
FORMAL MODELLING OF VERSION

CONTROL SYSTEMS

By

DAVID H. KELK, B.Sc.

A Thesis

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree of

Master of Computer Science

Department of Computing and Software

McMaster University

© Copyright by David H. Kelk, December 2009

ii

MASTER OF COMPUTER SCIENCE (2009)

(Department of Computing and Software)

TITLE: Formal Modelling of Version Control Systems

AUTHOR: David H. Kelk, B.Sc. (York University)

SUPERVISOR: Dr. Emil Sekerinski

NUMBER OF PAGES: viii, 155

---- ---

McMaster University

Hamilton, Ontario

Abstract

Version control systems are widely used to manage collections of files and directories,

along with changes made to them over their lifetime. Any previously checked in

version of a file is recoverable at any time from the repository. They allow people

to work on the same files in a decentralized and concurrent way, while consistently

managing and integrating changes.

In this thesis we develop a subset of the SVN and CVS version control systems

from specifications using Atelier B 4. Both of these systems are feature rich, widely

used in cross-platform environments and representative of their class of file based

extensional version control systems. Support for abstract data types like sets and

refinement is well suited to the task. The most commonly used features such as Add,

Check-in, Update are modeled in increasing detail in multiple refinement steps. Later

refinement steps add features such as binary file support and the local cache. Having

both models allows us to compare and contrast their feature sets.

Documentation for SVN and CVS is extensive but informal. One feature of CVS

required experimentation when the written documentation was insufficient.

SVN is modelled in approximately 1400 lines in eight refinement steps with 109

proof obligations. CVS is likewise specified in roughly 1150 lines in seven steps with 29

proof obligations. With all proof obligations discharged we are confident the models

represent the real systems and are a reasonable first step towards the goal of verifiable

implementations of version control systems.

III

Acknowledgments

Dr. Emil Sekerinski, my supervisor, has been instrumental in seeing this thesis

through to completion. His insights, explanations and feedback provide the small

pushes allowing me to cross the big hurdles. A generous open door policy and good

humor made the darkest days of fruitless proving brighter.

My former professors at York University were instrumental in my success at the

graduate level: Dr. Ostroff introduced me to the combined awesomeness of Design

by Contract and Eiffel. Dr. Tzerpos took a chance and agreed to mentor me for

the independent study course for fourth year students. Dr. Wharton taught me to

think in a programming language independent way with his two excellent courses in

programming language fundamentals.

From my first undergraduate career I'm especially thankful for Professor Paul

Delaney for mentoring me through some tough times and Dr. Derobertis for telling

it like it is.

Closer to home, my office mates and friends deserve special mention: Dan Zingaro

for B-ing Early to help me with my B troubles. Pouya Larjani deserves a medal for

all of his explanations of logic.

Antoine Requet at ClearSy generously accepted all of my bug reports for Atelier

B 4.0 and answered my questions about the environment.

Finally, special thanks to my Mom, Karen McLean. I couldn't have done it without

you.

IV

Contents

Abstract

Acknowledgments

1 Introduction

2

3

The B-Method

2.1 Overview

2.1.1 Machine Clauses

2.1.2 Structuring Mechanisms

2.1.3 Set Theory and Logic .

2.1.4 Sequences

2.1.5 Correctness Criteria

2.1.6 Lambda Abstraction

2.1.7 Supporting Software

Formalities and Background

3.1 Version Control Classification

3.2 Version Control Terminology .

3.3 CVS

3.3.1 Informal Description of CVS .

3.4 Subversion

3.4.1 Informal Description of Subversion

3.5 Differences between SVN and CVS

3.6 Choosing Features to Model

3.7 Environmental, Functional and Safety Requirements.

3.7.1 Environmental Requirements

v

iii

iv

1

3

3

4

6

7

7

7

10

12

13

13

13

16

16

18

18

19

21

25

25

vi

3.7.2 Functional Requirements

3.7.3 Safety Requirements

3.8 Refinement Steps

CONTENTS

25

30

31

4 Related Work 34

34

35

37

37

39

4.1 Meta-Modeling of VCS Using CVS and SVN

4.1.1 Initial CVS Model .

4.1.2 Revised CVS Model

4.1.3 Initial SVN Model .

4.1.4 Revised SVN Model

5 Models

5.1 Initial Models of SVN and CVS

41

41

5.2 First Refinement of SVN and CVS 41

5.2.1 Operations.......... 43

5.3 Second Refinement: Client Version Number 52

5.4 Third Refinement: Under Version Control List for the Server 55

5.5 Fourth Refinement: Shadow Under Version Control List for the Client 56

5.6 Fifth Refinement: Shadow Repository and Version Number for the Client 57

5.7 Sixth Refinement: Status Operation. . . . 59

5.8 Seventh Refinement: Binary File Support. 62

5.9 Eighth Refinement: Pristine Cache

5.10 Invariants

5.10.1 Unsuccessful Candidates

5.10.2 Successful Candidates

5.11 Proof Obligations

5.12 Lemma Proof Obligations

6 Conclusions

7 Full Models

7.1 SVN Model

7.1.1 SVN 01 .

7.1.2 SVN 02 .

7.1.3 SVN 03.

7.1.4 SVN 04 .

65

66

66

67

68

71

74

76

76

76

80

86

92

/

CONTENTS Vll

7.1.5 SVN 05 .. 97

7.1.6 SVN 06 101

7.1.7 SVN 07 . 108

7.1.8 SVN 08 .. 114

7.1.9 SVN 09 .. 120

7.2 CVS Models .. 125

7.2.1 CVS 01 125

7.2.2 CVS 02 .. 125

7.2.3 CVS 03 . 129

7.2.4 CVS 04 . 133

7.2.5 CVS 05 .. 136

7.2.6 CVS 06 139

7.2.7 CVS 07. .. 145

7.2.8 CVS 08 .. 150

List of Figures

2.1 Set-related and logic symbols. 8

2.2 Operations on sequences. . 8

2.3 Predicate transformers 9

2.4 Machine template. 9

2.5 Proof obligations for template of Figure 2.4. 10

4.1 UML model of CVS from [IVIar06] .. 36

4.2 Revised UML model of CVS 37

4.3 UML model of SVN from [rv1ar06] .. 38

4.4 Revised UML model of SVN. ... 40

Vlll

Chapter 1

Introduction

Jean-Raymond Abrial described modeling as taking the role of blueprint making for

the field of software development [Abr09j. As blueprints allow one to reason about

a car without actually building one, modeling allows one to reason about a program

without creating it. Similarly a model can be refined by additional models as a

blueprint may be refined by more specific ones. Initial models are very general to

capture big ideas, then are refined in succeeding iterations adding greater functionality

and data structures.

Behind many modeling systems including Atelier B 4.0, used here, is a formal

mathematical logic used to generate proof obligations they must satisfy. B's logic

system is based on classical logic and set theory and is understandable by anyone

with a logic background.

Band UML are both modeling languages. What differentiates them is the under

lying logic system in B that generates proof obligations (POs). A PO is a question

to the modeler, "Have you considered this case?" Models satisfying all POs can be

proven correct.

Modeling version control systems (VCSs) gives the community a set of com

mon blueprints allowing communication in a programming language independent way

about VCSs. New features can be created from the models and their impact exainined

without actual code being written.

The rest of this thesis is organized as follows: Chapter 2 introduces the Atelier B 4

modeling tool. Modeling version control systems literature is surveyed in Chapter 3.

Particular attention is invested in a description of a UML meta-model of CVS and

Subversion (SVN). Chapter 4 contains a description of VCS and an informal develop-

1

2 1. Introduction

ment of SVN and CVS from available documentation. Development of initial models

and their refinements is in Chapter 5. Conclusions and future work are in Chapter 6.

Chapter 2

The B-Method

2.1 Overview

B [Cle08, S1(99, Abr96j is a formal method for creating models. A general overview

of B and the features used in this thesis are presented.

Working in B one writes a specification (blueprint) of the project in an expressive

first order logic with set theory in an abstract machine. It contains the model's vari

ables: Integers, booleans, sets and relations amongst others. It's invariants describe

properties that always hold true while operations change the state of the machine's

variables. They are analogous to the variables, functions and operational rules in use

in an actual program.

Correctness by design is enforced by the generation of proof obligations (POs) the

abstract machine must fulfill. Each PO defines a condition of logical correctness or

consistency that must be satisfied. Many are proved automatically. Some require

the intervention of the user who must puzzle out whether the obligation can be met.

If so, finding the proper pieces of information to feed the prover can be very time

consuming and counter-intuitive. Often the prover generates a counter example. It

demonstrates a refutation of the proof. In this case the abstract machine must be

modified to account for it. Sometimes the prover cannot prove a correct statement.

For large lambda relations the default search time must be increased or a hand proof

performed.

An initial abstract machine is expected to be very general. In derived machines

the data or algorithms are refined to more precisely reflect the item of study. Data

refinement occurs when the variables are more precisely defined in terms of their

3

4 2. The B-Method

composition or the limits placed upon them: A FileContents variable refined to a

sequence of integers, a set refined to an array. Algorithmic refinement occurs when

the operations increase in complexity or number: A descriptive operation is refined

by an algorithmic operation and operations that expand to handle data refinement.

2.1.1 Machine Clauses

A small example of a data queue from [SK99] illustrates many of the features of Bused

here. It manages a list of data items by maintaining a sequence of tokens referencing

them. Free tokens are added, and existing tokens removed by the operations.

MACHINE
DataQueue

SETS

TOKEN; DATA

VARIABLES

Listing 2.1: TokenQueue

AnyData, TokenSeq, TokenMap

INVARIANT
AnyData E N 1\

TokenSeq E iseq(TOKEN) 1\

TokenMap E TOKEN -f+ DATA 1\

dom(TokenMap) = USED

INITIALISATION

AnyData := 5 II TokenSeq := [] II TokenMap := {}

OPERATIONS

Success, AToken f--- AddItem(Item) =

PRE
Item E DATA

THEN

CHOICE

2. The B-Method

ANY NewToken WHERE
NewToken E TOKEN - USED

THEN

TokenSeq := TokenSeq +-- NewToken II
TokenMap(NewToken) := Item II
Success := TRUE II
AToken := NewToken

END

OR

Success := FALSE II
AToken:E TOKEN

END

END;

DeleteItem(Token) =

PRE
Token E TOKEN

THEN

IF Token E USED THEN

ANY Before, After WHERE
Before E iseq (TOKEN) /\ After E iseq (TOKEN)

/\ TokenSeq = (Before ~[Token] ~After)

THEN

TokenSeq := Before ~ After II
TokenMap := {Token} ~TokenMap

END

END

END

DEFINITIONS

USED == ran (TokenSeq)

END

5

A parent machine, if it exists, is found in the INCLUDES clauses. Variables are

declared in the VARIABLES clause. DataQueue has three, that are typed in the

INVARIANT clause. At a minimum the invariant section types all variables. It

6 2. The B-Method

often describes other constraints amongst the variables that always hold in the model,

such as dom(TokenMap) = USED.

Variables are given initial values in the INITIALISATION clause. Note that a

B sequence uses square brackets [], while sets use curly brackets {}.

Procedures are modeled in the OPERATIONS clause. They are descriptions in

the sense that the actual program has to properly implement the functionality present

in the model's operations.

Direct substitution macros are listed in the final clause, DEFINITIONS. As

operations can't call other operations within the same machine, they serve a very

useful role.

Within an operation the precondition block PRE contains a series of conditions

that must be true before the body of an operation is executed. State is changed within

the body. II indicates parallel composition. Each block of statements is assigned to

one processor with no interprocessor communication allowed. At the end of each

block the invariant must be reestablished.

Operations describe the functions and procedures of the model. Adding an item

to the queue is descried by the AddItem operation. It has one input argument, Item,

and two output, Success and A Token. Item is required to be from the DATA set.

AddItem has two potential outcomes. If there are unused tokens left, a random one is

associated with Item and added to the sequence. Success is set to true and the new

token is returned. Alternatively, when all tokens are taken, Success is set to false and

a random :E token is returned.

To remove an item from the set, call DeleteItem. It accepts a token already in

the sequence. Within the body, Before and After are defined to be all sequence items

before the token and after respectively. The input token is in neither list. Joining

together Before and After completes the removal of the token from TokenMap.

2.1.2 Structuring Mechanisms

Different clauses provide different access rules when one machine inherits from an

other:

The most restrictive, IMPORTS gives machine B importing machine A access

to the operations of A only. Variables in A cannot be accessed directly. They must

be manipulated by referencing the operations of A.

Read only access to a parent machine is by SEES. Constants, state and query

2. The B-Method 7

operations are all accessible. Operations changing the state of the seen machine

cannot be accessed, and the seeing machine cannot use seen machine variables in it's

invariants, as another machine may change the seen machine's state, breaking the

invariant.

Full access to methods is available through INCLUDES. Variables are not di

rectly accessible, but can be manipulated by method calls in the included machine.

This restriction allows each machine to be proved independently of it's parents and

children. The child machine can relate it's invariant to the included machine. Be

cause of the relation of invariants, a parent machine is only involved in one includes

relationship. Allowing two or more creates the possibility of one child invalidating

another child's related invariants.

2.1.3 Set Theory and Logic

The core of B is built around set-theoretic operations and logical connectives. Fig

ure 2.1 lists the most commonly encountered ones. We assume familiarity with most

of them.

Mapping a relationship from c to d is c f----7 d = (c, d). The direct product (®)

of relations a E (b f--+ c) and d E (b f--+ 1) is a relation with elements (g, (h, i)) where

(g f----7 h) E a and (g f----7 i) E d.

2.1.4 Sequences

Sequences seq and injective sequences iseq are ordered listings of elements. They are

total functions mapping the domain, 0 .. N, N ~ 0 to a range, an arbitrary element

type in a set. Injective sequences have the additional property that no element is

repeated.

An empty sequence is written as fl. Elements are [el, e2, ... , en]. They are

chosen using a functional notation: If s is a sequence, s(n) retrieves the nth element

(0 ::; n ::; N). A summary of operations appears in Figure 2.2.

2.1.5 Correctness Criteria

Proving correctness requires all proof obligations to be discharged. They take three

main forms: Initialization maintain the variables type integrity. Any operation adding

or removing members from sets or relations maintains their type integrity. After any

8

equality
/\ conjunction
or disjunction
-, negation
:::::? implication

V universal quantifier
:3 existential quantifier
E set membership

tI- set exclusion
U set union
n set intersection

lP' power set
C subset

card set cardinality
closure transitive reflexive closure
closure1 transitive (non-reflexive) closure
---+ total function
-f+ partial function
)---7 total injection
J------+ maps to
<4 domain subtraction
@ direct product
+-+ relation

dom domain of relation
ran range of relation

Figure 2.1: Set-related and logic symbols.

first (s) first element of sequence s
tail (s) all but the first element of sequence s
last (s) last element of sequence s
front (s) all but the last element of sequence s
s t- e sequence s appended with element e
s ~ t concatenation sequences sand t
size (s) number of elements in sequence s
s l' n first n elements of sequence s

2. The B-Method

s 1 n sequence s with first n elements removed

Figure 2.2: Operations on sequences.

2. The B-Method

WPA x := E {P} = {prE / x]}
WPM x, y := E, F {P} = {prE, F / x, y]}
WPI IF E THEN SEND {P} = (E =? S {P}) /\ (.E =? {P})
WPB BEGIN SEND {P} = S {P}
WPS S {P}, {P} T = S; T
WPP PRE Q THEN SEND {P} = (Q /\ S) {P}

MACHINEN
CONSTANTS k
PROPERTIES B
VARIABLES v
INVARIANT I
INITIALISATION T
OPERATIONS
y f-- op(x) =

PREP
THEN S
END;

DEFINITIONS D
END

Figure 2.3: Predicate transformers.

Figure 2.4: Machine template.

9

operation on a variable, all invariants are maintained. All obligations the prover fails

to establilsh are left as undischarged proof obligation for the user to struggle with.

Dijkstra's weakest preconditions are used to reason about a machine's state space

and the transformations on it. For example, if x := E is a B statement and P

is a predicate characterizing a postcondition, prE / xl is the weakest precondition of

x := E to establish P. B substitutes all free x's in P with E. By composing these rules

we generate more complex structures. Figure 2.3 is a list of weakest preconditions.

(Note that ; sequences B statements, where II parallelizes them.)

Figure 2.4 is a general template of a B machine. It's proof obligations (adapted

from [Sch01]) are listed in Figure 2.5. Observe the final obligation in Figure 2.5

applies to all operations.

In Figure 2.5, (1) and (2) prove the static specification of the machine: Con

stants are typed and invariants are established. Rules (3) and (4) prove the dynamic

consistency of the machine as it executes: Initial values of variables conform to the

10

(1) (:3k) . B - Constants can be instantianted

(2) B =} (:3v) . I - Invariants can be established

(3) B =} [Tj1 - Initialization establishes the invariants

2. The B-Method

(4) (B 1\ I 1\ P) =} [8]1 - All operations preserve the invariants

Figure 2.5: Proof obligations for template of Figure 2.4.

invariants and all operations maintain all invariants.

TokenQueue has no constants, so (1) is vacuously satisfied. For (2), any variable

mentioned in the VARIABLES clause must be defined in the INVARIANT clause.

This is true for AnyData, Token8eq and TokenMap.

Rule (3) requires INITIALISATION to maintain invariants. Variable AnyData

is initialized to 5. It is in N and preserves the invariant. [] (an empty sequence) and

{} (empty set) are valid for Token8eq and TokenMap.

Rule (4) requires invariants to be restored by the end of each operation. It's proof

is nontrivial and not reproduced here.

2.1.6 Lambda Abstraction

B supports lambda abstractions. It is a formal system for defining and applying

functions. In general they are recursive, though this behavior is not supported in

Atelier B 4. In this thesis they are used primarily to iterate over sets of files presented

to a VCS command. Their general structure is as follows:

A A, B, ... ({ Type A, B, ... }, {Constrain A, B, ... }

I
C = F(A, B,))

The output of the lambda abstraction is of the type ((A x B) x ...) -,'7 C. As

an example we show a simple lambda abstraction that adds files from an external

source to a file system.

2. The B-Method

SETS
FILESSET, FILECONTENTS

VARIABLES
FileSystem

INVARIANT
FileSystem E FILESSET -f+ FILE CONTENTS

ExternalFileSystem E FILESSET -f+ FILECONTENTS

OPERATIONS

OSAddFile(ExternalFiles)

PRE
ExternalFiles s:;; FILESSET /\ ExternalFiles =I- {}
/\ ExternalFiles s:;; dom(ExternalFilcSystem)

/\ ExternalFiles n dom(FileSystem) = {}

THEN
FileSystem := FileSystem U

..\ AFile. (AFile E FILESSET /\ AFile E ExternalFiles

/\ AFile rf. dom(FileSystem)

I
ExternalFileSystem(AFile))

END

11

A straight forward umon, FileSystem := FileSystem U ExternalFiles is prob

lematic because the same file name could exist in both relations. Adding

it again violates the uniqueness of the domain of FileSystem. B generates

an unsatisfied proof obligation for this case. In the lambda abstraction ..\

AFile .(... I ExternalFileSystem(AFile)) , the output AFile f-----+ ExternalFiles(AFile)

is being added to FileSystem where AFile E FILESSET /\ AFile E ExternalFiles

types and constrains the values AFile assumes. Guard AFile rf. dom(FileSystem)

is necessary to prevent the same file name from appearing twice in the domain of

FileSystem.

12 2. The B-Method

2.1. 7 Supporting Software

Our model of SVN was developed using Atelier B 4. a Bl, B2 and stable [CleOg]

provided by ClearSy. It syntax": and type-checks B machines, generates POs and

attempts to automatically prove as many as it can.

When the prover isn't able to find a rule to apply to a proof it cannot be auto

proven. For this the interactive prover helps us determine what went wrong. For

example, sometimes a counterexample found by the prover breaks an invariant, or it

finds a case where the output of a lambda relation is the empty set. One works with

the prover by providing it hypotheses in an attempt to prove the PO (if possible.)

There are caveats we need to be aware of when using Atelier B 4: By default,

expressions entered into the interactive prover are not syntax and type checked. If

they fail either they are silently dropped. This is a problem as the mental model the

user is working from diverges from the model Atelier B 4 has stored.

Within the main user interface, proofs and lemma proofs are stored in different,

non-intuitive places in the project tree.

Using Atelier B 4's interactive prover is a black art. Many sacrifices of time

and sanity will be made to the elder gods of logic as one works through a non

trivial machine. When an operation is nested within multiple let, pre, if and similar

keywords it can lose track of type information. A simple reminder like adding a

hypothesis, ah(VerNo E N) or ah(VerNo ~ 0) is sometimes all that is required to

satisfy a PO. There is little feedback from the interactive prover on what the problem

could be. It is left to the user to puzzle out what could be going wrong and fix it.

One assumes the preconditions of an operation are stored and available to a PO.

In practice this isn't done. They must be added as hypothesis.

Chapter 3

Formalities and Background

3.1 Version Control Classification

Version control systems (VCS) are widely used to manage collections of files and

directories, along with the changes made to them over their lifetime. Any previously

checked in version of a file is recoverable at any time from the repository.

VCS allow people to work on the same files in a decentralized and concurrent way,

while consistently managing and integrating changes.

Using the classification schemes codified by Conradi [GW98] and Kipli [KiI97],

CVS is a file based control system and SVN is a file and directory based control sys

tem. Changes to files are recorded as directed deltas. They use extensional versioning,

where all versions are explicit and have been checked in before. All checked in ver

sions are immutable. Their intent of evolution is revision, where each new revision

supersedes it's predecessor. Version graphs are directed acyclic and support both

branching and merging.

3.2 Version Control Terminology

Standard terminology is used when discussing VCS. Definitions are adapted

from [Spi05a, Spi05b]. In general, files are understood to be, files and directories.

Under most circumstances a VCS is configured on a network. As it's primary goal

is file protection and recovery, local storage isn't wise. 1 Users must be added to the

permission list to access the repository, or more likely some subset of it.

1 In multi-level ves, one level of it may include local storage.

13

14 3. Formalities and Background

A file's life-cycle with respect to a VCS begins with an initial check-in. This tells

the VCS to. track this file and record changes to it when instructed. It is transferred

to the repository and recorded as the initial version, or revision upon check-in.

After check-in the file receives a version number. It is 1 if each file has it's own

version number (as in CVS,) or N (N 2:: 1) if the virtual file system as a whole has

a version number (SVN's model.) In the latter case, each check in increments the

repository-wide version number by one and assigns this new number to all checked-in

files containing changes.

Modifying a file requires it to be checked-out. A user downloads the file to their

local system for modification. Binary files (images, sound, movies, many office formats

like .odf) on both CVS and SVN require locking before check-out. Only one person

works on a binary file at a time.

In some VCS, files are cached on the client side. A cache contains copies of the

files in the state they were in when last checked-out, updated or reverted. They are

not meant to be edited by users. Cached files allow a user to perform some operations

even when the VCS isn't available, and can reduce network activity by allowing some

operations to be done locally. One could determine the differences of a modified

file with respect to it's cached or pristine state or undo changes made since the last

check-out by copying over the file with the pristine file.

Moving, copying or deleting a file under version control is performed by invoking

the operation from the VCS instead of the operating system (svn mv myfile ... instead

of mv myfile) VCSs lose track of a file if it is moved, renamed or deleted using

the supplied OS commands.

Before changes are checked-in, files are required to be synchronized with the server

to receive any updates other users may have made to these same files. Changes to

the version number of the file or the check-in date and time indicate another user

has modified them and checked-in their changes. These changes from the server are

merged into the user's copy of the file, bringing them up to date with the server. If

user B has edited the same part of a file A has and committed, a conflict occurs when

A updates. (See conflict below.)

Commit integrates changes made by a user on the local files into the VCS. Updated

files receive a new version number as described above. Most VCSs can be configured

to require a commit message: A short text explaining the changes,fixes, additions

and/or deletions in the files.

When two users work on the same part of a file simultaneously and commit, a

3. Formalities and Background 15

conflict occurs. Jane's first commit works fine. Christa's is blocked, with a message

informing her the part of the file she was working on has changed since she initially

checked out the file. Christa must get together with Jane to discuss their incompatible

changes and agree on a resolution, inform the VCS of this resolution (usually by

editing specially prepared conflict files created by the VCS), then commit this new

and integrated change.

VCSs don't resolve conflicts. They report their occurrence to their human over

lords and leave it up to their social and personal skills to resolve their differences.

One overlord may simply decide their approach is better and commit their change,

effectively overwriting the first overlord's work. Where mediation fails, or never takes

place, unresolved differences may lead to commit wars.

Commit wars are a series of needless, conflicting and mutually undoing changes

committed by users who disagree on how a part of a file should look. Commit wars

are sometimes started by (hostile) back-outs.

A back-out undoes the effects of a commit by either manually restoring the file

to it's previous state and committing again or undoing a commit through the VCS

using built-in administrator commands. A back-out is usually done by the initial

committer. In contrast, a hostile back-out is performed by someone other than the

original committer without any notice or prior arrangement.

Within a VCS the head is the most recent versions of all of the files on a particular

branch. A release is a head made available to a wider community of users. Releases

are often tagged as and begin a maintenance branch. The trunk is the main line of

development of the items in question. Most branches originate from it.

A branch is set of VCS file versions identified by a common tag. They serve

many purposes: Maintenance of older version of released items (eg: Bug fixing older

code/program releases, corrections to the collection of recipes in a particular release

of a cookbook.) Work on new features often occurs in development branches. When

they're ready they are merged into another branch or the trunk. Security branches

only allow security update and fixes to be checked in. Branches may be frozen. All

work on them has ceased.

A tag is a name assigned to a specific release or branch. For example, Garden

gnomes collection as of July 2009, V. 2.2 unstable, V. 2.1 stable or V. 2.0 maintenance.

Development of a branch ends when it is collapsed into another branch (usually

the parent) or the trunk. From the parent's perspective, the child branch is merged

into or synchronized with it.

16 3. Formalities and Background

Integration pulls changes from one branch into another. A collapse mayor may

not happen at the same time. Re-parenting a change is to move it from the source

branch to the destination-branch without committing those changes to the source

branch.

3.3 CVS

CVS [Fou09] began as a collection of shell scripts created by Dick Grune. He posted

them to comp.sources.unix in July 1986 [PGC08]. Brian Berliner created CVS in

April 1989. Jeff Polk helped with the CVS module and vendor branch support. It is

available from their web site at [Fou09].

References to CVS are to the user manual version 1.11.23.

3.3.1 Informal Description of CVS

CVS manages files and changes made to them over time. Within the CVS repository

the directory structure mirrors the directory structure of the local files when they're

initially checked in. Every file under version control is stored in it's own RCS file 2. It

contains the full file contents from the initial check-in and stores subsequent updates

as a series of change deltas describing the changes made, who made them, when and

why.

Writing changes to files as deltas is more efficient than recording the full file on

each check-in. Any previous version of the file is recoverable by retrieving the initial

check-in followed by applying the deltas in order until the version is reached the user

is interested in.

CVS uses the copy-modify-merge (CMM) model for text files and the lock-modify

unlock (LMU) model for binary files. In CVS-speak, text files use unreserved checkouts

while binary files use file locking. Users must remember which files are binary and

specify so using command line parameters. Forgetting means the file is treated as

text, causing corruption. As CVS doesn't work well with binary files, the full file

must be recorded every time a change is checked in. Change deltas can't be used.

CVS supports branching and tagging, but has difficulty with binary files on branch

merges. Merging changes from one binary file into another is meaningless and corrupts

the resulting file.

2RCS files come from the RCS VCS, a predecessor of CVS.

3. Formalities and Background 17

CVS doesn't support transactions. When a directory of files is checked-in, CVS

locks each corresponding file in the server in turn, allowing it's deltas to be stored

without interference from others. Should Bill check-out while Claire is checking-in,

Bill receives some updated files from Claire and some files yet to be updated by her.

Should Bill attempt to check-out a file in the middle of an update, the request is

denied because it is locked by Claire's update.

A group of CVS file ends up in an inconsistent state if a commit fails part way

through. Changes will be applied to some files, but not others. If a file is partially

modified when the commit fails, it is ignored. There is no way to roll back an

incomplete commit.

Conflict resolution is weak. A user is under no obligation to resolve the conflict

with their fellow human beings. CVS allows someone to check-in regardless, initiating

a hostile back-out. Users should always discuss and resolve their conflicts before

checking-in. CVS is of no help here.

CVS handles network traffic efficiently for text files. When a user updates a local

file to the CVS server, only changes to the file since that user checked it out are sent.

Delta packets are used and applied at the client end. When checking-in a file, it is

sent in full - and may be compressed. The CVS server calculates the delta packets

and appends them as a new revision to the RCS file.

Within CVS, every file has it's own version number. It starts at 1 and increments

by 1 on every successful check-in.

CVS doesn't support file moving, file renaming and directory moving and renam

ing. Any client operation moving or renames a file creates a broken history. After the

operation the history of the file is still associated with it's old-name. As far as CVS

is concerned, new-name is a new file with no history. No link is maintained between

new-name and old-name. A user is expected to remember all operations causing file

name changes, and what version number this change occurred at. 3 A evs Wizard

can apply their eldritch sorcery to the server to attempt to re-link file histories.

Renaming a client directory requires four separate steps: Individual files are moved

out of the old directory; causing broken histories. The old directory is deleted and

the new one created. Finally the files are moved into the new directory and added to

CVS as files newly placed under version control.

Repository directory permissions on Unix must be managed by creating groups

with the appropriate read and write access on the directories ofthe CVS server. Users

3you just started working at the company today, and the CVS guru retired yesterday?

18 3. Formalities and Background

must be added to the appropriate groups, which may require the intervention of a

Unix system administrator. The granularity of control is limited to the directory

level. Individual file control must be managed by splitting them between directories.

CVS assumes subdirectories inherit their parent's permissions.

3.4 Subversion

Subversion (SVN) [ColO9] was specifically created to remedy flaws in CVS. By design

it is similar to CVS but with a more modern and complete feature set.

3.4.1 Informal Description of Subversion

Information on SVN is drawn from web documentation at [CSFP07].

SVN users start to notice the differences between SVN and CVS when they add

their first project to it. Any time a file is checked out, a cached or pristine copy of

each file is always stored as well. The designers reason disk space is cheap, where

network bandwidth isn't. Always having a pristine copy of the checked out files allows

more operations to be performed without the involvement of the network and server.

Storage and transfers are built around a binary difference algorithm. It erases

the difficulties in using binary files. When a file is first imported or added, a binary

detection algorithm is run on it. From this the svn:mime-type is set to text or binary,

alleviating the user from the responsibility of remembering.

SVN is designed to treat binary and text files the same-as literal byte strings.

No keyword or end of line translation is performed, like in CVS. As the file type is

accounted for end-to-end and a pristine copy of the file always exists on the client

side, change deltas are sent both ways for both the text and binary file types.

Within the SVN repository it is possible to record the changes to a binary file

with a series of space saving change deltas.

Files and directories are versioned in SVN. Within the server, the versioned entity

is the file system, not the individual file. Revision numbers apply to these file systems.

Every revision is a snapshot of the file system after a check-in. In CVS it's guaranteed

the contents of versionsn and n + 1 of a file are different. Within SVN a file or

directory may not change over an arbitrary number of snapshots.

As the base entity on the SVN server is a virtual file system, file and directory

deletions and renaming are all tracked. There are no broken histories. If a file or

3. Formalities and Background 19

directory is renamed using SVN and checked in, the newly named file has a link to

it's previous history. No file copying or necromancy is required.

A tree delta describes the changes to the directory tree from one version to the

next: The copies, renames and deletions of files and directories and changes to file

content.

As expected, SVN uses the copy-modify-merge model for text files and the lock

modify-unlock model for binary files. Files are checked-out, edited and updated as

expected. Ancestry sets remember what changes have been merged into files when

other user's changes are incorporated into the local files on update. This lowers

network usage by insuring changes aren't incorporated into client files more than

once.

SVN requires any conflicts between updates from the server and a user's edits

to be resolved before check-in. It creates a specially marked up file showing both

overlapping edits. The file cannot be checked in until the markers are removed and

some choice made about the contents. SVN resolved must be explicitly run to apply

the update.

A conflict must be resolved, but still doesn't enforce human cooperation. (No

system can.) Hostile backouts still occur. Unlike CVS, it can't happen by mistake.

SVN was designed with a number of database principles in mind: Any repository

operation modifying files must first acquire an exclusive write lock on them all, and

must wait if one or more are already locked. Once it has the locks, it performs the

actual operation. If there is some kind of error, such as not receiving all the data,

the operation is undone and an error message generated. Either all of the operations

take place, or none do.

Serialization avoids the problem of lost writes or partial writes. If two separate

users update the same file at the same time, locking and atomicity guarantee that

one update will occur, then the other. It doesn't guarantee any order, only that they

happen in turn.

File system space and branch space are the same in SVN. They are all ordinary

directories in the virtual file system under the root directory of a project.

3.5 Differences between SVN and CVS

Comparisons between SVN and CVS have been made numerous times before. This

list was drawn in part from [vVG05].

20 3. Formalities and Background

SVN CVS

SVN uses the revision number to
CVS client looks at the time

determine when the client files are
stamp of the file to determine

out of date with the server and
whether a check-in is needed. The

time stamp to know when the
server looks at actual file con-

client file is changed compared to
tents.

the pristine copy.

There is one global revision num- Each file has its own revision

ber per virtual file system tree. number.

From revision to revision, a file From revision to revision, a file

might not change. changes.

Files, directories, copying and re-
Files are under version control,

directories are not. Copying and
naming are all under version con-

renaming are not supported: File
trol.

history will be broken.

Stores pristine copies of files lo-

cally. This allows more off-line

operations like status, diff and re-

vert.

Subversion doesn't allow con- Conflicted files can be acciden-

flicted files to be accidentally tally and intentionally submitted

merged into the repository. Hos- to the repository. Hostile back-

tile backouts can be performed. outs can be performed.

Uses a binary differencing algo-

rithm, allowing changes to be Clients send full files on every

stored as delta packets. Said update. Server sends text delta

delta packets are transmitted packets or full binary files to the

both ways: Client to server and client.

server to client.

Supports transactions and atomic Supports atomic commits of sin-

commits. Can rollback incom- gle files only. No transaction sup-

plete transactions. port, no rollback support.

3. Formalities and Background 21

Arbitrary name = value meta-
Tags are supported for version

data can be attached to files and
identification and branching.

directories and is versioned.

Uses mime type (RFC 2046)
Users must remember to flag bi-

nary files. If forgotten they are
to determine if and remember

sent as text with endline charac-
whether a file is binary or text.

ters inserted and are garbled.

Table 3.1: Subset of differences between SVN and CVS

3.6 Choosing Features to Model

Our goal is to decide on a set of features to model and carefully define them. Com

mands should be chosen that cover the major functionality of CVS and SVN. The

most commonly used ones include add, delete, move, copy, update, revert, check-in,

check-out and status. Administrator and configuration commands were excluded as

they are too implementation dependent.

As VCS store more than files, we use the more general term, item. For CVS item

encompasses text and binary files. When discussing SVN item encompasses text and

binary files, links and directories.

Add: [Item]

Schedules items to be added to the repository on next commit.

CVS Notes: CVS doesn't recurse into sub-directories. Binary files must be

specified.

SVN Notes: SVN recurses into sub-directories and seamlessly supports bi

nary files.

Delete [Item]

Deletes local items immediately and schedules them to be removed from VCS

management on the next commit. Histories of deleted items are preserved in

the repository. Items not under version control are left alone.

CVS Notes: User must issue separate operating system commands to delete

local items.

SVN Notes: Local items are deleted automagically.

22 3. Formalities and Background

Copy [Source] [Destination]

Copies items from source path to destination path immediately locally and

schedules the newly created items for addition upon the next commit.

CVS Notes: CVS doesn't directly support copy. Instead the following must

be done:

cp old new (History broken here.)

cvs add new

cvs commit -m "Copied old to new" old new

New files start off with a version number of 1 unless specified otherwise. Item

histories are in two places now: Old for everything before the copy and new

for everything after. Users are expected to know about and remember all copy

operations. To copy a directory, create the destination directory then perform

the copy procedure above for each item in the directory.

SVN Notes: Copy preserves file histories by linking t? the source file. Direc

tories are copyable with a single command.

Move [Source] [Destination]

Moves items immediately locally and schedules the same for the server upon

the next commit.

CVS Notes: CVS doesn't have direct move support. Instead the following

must be done:

mv old new (History broken here.)

cvs remove old

cvs add new

cvs commit -m "Moved old to new" old new

New files start off with a version number of 1 unless specified otherwise. item

histories are in two places now: Old for everything before the move and new

for everything after. Users are expected to know about and remember all move

operations.

To move a directory, perform the move procedure above for each item in the

directory, then delete the directory as described under delete.

SVN Notes: Move preserves file histories by linking to the source file. Direc

tories are movable with a single command.

3. Formalities and Background

Checkout [Item]

Copy items from the repository to your local system.

CVS Notes: Users must remember and specify whether an item is binary or

not. Getting this wrong mangles the client-side file.

SVN Notes: SVN's binary detection algorithm allows it to seamlessly handle

binary files.

Update [Item]

Brings a user's working copy into sync with the latest versions in the repository

by integrating changes others have committed to the server.

Commit [Item]

Store changes in items back to the repository.

CVS Notes: Users must specify which files are binary.

SVN Notes: SVN remembers which files are binary.

Revert [Item]

Undoes any changes made to the specified items.

23

CVS Notes: CVS doesn't have a revert command. cvs update -C [item}

downloads the latest copy of the item from the server. It isn't necessarily the

same file as before as changes made and checked-in by other users are included.

(Alternatively one may checkout the now older version to effectively revert.)

SVN Notes: Items are reverted to the pristine states stored locally. This

allows disconnected reverts. Reverts on items cannot be undone, but item

additions and deletions can.

Status [Item]

Shows the status of checked out items with respect to the pristine copy (SVN)

or the server.

CVS Notes: There is no specific status command. Update, history, and

checkout commands (amongst others) give the status of a item with respect to

the CVS server:

Status Meaning

U
Item has been brought up to date with the server by

sending the full file to the client.

p
Like U, but only file deltas (a patch) were sent to the

client.

24 3. Formalities and Background

A
Item is newly added to the ves and is awaiting it's first

check-in.

R
Item has been deleted by the client and will be removed

from version control on the next check-in.

1) Item has been modified locally and the repository

M
version hasn't been modified. 2) Item has been modified

locally and updates from a new server version have been

merged into item without difficulty.

e Item is in conflict with the latest version on the server

due to overlapping edits.

N There are no changes to the file.

Observe there are no copy or move statuses.

SVN Notes: Differences between SVN and evs are shown in the following table:

Status Meaning

Item has been deleted by the client and will be removed

D from version control on the next check-in. Item history

isn't affected.

R
Item has been deleted by the client and was then re-

placed by another file with the same name.

!
Item is missing. It could have been moved or deleted by

a non-SVN command for example.

- Item has been replaced by a different type of object (di-

rectory, link or file).

In SVN, moving a file is represented as an addition followed by a deletion:

svn move PieRecipe. txt CakeRecipe. txt

A CakeRecipe. txt

D PieRecipe. txt

3. Formalities and Background 25

3.7 Environmental, Functional and Safety Require

ments

Here we list rules describing evs and SVN models. They describe the system in a

more systematic way. Amongst them will be candidate invariants, preconditions and

postconditions usable in the B model. These rules are divided into three categories:

Environmental, functional and safety.

3.7.1 Environmental Requirements

1. ves are software systems consisting of multiple parts: Client and server systems

and software, network connections, client and server ves software, client items

under and not under version control and the server repository.

2. ves are multi-user systems.

3. ves work transparently across different operating systems with different net

work types, file systems, binaries and end of line markers.

4. ves servers may be located on the same computer as the client, but are much

more likely on another computer accessible through a network.

5. Items under version control and not under version control can exist in the same

client directory.

6. SVN has a pristine cache on the client computer. It is located in the hidden

.SVN directory in every directory under version control. Users should not ma

nipulate it's contents.

7. SVN offers limited functionality through the pristine cache when the server isn't

available.

3.7.2 Functional Requirements

Basics

8. vess run forever and should always operate (and fail) correctly.

9. A ves maintains a complete history of all changes to items under version control

starting from their initial check-in.

26 3. Formalities and Background

10. In CVS, text and binary files are versioned. In SVN, text and binary files,

directories and links are versioned.

11. When initially created, the repository is empty and no items are under version

control.

12. Item(s) are placed under version control by informing the VC system about

them using an add or import command.

13. CVS supports item tagging for the identification of releases and branches.

14. SVN supports arbitrary name = value metadata for items. Said metadata is

also fully under version control.

15. CVS supports file locking on the server for updates, but not transactions.

16. SVN uses item locking, transactions and the multiple reader/single writer model

for all transactions against the server. This orders concurrent operations from

multiple users in an unspecified way and guarantees partial reads and writes

will not occur.

17. A SVN transaction succeeds after it has been fully collected by the server and

applied to the corresponding items. It fails and is undone otherwise.

CVS: Version Numbers, Checkout and Update

18. Every file under version control has it's own version number.

19. A file's version number increases by one on each successful check-in.

20. A version is recorded only if there are changes.

21. After check-out the client item's version number is equal to the items version

number in the repository.

22. Other users may check in changes to items, increasing those items version num

ber. When changes are downloaded from the repository, all changed items

contents and version numbers are updated to the values from the server Repos

itory.

3. Formalities and Background 27

23. As individual items of a client project may be updated and checked in, version

numbers of client items fall between A and B, (A ::; B; A, B > 0) where A is

the minimum of the version numbers of items that have not yet been updated

and B is the maximum of the version numbers of updated items.

24. For a check-in to succeed, there must be changes in the item. The change delta

between version Nand N+ 1 for an item may not be null.

25. As a consequence of 7, for file version number N > 0, all versions 1 .. N are found

in the repository.

26. Once a version is recorded in the repository, it can never be changed or deleted

by any operation. It is forever immutable.

SVN: Version Numbers, Checkout and Update

27. An entire repository has a single global version counter. It is set to 1 when it

is initially created.

28. The global version number of the repository increases by 1 only when items are

checked in.

29. At least one item in a check-in transaction has to have changed for it to occur.

30. Server items have version number equal to or larger than the client and cache.

31. Pristine items have a version number equal to the server version number at

checkout. Only the checkout, update and revert operations change the pristine

items contents and version number.

32. After checkout the client item's version number is equal to the server version

number and the cached version number.

33. Other users may check in changes to items, increasing the server version number.

When changes are downloaded from the repository, all changed items (in both

the client directories and cache area) contents and version numbers are updated

to the latest from the server.

34. As individual items of a client project may be updated and checked in, version

numbers of client items fall between A and B, (A ::; B; A, B > 0) where A is

28 3. Formalities and Background

the minimum version number of the cached items at the last checkout and B is

the maximum version number of the checked out items.

35. After items are checked in, there mayor may not be changes to them, Regard

less, all item version numbers are set to the global version number + 1. This

means the change delta between version Nand N+A (N, A ~ 1) for an item

may be null- if that item wasn't modified in that interval.

36. All version numbers of all revisions of items are less than or equal to the global

version number.

37. As a consequence of 3, for global version number N> 0, all of 1.. N are found

as version numbers in the repository. Each version number appears a minimum

once and up to Z times, where Z is the number of items under version control.

38. Once a version is recorded, it can never be changed or deleted by any operation.

It is forever immutable.

CVS: Server

39. Every file under VC has a corresponding file within the repository.

40. Upon initial check-in the entire file is sent from the client to the server to be

recorded.

41. Changes to text files are stored as change deltas: Only differences between

revisions are recorded, not the full item.

42. On check-in, full binary files are recorded. Deltas are not used.

43. Full files are sent from the client to the server. Change deltas are sent from the

server to the client for text files, and full binary files are sent from the server to

the client.

SVN: Server

44. Every version can be thought of as a directory tree recording cha.nges between

it and the state of the tree of the previous check-in.

45. All changes are stored as deltas for both text and binary files: Only differences

between revisions are recorded, not the full item.

3. Formalities and Background 29

46. Change deltas are sent both ways over the network. SVN's designers reason

that hard disk space is cheap, while networking capacity is expensive.

Add, Delete, Move, Copy

47. VCS only manipulates items placed under version control. Everything else is

ignored.

48. CVS must be informed if an item is a binary type each time it is manipulated.

Incorrect specification causes it to be treated as text, adding end of line markers

and ruining it.

49. SVN uses a binary detection algorithm to determine if a file is a text or binary

type. It records this information for all future transactions.

50. VCS must be informed about local changes to items under version control.

Adds, deletes, moves and copies must be done through the appropriate VCS

commands.

51. CVS doesn't support move and copy. Moving or copying a file causes a broken

history in the repository. Moving or copying a directory causes broken histories

for all child files. of the directory.

52. Humans are expected to remember all moved and copied file's original names

to be able to retrieve those histories from the repository.

53. In SVN, when a item is copied, moved or renamed, links are maintained to the

previous item and metadata history on the server. Item history is neither lost

nor duplicated.

Merging, Conflicts and Those Pesky Humans

54. Jane may have modified an item and checked it in while Bethany is still working

on it. If Bethany tries to check in, she learns her items are out of date. She

must merge Jane's changes into her items before checking in.

55. If Jane's changes don't overlap Bethany's, merges are automatic. Bethany may

now check in her changes.

30 3. Formalities and Background

56. If Jane's and Bethany's changes overlap, the VCS rejects Bethany's changes.

Said VCS stops with an error message and marks up the items in question with

information about the conflicting area(s).

57. VCSs have no ability to resolve conflicts. They only see items as streams of

bytes.

58. Human intervention (And hopefully communication) is required to resolve all

conflicts. The conflicted items must be edited, a choice made and the VCS

informed before said items can be updated.

59. One user can resolve the conflict without consulting any others. This is allowed

for cases where the other party isn't available. Conflicts this may cause, like

revert wars, must be resolved by the humans involv~d.

60. In CVS, a conflicted item may be checked-in by mistake. This isn't possible in

SVN.

61. For SVN, conflicts only occur in text and binary files. Links and directories

cannot be conflicted.

Reverting and Retrieving Previous Versions

62. In CVS changes to client items are undone by reverting them from the server.

63. In SVN changes to client items are undone by reverting them. Items are replaced

by the same item from the client cache, or the server if an older copy is desired.

64. SVN allows a user to check the status of their file with respect to the pristine

cache or server. CVS only checks against the server.

65. If a user retrieves an older version of a item, changes it and checks it in again,

that older version in the repository isn't changed. As described above, version

history is immutable. The change is given a new version number and checked

in as the most recent revision.

3.7.3 Safety Requirements

66. Locking is used for binary items.

3. Formalities and Background 31

67. Locks can be broken by third parties when necessary.

68. SVN: Should the client, server or connection fail in the middle of an opera

tion, the system state upon restoration should be that of the operation never

occurring. Incomplete operations are rolled back.

69. Operations with missing or malformed parameters or arguments fail gracefully

with a helpful error message.

70. SVN: Some operations like diff and revert can be performed against the client

cache. The presence or absence of the server is irrelevant.

71. SVN: Operations against a corrupt or missing cache or server fail gracefully with

an appropriate error message. Atomicity guarantees that when an operation

fails nothing changes.

72. SVN: A missing or corrupt cache is repaired by checking out the items again.

3.8 Refinement Steps

Refinement Features

1st
Operations defined, arguments

and return values are typed.

Client item system, VC repos-

2nd itory and SVN global version

number.

Version number of checked-out
3rd

items.

4th
List of items under version con-

trol server-side.

List of items under version con-
5th

trol client-side.

6th Client-side shadow repository.

7th Status operation.

8th Binary item support.

9th SVN only: Pristine cache.

32 3. Formalities and Background

Atelier B 4.0 is used to model CVS and SVN in a series of algorithmic and data

refinements. For algorithmic refinements the abstract and concrete state spaces are

the same. Only control structures may change. In data refinements the abstract and

concrete state spaces are different.

Our base model is similar to a virtual class in that it is a machine which defines

operations, the types of their arguments and return types for both SVN and CVS.

Guards and bodies are empty. Note that Atelier B 4 does not allow empty operation

bodies. To overcome this the skip operation is used. It should be interpreted as doing

nothing.

Operations add, delete, move, copy, commit, update, checkout and revert are

specified for SVN. CVS is similar, but doesn't specify move and copy. Add, delete,

copy and move are further divided into client and server operations: Add, commitadd,

copy, commitcopy, move, commitmove, delete and commitdelete.

Conceptually client operations are performed immediately. Add for example adds

items to a queue to be placed under version control. CommitAdd is executed when

commit is called. It performs the rest of the add operation on the server side.

Environmentally both the SVN and CVS models consists of a single client with

an abstracted item system where multiple items are under version control. There

is no concept of directories, users and permissions in the item system. There is an

unspecified network separating the client from the server.

The second model defines the client item system and the VC repository. SVN

versions directory trees instead of individual items, so it adds a global version num

ber counter. Note that some operations are empty or missing. Operation Add for

example has nothing to do as there is no client side list of items under version control.

CommitDelete is also empty as items in the repository are never modified or deleted.

Tracking of the version number of checked out items is added in the third refine

ment. As items are copied, moved, deleted, checked-out and checked-in this relation

must be constantly updated. For example, the item created by a copy operation

is added to the checked-out list upon check-in. Note that once an item version is

recorded in the repository it is immutable. It is not possible to delete items from the

repository when CommitDelete is called.

Keeping an explicit list of the items under version control is added in the fourth

refinement. The version number of a checked-out item and the list of items under

version control must necessarily be separate because a item that is not checked out is

still under version control. A item resulting from the copying of a checked out item

3. Formalities and Background 33

is both under version control and checked out.

The fifth refinement tracks items under version control on the client side. It is a

shadow that keeps track of the status of a item before it is checked in. This allows

multiple operations on items to be tracked. One can can arbitrarily add, delete, copy

and move items before invoking check-in and commitcopy, commitmove, commitadd

and commitdelete.

Keeping track of which items are under version control on both the server and

the client is important due to the split nature of the add, delete, move and copy

operations. Calling Delete say removes items from the client version control list.

Correspondingly the server list isn't affected until CommitDelete is called.

In the sixth machine a shadow repository is added. It is a exactly like the server

repository in the first model: Once an item is placed in it, it cannot be modified or

deleted. Like the fifth machine it is also a shadow. It records all changes to client

items from client operations (Add, delete, move, copy) and makes them available to

the corresponding server operations. For SVN a shadow version number counter is

also present.

Machine seven adds a status operation. It determines the status of an item with

respect to the server. Values include: Newly added, deleted, moved, copied, out of

date and up to date. The first four means the client operations add, delete, move or

copy have been called and the corresponding server operations have not. Out of date

means the item has been modified and checked-in by another user in the meantime.

Iteration eight adds binary item support. For SVN it's automatic. In CVS a user

argument is added to specify whether a item is binary or not. Forgetting to specify

a item as binary and specifying a text item as binary in CVS is treated as an error.

Revision nine add the pristine cache for SVN. This saves the item locally in the

state it was in upon check-out. This allows some operations to be performed without

the server being available. For example, one can revert to the pristine copy at any

time or compare an edited item to the pristine. CVS doesn't have a pristine cache so

it doesn't have a ninth revision.

Chapter 4

Related Work

No previous work was found on the topic of modeling yes. Morgan and Sufrin pre

sented a paper [MS84] where they derive and refine a specification of the Unix level

6 file system using elementary mathematical set theory. Leo Freitas et. al. presented

a paper [FF\i\T09] where they created a formally verified specification of a POSIX

compliant file store using Z/Eves. Both are related as ves are intimately involved

in file transfer and manipulation. Even though the file system is abstracted here,

reading both of these papers is very valuable for their contributions and insights.

Marjanovic's thesis [Mar06], Meta-Models ves and Issue Tracking Software (ITS)

to create a model of Release History Systems (RHS) is related. Meta-modeling is

described as:

The application of valid frameworks to describe the semantics of differ

ent conceptual worlds on different abstraction levels, whereby it is possible

to layer the frameworks used for description.

His thesis begins by developing a meta-model of ves in UML 2.0 [Gro09] captur

ing the features of both evs and SVN. It is extended by the Bugzilla issue tracking

system to create a meta-model of a RHS. Validation of it's suitability is performed

against Rational elearease and it is implemented in Java with Hibernate.

4.1 Meta-Modelin!! of ves Using evs and SVN
LJ ~

Our interest is in the first part of [Mar06]: Meta-modeling ves by examining evs and

SVN. It is shown in detail as it provides a complimentary and visual representation

of the more terse and arcane B model.

34

4. Related Work 35

Marjanovic's purpose is to find a common meta-model to encapsulate both CVS

and SVN. Data fields are determined by examining the server. They are divided into

entities and related to each other by examining their use in different client software.

Keeping their purpose in mind, a number of errors, redundancies and vague entries

exist in both models. The original Entity - Relation diagrams (ER) [Mar06] for SVN

and CVS are shown and their problems described. New ER diagrams are derived for

each to suit the purposes of this thesis: A visual representation of CVS and SVN to

complement the B models.

4.1.1 Initial CVS Model

In Figure 4.1, CVS-Entry is the entity describing a file under version control on the

CVS server l . RCS file is the path to it's corresponding RCS file containing it's change

history. Working file is the name of the checked-out file. Head is the most recent

revision of a file. As the last entry in the RCS file is the head, it is redundant. Branch

is also redundant, as it is described in a separate entity.

Locks is for reserved checkouts. Access list is described as, "The permitted user

list." The only reference to access lists in [PGC08] is in section A.7.1 where they are

described as something available in the RCS file, but not used by CVS. Manipulating

this access list could cause CVS to stop working. Access to files in CVS is controlled

by permissions on groups in directories on the server. It is removed.

Symbolic names refers to the tags associated with a file version. Tags are used to

mark files as being part of branches and releases. It is redundant here as branches

and releases are full entities in their own rights. Keysub has no description. It could

be the keyword substitution mode (Section 12.4 of [PGC08]) or a list of keyword

substitutions maintained by CVS. We believe it's the latter2: Listing them in each

file is redundant. They are better expressed in a singleton Keyword entity.

Entity CVS _ Entry_ metainfo is redundant. Release and branch tags are entities

in their own right and keywords are expressed in a singleton Keyword entity.

ModRep is short for modification report. It details what changed upon check-in

of said revision. Revision is redundant with the Revision entity, as branch is with

the branch entity. Date, author and log message are as expected: Who checked-in,

when and a note describing what they did. State and lines are poorly described.

lCVS doesn't version directories.
2Keyword substitution mode is far too specific a property to model.

36

is part Dt
·name
~~=--=f

Branch

-revision

F"R;;j;i;;;-'
-Ilutllher

i

,Res file
-WDrking file
·head
-branch

.-_____ -----,tlas addiUonaldata -IQCKS
!CV!LEnttY_flletalnfo -access li$t

.symbolic namas

.keysuD

4. Related Work

~~"~~"~~-1

Transaction!

·file
·eh;;tnges

Autor
-name
·id

-revision
as appenclec -date .' _'"_~~ ___ :~~;~Gr

1 -lines
-109 !Tiessage
-branch
~~.~"~~.

Figure 4.1: UML model of CVS from [l\/lal'06].

It's reasonable to assume they encapsulate changes made to the file along with other

persistent state information.

This entity will be merged into revision, to better encapsulate what changes.

Autor (sic) is the author entity. With ModRep absorbed into Revision, it also

links to Revision.

Revision is the current revision number of a RCS file. It is of prime importance

and is separated from all other entities.

Release is a collection of file revisions with a common release tag.

Branch is a collection of tagged files of a certain revisions split off from the par

ent revision branch to their own development branch. A revision can have multiple

branches. A branch can have multiple revisions. Branches can recursively split from

branches.

Transactions are not part of CVS. An ongoing effort at the University of Zurich

Department of Informatics, Software Evolution and Architecture Lab, is working on

adding them. As it is not in CVS as of 2009, this entity is removed.

Confusion over the number of entities involved in the Release-Revision and

-l

I

4. Related Work

Is pa of
Revision

Number
Date

" Log msg
Has Changes

Author

Name
10

C ated
y

br nches Has Ie

Keywords

Name = Val

CVS]ile

RCS file
Locked by

Figure 4.2: Revised UML model of CVS.

Branch-Revision relationship is clarified.

4.1.2 Revised CVS Model

37

Figure 4.2 captures the essence of the relations between entities. It shows the file

based nature of CVS in the entity name, CVS-File. The relation reinforces this: A

revision consists of a single file.

4.1.3 Initial SVN Model

As SVN is intentionally similar to CVS, Figure 4.3 is very similar to Figure 4.1. SVN

File is the entity describing both files and directories under version control. URL is, as

expected, the URL of the file within the repository. Revision is a redundant property

of (the missing revision property in) the Revision entity 3 . Author is described as,

3This sentence may need revision.

38

Properties '~~"'"SVN"Fil;~1
_ool_stYle"'~·-~i tU!~~--·'-~··i

-executable 1: has addtnl info I-revision
key\vords ; .. _,_, I-author
needs-lock-Hast commit rev
mime-type I-text status

I-property status k.n,~s feviSIOq

SVN_modreport

-author
-dme
I,message
I· action
i-path

qJY' from path
revIsion

1 i-lock owner I -'",

/'-IOCk creation date I
has i.1IK' =·~"'"~~=""~"'"'"I

. ! .

4. Related Work

Author
'-name
:-ld

hasd~ated
, 1'~

I 1' ..

L _
Revision

Figure 4.3: UML model of SVN from [Mar06].

"The author to whom the file belongs." It is unclear if this is the user who did the

initial check-in, users who have permissions on the directory containing the file, or

the last known user to change the file ([CSFP07], pg. 53). We assume it is a

redundant field describing the author of the revision and delete it. Last commit rev

is redundantly redundant to the redundant property above and is also deleted.

Text status describes the status of the checked out file with respect to the reposi

tory. It's values include: Modified locally, modified in the repository, added, deleted,

copied and moved amongst others.

Property status describes non-versioned properties of a revision. An example

is the check-in date. This conflicts with the definition of properties in the man

ual ([CSFP07], pg. 40). It describes properties and meta-data as versioned

"name=value" pairs, with only a passing mention of non-versioned properties. We

assume properties covers both versioned and non-versioned items.

Lock owner and lock creation date have the expected meanings.

SVN-mod report is SVN's modification report describing changes upon check-in.

Head revision, author and revision are all redundant. Date and user message are as

I

4. Related Work 39

expected. Action isn't described. We assume it's the action performed by the item

upon check-in: Added, copied, deleted, renamed or moved.

Copy from path also has no description. We assume it's the source path when the

action is copying, renaming or moving an item. 4 Similarly the not-described path is

assumed to be the destination name for a copy, move or rename.

Date and message are moved into the revision entity.

Properties is additional information stored in the metadata and tags associated

with an item. Eol-style is the end of line style to use on checkout of textual data. As

SVN detects both the OS and file type, the default end of line style for text files is

native - what is expected for that operating system. There is no eol-style for binary

files. Executable describes whether or not a file is an executable on file-systems who

have execution bits. Keywords are defined within SVN and should be in a singleton

entity.

SVN tries to automatically determine the type of an item on check-in and sets

the mime-type to either text for text files or application/octet-stream for binary data.

Needs lock is true for binary data and false for text. Observe that both eol-style and

needs lock are determined by the mime-type and are redundant. Text files (such as

Unix scripts) may be executable, so the executable property must stay.

For the Transaction entity, [Mar06] suggest a transaction applies to a single item

only. It applies to any number of checked-out files and directories. Commit isn't

described at all.

As the transaction entity is so poorly specified, it is deleted. There is no field in

any of the entities describing changes to items from one check-in to the next. Two

are added.

Tree-changes is a field added to the revision entity. Conceptually it describes all of

the changes in the directory tree from one revision to the next. Delta-packet describes

the changes from one revision to the next for an item. As items don't have to change

from one revision to the next, it can be empty.

Branch and author are the same as in CVS.

4.1.4 Revised SVN Model

Figure 4.4 captures the properties of SVN. Transaction support is implicitly reflected

by the Revision - SVN _ Item relation. A revision consists of one or more items.

4SVN preserves an item's history upon rename, copy and move.

40

Author

Name
10

Branch

Has uthor

SVN_ltem

URL
Text status
Prop status

Revision Lock owner
Number Has * Lock date
Date f--fum".----1 Delta packet
Log message Metadata
Tree delta Action

Keywords

Name = Val

Path
From path
Executable
Mime type

Figure 4.4: Revised UML model of SVN.

SVN _Item reflects SVN's versioning of both files and directories.

Note: Metadata is intentionally excluded from Figure 4.4.

4. Related Work

Chapter 5

Models

5.1 Initial Models of SVN and CVS

MACHINE

SVN 01

SETS
FILESSET; DATA; FILECONTENT

OPERATIONS
Addl (Files) =

PRE

Files S;;; FILESSET 1\ Files i- {}
THEN

skip

END;

As described earlier, the first model defines the sets, operations, argument types

to operations and return types. Empty operation bodies are not allowed in Atelier

B 4 so the skip command is inserted. It should be read as nothing happe'ns in this

context.

5.2 First Refinement of SVN and CVS

This second model details the client file system ClientFiles, VC repository

ServerRepository and global version number Server VerNo for SVN. CVS does not

41

42 5. Models

have the global version number. All commands are split into client and server oper

ations, like Delete and CommitDelete.

MACHINE

SVN 02

INCLUDES

SVN 01

VARIABLES

ClientFiles, ServerRepository, Server VerNo

INVARIANT

ClientFiles E FILESSET -Pt FILE CONTENT

1\ ServerRepository E (FILESSET x N) -Pt FILECONTENT

1\ Server VerNo EN

1\ ((Server Repository i- {}) ¢=::} (Server VerNo > 0))
1\ (V pp. (pp EN 1\ pp E ran(dom(ServerRepository)) ==?- pp ::; ServerVerNo))

INITIALISATION

ClientFiles := {} II ServerRepository := {} II Server VerNo := 0

Within the model FILESSET and FILE CONTENT are the set of all items and

item contents creatable within the file system.

Variables are defined in one section and typed in the next. ClientFiles is the

set of items on the client computer. Initially it is empty. Defining ClientFiles as

FILESSET -Pt FILE CONTENT does not limit us to a single directory system. Iden

tifier FILESSET can later be refined to (USER x URL) -Pt FILE CONTENT say

where URL is a Universal Resource Locater. Carrying around these additional terms

clutters the model unnecessarily.

Item histories are stored in the repository on the server, ServerRepository. It

maps an item and a version number to contents at that version. It is also empty

on initialization. Server VerNo is the global version counter for the SVN repository.

Initially it is zero.

5. Models 43

5.2.1 Operations

Modeling Failure

Modeling VCS commands includes showing what happens when they fail or are called

incorrectly. To do this the preconditions of an operation only type the input variables

to the operation. All other checks are enforced as guards in an IF statement. An

operation that creates files in the file system is an example:

OSAddFile(NewFile) =
PRE

NewFile E FILESSET ----1-+ FILECONTENT 1\ NewFile =I- {}
THEN

IF dom(NewFile) f/- dom(ClientFiles) THEN

ClientFiles : = ClientFiles U { N ewFile}

ELSE
/ / Print helpful error message

END;

END;

For clarity this presentation does not use the if-else block. All guards are included

in the precondition. Assume when an operation is called and the precondition fails,

a "helpful error message" is output and the state space does not change.

Operations

Placing an item under version control is a two step process. First the client side

operation Add adds the item to the list of items under version control on the client.

Server operation CommitAdd uploads and stores the item to the VCS server for the

first time.

These initial models are incomplete as there is no Add operation. No variable

is defined on the client side to hold the items being added. To build a reasonably

understandable model it is necessary to defer complexity to future extensions.

The following listings show the CommitAdd operation for CVS and then SVN:

CommitAdd2(AFile) =
PRE

AFile E FILESSET 1\ ClientFiles =I- {}
1\ AFile E dom(ClientFiles) 1\ AFile f/- dom(dom(ServerRepository))

44

1\ (AFile 1---7 1) tf- dom(ServerRepository)

THEN

ServerRepository := ServerRepository

U {(AFile 1---7 1) 1---7 ClientFiles (AFile) }

END;

For SVN:

CommitAdd2(Files) =

PRE

Files ~ FILESSET 1\ Files -I- {} 1\ ClientFiles -I- {}
1\ ServerVerNo + 1 :::; MAXINT 1\ Files ~ dom(ClientFiles)

1\ Files n dom(dom(ServerRepository)) = {}
THEN

Server VerNo := Server VerNo + 1 II

ServerRepository := ServerRepository U

A FileN, Ver. (FileN E FILESSET 1\ Ver E N 1\ FileN E Files

1\ Ver = ServerVerNo + 1 1\ Server VerNo + 1 :::; MAXINT

5. Models

1\ FileN E dom (ClientFiles) 1\ FileN tf- dom(dom(ServerRepository))

1\ (FileN 1---7 Ver) tf- dom(ServerRepository)

I
ClientFiles (FileN))

END;

Preconditions in the PRE block list the conditions to be satisfied for the op

eration to occur. Before an item can be placed under version control, it must ex

ist, AFile E dom(ClientFiles). It also must not already be under version control,

AFile tf- dom (dom(Server Repository)).

When preconditions for an operation are not met, state does not change. If the

preconditions of all operations are not met the system is idle. When an operation

is called and the preconditions are not met, a helpful error message describing what

went wrong is displayed.

CommitAdd illustrates one of the differences between SVN and CVS: SVN sup

ports transactions where CVS does not.

Transaction support is modeled by allowing multiple items in the SVN

operation, Files ~ FILESSET. Within the body a lambda relation is

5. Models 45

used to add items to the server repository. Informally the output is

(FileN, Ver) ----f7 ClientFiles(FileN). Formally the output is the same type as

ServerRepository, (FILESSET x N) ----f7 FILECONTENT. FileN E Files examines

each member of the input in turn and (FileN 1-7 Ver) tI- dom(ServerRepository)

maintains the uniqueness of the domain of the ServerRepository relation.

CVS operations only allows single items AFile E FILESSET. A guard checks

that AFile is not in ServerRepository already, turning the addition operation into a

straight-forward union.

CommitAdd illustrates the difference between version numbering schemes. In SVN

the transaction has a single version number shared by all items, Server VerNo + l.
For CVS, each item has a version number that always begins at one, (AFile 1-7 1).

Observe Server VerNo is incremented each time it appears. This is necessary due

to the use of II, the parallel composition operator. Each statement is performed at

the same time on different processors with no communication between them. As one

cannot signal Server VerNo + 1 to the others, each must perform it independently.

Delete2(Files) =
PRE

Files ~ FILESSET 1\ Files =I- {} 1\ ClientFiles =I- {}

1\ Files ~ dom(ClientFiles)

THEN

ClientFiles := Files ~ ClientFiles

END;

SVN and CVS share the same delete operation. Preconditions assert the client

item(s) exists, are under version control and removes them immediately. One small

difference for CVS is single items must be turned into a set, {AFile} to work with

the domain restriction operator.

CVS does not support copy and move, so the next four operations apply to SVN

only:

Copy2(NewToOldNames) =
PRE

NewToOldNames E FILESSET ----f7 FILESSET 1\ NewToOldNames =I- {}

1\ ClientFiles =I- {}

1\ dom(NewToOldNames) n dom(ClientFiles) = {}
1\ ran(NewToOldNames) ~ dom(ClientFiles)

46

THEN
ClientFiles := ClientFiles U

.A NewF.(NewF E FILESSET 1\ NewF E dom(NewToOldNames)

1\ NewToOldNames(NewF) E dom(ClientFiles)

1\ NewF ti dom(ClientFiles)

I
ClientFiles (New To 0 ldN ames (N ewF)))

END;

5. Models

In Copy the mapping of new item names to existing items is a relation,

NewToOldNames E FILESSET --f-t FILESSET. None of the new names must ex

ist in the client file system, dom(NewToOldNames) n dom(ClientFiles) = {} and all

of the source names must exist there, ran(NewToOldNames) ~ dom(ClientFiles).

The lambda relation outputs NewF --f-t ClientFiles(NewToOldNames(NewF)) of

type FILESSET --f-t FILE CONTENT. That is, the new items created by the copy

command. Statement NewF E dom(NewToOldNames) iterates over all members of

input NewToOldNames and NewF ti dom(ClientFiles) maintains the uniqueness of

the domain of ClientFiles.

CommitCopy2(NewToOldNames) =
PRE

NewToOldNames E FILESSET --f-t FILESSET 1\ NewToOldNames =1= {}

1\ ClientFiles =1= {} 1\ ServerRepository =1= {} 1\ Server VerNo > 0

1\ ServerVerNo + 1 ~ MAXINT

1\ dom(NewToOldNames) ~ dom(ClientFiles) / / Files now exist on client

1\ ran(NewToOldNames) ~ dom(ClientFiles)

1\ dom(NewToOldNames) n dom(dom(ServerRepository)) = {}
1\ ran(NewToOldNames) ~ dom(dom(ServerRepository))

1\ dom(NewToOldNames) n ran(NewToOldNames) = {}

THEN
Server VerNo := Server VerNo + 1 II

ServerRepository := ServerRepository U

.A FileN, Ver.(FileN E FILESSET 1\ Ver EN

1\ FileN E dom(NewToOldNames)

1\ (NewToOldNames(FileN), Ver) E dom(ServerRepository)

5. Models 47

1\ (FileN, Ver) ~ dom(ServerRepository)

I

ServerRepository(NewToOldNames(FileN) , Ver))

END;

Where Copy2 affects only the client file system, CommitCopy2 af

fects the server repository. It assumes the items have been copied

on the client system already, dom(NewToOldNames) ~ dom(ClientFiles) and

ran(NewToOldNames) ~ dom(ClientFiles) , guaranteeing Copy2 occurs before

Co mmitCopy2.

The lambda relation in CommitCopy2 is similar to the one in Copy2, though

the output is of type FILESSET x N --,L7 FILECONTENT, the same type as

Server Repository.

Preconditions are the same as Copy, with some additions. The repository has to

have a item to copy, ServerRepository -=I- {} and the size of the repository set has to

be within the legal size of an integer Server VerNo + 1 ::; MAXINT.

This lambda relation copies the full history of items as

well. In FileN E dom(NewToOldNames) , FileN is the new item

name. Within (NewToOldNames(FileN) , Ver) E dom(ServerRepository),

(NewToOldNames(FileN) is the existing item name, (NewToOldNames(FileN), Ver)

is the existing item name and any and all versions of it that exists in the repos

itory. No restrictions have been placed on Ver so it ranges over all available

values. If desired the lambda relation can be made more explicit by adding

Ver> 0 1\ Ver ::; Server VerNo.

Associating the item history this way does not commit the model to copying and

duplicating the history of an item. The association could be implemented with links

to the source revisions, or a link to the last revision of the old item name.

Statement ServerRepository -=I- {} seems like a natural candidate to be an SVN

invariant. It is rejected as operations Add and CommitAdd will always fail as they

can never add the first item into the repository. Modifying it slightly gives a working

invariant: (Server Repository -=I- {}) -{::=:::} (Server VerNo > 0)

Guard Server VerNo + 1 ::; MAXI NT appears almost universally throughout the

model and seems a natural candidate for elevation to an invariant. If we do so

AB 4 recursively generates a new PO, show Server VerNo + 1 + 1 ::; MAXINT in

numerous places, leaving us no further ahead.

48

Move2(NewToOldNames) =
PRE

5. Models

NewToOldNames E FILESSET ---f+ FILESSET 1\ NewToOldNames -1= {}

1\ ClientFiles -1= {}

1\ dom(NewToOldNames) n dom(ClientFiles) = {}
1\ ran(NewToOldNames) ~ dom(ClientFiles)

THEN
ClientFiles := ran(NewToOldNames) ~((ClientFiles U

).. NewF.(NewF E FILESSET 1\ NewF E dom(NewToOldNames)

1\ NewToOldNames(NewF) E dom(ClientFiles)

1\ NewF ~ dom(ClientFiles)

I

ClientFiles (NewToOldNames(NewF)))))

END;

Operation Move is identical to Copy with one addition: The source items are

deleted once the new items are created. ran(NewToOldNames) ~((ClientFiles '"

uses domain restriction to eliminate source items from the ClientFiles relation.

CommitMove2(NewToOldNames) =
PRE

NewToOldNames E FILESSET ---f+ FILESSET 1\ NewToOldNames -1= {}

1\ ClientFiles -1= {} 1\ ServerRepository -1= {}

1\ ServerVerNo > 0 1\ ServerVerNo + 1 ::; MAXINT

1\ dom(NewToOldNames) ~ dom(ClientFiles)

1\ ran(NewToOldNames) n dom(ClientFiles) = {}
1\ dom(NewToOldNames) n dom(dom(ServerRepository)) = {}
1\ ran(NewToOldNames) ~ dOJ;n(dom(ServerRepository))

THEN

Server VerNo := Server VerNo + 1 II

ServerRepository := ServerRepository U

).. FileN, Ver. (FileN E FILESSET 1\ Ver E N

1\ FileN E dom(NewToOldNames) 1\ Ver ::; Server VerNo

1\ Server VerNo + 1 ::; MAXINT

1\ N ewTo OldN ames(FileN) E dom(dom(Server Repository))

j

I

5. Models

I

/\ (NewToOldNames(FileN), Ver) E dom(ServerRepository)

/\ (FileN 1------+ Ver) tf- dom(ServerRepository)

ServerRepository(NewToOldNames(FileN), Ver))

END;

49

Guards for CommitMove are constructed to insure Move occurs first. New names

exist in client items and does not exist in the server repository where old names do

not exist in the client items and do exist in the server repository.

Committed2 f-- Commit2(AFile) =
PRE

Committed2 E FILESSET /\ AFile E FILESSET /\ ClientFiles -I- {}
/\ ServerRepository -I- {} /\ AFile E dom(ClientFiles)

/\ AFile E dom(dom(ServerRepository))

THEN

ServerRepository := ServerRepository U

A (FileN, Ver. FileN E FILESSET

/\ Ver E N /\ FileN = AFile

/\ Ver = max(

I

{ww I ww EN /\ ww :s; MAXINT

/\ (FileN 1------+ ww) E dom (Server Repository) }) + 1

/\ FileN E dom(ClientFiles) /\ FileN E dom(dom(ServerRepository))

/\ (FileN 1------+ Ver) tf- dom(ServerRepository)

ClientFiles (FileN)) II

Committed2 := AFile

END;

Commit2 for CVS is notable as the first operation containing a return value,

Corn:rnitted2 as well as a nested set comprehension.

As the two statements are performed in parallel, Committed2 always returns the

name of the item committed, AFile regardless of the success or failure of the lambda

relation. If the lambda relation fails, should not Committed2 be the empty set, {}?

The guards and conditions of the lambda relation are repeated in the precondition

block. Preconditions are expressed in terms of AFile, lambda relations in terms of

50 5. Models

FileN. Statement FileN = AFile in the lambda relation ensures the same guards

apply.

Set comprehension {ww I ww E N !\ ... is tasked with finding the largest version

number of AFile already in the repository, add one to it and return it to the parent

lambda relation through the variable Ver. It is the version number of the latest

revision of AFile:

{ww I ww E N !\ ww ::; MAXI NT

!\ (FileN J---t ww) E dom(ServerRepository)}) + 1

It reappears in many places throughout the models and is worth noting and un

derstanding.

Updated2 f-- Update2(Files) =

PRE
Updated2 ~ FILESSET /\ Files ~ FILESSET !\ Files I- {}
!\ ClientFiles I- {} !\ ServerRepository I- {}
!\ Files ~ dom(ClientFiles) !\ F"iles ~ dom(dom(ServerRepository))

THEN

ClientFiles := (Files <E3 ClientFiles) U

A FileN. (FileN E FILESSET

!\ FileN E Files !\ FileN tf- dom(ClientFiles)

!\ FileN E dom(dom(ServerRepository)) !\ FileN tf- dom(ClientFiles)

I

ServerRepository(FileN t---7 max(

{ww I ww E N !\ ww ::; MAXINT

!\ (FileN t---7 ww) E dom(Server Repository)}) + 1)) II
/ / Merge if changes are disjoint

/ / User intervention required if changes overlap

Updated2 := Files

END;

Update2 from SVN merges any changes made by others into local items a user

has checked out. There are three cases to consider: First, the item has not changed

on the server. Second, there are changes but they do not overlap with local changes.

In the third the changes overlap.

Merging and reconciling overlapping edits are described as comments. File con-

5. Models 51

tents is defined as being a member of the set FILE CONTENTS. It is intentionally

not defined well enough to have contents to compare so the functionality cannot be

implemented at this level of abstraction. What the model does, replacing the client

item with the server item is of course incorrect. It is a place-holder for a properly

implemented future Refinement.

As the major focus was on modeling the most commonly used aspects of SVN,

merging and reconciliation are not pursued further. It is one open area for potential

future work.

CheckedOut2 f-- CheckOut2(Files) =
PRE

CheckedOut2 S:;;; FILESSET 1\ Files S:;;; FILESSET 1\ Files =1= {}

1\ ServerRepository =1= {} 1\ Files S:;;; dom(dom(ServerRepository))

1\ Files n dom(ClientFiles) = {}
THEN

ClientFiles := (Files -<EI ClientFiles) U

,\ FileN. (FileN E FILESSET 1\ FileN E Files

1\ FileN E dom(dom(ServerRepository))

1\ FileN tf. dom(ClientFiles)

I

ServerRepository(FileN 1-----+ max(

{ww I ww E N 1\ ww ::; MAXINT

1\ (FileN 1-----+ ww) E dom (Server Repository)}) + 1)) II

CheckedOut2 := Files

END;

To check-out items in SVN, they must already be in the repository. Precondition

Files n dom(ClientFiles) = {} specifies items must not exist in the client item sys

tem. It is an optional guard who gives more safety to the client: If the item already

exists locally it will not be overwritten. The lambda relation demonstrates how to

overwrite said items using the domain restriction operator to remove items with the

same name. Both statements together are contradictory. One or the other should be

used.

In CVS CheckOut is similar, though restricted to searching for a a single item,

AFile, in the lambda relation through the FileN = AFile clause.

52

Reverted2 +---- Revert2(Files ToRevert Ver) =
PRE

Reverted2 ~ FILESSET 1\ Files ToRevert Ver E FILESSET --1-+ Nl

5. Models

1\ FilesToRevertVer -# {} 1\ ClientFiles -# {} 1\ ServerRepository -# {}
1\ dom(FilesToRevertVer) ~ FILESSET

1\ dom(FilesToRevert Ver) ~ dom(ClientFiles)

1\ FilesToRevertVer ~ dom(ServerRepository)

1\ Server VerNo + 1 :::; MAXINT

THEN
ClientFiles := (dom(FilesToRevertVer) ~ClientFiles) U

A FileNm.(FileNm E FILESSET 1\ FileNm E dom(FilesToRevertVer)

1\ (FileNm 1---7 Files ToRevert Ver(FileNm)) E dom(ServerRepository)

1\ FileNm rf- dom(ClientFiles)

I
ServerRepository(FileNm 1---7 FilesToRevertVer(FileNm))) II

Reverted2 := dom(FilesToRevert Ver)

END

Revert2 from SVN accepts as an argument the relation Files ToRevert Ver of type

FILESSET --1-+ Nl where FILESSET is the item name to revert and N is the version

to revert to. There is no precondition to check if the revert-to versions exist. Instead

it is a guard within the lambda relation:

(FileNm 1---7 FilesToRevertVer(FileNm)) E dom(ServerRepository)

This allows each entry within the Files ToRe vert Ver relation to succeed or fail

individually.

5.3 Second Refinement: Client Version Number

SVN _ 03 includes and extends machine SVN _ 02 described previously. This ma

chine adds tracking the version number of checked out items through variable

Client VersionN o.

Operations CommitAdd, Copy and Commit amongst others add or update mem

bers of Client VersionNo. CommitDelete removes members while CommitMove does

both. Representative operations CommitAdd and CommitDelete are detailed below.

5. Models 53

Note that as III the prevIOUS section, FILESSET can later be refined to

(USER x URL) ---1-7 FILENAME say to extend the model to cover multiple users

and locations.

MACHINE

SVN 03

INCLUDES

SVN 02

VARIABLES

Client VersionN 0

INVARIANT

ClientVersionNo E FILESSET ---1-7 N / / Can shrink

INITIALISATION
Client VersionNo := {}

CommitAdd3(Files) =

PRE
Files ~ FILESSET 1\ Files i= {} 1\ ClientFiles i= {}
1\ ServerVerNo 2': 0 1\ ServerVerNo + 1 :::; MAXINT

1\ Files ~ dom(ClientFiles)

1\ Files n dom(dom(ServerRepository)) = {}
1\ Files n dom(Client VersionN 0) = {}

THEN
Client VersionN 0 := Client VersionN 0 U

A FileN.(FileN E FILESSET 1\ FileN E Files

1\ FileN tf- dom(Client VersionN 0)

I
Server VerNo + 1) II

Co mmitAdd2(Files)

END;

Operations that refine existing operations of the same name must at a mini-

54 5. Models

mum contain the precondition of the parent operation. It can be more specialized as

CommitAdd3 for SVN is, adding 2 additional clauses over CommitAdd2. Refined op

erations may read variables from parent machines but cannot write to them. Only the

machine declaring the variable may write to it. Writing to these variables is accom

plished by calling the operation in the machine. This is done to remove dependencies

between machines.

Like the wine dark sea of the Iliad, the body of CommitAdd3 is a recurring defini

tion reappearing throughout the models: Increment server counter (for SVN), lambda

relation and call to parent function where it exists. Small changes lead to the CVS

implementation: Files ~ FILESSET to AFile E FILESSET and lambda relation

condition from FileN E Files to FileN = AFile.

CommitDelete3(Files) =
PRE

Files ~ FILESSET 1\ Files =J- {} 1\ ServerRepository =J- {}

1\ Client VersionN 0 =J- {} 1\ Files n dom(ClientFiles) = {}

1\ Files ~ dom(dom(ServerRepository)) 1\ Files ~ dom(ClientVersionNo)

1\ ServerVerNo > 0 1\ ServerVerNo + 1 ::; MAXINT

TH·EN
Client VersionN 0 : = Files <E3 Client VersionN 0

END;

The above listing is CommitDelete3 for SVN. CVS's implementation is derived by

changing precondition Files ~ FILESSET to AFile E FILESSET and range sub

traction from Files to {AFile}. CVS has no transaction support.

5. Models 55

5.4 Third Refinement: Under Version Control List

for the Server

MACHINE

SVN 04

INCLUDES

SVN 03

VARIABLES

ServerUVC

INVARIANT

ServerUVC ~ FILESSET

/ / ServerUVC Invariants

1\ (ServerUVC ~ dom(dom(ServerRepository)))

INITIALISATION

ServerUVC := {}

SVN _ 04 keeps track of items under version control through variable ServerUVC

is added here. It must be separate from ServerRepository as once an item is added to

the repository it is never touched again. Items cannot be removed from the repository

when the VO system is instructed to no longer version it. A list of items under version

control must necessarily be different from a list of items checked out as an item can

be under version control but not checked out by any clients.

CommitMove4(NewToOldNames) =

PRE

NewToOldNames E FILESSET ----f+ FILESSET 1\ NewToOldNames =I- {}
1\ ClientFiles =I- {} 1\ ServerUVC =I- {} 1\ ServerRepository =I- {}
1\ Client VersionN 0 =I- {} 1\ Server VerNo > 0

1\ Server VerNo + 1 ::::: MAXINT

1\ dom(NewToOldNames) ~ dom(ClientFiles)

56

/\ ran(NewToOldNames) n dom(ClientFiles) = {}

/\ dom(NewToOldNames) n dom(ClientVersionNo) = {}
/\ ran(NewToOldNames) ~ dom(Client VersionNo)

/\ dom(NewToOldNames) n ServerUVC = {}

/\ ran(NewToOldNames) ~ ServerUVC

/\ dom(NewToOldNames) n dom(dom(ServerRepository)) = {}

/\ ran(NewToOldNames) ~ dom(dom(ServerRepository))

THEN

5. Models

ServerUVC := (ServerUVC U dom(NewToOldNames)) - ran(NewToOldNames) II

CommitM ove3(N ewTo OldN ames)

END;

CommitMove4 for SVN neatly encapsulates the use of ServerUVC: Move

has already been called, so the old names in ClientFiles have been deleted and

the new names added. Observe that the preconditions involving ClientFiles

checks for this. As the move operation hasn't been performed on the server

yet, old names exist there and new names do not. New items are added

to the server ServerUVC U dom(NewToOldNames) and the old ones removed

- ran(NewToOldNames).

5.5 Fourth Refinement: Shadow Under Version Con

trol List for the Client

VARIABLES
ShadowUVC

INVARIANT

ShadowUVC ~ FILESSET

INITIALISATION
ShadowUVC := {}

SVN 05 adds a shadow list of items under version control on the client side.

It exists to let the CVS and SVN clients record an arbitrary number of add and

delete operations on an item before it is committed. Operation MoveS is the same as

5. Models 57

CommitMove4 from the previous model. It is presented without further comment.

Move5(NewToOldNames) =
PRE

NewToOldNames E FILESSET ---f+ FILESSET /\ NewToOldNames =I- {}

/\ ClientFiles =I- {} /\ ShadowUVC =I- {}

/\ dom(NewToOldNames) n dom(ClientFiles) = {}
/\ ran(NewToOldNames) ~ dom(ClientFiles)

/\ dom(NewToOldNames) n ShadowUVC = {}
/\ ran(NewToOldNames) ~ ShadowUVC

THEN

Move4(NewToOldNames) "

ShadowUVC := (ShadowUVC U dom(NewToOldNames)) - ran(NewToOldNames)

END;

5.6 Fifth Refinement: Shadow Repository and Ver

sion Number for the Client

Similar to the first model, SVN _ 06 adds a repository and version number for SVN

only to the client side. As in the previous model they are shadows who add support

to the client for an arbitrary number of add, delete, copy and move operations on

items before commit is called. Editing an item is supported as every add operation

assigns a new shadow version number to the item.

VARIABLES

ShadowRepository, Shadow VerNo

INVARIANT

ShadowRepository E (FILESSET x N) ---f+ FILECONTENT

/\ Shadow VerNo EN

/ / ------ Invariants ------

/\ ((ShadowRepository =I- {}) ~ (Shadow VerNo > 0))

58

A (V pp. (pp EN A pp E ran(dom(ShadowRepository))

=? pp :s; Shadow VerNo))

A (ShadowUVC c::;;; dom(dom(ShadowRepository)))

INITIALISATION

ShadowRepository := {} IIShadowVerNo := 0

5. Models

Operation Update6 for SVN illustrates the use of the shadow repository. Precon

ditions checks that items checked out exist in the server repository, are under version

control, are checked out by the client, are in the shadowed under version control list,

are in the shadow repository and are in the client items list.

The lambda relation contains the same comprehension set nested within it twice:

{uu I uu E ran(dom(ServerRepository)) A uu :s; ServerVerNo

A (FileN f-----+ uu) E dom(ServerRepository)}

It determines the largest version number of item FileN in the server repos

itory. That is, the version number of the most recently checked in copy of

FileN. If the contents are not the same as the item from the client item

ServerRepository(FileN f-----+ max ...) =I- ClientFiles(FileN), said client item needs up

dating in the shadow repository.

Note that for the SVN model, there is no relationship between the shadow ver

sion counter, Shadow VerNo and the server version counter Server VerNo. They vary

independently as client and server operations can be called in arbitrary orders.

Updated6 f----- Update6(Files) =

PRE

Updated6 c::;;; FILESSET A Files c::;;; FILESSET A Files =I- {}
A ShadowRepository =I- {} A Shadow UVC =I- {} A ClientFiles =I- {}
A ServerRepository =I- {} A ServerUVC =I- {} A ClientVersionNo =I- {}
A Shadow VerNo > 0 A ShadowVerNo + 1 :s; MAXINT

A Server VerNo > 0 A Server VerNo + 1 :s; MAXINT

A Files c::;;; dom(ClientFiles) A Files c::;;; dom(dom(ShadowRepository))

A Files c::;;; Shadow UVC A Files c::;;; dom(Client VersionN 0)
A Files c::;;; dom(dom(ServerRepository)) A Files c::;;; ServerUVC

A Shadow VerNo + 1 tj ran(dom(ShadowRepository))

THEN

5. Models

Shadow VerNo := ShadowVerNo + 1 II

ShadowRepository := ShadowRepository U

A FileN, Ver. (FileN E FILESSET /\ Ver E N

/\ Ver = Shadow VerNo + 1 /\ FileN E Files

/\ ServerRepository(FileN f-----+ max(

I

{uu I uu E ran(dom(ServerRepository)) /\ uu :::; Server VerNo

/\ (FileN f-----+ uu) E dom(ServerRepository)}))

=1= ClientFiles(FileN)

/\ (FileN f-----+ Ver) r:J. dom(ShadowRepository)

ServerRepository(FileN f-----+ max(

{uu I uu E ran(dom(ServerRepository)) /\ uu :::; Server VerNo

/\ (FileN f-----+ uu) E dom(ServerRepository)}))) II

Updated6 +-- Update5(Files)

END;

5.7 Sixth Refinement: Status Operation

SETS
STATUS = {Added, Deleted, No Change, MostRecent, Out Of Date }

OPERATIONS

Statuses +-- Status7(Files) =

PRE

Statuses E FILESSET ---A STATUS /\ Files ~ FILESSET /\ Files =1= {}

THEN

/ / Single statement begins here

Statuses := (((((

/ / 1. Added

59

60 5. Models

.A Filei. (Filei E FILESSET 1\ Filei E Files

1\ Filei E dom(ClientFiles) 1\ Filei E ShadowUVC

1\ Filei E dom(dom(ShadowRepository)) 1\ Filei tJ. dom(ClientVersionNo)

1\ Filei tJ. ServerUVC 1\ Filei tJ. dom(dom(ServerRepository))

1\ Filei tJ. dom(Statuses)

Added)) U

END

SVN _ 07 adds a status operation. It returns the status of each item with respect

to the repository. Many calls to CVS and SVN functions return the status of items

as part of their output, thus the decision to write status as an operation with the

output as a return variable instead of a persistent global variable.

An item is in the Added state when it is in the client relations ClientFiles,

ShadowUVC and ShadowRepository and not in the server relations Client VersionNo,

ServerUVC and ServerRepository. It has been newly added to the client and is waiting

for a submit operation to the server.

Items are in the Deleted state when they have been deleted from the client re

lations ClientFiles and ShadowUVC. They are still in ShadowRepository as these

items have been previously checked-in. In effect they are newly deleted on the client

side and are waiting for a submit operation to delete them from the server relations

ClientVersionNo and ServerUVC. Relation ServerRepository is of course not affected.

When items are under version control and are actively being edited and checked-in

by multiple users we want to know what the status of them is with respect to the

server copies.

Status NoChange means the client item is up-to date with respect to the server

repository item. This is checked by comparing the contents of the client item with

the most recent version of the item in the server repository:

ClientFiles (File5) = ServerRepository(File5 1-7 max(

{v5 I v5 E ran(dom(ServerRepository)) 1\ v5 ::; ServerVerNo

/\ (File5 1-7 v5) E dom(ServerReposito'fY) 1\ SeTveTRepository =I {}}))

When changes have been made to a checked out item that have not been com

mitted yet the status is set to M ostRecent. The lambda relation is the same

as the no change case with the equality of the nested lambda relation inverted,

5. Models 61

ClientFiles (File6) =I- ServerRepository(....

Lastly an item i::> out of date with respect to the server Out Of Date when the

version number in Server VersionNo is less than the maximum version number of that

item in ServerRepository. User B has committed a change to the item after user A

checked it out, so A is out of date.

This set comprehension shows the out of date check for Status7 for SVN:

ClientVersionNo(File1) < max(

{v'll v'l E ran(dom(ServerRepository))

!\ v'l ::; Server VerNo !\ (File'l 1----7 v1) E dom(ServerRepository)

!\ Server Repository =I- {}})

62 5. Models

5.8 Seventh Refinement: Binary File Support

VARIABLES

Server BinaryFile, S erverCO B

INVARIANT

ServerBinaryFile ~ FILESSET 1\

ServerCOB ~ FILESSET

INITIALISATION

ServerBinaryFile := {} IIServerCOB := {}

Binary file support is automatically handled by SVN. In CVS users are expected

to remember which files are binary and mark them with command line parameters.

Binary items are identified by their membership in the IsBinaryFile set. Who has

checked out a particular binary item is recorded in the RepositoryCheckedOutBinary

set.

Add8(Files) =

PRE

Files ~ FILESSET 1\ Files i= {} 1\ ClientFiles i= {}
1\ Files ~ dom(ClientFiles) 1\ Files n dom(dom(ServerRepository)) = {}

1\ Files n ServerUVC = {} 1\ Files n dom(Client VersionNo) = {}

1\ Files n dom(dom(ShadowRepository)) = {}

1\ Server VerNo 2:: 0 1\ Server VerNo + 1 ::; MAXINT

1\ Shadow VerNo 2:: 0 1\ ShadowVerNo + 1 ::; MAXINT

1\ Shadow VerNo + 1 tf- ran(dom(ShadowRepository))

THEN

/ / SVN uses binary detection here. We simulate it by making a random

/ / subset of input set Files binary.

ANY IsBinary

WHERE IsBinary ~ Files

THEN

ServerBinaryFile := ServerBinaryFile u
{FileN I FileN E FILESSET 1\ FileN E Files 1\ FileN E IsBinary

1\ FileN tf- ServerBinaryFile} II

5. Models

Add7(Files)

END

END;

63

SVN _ 08 in SVN describes adding binary files on the client side. When items are

added to SVN the ANY ... WHERE statements simulates adding binary items by

creating a local set IsBinary that is a random subset of Files. All of the members

are binary items who are added to the IsBinaryFile set by the lambda relation.

Binary items should never need updating. For an update to occur, another user

must have checked out the item - which is impossible since it is already locked. Even

though the model does not explicitly support multiple users, Update is written to

remove all binary items from the set of items to be updated before update is called.

For SVN it is:

Updated8 f--- Update8(Files) =

PRE

/ / Once binary files are removed from the update set, it isn't empty

/ / 1\ Files - {FileB I FileB E Files 1\ FileB E Server COB} -I- {}
THEN

/ / Updates don't occur for binary files

LET N otBinary BE
NotBinary = Files - {FileB I FileB E Files 1\ FileB E Server COB}

IN

IF N otBinary -I- {} THEN
Updated8 f--- Update7(NotBinary)

END
END

END;

The precondition asserts that there are non-binary items in the Files set. This

is necessary as the LET statement in the body has to type the NotBinary local

variable. If NotBinary evaluates to the empty set it has no type. Given this,

IF N otBinary -I- {} THEN ... is still required to convince the prover N otBinary is

indeed not the empty set.

64 5. Models

CVS does not automatically track binary items. It is up to users to remember

and specify all binary items when interacting with the repository. A representative

operation is Add:

Add8(AFile, SpecBinary) =

PRE

AFile E FILESSET /\ SpecBinary E BOOL /\ ClientFiles =I- {}
/\ AFile E dom(ClientFiles) /\ {AFile} n dom(dom(ServerRepository)) = {}

/\ {AFile} n Server UVC = {} /\ {AFile} n dom(Client VersionN 0) = {}

/\ {AFile} n dom(dom(ShadowRepository)) = {}

/\ {AFile} n ShadowUVC = {} /\ AFile (j. ServerBinaryFile

THEN

ANY IsBinary

WHERE IsBinary E BOOL

THEN

/ / User identifies item incorrectly

IF (IsBinary = TRUE /\ SpecBinary = FALSE)

V (IsBinary = FALSE /\ SpecBinary = TRUE) THEN

skip

ELSE

IF IsBinary = TR UE /\ SpecBinary = TR UE THEN

ServerBinaryFile := ServerBinaryFile U {AFile}

END II
Add7(AFile)

END

END

END;

If an item is incorrectly identified as binary or text it will be mangled by CVS.

This is represented by not passing item AFile to operation Add7 in the sixth model.

For an incorrect specification, skip is called, indicating an error has occurred.

The use of ANY '" WHERE may suggest specifying an item correctly is a mat

ter of luck. This is of course not the case. The operation is written this way to be

consistent with the SVN model. An alternative is to remove ANY ... WHERE and

5. Models 65

turn IsBinary into an input of type BOOL to the operation.

5.9 Eighth Refinement: Pristine Cache

This model introduces the client side cache, or pristine cache on the client system

for SVN. CVS does not have this feature. It stores items in the state they were in

when checked-out, updated or reverted. User changes to items are never stored to

the pristine cache. Pristine items are only updated when they are pulled from the

server. Having pristine items stored locally gives the SVN user options to revert and

diff with respect to the pristine item. The server does not need to be involved. All

of these cached items are automatically managed by SVN in hidden sub-directories

that users should not touch.

VARIABLES

ClientPristine

INVARIANT
ClientPristine E FILESSET x N -f+ FILECONTENT

INITIALISATION

ClientPristine := {}

ClientPristine is a relation of the same type as ServerRepository.

CheckedOut9 ~ CheckOut9(Files) =
PRE

THEN

ClientPristine := ClientPristine U

.A FileP, VerP.(FileP E FILESSET 1\ VerP EN 1\ FileP E Files

1\ FileP E dom(dom(ShadowRepository))

1\ FileP E ServerUVC 1\ FileP E dom(dom(ServerRepository))

1\ FileP ~ VerP E dom(ServerRepository)

1\ FileP ~ VerP ~ dom(ClientPristine)

1\ VerP = max(

{vP I vP EN 1\ vP :::; Server VerNo

1\ (FileP ~ vP) E dom(ServerRepository)})

66

ServerRepository(FileP, VerP)) II

CheckedOut9 t---- CheckOut8(Files)

END;

5. Models

As in previous cases the nested lambda relation returns the maximum version

number of FileP in ServerRepository.

5.10 Invariants

Invariants constrain the state space and transformations of the model. These restric

tions describe how the state space evolves over time and help the prover assert it

works correctly. In an operation the preconditions are initially examined to see if it

is eligible for execution. Invariants are checked as well as they must always hold. As

a variable is only manipulated in one statement of the operation body due to parallel

execution, invariants involving it are asserted again after the statement.

The client-server nature of the model and the two steps involved in Add, Delete,

Move and Copy make finding invariants between client variables (ClientFiles, Shad

owUVC, ShadowRepository and Client VersionNo) and server variables (ServerReposi

tory, ServerVersionNo, ServerUVC, ServerCOB and ServerIsBinary) difficult. Many

attempted invariants are also invalidated because the sets and relations shrink as well

as grow.

In the next two sections we look at and characterize successful and unsuccessful

invariants.

5.10.1 Unsuccessful Candidates

Unsuccessful invariants give insights into what can and cannot be done with the

models. Two are described here:

Hypothesis 1: All items checked out by the client are recorded in the SVN

server:

ShadowUVC ~ dom(dom(ServerRepository))

Counter-example: From Copy5 and Move5 in Refinement four we have:

ShadowUVC := ShadowUVC U dom(NewToOldNames)

Derivation:

5. Models 67

v x.(x E ShadowUVC U dom(NewToOldNames) ::::} x E

dom(dom(ServerRepository)))

x E ShadowUVC U dom(NewToOldNames) ::::} x E dom(dom(ServerRepository))

True::::} dom(NewToOldNames) ~ dom(dom(ServerRepository))

True ::::} False

False

Operations CopyS and MoveS affect only client relation ShadowUVC. Server op

erations CommitCopy4 and CommitMove4 must be invoked by a check-in event to

modify ServerRepository.

If copying and moving items was an immediate operation this invariant would

hold. As it is performed in two steps, it suggests investigating invariants that hold

on the client side only and server side only.

Hypothesis 2: For the model of SVN, ClientPristine relates to other server-side

variables as follows:

dom(dom(ClientPristine)) ~ dom(dom(ServerRepository))

1\ dom(dom(ClientPristine)) ~ ServerUVC

1\ dom(dom(ClientPristine)) ~ dom(Client VersionN 0)
1\ ServerBinaryFile ~ dom(dom(ClientPristine))

1\ ServerCOB ~ dom(dom(ClientPristine))

Here the prover isn't able to prove any of the hypothesis during it's default alloted

time of two minutes. They are all believed to be true, but are commented out in the

model to represent their tenousness.

5.10.2 Successful Candidates

Using the previous section as a guide, a number of successful invariants were imple

mented for the server. They are listed here without proof. The best we can say is,

Atelier B 4 did not find any counter-examples for them:

Hypothesis 1: From SVN _ 02, when items are under version control, the version

number counter is greater than zero:

ServerRepository =I- {} ~ Server VerNo> 0

Hypothesis 2: When items are under version control, the largest version number

in the repository is equal to the version number counter:

68

Server VerNo > 0 =? (ServerVerNo =

max (r an (dom (Server Repository))))

5. Models

It is necessarily long winded to include, when items are under version control as,

when there are no items under version control, there is no largest version number in

the empty repository:

Server VerNo = 0 =? (ServerVerNo =

max (ran (dom(ServerRepository))))

True =? (0 = max({}))

False

Hypothesis 3: From SVN_02, all version numbers in the server repository are

less than or equal to the repository version number counter:

'II xx . (xx E ran(dom(ServerRepository)) =? xx ::; Server VerNo)

Hypothesis 4: All version numbers from one to the repository version number

counter inclusive are in the server repository:

'II xx . (xx EN /\ xx ::; Server VerNo =? xx E ran(dom(ServerRepository)))

These four invariants assert relationships between only two variables. That they

only increase and increase in lock step with each-other shows they are tightly coupled.

Analogously similar invariants can be made for ShadowRepository and Shadow Ver

sionNo.

5.11 Proof Obligations

Proof obligations generated by Atelier B 4 come in three forms: Showing the initial

ization of sets and relations obeys their type rules, showing that adding and removing

members from sets and relations obeys their type rules and showing invariants are

always obeyed. We give an example of each.

1. Example initialization proof:

From SVN _ 02, check that invariant:

ClientFiles E FILESSET -f7 FILECONTENT

is established by the initialization:

{} E FILESSET -f7 FILECONTENT

True

5. Models

2. Example add/remove proof:

From Move2 in SVN _ 02, check that invariant:

ClientFiles E FILESSET ----1-+ FILECONTENT

is preserved by the operation:

ran(NewToOldNames) -8((ClientFiles U A NewF. (

NewF E FILESSET 1\ NewF E dom(NewToOldNames)

1\ NewToOldNames(NewF) E dom(ClientFiles) 1\ NewF tj. dom(ClientFiles)

I
ClientFiles (NewToOldNames(NewF))))) E FILESSET ----1-+ FILECONTENT

From the guards:

NewToOldNames E FILESSET ----1-+ FILESSET

Therefore dom(NewToOldNames) E FILESSET

Within the lambda relation

NewF E FILESSET

ClientFiles (ran(NewToOldNames)) E FILECONTENT

Therefore the lambda relation evaluates to FILESSET ----1-+ FILE CONTENT

Perform the type substitutions:

ran(FILESSET ----1-+ FILESSET) -8((FILESSET ----1-+ FILECONTENT

U FILESSET f-7 FILECONTENT)) E FILESSET ----1-+ FILECONTENT

FILESSET -8(FILESSET ----1-+ FILECONTENT)

E FILESSET ----1-+ FILECONTENT

FILESSET ----1-+ FILECONTENT E FILESSET ----1-+ FILECONTENT

True

69

This is the most complicated example in that it first adds the lambda relation due

to the bracketing, then removes ran(NewToOldNames).

3. Example invariant preservation proof:

In operation Commit2 from SVN _ 02, given:

1 :::; Server VerNo + 1 1\

xx E ran(dom(ServerRepository U {AFile f-7 Server VerNo + 1

f-7 AFileContents}))

Check that invariant:

70 5. Models

(\if pp.(pp E ran (dom(ServerRepository)) =? pp ::; Server VerNo))

is preserved by the operation:

xx ::; Server VerNo + 1

Intuitively, show that all version numbers in the repository are less than or equal

to the repository version number counter Server VerNo. The invariant specifically

checks when a new check-in is performed, the new items added with version num

ber Server VerNo + 1 are less than or equal to the new repository counter value,

Server VerNo + 1.

We know this is true because a check-in is only accepted when one or more items

has changes in it, or on a add, copy, move or delete. For delete, a item is removed from

the version control set and the repository is unchanged. For all others, a new directory

tree is made on the server for the operation with version number Server VerNo + 1.

At the same time, Server VerNo is incremented by one. By induction on this coupling

we show the invariant holds:

From the hypothesis:

Server VerNo ~ 0 1\ ServerVerNo + 1 ~ 1 1\

xx E ran(dom(ServerRepository)) 1\ xx E (ran(dom(ServerRepository)) U

(Server VerNo + 1))

As the guard on the invariant has ServerVerNo > 0, we strengthen our derived

hypothesis:

Server VerNo > 0 1\ ServerVerNo + 1 > 1 1\

xx E ran(dom(ServerRepository)) 1\ xx E (ran(dom(ServerRepository)) U

(Server VerNo + 1))

This is the basis of an inductive proof:

Base case: 1. Server VerNo = 1 =? 1 E ran(dom(ServerRepository))

Inductive case: 2. Server VerNo += 1 =? Repository Version += 1 E

(ran(dom(ServerRepository)) U (ServerVerNo + 1))
Rewritten:

1 =?1 E{l} from 1.

1 + 1 =? 1 + 1 E ({1} U {2}) from 2.

2 =? 2 E {1, 2}

2 + 1 =? 2 + 1 E ({1, 2} U {3}) from 2.

5. Models 71

3 =? 3 E {I , 2, 3}

Returning to the invariant to prove:

v xx.(xx E ran(dom(ServerRepository)) =? xx ::; Server VerNo

By induction:

v xx.(xx E {I} =? xx ::; 1)
V xx.(xx E {I, 2} =? xx ::; 2)
V xx.(xx E {I, 2, 3} =? xx ::; 3)

True

By induction the invariant is preserved.

5.12 Lemma Proof Obligations

Lemma proofs are helper proofs derived by the prover to help simply more complicated

proofs. They are stored separately from the regular proof obligations. We look at

two here, one provable and one not:

Lemma 1: For the Commit3 operation in file SVN_03 Atelier B must prove the

lambda relation generating the item history never returns an empty set as a result.

Hypothesis:

btrue =? ,({uu I uu E INTEGER 1\ 0 ::; uu 1\ uu ::; MAXINT

1\ uu ::; ServerVerNo 1\ AFile f-----+ uu E dom(ServerRepository)} = {})

,({uu I uu E INTEGER 1\ 0 ::; uu 1\ uu ::; MAXINT

1\ uu ::; Server VerNo 1\ AFile f-----+ uu E dom(ServerRepository)} = {}) (By MP)

Atelier B defines N as:

uu EN{==? uu E INTEGER 1\ 0 ::; uu 1\ uu ::; MAXINT

Substituting:

,({uu I uu EN 1\ uu ::; Server VerNo 1\ AFile f-----+ uu

E dom(ServerRepository)} = {})

From the guards of Commit3 we know:

72

AFile E FILESSET 1\

ServerRepository i= {} 1\

AFile E dom(dom(ServerRepository)) 1\

ServerVerNo + 1 ::; MAXINT

Thus there exists at least one revision of AFile in ServerRepository:

1. (AFile E FILESSET 1\ AFile E dom(dom(ServerRepository))

1\ ServerRepository i= {} 1\ Server VerNo + 1 ::; MAXINT)

::::} # UU. (uu EN::::} (AFile f-----+ uu) E dom(ServerRepository))

5. Models

This satisfies AFile f-----+ uu E dom(ServerRepository) in the set comprehension and

shows ServerRepository(AFile f-----+ uu) i= {}:

2. (1. ::::} (AFile f-----+ uu) E dom(ServerRepository))

::::} ServerRepository(AFile f-----+ uu) i= {}

The output of the set comprehension is a natural number:

UU

From 2.:

ServerRepository(AFile f-----+ uu) i= {}
AFile f-----+ uu E dom(ServerRepository)

True

Thus:

-,({uu I uu E N 1\ uu ::; Server VerNo 1\ AFile f-----+ uu

E dom(ServerRepository)} = {})

True

The guards show the requirements of the lemma are always met.

Lemma 2: Atelier B must prove for the Commit3 operation in file SVN _ 03

the results returned by the set comprehension are finite in size. That is,

card(set comprehension) E N:

Hypothesis:

btrue ::::} {ww I ww EN 1\ ww ::; ServerVerNo 1\ (FileN f-----+ ww) E

dom(ServerRepository)} nNE FIN(N)

As in the previous lemma, we look at the guards for Commit3:

5. Models

Files ~ FILESSET /\

ServerRepository =I- {} /\
Files ~ dom(dom(ServerRepository)) /\

ServerVerNo + 1 :::; MAXI NT

73

This lemma fails because N items could be under version control and each item

may have N revisions. Using the above definition of N:

N x N ~ FIN(N)

INT x INT ~ MAXINT

False

Chapter 6

Conclusions

This thesis shows the development of models of a subset of SVN and CVS from spec

ifications found on the web and in one case, experimentation. Multiple refinement

steps build upon each other to show complete implementations of Add, Delete, Move,

Copy, Commit, Update, Revert and Status. Some operations are have divided re

sponsibilities: Add, Delete, Move and Copy are invoked by the client. CommitAdd,

CommitDelete, CommitCopy and Commit Move are called as part of the Commit op

eration by the server. Later refinements add support for binary files and a pristine

local cache for SVN.

Modeling additional features of SVN and CVS varies in difficulty. Commands

such as cat, export, import, info, lock, unlock and branching commands are straight

forward. Some commands ~uch as blame, resolved and diff require a better definition

of a file to have meaning. Similarly, commands like import and export and multi-user

functionality are better expressed within a more refined file system. SVN's cleanup

command is difficult to implement as one of it's functions is to resume unfinished

operations.

Adding support for different kinds of version control systems also varies in dif

ficulty. Enforcement of semantic properties can be added to the Add, Check-In or

CommitAdd operations. Intensional versioning can likewise be added to the Check

Out and Update operations. If the intent of evolution is variants or cooperation,

changes to the repository structure and operations are both required. Supporting

multi-level versioning requires complete replacement of the ServerRepository relation

with an N-ary tree and is much more difficult.

Atelier B 4 is approximately one year old as of the writing of this thesis. Two

74

6. Conclusions 75

important notes on it's use are important to keep in mind: By default the predicate

prover (PP1) and predicate prover with first level and typing hypothesis (Tl) run for

only two mintues before giving up. A few three-argument lambda relations containing

nested lambda relations required ten to sixteen hours to prove.

Atelier B 4 has a finite rules base. Under some circumstances users may have to

extend it's rules to cover new situations. This requires a deep understanding of both

logic and Atelier B 4's implementation of it.

Chapter 7

Full Models

7.1 SVN Model

7.1.1 SVN 01

/ / Base machine, defining sets, opreations and arguments/return values

MACHINE

SVN 01

SETS
FILESSET; DATA; FILECONTENT

OPERATIONS

Addl (Files) =

PRE
Files ~ FILESSET /\ Files -I- {}

THEN
skip

END;

CommitAddl(Files) =

PRE
Files ~ FILESSET /\ Files -I- {}

76

7. Full Models

THEN
skip

END;

Deletel (Files)

PRE
Files ~ FILESSET 1\ Files -I {}

THEN
skip

END;

CommitDeletel (Files) =

PRE
Files ~ FILESSET 1\ Files -I {}

THEN
skip

END;

/ / Copy takes a relation of the form FILESSET -f+ FILESSET

Copyl(NewToOldNames) =

PRE
NewToOldNames E FILESSET -f+ FILESSET 1\ NewToOldNames -I {}

THEN
skip

END;

/ / CommitCopy takes a relation of the form FILESSET -f+ FILESSET

CommitCopyl(NewToOldNames) =

PRE
NewToOldNames E FILESSET -f+ FILESSET 1\ NewToOldNames -I {}

THEN
skip

END;

/ / Move takes a relation of the form FILESSET -f+ FILESSET

77

78

Move1(NewToOldNames) =

PRE

7. Full Models

NewToOldNames E FILESSET ----f7 FILESSET /\ NewToOldNames -I- {}
THEN

skip

END;

/ / CommitMove takes a relation of the form FILESSET ----f7 FILESSET

CommitMove1(NewToOldNames) =

PRE
NewToOldNames E FILESSET ----f7 FILESSET /\ NewToOldNames -I- {}

THEN
skip

END;

Committedl ~ Commitl(Files) =

PRE
Committedl ~ FILESSET /\ Files ~ FILESSET /\ Files -I- {}

THEN
Committedl := Files

END;

Updatedl ~ Updatel(Files) =

PRE
Updatedl ~ FILESSET /\ Files ~ FILESSET /\ Files -I- {}

THEN
Updatedl := Files

END;

CheckedOutl ~ CheckOut1(Files) =

PRE
CheckedOutl ~ FILESSET /\ Files ~ FILESSET

THEN
CheckedOutl := Files

END;

7. Full Models

Revertedl f--- Revert1(FilesToRevertVer) =

PRE
Revertedl ~ FILESSET /\ Files ToRevert Ver E FILESSET -,t+ Nl

/\ Files ToRevert Ver =I- {}

THEN
Revertedl := dom(FilesToRevert Ver)

END;

/ / Necessary placeholders for SVN _o6

Statusl (Files) =

PRE
Files ~ FILESSET /\ Files =I- {}

THEN
skip

END;

Checklnl (Files) =

PRE
Files ~ FILESSET /\ Files =I- {}

THEN
skip

END
END

79

80 7. Full Models

7.1.2 SVN 02

MACHINE

SVN 02

INCLUDES

SVN 01

VARIABLES

ClientFiles, ServerRepository, Server VerNo

INVARIANT

ClientFiles E FILESSET -T7 FILECONTENT / / Can shrink

/\ ServerRepository E (FILESSET x N) -T7 FILECONTENT / / Only grows

/\ Server VerNo E N / / Only grows

/ / Invariants

/\ ((ServerRepository =1= {}) ~ (Server VerNo > 0))

/\ (V pp. (pp EN /\ pp E ran(dom(ServerRepository))

==?- pp :::; Server VerNo))

/ / Don't Prove

/ / /\ (max(ran(dom(ServerRepository))) = Server VerNo)

/ / /\ (V rr. (rr E Nl /\ rr :::; Server VerNo

/ / ==?- rr E ran(dom(ServerRepository))))

INITIALISATION

ClientFiles := {} "ServerRepository := {} "Server VerNo := 0

OPERATIONS

7. Full Models

CommitAdd2(Files) =

PRE
Files ~ FILESSET /\ Files #- {} /\ ClientFiles #- {}
/\ Server VerNo + 1 :::; MAXINT

/\ Files ~ dom(ClientFiles) /\ Files n dom(dom(Server Repository)) = {}

THEN

ServerVerNo := Server VerNo + 1 II

/ / (Invariant) Repository is read only

ServerRepository := ServerRepository U

A FileN, Ver. (FileN E FILESSET /\ Ver E N /\ FileN E Files

/\ Ver = Server VerNo + 1 /\ ServerVerNo + 1 :::; MAXINT

I

/\ FileN E dom (ClientFiles) /\ FileN tf- dom(dom(ServerRepository))

/\ (FileN f-----t Ver) tf- dom(ServerRepository)

ClientFiles (FileN))

END;

Delete2(Files) =

PRE
Files ~ FILESSET /\ Files #- {} /\ ClientFiles #- {}
/\ Files ~ dom(ClientFiles)

THEN
ClientFiles := Files <El ClientFiles

END;

Copy2(NewToOldNames) =

PRE
NewToOldNames E FILESSET ~ FILESSET /\ NewToOldNames #- {}
/\ ClientFiles #- {} /\ dom(NewToOldNames) n dom(ClientFiles) = {}

/\ ran(NewToOldNames) ~ dom(ClientFiles)

THEN

ClientFiles := ClientFiles U

A NewF.(NewF E FILESSET /\ NewF E dom(NewToOldNames)

81

82 7. Full Models

1\ NewToOldNames(NewF) E dom(ClientFiles) 1\ NewF tj. dom(ClientFiles)

I
ClientFiles (N ewTo OldN ames (N ewF)))

END;

CommitCopy2(NewToOldNames) =

PRE

NewToOldNames E FILESSET ---A FILESSET 1\ NewToOldNames =1= {}

1\ ClientFiles =1= {} 1\ ServerRepository =1= {}

1\ Server VerNo> 0 1\ Server VerNo + 1 :s; MAXINT

1\ dom(NewToOldNames) s;::; dom(ClientFiles) / / Files now exist on client

1\ ran(NewToOldNames) s;::; dom(ClientFiles)

1\ dom(NewToOldNames) n dom(dom(ServerRepository)) = {}
1\ ran(NewToOldNames) s;::; dom(dom(ServerRepository))

1\ dom(NewToOldNames) n ran(NewToOldNames) = {}

THEN

Server VerNo := Server VerNo + 1 II

/ / (Invariant) Repository is read only

ServerRepository := ServerRepository U

). FileN, Ver. (FileN E FILESSET 1\ Ver E N

1\ FileN E dom(NewToOldNames)

END;

1\ (NewToOldNames(FileN), Ver) E dom(ServerRepository)

1\ (FileN, Ver) tj. dom(ServerRepository)

I
ServerRepository(N ewTo OldN ames(FileN) , Ver))

/ / Move takes a relation of the form FILESSET ---A FILESSET

Move2(NewToOldNames) =

PRE

NewToOldNames E FILESSET ---A FILESSET 1\ NewToOldNames =1= {}

1\ ClientFiles =1= {} 1\ dom(NewToOldNames) n dom(ClientFiles) = {}

1\ ran(NewToOldNames) s;::; dom(ClientFiles)

7. Full Models 83

THEN
ClientFiles := ran(NewToOldNames) «8((ClientFiles U

A NewF.(NewF E FILESSET /\ NewF E dom(NewToOldNames)

/\ NewToOldNames(NewF) E dom(ClientFiles) /\ NewF tj. dom(ClientFiles)

I
ClientFiles (N ewTo OldN ames(N ewF)))))

END;

/ / CommitMove takes a relation of the form FILESSET --f+ FILESSET

CommitM ove2(N ewTo OldN ames) =
PRE

NewToOldNames E FILESSET --f+ FILESSET /\ NewToOldNames #- {}
/\ ClientFiles #- {} /\ Server Repository #- {}
/\ Server VerNo > 0 /\ ServerVerNo + 1 ::; MAXINT

/\ dom(NewToOldNames) ~ dom(ClientFiles)

/\ ran(NewToOldNames) n dom(ClientFiles) = {}
/\ dom(NewToOldNames) n dom(dom(ServerRepository)) = {}
/\ ran(NewToOldNames) ~ dom(dom(ServerRepository))

THEN

Server VerNo := Server VerNo + 1 II

/ / (Invariant) Repository is read only

ServerRepository := ServerRepository U

A FileN, Ver. (FileN E FILESSET /\ Ver E N

/\ FileN E dom(NewToOldNames) /\ Ver ::; Server VerNo

/\ SeTve7' VerNo + 1 ::; MAXIIVT

/\ NewToOldNames(FileN) E dom(dom(ServerRepository))

/\ (NewToOldNames(FileN) , Ver) E dom(ServerRepository)

/\ (FileN f-----+ Ver) tj. dom(ServerRepository)

I
ServerRepository(NewToOldNames(FileN) , Ver))

END;

Committed2 +-- Commit2(Files) =

PRE

84 7. Full Models

Committed2 ~ FILESSET 1\ Files ~ FILESSET 1\ Files i- {}
1\ ClientFiles i- {} 1\ ServerRepository i- {} 1\ Server VerNo + 1 ::; MAXINT

1\ Files ~ dom(ClientFiles) 1\ Files ~ dom(dom(ServerRepository))

THEN
Server VerNo := Server VerNo + 1 II

ServerRepository := ServerRepository U

A FileN, Ver. (FileN E FILESSET 1\ Ver E N 1\ FileN E Files

1\ Ver = Server VerNo + 1 1\ FileN E dom(ClientFiles)

1\ FileN E dom(dom(ServerRepository))

1\ (FileN I--t Ver) tj. dom(ServerRepository)

I
ClientFiles (FileN))

END; <

Updated2 f-- Update2(Files) =

PRE

Updated2 ~ FILESSET 1\ Files ~ FILESSET 1\ Files i- {}
1\ ClientFiles i- {} 1\ ServerRepository i- {}
1\ Files ~ dom(ClientFiles) 1\ Files ~ dom(dom(ServerRepository))

THEN
ClientFiles := (Files <E3 ClientFiles) U

A FileN. (FileN E FILESSET 1\ FileN E Files 1\ FileN tj. dom(ClientFiles)

1\ FileN E dom(dom(ServerRepository)) 1\ FileN tj. dom(ClientFiles)

I
ServerRepository(FileN I--t max(

{ww I ww E N 1\ ww ::; MAXI NT

1\ (FileN I--t ww) Edam (Server Repository)}) + 1)) II
/ / Merge if changes are disjoint

/ / User intervention required if changes overlap

Updated2 := Files

END;

CheckedOut2 f-- CheckOut2(Files) =

7. Full Models

PRE
CheckedOut2 ~ FILESSET /\ Files ~ FILESSET /\ Files i= {}
/\ ServerRepository i= {} /\ Files ~ dom(dom(ServerRepository))

/\ Files n dom(ClientFiles) = {}

THEN

ClientFiles := (Files <E3 ClientFiles) U

A FileN. (FileN E FILESSET /\ FileN E Files

/\ FileN E dom(dom(ServerRepository)) /\ FileN tI- dom(ClientFiles)

I
ServerRepository(FileN 1----+ max(

{ww I ww E N /\ ww :s; MAXINT

/\ (FileN 1----+ ww) E dom(ServerRepository)}) + 1)) II

CheckedOut2 := Files

END;

Reverted2 +-- Revert2(FilesToReveTtVeT) =

PRE
ReveTted2 ~ FILESSET /\ Files ToReveTt Ver E FILESSET -1-+ WI

/\ Files ToRevertVeT i= {} /\ ClientFiles i= {} /\ ServeTRepositoTY i= {}
/\ dom(FilesToReveTtVer) ~ FILESSET

/\ dom(FilesToReveTtVer) ~ dom(ClientFiles)

/\ FilesToRevertVeT ~ dom(ServerRepository)

/\ SeTverVeTNo + 1 :s; MAXI NT

THEN
ClientFiles := (dom(FilesToRevert VeT) <E3 ClientFiles) U

A FileNm.(FileNm E FILESSET /\ FileNm E dom(FilesToRevertVeT)

/\ (FileNm 1----+ FilesToRevertVeT(FileNm)) E dom(ServeTRepository)

/\ FileNm tI- dom(ClientFiles)

I
ServeTRepository(FileNm 1----+ FilesToReveTtVeT(FileNm))) II

ReveTted2 := dom(FilesToReveTt Ver)

END
END

85

86

7.1.3 SVN 03

MACHINE

SVN 03

INCLUDES

SVN 02

VARIABLES

Client VersionN 0

INVARIANT

Client VersionNo E FILESSET ---f+ Nil Can shrink

I I Invariants

I I Doesn't prove

111\ (ClientVersionNo ~ dom(ServerRepository))

INITIALISATION

Client VersionNo := {}

OPERATIONS

CommitAdd3(Files) =

PRE

Files ~ FILESSET 1\ Files =I- {} 1\ ClientFiles =I- {}

1\ Server VerNo ~ 0 1\ Server VerNo + 1 ::; MAXINT

7. Full Models

1\ Files ~ dom(ClientFiles) 1\ Files n dom(dom(ServerRepository)) = {}

1\ Files n dom(Client VersionN 0) = {}

THEN

Client VersionNo := Client VersionNo U

A FileN. (FileN E FILESSET 1\ FileN E Files

1\ FileN ~ dom(Client VersionN 0)

7. Full Models

Server VerNo + 1) II

CommitAdd2(Files)

END;

Delete3(Files)

PRE
Files S;;; FILESSET 1\ Files -I {} 1\ ClientFiles -I {}
1\ Files S;;; dom(ClientFiles)

THEN
Delete2(Files)

END;

CommitDelete3(Files) =

PRE
Files S;;; FILESSET 1\ Files -I {} 1\ ServerRepository -I {}
1\ Client VersionNo -I {} 1\ Files n dom(ClientFiles) = {}

1\ Files S;;; dom(dom(ServerRepository)) 1\ Files S;;; dom(Client VersionNo)

1\ Server VerNo > 0 1\ Server VerNo + 1 ::; MAXINT

THEN

Client VersionN 0 : = Files «:3 Client VersionN 0

END;

Copy3(NewToOldNames) =

PRE
NewToOldNames E FILESSET ---f+ FILESSET 1\ NewToOldNames -I {}
1\ ClientFiles -I {} 1\ dom(NewToOldNames) n dom(ClientFiles) = {}
1\ ran(NewToOldNames) S;;; dom(ClientFiles)

THEN

Copy2(N ewTo OldN ames)

END;

CommitCopy3(NewToOldNames) =

87

88 7. Full Models

•

PRE
NewToOldNames E FILESSET --1-+ FILESSET 1\ NewToOldNames =I {}
1\ ClientFiles =I {} 1\ ServerRepository =I {} 1\ Client VersionNo =I {}
1\ ServerVerNo > a 1\ Server VerNo + 1 ::; MAXINT

1\ dom(NewToOldNames) ~ dom(ClientFiles)

1\ ran(NewToOldNames) ~ dom(ClientFiles)

1\ dom(NewToOldNames) n dom(ClientVersionNo) = {}

1\ ran(N ewTo OldN ames) ~ dom(Client VersionN 0)
1\ dom(NewToOldNames) n dom(dom(ServerRepository)) = {}

1\ ran(NewToOldNames) ~ dom(dom(ServerRepository))

1\ dom(NewToOldNames) n ran(NewToOldNames) = {}
THEN

Client VersionN 0 : = Client VersionN 0 U

A. NewF.(NewF E FILESSET 1\ NewF E dom(NewToOldNames)

1\ N ewTo OldN ames(N ewF) E dom(Client VersionN 0)
1\ NewF ~ dom(ClientVersionNo)

I
Client VersionN 0 (N ewTo OldN ames(N ewF))) II

CommitCopy2(N ewTo OldN ames)

END;

Move3(NewToOldNames) =

PRE
NewToOldNames E FILESSET --1-+ FILESSET 1\ NewToOldNames =I {}
1\ ClientFiles =I {} 1\ dom(NewToOldNames) n dom(ClientFiles) = {}

1\ ran(NewToOldNames) ~ dom(ClientFiles)

THEN
M ove2(N ewTo OldN ames)

END;

CommitMove3(NewToOldNames) =

PRE
NewToOldNames E FILESSET --1-+ FILESSET 1\ NewToOldNames =I {}

7. Full Models 89

1\ ClientFiles =1= {}

1\ Server Repository =1= {} 1\ Client VersionN 0 =1= {}

1\ Server VerNo > 0 1\ Server VerNo + 1 ::; MAXINT

1\ dom(NewToOldNames) S;;; dom(ClientFiles)

1\ ran(NewToOldNames) n dom(ClientFiles) = {}

1\ dom(NewToOldNames) n dom(ClientVersionNo) = {}

1\ ran(N ewTo OldN ames) S;;; dom(Client VersionN 0)
1\ dom(NewToOldNames) n dom(dom(ServerRepository)) = {}

1\ ran(NewToOldNames) S;;; dom(dom(ServerRepository))

1\ Vuu.(uu E ran(NewToOldNames) =? # vv.(vv EN 1\ vv ::; ServerVerNo

1\ (uu f-----+ vv) E dom(ServerRepository)))

THEN

ClientVersionNo := ran(NewToOldNames) <8(Client Versi 0 nNo U

A NewF.(NewF E FILESSET 1\ NewF E dom(NewToOldNames)

1\ NewF tj. dom(ClientVersionNo)

1\ NewToOldNames(NewF) E dom(ClientVersionNo)

I
Client VersionNo(NewToOldNames(NewF)))) II

CommitMove2(NewToOldNames)

END;

Committed3 ~ Commit3(Files) =

PRE
Committed3 S;;; FILESSET 1\ Files S;;; FILESSET 1\ Files =1= {}

1\ ClientFiles =1= {} 1\ ServerRepository =1= {} 1\ Client VersionNo =1= {}

1\ Files S;;; dom(ClientFiles) 1\ Files S;;; dom(Client VersionN 0)
1\ Files S;;; dom(dom(ServerRepository))

1\ Server VerNo > 0 1\ ServerVerNo + 1 ::; MAXINT

THEN
Client VersionN 0 : = (Files <8 Client VersionN 0) U

A FileN. (FileN E FILESSET 1\ FileN E Files 1\ FileN E dom(ClientFiles)

1\ ClientFiles(FileN) =1= ServerRepository(FileN f-----+ max(

{ww I ww EN 1\ ww ::; ServerVerNo

1\ (FileN f-----+ ww) E dom (S erver Repository)}))

90

A FileN rt dom(Client VersionN 0)

I
Server VerNo + 1) II

Committed3 ~ Commit2(Files)

END;

Updated3 ~ Update3(Files) =

PRE
Updated3 ~ FILESSET A Files ~ FILESSET A Files =I- {}

7. Full Models

A ClientFiles =I- {} A ServerRepository =I- {} A Client VersionNo =I- {}
A Server VerNo > 0 A Server VerNo + 1 :::; MAXINT

A Files ~ dom(ClientFiles) A Files ~ dom(ClientVersionNo)

A Files ~ dom(dom(ServerRepository))

THEN

Client VersionN 0 := (Files <E3 Client VersionN 0) U

A FileN.(FileN E FILESSET A FileN E Files

A ServerRepository(FileN f-----+ max(

I

{xx I xx EN A xx :::; Server VerNo

A (FileN f-----+ xx) E dom(ServerRepository)})) =I- ClientFiles(FileN)

A FileN rt dom(Client VersionN 0)

max(

{yy I yy EN A yy :::; Server VerNo

A (FileN f-----+ yy) E dom(ServerRepository)})) II

Updated3 ~ Update2(Files)

END;

CheckedOut3 ~ CheckOut3(Files) =

PRE
CheckedOut3 ~ FILESSET A Files ~ FILESSET A Files =I- {}
A ServerRepository =I- {} A Server VerNo> 0 A Server VerNo + 1 :::; MAXINT

A Files ~ dom(dom(ServerRepository))

1\ Files n dom(Client VersionN 0) = {} A Files n dom(ClientFiles) = {}

7. Full Models

THEN
Client VersionN 0 := Client VersionN 0 U

A FileN. (FileN E FILESSET /\ FileN E Files

/\ FileN tj. dom(Client VersionN 0)

I
max(

{xx I xx EN /\ xx ~ Server VerNo

/\ (FileN ~ xx) E dom(ServerRepository)})

+ 1) II

CheckedOut3 {-- CheckOut2(Files)

END;

Reverted3 {-- Revert3(Files ToRevert Ver) =

PRE
Reverted3 ~ FILESSET /\ Files ToRevert Ver E FILESSET ---f+ N1

/\ FilesToRevertVer =I {} /\ dom(Files ToRevert Ver) ~ FILESSET

/\ ClientFiles =I {} /\ ServerRepository =I {} /\ Client VersionNo =I {}
/\ Server VerNo > 0 /\ ServerVerNo + 1 ~ MAXINT

/\ dom(FilesToRevertVer) ~ dom(ClientFiles)

/\ Files ToRevertVer ~ dom(ServerRepository)

/\ dom(FilesToRevertVer) ~ dom(ClientVersionNo)

THEN
Client VersionNo := (dom(FilesToRevert Ver) ~ Client VersionNo) U

A FileNm.(FileNm E FILESSET /\ FileNm E dom(FilesToRevertVer)

/\ (FileNm ~ FilesToRevertVer(FileNm)) E dom(ServerRepository)

/\ FileNm tj. dom(ClientVersionNo)

I
Files ToRevert Ver(FileNm)) II

Reverted3 {-- Revert2(Files ToRevert Ver)

END
END

91

92 7. Full Models

7.1.4 SVN 04

MACHINE

SVN 04

INCLUDES

SVN 03

VARIABLES

ServerUVC

INVARIANT

ServerUVC ~ FILESSET

/ / ServerUVC Invariants

1\ (dom(ClientVersionNo) ~ ServerUVC)

/ / Doesn't prove

/ / 1\ (ServerUVC ~ dom(dom(ServerRepository)))

INITIALISATION

ServerUVC := {}

OPERATIONS

CommitAdd4 (Files) =

PRE

/ / Can shrink

Files ~ FILESSET 1\ Files -# {} 1\ ClientFiles -# {}
1\ Server VerNo 2: 0 1\ Server VerNo + 1 :::; MAXINT

1\ Files ~ dom(ClientFiles) 1\ Files n ServerUVC = {}
1\ Files n dom(dom(ServerRepository)) = {}

1\ Files n dom(Client VersionN 0) = {}

THEN

ServerUVC := ServerUVC U Files"

7. Full Models

CommitAdd3(Files)

END;

Delete4(Files) =
PRE

Files ~ FILESSET 1\ Files -I {} 1\ ClientFiles -I {}
1\ Files ~ dom(ClientFiles)

THEN
Delete3(Files)

END;

Copy4(NewToOldNames) =

PRE
NewToOldNames E FILESSET ---f-+ FILESSET 1\ NewToOldNames -I {}
1\ ClientFiles -I {} 1\ dom(NewToOldNames) n dom(ClientFiles) = {}

1\ ran(NewToOldNames) ~ dom(ClientFiles)

THEN
Copy3(N ewTo OldN ames)

END;

CommitCopy4(NewToOldNames) =

PRE
NewToOldNames E FILESSET ---f-+ FILESSET 1\ NewToOldNames -I {}
1\ ClientFiles -I {} 1\ ServerUVC -I {} 1\ ServerRepository -I {}

93

1\ ClientVersionNo -I {} 1\ Server VerNo > 0 1\ Server VerNo + 1 < MAXINT

1\ dom(NewToOldNames) ~ dom(ClientFiles)

1\ ran(NewToOldNames) ~ dom(ClientFiles)

1\ dom(NewToOldNames) n dom(ClientVersionNo) = {}

1\ ran(IV ewTo OldN ames) ~ dom(Client VersionN 0)
1\ dom(NewToOldNames) n ServerUVC = {}

1\ ran(NewToOldNames) ~ ServerUVC

1\ dom(NewToOldNames) n dom(dom(ServerRepository)) = {}

1\ ran(NewToOldNames) ~ dom(dom(ServerRepository))

1\ dom(NewToOldNames) n ran(NewToOldNames) = {}

94

THEN

ServerUVC := ServerUVC U dom(NewToOldNames) II

CommitCopy3(New To OldN ames)

END;

Move4(NewToOldNames) =

PRE

7. Full Models

NewToOldNames E FILESSET <'+ FILESSET 1\ NewToOldNames -=I- {}

1\ ClientFiles -=I- {} 1\ dom(NewToOldNames) n dom(ClientFiles) = {}

1\ ran(NewToOldNames) ~ dom(ClientFiles)

THEN

M ove3(N ewTo OldN ames)

END;

CommitMove4(NewToOldNames) =

PRE
NewToOldNames E FILESSET <'+ FILESSET 1\ NewToOldNames -=I- {}

1\ ClientFiles -=I- {} 1\ ServerUVC -=I- {} 1\ ServerRepository -=I- {}

1\ Client VersionNo -=I- {} 1\ Server VerNo> 0 1\ Server VerNo + 1 :::; MAXINT

1\ dom(NewToOldNames) ~ dom(ClientFiles)

1\ ran(NewToOldNames) n dom(ClientFiles) = {}
1\ dom(N ewTo OldN ames) n dom(Client VersionN 0) = {}

1\ ran(N ewTo OldN ames) ~ dom(Client VersionN 0)
1\ dom(NewToOldNames) n ServerUVC = {}

1\ ran(NewToOldNames) ~ ServerUVC

1\ dom(NewToOldNames) n dom(dom(ServerRepository)) = {}

1\ ran(NewToOldNames) ~ dom(dom(ServerRepository))

THEN

ServerUVC := (ServerUVC U dom(NewToOldNames)) - ran(NewToOldNames) II

CommitM ove3(N ewTo OldN ames)

END;

Committed4 f-- Commit4(Files) =

7. Full Models

PRE
Committed4 ~ FILESSET /\ Files ~ FILESSET 1\ Files i= {}
1\ ClientFiles i= {} /\ ServerRepository =1= {} /\ ServerUVC =1= {}

1\ Client VersionN a =1= {} 1\ Files ~ dom(ClientFiles)

/\ Files ~ dom(ClientVersionNo) 1\ Files ~ dom(dom(ServerRepository))

1\ Server VerNo > 0 /\ ServerVerNo + 1 ::; MAXINT

THEN
Committed4 f-- Commit3(Files)

END;

Updated4 f-- Update4(Files) =

PRE
Updated4 ~ FILESSET /\ Files ~ FILESSET 1\ Files =1= {}

/\ ClientFiles =1= {} /\ ServerRepository =1= {} /\ ServerUVC =1= {}

95

1\ ClientVersionNo =1= {} /\ Server VerNo > 0 /\ Server VerNo + 1 ::; MAXINT

/\ Files ~ dom(ClientFiles) /\ Files ~ dom(Client VersionN 0)
1\ Files ~ dom(dom(ServerRepository)) /\ Files ~ ServerUVC

THEN
Updated4 f-- Update3(Files)

END;

CheckedOut4 f-- CheckOut4(Files) =

PRE
CheckedOut4 ~ FILESSET 1\ Files ~ FILESSET 1\ Files =1= {}

1\ ServerRepository =1= {} 1\ ServerUVC =1= {} /\ Server VerNo> 0

/\ Server VerNo + 1 ::; MAXINT 1\ Files ~ dom(dom(ServerRepository))

1\ Files ~ ServerUVC /\ Files n dom(ClientVersionNo) = {}

1\ Files n dom(ClientFiles) = {}

THEN
CheckedOut4 f-- CheckOut3(Files)

END;

Reverted4 f-- Revert4(FilesToRevertVer) =

PRE
Reverted4 ~ FILESSET 1\ Files ToRevert Ver E FILESSET --1-+ Nl

96 7. Full Models

1\ FilesToRevertVer -# {} 1\ dom(Files ToRevert Ver) ~ FILESSET

1\ ClientFiles -# {} 1\ ServerRepository -# {} 1\ ServerUVC -# {}
1\ Client VersionNo -# {} 1\ Server VerNo> 0 1\ Server VerNo + 1 :s; MAXINT

1\ dom(FilesToRevert Ver) ~ dom(ClientFiles)

1\ FilesToRevertVer ~ dom(ServerRepository)

1\ dom(FilesToRevertVer) ~ ServerUVC

1\ dom(FilesToRevert Ver) ~ dom(Client VersionNo)

THEN
Reverted4 f------ Revert3(FilesToRevert Ver)

END
END

7. Full Models

7.1.5 SVN 05

MACHINE

SVN 05

INCLUDES

SVN 04

VARIABLES

ShadowUVC

INVARIANT

ShadowUVC ~ FILESSET

INITIALISATION

ShadowUVC := {}

OPERATIONS

Add5(Files) =

PRE

Files ~ FILESSET 1\ Files i= {} 1\ ClientFiles i= {}
1\ Server VerNo 20 1\ ServerVerNo + 1 ~ MAXINT

- 97

1\ Files ~ dom(ClientFiles) 1\ Files n dom(dom(ServerRepository)) = {}

1\ Files n ServerUVC = {} 1\ Files n dom(ClientVersionNo) = {}
n C!1>nrlnowTTlf0 - n
I I,JllJUJU/V v I' \.J - lJ

THEN

ShadowUVC := ShadowUVC U Files

END;

Delete5(Files) =

PRE

Files ~ FILESSET 1\ Files i= {} 1\ ClientFiles i= {}
1\ Files ~ dom(ClientFiles) 1\ ShadowUVC i= {} 1\ Files ~ ShadowUVC

THEN

ShadowUVC := ShadowUVC - Files II

98

Delete4(Files)

END;

CopyS(NewToOldNames) =

PRE

7. Full Models

NewToOldNames E FILESSET -,'7 FILESSET 1\ NewToOldNames i- {}
1\ ClientFiles i- {} 1\ ShadowUVC i- {}
1\ dom(NewToOldNames) n dom(ClientFiles) = {}

1\ ran(NewToOldNames) ~ dom(ClientFiles)

1\ dom(NewToOldNames) n ShadowUVC = {}

1\ ran(NewToOldNames) ~ ShadowUVC

THEN
ShadowUVC := ShadowUVC U dom(NewToOldNames) II

Copy4 (N ewTo OldN ames)

END;

MoveS(NewToOldNames) =

PRE
NewToOldNames E FILESSET -,'7 FILESSET 1\ NewToOldNames i- {}
1\ ClientFiles i- {} 1\ ShadowUVC i- {}
1\ dom(NewToOldNames) n dom(ClientFiles) = {}

1\ ran(NewToOldNames) ~ dom(ClientFiles)

1\ dom(NewToOldNames) n ShadowUVC = {}

1\ ran(NewToOldNames) ~ ShadowUVC

THEN
Move4(NewToOldNames) II

ShadowUVC := (ShadowUVC U dom(NewToOldNames)) - ran(NewToOldNames)

END;

CommittedS ~ CommitS(Files) =

PRE
CommittedS ~ FILESSET 1\ Files ~ FILESSET 1\ Files i- {}

7. Full Models

/\ ShadowUVC -1= {} /\ ClientFiles -1= {} /\ ServerRepository -1= {}

/\ ServerUVC -1= {} /\ ClientVersionNo -1= {} /\ Files ~ dom(ClientFiles)

/\ Files ~ dom(ClientVersionNo) /\ Files ~ ShadowUVC

/\ Files ~ dom(dom(ServerRepository)) /\ Files ~ ServerUVC

/\ Server VerNo > 0 /\ ServerVerNo + 1 :::; MAXINT

THEN

Committed5 f--- Commit4(Files)

END;

Updated5 f--- Update5(Files) =

PRE

Updated5 ~ FILESSET /\ Files ~ FILESSET /\ Files -1= {}

/\ ShadowUVC -1= {} /\ ClientFiles -1= {} /\ ServerRepository -1= {}

/\ ServerUVC -1= {} /\ Client VersionNo -1= {} /\ Server VerNo> 0

/\ Server VerNo + 1 :::; MAXINT /\ Files ~ dom(ClientFiles)

/\Files ~ ShadowUVC /\Files ~ dom(ClientVersionNo)

/\ Files ~ dom(dom(ServerRepository)) /\ Files ~ SeTverUVC

THEN

Updated5 f--- Update4(Files)

END;

CheckedOut5 f--- CheckOut5(Files) =

PRE

CheckedOut5 ~ FILESSET /\ Files ~ FILESSET /\ Files -1= {}

/\ ServerRepository -1= {} /\ ServerUVC -1= {} /\ Server VerNo> 0

/\ SeTve1'VeTNo + 1 :::; MAXINT /\ Files ~ dom(dom(ServerRepository))

/\ Files ~ ServerUVC /\ Files n dom(Client VersionNo) = {}
/\ Files n dom(ClientFiles) = {} /\ Files n ShadowUVC = {}

THEN

ShadowUVC := ShadowUVC U Files II

CheckedOut5 f--- CheckOut4(Files)

END;

Reverted5 f--- Revert5(FilesToRevert Ver) =

99

100 7. Full Models

PRE

Reverted5 ~ FILESSET /\ Files ToRevert Ver E FILESSET -I-t Wl

/\ Files ToRevert Ver =I- {} /\ dam(FilesToRevert Ver) ~ FILESSET

/\ ShadowUVC =I- {} /\ ClientFiles =I- {} /\ ServerRepository =I- {}
/\ ServerUVC =I- {} /\ Client Versi 0 nNo =I- {} /\ Server VerNo> 0

/\ Server VerNo + 1 ::; MAXINT /\ dam (Files ToRevertVer) ~ ShadowUVC

/\ dam(FilesToRevert Ver) ~ dam(ClientFiles)

/\ Files ToRevert Ver ~ dam(ServerRepository)

/\ dam(Files ToRevert Ver) ~ ServerUVC

/\ dam(FilesToRevertVer) ~ dam(ClientVersionNo)

THEN
Reverted5 f-- Revert4 (Files ToRevert Ver)

END
END

7. Full Models

7.1.6 SVN 06

MACHINE

SVN 06

INCLUDES

SVN 05

VARIABLES
ShadowRepository, Shadow VerNo

INVARIANT

ShadowRepository E (FILESSET x N) --1-7 FILECONTENT / / Only grows

A Shadow VerNo EN

/ / ------ Invariants ------

A ((ShadowRepository i= {}) {::::::::? (Shadow VerNo > 0))

A (\I pp. (pp EN A pp E ran(dom(ShadowRepository))

::::} pp :::; Shadow VerNo))

/ / Don't prove

/ / /\

/ / A max(ran(dom(ShadowRepository))) = Shadow VerNo

/ / A \lrr. (rr E Nl/\ rr :::; Shadow VerNo ::::}

/ / rr E ran(dom(ShadowRepository)))

INITIALISATION

ShadowRepository := {} IIShadowVerNo := 0

OPERATIONS

101

102

Add6(Files) =

PRE
Files ~ FILESSET 1\ Files =J {} 1\ ClientFiles =J {}
1\ Server VerNo 2: a 1\ Server VerNo + 1 ::; MAXINT

7. Full Models

1\ Files ~ dom(ClientFiles) 1\ Files n dom(dom(ServerRepository)) = {}

1\ Files n ServerUVC = {} 1\ Files n dom(Client VersionNo) = {}
1\ Files n dom(dom(ShadowRepository)) = {}

1\ Shadow VerNo 2: a 1\ Shadow VerNo + 1 ::; MAXINT

1\ Shadow VerNo + 1 rf. ran(dom(ShadowRepository))

1\ Files n ShadowUVC = {}

THEN

Shadow VerNo := Shadow VerNo + 1 II

ShadowRepository := ShadowRepository U

.A FileNm, Ver.(FileNm E FILESSET 1\ Ver EN 1\ FileNm E Files

1\ Ver = Shadow VerNo + 1 1\ Shadow VerNo + 1 ::; MAXINT

1\ (FileNm t----t Ver) rf. dom(ShadowRepository)

I
ClientFiles (FileNm)) II

Add5(Files)

END;

Delete6(Files) =

PRE
Files ~ FILESSET 1\ Files =J {} 1\ ClientFiles =J {} 1\ ShadowUVC =J {}
1\ ShadowRepository =J {} 1\ Files ~ dom(ClientFiles)

1\ Files ~ ShadowUVC 1\ Files ~ dom(dom(ShadowRepository))

1\ Shadow VerNo + 1 ::; MAXINT

THEN

Delete5(Files)

END;

Copy6(NewToOldNames) =

PRE

7. Full Models

NewToOldNames E FILESSET --I-'t FILESSET 1\ NewToOldNames -I- {}
1\ ClientFiles -I- {} 1\ ShadowUVC -I- {} 1\ ShadowRepository -I- {}
1\ Shadow VerNo > 0 1\ Shadow VerNo + 1 :::; MAXINT

1\ dom(NewToOldNames) n dom(ClientFiles) = {}
1\ ran(NewToOldNames) ~ dom(ClientFiles)

1\ dom(NewToOldNames) n ShadowUVC = {}
1\ ran(NewToOldNames) ~ ShadowUVC

1\ dom(NewToOldNames) n dom(dom(ShadowRepository)) = {}

1\ ran(NewToOldNames) ~ dom(dom(ShadowRepository))

THEN

Shadow VerNo := Shadow VerNo + 1 II

ShadowRepository := ShadowRepository U

A FileN, Ver. (FileN E FILESSET 1\ Ver E N

1\ FileN E dom(NewToOldNames) 1\ Ver < Shadow VerNo + 1

1\ ShadowVerNo + 1 :::; MAXINT

1\ NewToOldNames(FileN) E dom(ClientFiles)

1\ (NewToOldNames(FileN), Ver) E dom(ShadowRepository)

1\ (FileN, Ver) tj. dom(ShadowRepository)

I
ShadowRepository(N ewTo OldN ames (FileN) , Ver)) II

Copy5(N ewTo OldN ames)

END;

Move6(NewToOldNames) =

PRE
NewToOldNames E FILESSET --I-'t FILESSET 1\ NewToOldNames -I- {}
1\ ClientFiles -I- {} 1\ ShadowUVC -I- {} 1\ ShadowRepository -I- {}
1\ Shadow VerNo > 0 1\ Shadow VerNo + 1 :::; MAXINT

1\ dom(NewToOldNames) n dom(ClientFiles) = {}

1\ ran(NewToOldNames) ~ dom(ClientFiles)

1\ dom(NewToOldNames) n ShadowUVC = {}

1\ ran(NewToOldNames) ~ ShadowUVC

1\ dom(NewToOldNames) n dom(dom(ShadowRepository)) = {}

103

104

1\ ran(NewToOldNames) ~ dom(dom(ShadowRepository))

THEN
Shadow VerNo := Shadow VerNo + 1 II

ShadowRepository := ShadowRepository U

A FileN, Ver.(

7. Full Models

FileN E FILESSET 1\ Ver EN 1\ FileN E dom(NewToOldNames)

1\ Ver < Shadow VerNo + 1 1\ Shadow VerNo + 1 ::; MAXINT

I

1\ NewToOldNames(FileN) E dom(ClientFiles)

1\ (NewToOldNames(FileN), Ver) E dom(ShadowRepository)

1\ (FileN, Ver) tt dom(ShadowRepository)

ShadowRepository(N ewTo OldN ames(FileN) , Ver)) II

M ove5(N ewTo OldN ames)

END;

Committed6 f-- Commit6(Files) =

PRE
Committed6 ~ FILESSET 1\ Files ~ FILESSET 1\ Files =1= {}

1\ ShadowRepository =1= {} 1\ Shadow UVC =1= {} 1\ ClientFiles =1= {}

1\ ServerRepository =1= {} 1\ ServerUVC =1= {} 1\ ClientVersionNo =1= {}

1\ Files ~ dom(ClientFiles) 1\ Files ~ dom(Client VersionN 0)
1\ Files ~ dom(dom(ShadowRepository)) 1\ Files ~ ShadowUVC

1\ Files ~ dom(dom(ServerRepository)) 1\ Files ~ ServerUVC

1\ Shadow VerNo > a 1\ Shadow VerNo + 1 ::; MAXINT

1\ ServerVerNo > a 1\ ServerVerNo + 1 ::; MAXINT

1\ Files n dom(ClientFiles) = Files

1\ Files n dom(Client VersionN 0) = Files

1\ Files n dom(dom(ShadowRepository)) = Files

1\ Files n ShadowUVC = Files

1\ Files n dom(dom(ServerRepository)) = Files

1\ Files n ServerUVC = Files

THEN
Shadow VerNo := Shadow VerNo + 1 II

7. Full Models

ShadowRepository := ShadowRepository U

A FileN, Ver.(FileN E FILESSET 1\ Ver EN 1\ FileN E Files

1\ Ver = ShadowVerNo + 1 1\ Shadow VerNo + 1 ::; MAXINT

1\ ClientFiles (FileN) =1= ShadowRepository(FileN f------7 max(

I

{uu I uu E ran(dom(ShadowRepository)) 1\ uu ::; ShadowVerNo

1\ (FileN f------7 uu) E dom(ShadowRepository)}))

1\ (FileN f------7 Ver) tj. dom(ShadowRepository)

ClientFiles (FileN)) II

Committed6 ~ Commit5(Files)

END;

Updated6 ~ Update6(Files) =

PRE

Updated6 ~ FILESSET 1\ Files ~ FILESSET 1\ Files =1= {}

1\ ShadowRepository =1= {} 1\ Shadow UVC =1= {} 1\ ClientFiles =1= {}

1\ ServerRepository =1= {} 1\ ServerUVC =1= {}

1\ Client VersionNo =1= {} 1\ Shadow VerNo> 0 1\ Shadow VerNo + 1 <
MAXINT

1\ Server VerNo > 0 1\ ServerVerNo + 1 ::; MAXINT

1\ Files ~ dom(ClientFiles) 1\ Files ~ dom(dom(ShadowRepository))

1\ Files ~ ShadowUVC 1\ Files ~ dom(ClientVersionNo)

1\ Files ~ dom(dom(ServerRepository)) 1\ Files ~ ServerUVC

1\ Shadow VerNo + 1 tj. ran (dom(ShadowRepository))

THEN

Shadow VerNo := Shadow VerNo + 1 II

ShadowRepository := ShadowRepository U

105

A FileN, Ver.(FileN E FILESSET 1\ Ver EN 1\ Ver = ShadowVerNo + 1

1\ FileN E Files 1\ ServerRepository(FileN f------7 max(

{uu I uu E ran(dom(ServerRepository)) I\uu ::; ServerVerNo

1\ (FileN f------7 uu) E dom(ServerRepository)})) =1= ClientFiles(FileN)

1\ (FileN f------7 Ver) tj. dom(ShadowRepository)

106 7. Full Models

ServerRepository(FileN f-----+ max(

{uu I uu E ran(dom(ServerRepository)) 1\ uu :::; ServerVerNo

1\ (FileN f-----+ uu) E dom(ServerRepository)}))) "

Updated6 f------- Update5(Files)

END;

CheckedOut6 f------- CheckOut6(Files) =

PRE

CheckedOut6 ~ FILESSET 1\ Files ~ FILESSET 1\ Files =1= {}

1\ ShadowRepository =1= {} 1\ ServerRepository =1= {} 1\ ServerUVC =1= {}

1\ Shadow VerNo > 0 1\ Shadow VerNo + 1 :::; MAXINT

1\ Server VerNo > 0 1\ Server VerNo + 1 :::; MAXI NT

1\ Files ~ dom(dom(ServerRepository)) 1\ Files ~ ServerUVC

1\ Files n dom(Client VersionN 0) = {} 1\ Files n dom(ClientFiles) = {}
1\ Files n ShadowUVC = {}

1\ Shadow VerNo + 1 (j ran (dom(ShadowRepository))

1\ Files ~ dom(dom(ShadowRepository))

THEN

Shadow VerNo := Shadow VerNo + 1 "

ShadowRepository := ShadowRepository U

A FileN, Ver.(FileN E FILESSET 1\ Ver EN 1\ Ver = Shadow VerNo + 1

1\ Shadow VerNo + 1 :::; MAXINT 1\ FileN E Files

1\ FileN E dom(dom(ServerRepository))

1\ (FileN f-----+ Ver) (j dom(ShadowRepository)

I
ServerRepository(FileN f-----+ max(

{vv I vv E ran(dom(ServerRepository)) 1\ vv :::; ServerVerNo

1\ (FileN f-----+ vv) E dom(ServerRepository)}))) "

CheckedOut6 f------- CheckOut5(Files)

END;

7. Full Models

Reverted6 f-- Revert6(FilesToRevert Ver) =

PRE

Reverted6 ~ FILESSET 1\ Files ToRevert Ver E FILESSET -f+ Nl

1\ FilesToRevertVer =/= {} 1\ dom(FilesToRevertVer) ~ FILESSET

1\ ShadowRepository =/= {} 1\ ShadowUVC =/= {} 1\ ClientFiles =/= {}

1\ ServerRepository =/= {} 1\ ServerUVC =/= {} 1\ Client VersionNo =/= {}

1\ Shadow VerNo> 0 1\ Shadow VerNo + 1 ::; MAXINT

1\ Server VerNo > 0 1\ ServerVerNo + 1 ::; MAXINT

1\ Files ToRevert Ver ~ dom(ShadowRepository)

1\ dom(FilesToRevertVer) ~ ShadowUVC

1\ dom(FilesToRevertVer) ~ dom(ClientFiles)

1\ Files ToRevert Ver ~ dom(ServerRepository)

1\ dom(FilesToRevertVer) ~ ServerUVC

1\ dom(FilesToRevertVer) ~ dom(ClientVersionNo)

THEN

Shadow VerNo := Shadow VerNo + 1 II

ShadowRepository := ShadowRepository U

A FileNm, Ver.(FileNm E FILESSET 1\ Ver EN 1\

Ver = Shadow VerNo + 1

1\ Shadow VerNo + 1 ::; MAXI NT 1\ FileNm E dom(FilesToRevertVer)

1\ (FileNm f-----+ FilesToRevertVer(FileNm)) E dom(ServerRepository)

1\ (FileNm f-----+ Ver) rf- dom(ShadowRepository)

I
Server Repository(FileNm f-----+ Files ToRevert Ver(FileNm))

) II

Reverted6 f-- Revert5(FilesToRevertVer)

END
END

107

108 7. Full Models

7.1.7 SVN 07

MACHINE

SVN 07

INCLUDES

SVN 06

SETS

STATUS = {Added, Deleted, No Change, MostRecent, Out Of Date}

OPERATIONS

Add7(Files) =

PRE

Files ~ FILESSET /\ Files -# {} /\ ClientFiles -# {}
/\ Files ~ dom(ClientFiles) /\ Files n dom(dom(ServerRepository)) = {}

/\ Files n ServerUVC = {} /\ Files n dom(Client VersionNo) = {}
/\ Files n dom(dom(ShadowRepository)) = {}

/\ Server VerNo ~ 0 /\ Server VerNo + 1 ::::; MAXINT

/\ Shadow VerNo ~ 0 /\ Shadow VerNo + 1 ::::; MAXINT

/\ Shadow VerNo + 1 tJ. ran(dom(ShadowRepository))

1\ Files n ShadowUVC = {}

THEN

Add6(Files)

END;

Delete7(Files) =

PRE

Files ~ FILESSET /\ Files -# {} /\ ClientFiles -# {}
1\ Files ~ dom(ClientFiles) 1\ ShadowUVC -# {} /\ ShadowRepository -# {}
/\ Files ~ ShadowUVC 1\ Files ~ dom(dom(ShadowRepository))

/\ ShadowVerNo + 1 ::::; MAXINT

THEN

Delete6(Files)

7. Full Models

END;

Copy'l(NewToOldNames) =

PRE
NewToOldNames E FILESSET -+'t FILESSET 1\ NewToOldNames #- {}
1\ ClientFiles #- {} 1\ ShadowUVC #- {} 1\ ShadowRepository #- {}
1\ Shadow VerNo > 0 1\ Shadow VerNo + 1 ::; MAXINT

1\ dom(NewToOldNames) n dom(ClientFiles) = {}

1\ ran(NewToOldNames) S;;; dom(ClientFiles)

1\ dom(NewToOldNames) n ShadowUVC = {}

1\ ran(NewToOldNames) S;;; ShadowUVC

1\ dom(NewToOldNames) n dom(dom(ShadowRepository)) = {}
1\ ran(NewToOldNames) S;;; dom(dom(ShadowRepository))

THEN
Copy6(N ewTo OldN ames)

END;

Move'l(NewToOldNames) =

PRE
NewToOldNames E FILESSET -+'t FILESSET 1\ NewToOldNames #- {}
1\ ClientFiles #- {} 1\ Shadow UVC #- {} 1\ ShadowRepository #- {}
1\ Shadow VerNo> 0 1\ Shadow VerNo + 1 ::; MAXINT

1\ dom(NewToOldNames) n dom(ClientFiles) = {}
1\ ran(NewToOldNames) S;;; dom(ClientFiles)

1\ dom(NewToOldNames) n ShadowUVC = {}

1\ ran(NewToOldNam,es) S;;; ShadowUVC

1\ dom(New To OldNames) n dom(dom(ShadowRepository)) = {}

1\ ran(NewToOldNames) S;;; dom(dom(ShadowRepository))

THEN
lvI ove6(N ewTo OldN ames)

END;

Committed'l +-- Commit'l(Files) =

PRE
Committed'l S;;; FILESSET 1\ Files S;;; FILESSET 1\ Files #- {}

109

110 7. Full Models

1\ ShadowRepository =1= {} 1\ ShadowUVC =1= {} 1\ ClientFiles =1= {}

1\ ServerRepository =1= {} 1\ ServerUVC =1= {} 1\ Client VersionNo =1= {}

1\ Files S;;; dom(ClientFiles) 1\ Files S;;; dom(Client VersionN 0)
1\ Files S;;; dom(dom(ShadowRepository)) 1\ Files S;;; ShadowUVC

1\ Files S;;; dom(dom(ServerRepository)) 1\ Files S;;; ServerUVC

1\ Shadow VerNo> 0 1\ Shadow VerNo + 1 :::; MAXI NT

1\ Server VerNo > 0 1\ Server VerNo + 1 :::; MAXINT

1\ Files n dom(ClientFiles) = Files

1\ Files n dom(Client VersionN 0) = Files

1\ Files n dom(dom(ShadowRepository)) = Files

1\ Files n ShadowUVC = Files

1\ Files n dom(dom(ServerRepository)) = Files

1\ Files n ServerUVC = Files

THEN

Committed7 ~ Commit6(Files)

END;

Updated7 ~ Update7(Files) =

PRE

Updated7 S;;; FILESSET 1\ Files S;;; FILESSET 1\ Files =1= {}

1\ ShadowRepository =1= {} 1\ ShadowUVC =1= {} 1\ ClientFiles =1= {}

1\ ServerRepository =1= {} 1\ ServerUVC =1= {} 1\ ClientVersionNo =1= {}

1\ Shadow VerNo> 0 1\ Shadow VerNo + 1 :::; MAXI NT

1\ Server VerNo > 0 1\ Server VerNo + 1 :::; MAXINT

1\ Files S;;; dom(ClientFiles) 1\ Files S;;; dom(dom(ShadowRepository))

1\ Files S;;; Shadow UVC 1\ Files S;;; dom(Client VersionNo)

1\ Files S;;; dom(dom(ServerRepository)) 1\ Files S;;; ServerUVC

1\ Shadow VerNo + 1 tt ran(dom(ShadowRepository))

THEN

Updated7 ~ Update6(Files)

END;

CheckedOut7 ~ CheckOut7(Files) =

PRE

CheckedOut7 S;;; FILESSET 1\ Files S;;; FILESSET 1\ Files =1= {}

7. Full Models

1\ ShadowRepository =1= {} 1\ ServerRepository =1= {} 1\ ServerUVC =1= {}

1\ Shadow VerNo > 0 1\ Shadow VerNo + 1 ::::; MAXINT

1\ ServerVerNo > 0 1\ ServerVerNo + 1 ::::; MAXINT

1\ Files ~ dom(dom(ServerRepository)) 1\ Files ~ ServerUVC

1\ Files n dom(Client VersionN 0) = {} 1\ Files n dom(ClientFiles) = {}
1\ Files n ShadowUVC = {}

1\ Shadow VerNo + 1 tf. ran(dom(ShadowRepository))

1\ Files ~ dom(dom(ShadowRepository))

THEN
CheckedOut'l f-- CheckOut6(Files)

END;

Reverted7 f-- Revert7(FilesToRevert Ver) =

PRE

Reverted7 ~ FILESSET 1\ Files ToRevertVer E FILESSET -1+ Nl

1\ FilesToRevertVer =1= {} 1\ dom(Files ToRevert Ver) ~ FILESSET

1\ ShadowRepository =1= {} 1\ ShadowUVC =1= {} 1\ ClientFilcs =1= {}

1\ ServerRepository =1= {} 1\ ServerUVC =1= {} 1\ Client VersionNo =1= {}

1\ Shadow VerNo > 0 1\ Shadow VerNo + 1 ::::; MAXINT

1\ Server VerNo > 0 1\ ServerVerNo + 1 ::::; MAXINT

1\ Files ToRevert Ver ~ dom(ShadowRepository)

1\ dom(FilesToRevert Ver) ~ ShadowUVC

1\ dom(FilesToRevert Ver) ~ dom(ClientFiles)

1\ Files ToRevert Ver ~ dom(ServerRepository)

1\ dom(FilesToRevertVer) ~ ServerUVC

1\ dom(FilesToRevert Ver) ~ dom(Client VersionNo)

THEN

Reverted7 f-- Revert6(FilesToRevert Ver)

END;

/ / STATUS = {Added, Deleted, No Change, MostRecent, OutOfDate}

Stati f-- Status 7(Files) =

PRE

Stati E FILESSET -1+ STATUS 1\ Files ~ FILESSET 1\ Files =1= {}

111

112 7. Full Models

THEN

/ / Single statement begins here

Stati := (((((

/ / 1. Added

A Filei. (Filei E FILESSET 1\ Filei E Files 1\ Filei E dom(ClientFiles)

1\ Filei E ShadowUVC 1\ Filei E dom(dom(ShadowRepository))

1\ Filei rf- dom(Client VersionNo) 1\ Filei rf- ServerUVC

1\ Filei rf- dom(dom(ServerRepository)) 1\ Filei rf- dom(Stati)

Added))

/ / 3. Deleted

U A File3. (File3 E FILESSET 1\ File3 E Files 1\ File3 rf- dom(ClientFiles)

1\ File3 rf- ShadowUVC 1\ File3 E dom(dom(ShadowRepository))

1\ File3 E dom(Client VersionNo) 1\ File3 E ServerUVC

1\ File3 E dom(dom(ServerRepository)) 1\ File3 rf- dom(Stati)

Deleted))

/ / 5. No changes (To download from the server)

U A File5. (File5 E FILESSET 1\ File5 E Files 1\ File5 E dom(ClientFiles)

1\ File5 E ShadowUVC 1\ File5 E dom(dom(ShadowRepository))

1\ File5 E dom(Client VersionNo) 1\ File5 E ServerUVC

1\ File5 E dom(dom(ServerRepository)) 1\ File5 rf- dom(Stati)

1\ ClientVersionNo(File5) = max(

{iJ51 v5 E ran(dom(ServerRepository)) 1\ v5 :::; ServerVerNo

1\ (File5 1-7 v5) E dom(ServerRepository) 1\ ServerRepository #- {}})
1\ ClientFiles(File5) = ServerRepository(File5 1-7 max(

{v5 I v5 E ran(dom(ServerRepository)) 1\ v5 :::; ServerVerNo

1\ (File5 1-7 v5) E dom(ServerRepository) 1\ ServerRepository #- {}}))

No Change))

7. Full Models 113

/ / 6. Most recent copy, server is out-oj-date WRT local

U A File6.(File6 E FILESSET 1\ File6 E Files 1\ File6 E dom(ClientFiles)

1\ File6 E ShadowUVC 1\ File6 E dom(dom(ShadowRepository))

1\ File6 E dom(Client VersionNo) 1\ File6 E ServerUVC

1\ File6 E dom(dom(ServerRepository)) 1\ File6 tt dom(Stati)

1\ ClientVersionNo(File6) = max(

{v6 I v6 E ran(dom(ServerRepository))

1\ v6 :::; Server VerNo 1\ (File6 f-----+ v6) E dom(ServerRepository)

1\ ServerRepository -I- {}})
1\ ClientFiles(File6) -I- ServerRepository(File6 f-----+ max(

{v6 I v6 E ran(dom(ServerRepository))

1\ v6 :::; Server VerNo 1\ (File6 f-----+ v6) E dom(ServerRepository)

1\ ServerRepository -I- {}}))

MostRecent))

/ / 7. Local copy is out oj date (WRT server)

U A File7.(File7 E FILESSET 1\ File7 E Files 1\ File7 E dom(ClientFiles)

1\ File7 E ShadowUVC 1\ File7 E dom(dom(ShadowRepository))

1\ File7 E dom(ClientVersionNo) 1\ File7 E ServerUVC

1\ File7 E dom(dom(ServerRepository)) 1\ File7 tt dom(Stati)

1\ Client Versi 0 nNo (File1) < max(

{v71 v7 E ran(dom(ServerRepository))

1\ v7 :::; Server VerNo 1\ (File7 f-----+ v1) E dom(ServerRepository)

1\ Server Repository -I- {} })

OutOJDate)) / / Single statement ends here

END

END

114 7. Full Models

7.1.8 SVN 08

MACHINE

SVN 08

INCLUDES

SVN 07

VARIABLES
ServerBinaryFile, ServerCOB

INVARIANT

ServerBinaryFile ~ FILESSET 1\ / / Can shrink

ServerCOB ~ FILESSET / / Can shrink, what is checked out binary

/ / Invariants

/ / Doesn't prove

/ / 1\ (ServerCOB ~ ServerBinaryFile)

INITIALISATION

ServerBinaryFile := {} IIServerCOB := {}

OPERATIONS

Add8(Files) =

PRE

Files ~ FILESSET 1\ Files =1= {} 1\ ClientFiles =1= {}

1\ Files ~ dom(ClientFiles) 1\ Files n dom(dom(ServerRepository)) = {}

1\ Files n ServerUVC = {} 1\ Files n dom(Client VersionNo) = {}

1\ Files n dom(dom(ShadowRepository)) = {}

1\ ServerVerNo 2: 0 1\ ServerVerNo + 1 ::; MAXINT

1\ Shadow VerNo 2: 0 1\ Shadow VerNo + 1 ::; MAXINT

1\ Shadow VerNo + 1 tf- ran(dom(ShadowRepository))

7. Full Models

/\ Files n Shadow UVC = {}

THEN
/ / SVN uses binary detection here. We simulate it by making a random

/ / subset of the input set Files binary.

ANY IsBinary

WHERE IsBinary ~ Files

THEN
ServerBinaryFile := ServerBinaryFile U

{FileN I FileN E FILESSET /\ FileN E Files /\ FileN E IsBinary

/\ FileN tJ. ServerBinaryFile} II

Add7(Files)

END
END;

Delete8(Files)

PRE
Files C FILESSET /\ Files i= {} /\ ClientFiles i= {}

115

/\ Files ~ dom(ClientFiles) /\ ShadowUVC i= {} /\ ShadowRepository i= {}
/\ Files ~ ShadowUVC /\ Files ~ dom(dom(ShadowRepository))

/\ Shadow VerNo + 1 ::; MAXINT

/\ (V xx.(xx E Files /\ xx E ServerBinaryFile ::::} xx E ServerCOB))

THEN
ServerBinaryFile := ServerBinaryFile - Files II
Delete7(Files)

END;

Copy8(NewToOldNames) =

PRE
NewToOldNames E FILESSET ----f+ FILESSET /\ NewToOldNames i= {}
/\ ClientFiles i= {} /\ ShadowUVC i= {} /\ ShadowRepository i= {}
/\ Shadow VerNo> 0 /\ Shadow VerNo + 1 ::; MAXINT

/\ Server VerNo > 0 /\ ServerVerNo + 1 ::; MAXINT

/\ dom(NewToOldNames) n dom(ClientFiles) = {}

/\ ran(NewToOldNames) ~ dom(ClientFiles)

116

1\ dom(NewToOldNames) n ShadowUVC = {}

1\ ran(NewToOldNames) ~ ShadowUVC

7. Full Models

1\ dom(NewToOldNames) n dom(dom(ShadowRepository)) = {}

1\ ran(NewToOldNames) ~ dom(dom(ShadowRepository))

1\ dom(NewToOldNames) n ServerBinaryFile = {}

1\ (V xx. (xx E ran(NewToOldNames) 1\ xx E ServerBinaryFile

::::} xx E ServerCOB))

THEN

ServerBinaryFile := ServerBinaryFile U

{FileNm I FileNm E dom(NewToOldNames)

1\ NewToOldNames(FileNm) E ServerBinaryFile

1\ FileNm tf. ServerBinaryFile} II

Copy7(N ewTo OldN ames)

END;

Move8(NewToOldNames) =
PRE

NewToOldNames E FILESSET --f-+ FILESSET 1\ NewToOldNames i=- {}

1\ ClientFiles i=- {} 1\ ShadowUVC i=- {} 1\ ShadowRepository i=- {}
1\ Shadow VerNo> 0 1\ Shadow VerNo + 1 ::; MAXINT

1\ dom(NewToOldNames) n dom(ClientFiles) = {}

1\ ran(NewToOldNames) ~ dom(ClientFiles)

1\ dom(NewToOldNames) n ShadowUVC = {}

1\ ran(NewToOldNames) ~ ShadowUVC

1\ dom(NewToOldNames) n dom(dom(ShadowRepository)) = {}
1\ ran(NewToOldNames) ~ dom(dom(ShadowRepository))

1\ (V xx. (xx E ran(NewToOldNames) 1\ xx E ServerBinaryFile

::::} xx E ServerCOB))

THEN

/ / Add new before subtracting old

ServerBinaryFile := (ServerBinaryFile u
{FileNm I FileNm E dom(NewToOldNames)

1\ NewToOldNames(FileNm) E ServerBinaryFile

1\ FileNm tf. ServerBinaryFile})- ran(NewToOldNames) II

7. Full Models

M ove'l(N ewTo OldN ames)

END;

Committed8 f-- Commit8(Files) =

PRE

Committed8 ~ FILESSET /\ Files ~ FILESSET /\ Files =1= {}

/\ ShadowRepository =1= {} /\ Shadow UVC =1= {} /\ ClientFiles =1= {}

/\ ServerRepository =1= {} /\ ServerUVC =1= {} /\ Client VersionNo =1= {}

/\ Files ~ dom(ClientFiles) /\ Files ~ dom(Client VersionN 0)
/\ Files ~ dom(dom(ShadowRepository)) /\ Files ~ ShadowUVC

/\ Files ~ dom(dom(ServerRepository)) /\ Files ~ ServerUVC

/\ Shadow VerNo > 0 /\ Shadow VerNo + 1 ::; MAXINT

/\ Server VerNo > 0 /\ ServerVerNo + 1 ::; MAXINT

/\ Files n dom(ClientFiles) = Files

/\ Files n dom(Client VersionN 0) = Files

/\ Files n dom(dom(ShadowRepository)) = Files

/\ Files n Shadow UVC = Files

/\ Files n dom(dom(ServerRepository)) = Files

/\ Files n ServerUVC = Files

/\ (V xx.(xx E Files /\ xx E ServerBinaryFile =? xx E ServerCOB))

THEN

Committed8 f-- Commit'l(Files)

END;

Updated8 f-- Update8(Files) =

PRE
Updated8 ~ FILESSET /\ Files ~ FILESSET /\ Files =1= {}

/\ ShadowRepository =1= {} /\ Shadow UVC =1= {} /\ ClientFiles =1= {}

/\ ServerRepos'itory =1= {} /\ ServerUVC =1= {} /\ ClientVersionNo =1= {}

/\ Shadow VerNo> 0 /\ Shadow VerNo + 1 ::; MAXINT

/\ Server VerNo > 0 /\ Server VerNo + 1 ::; MAXINT

/\ Files ~ dom(ClientFiles) /\ Files ~ dom(dom(ShadowRepository))

/\ Files ~ Shadow UVC /\ Files ~ dom(Client VersionN 0)
/\ Files ~ dom(dom(ServerRepository)) /\ Files ~ ServerUVC

117

118 7. Full Models

1\ Shadow VerNo + 1 (j. ran(dom(ShadowRepository))

1\ (V xx.(xx E Files 1\ xx E ServerBinaryFile ::::} xx E ServerCOB))

/ / Once binary files are removed from the update set, it isn't empty

1\ Files - {FileB I FileB E Files 1\ FileB E Server COB} =J {}
THEN

/ / Updates don't occur for binary files

LET N otBinary BE

NotBinary = Files - {FileB I FileB E Files 1\ FileB E ServerCOB}

IN

IF N otBinary =J {} THEN
Updated8 +---- Update7(NotBinary)

END

END

END;

CheckedOut8 +---- CheckOut8(Files) =

PRE

CheckedOut8 ~ FILESSET 1\ Files ~ FILESSET 1\ Files =J {}
1\ ShadowRepository =J {} 1\ ServerRepository =J {} 1\ ServerUVC =J {}
1\ Shadow VerNo> 0 1\ Shadow VerNo + 1 :::; MAXINT

1\ Server VerNo > 0 1\ Server VerNo + 1 :::; MAXINT

1\ Files ~ dom(dom(ServerRepository)) 1\ Files ~ ServerUVC

1\ Files n dom(Client VersionN 0) = {} 1\ Files n dom(ClientFiles) = {}
1\ Files n ShadowUVC = {}

1\ Shadow VerNo + 1 (j. ran(dom(ShadowRepository))

1\ Files ~ dom(dom(ShadowRepository))

1\ (V xx.(xx E Files 1\ xx E ServerBinaryFile ::::} xx E ServerCOB))

THEN

/ / Record whilch files are checked out as binary

Server COB := ServerCOB U

{FileCO I FileCO E Files 1\ FileCO E ServerBinaryFile

1\ FileCO (j. Server COB} II

CheckedOut8 +---- CheckOut7(Files)

7. Full Models

END;

Reverted8 f-- Revert8(FilesToRevert Ver) =

PRE
Reverted8 ~ FILESSET 1\ Files ToRevert Ver E FILESSET -f+ Nl

1\ Files ToRevert Ver i= {} 1\ dom(FilesToRevert Ver) ~ FILESSET

1\ ShadowRepository i= {} 1\ Shadow UVC i= {} 1\ ClientFiles i= {}
1\ ServerRepository i= {} 1\ ServerUVC i= {} 1\ ClientVersionNo i= {}
1\ Shadow VerNo > 0 1\ Shadow VerNo + 1 ::; MAXINT

1\ Server VerNo > 0 1\ ServerVerNo + 1 ::; MAXINT

1\ Files ToRevert Ver ~ dom(ShadowRepository)

1\ dom(FilesToRevertVer) ~ ShadowUVC

1\ dom(FilesToRevert Ver) ~ dom(ClientFiles)

1\ Files ToRevert Ver ~ dom(ServerRepository)

1\ dom(FilesToRevertVer) ~ ServerUVC

1\ dom(FilesToRevert Ver) ~ dom(Client VersionNo)

1\ (V yy.(yy E dom(FilesToRevertVer) 1\ yy E ServerBinaryFile

::::} yy E ServerCOB))

THEN
Reverted8 f-- Revert7(FilesToRevertVer)

END
END

119

120 7. Full Models

7.1.9 SVN 09

MACHINE

SVN 09

INCLUDES

SVN 08

PROMOTES

Add8, Delete8, Move8, Copy8

VARIABLES

ClientPristine

INVARIANT

ClientPristine E FILESSET x N -f7 FILECONTENT

/ / Invariants

/ / Don't prove

/ / 1\ (dom(dom(ClientPristine)) ~ dom(dom(ServerRepository)))

/ / 1\ (dom(dom(ClientPristine)) ~ ServerUVC)

/ / 1\ (dom(dom(ClientPristine)) ~ dom(Client VersionN 0))

/ / 1\ (dom(dom(ClientPristine)) ~ dom(dom(ShadowRepository)))

/ / 1\ (ServerBinaryFile ~ dom(dom(ClientPristine)))

/ / 1\ (Server COB ~ dom(dom(ClientPristine))

INITIALISATION

ClientPristine := {}

7. Full Models

OPERATIONS

Committed9 +---- Commit9(Files) =

PRE

Committed9 ~ FILESSET /\ Files ~ FILESSET /\ Files -I- {}
/\ ShadowRepository -I- {} /\ Shadow UVC -I- {} /\ ClientFiles -I- {}
/\ ServerRepository -I- {} /\ ServerUVC -I- {}
/\ Client VersionN a -I- {} /\ Files ~ dom(ClientFiles)

/\ Files ~ dom(Client VersionN 0)
/\ Files ~ dom(dom(ShadowRepository)) /\ Files ~ ShadowUVC

/\ Files ~ dom(dom(ServerRepository)) /\ Files ~ ServerUVC

/\ Shadow VerNo> 0 /\ Shadow VerNo + 1 ~ MAXINT

/\ Server VerNo > 0 /\ Server VerNo + 1 ~ MAXINT

/\ card(ShadowRepository) E N

/\ Files n dom(ClientFiles) = Files

/\ Files n dom(Client VersionN 0) = Files

/\ Files n dom(dom(ShadowRepository)) = Files

/\ Files n ShadowUVC = Files

/\ Files n dom(dom(ServerRepository)) = Files

/\ Files n ServerUVC = Files

/\ (V xx.(xx E Files /\ xx E ServerBinaryFile ::::} xx E ServerCOB))

THEN
Committed9 +---- Commit8(Files)

END;

Updated9 +---- Update9(Files) =

PRE

Updated9 ~ FILESSET /\ Files ~ FILESSET /\ Files -I- {}
/\ ShadowRepository -I- {} /\ ShadowUVC -I- {} /\ ClientFiles -I {}
/\ ServerRepository -I- {} /\ ServerUVC -I- {}
/\ Client VersionNo -I- {} /\ Shadow VerNo> 0

/\ Shadow VerNo + 1 ~ MAXINT /\ Server VerNo > 0

/\ ServerVerNo + 1 < MAXINT /\ Files ~ dom(ClientFiles)

/\ Files ~ dom(dom(ShadowRepository)) /\ Files ~ ShadowUVC

121

122 7. Full Models

1\ Files S;;; dom(ClientVersionNo) 1\ Files S;;; dom(dom(ServerRepository))

1\ Files S;;; ServerUVC 1\ Shadow VerNo + 1 rf. ran(dom(ShadowRepository))

1\ (V xx.(xx E Files 1\ xx E ServerBinaryFile ::::} xx E ServerCOB))

/ / Once binary files are removed from the update set, it isn't empty

1\ Files - {FileB I FileB E Files 1\ FileB E Server COB} =1= {}

THEN

ClientPristine := ClientPristine U

A FileP, VerP.(FileP E FILESSET 1\ VerP E N 1\ FileP E Files

1\ FileP E dom(ClientFiles) 1\ FileP E ShadowUVC

I

1\ FileP E dom(dom(ShadowRepository)) 1\ FileP E dom(Client VersionN 0)
1\ FileP E ServerUVC 1\ FileP E dom(dom(ServerRepository))

1\ VerP E ran(dom(ServerRepository))

1\ FileP 1-7 VerP E dom(ServerRepository)

1\ FileP 1-7 VerP rf. dom(ClientPristine)

1\ VerP = max(

{vP I vP EN 1\ vP ::; Server VerNo

1\ (FileP 1-7 vP) E dom(ServerRepository)

1\ ServerRepository =1= {}})

1\ Client VersionNo(FileP) < VerP

Server Repository(FileP, Ver P)) II

Updated9 f-- Update8(Files)

END;

CheckedOut9 f-- CheckOut9(Files) =

PRE

CheckedOut9 S;;; FILESSET 1\ Files S;;; FILESSET 1\ Files =1= {}

1\ ShadowRepository =1= {} 1\ ServerRepository =1= {} 1\ ServerUVC =1= {}

1\ Shadow VerNo> 0 1\ Shadow VerNo + 1 ::; MAXINT

1\ Server VerNo> 0 1\ Server VerNo + 1 ::; MAXINT

1\ Files S;;; dom(dom(ServerRepository)) 1\ Files S;;; ServerUVC

1\ Files n dom(Client VersionN 0) = {} 1\ Files n dom(ClientFiles) = {}

1\ Files n ShadowUVC = {}

1\ Shadow VerNo + 1 rf. ran(dom(ShadowRepository))

7. Full Models

/\ Files ~ dom(dom(ShadowRepository))

/\ (V xx.(xx E Files /\ xx E ServerBinaryFile ::::} xx E ServerCOB))

THEN

ClientPristine := ClientPristine U

A FileP, VerP.(FileP E FILESSET /\ VerP EN /\ FileP E Files

/\ FileP E dom(dom(ShadowRepository)) /\ FileP E ServerUVC

/\ FileP E dom(dom(ServerRepository))

/\ FileP f-----+ VerP E dom(ServerRepository)

/\ FileP f-----+ VerP tJ. dom(ClientPristine)

/\ VerP = max(

{vP I vP E N /\ vP :::; Server VerNo

/\ (FileP f-----+ vP) E dom(ServerRepository)})

ServerRepository(FileP, VerP)) II

CheckedOut9 f----- CheckOut8(Files)

END;

Reverted9 f----- Revert9(FilesToRevert Ver) =

PRE

Reverted9 ~ FILESSET /\ Files ToRevert Ver E FILESSET --I-'t NI

/\ Files ToRevert Ver i= {} /\ dom(Files ToRevert Ver) ~ FILESSET

/\ ShadowRepository i= {} /\ ShadowUVC i= {} /\ ClientFiles i= {}
/\ ServerRepository i= {} /\ ServerUVC i= {} /\ ClientVersionNo i= {}

123

/\ ClientPristine i= {} /\ Shadow VerNo> 0 /\ Shadow VerNo + 1 :::; MAXINT

/\ Server VerNo > 0 /\ ServerVerNo + 1 :::; MAXINT

/\ Files ToRevert Ver ~ dom(ShadowRepository)

/\ dom(FilesToRevertVer) ~ ShadowUVC

/\ dom(FilesToRevertVer) ~ dom(ClientFiles)

/\ Files ToReve'rt VeT ~ dom(ServerRepository)

/\ dom(FilesToRevertVer) ~ ServerUVC

1\ dom(FilesToRevert Ver) ~ dom(Client VersionNo)

/\ dom(Files ToRevert Ver) ~ dom(dom(ClientPristine))

/\ran(FilesToRevertVer) nran(dom(ClientPristine)) = {}

/\ (V yy.(yy E dom(FilesToRevertVer) /\ yy E ServerBinaryFile

124

=} yy E ServerCOB))

/\ (\:f xx.(xx E ran(FilesToRevertVer) =} xx ::; Server VerNo))

THEN
/ / Update pristine files

ClientPristine := ClientPristine U

A FileP, VerP.(FileP E FILESSET /\ VerP E Nl /\

VerP = Server VerNo + 1

7. Full Models

/\ Server VerNo + 1 ::; MAXINT /\ FileP E dom(FilesToRevenVer)

/\ FileP E dom(dom(ServerRepository))

/\ (FileP f-----7 FilesToRevertVer(FileP)) E dom(ServerRepository)

/\ (FileP f-----7 VerP) tt dom(ClientPristine)

I
ServerRepository(FileP f-----7 Fi~esToRevert Ver(FileP))

) II

Reverted9 f--- Revert8(Files ToRevert Ver)

END
END

7. Full Models

7.2 CVS Models

7.2.1 CVS 01

CVS 01 is the same as SVN 01. Please refer to the section above.

7.2.2 CVS 02

MACHINE

CVS 02

SETS

FILESSET; FILE CONTENT

VARIABLES

ClientFiles, ServerRepository

INVARIANT

ClientFiles E FILESSET ---f+ FILE CONTENT / / Can shrink

1\ ServerRepository E (FILESSET x N) ---f+ FILE CONTENT / / Only grows

INITIALISATION

ClientFiles := {} II ServerRepository := {}

OPERATIONS

CommitAdd2(AFile) =

PRE

AFile E FILESSET 1\ ClientFiles =J {}
1\ AFile E dom(ClientFiles) 1\ AFile tI. dom(dom(ServerRepository))

1\ (AFile r----+ 1) tI. dom(ServerRepository)

THEN

ServerRepository := ServerRepository U

{ (AFile r----+ 1) r----+ ClientFiles (AFile) }

END;

125

126

Delete2(AFile) =

PRE

7. Full Models

AFile E FILESSET 1\ ClientFiles -1= {} 1\ AFile E dom(ClientFiles)

THEN
ClientFiles := {AFile} <E3 ClientFiles

END;

Committed2 f-- Commit2(AFile) =

PRE
Committed2 E FILESSET 1\ AFile E FILESSET 1\ ClientFiles -I- {}
1\ ServerRepository -I- {} 1\ AFile E dom(ClientFiles)

1\ AFile E dom(dom(ServerRepository))

THEN
ServerRepository := ServerRepository U

).. FileN, Ver. (FileN E FILESSET 1\ Ver E N 1\ FileN = AFile

1\ Ver = max(

{ww I ww E N 1\ ww ::; MAXINT

1\ (FileN 1-----* ww) E dom(ServerRepository)}) + 1

1\ FileN E dom(ClientFiles) 1\ FileN E dom(dom(ServerRepository))

1\ (FileN 1-----* Ver) tf- dom(ServerRepository)

I
ClientFiles (FileN)) II

Committed2 := AFile

END;

Updated2 f-- Update2(AFile) =

PRE
Updated2 E FILESSET 1\ AFile E FILESSET 1\ ClientFiles -I- {}
1\ ServerRepository -I- {} 1\ AFile E dom(ClientFiles)

1\ AFile E dom(dom(ServerRepository))

THEN
ClientFiles := ({ AFile} <E3 ClientFiles) U

).. FileN. (FileN E FILESSET 1\ FileN = AFile 1\ FileN tf- dom(ClientFiles)

7. Full Models

/\ FileN E dom(dom(ServerRepository)) /\ FileN tf- dom(ClientFiles)

I
ServerRepository(FileN f-----+ max(

{ww I ww EN /\ ww :::; MAXINT

/\ (FileN f-----+ ww) E dom(ServerRepository)}))) II
/ / Merge if changes don' overlap

/ / User intervention required if changes overlap

Updated2 := AFile

END;

CheckedOut2 t-- CheckOut2(AFile) =

PRE

127

CheckedOut2 E FILESSET /\ AFile E FILESSET /\ ServerRepository =1= {}

/\ AFile E dom(dom(ServerRepository)) /\ {AFile} n dom(ClientFiles) = {}
THEN

ClientFiles := ({ AFile} ""'l ClientFiles) U

.A FileN. (FileN E FILESSET

/\ FileN = AFile /\ FileN E dom(dom(ServerRepository))

/\ FileN tf- dom(ClientFiles)

I
ServerRepository(FileN f-----+ max(

{ww I ww EN /\ ww :::; MAXINT

/\ (FileN f-----+ ww) E dom(ServerRepository)}))) II

CheckedOut2 := AFile

END;

Reverted2 t-- Revert2(AFile, AVer) =

PRE

Reverted2 E FILESSET /\ AFile E FILESSET /\ AVer E Nl

/\ ClientFiles =1= {} /\ ServerRepository =1= {} /\ AFile E dom(ClientFiles)

/\ AFile f-----+ AVer E dom(ServerRepository)

THEN

ClientFiles := ({ AFile} ""'l ClientFiles) U

128

A FileN.(FileN E FILESSET 1\ FileN AFile

1\ (FileN I-----t AVer) E dom(ServerRepository)

1\ FileN t/. dom(ClientFiles)

I
Server Repository (FileN I-----t AVer)) II

Reverted2 ;= AFile

END
END

7. Full Models

7. Full Models

7.2.3 CVS 03

MACHINE

CVS 03

INCLUDES

CVS 02

VARIABLES

Client VersionN 0

INVARIANT

Client VersionNo E FILESSET --A N / / Can shrink

INITIALISATION
ClientVersionNo := {}

OPERATIONS

CommitAdd3(AFile) =

PRE

AFile E FILESSET 1\ ClientFiles -1= {} 1\ AFile E dom(ClientFiles)

1\ AFile tJ dom(dom(ServerRepository))

1\ (AFile 1--+ 1) tJ dom(ServerRepository)
A f A F;l~ 1 n rl~~ (01dmnf T7D""~';"<Yl 1\1" \ - f1 /\1.. 11 "bbC,J IUU.l.l.l\Vllfd ,bVYL-/U{rUlfJ..L,Vj - lJ

THEN

Client VersionN 0 := Client VersionN 0 U

A FileN. (FileN E FILESSET 1\ FileN = AFile

1\ FileN tJ dom (Client VersionN 0)

I
max({ ww I ww E N 1\ ww + 1 ::; MAXINT

1\ (FileN 1--+ ww) E dom(ServerRepository)}) + 1) II

CommitAdd2(AFile)

END;

129

130

Delete3(AFile) =
PRE

7. Full Models

AFile E FILESSET 1\ ClientFiles =I {} 1\ AFile E dom(ClientFiles)

THEN
Delete2(AFile)

END;

CommitDelete3(AFile) =
PRE

AFile E FILESSET 1\ ServerRepository =I {} 1\ ClientVersionNo =I {}
1\ {AFile} n dom(ClientFiles) = {}

1\ AFile E dom(dom(ServerRepository))

1\ AFile E dom(Client VersionN 0)
THEN

Client VersionN 0 : = {AFile} <E3 Client VersionN 0

END;

Committed3 f-- Commit3(AFile) =

PRE
Committed3 E FILESSET 1\ AFile E FILESSET 1\ ClientFiles =I {}
1\ Server Repository =I {} 1\ Client VersionN 0 =I {}
1\ AFile E dom(ClientFiles) 1\ AFile E dom(Client VersionN 0)
1\ AFile E dom(dom(ServerRepository))

THEN
Client VersionN 0 := ({ AFile} <E3 Client VersionN 0) U

A FileN. (FileN E FILESSET 1\ FileN = AFile 1\ FileN E dom(ClientFiles)

1\ ClientFiles(FileN) =I ServerRepository(FileN f---+ max(

{ww I ww E N 1\ ww ::; MAXINT

I

1\ (FileN f---+ ww) E dom(ServerRepository)}))

1\ FileN tj. dom(Client VersionN 0)

max({ww I ww E N 1\ ww ::; MAXINT

1\ (FileN f---+ ww) E dom(ServerRepository)}) + 1) "

7. Full Models

Committed3 t-- Commit2(AFile)

END;

Updated3 t-- Update3(AFile) =

PRE

Updated3 E FILESSET /\ AFile E FILESSET /\ ClientFiles =I- {}
/\ ServerRepository =I- {} /\ Client VersionNo =I- {}
/\ AFile E dom(ClientFiles) /\ AFile E dom(ClientVersionNo)

/\ AFile E dom(dom(ServerRepository))

THEN

Client VersionN a : = ({ AFile} <El Client VersionN 0) U

.A FileN.(FileN E FILESSET /\ FileN = AFile

/\ ServerRepository(FileN ~ max(

I

{xx I xx E N /\ xx ::; MAXINT

/\ (FileN ~ xx) E dom(ServerRepository)})) =I- ClientFiles(FileN)

/\ FileN tf- dom(Client VersionN 0)

max ({ww I ww E N /\ ww ::; MAXINT

/\ (FileN ~ ww) E dom(ServerRepository)}) + 1) II

Updated3 t-- Update2(AFile)

END;

CheckedOut3 t-- CheckOut3(AFile) =

PRE

131

CheckedOut3 E FILESSET /\ AFile E FILESSET /\ ServerRepository =I- {}
/\ AFile E dom(dom(ServerRepository))

/\ {AFile} n dom(Client VersionN 0) = {}

/\ {AFile} n dom(ClientFiles) = {}

THEN

Client VersionN a := Client VersionN a U

.A FileN.(FileN E FILESSET /\ FileN = AFile

/\ FileN tf- dom(Client VersionN 0)

I
max({xx I xx E N /\ xx ::; MAXINT

------------ -------------- -- --------- ----- ----- -- - -- -

132

A (FileN f--+ xx) E dom(ServerRepository)}) + 1) II

CheckedOut3 f--- CheckOut2(AFile)

END;

Reverted3 f--- Revert3(AFile, AVer) =

PRE

Reverted3 E FILESSET A AFile E FILESSET A AVer E N1

7. Full Models

A ClientFiles =1= {} A ServerRepository =1= {} A Client VersionNo =1= {}

A AFile E dom(ClientFiles) A AFile f--+ AVer E dom(ServerRepository)

A AFile E dom(Client VersionN 0)
THEN

Client VersionN a : = ({ AFile } «:3 Client VersionN 0) U

A FileNm.(FileNm E FILESSET A FileNm = AFile

A (FileNm f--+ AVer) E dom(ServerRepository)

A FileNm rf. dom(ClientVersionNo)

AVer) II

Reverted3 f--- Revert2(AFile, AVer)

END
END

7. Full Models

7.2.4 CVS 04

MACHINE

CVS 04

INCLUDES

CVS 03

VARIABLES

ServerUVC

INVARIANT

ServerUVC ~ FILESSET

/ / ServerUVC Invariants

1\ (ServerUVC ~ dom(dom(ServerRepository)))

INITIALISATION

ServerUVC := {}

OPERATIONS

CommitAdd4(AFile) =
PRE

/ / Can shrink

AFile E FILESSET 1\ ClientFiles 1= {} 1\ AFile E dom(ClientFiles)

1\ AFile rt. dom(dom(ServerRepository))

1\ (AFile ~ 1) rt. dom(ServerRepository) 1\ AFile rt. ServerUVC

1\ AFile rt. dom(Client VersionN 0)
THEN

ServerUVC := ServerUVC U {AFile} II

CommitAdd3(AFile)

END;

133

134

Delete4(AFile) =

PRE

7. Full Models

AFile E FILESSET /\ ClientFiles i- {} /\ AFile E dom(ClientFiles)

THEN
Delete3(AFile)

END;

Committed4 f-- Commit4(AFile) =
PRE

Committed4 E FILESSET /\ AFile E FILESSET /\ ClientFiles i- {}
/\ ServerRepository i- {} /\ ServerUVC i- {} /\ Client VersionNo i- {}
/\ AFile E dom(ClientFiles) /\ AFile E dom(Client VersionN 0)
/\ AFile E dom(dom(ServerRepository))

THEN
Committed4 f-- Commit3(AFile)

END;

Updated4 f-- Update4(AFile) =

PRE
Updated4 E FILESSET /\ AFile E FILESSET /\ ClientFiles i- {}
/\ ServerRepository i- {} /\ ServerUVC i- {} /\ Client VersionNo i- {}
/\ AFile E dom(ClientFiles) /\ AFile E dom(Client VersionN 0)
/\ AFile E dom(dom(ServerRepository)) /\ AFile E ServerUVC

THEN
Updated4 f-- Update3(AFile)

END;

CheckedOut4 f-- CheckOut4(AFile) =

PRE
CheckedOut4 E FILESSET /\ AFile E FILESSET

/\ ServerRepository i- {} /\ ServerUVC i- {}
/\ AFile E dom(dom(ServerRepository))

/\ AFile E ServerUVC /\ {AFile} n dom(Client VersionN 0) -'- {}
/\ {AFile} n dom(ClientFiles) = {}

THEN

I
I

7. Full Models

CheckedOut4 f-- CheckOut3(AFile)

END;

Reverted4 f-- Revert4(AFile, AVer) =

PRE

Reverted4 E FILESSET 1\ AFile E FILESSET 1\ AVer E Nl

1\ ClientFiles -I {} 1\ ServerRepository -I {}
1\ ServerUVG -I {} 1\ Client VersionNo -I {} 1\ AFile E dom(ClientFiles)

1\ AFile ~ AVer E dom(ServerRepository) 1\ AFile E ServerUVC

1\ AFile E dom(ClientVersionNo)

THEN
Reverted4 f-- Revert3(AFile, AVer)

END
END

135

136 7. Full Models

7.2.5 CVS 05

MACHINE
CVS 05

INCLUDES

CVS 04

VARIABLES
ShadowUVC

INVARIANT

ShadowUVC ~ FILESSET

INITIALISATION
ShadowUVC := {}

OPERATIONS
Add5(AFile) =

PRE

AFile E FILESSET 1\ ClientFiles i= {} 1\ AFile E dom(ClientFiles)

1\ {AFile} n dom(dom(ServerRepository)) = {}

1\ {AFile} n ServerUVC = {} 1\ {AFile} n dom(Client Versi 0 nNo) = {}

1\ {AFile} n ShadowUVC = {}

THEN

ShadowUVC := ShadowUVC U {AFile}

END;

Delete5(AFile) =

PRE

AFile E FILESSET 1\ ClientFiles i= {} 1\ AFile E dom(ClientFiles)

1\ ShadowUVC i= {} 1\ AFile E ShadowUVC

THEN

ShadowUVC := ShadowUVC - {AFile} II

7. Full Models

Delete4 (AFile)

END;

Committed5 f-- Commit5(AFile) =

PRE
Committed5 E FILESSET /\ AFile E FILESSET /\ Shadow UVC =J {}
/\ ClientFiles =J {} /\ ServerRepository =J {} /\ ServerUVC =J {}
/\ Client VersionN 0 =J {} /\ AFile Edam (ClientFiles)

/\ AFile E dom(Client VersionN 0) /\ AFile E Shadow UVC

/\ AFile E dom(dom(ServerRepository)) /\ AFile E ServerUVC

THEN

Committed5 f-- Commit4(AFile)

END;

Updated5 f-- Update5(AFile) =

PRE
Updated5 E FILESSET /\ AFile E FILESSET /\ Shadow UVC =J {}
/\ ClientFiles =J {} /\ ServerRepository =J {} /\ ServerUVC =J {}
/\ Client VersionN 0 =J {} /\ AFile E dom(ClientFiles)

/\ AFile E Shadow UVC /\ AFile E dom(Client VersionN 0)
/\ AFile E dom(dom(ServerRepository)) /\ AFile E ServerUVC

THEN

Updated5 f-- Update4(AFile)

END;

CheckedOut5 f-- CheckOut5(AFile) =

PRE

137

CheckedOut5 E FILESSET /\ AFile E FILESSET /\ ServerRepository =J {}
/\ ServerUVC =J {} /\ AFile E dom(dom(ServerRepository))

/\ AFile E ServerUVC /\ {AFile} n dom(Client Version.IV 0) = {}

/\ {AFile} n dom(ClientFiles) = {} /\ {AFile} n ShadowUVC = {}

THEN

ShadowUVC := ShadowUVC U {AFile} II

CheckedOut5 f-- CheckOut4(AFile)

138

END;

RevertedS +----- RevertS(AFile, AVer) =

PRE
RevertedS E FILESSET 1\ AFile E FILESSET 1\ AVer E Nl

7. Full Models

1\ ShadowUVC =I {} 1\ ClientFiles =I {} 1\ ServerRepository =I {}
1\ ServerUVG =I {} 1\ ClientVersionNo =I {} 1\ AFile E ShadowUVG

1\ AFile E dom(ClientFiles) 1\ AFile f-----7 AVer E dom(ServerRepository)

1\ AFile E ServerUVG 1\ AFile E dom(Client VersionNo)

THEN
RevertedS +----- Revert4(AFile, AVer)

END
END

I
1

I

7. Full Models

7.2.6 CVS 06

MACHINE

CVS 06

INCLUDES

CVS 05

VARIABLES

ShadowRepository

INVARIANT

ShadowRepository E (FILESSET x N) -T+ FILECONTENT I I Only grows

I I ------ Invariants ------

1\ ((ShadowRepository -I- {}) {::::::::? (Shadow VerNo> 0))

1\ (V pp. (pp EN 1\ pp E ran(dom(ShadowRepository))

=? pp ~ Shadow VerNo))

1\ (ShadowUVC ~ dom(dom(ShadowRepository)))

I I Invariants that didn't work

/1(ServerVerNo + 1 ~ MAXINT)

139

111\ (V cc. (cc E dom(ClientVersionNo) =? cc E dom(dom(ServerRepository))))

I 1-- Not true bl C of Copy, Move

/ / 1\ (V aa . (aa E FILESSET 1\ aa E ServerUVC

I -I- > aa E dom(dom(ServerRepository))))

I 1-- Not true bl c of Add

I I 1\ (Client VersionN 0 -I- {} =? ClientFiles -I- {})

140

11-- Not true blc of OSDeleteFile

I I /\ (Client Versi a nNo =1= {} {=::? ServerUVC =1= {})

I 1-- Not true bl c of Add

I I /\ (ServerUVC =1= {} {=::? ServerRepository =1= {})

11- Not true blc of Add

I I Don't prove.

7. Full Models

11/\ ((Shadow VerNo > 0) =? (ma;x(ran(dom(ShadowRepository))) = ShadowVerNo))

I I /\ ((Shadow VerNo > 0) =? (V rr. (rr E Nl/\ rr :::; Shadow VerNo =?

Ilrr E ran(dom(ShadowRepository)))))

INITIALISATION

ShadowRepository := {}

OPERATIONS

Add6(AFile) =

PRE
AFile E FILESSET /\ ClientFiles =1= {} /\ AFile E dom(ClientFiles)

/\ {AFile} n dom(dom(ServerRepository)) = {}

/\ {AFile} n ServerUVC = {} /\ {AFile} n dom(Client VersionNo) = {}

/\ {AFile} n dom(dom(ShadowRepository)) = {}

/\ {AFile} n ShadowUVC = {}

THEN
ShadowRepository := ShadowRepository U

A FileN, Ver.(FileN E FILESSET /\ Ver EN /\ FileN = AFile

/\ Ver = max(

I

{ww I ww EN /\ ww :::; MAXI NT

/\ (FileN 1-+ ww) E dom (ShadowRepository)}) + 1

/\ (FileN 1-+ Ver) tj. dom(ShadowRepository)

ClientFiles (FileN)) II

7. Full Models

Add5(AFile)

END;

Delete6(AFile) =

PRE

AFile E FILESSET 1\ ClientFiles -I- {} 1\ ShadowUVC -I- {}
1\ ShadowRepository -I- {} 1\ AFile E dom(ClientFiles)

1\ AFile E ShadowUVC 1\ AFile E dom(dom(ShadowRepository))

THEN

Delete5(AFile)

END;

Committed6 f-- Commit6(AFile) =

PRE

Committed6 E FILESSET 1\ AFile E FILESSET

1\ ShadowRepository -I- {} 1\ Shadow UVC -I- {} 1\ ClientFiles -I- {}
1\ ServerRepository -I- {} 1\ ServerUVC -I- {} 1\ ClientVersionNu -I- {}
1\ AFile E dom(ClientFiles) 1\ AFile E dom(Client VersionN 0)
1\ AFile E dom(dom(Sha:dowRepository)) 1\ AFile E ShadowUVC

1\ AFile E dom(dom(ServerRepository)) 1\ AFile E ServerUVC

1\ {AFile} n dom(ClientFiles) = {AFile}

1\ {AFile} n dom(ClientVersionNo) = {AFile}

1\ {AFile} n dom(dom(ShadowRepository)) = {AFile}

1\ {AFile} n ShadowUVC = {AFile}

1\ {AFile} n dom(dom(ServerRepository)) = {AFile}

1\ {AFile} n ServerUVC = {AFile}

THEN

ShadowRepository := ShadowRepository U

A FileN, Ver.(FileN E FILESSET 1\ Ver EN 1\ FileN = AFile

1\ VeT = max(

{ww I ww EN 1\ ww :::; MAXINT

1\ (FileN f-----+ ww) E dom(ShadowRepository)}) + 1

1\ ClientFiles (FileN) -I- ShadowRepository(FileN f-----+ max(

{uu I uu EN 1\ uu :::; MAXINT

1\ (FileN f-----+ uu) E dom(ShadowRepository)}))

141

142

1\ (FileN 1----7 Ver) ri dom(ShadowRepository)

I
ClientFiles (FileN)) "

Gommitted6 +-- Commit5(AFile)

END;

Updated6 +-- Update6(AFile) =

PRE

7. Full Models

Updated6 E FILESSET 1\ AFile E FILESSET 1\ ShadowRepository -I- {}
1\ ShadowUVC -I- {} 1\ ClientFiles -I- {} 1\ ServerRepository -I- {}
1\ Server UVG -I- {} 1\ Client VersionN 0 -I- {}
1\ AFile E dom(ClientFiles) 1\ AFile E dom(dom(ShadowRepository))

1\ AFile E Shadow UVC 1\ AFile E dom(Client VersionN 0)
1\ AFile E dom(dom(ServerRepository)) 1\ AFile E ServerUVC

THEN
ShadowRepository := ShadowRepository U

.\ FileN, Ver. (FileN E FILESSET 1\ Ver E N 1\ Ver = max(

{ww I ww E N 1\ ww ::; MAXINT

I

1\ (FileN 1----7 ww) E dom(ShadowRepository)}) + 1

1\ FileN = AFile 1\ ServerRepository(FileN 1----7 max(

{uu I uu E N 1\ uu ::; MAXINT

1\ (FileN 1----7 uu) E dom(ServerRepository)})) -I- ClientFiles(FileN)

1\ (FileN 1----7 Ver) ri dom(ShadowRepository)

ServerRepository(FileN 1----7 max(

{vv I VV E N 1\ vv ::; MAXI NT

1\ (FileN 1----7 vv) E dom(ServerRepository)}))) "

Updated6 +-- Update5(A File)

ENu;

GheckedOut6 +-- CheckOut6(AFile) =

PRE

7. Full Models

CheckedOut6 E FILESSET /\ AFile E FILESSET

/\ ShadowRepository -=1= {} /\ ServerRepositoTY -=1= {} /\ ServeTUVC -=1= {}

/\ AFile E dom(dom(ServerRepository)) /\ AFile E ServerUVC

/\ {AFile} n dom(Client VersionN 0) = {}

/\ {AFile} n dom(ClientFiles) = {} /\ {AFile} n ShadowUVC = {}

/\ AFile E dom(dom(ShadowRepository))

THEN

ShadowRepository := ShadowRepository U

.A FileN, Ver. (FileN E FILESSET /\ Ver E N /\ Ver = max(

{ww I ww E N /\ ww ::; MAXINT

/\ (FileN f-+ ww) E dom(ShadowRepository)}) + 1

/\ FileN = AFile /\ FileN E dom(dom(ServerRepository))

/\ (FileN f-+ max(

{uu I uu E N /\ uu ::; MAXINT

143

/\ (FileN f-+ uu) E dom(ServerRepository)})) E dom(ServerRepository)

/\ (FileN f-+ Ver) tt dom(ShadowRepository)

I
ServerRepository(FileN f-+ max(

{vv I vv EN

/\ vv ::; MAXINT /\ (FileN f-+ vv) E dom(ServerRepository)))) II

CheckedOut6 ~ CheckOut5(AFile)

END;

Reverted6 ~ Revert6(AFile, AVer) =

PRE
Reverted6 E FILESSET /\ AFile E FILESSET /\ AVer E Nl

/\ ShadowRepository -I {} /\ ShadowUVC -I {} /\ ClientFiles -I {}
/\ ServerRepository -I {} /\ ServerUVC -I {} /\ Client VersionNo -I {}
/\ AFile f-+ AVer E dom(ShadowRepository)

/\ AFile E ShadowUVC /\ AFile E dom(ClientFiles)

/\ AFile t--t AVer E dom(ServerRcpository)

/\ AFile E ServerUVC /\ AFile E dom(Client VersionNo)

THEN

ShadowRepository := ShadowRepository U

144 7. Full Models

A FileN, Ver. (FileN E FILESSET 1\ Ver E N 1\ Ver = max(

{ww I ww E N 1\ ww ::; MAXI NT

I

1\ (FileN 1-+ ww) E dom(ShadowRepository)}) + 1

1\ FileN = AFile 1\ (FileN 1-+ AVer) E dom(ServerRepository)

1\ (FileN 1-+ Ver) ~ dom(ShadowRepository)

ServerRepository(FileN 1-+ AVer)

) "
Reverted6 ~ Revert5(AFile, AVer)

END
END

7. Full Models

7.2.7 CVS 07

MACHINE

CVS 07

INCLUDES

CVS 06

SETS

145

STATUS = {Added, Copied, Deleted, Moved, No Change, MostRecent, OutOfDate}

OPERATIONS

Add7(AFile) =
PRE

AFile E FILESSET 1\ ClientFiles i= {} 1\ AFile E dom(ClientFiles)

1\ {AFile} n dom(dom(ServerRepository)) = {}

1\ {AFile} n ServerUVC = {} 1\ {AFile} n dom(Client VersionNo) = {}
1\ {AFile} n dom(dom(ShadowRepository)) = {}

1\ {AFile} n ShadowUVC = {}

THEN

Add6(AFile)

END;

Delete7(AFile) =

PRE

AFile E FILESSET 1\ ClientFiles i= {} 1\ {AFile} ~ dom(ClientFiles)

1\ ShadowUVC i= {} 1\ ShadowRepository i= {} 1\ {AFile} ~ ShadowUVC

1\ {AFile} ~ dom(dom(ShadowRepository))

THEN
Delete6(AFile)

END;

Committed7 f-- Commit7(AFile) =

PRE

146 7. Full Models

Committed7 E FILESSET /\ AFile E FILESSET /\ ShadowRepository =1= {}

/\ ShadowUVC =1= {} /\ ClientFiles =1= {} /\ ServerRepository =1= {}

/\ServerUVC =1= {} /\ ClientVersionNo =I=.{} /\AFile E dom(ClientFiles)

/\ AFile E dom (Client VersionN 0)

/\ AFile E dom(dom(ShadowRepository)) /\ AFile E ShadowUVC

/\ AFile E dom(dom(ServerRepository)) /\ AFile E ServerUVC

/\ {AFile} n dom(ClientFiles) = {AFile}

/\ {AFile} n dom(Client VersionN 0) = {AFile}

/\ {AFile} n dom(dom(ShadowRepository)) = {AFile}

/\ {AFile} n ShadowUVC = {AFile}

/\ {AFile} n dom(dom(ServerRepository)) = {AFile}

/\ {AFile} n ServerUVC = {AFile}

THEN

Committed7 f--- Commit6(AFile)

END;

Updated7 f--- Update7(AFile) =

PRE

Updated7 E FILESSET /\ AFile E FILESSET

/\ ShadowRepository =1= {} /\ ShadowUVC =1= {} /\ ClientFiles =1= {}

/\ ServerRepository =1= {} /\ ServerUVC =1= {} /\ Client VersionNo =1= {}

/\ AFile E dom(ClientFiles) /\ AFile E dom(dom(ShadowRepository))

/\ AFile E Shadow UVC /\ AFile E dom(Client VersionN 0)
/\ AFile E dom(dom(ServerRepository)) /\ AFile E ServerUVC

THEN

Updated7 f--- Update6(AFile)

END;

CheckedOut7 f--- CheckOut7(AFile) =

PRE

CheckedOut7 E FILESSET /\ AFile E FILESSET

/\ ShadowRepository =1= {} /\ ServerRepository =1= {} /\ ServerUVC =1= {}

/\ AFile E dom(dom(ServerRepository)) /\ AFile E ServerUVC

/\ {AFile} n dom(Client VersionN 0) = {}

'/\ {AFile} n dom(ClientFiles) = {} /\ {AFile} n Shadow UVC = {}

7. Full Models

/\ AFile E dom(dom(ShadowRepository))

THEN
CheckedOut7 ~ CheckOut6(AFile)

END;

Reverted1 ~ Revert7(AFile, AVer) =

PRE

Reverted1 E FILESSET /\ AFile E FILESSET /\ AVer E WI

/\ ShadowRepository =1= {} /\ Shadow UVC =1= {} /\ ClientFiles =1= {}

/\ ServerRepository =1= {} /\ ServerUVC =1= {} /\ Client VersionNo =1= {}

/\ AFile f---t AVer E dom(ShadowRepository) /\ AFile E ShadowUVC

/\ AFile E dom(ClientFiles) /\ AFile f---t AVer E dom(ServerRepository)

/\ AFile E ServerUVC /\ AFile E dom(ClientVersionNo)

THEN
Reverted1 ~ Revert6(AFile, AVer)

END;

/ / STATUS = {Added, Copied, Deleted, Moved, No Change, MostRecent,

/ / Out Of Date }

Stati ~ Status1(AFile) =

PRE

Stati E FILESSET -f+ STATUS /\ AFile E FILESSET

THEN

/ / Single statement begins here

Stati := (((((

/ / 1. Added

147

A File1. (File1 E FILESSET /\ File1 = AFile /\ Filei E dom(ClientFiles)

/\ File1 E ShadowUVC /\ File1 E dom(dom(ShadowRepository))

/\ File1 r;j. dom(ClientVersionNo) /\ File1 r;j. ServerUVC

/\ File1 r;j. dom(dom(ServerRepository)) /\ File1 r;j. dom(Stati)

Added))

148 7. Full Models

/ / 3. Deleted

U'\ File3. (File3 E FILESSET 1\ File3 = AFile

1\ File3 rt dom(ClientFiles) 1\ File3 rt ShadowUVC

1\ File3 E dom(dom(ShadowRepository)) 1\ File3 E dom(Client VersionN 0)
1\ File3 E ServerUVC 1\ File3 E dom(dom(ServerRepository))

1\ File3 rt dom(Stati)

Deleted))

/ / 5. No changes (To download Jrom the server)

U'\ File5. (File5 E FILESSET 1\ File5 = AFile

1\ File5 E dom(ClientFiles) 1\ File5 E ShadowUVC

1\ File5 E dom(dom(ShadowRepository)) 1\ File5 E dom(ClientVersionNo)

1\ File5 E ServerUVC 1\ File5 E dom(dom(ServerRepository))

1\ File5 rt dom(Stati)

1\ ClientFiles(File5) = ServerRepository(File5 1--7 max(

{v5 I v5 EN 1\ v5 ::::; MAXINT 1\ (File5 1--7 v5) E dom(ServerRepository)

1\ ServerRepository i- {}}))

No Change))

/ / 6. Most recent copy, server is out-oj-date WRT local

U'\ File6. (File6 E FILESSET 1\ File6 = AFile

1\ File6 E dom(ClientFiles) 1\ File6 E Shadow UVC

1\ File6 E dom(dom(ShadowRepository)) 1\ File6 E dom(Client VersionN 0)
1\ File6 E ServerUVC 1\ File6 E dom(dom(ServerRepository))

1\ File6 rt dom(Stati)

1\ Client VersionNo(File6) = max(

{v61 v6 EN 1\ v6 ::::; MAXINT

1\ (File6 1--7 v6) E dom(ServerRepository)

1\ ServerRepository i- {}})
1\ ClientFiles(File6) i- ServerRepository(File6 1--7 max(

{v61 v6 EN 1\ v6 ::::; MAXINT

1\ (File6 1--7 v6) E dom(ServerRepository)

I
1

7. Full Models 149

1\ ServerRepository -I {}}))

M ostRecent))

/ / 7. Local copy is out of date (WRT server)

U A File 7. (File1 E FILESSET 1\ File1 = AFile

1\ File1 E dom(ClientFiles) 1\ File1 E ShadowUVC

1\ File1 E dom(dom(ShadowRepository)) 1\ File1 E dom(ClientVersionNo)

1\ File1 E ServerUVC 1\ File1 E dom(dom(ServerRepository))

1\ File1 tf- dom(Stati)

1\ ClientVersionNo(File1) < max(

{v1 I v1 E N 1\ v1 ::; MAXINT

1\ (File1 !-----+ v1) E dom(ServerRepository)

1\ ServerRepository -I {}})

OutOfDate)) / / Single statement ends here

END

END

150 7. Full Models

7.2.8 CVS 08

MACHINE

CVS 08

INCLUDES

CVS 07

VARIABLES

ServerBinaryFile, ServerCOB

INVARIANT

ServerBinaryFile ~ FILESSET 1\ / / Can _shrink

ServerCOB ~ FILESSET / / Can shrink, what is checked out binary

INITIALISATION

ServerBinaryFile := {} IIServerCOB := {}

OPERATIONS

Add8(AFile, SpecBinary) =

PRE

AFile E FILESSET 1\ SpecBinary E BOOL 1\ ClientFiles -I- {}
1\ AFile E dom(ClientFiles)

1\ {AFile} n dom(dom(ServerRepository)) = {}

I\{AFile} nServerUVC= {} 1\ {AFile} ndom(ClientVersionNo) = {}

1\ {AFile} n dom(dom(ShadowRepository)) = {}

1\ {AFile} n ShadowUVC = {} 1\ AFile rf. ServerBinaryFile

THEN

ANY IsBinary

WHERE IsBinary E BOOL

THEN

/ / Incorrect specification

IF (IsBinary = TRUE 1\ SpecBinary = FALSE)

V (IsBinary = FALSE 1\ SpecBinary = TRUE) THEN

I
I

I

7. Full Models

skip

ELSE

IF IsBinary = TR UE /\ SpecBinary = TR UE THEN

ServerBinaryFile := ServerBinaryFile U {AFile}

END II
Add7(AFile)

END

END
END;

Delete8(AFile) =

PRE
AFile E FILESSET /\ ClientFiles =1= {} /\ AFile E dom(ClientFiles)

/\ ShadowUVC =1= {} /\ ShadowRepository =1= {} /\ AFile E ShadowUVC

/\ AFile E dom(dom(ShadowRepository))

/\ ((AFile E ServerBinaryFile) =} (AFile E ServerCOB))

THEN

ServerBinaryFile := ServerBinaryFile - {AFile} II
ServerCOB := ServerCOB - {AFile} II
Delete7(AFile)

END;

Committed8 f----- Commit8(AFile, IsBinary) =

PRE
Committed8 E FILESSET /\ AFile E FILESSET /\ IsBinary E BOOL

/\ ShadowRepository =1= {} /\ ShadowUVC =1= {} /\ ClientFiles =1= {}

/\ ServerRepository =1= {} /\ ServerUVC =1= {}

/\ Client VersionN 0 =1= {} /\ AFile E dom(ClientFiles)

/\ AFile E dom(Client VersionN 0)
/\ AFile E dom(dom(ShadowRepository)) /\ AFile E ShadowUVC

/\ AFile E dom(dom(ServerRepository)) /\ AFile E ServerUVC

/\ {AFile} n dom(ClientPiles) = {AFile}

/\ {AFile} n dom(Client VersionN 0) = {AFile}

/\ {AFile} n dom(dom(ShadowRepository)) = {AFile}

/\ {AFile} n ShadowUVC = {AFile}

151

152 7. Full Models

/\ {AFile} n dom(dom(ServerRepository)) = {AFile}

/\ {AFile} n ServerUVC = {AFile}

/\ ((AFile E ServerBinaryFile) ::::} (AFile E ServerCOB))

THEN
/ / AFile whose text/binary type is incorrectly specified

IF (AFile E ServerBinaryFile /\ IsBinary E {FALSE})

V (AFile f/- ServerBinaryFile /\ IsBinary E {TRUE}) THEN
skip

ELSE
Committed8 {- Commit7(AFile)

END
END;

Updated8 {- Update8(AFile, IsBinary) =

PRE

Updated8 E FILESSET /\ AFile E FILESSET /\ IsBinary E BOOL

/\ ShadowRepository =I {} /\ Shadow UVC =I {} /\ ClientFiles =I {}
/\ ServerRepository =I {} /\ ServerUVC =I {} /\ ClientVersionNo =I {}
/\ AFile E dom(ClientFiles) /\ AFile E dom(dom(ShadowRepository))

/\ AFile E ShadowUVC /\ AFile E dom(Client VersionNo)

/\ AFile E dom(dom(ServerRepository)) /\ AFile E ServerUVC

/\ ((AFile E ServerBinaryFile) ::::} (A File E ServerCOB))

THEN
/ / AFile whose text/binary type is incorrectly specified

IF (AFile E ServerBinaryFile /\ IsBinary E {FALSE})

V (AFile f/- ServerBinaryFile /\ IsBinary E {TRUE}) THEN
skip

ELSE
Updated8 {- Update7(AFile)

END
END;

CheckedOut8 {- CheckOut8(AFile, IsBinary) =

PRE

CheckedOut8 E FILESSET /\ AFile E FILESSET /\ IsBinary E BOOL

7. Full Models

/\ ShadowRepository i- {} /\ ServerRepository i- {} /\ ServerUVC i- {}
/\ AFile E dom(dom(ServerRepository)) /\ AFile E ServerUVC

/\ {AFile} n dom(Client VersionNo) = {}

/\ {AFile} n dom(ClientFiles) = {} /\ {AFile} n Shadow UVC = {}

/\ AFile E dom(dom(ShadowRepository))

/\ ((AFile E ServerBinaryFile) =?- (AFile E ServerCOB))

THEN
IF (AFile E ServerBinaryFile /\ IsBinary E {FALSE})

V (AFile tt ServerBinaryFile /\ IsBinary E {TRUE}) THEN
skip

ELSE
CheckedOut8 f-- CheckOut7(AFile)

END
END;

Reverted8 f-- Revert8(AFile, AVer, IsBinary) =
PRE

153

Reverted8 E FILESSET /\ AFile E FILESSET /\ AVer E Nl/\ IsBinary E

BOOL

/\ ShadowRepository i- {} /\ Shadow UVC i- {} /\ ClientFiles i- {}
/\ ServerRepository i- {} /\ ServerUVC i- {} /\ Client VersionNo i- {}
/\ AFile f----7 AVer E dom(ShadowRepository)

/\ AFile f----7 AVer E dom(ServerRepository)

/\ AFile E Shadow UVC /\ AFile E dom(ClientFiles)

/\ AFile E ServerUVC /\ AFile E dom(ClientVersionNo)

/\ ((AFile E ServerBinaryFile) =?- (AFile E ServerCOB))

THEN
IF (AFile E ServerBinaryFile /\ IsBinary E {FALSE})

V (AFile tt ServerBinaryFile /\ IsBinary E {TRUE}) THEN
skip

ELSE
ReveTted8 f-- Revert1(AFile, AVer)

END
END

END

Bibliography

[Abr96] Jean-Raymond Abriai. The B Book: Assigning Programs to Meaning.
Cambridge University Press, 1996.

[Abr09] Jean-Raymond Abriai. Modelling in Event-B: Systems and Software En
gineering. Cambridge University Press, 2009.

[CleOS] ClearSy. B Language Reference Manual, Ver. 1.B.5, 200S.

[Cle09] ClearSy. Atelier B 4 web site. http://www.atelierb.eu/index_ en.html, 2009.

[Co109]

[CSFP07]

Collabnet. Subversion. http://subversion. tigris. org, 2009.

Ben Collins-Sussman, Brian W Fitzpatrick, and C.
Version Control With Subversion (For SVN 1.4).
http://svnbook.red-bean.com, 2007.

Michael Pilato.
O'Reilly Media,

[CW9S] Reidar Conradi and Bernhard Westfechtei. Version models for software
configuration management. ACM Computing Surveys, 30(2):233~2S2,

1995.

[FFW09] Leo Frietas, Zheng Fu, and Jim Woocock. POSIX file store in Z/Eves:
An experiment in the verified software repository. Science of Computer
Programming, 74(4):23S~257, 2009.

[Fou09] Free Software Foundation. CVS: Concurrent Versions System.
http://www.nongnu.org/cvs, 2009.

[Gro09]

[KiI97]

[Mar06]

Object Management Group. Umi. http://www.uml.org/, 2009.

Tapani Kilpi. New challenges for version control and configuration man
agement: A framework and evaluation. 1st Euromicro Working Conference
on Software Maintenance and Reengineering (CSMR 'g7) , pages 33~41,
1997.

Dane Marjanovic. Developing a meta-model for release history systems.
University of Zurich, Department of Informatics, Software Evolution and
Architecture Lab, Jan 2006.

154

BIBLIOGRAPHY 155

[MS84] Carroll Morgan and Bernard Sufrin. Specification of the Unix filing sys
tems. IEEE Transactions on Software Engineering, 10(2):128-142, 1984.

[PGC08] Roland Pesch, David G. Grubbs, and Per Cederqvist. Version Man
agement With CVS (For CVS 1.11.23). Free Software Foundation Inc.,
http://ximbiot.com/cvs/manual, 2008.

[SchOll Steve Schneider. The B-Method: An Introduction. Palgrave, New York,
2001.

[SK99] Emil Sekerinski and Sere Kaisa. Program Development by Refinement.
Springer-Verlag, London, 1999.

[Spi05a] Diomidis Spinellis. Version Control, Part 1. IEEE Software, 22(5):107,
2005.

[Spi05b] Diomidis Spinellis. Version Control, Part 2. IEEE Software, 22(6):c3,
2005.

[WG05] D.J. Worth and C. Greenough. Comparison of CVS and Subversion. Tech
nical Report RAL-TR-2006-00l, Rutherford Appleton Laboratory, Oct
2005.

