer n ~ 4, NFa(n) is a finite set, and hence can be determined by computational 
means. In Section 7.1 we provide an algorithm which can be used for computing such 
lists. Section 7.2 displays results obtained through the use of this algorithm. 

All computations shown here were performed in Sage [25] and PARI/GP [19]. The 
enumeration of totally real fields of bounded discriminant was performed using the 
Sage function enumemtctotallyreaLfields_all() developed by Voight [27]. The iden
tification of local fields was accomplished using the interactive PARI/GP database 
developed by Jones and Roberts described in [6]. 

7.1 Enumerating NFa(n) 

For a positive integer a ::; 32 and an even integer n ~ 4, the set NFa(n) can be 
computed using the following process. 
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Building the List 

The following algorithm will produce a set S of totally real number fields which 
contains all possible fields in NFa(n). We initialize S to be the empty set. 

1. Compute dmax(n). 

2. For each 2 :s; d:S; dmax(n), 

40) Compute an upper bound on the root discriminant 6F(n) < Ed . 

• Add NF(d,Ed) to the set S. 

Filtering the List 

The following algorithm is used to reject all number fields F E S such that 
h;;: (F) =I- a. Each field is tested in turn. 

1. Evaluate (F(l - n). 

2. Compute Wn (F). 

3. L t - wn(F)·(F(l-n) e x - 2d 1 • 

4. If a f x, discard F. 

5. If there exists an odd prime pl~ such that p f D, discard F. 

6. If there exists an odd prime pl~ such that (p - 1) > d(n - 1), discard F. 

7. Let 2k be the highest power of 2 dividing :£. If k > d, discard F. 
a 

8. For each prime pl~: 

• Compute ITvlp wn-l(Fv)(p) = pk 

• Let x:= ;k 
If x =I- a, discard F. 
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The above algorithm can be used to compute the elements of NFl (2) of small 
degree as well. Table 7.1 lists the results obtained via this algorithm for degree 
d < 10. Table 7.2 lists the results for the case n = 4) including the fields rejected by 
the filtering process. 

7.2 Results 

Table 7.1: Totally Real Number Fields of degree d < 10 with hf1(F) = 1 

D f(x) w2(F) (F( -1) local factors 

5 x2 - x-I 120 1 
30 

8 x2 - 2 48 1 
12 

12 x2 - 3 24 1 
(3 

13 x2 - x - 3 24 1 
(3 

17 x2 - x - 4 24 1 
3' 

24 x 2 - 6 24 1 Fv ~ Q!3((3) 2" 

33 x2 - x - 8 24 1 Fv ~ Q!3((3) 

49 x3 - x2 - 2x + 1 168 1 
21 

81 x3 - 3x-1 72 1 
'9 

148 x3 - x2 - 3x + 1 24 1 
3' 

169 x3 - x 2 - 4x-1 24 1 
3' 

229 x3 - 4x-1 24 2 
3' 

316 x3 - x2 - 4x + 2 24 4 Fv ~ Q!2(i) 3' 

321 x3 - x2 - 4x + 1 24 1 Fv ~ Q!3((3) 

725 x4 - x3 - 3x2 + X + 1 120 2 
15 

1957 x4 - 4x2 - X + 1 24 2 
3' 

2000 x4 - 5x2 + 5 120 2 Fv ~ Q!5((5) 3' 

2304 x4 - 4x2 + 1 48 1 Fv :J Q!3((3) 

2777 x4 - x3 - 4x2 + X + 2 24 4 
3' 

3981 x4 - x3 - 4x2 + 2x + 1 24 2 Fv ~ Q!3((3) 

24217 x5 - 5x3 - x2 + 3x + 1 24 4 
3' 
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c.n 
tv 

D 

5 

8 

12 

13 

17 

49 

81 

148 

169 

229 

257 

725 

1125 

1600 

1957 

2000 

2048 

2225 

2304 

2525 

2624 

Table 7.2: Computations for the case n = 4 

f(x) w4(F) (F( -3) local factors 

x 2 - x-I 240 1 -60 

x 2 - 2 480 11 -120 

x 2 - 3 240 23 
60 -

x 2 - x - 3 240 29 -60 

x 2 - x - 4 240 41 
30 -

x 3 - x 2 - 2x + 1 1680 79 -210 

x 3 - 3x-l 720 199 -90 

x 3 - x 2 - 3x + 1 240 577 -30 

x 3 - x 2 - 4x-l 3120 11227 
"""""390 -

x 3 - 4x-l 240 1333 -15 

x 3 - x 2 - 4x + 3 240 1891 -15 

x4 -x3 -3x2 +x+l 240 541 -15 

x4 - x 3 - 4x2 + 4x + 1 240 2522 -15 

x4 - 6x2 + 4 480 17347 -~ 

x4 - 4x2 - X + 1 240 3541 --3-

x4 - 5x2 + 5 240 3793 Fv ~ Q5((5) -3-

x4 - 4x2 + 2 960 87439 -60 

x4 - x 3 - 5x2 + 2x + 4 240 9202 --5-

X4 - 4x2 + 1 480 22011 Fv :J Q3((3) ----w-
x4 - 2x3 - 4x2 + 5x + 5 240 42787 -""""15 

x4 - 2x3 - 3x2 + 2x + 1 480 32681 ------ro-

h!:(F) 

1 

11 

23 

29 

41 

79 

199 

577 

11227 

1333 

3782 

541 

2522 

17347 

17705 

3793 

87439 

13803 

22011 

42787 

98043 

~ 
'" <""I-ro 
"""l 

~ 
s: 
ro 
;;:l 
!;:> 
<""I-
00. 
C""l 

'" !;:> 
;:l 
!;:>. 

~ 
!;:> 
<""l-e;;. 
<""I-
00. 
C""l 

'" 



Ql 
Ci.:I 

D 

2777 

3600 

3981 

4205 

4225 

4352 

4400 

14641 

24217 

36497 

38569 

65657 

300125 

371293 

434581 

453789 

485125 

592661 

703493 

722000 

810448 

820125 

905177 

966125 

980125 

Table 7.2: Computations for the case n = 4, continued 

f(x) w4(F) (F( -3) local factors 

x4 - x 3 - 4x2 + X + 2 240 63478 ---yg-

x4 + 2x3 - 7 x 2 - 8x + 1 240 49404 Fv :) Q)2(i), Fv :) Q)3((3) -5-

x4 - x 3 - 4x2 + 2x + 1 240 70953 Fv ~ Q)3((3) -5-

X4 - x 3 - 5x2 - X + 1 240 84937 --5-

x4 - 9x2 + 4 240 260536 --15-

x4 - 6x2 - 4x + 2 480 61204 --3-

x4 -7x2 + 11 240 300017 --15-

x 5 - x4 - 4x3 + 3x2 + 3x - 1 2640 1695622 -~ 

x 5 - 5x3 - x 2 + 3x + 1 240 898526 --15-

x 5 - 2x4 - 3x3 + 5x2 + x-I 240 763388 --3-

x 5 - 5x3 + 4x - 1 240 4576108 --1-5-

x 5 - X4 - 5x3 + 2x2 + 5x + 1 240 29852518 -15 

x 6 - x 5 - 7X4 + 2x3 + 7x2 - 2x-1 1680 323983108 -105 

x 6 - x 5 - 5x4 + 4x3 + 6x2 - 3x - 1 3120 1267169036 -195 

x 6 - 2x5 - 4X4 + 5x3 + 4x2 - 2x - 1 1680 1183699028 -105 

x 6 - x 5 - 6x4 + 6x3 + 8x2 - 8x + 1 1680 196804168 Fv ~ Q)7((7) 15 

x 6 - 2x5 - 4x4 + 8x3 + 2x2 - 5x + 1 240 248556284 -15 

x 6 - x 5 - 5x4 + 4x3 + 5x2 - 2x - 1 240 167017444 -5 

x 6 - 2x5 - 5x4 + 11x3 + 2x2 - 9x + 1 1680 2129657668 -35 

x 6 - x 5 - 6x4 + 7 x 3 + 4x2 - 5x + 1 240 334446268 -5 

x 6 - 3x5 - 2x4 + 9x3 - 5x + 1 240 1503507364 -15 

x 6 - 9x4 - 4x3 + 9x2 + 3x - 1 720 4684354132 -45 

x 6 - x 5 - 7x4 + 9x3 + 7x2 - 9x - 1 1680 15443870528 -105 

x 6 - x 5 - 6x4 + 4x3 + 8x2 - 1 240 2774660768 -15 

x 6 - x 5 - 6x4 + 6x3 + 7 x 2 - 5x - 1 240 2913920288 -15 

h-::(F) 

31739 

24702 

70953 

254811 

130268 

612040 

300017 

847811 

449263 

1908470 

2288054 

14926259 

80995777 

316792259 

295924757 

49201042 

62139071 

125263083 

1597243251 

250834701 
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1171088533 
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693665192 

728480072 

~ 
?? 
~ 
'" On 
~. 

~ 
~ 
0>. 
;;:l 

'" 
~ 
~ 
;;3' 
On 

~ 
~ .... 
'" .., 

~ 
~ 
'" ~ 
!;:> .... 
0>. 
n 
On 

§ 
~ 

~ 
!;:> .... 
~. 
N
o>. 
n 
On 



Bibliography 

[1] J. VV. S. Cassels and A. Frohlich, editors. Algebraic number theory. Academic 
Press, London, 1967. 

[2] T. Chinburg, M. Kolster, G. Pappas, and V. Snaith. Galois structure of K-groups 
of rings of integers. K-Theory, 14(4):319-369, 1998. 

[3] F. Diaz y Diaz. Tables minorant la racine n-ieme du discriminant d'un corps 
de degre n, volume 6 of Publications Mathematiques d'Orsay 80. Universite de 
Paris-Sud Departement de Mathematique, Orsay, 1980. 

[4] D. S. Dummit and R. M. Foote. Abstract Algebra. John Wiley & Sons Inc., 
Hoboken, N J, third edition, 2004. 

[5] J. Hurrelbrink. On the wild kernel. Arch. Math., 40(4):316-318, 1983. 

[6] J. W. Jones and D. P. Roberts. A database of local fields. Journal of Symbolic 
Computation, 41(1):80 - 97, 2006. 

[7] H. Klingen. Uber die Werte der Dedekindschen Zetafunktion. Math. Ann., 
145:265-272, 1961/1962. 

[8] M. Kolster. Higher relative class number formulae. Math. Ann., 323(4):667-692, 
2002. 

[9] M. Kolster. K-theory and arithmetic. In Contemporary developments in algebraic 
K-theory, ICTP Lect. Notes, XV, pages 191-258 (electronic). Trieste, 2004. 

[10] M. Kolster and A. Movahhedi. Galois co-descent for etale wild kernels and 
capitulation. Ann. Inst. Fourier, 50(1):35-65, 2000. 

54 



M.Sc. Thesis - Caroline Junkins McMaster - Mathematics and Statistics 

[11] S. Lichtenbaum. Values of zeta-functions, etale cohomology, and algebraic K
theory. In Algebraic K -theory, II: "Classical" algebraic K -theory and connections 
with arithmetic (Proc. Conj., Battelle Memorial Inst., Seattle, Wash., 1972), 
pages 489-50l. Lecture Notes in Math., Vol. 342. Springer, Berlin, 1973. 

[12] J. Martinet. Petits discriminants des corps de nombres. In Number theory days, 
1980 (Exeter, 1980), volume 56 of London Math. Soc. Lecture Note Ser., pages 
151-193. Cambridge Univ. Press, Cambridge, 1982. 

[13] J. S. Milne. Etale cohomology, volume 33 of Princeton Mathematical Series. 
Princeton University Press, Princeton, N.J., 1980. 

[14] J. Milnor. Introduction to algebraic K -theory. Princeton University Press, Prince
ton, N.J., 1971. Annals of Mathematics Studies, No. 72. 

[15] J. Neukirch. Algebraic number theory, volume 322 of Grundlehren der Mathe
matischen Wissenschaften. Springer-Verlag, Berlin, 1999. 

[16] J. Neukirch, A. Schmidt, and K. Wingberg. Cohomology of number fields, vol
ume 323 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, 
Berlin, 2000. 

[17] A. M. Odlyzko. Discriminant bounds. unpublished, available from 
http://www.dtc.umn.edu/ odlyzko/unpublished/index.html,. 

[18] A. M. Odlyzko. Bounds for discriminants and related estimates for class numbers, 
regulators and zeros of zeta functions: a survey of recent results. Sem. Theor. 
Nombres Bordeaux (2), 2(1):119-141, 1990. 

[19] The PARI Group, Bordeaux. PARI/GP, version 2.3.5, 2008. available from 
http://pari.math.u-bordeaux.fr/. 

[20] G. Poitou. Sur les petits discriminants. In Seminaire Delange-Pisot-Poitou, 18e 
annee: (1976/77), Theorie des nombres, Fasc. 1 (French), pages Exp. No.6, 
18. Secretariat Math., Paris, 1977. 

[21] J. Rognes and C. Weibel. Two-primary algebraic K-theory ofrings of integers in 
number fields. J. Amer. Math. Soc., 13(1):1-54, 2000. Appendix A by Manfred 
Kolster. 

[22] J.-P. Serre. Local fields, volume 67 of Graduate Texts in l\IIathematics. Springer
Verlag, New York, 1979. Translated from the French by Marvin Jay Greenberg. 

55 



M.Sc. Thesis - Caroline Junkins McMaster - Mathematics and Statistics 

[23] C. L. Siegel. Berechnung von Zetafunktionen an ganzzahligen Stellen. Nachr. 
Akad. Wiss. Gottingen Math.-Phys. Kl. II, 1969:87-102, 1969. 

[24] H. M. Stark. A complete determination of the complex quadratic fields of class
number one. lvIichigan Math. J., 14:1-27, 1967. 

[25] W. Stein et al. Sage Mathematics Software (Version 4.4.1). The Sage Develop
ment Team, 2009. http://www . sagemath. org. 

[26] J. Tate. Symbols in arithmetic, 1970. Lecture at the International Congress in 
Nice. 

[27] J. Voight. Enumeration of totally real number fields of bounded root discrimi
nant. In Algorithmic number theory, volume 5011 of Lecture Notes in Comput. 
Sci., pages 268-281. Springer, Berlin, 2008. 

[28] J. Voight. The Gauss higher relative class number problem. Ann. Sci. Math. 
Quebec, 32(2):221-232, 2008. 

[29] L. C. Washington. Introduction to cyclotomic fields, volume 83 of Graduate Texts 
in Mathematics. Springer-Verlag, New York, second edition, 1997. 

[30] M. Watkins. Class numbers of imaginary quadratic fields. Math. Comp., 
73(246) :907-938 (electronic), 2004. 

[31] A. Wiles. The Iwasawa conjecture for totally real fields. Ann. of Math. (2), 
131(3):493-540, 1990. 

56 



118141C 




