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Abstract

In this thesis we provide a Linear Programming (LP) formulation and a heuristic

for the symmetric Traveling Salesman Problem (TSP) on certain complete graphs

having the triangle inequality.

TSP models cities and their pairwise connections as vertices and edges between

them in a graph. The distances are represented by cost values on edges, and the goal

is to find a minimum weight tour that visits every vertex exactly once. In symmetric

cases all connections are undirected - both directions have the same cost. This

problem is NP-Complete, so there is no polynomial time exact algorithm known for

it.

We present three major points in this thesis. Inspired by an LP formulation of

perfect matching, we develop a relaxation for TSP, and prove that our relaxation is

equivalent to the path form of the well-known Held-Karp formulation. Then, based

on this relaxation we construct a heuristic, hoping it can approach a constant factor

4/3 of the optimal objective value given by the LP relaxation. At last, we adopt

the matroid idea. It's already known that TSP can be modeled as minimum weight

intersection of three matroids, but solving that is also NP-Complete. Vle present

in this thesis the attempt to approach it using only two matroids, and analyze the

difficulty.
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Chapter 1

Introduction

In the field of combinatorial optimization, the Traveling Salesman Problem (TSP for

short) has been very important. Given a set of cities and their pairwise distances we

want a shortest possible tour that visits each city exactly once. This problem has

been intensively studied since it involves research from many fields like Mathematics,

Operation Research, Game Theory and even Artificial Intelligence and Biology. The

Traveling Salesman Problem is an NP-Complete problem, so no polynomial-time exact

algorithm has been found. Many famous problems can be related to the TSP problem,

such as the matching problem, the spanning tree problem and the degree restricted

subgraph problem.

The Traveling Salesman Problem can be seen as finding a shortest Hamilton

Cycle, since the Hamilton Cycle problem is to find a tour that visit every city exactly

once.

We can model the TSP problem as a graph problem. The cities are presented

as vertices in a graph, and the connections between cities are edges in the graph, with

edge weights representing distances between cities. So, the problem is formulated as:

Given a graph G = (V, E) and a weight vector C = {ce : e E E}, find a circuit C in

1
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G that covers all the vertices with minimum possible total weight. If the graph Gis

directed, then we have the Asymmetric TSP, otherwise we have the symmetric TSP

(the connection from city A to B has distance equal to the connection from B to A).

In this thesis we deal with the symmetric case.

Due to the TSP's comprehensive characteristics, many other problems are

closely related to it. We briefly introduce some of them:

Hamilton Path/Cycle Problems

In an undirected connected graph, a Hamilton path is a path that visits every

vertex exactly once. A Hamilton cycle is a cycle in an undirected connected graph

which visits every vertex exactly once and gets back to the starting point. Deciding

whether a graph has a Hamilton path or a Hamilton cycle is NP-Complete.

b-Matchings and b-Factors

In an undirected graph G = (V; E), there is a positive degree constraint vector

b= {bv : 7) E V} E ZV. Let o(v) denote the set of edges incident to v. For any set

S ~ E, let x(S) = 'l:eEsXe' A b-matching of G is a vector if = {xe : e E E} E ZE

such that x(o(v)) :S b(v) for each node v E V. A b-matching x is called simple if x is

a 0,1 vector, i.e., X e E {O, 1} for every edge e E E, and we call a b-matching perfect

if for every node v E V, x(o(v)) = b(v). A b-factor is a simple perfect b-matching.

Spanning Tree Problems

In an undirected connected graph G = (V, E), a spanning tree is an acyclic

subset T ~ E that covers all the vertices. If there is a non-negative weight vector

C = {ce : e E E} giving weight value to each edge, a minimum spanning T is a

spanning tree with minimal possible total weight w = LeET Ceo Several efficient

polynomial time algorithms have been developed to solve this problem. The most

2
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well-known one was given by Kruskal [6] with a running time of O(IEllog IVI).

1.1 Linear Programming

In combinatorial optimization, many problems can be modeled as finding the mini

mum or maximum accumulation of resources, given restrictions on the availability of

these resources. If we can model the resources as variables, specify the accumulation

as a linear function and the restrictions as linear equalities and inequalities on these

variables, then we can formulate this problem as a Linear Programming (or LP for

short) problem. Therefore the general form of a Linear Program is :

minimize cT x

subject to: Ax 2: b

x2:0

In this formulation, x is the vector of variables, c and b are vectors of coefficients

and A is a given matrix of coefficients. The function cT x is called the objective

function, and Ax 2: b are called the linear constraints. The program we stated is

called a minimization linear program, and if we want the maximal possible value of

the objective function, it will be called a maximization linear program. A feasible

solution x is a setting of variables that satisfies all the linear constraints. If some

constraints are not satisfied, that setting is called an infeasible solution. The value of

the objective function on feasible solutions is called the objecti've 'value. Geometrically,

the feasible region defined by the linear constraints is called a convex polytope.

The linear program we presented above is in standard form, which is the most

intuitive form to model a problem. An equivalent [6] form, called the slack form, is:

3
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minimize cT x

subject to: Ax + Ix s = b

X,X s ~ a
I is the identity matrix, and X s is a vector of slack variables.

For any given linear program, there is a d'uallinear program that has the same

optimal objective value, ensured by the strong duality theorem. The original program

is called primal. We will state duality theorems in detail in Section 2.2.

There is a discrete version of LP called Integer Programming, or Integer Linear

Programming, where the variables are all required to be integers. Many combinato

rial optimization problems are naturally modeled as integer programs. But unlike

LPs which can be solved in polynomial time, the integer programs are much more

difficult and sometimes NP-hard. So we need to relax the modeled integer programs

to continuous linear programs by allowing x to take values in a real range instead of

a set of discrete values. The TSP is an example of this phenomenon. More details

are provided in Section 2.2. The ratio between the integral optimal solution and the

solution of its relaxed linear program is called the integrality gap.

1.2 Previous work

The Traveling Salesman Problem has been a very popular subject of research for

decades due to its wide range of applications and potential for improvement. Efforts

have been made from many different aspects to approach the optimum solution. A

good survey of this problem is [16]. We briefly introduce some previous work in this

section.

4
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Branch-and-bound

The Traveling Salesman Problem is NP-Complete, and there is no polynomial

time exact algorithm known to solve this problem. All the exact algorithms are

basically enumerative. So one tries to narrow down the range of enumeration. An

idea called branch-and-bound was introduced to solve the TSP problem by Tompkins

in [25] and also in [23]. This kind of algorithm finds the exact optimum solution but

its running time depends heavily on how to branch and how to bound. Since these

are not polynomial time algorithms, several large scale problems cannot be solved

efficiently by them.

Construction Heuristics

The Nearest neighbor heuristic starts from a random vertex, and moves

to its nearest neighbor. From there it again moves to the nearest neighbor which is

not visited yet. Repeat this process until all the vertices are visited, and get back to

the starting vertex at the end. The approximation factor is defined to be the ratio

between the approximate solution and the optimal solution. The nearest neighbor

heuristic runs in polynomial time, but there is no approximation factor gUaJ.'anteed

for it. For a detailed description and proofs, readers are referred to [21].

Another kind of heuristic is called the Insertion Heuristic. It starts from

an initial small tour (possibly one or two vertices), and inserts one unvisited vertex

at a time, until all the vertices are included. Different strategies are used to select

the candidate inserting vertex, such as the nearest vertex to the tour, the cheapest

increase to the tour, or even random. Different strategies result in different running

times and approximation factors. These can be found in [21].

Christofides gave a heuristic using minimum spanning trees in [4]. Essentially,

5
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it finds a minimum spanning tree on the given graph, and than collects all the odd

degree tree nodes. On this set of nodes it finds a minimum perfect matching. Every

matching edge adds one degree to each of its two end points, so all the nodes now have

even degrees. Combining the edges of the spanning tree and the perfect matching

gives a tour that visits all the nodes and gets back to the starting vertex. He proved

that the approximation factor of this heuristic is within 3/2. (We use the word

approximation factor to denote the factor between the approximate solution and the

optimum solution)

Lower Bounds

G. Reinelt introduced several classes oflower bounds for the traveling salesman

problem in [21], including simple lower bounds, lower bounds from linear program

ming and Lagrangean relaxations. We select two of them which are closely related to

our research and give a brief introduction here.

As introduced in previous section, a 2-factor is a subset of edges that ensures

every vertex has exactly 2 incident edges. It consists of a bunch of cycles that cover

all the vertices. A TSP tour is a 2-factor that contains only one cycle. So obviously

any 2-factor gives a lower bound of the minimum total weight of the TSP tour.

Dantzig, Fulkerson and Johnson [7] gave a linear program relaxation of the

TSP, which is called the sub-tour bound. It can also be called the Held-Karp

bound [13], since these two bounds are equal. In Section 2.4 we will discuss this

bound in further details.

Intersection of Matroids

A matroid is a structure consisted of a finite universe of elements and a family

6
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of independent subsets of this universe with the hereditary property and the indepen

dent property. A precise definition will be given in Section 3.5. The TSP problem

can be modeled as intersection of three matroids) described in [15]. First we extend

the 11, nodes graph by adding a new node and 11, edges that connect this new node to

all the original ones. The first matroid is a graphic matroid on this new graph) the

second matroid is a partition matroid having independent sets containing at most one

edge ingoing to any given node) and the third matroid is similar to the second but

contains at most one edge outgoing from any given node. Then the minimum weight

intersection of these three matroid will be a solution of the TSP problem.

UnfortlUlately the intersection of three or more matroids is NP-Complete)

which means there exists no polynomial time algorithm for doing this. So, we use

another model and try to reduce the number of matroids to two. We will discuss it

later in Section 3.5.

1.3 Our contribution

In this thesis we use Junger and Pulleyblank's [12] Linear Program formulation for the

metric complete perfect matching problems and develop our own LP formulation for

the TSP problems. Classic methods as introduced in the last section find TSP tours

that cover all nodes in the graph. But our formulation finds TSP paths that cover

all nodes with two given end points. These two forms - TSP tour and TSP path 

are equivalent) and we prove it in Section 2.1. Then we prove that our formulation

has the same integrality gap as Held-Karp [10] [13], and then run some test cases to

see the behavior of this well-known bound.

7
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Then, based on this formulation, we try to design a heuristic for constructing

approximate TSP solutions for certain symmetric complete graphs satisfying the tri

angle inequalities. The integrality gap of the Held-Karp formulation has been proved

to be at least 4/3, so we try to make our heuristic achieve this factor as the approxi

mation guarantee.

On the other hand, as \ve have already mentioned, the Traveling Salesman

Problem can be modeled as the intersection of three matroids. But no polynomial

time algorithm is known for solving the intersection of three matroids. So in this

thesis we try to model the TSP problem as intersection of two matroids, a 2-factor

matroid and a spanning tree matroid. we do not succeed in doing that, but we discuss

the difficulties arising from this attempt.

1.4 Thesis outline

Chapter 2 introduces the Primal-Dual method for linear programming problems.

Then in Section 2.3, as an example of the primal-dual method and also a preparation

for later sections, we introduce Edmonds' blossom algorithm for minimum weight

perfect matching. In Section 2.4 we present the sub-tour or Held-Karp formulation

for the TSP. In Section 2.5 we give our own formulation for the TSP and prove that

it is equivalent to the Held-Karp one. In the last section we provide some test cases

generated using our own formulation.

The first three sections of Chapter 3 present our heuristic for the TSP. In the

first section we use the idea of the TSP tour consisting of two alternative matchings

and Edmonds' blossom algorithm to build a TSP path. But during this process the

8
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path may grmv into a tree or close a cycle which does not cover all nodes, making

the solution infeasible. In the following two sections we deal with these problems. In

Section 3.4 we show some test cases on this heuristic. Then in Section 3.5 we use

matroid ideas to analyze the TSP.

9
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Chapter 2

The Primal-Dual Method

The Primal-Dual Method is a very powerful tool for designing approximation algo

rithms for combinatorial optimization problems, and especially NP-Hard problems.

In this chapter we first prove a theorem stating that Traveling Salesman Prob

lem (TSP) paths and TSP tours are equivalent, so an a-approximate algorithm fo

cusing on finding TSP paths also guarantees the same approximation factor for TSP

tours. Then we introduce some basic concepts of the Duality Theory of Linear Pro

grarmning based on the Complementary Slackness Conditions and how to get ap

proximation factors from them. We describe Edmond's blossom algorithm for the

matching problem as an exarl1ple of the method. Then we introduce the Sub-Tour

Constraints formulation for the TSP. In the last section we present our own linear

program relaxation for the TSP.

2.1 Equivalence between TSP paths and TSP tours

In this thesis there are two kinds of TSP solutions involved: TSP tours that in a

given graph visit all nodes exactly once and get back to the starting point; and TSP

11
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paths that visit every node exactly once, starting with and ending in two different

given nodes.

Suppose that we have an algorithm that finds a TSP path within an approxi

mation factor CY. Vve run this algorithm on every pair of nodes sand t, so we can get

the CY guaranteed paths Pst for all those pairs. Then we add edge (s, t) with cost c(s,t)

to each path Pst respectively, and get TSP tours. We select among all these tours the

one with the minimal cost.

Theorem 2.1.1. If the approximate TSP paths are bounded by an approximation

factor CY, then the minimal cost TSP tour selected by the above selection criteria is

bo'unded by the same approximation factor CY.

Proof. Vle know that for any node 1l, there must exist a node v such that edge (1l, v)

is on the optimum TSP tour OPTT . Since we run the algorithm on every pair of end

points, there must be a pair of nodes sand t such that edge (s, t) E OPTT . The cost

of an approximate tour APPT is the summation of the edge cost c(s,t) and the cost

of an approximate path APPp , which is bounded by a factor CY 2: 1 times the cost of

the optimal path 0 PTp , so

cost(APPT ) = c(s,t) + cost(APPp )

cost(APPp ) :S cycost(OPTp )

(2.1.1), (2.1.2) ===} cost(APPT ) < c(s,t) + cycost(OPTp )

< cy(c(s,t) + cost(OPTp ))

cyOPTT

12
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The selected TSP tour has the minimal cost, i.e., cost(T) = mi'n{cost(APPT )},

so cost(T) :S 0',0PTT . Thus we know that if the TSP paths are bounded by an

approximation factor 0'" then the selected TSP tour is within the same approximation

factor. D

2.2 The Primal-Dual Method

To explain the Primal-Dual method in detail, we need some concepts from Linear

Programming.

Suppose that 11, and m are two positive integers, A is a given coefficients

matrix and c, b are coefficients vectors having dimensions of 11, and m respectively.

The primal variable vector has dimension of Ixl = Icl = 11" and the dual variable

vector has dimension of I'ul = Ibl = m. For any given linear programming problem,

there exists a dual problem corresponding to it:

Primal problem(LP):

minimize cx

subject to:

Ax 2: b

Dual problem(DLP):

maximize 'l.tb

subject to:

uA:S c

'tb 2: 0

(2.2.1)

Theorem 2.2.1. (Weak Duality) Let x be any feasible sol'ution for the primal pTOblem,

and u be any feasible soZ.ution for the corresponding dual problem. Then we have

cx 2: ub

13
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p.roof. From the dual problem we know that uA :::; c, so we got uAx :::; G.'r, and

on the other hand, from the primal problem we got Ax > band uAx > ub. So

cx ~ v.Ax ~ ub, which means cx ~ ub. o

Theorem 2.2.2. (Strong D'uality) If the primal problem (or the dual problem) has

unbounded solutions, then the corresponding d'ual (or the primal respectively) has no

feasible solution. If either of them has a finite optimal solution, then so does the

other, and their optimal objective 'ual'ues are equal.

For the detailed proof of the Strong Duality Theorem, readers are referred to

Linear Prograillilling textbooks like [28].

Theorem 2.2.3. (Complementary Slackness Conditions) Let x be a feasible solution

for the primal problem and u be a feasible sol'ution for the co'rresponding d'ual problem.

Then both x and u are optimal if and only if:

1. (Primal Complementary Slackness Conditions)

111

Xj > 0 ==} L U'ia'ij = Cj,

i=l

for any j E [1,11,]

2. (Dual Complementary Slackness Conditions)

n

Ui > 0 ==} 2..: aijXj = bi ,

j=l

for any i E [1, m]

The Complementary Slackness Conditions (or CS Conditions for short) can

be wlitten in other forms as well, e.g., see [28, 19, 14] or any Linear Programming

textbook.

14
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The classic Primal-Dual method [11] is a technique to solve linear programming

problems based on the CS conditions. Consider the linear programs (2.1.1). The main

idea of this method is to start from an initial feasible dual solution 'u. (typically an

all-zero solution, if feasible) and check to see if there exists a feasible primal solution

satisfying the CS Conditions with respect to '/.1.. While there is no such primal solution,

we need to construct a new pair of linear programs. The objective function of the

new primal program characterizes the "violation" of the original primal constraints

and the CS conditions,

NIinimize LSi + L Xj

i<t.I j<f.J

Vj E E

Vi ¢:. I

n

s'/.tbject to: L aijXj ;::: bi ,

j=l
n

L aijXj - Si = b.i ,

j=l

Xj ;::: 0,

Vi E I

111

where I = {ilv'i, = O} and J = {jl L Uiaij = Cj}. If the optimum objective value
i,=l

of this program is 0, then x is a feasible primal solution satisfying the CS conditions

with respect to '/.t and we are done. Otherwise, the new dual program will also have an
m·

optimum objective value greater than 0, i.e., L '/.t~bi > O. This solution '/.t' provides a
i=l

way to improve the original dual solution '/.t. We can find an c > 0 such that U + cUi

is feasible to the original dual program with increased optimum objective value. This

improvement of dual solution brings the corresponding primal solution "closer" to

feasibility. We always keep the dual solution feasible and repeat this "check and

improve" procedure until the primal solution is also feasible. At this point we've

15
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found a pair of feasible solutions for both the primal and dual programs, and by

Theorem 2.1.3 these are optimal solutions to both the primal and the dual problems.

In combinatorial optimization, many problems can be naturally formulated as

linear programs. So the Primal-Dual method has played an important role in the

design of many algorithms, as we will see in the following sections. In these problems,

what we want are usually integral solutions. But most of the times the optimal

solution of the formulated linear programs are fractional. So we can't use the classic

Primal-Dual method directly. We need to modify it by relaxing the CS conditions,

and then we can get approximate integral solutions.

In the classic Primal-Dual method, when we construct the new pair of LPs

we take into consideration both the primal and the dual CS conditions, so when

terminate with both primal and dual feasible solutions, Theorem 2.1.3 ensures that

they are both optimal. In the design of approximation algorithms, we relax one of the

CS conditions, say the dual. So when we improve the dual solution in each iteration,

we not only keep the dual solution feasible, but also keep the primal solution integral.

During each iteration we try to bring the primal solution closer to feasibility, i.e.,

the primal CS condition closer to satisfaction. Due to the integrality gap, we can

not model this process as the classic Primal-Dual method. As an example of the

primal-dual scheme, see, e.g., its application to hitting set problems surveyed in [11].

The relation between primal and dual solutions is the Complementary Slack

ness Conditions, as described in Theorem (2.2.3). During the whole procedure, a very

important thing to keep in mind is the approximation factor. If both the CS Con

ditions are satisfied, then after termination we've found the exact optimum solution.

If we force only one condition, say the dual CS Condition, and relax the primal one

16
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by an approximation factor cx, then what we get will be an approximation algorithm

bounded by cx. Consider the pair of primal and dual programs (2.1.1). The primal

and dual CS conditions are:

111

Xj > 0 ===} L 1liaij = Cj,

i=l

n

1li > 0 ===} L aijXj = bi.,

j=l

for any j E [1, n], and x 2: 0

for any i E [1,111], and 1l 2: 0

Vve maintain all the dual conditions and x 2: 0, 1l 2: 0, and relax the primal

ones as follows for some 0 < {3 < 1:

1n

X j > 0 ===} j3Cj ::; L Uia'ij ::; Cj,

i=l

for any j E [1, n]

Proposition 2.2.4. FOT any feasible pTimal solution x and dual solution 'U, if both the
n

Telaxed pTimal CS condition and the d'ual CS condition aTe satisfied, then L CjXj ::;

j=l

1 m
Proof. From the relaxed primal CS condition we know that Cj ::; 73 .z..= Uiaij, so:

1.=1

n

LCjXj <
j=l

n 1 11).

L(73 L 1liaij)Xj
j=l ·i=l

1 m n

73 L L Uia'ijXj
·i=l j=l

1 11).

73 L u'ibi ( using the dual CS condition)
i=l

17
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Let 0' = i, so 0' 2: 1. Suppose that we have a primal feasible solution :r

and a dual optimal solution y such that the relaxed CS conditions hold. Then from

Proposition 2.2.4 we know that c:r .:; O'yb, so the approximation factor for our solution

is no greater than 0', because the objective value cx for our integral primal solution

x is bounded by [fib,O'yb] - yb being the optimal objective value.

2.3 Edmonds' Blossom Algorithm for Matching

In this section we focus on the Matching problem, see how the Primal-Dual method

helps in designing a combinatorial optimization algorithm for it, and how the Match

ing algorithm may help to build our own TSP heuristic.

Given a graph G = (V, E), a matching l'v'I is a set of edges such that no node is

incident to more than one edge in the set M. A node v is covered by II/! if some edge

ev'W in II/I is incident to v, otherwise v is !II{-exposed. A ma:&imum matching is one that

has the fewest Ai-exposed nodes, or equivalently, one with the maximum cardinality.

A perfect matching is one that covers all the nodes. Given a graph G = (V, E) and

a matching l'v'I of it, a path P is an M - a'ugment'ing path if the edges on Pare

alternatively in 1M and not, and both the end points of Pare l'v'I-exposed.

Theorem 2.3.1. (Augmenting Path Theorem) Given a graph G = (V, E), a matching

111{ is maximum if and only if there do not exist any !II{ - augmenting paths.

For the proof of this theorem, readers are referred to [1].

We can assign a weight value Ce to each edge e, and then finding a perfect

matching with the lowest total weight value is called the Minimum-Weight Perfect
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Matching problem. Edmonds gave to this problem an integer programming formula

tion in [5]:

Minimize L CeXe

eEE

subject to: x(6(v)) = 1,

X e E{O,l},

Vv E V

VeE E.

In this formulation 6(v) is the set of edges incident to node v, and

X(6(V)) = L ~(;·i.
iEO(V)

We relax the integral constrains, replacing them by nonnegative constraints

and get a linear program. From this linear program we can expect a lower bound

for the optimum solution. For bipartite graphs, Birkhoff in [2] and Edmonds in [8]

proved that the relaxed linear program is a sufficient characterization of the perfect

matching polytope whose extreme points correspond to the matchings in graph G.

(See also [22]).

For the general case, Edmonds [8] gave a new formulation which outputs the

optimum solution. He added to the relaxed linear program a new kind of constrains,

which are called the blossom inequalities.

Given a graph G = (V, E), a cut D = 6(8) is called an odd cut if the set 8

of nodes has an odd cardinality and 6(8) is the set of edges who have one end point

in 8 and the other outside 8. If a matching lvI is a perfect matching of G, then .!tIl

must contain at least one edge from D. Hence, we get the blossom inequalities:

x(D) ~ 1,

19
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where C denotes the set of all possible odd cuts in G which are not of the form

fJ (v) for any single node v.

Including the blossom inequalities to the linear program, we get

A1inimize L CeXe

eEE

s1Lbject to: x(fJ(v)) = I, Vv E V

x(D) ~ I, VD E C

Xe 2:: 0, Ve E E.

Theorem 2.3.2. (Edmonds' A1atching TheoTem) Given a gmph G = (V, E) and a

Teal 'uectoT C ERE, G has a peTfect matching if and only if the blossom Telaxed lineaT

pTOgmm has a feasible solution, and the optimal objective value eq'uals to the minim'um

total weight of a peTfect matching.

To prove this theorem, we will construct a perfect matching M using the

optimal solution of the linear program. First we need the dual problem,

lvIaxirn;ize LYv + L YD
vE1! DEC

subject to: Yv + Yw + LYD ::; Ce, Ve = V'W E E
eED

YD ~O, VD EC.

The Complementary Slackness Conditions for this pair of programs are

xe > 0 ==}- Yv + Y'w + LYD = Ce , Ve E E
eED

YD > 0 ==}- x(D) = 1, VD E C

(PTimal)

(D1wl)

In the remainder of this thesis we use the word moats to denote dual variables.

If a moat is of the form Yv, or YD and v E S, D = fJ (S), we say that this moat is

aTO'und node v and v is in this moat. Especially, we call YD a blossom moat, and it's

20
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around the node set 8 and any node v E 8. A moat c'uts an edge if one end point of

it is inside this moat and the other is outside. We say that an edge is paid by some

moat by an amount equal to this moat's dual variable if this moat cuts the edge. An

edge is fully paid if the total value of all moats cutting this edge adds up to the edge

weight value exactly. vVe also call an edge tight if it is fully paid.

The primal CS condition means that for an edge to be in the matching M,

it has to be fully paid by all the dual moats cutting it. And the dual CS condition

means that for any odd cut D = 0(8) of G, if there exists a non-zero blossom moat

YD around 8 then exactly one edge of M must be in this cut. 'He ensure the primal

CS Condition by picking matching edges only from fully paid ones. In the following

algorithm we describe how the blossom moats are grown, and that ensures the dual

condition.

During the process of this blossom algorithm vlre keep a structure T which we

call an augmenting tree. B and A denote two disjoint sets of nodes, and T = (B, A)

is the union of B and A. Initially T = 0, and an invariant property of the augmenting

tree is: along any branch of this tree, matching edges and unmatched edges appear

alternatively. The node set B contains tree nodes who have e'uen distance from the

root (meaning the number of edges from the root to it is even), and node set A

contains odd distance tree nodes. Recall that a node is called M-exposed if it is not

incident to any edges in the matching IvI.

Now we can state the blossom algorithm for finding a minimum weight perfect

matching:
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Initial: Set Yv = 0 for any v E V, YD = 0 for any DEC. 1\![ = 0. Select

an M-exposed node l' as the current root for the augmenting tree, and

T = (B,A) = ({r},0)

Loop: Case 1: If there exists some tight edge euv with one end point 'Lt E B (T)

and the other an 1\II-exposed node v ¢:. T, then use this edge ewu

to augment the matching M: J1![ = 1\![ U P - (fill n P), where P

is the path from root r to u together with edge euv .

If after augmenting there is no more M-exposed nodes, then ter

minate and we have found the perfect matching.

Otherwise, move to a new lVI-exposed node r' and replace T by

T = ({r'}, 0). Back to Loop.

Case 2: If there exists some tight edge euv with one end point u E B (T)

and the other an M-covered node v ¢:. T, then use this edge e,uv

to extend T by making E (T) = E (T) U { e,uv, e uw } where w is the

other end of the matching edge covering v. Back to Loop.

Case 3: If there exists some tight edge e,uv with both end points 'Lt, v E

B(T), which means the tight edges have closed an odd cycle C,

then we can shrink this tight edge odd cycle to a supernode 8',

and update M and T: A1 = A1 - {exy : e xy is matched and e xy E

C}, T = T - (C - {euv }). Back to Loop.

Case 4: If there is a supernode W E A(T) with Yw = 0, which means we

cannot shrink it any more, then expand it and update M and

T: assume that C is the cycle shrunk to w, fill = M U {exy :

exy is matched and exy E C}, let emw and enw denote the two

edges incident to the supernode W in the augmenting tree T,

and let 'Lt, v denote the end points of emw , enw on cycle C. P is

the even-length path on C from 'Lt to V. T = T UP. Back to

Loop.
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Case 5: If every euv E E incident to v E B(T) has its other end in A(T)

and ACT) contains no supernode, then terminate with graph

G = (V, E) having no perfect matching.

Case 6: Othenvise we need to change the y values. ce denotes the re

maining unpaid weight of edge e. Let f. = m'in{E1, E2, E3}, where

E1 = min{~ : e = uv, v E B(T) and 'U t/:. T},

E2 = ~min{ce: e ='UV,U E B(T),v E B(T)},

E3 = min{Yw : w is a supernode and w E A(T)}

Grow all the moats around B nodes by amount of E and shrink

all the moats around A nodes by the same amount. Back to

Loop.

Edmonds' blossom algorithm is closely related to our problem. vVe are looking

for a path in the TSP problem, and it can be deconstructed into two alternative

matchings. On the other hand, if we can find two disjoint maximal matchings, we

can combine them together and end up with a path. During the process of the blossom

algorithm we always keep an augmenting tree consisting of alternating matched and

un-matched edges along any path from a tree node to the root. Since it is a tree

rather than a path, some internal nodes may have degree more than 2. At these

nodes two or more un-matched edges are incident, which makes it impossible for the

current unmatched edges to form a new matching. If we can restrict the augmenting

tree to a path, or find out two maxjmal matchings who share no edges at all, then we

get a TSP path.

The minimum weight perfect matching problems is a special case of the general

matching problem, usually called the b-matching problem [23].

Given a graph G = (V, E) and a positive degree constraint vector b E N 1
/, let
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8(v) denote the set of edges incident to v. A b-matching of G is a vector x E N E

such that x(8(v)) .::; b(v) for each node v E V. A b-matching x is called simple if x is

a 0,1 vector, i.e., X e E {O, 1} for every edge e E E. A b-factor is a simple perfect b

matching, i.e., ~r(8(v)) = b(v) for each node v E V. A generalized blossom algorithm

for general b-matching was described in detail by William R. Pulleyblank in [20],

and also by R. J. Urquhart in [27].

Figure 2.1: 2-factor
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In the I-factor problem, every node is incident to exactly one edge, and this is

the perfect matching problem. The 2-factor problem, in which every node is incident

to exactly two edges, is a relaxation of the TSP problem. As we can see, for the

solid edges in Figure 2.1, every node has two incident edges that make it a 2-factor

solution. But for it to be a TSP feasible solution, there must be a single connected

component. For example, if in Figure 2.1 we eliminate the dash-solid edges from the

2-factor solution, and add to it the dash ones, a TSP tour will be formed.

2.4 The Sub-tour Constraints (Held-Karp Formu-

lation) of TSP

In this section we introduce a linear progrannning formulation called Sub-tour con

straints given by Dantzig, Fulkerson and Johnson [7]. It is also known as Held-Karp

formulation by Held and Karp [10] [13] since the two provide the same lower bound

for the TSP problem. (A proof of the equivalence of these two formulations can be

found in [5]). The ratio between the objective value of the integral optimal TSP

solution and the optimal objective value of the linear program is called the integrality

gap. First we state the Held-Karp LP relaxation:

]YIinim1Lm L CeXe

eEE

subject to: x(o(v)) = 2, Vv E V

;1:(o(B)) 2': 2, VB c V, B-1- 0
X e 2': 0, Ve E E.

25
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Figure 2.2: Held-Karp 3/4-factor case

Goemans and Bertsimas establish a property in [9] called the pa-rsimonio'us

p'T'OpeTty. In the Held-Karp relaxation, we say that a feasible solution x is paTsi

monious at node v if x(o(v)) = 2. The constraints x(o(v)) = 2, \Iv E V are called

the paTsimonious constraints. The parsimonious property states that if the cost vec-

tor csatisfies the triangle inequality, then introducing the parsimonious constraints

doesn't affect the solution of the LP relaxation. Note that if we restrict the nonnega

tive constraints :&e 2: 0, \Ie E E and let the vector i! take only °or 1 as its value, i.e.,

J;e E {O, I}, \Ie E E, then in any optimal solution every node has exactly two incident

edges. ¥le can see them as one incoming edge and one outgoing edge. Plus we know

this solution has only one connected component, then every node is visited exactly
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once. So from the definition we know that any optimal solution for this integer pro-

gram is a tour. And since this tour is of the minimal total weight, we know it is a

TSP tour. Readers are referred to [18] for further details of this integer program.

vVhen it's relaxed to the lineal' program above, the optimum objective value is a lower

bound for the TSP tour. Consider the graph in Figure 2.2. Solid lines indicate edges

with Ce = 1 and X e = 1, and dashed lines indicate edges with Ce = 2 and X e = 1/2.

The graph is complete, and for all edges that are not shown we have X e = O. The cost

for edges (u, v) E E is Cuv = L Ce, where Puv is the shortest path between node 'u.
eEpuv

and v. The optimum objective value given by the (HK) relaxation is L CeXe = 23,
eEE

and a TSP tour, which is an integral optimal solution, has an objective value of 27.

Figure 2.2 can be generalized to a family of graphs which have 3n +2, n E Z+ nodes

in total: n + 1 nodes instead of 7 nodes on path Pl,2,3,4,5,6,7 and path P14,15,16,17,lS,19,20,

and n nodes instead of 6 nodes on path PS,9,10,11,12,13' Edge weights follow the same

rule as the example in Figure 2.2. For a graph of this family having 3n +2 nodes, the

optimum objective value given by the (HK) relaxation is 2n + (n - 1) + 6 = 3n + 5,

and the objective value of a TSP tour solution is 2n+2(n - 1) +2*3 = 4n +4. \Vhen

n goes to infinitely large, the limit value of the integrality gap is

. 4n+ 4 4
ex = 11111 = -

n-++oo 3n + 5 3

The integrality gap ex is the ratio between the integral optimal solution and

the fractional optimal solution of the relaxed linear program. For an LP relaxation

and the rounding algorithm designed based on it, the approximation factor f is the

ratio between the solution given by the algorithm and the LP objective values. The
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relationship among the integral optimal solution, the fractional optimal solution and

solution given by the rounding algorithm is illustrated in Figure 2.3. It is true that

f 2: a all the time, since the solution given by the algorithm is also feasible solution

to the integer program and always greater than or equal to the optimum. So the

integrality gap proves a lo-wer bound for the approximation factor.

Ohi1:'~ctl:ve..... ".. -.'

Vf!.lue

.. nh~Hrnl i ty

Gap

Appn)xi fJli.lt I UrI

"- f<trtcil~

'~

npt Itl1t:i11

LP
objer,:,t.i '{t~

Vt1!i.lk!

Figure 2.3: The integrality gap and approximation factor
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The dual of (HK) is:

]1;1aximize 2L W s

Sci'

subject to: L W s :::; Ce , Ve E E
eEo(S)

W s ;:::: 0, VS c V, S -I- 0.

(DHK)

(pHK)

Usually we want both the primal and the dual Complementary Slackness Con

ditions to be satisfied so we can get the exact optimum solution. But for some prob

lems like this, it could be impossible to satisfy both of them at the same time, since

the optimal solutions of the linear programs are fractional but what we want are

integral solutions. If we can relax one of these two conditions, then we will get an

integral solution within a guaranteed approximation factor.

V\Te develop a path form of the Held-Karp formulation. On a graph G = (V, E)

with cost vector cand two given end points sand t, the path form of Held-Karp

formulation (pHK) is:

Minim/u.m LCeXe

eEE

s'ubject to: x(8(v));:::: 1, Vv E {s, t}

x(8(v)) ~ 2, Vv E V - {s, t}

x (8(S)) ~ 1, if IS n {s, t} I = 1, 'liSe V, S -I- 0

x (8(S)) ~ 2, if IS n {s, t} I -I- 1, 'liSe V, S -I- 0

X e ~ 0, Ve E E.

Ifwe restrict this linear program to a (0, I)-integer program, Le., X e E {O, I}, 'lie E

E, then any optimum solution is a TSP path between nodes sand t, since every node

other than sand t has exactly two incident edges, both sand t have only one in-

cident edge, and the solution has only one connected component. So, as a relaxed

(O,l)-integer program, the linear program (pHK) is a relaxation of the TSP path.
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2.5 Our Linear Program Relaxation for TSP path

vVe develop our own linear program formulation for the TSP path from node s to

node t:

s.t.

NI inim,ize L CeXe

eEE

~&(8(8)) + y(8) 2: { 2, if s ¢: 8, "18 ~ V, S' =J 0
0, if s E 5', V5' ~ V, 5' =J 0

{
2, if t ¢: 5', V5' ~ V, 5' =J 0

x(8(5')) - y(5') >
- 0, if t E 5', V5' ~ V, 5' =J 0

y(V) = 0

X e 2: 0, "Ie E E

y(v) free, "Iv E V

(ST)

y(v) is a value assigned to node v, and y(5') = LY(v).
'VES

The corresponding dual program has a dual variable Wc for each C ~ V:

NIaximize L 2wc +L 2UD
siC tiD

s.t. L Wc + L UD :S Ce , "Ie E E
eEo(C),c<:;Y eEo(D),D~V

L Wc - L UD = CY, "Iv E V
'VEC,C~V 'VED,D~V

Wc 2: 0,

UD 2: 0,

VC~V

VD~V

a free

In the remainder of this section we will give a proof that our formulation is

equivalent to the path form of the Held-Karp formulation, so it is also a relaxation
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of the TSP path. And in the next chapter we will develop a heuristic for the TSP

problems using this linear program.

Theorem 2.5.1. Our linear program formulation (ST) is a relaxation of the TSP

path.

The proof of this theorem comes out immediately from the next theorem, since

(pHK) is a relaxation of the TSP path.

Theorem 2.5.2. Our linear program formulation (ST) of the TSP path is eq'ui'valent

to the path form of the Held-Karp formulation (pHK).

Proof. We break this theorem down into the following two propositions.

Proposition 2.5.3. A feasible sol'ution for o'ur formulation is also feasible fOT the

path form of Held-Karp formulation.

p.roof. Given a feasible solution for our formulation, we can eliminate all the y values

by adding two constraints together, and prove that it's feasible for the path form of

Held-Karp formulation.

1. Vv E V\{s, t} :

{

x(b(v)) + y(v) 2: 2

x(b(v)) - y(v) 2: 2

imply that x(o(v)) 2: 2

2. If v = s (or v = t, similarly) :

{

x(b(s)) + y(s) 2: 0

x(b(s)) - y(s) 2: 2
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imply that x(5(s)) ;:::: 1

3. V8 c V,8 -1= 0,s,t tf- 8:

{

x(5(8)) + y(8) ;:::: 2

x (5(8)) - y (8) ;:::: 2

imply that x(5(8)) ;:::: 2

4. V8 c V,{s,t} ~ 8:

Let S = V - 8. vVe know that x(5(S)) = x(5(8)). From case 3 we know that for

s, t tf- s, x (fJ (S')) > 2, so x (fJ (8)) ;:::: 2.

5. V8 c V,8 -1= 0, 18 n {s, t}j = 1 : x(fJ(8)) ;:::: 1

Combining the above five cases we've proved that any feasible solution for our relax-

ation is also feasible for the path form of Held-Karp formulation. o

Proposition 2.5.4. A feasible solution for the path form of Held-Karp formulation

is also feasible for o'urs.

Proof. Given a feasible solution for the (pHK) formulation, we set y values to each

node as follows:

y(s)=-1, y(t) = 1, and y(v) = 0 for all other nodes v

If s t/:- 8 but t E 8, we know that x(fJ(8)) ;:::: 1 and y(8) = 1, so x(fJ(5'))+y(8) ;::::

2; If s t/:- 8 and t tf- 8, we know that x(5(8)) ;:::: 2 and y(8) = 0, so x(5(8)) +y(8) ;:::: 2.

Thus :1:(fJ(8)) + y(8) ;:::: 2, V8 ~ V, 8 -=J 0, s tf- 8.

If t E 8 and s E 8, we know that x(fJ(8)) ;:::: 2 and y(8) = 0, so x(fJ(8)) 

y(8) ;:::: 2; If t E 5' but s t/:- 8, we know that x(fJ(8)) ;:::: 1 and y(8) = 1, so x(fJ(8)) 

y(8) ;:::: O. Thus x(fJ(8)) - y(8) ;:::: 0, V8 ~ V, 8 -=J 0, t E 8.
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It's easy to check that all the other constraints in our formulation hold, using

the same technique we used for proving the above two constraints. Thus any feasible

solution for the (pHK) is also feasible for our formulation (ST). 0

Propositions 2.5.3 and 2.5.4 prove Theorem 2.5.2.

2.6 Test Cases for Our LP Relaxation

In tIns section, we show some simple examples of running our TSP relaxation on

some selected graphs and feed those programs to a linear program solver called QSopt

(http://www2.isye.gatech.eduFwcook/qsopt/index.html). 'Ne stated in last section

that our LP formulation targets to finding TSP paths instead of TSP tours, so we

need to assign a starting node s and a terminal node t. After solving (ST) we need to

add the edge weights c(s,t) to the objective value. All these graphs obey the triangle

inequality, and they are all complete graphs.

Figure 2.4 shows our result on a 14-node graph. All the solid lines indicate

edges with Ce = 1 and dashed lines indicate ones with Ce = 2. Unlike the sub-tour

formulation, all the edges in our solution have X e = I, which means that it finds an

integral solution of the optimum weight on this graph. But it is an integral TSP path.

The edge (s, t) is not fully paid by the current set of dual variables.

All the nodes are indexed with integers from 1 and indicated as circled num

bers. We present moats of dual variables We and 'LtD as polygons, with real numbers

on border indicating the value of the dual variables. All the edges not displayed have

weight values equal to the shortest paths between their two end points.
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Figure 2.5 to 2.8 show four more examples, all with the same naming and

presenting rules. In addition, underlined numbers indicate the weights of edges beside

them. All the four TSP paths are integral solutions of the optimum objective value.

And all the edges (s, t) in these four examples can be fully paid by the current sets

of dual variables.
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Figure 2.4: Test case 1
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1
l

Figure 2.5: Test case 2
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Figure 2.6: Test case 3
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Figure 2.7: Test Case 4
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Figure 2.8: Test case 5
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40



Chapter 3

TSP Heuristics

In Chapter 2 we present our linear program formulation for TSP. And in tIns chapter

we develop a heuristic based on our relaxation, trying to restrict the approximation

factor to 4/3. First, we recall the LP from last chapter and its dual:

NI iTLimize L CeX e

eEE

s.t.: x(o(S)) + y(S) ::::: { 2, if s tf- S, \IS ~ V, S -I- 0 ( LP)
0, if S E S, \IS ~ V, S -I- 0

x(o(S)) _ y(S) ::::: { 2, if t tf- s, \IS ~ V, S -I- 0
0, if t E S, \IS ~ V, S -I- 0

y(V) = 0

X e ::::: 0, \Ie E E

y(v) free, \Iv E V
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Vv E V
vEe,c~v

s.t.

IV!a:r'im,'ize L 2we + L 2'llD

srf-e trf-D

L We + L 'llD ::; ee,

eEo(e),e~;y eEo(D),D~;y

L We - L 'LlD = 0',

VED,D~Y

VeE E (DLP)

We ::::: 0,

'llD ::::: 0,

VC~V

VD~V

0' free

In the description of the heuristic we adopt the terminology defined in Chapter

2, i.e., moats, tight edges, etc. In Section 3.1 we show how the matching idea and

algorithms could help with building a TSP path. During this construction unwanted

situations may occur. For example, some nodes may have degree greater than two, or

tight edges may close a cycle which doesn't cover all nodes. These make the solution

infeasible, so we deal 'with them in Sections 3.2 and 3.3. Then in Section 3.5 we

analyze this problem from a different aspect, using matroids.

3.1 Finding augmenting paths

Before we actually move on to the specific algorithm and heuristic, it may be helpful

to review the precise description of the Traveling Salesman problems first: Given a

graph G = (V, E) and a weight vector C, the goal is to find a tour that visits every

node exactly once and has the minimal possible total weight. When we try to solve a

problem, a very natural idea is to relate it to some similar well-studied ones, and see

if we can borrow some ideas and methods from them. So in the first section of this

chapter we show how we use matching algorithms to help with our own problem.
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To make things simpler and more intuitive, we need some restrictions and

preparations for the graphs we work on. In this thesis we always work on symmetric

graphs satisfying the triangle inequality. And instead of G = (V, E) and its weight

vector C, we work on its metric completion G' = (V, E') - we keep all the nodes

unchanged, and there is an edge e~u between every pair of nodes v and u in G'. For

the new weight vector (], if evu E E, then G.v.u = Cvu , otherwise cV 'u = pv·u where PV'l/ is

the length of the shortest path between v and u in G.

Instead of building a tour directly, we try to build a path that covers all the

nodes. And in the end add the edge between the two end points to the path, to make

the solution a tour. 'lye can do this because we have proved in Section 2.1 that TSP

paths and TSP tours are equivalent.

In Edmonds' blossom algorithm, the essential structure, which is kept all the

time, is an augmenting tree that has alternative matched and unmatched edges along

every branch. If we can restrict this augmenting tree to an augmenting path, then it

will be what we need when a perfect matching is found - a path that covers all the

nodes.

In the other direction, if we find two completely different perfect matchings

who share no common edge at all, then combining these two matchings together gives

a collection of cycles that cover all the nodes: Consider two different matchings !VI

andNI', and any node v. Assume v is matched with node v. in jl,![, then in 1\1[' it must

be matched with another node w, 'U f w. Thus any node v has two different incident

edges (v, 'u) and (v, w), one as an incoming edge and the other as an outgoing edge. If

we can further restrict the combined solution to have only one connected component,

it will be a tour that visits all the nodes and return to the starting point.
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This lead us to the idea of two alternating matchings. In our LP formulation

there are two given nodes, s meaning the starting point of the path and t meaning

the ending point. vVe want to build two maximal matchings, one called s-matching

that covers node s but doesn't cover node t, and the other called t-matching that

covers t but not s. For graphs having even number of nodes we need to add a dummy

node t' and an edge eft' with cost Ctt' = 0, since otherwise any maximal matching

in such graphs cover both sand t at the same time. If we alternatively grow these

two matchings - s-matching and t-matching - using Edmonds' blossom idea, and when

growing one matching, treat the matched edges of the other one as augmenting edges,

then hopefully we will get the path we want. We say that a node gets discovered when

it's incident to some tight edge for the first time.

vVe use Figure 3.1 as an example to describe the essential process of building

such a path. Given any graph satisfying the triangle inequality, get its metric com

pletion, namely G = (V, E), and weight vector can it. Here we have V = {S,V,1l},

E = {csv,csu,cuv}, Csv = 5, Cuu = 3 and Csu = 8, as illustrated in Figure 3.1(a). The

heuristic chooses arbitrarily a node as its initial root, and in this example we choose

s. vVe adopt the word moat from last chapter, representing the dual variables '/lie or

1lD in (DLP). In order to keep the constraints L '/lie - L UD = Q, Vv E 11
vEe,e~v vED,D~V

true all the time, when we say that we grow a moat vVu around some node v, we grow

half of it as '/lie and the other half as llD, i.e., Hlv = '/lI{v} +u{u} and '/lI{u} = u{u}' Later

in this section we will grow moats containing a set of nodes S, and when we grow

HiS we make sure that 111s = '/lis + 1ls, '/lis = US. In our heuristic we want the moats

to cut the path once or twice: once if they contain exactly one of the two nodes s
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(a) (b)

Figure 3.1: grow path

(c)

and t, twice if they contain none. It is because of the objective function of our DLP:

11/1aximize L 2we+L 2UD' As stated, we don't distinguish We andue, so in this
si-e ti-D

case the objective function of DLP is equivalent to 11/1a:rim:ize L liVe + L Hie,
si-e ti-e

which means moats will be counted once if they contain only one of sand t, and

twice if they contain none. vVe start by growing a moat lVs around the root s. Vlfe

continue growing this moat until some edge becomes tight. In this example it is esv .

We match this tight edge as an s-matching, and make node v the new root. Now we

are about to grow the t-matching from the current root v.

As with Edmonds' blossom algorithm, first the tight edges (which are also the

already-matched ones in our heuristic) are to be augmented to form a path, as the

double-lined edge esv in Figure 2.1 (b). Then grow the moats around the root and

all nodes that are at an even hop distance from the root. Recall that in Edmonds'

algorithm we use the word distance to indicate the number of edges along the path

from a node on the augmenting tree to the root, so if there are even(or odd) number
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of edges on this path we say this node has even(or odd, respectively) distance from

the root. And we keep two sets of nodes: node set B that contains tree nodes which

have even distance from the root, and set A contains odd distance tree nodes. So here

what we grow are the B-nodes in Edmonds' blossom algorithm. Similarly, in order

not to make any edge over-tight, we also shrink all the moats around odd-distance

nodes(which are A-nodes in Edmonds') at the same time and by the same amount. In

our example it means growing lVv and shrinking 1V8 , as in Figure 2.1(c). This process

goes on until the edge evu becomes tight. Since we are now building the t-matching,

the tight edge ev,u will be t-matched. Then we make node'Ll the new root, and we are

ready to build the s-matching again from root 'U. In this example a TSP path has

already been found. If we have larger graphs containing more nodes, we repeat this

process of building s-matching and then t-matching, until the path hopefully covers

all nodes.

If at some time a moat shrinks to zero but no new edge becomes tight, as

in Figure 3.2(a), we group the whole augmenting path and treat it as the new root.

Then we continue to grow its moat(which is the current root) until some new edge

becomes tight, as in Figure 3.2(b). (In Figure 3.2(b) we draw the big moat as an

ellipse rather than a circle only to save some paper space. Note that in Figure 3.2

and in later sections we only draw the "original" edges while omitting the metric

completing ones.)

vVe succeed if we can get a path of two maximal matchings by repeating this

process. But usually we can't, since this process runs in polynomial time but TSP

is NP-Complete. In Figure 3.3, we have already grown the path Pyz and the current

root is node z. Moat 1Vv has shrunk to zero, so we grow a moat containing the whole
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(b)

Figure 3.2: make big group when necessary

path PyZl to expand the path from root z. But as the growing continues, edge ewx

becomes tight. We cannot simply match this edge e'lLIX because node 'W is already

two-matched (both s-matched and t-matched). We call 'W a higher-degree problem

node. In the next section we see how these higher-degree problem nodes are treated.

3.2 Solving higher-degree problem nodes

As shown in the last section, we are trying to construct a TSP path, consisting

of alternating s-matchings and t-matchings. So hopefully every node (except the

starting point s and the current root) on this path has two matched edges incident to
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Figure 3.3: higher-degree problem node

it: one edge is in s-matching and the other is in t-matching. We use the word degree

to represent the number of matched edges incident to a node. So we want that all

nodes on this path have degree 2, except s and the current root that are currently of

degree 1. But as the growing-and-shrinking process goes on, some 2-matched node

may be connected to an unmatched node by a tight edge before the current root gets

2-matched, as node x is incident to w in Figure 3.3, and we cannot simply match this

edge ewx since then 111 will have degree 3. We call this a higher-degree problem and

w a higher-degree problem node.

\iVhile solving this problem, we want to include the node x into the path we've
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already built, so we not only solve a problem but also further expand our path.

Consider node w, it has two matched edges euw and evw incident. to it already. If

we want to match the edge e wx , we have to unmatch e-uw or evw first, to keep the

degree of node w. We also want to keep the path we've already built - or at least the

most part of it. So we try to make the edge e·ux (or e vx ) tight, unmatch e ww (or evw

respectively) and then match e-ux (or e vx respectively) and e xw . To make edge e-UT or

evx tight, we would like to grow the moats around node x, '/1, V and shrink the moat

around node 'Ill. So at first the moat ltV')'; grows and the moat T¥pyz shrinks. When

T¥pyz shrinks to zero, we get Figure 3.4, and we continue to grow the moats lV')';, TV1L\

TVu and shrink lVw , as indicated by the arrows. (Arrows pointing to center mean

shrinking and pointing out mean growing).

If edge e-ux becomes tight first, then we can match is as the same type (s

matching or t-matching) as edge eww , match exw as the other type, unmatch edge e·ww

and switch types for all the edges along the path from node w to the current root

z. By switching type for an edge, we mean that if it was an s-matched edge then it

becomes t-matched, and if it was a t-matched edge it becomes s-matchecl. Similarly,

if edge e vx becomes tight first, we match e wx as the same type as e wv I match e xv as

the other type, unmatch ewv and switch types for all the edges along the path from

node v to the current root z.

Another possibility is that during the growing-anel-shrinking process edge eu'V

becomes tight before e-ux or evx . This tight edge prevents the current moats from

growing or shrinking any more, so neither e-ux nor evx can be tight. Since this edge

e-uv can be very short compared to e ux or e vx , we cannot afford to include it in our

solution because then the approximation factor can approach 2 in the worst case.
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Figure 3.4: Shrinking higher degree moats

In section 3.1 we used the node set containing the whole augmenting path

when the process of growing-and-shrinking got stuck by some moat shrinking to zero.

Here the rule is a little bit different: we group together most nodes, matched and

undiscovered, except a few special ones on which we are working. As in Figure 3.5,

we group all the nodes together except nodes wand x. This big group will be cut

so that the growing-and-shrinking process can resume. We keep growing vV{yuvz} and

the moat lY-z:, shrinking the moat H!'l1I' until eux or evx becomes tight and the problem

is fixed.

50



Master Thesis Xiaoxi Ma - Computing and Software, McMaster University

Figure 3.5: Making big group when tight triangle occurs

Another unwanted possibility is that edges between node :& and other unclis-

covered nodes become tight before e·ux , evx or e.uv , (e.g., edge emx in Figure 3.5). This

tight edge will interrupt the growing-and-shrinking process.

Node x is actually a potential higher-degree problem node, just like node 'W

in the previous stage. So following the same strategy, we would like to shrink the

moat around :r, and start to grow the moat of node m. In order to deal with the

augmenting path, the grouping idea will be used, since we don't want the moat vlfw
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Figure 3.6: Making big group when new node is discovered

to grow. As illustrated in Figure 3.6, this time the group will contain all nodes except

x and the newly discovered m.

The essential idea behind this process is to connect 'U or v by a tight edge to

the "farthest" node on this "problem-node path", which in our example means path

PW1711 and the "farthest" indicate the node-wise distance from the augmenting path

we've already built. So in Figure 3.6 the farthest is node 'm, and we are trying to

make edge eUln or eUln tight. If we achieve this goal, say we make edge eum tight, then
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we can augment this "problem-node path" by matching eum and all the edges along

path Pm,w, and then unmatching edge e.uw gives us an augmenting path PY'lL'/1l,XWVZ as

we want.

We define an operation called flipping. When we say that we flip a moat liTis,

we mean that first we set liVs := lVs for S = V - 8, and then lVs := O.

We establish two criteria to decide if a step of the heuristic improves the

solution: (1) after this step either of the s-matching or the t-matching augments; (2)

or, the total dual value increases after this step. These criteria help deciding when

the heuristic should terminate. We don't terminate until all nodes are discovered and

augmented, so there exists no further improvement from the first criterion. But it is

much more difficult to tell if the CUlTent set of duals could grow into a better dual set

with greater total value. So we don't have a good criterion to tell when the heuristic

should terminate. We leave it as a open problem.

The heuristic is stated as follow:

1. Given a complete graph G = (V, E) and the weight vector C, choose arbi

trarily an initial root s. Set both the s-matching and the t-matching empty.

2. Begin with s. Grow lV8 until some incident edges become tight. Pick one

arbitrarily and include it in the s-matching. Make the newly discovered and

I-matched node the new root r.

3. Augment the alternating s-matching and t-matching as the current aug

menting path. Decide which matching is going to be grown: if the last

matched edge was s-matched then we are going to grow the t-matching,

otherwise if we just grew the t-matching then we are going to grow the

s-matching.
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case 2:

Grow the root moat lVr . In order not to make any edges over-tight or any

matching edges untight, shrink the moats which have odd distance from the

root and grow the even-distance ones, all by the same amount, until one of

the following happens:

case 1: An edge between the root and an unmatched node becomes tight:

Match this edge as the type decided in step 3 - s-matching or t

matching. Make the newly discovered and I-matched node the new

root, and go to step 3.

A single node moat shrinks to zero:

Group the whole augmenting path together and treat it as the new

root. Go to step 4.

A group moat shrinks to zero:

Now all nodes inside this group moat are exposed and can be op

erated on. Go to step 4.

An edge between a 2-matched node wand an unmatched node ~r

becomes tight: (see Figure 3.3)

Shrink the moats around the 3-degree node wand grow its 3 neigh

bors x, u and v, until some edge becomes tight: (see Figure 3.4)

case (1): e'U'v becomes tight:

Group all the nodes except wand x. Continue to grow this

big group and TV'f.' and shrink Ww , until e·ux or evx becomes

tight. Go to the following case (2).

case (2): e·ux or evx becomes tight:

If eux becomes tight, unmatch euw and match e·ux as the

same type as eu·w , s-matching or t-matching. Match ewx as

the other type, and switch types all along the path from

w to the current root. If evx becomes tight, unmatch evw ,

match ewx as the same type as evw , match e.vx as the other

type, and s"vitch types along the path from v to root. Go

to step 4.

case 4:

case 3:
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case (3): An edge between x and an undiscovered node 'In becomes

tight:

Grow the farthest (farthest from the original higher-degree

problem node) moat (liVm in Figure 3.6), shrink the one

next to it (TY1: in Figure 3.6) and grow a moat around all

the other nodes, which are grouped together.

(i) If some edge between 'In and an undiscovered node n

becomes tight, go to case (3), treating node n as Tn before

and node 'In as ~?: before.

(ii) If an edge between '171, and a 2-matched node on the

augmenting path becomes tight, then a tight-edge cycle

occurs. vVe discuss this situation in Section 3.3.

(iii) If TY1: shrinks to zero, flip the group moat, so the new

flipped group moat will contain node ~?: and 'In.

Then if the original higher-degree problem node('W in Fig

ure 3.6) still has group moat around it, go to case (3);

Otherwise, if the original higher-degree problem node 'W

has only one single node moat around it, as in Figure

3.7(a), we sh1'ink this moat H!'U-'l grow the group moats

TV{xm} and H!{y·uvz}, until Hfw shrinks to zero. Then flip

the moat W{yuvz} to let it contain nodes 'W, x and 'In, as

in Figure 3.7(b). Match 'U with the farthest node ('In in

Figure 3.7(b)) as the same type as e.uw , and switch types

along the path from 'In to the current root. Go to step 4.
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case (4): Any edge between two 2-matched nodes on the augmenting

path becomes tight:

Vle discuss this situation in Section 3.3.

Tight edges close any cycle:

We discuss this situation in Section 3.3.

All nodes have been discovered:

As an open problem, we need further criteria to decide when we

should terminate.

(a) (b)

Figure 3.7: Solved Higher Degree Problem Nodes

3.3 When tight-edge cycles occur

In Section 3.2 we mentioned the situations in which tight-edge cycles occur as case 5

of the heuristic. In this section we discuss some of the possibilities. Vie don't have

proof that all the possibilities are covered in this section. We only present what we
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From Figure 3.5,3.6 and 3.7 we can see that sometimes higher-degree problem

nodes may extend to a really long path. If we repeat the process in case 4. (3) of the

heuristic we can finally solve all of them, as long as the path doesn't get back to any

already two-matched node on our augmenting path and closes a cycle. But since we

grow the farthest moat and the group moat together (e.g. lY-r; and VV{yuvz} in Figure

3.5, or n~n and lV{yuwvz} in Figure 3.6), it is possible that edges cut by these two

moats become tight. As illustrated in Figure 3.8, lV{y'u:wvz} and VVm grow together

and make the edge emz tight, which prevents VV-r; from shrinking.

Figure 3.8: Tight edges close a cycle
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The node z now is actually a higher-degree problem node, since it was already

two-matched and now incident to node m. To follow the same strategy on solving

higher-degree problem nodes, we would like to firstly flip ilV{y.uwvz} and then H!{y'Uvz},

so this problem node can be e:>q)osed. Then the next step would preferably shrink the

moat to which this problem node belongs and grow all its neighboring moats. But if

we check carefully, we may find it impossible to do so in some situations. Since we

want to shrink this problem node z, the flipped VV{wxm} = ilV{y'Uvz} needs to grow and

moats ilV1L and TiVv to shrink. This will make both edges e·uv and evz untight and the

augmenting path broken into disconnected parts.

Other situations may also create tight-edge cycles of different kinds. A com

parably simple case is presented in Figure 3.9:

In Figure 3.9 we are rooted at node q, and the solid-edge path is the aug

menting path that we've already built. Assume that there are still some nodes left

undiscovered. As we can see, since we are growing the moat around the root q, the

group moat TiV{s'U'Vwxy} has to be growing at the same time. Then at some point moats

1Vq and 1V{s'Uvwxy} make edge ewq tight, close a tight-edge cycle and stop the root's

moat growing.

In section 3.1, when, while building a path, some moat shrinks to zero and

stops the root from growing, we make a new moat to contain the whole path. So

adopting the same idea here we would like to start growing the moat which contains

the whole path from .'3 to q (which means it contains the cycle Cwxyzq). Then growing

1V{s'uvwxyzq} grows the moat around the root, and hopefully this will lead us to a new

matched edge from root q.

There is another less simple situation in which tight edge cycle may occur.
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Figure 3.9: Another case of tight edge cycle

Consider the example in Figure 3.10, (we omit most nodes and present only the part

of path where the problem occurs). In the example, V) is the original problem node,

edge evx becomes tight before evz and exz during the shrinking of moat H,rw, so we

make a moat containing everyone except node V) and z, and flip this group moat

after Tt1Iw shrinks to zero. Now we can match the tight edge evz and the higher degree

problem is solved. Then we should get back to the process of growing the moat

around the root. But from this situation we can't tell if a node, say node y, should

grow or shrink responding to the growing of the root's moat. If the growing of the

current root's moat leads TIVy to grow, then Tt1Iy , H,ru. and Tt1I{w,z} will grow, and both

H,ru and VV-r. will shrink. This is not a problem since evx has been unmatched and V'le
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Figure 3.10: Tight edge cycle after solving higher degree problem node

don't care if it becomes untight. But if node y has even distance from the current

root, then lVy, l¥n and W{w,z} will shrink, and both vVv and TiVx will grow, and we

are in trouble since edge evx can not be over-tight. In this case we grow the moat

containing the whole path, so that we can preserve the path structure we've already

built and at the same time enable the augmenting at the current root.

But there are situations in which we can not simply group the whole path to

solve the tight edge cycle problems. Consider the situation in Figure 3.11:

·When we are trying to solve the problem node y by shrinking l¥y and growing

VVr and TiVz, moats HTv, liVq and other moats on the path have to grow together. This

could make some edge like evq tight and create a tight cycle, which stops the growing

and shrinking process. The previous grouping of the whole path doesn't work here,

since if we group the whole path into one moat, it would include the problem node
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y, and its growth would make the problem even worse.

Figure 3.11: General case of tight edge cycle

So we need a new kind of grouping. vVe want the problem node and its

neighbors to be exposed, and others may be grouped. Here we let the group cover

node v, 1l and all those along the path from'Ll to s, as well as q, 'In and all those along

the path from 'In to the current root, together with all the undiscovered nodes, as

indicated by the dashed moat in Figure 3.11. Now it's possible to continue shrinking

the problem node y, and instead of v, 'Ll growing together, the group will grow. After

solving the higher-degree problem on node y and augmenting the path to node '11" we

simply flip the dashed moat and let it be around node w, x, '11" y, z and p. It is easy

to see that this group is fine because it cuts the current path exactly twice.

Till now we've seen several kinds of grouping: when some moat on the path
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shrinks to zero; or new node is discovered during the process of solving higher degree

problem nodes; or the root meets a two-matched node through a tight edge; or two

nodes on different side of a problem node get connected by a tight edge. In all these

situations there is one question we need to answer: how do we treat the undiscovered

nodes? Should we include them in the group, or leave them outside?

To answer this question, we examine what is meant by containing a node inside

a group. VVhen we cover some nodes with a group moat, we should be prepared that

these nodes may not be exposed again. So what we include in this kind of group

should be a nice structure and potentially part of the final solution. But we do have

an operation (flipping) which basically release the node set of a group moat and cover

its complementary set. So, when we do a grouping knowing we will flip it later, e.g.,

in the process of solving higher degree problem nodes, as in Figure 3.5, we should

include all the undiscovered nodes inside the group W{ywuz} since after flipping they

will be exposed again. And if we do a grouping knowing that we will leave it as it

is, e.g., when some moat shrinks to zero, we should pack only the augmenting path

inside the group moat, because at least for now it is a nice structure where every node

has degree of 2, and we hope it will be part of the final TSP path.

Before closing this section, we discuss the approximation factor of our heuristic.

As we've seen, if a tight cycle like the one in Figure 3.8 or Figure 3.11 occurs, we don't

have any good method to break it and we are forced to keep it until some later stage.

At the termination of the heuristic, when we have already discovered and augmented

all the nodes, it will possibly look like Figure 3.12: solid straight lines indicate the

matched edges and wavy lines indicate matched paths.

The final solution has to be a tour, so we need to give up some accuracy and
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Figure 3.12: four-thirds approximation factor

add an extra edge which is not fully-paid by the duals. We can add the edge epx (we

may choose other extra edges like ezp or f-uq etc. to complete the tour, but the idea

and the approximation factor are the same). Since we always work on the metric

completion of the graph, by the triangle inequality, we know that the length of epx is

no greater than the length of path P{pusx} , path P{pwyx} or path P{pqyx}' That is,

All edge costs are non-negative, so we know that p{V'l~s} + p{tx} :::::: p{v·usx} ::::::

p{pu.sx} , p{vwzy} :::::: p{pwyx} and p{pqy} :::::: P{pqyx}' By substituting p{u'us:l'}' p{uwzy} and

p{pqy} for p{pusx}, p{pqyx} and P{pqyx} respectively, we have

The three paths together build up the path from x to P, and the duals pay for
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this path plus part of edge (x,p), so we know that

1 1.
c(p,x) ::; 3" (p{uusx} + p{uwzy} +P{pqy}) ::; 3" * Total dual optImum

Cst + Ctx + Cswuwzyqp ::; Cst + Total dual optimum

(3.3.1)

(3.3.2)

(3.3.1), (3.3.2) ==} solution::; Cst + ~ * Total dual optimum ::; ~OPTtou'r

The approximation factor of ~ applies when the paths of the proof have been

formed. As we stated earlier in this section, we don't have proof that all possibilities

are covered, so there may be other situations in which approximation factors of greater

values apply.

3.4 Test Cases on This Heuristic

In this section we show the running of our heuristic on a variation of the well-known

Held-Karp 4/3 example(as seen in [3]). We describe in Section 2.4 and illustrate

in Figure 2.2 the Held-Karp 4/3 example, all the displayed horizontal edges have

Ce = 1, the vertical and oblique edges have Ce = 2, and all edges which are not shown

have cCu,v) = L Ce , where fJuu is the shortest path between node 1£ and v. We add
eEpuv

two nodes sand t, with c(s,a) = I, c(t,a) = 1, c(s,t) = 1 and c(u,v) = L Ce for all
eEpuv

1£ E {s,t},v E V - {s,t,a}.

As stated in Section 2.1, we run our algorithm (which is only a heuristic for

now) on every pair of nodes sand t, add the edge (s, t) with cost c(s,t) to each path,

and select the minimal cost tour. But in the heuristic we presented in previous

sections, we don't specify the ending point t. This problem can be fixed by treating t
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as matched all the time before every node v E V - {8, t} is discovered and augmented.

Suppose j is the last discovered node in node set V - {8, t}, then t will be matched

to j at termination.

(a)

(c)

(b)

Cd)

Figure 3.13: Running our heuristic all a variation of Held-Karp 4/3 example

We start by growing a moat around node 8. Edges (8, t) and (8, a) become

tight at the same time, but since t is the end point, we match (8, a) at this step. Then,

we grow the path until r becomes the root as in Figure 3.13(a). 'ATe can't continue
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growing the root since some node moats have already shrunk to zero. So we create the

group moat shown in Figure 3.13(a). Then, among the four newly discovered nodes,

we select node :r and root there. We continue to grow the path until the situation

in Figure 3.13(b) happens. Node r is the root, but we cannot grow its moat any

more since a tight edge cycle has formed. As discussed in the previous section, in

this situation we can group the whole path we've already grown, as in Figure 3.13(c),

as indicated by the shaded ring. Grow this group moat until it discovers r', then we

can get back to the basic path-growing process, until we finally get to the situation

in Figure 3.13(d). All the matched edges are indicated by bold lines, the dash line

(y, t) is not fully paid an:d brings in the inaccuracy, and (8, t) is the last edge that

completes the tour. The total dual value for TSP path Pst is 16, and the cost of this

path is 22. If we generate this example to graphs containing 3k + 4 nodes, which are

very similar to the family of graphs defined in Section 2.4 with the extra two nodes 8

and t, the integrality gap for TSP paths should be ~~: ~, and the limit value when

k goes to infinite is ~. After adding edge (8, t), the total dual value remains the same,

but the cost of the tour increases to 23.

Suppose that when we are in the situation of Figure 3.13(a) we select node y.

'Ve extend the path until reaching the situation in Figure 3.13(e). Now we are unable

to grow the moat around root r since some moat on the path has already shrunk to

zero. So we group the path and grow the group moat as shown in Figure 3.13(f), until

the node x is discovered, which causes a higher-degree problem since node y is already

two-matched. Directed by the heuristic, we grow the moat around x and shrink the

group one, until get to the situation in Figure 3.13(g). The tightness of edge (z,x)

solves the higher-degree problem, but now node m is discovered and makes node x
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a new problem. As introduced in Section 3.2, in this situation we grow the moat

Him, shrink H~'V and group all the others, as shown in Figure 3.13(h). When some

edge becomes tight, we flip the group moat to let it contain m and x, as in Figure

3.13(i), and a new node is discovered again. We repeat this process until reaching

the situation shown in Figure 3.13(j). Now the newest discovered node is n, and we

want to grow its moat until situation in Figure 3.13(k) occurs. If we see node s as

two-matched (since one of its degree has to be given to the ending node of the path),

the tightness of edge esn creates another higher-degree problem and also a tight-edge

cycle which prevents us from further progress.

3.5 A Matroid approach

In this section we try to model the TSP problems in the field of Matroid Theory.

Matroid Theory was developed from linear algebraic theory at first, and now it is a

powerful tool in combinatorial optimization field. We start this section by introducing

the definitions and terminologies,then we state in two different theories that matching

and2-factor are both matroids. In the end we discuss the approach to modeling TSP

as intersection of two matroids.

Definition 3.5.1. A matroid IvI = (E, F) is a pair in which E is a finite set of

elements, and F is a family of subsets of E, and the following axioms hold:

(1) (/) E F, and if a subset S' is in F, then all proper subsets of S' are also in F;

(2) If two subsets S'p and S~+l are in F and they have cardinalities of p and p + 1

respectively, then there exist an element e E S'p+1 - S'p such that {e} U S~ E F.

The basic and probably simplest matroid is the matrix matroid. The elements
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in it are the columns of a matlix, and F contains all subsets of linearly independent

columns. Obviously 0 E E, and any subsets of an independent set are independent,

so the first axiom holds for sure. And for two independent sets S~, S'p+l of p and

p + 1 columns respectively, S'p together with some column from S~+l create a new

independent set of p + 1 columns. (See [15]).

A subset in F is called an independent set of the matroid 111 = (E, F). And

any subset of E which is not independent is called dependent. A maximal independent

subset of A ~ E is called a base of A, and for A ~ E the Tank r(A) is the cardinality

of any base of A. A base of E is called a base of the matroid lYI, and the rank of it

is the Tank of the matroid, because all bases of J1v1 have the same rank.

There are several variations for the second axiom from which we can select the

most suitable one when we try to proof that a structure is a matroid. We state three

of these equivalent variations in the following lemma.

Lemma 3.5.1. As the second axiom for the matroid definition, the following three

statements are equi'ualent:

(2) If two independent sets 3p and S~+l aTe in F and they have caTdinalities of p and

p + 1 respectively, then theTe exist an element e E S'P+l - S~ s'uch that {e} U S~) E F;

(2)' If two independent sets 3 and T aTe in F and 131 > ITI, then the're exists an

element e E 3 - T such that {e} UTE F;

(2F FaT any s'ubset A of E, all bases of A ha'ue the same caTdinality.

Readers are referred to [15] and [23] for proofs.

One of the well-known matroids is the matching matroid, which is also closely

related to our problem. And another one is the graphic matroid.
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Theorem 3.5.2. Let G = (V, E) be a graph. For any subset N ~ V, if F is the

family of all s'ubsets S ~ N such that all the nodes in S can be co'ue-red by a matching

of G, then I\I! = (N, F) is a matroid. We call these struct'ures M = (N, F) matching

matroids, and J1!! = (V, F) the matching matroid of graph G.·

Theorem 3.5.3. Let G = (V, E) be a graph. For any subset A ~ E, A is independent

if the edges in A form an acyclic s'ubgraph. This is called a graphic matTOid. And a

base of the graphic matTOid is a spanning tree.

Proofs of the above two theorems can be found in [15].

We introduced the b-matching problems and the b-factor problems in Section

1.1 and 2.2. In this section we show that 2-factor problems also have a nice matroid

structure. Instead of direct checking the matroid definitions, following [24] we con

struct a new graph reducing the 2-factor problem to the perfect matching problem.

Since we've already seen that perfect matching is a matroid, this construction proves

that 2-factor is also a matroid.

Let G = (V, E) be a graph, and for every node v E V, de (v) denotes the

degree of v in G. For each node v E V, we construct two sets of nodes in the new

graph GI = (VI, E I), set A(v) and B(v):

A(v) {vow: w is adjacent to v by some edge in E.}

B(v) {Vi : i E {I, 2, ... ,de(v) - 2}}

B(v) is possibly empty. And VI is the union of all A(v)'s and B(v)'s:

VI = U{A(v) U B(v) : Vv E V}
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The new edge set E' consists of two kinds of edges: for each v E V, there is an edge

between each pair of Vow and Vi; for each euv E E, edge e~vvu is in E':

E' = U{e~tu;i: Vow E A(V),Vi E B(v),\fv E V}U{e~vvu: e·u.v E E}

Theorem 3.5.4. G has a 2-factor if and only if G' has a perfect matching.

Theorem 3.5.4 was proven by W. T. Tutte in [26]. Another proof and further

results on the b-factor problem can be found in [17]. Vie give an example of this

translation of graph in Figure 3.14. Bold edges in Figure 3.14(a) is a 2-factor of the

original graph, and bold edges in Figure 3.14(b) is a perfect matching of the translated

graph.

Now we return to the TSP. In Chapter 1 we introduced that TSP can be

modeled as intersection of three matroids: First we extend the n, nodes graph by

adding a new node and TL edges that connect this new node to all the original ones,

The first matroid is a graphic matroid on this new graph, the second matroid is a

partition matr,oid having independent sets containing at most one edge ingoing to

any given node, and the third matroid is similar to the second but contains at most

one edge outgoing from any given node. But it's known that finding the minimlUll

weight intersection of three matroids is NP-Complete. So we need to reduce the

problem of approximating TSP to two matroids. Our initial inspiration comes from

the fact that TSP tours are restricted 2-factor solutions, or further, TSP tours are

2-factor solutions that have only one connected component. When considering the

connected component, probably the simplest structure is the spanning tree. \fVe have

already proved that 2-factors are matroids, and it's also known that spanning trees

are matroids. So we are led to the idea of taking minimum weight intersection of
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Figure 3.14: Example of the graph translation
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these two matroids - 2-factor matroid and spanning tree matroid.

Our difficulty comes from the fact that those two matroids - 2-factor matroid

and spanning tree matroid- are over different universes. The universe of a spanning

tree matroid is the edge set of the graph, while the universe of the 2-factor matroid

is the edge set of the extended graph of Theorem 3.5.4, which is different from the

edge set of the original graph. Vie could not find a way to "merge" these t,\TO different

universes. This was expected, since if we could do it we would be able to solve TSP

in polynomial time using a matroid intersection algorithm [15]. But we could try to

"reconcile" the two universes into a single one, paying a small approximation factor

that translates into an approximation factor for TSP. We leave this approach as an

open problem.
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Chapter 4

Conclusions and future work

This thesis provides an LP relaxation for finding the TSP paths, which is inspired

by an LP formulation for fulding perfect matchings, and proven to provide solutions

as good as the path form of Held-Karp relaxation. To show the performance of

our LP relaxation, we give five examples, including the well-known Held-Karp 4/3

example( [3]). Unlike the Held-Karp relaxation, our relaxation doesn't produce an

integrality gap on this example. Then based on our relaxation we build a heuris

tic finding approximate TSP solutions, with issues as cover of all possibilities and

termination conditions left for further research.

We prove that, if an approximation factor a is guaranteed for the TSP paths,

then using a certain transforming rule the TSP tours also have the same approxi

mation factor. This ensures our heuristic, which finds TSP paths, also has the same

performance on finding TSP tours.

In our heuristic we keep two alternating matchings, s-matching and t-matching.

For now they don't provide any contribution to the quality of solutions - we can

treat both of them indiscriminately as matched. But we keep this two-alternating

matching structure in our heuristic, since it is where our motivation comes from, and
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we believe it has the potential influence on refining our heuristic to be an algorithm.

The biggest deficiency of our hemistic is the lack of termination conditions.

To define the improvement of a solution, we establish two criteria: the augmenting

of ether s-matching or t-matching, or the increasing of the total dual value. When

all nodes are discovered and augmented, we can tell that no further augmenting of

matchings are possible. But we haven't found a sufficient condition to say that no

further increasing is possible for the current set of duals. Plus, our heuristic may

fall into an endless loop: solving one higher-degree problem causes another one on a

different node, but solving the second one makes the first appear again. vVe need some

detecting methods to decide when to halt this loop. And since we don't have proof

that all possible kinds of tight-edge cycles are covered, there may exist an endless

loop in other situations. So the termination conditions rise to be the most important

open problem left in this thesis.

On the other hand, as an attempt to model the TSP as a minimal weighted

intersection of two matroids, we do not have a method to combine the universe of

the 2-factor matroid and the universe of the spanning tree matroid together. How

to reconcile these two different universes by paying an approximation factor becomes

anothet open problem left to future research.
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