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ABSTRACT
Oriented,'simsly-connected, differentiable 6-manifolds, with
vanishing sqcond Stiefel-Whitney class and integral homology groups
H2(M)==H3(M):'Z/n, where n£0 mod 4, are shown to be classified up to
orientation preserving diffeomorphism by the following invariants: the
cohomology ring of M with coefficients in the ring Z/n, the first

Pontrjagin class of the tangent bundle of M,and the Pontrjagin cubing

cohomology operation.
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INTRODUCTTION

Until 1960 the probiqm of classifying manifolds ;p to diffeomorphism:
was solved only in dimensions iéss than.three. In Ehat year, Smale [13],'
working from, ideas of Morse, developed his handlebody theory.@hich‘eﬁabled
him to settle the generalize? Poincarée conjectuée. Smale proved that every
closed n-manifold of dimension greater than four, ;hich has thé,hémbtogy
t&pe of the n—spheré, is homeomogphic to the n-sphere.

Usiné handlebody theory, Smale [14] also classified simply-connected
S-manifolds with vanishing seéond Stiéfel—Whitney class, the latter
restriction being.removed ipwa papei by Barden [1]. In the same paper,
Smalé showed that any 2—éonﬁec;ed 6-manifold is either the 6-sphere S6 orn

a connected sum of copies of S?,x 33.

. Wall [18] classifiedqsipply—cohnected 6-manifolds with térsiqﬁ
free homology and véhishing secosé Stiefel-Whitnéy class. Agaiﬁ the
resgriction on the vanishing ofl wz(M) was removed in a la;er paper by
© Jupp [11]. ’ ' f

In this thesié, we begin the stu@y';f.simp;y—coqnected 6-manifolds
with torsion in their hémology. In [18], Wall showed that any simp}y—
connécteﬁ 6—mani%old M-can be split as a connected sum M = MO i Ml where
’ Mo is a connected.s9m of cép@es of S3 X 83 andlﬁ3(Ml) is finite (H3(M1)Ais
1éomorphic to the torsion sdbgroup of Hz(Ml». The group Hz(Ml) can be
any fiqitély gene;ated abelian group. Our main theoremi(S.Z) classifies

simply~connected 6-manifolds M with wz(M) = 0 and HZ(M) = H3(M), a ¢yclic

torsion érgup Z/n wﬂete.n # 0 mod 4. Tﬁus, our results are a step towards

1



.

- homology the same as'S2 x .S

one.

the solution of the‘cﬁgésification problem for simply-connected
6—maﬁ§folds. | ,
In chapgér one; we review some topics.in differential aﬁd.'
algebraic topology including Smale's hanéleﬂody‘theory and‘tﬁe closely
refﬁfed‘concept of~surgery. Chapter two is a résumé of Wall's
classifiéation [18] of simpi&fconnected 6-manifolds with torsion freev
homo}ogy. Among the ﬁanifolds classified by Wall are.ﬁhése with
4 ‘In this thesis, these are referred to as,
Wall maﬂifolds.
| In chapter three, we define a torsion ganifold to beig simply-
conﬁecéed 6-manifold M wiFh wé(M) ='9 and Hztﬁ) =’H§(M) =‘Z/; foé some

tnteger n > 1. We discfiss some invariants. af torsion manifolds and show

) that every torsion manifold can be obtained by surgery on a Wall manifold.

.Thus, for a fixed integer n >1, the class of Wall manifolds is partitiored
¢ ) e ) o
into equivalence classes#whetre two Wall manifolds are equivalent if they

reduce vid sufgery to. diffeomorphic torsion ‘manifolds.

-

Chapter four contains the computation of the invariants for, a

<

torsion manifold derived -from a Wall manifold. We also discuss a

'geometric construction which'generates new Wall mqnifdlds from a given

In éhaptgr five, we prove that the Wall manifolds generated by

-our construction are all equivalent (i.e. they reduce via surgery to

o . )
diffeomorphic torsion manifolds)._ From this, we derive our main theorem

. (see §5.2) by showing that if two Wall manifolds reduce via surgery to

_torsion magifolds with thg' same Ain\rariants, then these Wall manifolds are

related by the construction of chapter four. It then follows that the

A d

A
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invariants of chapter three

a torsiom ménifdld.

N

suffice to determiqg the diffeomorphism class of

)

.



CHAPTER )

< §1.1 DIFFERENTIAL TOPOLOGY N_ "N

To establish notation, we begin by describing some fundamental

., v

notions in differential and algebraic topology.
. . . T *
A differentiable n~-manifold (of class ch) is a locally Euclidean,
paracompacﬁ space together with a covering by open sets Ui’ called charts,

each homeomorphic to R® by a map hi:Ui———%>Rn, such that the overlap functions
h_h;l i h.(U.N U)——h (U N U,) are r-times continuously

j i i j jooi i .

differentiable. We assume that all manifolds are of class Cz.

. A manifold with bowndary is defined similarly except that the

homeomorphisms h Yare éllowed to be onto the half space

i ) [
Ri =" { (xi,....xn) | X > 0}. The bowidary of a manifold Mﬁ, denoted

3Mn, is an n-1 dimensional manifold without boundary.

The closed unit disc in Rniis denoted by D" and its boundary,

ap™ = Sn—l is the n-1 sphere.

A differentiable map f between manifolds M and N 1is called an
B

{mmersion at xeM if the induced linear map«(l_)f)X : TXM-—>T N between

f(x)

tangent spaces is one to one. The map f is called an embedding if it is

an immersion at each point of its domain and 1f it maps its domain hom-

-

eomérphically onto its image.

-

Two embeddings f £, : H—>N are called isotopic 1if there 1is' a

1
differentiable map F : M x I—>N such*that faor each tel= [0,1} the map

-

Ft : M —>N given by Fé(x) = F(x,t) is an embedding, with Fo = f0 and

F) = £,. The map F is called an 180topy between £ and fi.

4



If £ ="{d, and £, is a diffeomorphism of the manifold M, then f,

is called diffeotopic to the identity if id, and f, are isotopic as

1
embeddings where the intermediate. maps Etxare also diffeomorphisms.
The map F in this c3se is called a diffeotopy or ambient isotopy.

The connection between isotopy and diffeotopy fs contained in the

foilowing.

THEQREbi 1.1 (Isotopy:e'xéension theorem ) let v be ‘a compact submanij"old
"of Mand F : V x I—>M an isdtopy of the inclusion of V in M. If either

F(V x I)C3Mor F(Vax I) Cc M - 3M, then F extends to a diffeoiopy of M.

i

A proof can be found in Hirsch [10] T (M) and H (M) denote
respectively the 1-dimensiona1 homotopy and integral homology groups of
M. A space M is called q-connected if its homotopy groups are trlvial in
diéen31ons less than or equal to q. 'The following theQ?em from Haefrigep_

[5] establishes the relationship between .isotopy, homotopy and comnectivity.

THEOREM 1.2 " Let V" and M" be two differentiable manifolds which are

M (k-l)—connected and k-connected. ~Then

(a) any conmnuous map of vt in M s homotopic to an embedding if
‘m » 2n - k+I and 2k <n-
' (b)" two differentiable embeddings of V' in M which are homotopic as

|

continuous maps are differentiably fs_otopic if m > 20 - k2 and Pk "< ntl.

"Isotopy of embeddings is an imﬁort§nt concept in Smale's handle-

body .théory, which is ‘described {n the mext section (cf..Smhle [13]y.



¢

§1.2 SURGERY AND HANDLEBODY THEORY

1f M is an n-manifold oith-bopndaryZBMn = Qn_1 and |

£ : 0 pk X D““k——-—~-:>Q“"1 is a differentiable embedding then the space

obtained from the disjoint union of M" and Dk x Dn—k by identifying

(x,¥) € aDk x‘Dﬂ'_k with £((x,y)) ¢ Qn_1 is a manifold with boundary

except for a '"corner" alongBDk x.BDn-k. By a standard technique this

A

"corner" can be straightened (cf. Conner and Floyd [3],8§3) to give a new
differentiable manifold which is denoted x(Mn, Qn_'l s £). The
construction of the:manifold x(Mn, Qn“1 3 £) is called attaching-a

k-handle_to M along the k-1 sphere f@ ﬁk x 0) in Qn-l.

_Given.several embeddiags’fi BDk x D"k Q“.—1 1=1,2,...5,

<:i whose images are disjoint we can attach several handles to M" and we -

///denote the result by X(M , Qn— -3 fl,....fs).

The boundary of the manifold X(Mn, Qn_1 ; £) is an n-1 manifold
which is related to the boundary Qn—l of M" in the‘fPIIOying way. Let

‘Q = Qn_1 - f< 3Dk x 0) and consider tﬁe'disjoint union Q U Dk x3 D k

o .
If we identify the- points f((x,ty)) and (tx,y) for each xé)D , yé)Dn L
and 0 <tg 1 then the resulting differentiable manifold is said to be
obtained from Q by surgery .on the k-l sphere f( 31) x 0) and we denote

it by *(Qn—l ; £f). It turns out that x(Q ;f) is diffeomorphic to
ax (MP Q f) (for details on surgery seé Browder [2). .

Two closed n-manifolds M and N" are called cobardbnt if there is
an n+l manifold Wn » called a cobordism between M and N" , whose

- boundary is t?e disjoint onion of M" a&d Nn. If N° = x(Mn Y f) for-some
embeddlng f '\BDk+l D k-—-——;vM then by attaching a k+l -handle to M" x I

along the k-sphere f( Bp x 0)(: M x 1 we obtain a manifold



LAY

N

n+1

] . . .
wn+1 = X(Mn x I, M x 1 ; £), whose boundary, 3 W = MniJ Nn, ts the

i

disjoint union of M" and Nn. The manifold Wq+1 is called the cobordism

between Mt and Nn agsociated to the surgery x(Mn ;3 £).

1

+
The manifold w" = X(Mn X I,\Mn x 1 ; £) has thé homotopy type

of M" with a k+l cell attached and consequently the pair (wn+l’ Mn) is

K1 3Dy Now ¥ = x O 5 £) s

. . + _
constructed as a quotient space of MOLJ Dk ! x3D" k where

Mo = ﬁn - f(Blﬁ¢+1 x 0) and thus has a naturally embedded Dk+¥ xB'Dn_k.

. : -+ -
Surgery on this embedding g : Dk ! x3D" k?——>Nn yields the original

.o o+ :
manifold M". Thus W' 1 also has a representation Wn+1

hoﬁotopy equivalent to the pair (D

= X(N'XI, N'x1 ; g)
WL on ' n-k . ‘n-k ’
and as above ( , N) is homotopy equivalent to (D , 9D ).

~If Mn'is oriented then x(i'in ; £), the result of doing ‘surgery on

the embedding f : 3Dk+1 x Dn—k;-—>Mn, ié, for k > 0, oriented as follows.

The otientation of M gives a local orientation around a point

x€MO =" - £( 8Dk+1 x 0) and hence it specifies a local orientation

~around xg )((Mn ; £) = MOU Dk+l X 3Dn—k

which can be lifted to an

orientation of x(Mn ; £) = N°,

" On the other hand if we orient Mn x I so tﬁat the induced
n N ) n . n ‘.on 2
orientation on M x 0 is' the given one on M then (M x I, M x 1 ; f)
has a natural orientation and this in&ucgs an oriéntation on the boundary

. . A . +
.component N". The orientation on N" induced in this way from W L is .

the opposite orientation to the one obtained in the previous paragraph

by surgery on M.

The following theorem is’ proven in Smale [13]

L]

THEOREM 1.3  [Let £,1 9 D‘; x D‘;"k———}Q“’l and £+ 9 i)‘i‘ x D K™
1= 1,2,....s,be tuo sets of embeddings each with disjoint images where

1

y
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} :

Qn—l = 3M. Then x(M,Q 3 fl:"'fs) and X (M,Q ; f',....f;) are difféomo#pkic
if

(a) there is a diffeomorphism h : M—>M sqch.%hat f; = pfi ; or

(b) these exist diffeomorphisms hi': D x DK u® x D"7K such that

fi = fihi’i =1,2,....8 ; or

(c) the f!

j are permutations of the £,

An immediate corollary of this theorem and the isotopy extension

>

theorem is

COROLLARY 1.4 If fl,'f2 1305 x DV R Q" = 3" are two isotopic
embeddings then y(M,Q ; fl) is diffeomorphic to X(M,Q ; fé)l

In particular, the result of surgery on an embedded BDk X Dn-k

in a manifold depends only on the isotopy class of the embedding.
We quote the following important theorem o£‘Smale [13] (compare

Wallace [19]).

t
|

THEOREM 1.5  (Handle addition theorem) Let STTES PR be disjoint

embeddings f, 3D§+1 x DKL

the restr@c%ioﬁs fil 80k+1 x 0 in ﬂk(Q). Suppose T

—>Q =3M'. Denote by [f&] the class of

e 8Dk+1 x 0——%>Qn“}*
J s . -

j =1,2;...s,are disjoint embeddings such that [f'] = I aij[fi] where
s g : Y 4=1
det(a, ) = +1. If n > 2k +-££Fnd k > 1 then the £! can be extended to

x| j
qmbeddings f; : 8Dk+1 X Dn—k—x——+>Qn—l such that x(M,Q ; f

di ffeomorphic to x(M,Q ; fi ....f;).
In the special case when M 1s the disc D" and the

fi : BDk'x Dn_k----—-—>Sn:1 = BDH 1 =1,2,...s,are disjoint embeddings, the
manifold x(d", s%71 ; £ peee£)) is called, following Smalé, a handlebody.

1....fs) 18"

1



We conclude this section with the definition of an important

‘operation on manifolds. TIf Ml and M2 are connected oriented n-manifolds
- t
n

and fi : D —~—>Mi i =-1,2- are embeddings, the first preserving

orientation and the second reversing it, then the comnected swn of M, and

1
Mz, writtgn Ml i# M2’ is the oriented manifold obtained from (Ml J fl(O))u

(M2 - fz(Q)} by identifying fl(tx) and fz((l-t)xl for xeS?jl and 0 <t <1.

§1.3 CHARACTERISTIC CLASSES

In this final section, we discuss characteristic classes of

¢

differentiable manifolds, and in particular a geometric condition,

wz(M) = 0, which allows us to do surgery.

3

The Stiefel-Whitney characteristic classes of a manifold M are
'mod 2 cohomology classes defined as follows. The classifying space for

n-plane bundles is the infinite Grassmanian Gn(Rm) which is the union of

k) for k > 0. Gn(Rn+k) is the set of n-dimensional

[N

the Grassmanians Gn(R
subspaces of Rp+k topologized 'in the usual way. The mod 2 cohomology. ring
of Gn(R?), H*(Gn(Rm) 3 2/2) = Z/thl.ﬁ..wn] is a polynomial algebra over
.Z/Z with generators Wy (cf. Milnor [12]).
If M? is a differéntiablé manifold then by a well known result
(cf. Hirséh [10]) Mn can be embedded in Rn+k %or 5ufficientiy,largg k..

. ‘n+
Given an embedding i : M ——>R" k we may define the Gauss map

T Mn———>Gn(Rn+k) c Gn(Rm) which takes a point xeM" into the subspace

R +
of Rn+k parallel™to the plane in R" k tangent to i(Mn) at i(x). It can

- be shown that the homotochy class of the map T : Mn——4>Gn(Rw) is .independent

~ \

of the particular embedding chosen. .’

r . . .
The ith Stiefel-Whitney class of . is then defined to be

wi(Mn) = T*(wi) where T* : H*(Gn(Rm) ; Z/2)——J>H*(MD,AZ/2) is induced

Y
-
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10 .

by T on cohomology.

For a manifold Mn, the.universal coefficient theorem giQes the
exact seéuence
O—>Ext(HL‘(M ; ZS, Z/2)—->H2_(M ; z/2)——>ﬁom(H2(M 3 2), 2/2)—>0
and hence if M" is simply connected we have '
n

w2ol 5 z/2) = Hom(H, (" 5 2), 2/2).

Thus the second Stiefel—?hitney class wz(MP) €-HZ(Mn ; Z/2) can be
considered as a homomorphi;; frém the integral homology group Hé(Mn VA
to 2/2. As M is simbly—connecteq the Hurewicz homomorphism
h : Wz(Mn)————>H2(Mn ; Z) is an isomorphism, whence every 2-dimensional
homology class in M" is represented by an map f . Sz——4>Mn. Ifn 25
theorem 1.2 implies that f may be taken to ge an embedding. The normal
bundle of this éﬁbedding will then be a sgable bundle over the 2-sphere.
Now there are only two such bundles over 52 corresponding éo the.stable )
:group ﬂl(SO) = 2/2. It turns out that the‘homomorpﬁi;m wz(M“) for n ; 5
evaluates- 0 on an embedding f : Sz---‘-:—}Mn if the normal bundle is trivial
and 1 if the normal bundle is non-trivial.

Thus the cond%tion that thé second Stiefel—Whigney class of a -

simply-connected 6-manifold M6 vanish,. 1s equivalent to the condition .

that evety embedded 2—sphere-$n-M6 have a trivial normal bundle.



CHAPTER 2

%
§2.1 TORSION FREE MANIFOLDS

In this chapter we review Wall's classification of simply-
connected 6-m5nifolds with vanishing second Stiefel-Whitney class and
torsion frée homology. This classification was begun in Smale [14] and
completed in Wall f18]}. wall's results depend essentially upon the
earlier study by Haefliger [6,7,8] of the isotopy classes of embeddings
of the 3—sphere in the 6—s§hgge.

In [14] %malé showed that evéfy 2-connected 6—mapifo}d was éither

' 3

S6 ot a connected sum of copies of S3 x $7. Wall [18] begins with the

observation that any simply-connected, 6-manifold M can be written as a

2
sum of ‘copies o?\Sz\x S3. If thehhomology of M is torsion free, then

connected sum M = Ml i} M2 where H3(M1) is finite and M, is a connected

this splitting is unique up to diffeomorphism.

It suffices then to consider simply-connected 6-maﬁ§%6id§'M6 with
torsion free homology, vanishing second Stiefél—Whitney class, wz(M), and

HJ(M) = 0. Wall shows that such manifolds are obtained by surgery on a

disjoiﬁt sét of .embeddings g, : 83 X D3--——>S6 (Wall [18], theorem 2), or
. . i :

in other words these manifolds are the boundaries of the handlebodies
formed by attaching 4-handles to the 7-disc along 3-spheres embedded in

the 6-sphere. , ‘ . .

§2.2 KNOTS AND LINKS

i

A.sihgle embedding é : SB—---—>S6 is called a knot in 36'wh11e an

embedding g : S3 x D3-—-—-—>'S6 is called a framed knot. The isotopy classes

of embeddings of S3 in 86 form a group, which Haefliger [8] denotes Cg

11
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o .

o 3.3, 6 3
and the isotopy classes of embeddings of S° x D™ in S  form a group, FC3.
Restriction of an embedding g : S3 X D3-———>S6.to é = g|S3 X 0-—-—>S6

defines a homomorphism from ch to Cg. Moreover, there is a map T from

T (SO ) to FC3 given by taking an element [tle = (SO ) to the embedding

3
given by the composition of the diffeomorphism (x,y)—> (Ryr(x)y) of S3 x D

with the natural inclusion S3 X D3 (o S6. This gives a short exact sequence

3 3
0—>» 1r3(503) —> FC3—-> C3—>0.

In [8] Haefliger calculates these groups and shows that FC§ =.Z<:)é

énd'Cg = Z. Thus the isotopy class of a framed knot g3 x D° in s® is
determined by a pair.of integers (a,b) € ch.
3

A collection of disjoint embeddings gy ¢ 7 x D%——e>36 is .called

3

a framed 1link. These were studied by Haefliger [7] where he determines

the invariants of isotopy classes of fraﬁed links. 1If 8y ¢ S3 X D3——4>S6'

are disjoint embeddings then‘linking coefficients é; € w3(52) = Z are .

defined by taking the ﬁomotopy class of -the composite of the embedding !

éi of S3 x 0 ingg S6‘— gj(S3 x 0) ahd a homotopy ééuivalénce of |

S6 —~gJ.(S3 x 0) with 82, chosen by taking an eﬁbedded copy of S2 whose

linking nqmber with gj(SBAx 0) is + 1. ?ér example‘choose Sz_to be.the

bdundéf§ of one.fibre in' the tudear neighborhood gj(S}3 X D3) of_gj(S3 x 0).
Liﬁking coefficients c;k

S% x 0 into §6 —'(g (S3 x 0) y .gk(S3 X 0)). This "lagt space has thé

are defined by considering the mép éi of

hbmotopy type of S2 v 82 so gi determines a class in
L

2 ‘ '

m(sT Vs ) = 7 5(S )@n (s? )@n (s3 ) _ (cf. Hilton [9])
.and cik is defined to be the projection of [gi] €.ﬂ3(S v S?) on the factor
n3(83) = 7, which is injected iﬁto_ﬂ3(52 \' Sz) by the Whitéhead product of

the inclusions of S2 in.S2 \Y SZ.

Using these invariants of framed links Wall shows that the

\
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-free-homology’and v, M = 0. Moreover H (M) = 0 and H ™M) C)

13

isotopy class of a framed link 84 : 83 x D3—-——>S6 is determined by the

knot class (ai’bi) €FC§ of each of its components and by the linking

coefficients c§ and C§k' These linking coefficients are subjeét to the
. ‘ i i
relations c; = ci mod 2 and the c;k are symmetric in 1,j and k.

§2.3 CLASSIFICATION OF,TORSION FREE MANIFOLDS
As mentioned above, all simply-connected 6-manifolds M with
WZ(M) =0 and H3(M) = 0 can be’cons;ructed oy attaching 4-handles to the
7-disc along a framed link of 3-spheres in‘the 6-sphere and taking the
boundary of the resulting handlebody. Theorem 1.3 implies that the
diffeomorphism class of the result only depends oh*ﬁhe'isotopy class of

the framed link.
3 6

Given a disjoint set of embeddings 84 : 83 X D—>»S, 1= 1,2,...

let W be the handlebody formed by atﬁaching Di X Dz to D7 along the 84
and let M6 = 9W. The handles Di X Di determine homology classes in

H, (W, ) * H, W) = H, (M) = HZ(M) whére the first two isomorphisms come

from the exact sequences of the pairs (W,D7), (W,M) and the last

¢

isomorphism is Poincaré duality for M6.= IW.

The orxiented, simply-connected 6-manifold M6 =9 W has torsion
k

where the classes e € H M) correspond via the above isomorphisms to the
4 3 3

: handles D, x D;. If thé knot type of gi is (oi?bi) € FC, = 2® 2 and

i i 3

the linking coefficients are cj and c then Wall shows thaé the cup

Jk
product structure of M6 is determlned by
. S ’
< | y = B
ei u ey U eR, [M] cjk
i,j,k distinct
> - ?J 2
<e;ue Ue, [M] 6oi + bi
= oY
<eju e u ey [M] > = ey
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and the first Pontrjagin class of M, pl(M) £ HA(M,Z) is.determined by
< pl(M) ue;s M] > = 4bi (ct. Wali [18], theorem 4).
This gives Wall's classification theorem for simply-connected

6—manifoldsf

THEOREM 2.1 (Wall [18)) Diffecmorphism classes 5f oriented simply-
connected\g:manifblds with vanishing second Stiefél-ﬁhitney clasé and
'torsioﬁ free homology, correspond to systems of tnvariants:

two freef abelian groups H,G

a symmetric trilinear map u : H x H ; H—>2

a homomorphism P H—>2Z

Py
subject to : for x,y € H

H(x,x,y) 2 u(x,y,y) (mod 2)
and for x ¢ H

pl(X).= 4u(x,x,x) (mod 24) . -
For a éiven manifold M6 this system of invariants is given by

H3(M 3 2) and for x,y,z E H

H=nQM; 2), G
H(x,y,2) = <xuyuz, [M]>

/
and - él(x) = <xu pl(M), [M]'>~ .

§2.4  WALL MANIFOLDS
In chapters 3 and 4 we will need some particular cases of Qall's
results. - Let M6 be a simply-conﬁected 6-manifold with vanishing second

Stiefel;Whitney class. We call M6 a Wall manifold if it has the same

homology groups as S2 X SA. M6 is called a double Wall manifold if it

has the same homology groups as Sz'x SA #'52 X SA.
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By the remarks above any Wall manifold M6 is obtained by surgery

: 6
on a framed knot g : S3 X D3——4>S with knot invariants (a,b)e FC3

3
If w7 is the handlebody obtained by attaching the handle Da X D3
7 o3 3 6 6 7
to D' along the framed knot g : S° x D—>»S and M = 3W , then the core

of the handle D4 X 0 is embedded in W and we may forﬁ the cone on BDA x 0
to the center of D7. This gives a map £ : SQ———2W72 which determines a
Homology class i; HA(W7). The exact sequence of the pair (W7,M6) is

H, (w7,M6) —>H, (M6)——> HA(W-/) —p H(’ (W7,M6)
“and HZ(W7,M6) = H7—1(W7) by Lefschetz duality,
But W7 is homotopy equivalent to S4 and therefore Hz(w) = H3(W) = 0 and

from the exact sequence we obtain Hé(Mé) o Ha(w7). Thus the’ class given

by £ : sa-——>w7 gives a class V4 in HA(M6). Let e € HZ(M6) be the

~

Poincaré dual of Y4 and let € € HA(Mﬁ) be the cohomology dual of Va,

that is @ (Va) = +1. Then the cup product structure is given by

eu & = a where <a, [M]> =1 and ey e= (ba+ b)e. The first Péntrjag@n
class pl(Me) is given bf pl(M6) = 4ba.

Double Wall manifolds are obtained by surgery og/gfgramed link

gi:S3 X D3——a>S€ i-= 1,2. .In terms of the knot invarjiants (ai’bi) € ch h

and the linking coefficients c; (the coefficients C?k are undefined here)

. . . 4
" the cup product structure is as follows. We form the cones oni)Di x 0

to the center of D7 to give homology classes in Ha(w7) where

W7 = x(D7, S6 H gl,gz). As in the previous paragraph Ha(W) = Ha(Mﬁ) where
M6 =2)w7 aﬁa we.obtain classeé Vi and Vg in HA(Mé). Let e

L and‘Vgﬁrespeccively and take @1,8

to be the‘duals in cohomology (ie.éi(Vﬁ) = 61

e, € Hal%)

be the Poincaré duals of V ,€ HA(M6)

j). Then cup products in M6
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CHAPTER 3

§3.1  TORSION MANIFOLDS

. The manifolds of main interest ln this‘thesis a;e oriented,
simply-connected 6-manifolds M with WZ(M) = 0 and integral homology ’ ¢
groups HZCM) = 2/n = H3(M) for some integer n > 1. Manifolds satisf%fﬁg

these conditions will be referred to as torsion manifolds.

THEOREM 3.1 Fvery torsion manifold M is obtained by surgery on a

2-sphere in some Wall manifold N.

Proof: Let f:s3———>M be a differentiable embedding representing

’ a generator of H3(M;Z) = Z/n. This is possiblé since the Hurewicz
homomorphism h :"ﬂ3(M)——%>&3(M;i) is onto aﬁd.by theorem 1.2 every : -
homotopy class in W3(M) is representable by a differentiable embedding.

The normal bundle to this embedding is trivial since it is classifiedV

by an element in WZSO(3) = 0. nExtend the embedding of S3 to an embedding

f . S3 X D3——+>M and let N = x(M;f) be the result of surgery on the

embedded 83 X D3.

\

Let W be the cobordism betweenkM and N described in chapter one.

Then
z q=4 . )
H (W,M) = ! )
q - 0 otherwise '
q=3
and H (W,N) = . : .
q 0 otherwise . '

17
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From the. exact sequence for the pair (W,M)
H4 M) — Hl. W) —-—-3>H4 (W,M)-—-—>H3(M)
" tr 1"
0 Z Z/n
H3 (W, M)——> H2 M) > H2 (W) ——1>H2 W,M)
we conclude that HQ(W) = Z and HZ(W) = Z/n .

Using this in the exact sequence of (W,N)

HS W, ) —» HA(N)—-—>H4 (W) —9H4(W,N)—3>H3(N)—> HB(W)_
" " 1" 1 .
Z 0 0
—> H3(W’N) —> HZ(N)—>H2(W)——~>H2 (W,N)
" ' ’ Y ’ 1 ‘
Z Z/n
yields HA(N) =Z and 0 = HB(N) = H3(N), by Poincaré duality for N, which
implies that HZ(N) = Z since torsion H3(N) = torsion HZ(N)ﬂ‘
Thus N _has the homology of 32 X Sa and is simply-connected. Reversing
the procedure exhibits M as the result of surgery on an embedded 2-sphere

2 .
g : SS—>N in N whose homotopy class is n-times a generator .of

ﬁz(N) = HZ(ND.

To check that WZ(N) = 0 let 1 : S2

—>N be any embedded 2-sphere.
. By general position i(Sz) may be assumed disjoint from g(52 x bA) and
hence it may be considered as an embedding into M. Since w,(M) = O the

"normal bundle of i is trivial in M and therefore in N, implying that

w, (N) = 0. []‘
2( ) .

If N is a Wall manifold then N is determined by a framed. knot
(a,b) € FC3 Given an integer n > 1 we may perform sutgery onﬂa,

3
2-sphere representing n-times a éengrator in H2(N) = wz(N). By pheorem

1.2 the diffeomorphism class of the result depends only on the homotopy
" ?

class of éhe embedded sphere. We dencte the torsion manifold so

constructed by M(a,b,n). ".Theorem 3.1 then says that any torsion
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‘magifold can be written ashM(a,b,n) for some a,b £ 2 n> 1,

§3.2 COHOMOLOGY RINGS'OF TORSION MANIFOLDS

If M is an oriented torsion manifold then its integral cohomology

<

groups are

Z q =-0,6
1l;2) = { 2/n q = 3,4

0 . otherwise .
The cup proouct structure in the ring H*(ﬂ,Z) is trivial, and two such
rings are isomorphic if and only if‘tnere torsien subgroups are isomorphic.
By the universal coefficient theorem the cohomology groups of M

with coefflclents in the group Z/n where H (M;2) = Z/n are

. Z/n q = 0,2,4,6"°
Hi;z/n) = ‘
ZM®2Z/n q=3 .

The ring structure in H*(M;Z/n) can be specified by considering the f

commutative subring

. | .
* . i .
w2 ouzm) =@ wElogz/) 3

i=0 . : ‘

together with the 5kew-symmetric, non—sinéular bilinear form on

H3(M;Z/n),given by cup product. :

| .

By Poincaré duality a basis for HZ*(M;Z/n) can be.cnosen'so that
B2 (;2/n) = 1 z/n®ez/n- @ 8ez/n®az/n
where e and & are dual generators for H (M Z/n) and H (M Z/n) respectively,
and & 1s the orientation class of M determined by the Z- orientation of M.

-
With respect tO'thiS basis the product structure in this,ring is determined

by . ' .
lux=x for all-x ) ' f oy
euvue=a
eue=ké " for some ke Z/n .
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The first Pontrjag?n class of M, pl(M)'E Ha(M;Z) é‘Z/n can be counsidered
as a class El(M) € HA(M;Z[n) since by the universal coefficient theorem

0——%>H4(M;Z)j:)z/n——%>H4(M;Z/n)-——>Tor(HS(M;Z), Z2/n) —>0 is exact and

ﬁS(M;Z) is zero. With thé above basis. we can write El(M) = 2& for some

%.e Z/n.; '

For a given torsion manifold M with H,(M;Z) = Z/n let R(M) denote
the even dimensiona} cohomology ring with Z/n coefficients, together with
a diétiqguished element E;(M) € Ha(M;Z/n).. The augmented ring R(M) is
determined by two integers, k and £ mod n. Since our manifolds are
orientgd the rings that arise have a distinguished generator in dimension

té given by the orientation class.l'Moreover, by Poincaré duality, the
prodict structure in ‘these rings is s;ch that the pairing

H2(M;Z/n)‘x Hé(M;Z/n)——->H6(N;i/n)
is non-singular. Isomorphisms of such rings are those gradéd ring
isomo;phisms which pfeserve the éisfinguished element El(M) and the
orientation class. In the next thédrem we determine the isomorphiém

classes of such rings.

F

" THEOREM 3.2 Fop‘eaah n > 1 the isomorphism classes of rings R(M) as
above are in oné-one correspondence with the orbits in Z/n@® Z/n wnder
the action of the group -of units. U(Z/n) given by m-(k,L) = (m3k, mf)

for m eU(Z/n) and (k,2) € Z/n @ z/n.

Proof: Let R = 1Z/n® eZ/n® €Z2/n @ aZ/n
and R' =1'Z/n@e'2/n®8&Z/n®@a'z/n. Suppose e u e = k&, p= 28
in R and e' U e'= k'é', p". =2'é" in R'. If f : R—>R' 1is an

isomorphism then £(1) = 1' , f(a) = a”, £(p) = 5' and since f preserves
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grading f(e) = se' and f(€) = té' where s, t € U(Z/n). Now

fleue) =f(e)u £(e) =se' y té' = st o

o'=f(a)

s_l. From f(E)

[}

and therefore t p' we have

218" = p''= f(ee) = Rféé) = Qs_lé' which implies E' = ls_l or
equivalently & = ;2‘. Finally ks_lé' = k.f(8) = f(ké} = f(e u e)
= f(e) u f(e) = se' y se' = s’Kk'ar
whiéh giv;s ks-l = szk' or k = S3R'.
' Thus if R and R' are isomorphié then
k = s3k' and £ = s' for some s ¢ U(?/n).
Conversely if R gnd R' are defined as above with k = s3kf and

* % = s%' then f as above will be an isomorphism of R with R'. []

The augmented ring R(M) is by definition an invariant of the

M
%
K3
t

oriented diffeomorppism type of the torsion manifold M since the
cohomology ring and the Pontrjagin classes aée diffeomorphism invariants. .
We consider how the skew-symmetric bilinéar form on HB(M;Z/n)
given by
b(x,y) = <xuy, M e z/n
The coefficient sequence
0——>-Z/n—;——> Z/n2-—~> Z/n—>0
N ) induces the Bocgstein homomorphism
B : wI(M;2/0) —> w3t (M;Z/n)

which satisfies (cf. Spanier [15], p.281) Bn . Bn =0

degu

and Bﬁ(ﬁ uvwv) = Bn(u)'u v+ (=1) uu Bn(v)

From the long exact sequence induced by the coefficient sequence we conclude

that Bn - HZ(M;Z/p)——a>H3(M;Z/n) is.ipjective

oty

and Bn : H3(M;Z/n)——%>H4(M,Z/n) is surjective.

Lo hye frmnt
i

[ ke



Together with Bn . Bn = 0 this implies that the sequence

B
0———>H2(M;Z/n)——E>H3(M;Z/n)——E>H4(M;Z/n)-——>0 is exact.

Let e € HZ(M;Z/n) be a, generator and set x = Bn(e). Let
y € H3(M;Z/n) be such that Sn(y) =8 ¢ HA(M;Z/n) where € is the dual

generator to e. Using the product formula for Bn we have

0

Bye v =B (@ ux+ (D eu s ()

since ey x ¢ HS(M;Z/n) = 0. Now Bn(x) =0

P S0 0 Bn(e) U X=X U X.

R

Applying the product formula again gives

v

0

By ue =8 (Due+ -1y uB (e

% since yuect HS(M;Z/n) = 0. This implies
: a=8ues= Bn(y) ue=vyu Bn(e) =y Uux.
Thus the matrix of the form b with nespect to the basis {x,y} of HB(M;Z/n)
0 1’\ i
. is where a = -a in Z/n.
' -1 a j .
O Bt A
- If n is odd then 2a = 0 implies a = 0. If n= 2 mod 4 we have the
following commutative diagram, where Sq1 is the,Steenrbd=squaring
operation sqi:Hn(M;Z/Z)-—ﬁ>Hn+i(M;Z/2} (cf. Spanier [15], p.270)
3 squaring _ .6
H™ (M;2/n)————22H (M;Z/n)
E
5 T r
E : ' 3
] , . H3(M;Z/2)~———§3—————>H6(M;Z/2)
% - @

and where r 1is reduction of coefficients.

TS g R

Since g is odd,r(g) =1€e 2/2. But r(y u y). = Sq3(r(y)) =0,

e

ey )

sfnce Sq3 = Sq1 qu by the Adem relations for the Steenrod Equares.
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(i.e.Sq3 factors through the group HS(M;Z/Z) = 0)
Therefore yu y = 0 if n=2 mod &,

In the.case nZ 0 mod 4 a has two possible values, 0 or g .

§3.3  PONTRJAGIN POWERS

In this section we copsider a final invariant of torsion manifolds,
the Pontrjagin cubing operation. Thése cohomology operations are a
special instance of the Pontrjagin pth power operations defined by
E. Thomas [16]. ‘

If p 4s a prime, the Pontrjagin pth power operatiqps are functions

?

Pp : Hk (M;Z/pm)—> Hkp (M;Z/pzm)

defined for any cell complex M and any positive integer m. The functtions

ﬂ,, being cohomology operations, are natural with respect to maps of

2 . B *
spaces. If r : Z/p"m—>Z/pm is the reduction homomoxphism and r, the

[ -

induced map on cohomology

r, : Hkp(M;Z/pzm)—~¢>HkP(M;Z/pm)

.

tbén the Pontrjagin pth power satisfies

14 (p-fold cup product) for any u € Hk(M;Z/pm).

r*(ﬂ)(u)) = u
In [17] Thomas lists additional properties of these pperations and
coméutes the operations for the infinite complex projective space CPm. ,
Let M be a toréion manifold with Hng;Z) = Z/n and assume that
n = 3m. We consider the operation with k = 2 and p =»3
Pyt B 062/3m)—> W0 02/9m)
In the next chapter we calculate these operations for torsion man;folds

using'Ihomas' results for the space CPw, which we now summarize.

Let u be a generator for the cohomology group HZ(CPw;Z) = 7.

rd oma e MBS s aWmt

IR PR SR 77, 0 P 2, 20T, VI TR PRSPy SO P e Lol
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Then u3 generates the group H6(CPQ;Z) = Z. For any integer k > 1
n, o n,. o . :
let LA H (CP ;Z)—>H (CP ;Z/k) be the coefficient homomorphism from

Z to Z/k, then r m(u3) is the image of u3 in H6(CPm;Z/9m) and according

9
to Thomas ([17], appendix, theorem 3)

Py(r, (W) = 1y (u) (1)

The space cP” is the Eilenberg-MacLane space K(Z,Z) (cf. Spahier
[15], p.425) and thus for any cell complex M, the second integral
cohomology group of M, HZ(M;Z), is in one to one correspondence with the
.homotopy classes of maps from M into K(Z;2) = CP . This correspondence
associates a homotopy class Lf] e [M, K(2;2)] with the imaée f*(u) of the
fundamental class of u ¢ HZ(K(Z,Z);Z) under the map
f* HZ(K(Z,Z)QZ)-—>H2(M,Z) induced by f.

If M is any Wall manifold then HZ(M;Z) = Z and we can choose a
map f : M——-:»CP°° such that f* : HZ(CPm§2)—;—>é2(M;Z) maps the class u to
a generator of Hz(M;Z). Thenh the map f* : HZ(CPm;Z)———>H2(M;2$ is an

isomofphism and we consider the following diagram

HZ(M;Z) < >H6(M;Z)
* *
f ; f
2 o C. 6 fos) -
H (CP ;2Z) : ~—3H (CP ;Z)
“im “1-¥ 3m : ' T9m Tom
2 o % 6 o ‘
H™(CP- ;Z/3m) »H (CP ;Z/9m)
2 ¥ f* % f* 6 v
H (M;Z2/3m) »H (M;Z/9m)

where c¢(X) = x U x U x and"rg is reduction of coefficients mod k.
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The inner square commutes b? equation (1) and thg trapezoids
commute by naturality. A simple diagram chase, using the fact that f*
is an isomprphism in the upper left corner, yields the commutativity of
the outer square. Thus the Pontrjagin cube for any Wall manifold M is
determined by _

P3(r3m(e)) = r.gm(e3)

where e € HZ(M;Z) is an integral cohomology class.



CHAPTER 4

84.1 SURGERY ON WALL MANIFOLDS
By theorem 3.1 each torsion manifold is of the form M(a,b,n),
where M(a,b,n) is the manifold obtained by doing surgery on a 2-sphere

representing n~times a generator of the second homotopy group of the Wall

manifold determined by the framed knot (a,b) ¢ ch. In this section we

calculate the invariants of chapter 3 for the torsion manifolds M(a,b,n).

Let M be the Wall manifold determined by the framed knot

(a,b) € ch, and let f : S%———>M be an embedding representing n—times

a generator of ﬂz(M).' By theorem 1.2 such an embedding exists and its
isotopy class is determined by the integer n. By assumption WZ(M) =

so f(Sz) has a triviai normal bundle and since W, S0(4) = 0 any two

2
extensions of f to 52 X D4 are isotopic. Thus we can do surgery on f

I vt

to obtain a manifold M' = y(M, f) and the dlffeomorphlsm class of M'is

determined by the knot invariants (a,b) and by the integer n.—hr our

L]
.

previous notation M' = M(a,b,n).
' 3 4 2 b ,
Let W=Mx I Uf D" x D where f : §° x'D —>M is an extension
of f as above. Then W is a cobordism between the Wall manifold M and

- the torsion manifold M' and 3W = M U M'. Setting MO =M - f(S2 x Da)

and M' = MqlJ 83 be3 giveés an alternative description of M' = M(a,bbn).
We remqfk that thése two descriptions of M'.g£§e opposite orientations
(cf. section 1.2) and the orientation we want for M' is the one glven b&
surgery.

‘

From the exact sequences of the pairs, (‘M,S2 X DA) and

26 -
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3

M',S” x D3) with Z/n coefficients (see figure 1) we obtain the following

diagram @

(M S xD Z/n)—-—————-—pH (M Z/n)

/\/\

BM 32/n) ————— }I (M 1Z/n) 4——————H W;2/n)

\/\/

(M',S xD Z/n)—~—-————>H (M'52/n)

where i,j,k and £ are inclusion maps f and g ‘are excisions, and all maps
*
to HZ (MO;Z/n) are induced by inclusions. .

Tk kel Kk kel
The map h = & ¢ f k is an isomorphism

* * -
h HZ (M;Z/n)——-—;-H2 (M';2/n) of the even dimensional cohomology rings of
M and M'.

From chapter 2, §4 the Wall manifold M has a basis e € HZ(M;Z)

and € € HA(M;Z) with cup product and Pontrjagin class given by
<eud,M]>=1
eue= (6a+b)

z’bg . h

i

pl(M)

_ Since the Wail manifold M has torsion free homology the cpefficient map

r P 2—>7Z/n indﬁces a ring surjection rnkﬂ*(M;Z)-e>H*(M;Z/n) and we

Fake the images of e and &, e = rn*(g) and & = rn*(éf. The cohomology

ring ?*(M;Z/n) éf M with Z/n cogfficients is then determihed'by.the

generators e € HZ(M;Z/n) and & ¢ HA(M;Z/n) susject to
o <e u_@, M]>.=1 € 2/n

) (L
eUe=rn(6a+b)€ .
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u/z = u/z. u/z u/z@u/z  u/z 0 ) u/z = u/g . 0
. ?».v.:mAlAz.v_:mAlll?z.uv:mAlll?z.v_mm .nlgw.mm <——(R'W) H Anll?z.v.wmfka.v.mm ~<~——(H'R) B
u/z = U/ , 0 0 u/z = u/z : u/z = u/g 0
E,v. mAlAz.v. H=<———(H'M) mAlallccmmrnlgnm < EmmAI.IEV m.mlc.c H -~ Ax.zvmm
'z 5 u/z o} “u/g u/z ®YzZ wz uz = u/z ) 0
( z.v. mAl?E. g Oy ) H = ( Emm T:.v.wm < (U &.Emm\]ﬁozw.%.ﬂlu.zw.mmhllﬁ .:..Emm
v = u/g u/z = u/z 0 0 u/z = /g 0
Aom:m,mlzw.:m .»!Aoz...zfm < (W) == () gt n EmmAI.IIAomvmm\ cc H< Cu'ny
0 u/z =z u/g u/z = c\N_ u/7 = u/z u/z. s Wz

O O i O i . O: ~ :O .O [}] O 1]
( z@:m\«nn E:mAIIA :m. EJm..m.IL zmvmmAIA EmmAlA Oiet EmTTl:SV mAIA 5 mA..IA zm. :vmm

o u/g z  u/z wz  wZz®ur /a\N T 0 u/g = w7z

AﬁQXﬂmvwalﬁ.zv:mAlAmQxmw..rvmm.AIAnQ xmmvmm.,AlA.zvmmTAMme ;,Cmm.AIIAMQ mmv H-<- (4 zvN:.\qAna nm .xv H

0 u/z = c\N 0 0 n\N A u/z ©u/g = q\N
n

( ax o)) malcc caIA qx m ‘W) mLIA ox mvmmAllszmmAlA ax m EmmAIA q x avmmklﬁcmmAlﬁ ax m Emm

( 83uUdTOTIFe0d u/y )
+ T RNd1d

.

.



Srpaw SRS

g By BNV

P i T s ]

e e e

venTT YYTee,

29

The images h(e) and h(&) (which we denote by the same symbols
o , ,fJ , 2% 2%
e and €)-under the isomorphism h ¢f the rings H™ (M;Z/n) and H® (M';Z/n)

*
give a basis of }12 V(M';Z/n) which is subject to the same equations (1).

The inclusions M———> W <3 M' give the following relations among
the tangent bundles of M, M' and W.
The restrictions of the tangent bundle Tw of W to the manifolds

M and M' are just the pull backs of the tangent bundle of W along the

respective inclusions g -

T M=41i*%( 1 ) and T |M' = j*( 1 ).
" () " I*C )
Taking Pontrjagin classes of these bundles gives

M) = i% = % W

Pl(Twl ) (py7,) = i*(py ()

'y = ik = i W) .
and P (T M) = 3%(p T ) = §*(py (M)
But M and M' are boundary components of W, hence Tw|M = TM@sl and

TwlM' = TM.@El where E:1 is the trivial line bundle.

1

= = < ~ r
Finally, pl(TM@e ) pl.(T}i? pl(M). Miteer [12], lemma 15.2)
which implies p, (M) = i%(p;(W)) and similarly p,(M') ='j*(pl(W)).

We have the following commutative -diagram:

Z yA Z/n
1" * 1 1% 1"
HA(M;Z)< i Ha(w;z)———L——»Ha(M';Z) <
r r r
n n n
* *
Ha (M;Z/n)<——-—:————- Hl’ (W;Z/n)——-—-g,————>Ha M';2/n)

Now pl(M) = 4be and thus the reduced Pontrjagin class of M, El(M) € H['(M;Z/n)
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is r (4b)é. Therefore the reduced Pontrjagin class of M'\is
n

- "o R .
pl(M ) = rn(db)e e H(M';2/n).

When n is divisible by 3, say n = 3m, we have the Pontrjagin
cubing operation, which we now calculate. At the end of chapter 3 we
calculated this operation for a Wall manifold M determined by a framed
knot (a,b) € ch.

With Mo and M' = M(a,b,n) as above we have the following diagram
in which éll vertical maps are isomorphisms.

P
2 (M32/3m) 3 suboiz/9m
P
HZ(M,S2 X DA;Z/Bm)——————2—————>H6(M,S
P
HZ(M , AM ;2/3m) -3
TO o
P

HZ(M',S3 X D3;Z/3m)~————3~————>H6(M',S

g

2 X DA;Z/9m)

>H6(M , M 3Z/9m)
o o

3 X D3;Z/9m)

HZ(M';2/3m). >H6(M';Z/9m)

Thus with e € HZ(M';Z]3m) the image of e € HZ(M;Z/3m)under the

isomorphism h

Fa(e) = rgm(6a + b) %o

where a9m is the orientation class in

HG(M';Z/9m) ( Lo = rgm(a)).

We summarize these results in the following

THEOREM 4.1 A basis for the augmented ring R(M(a,b,n)) of the torsion
mantifold M{a,b,n) may be chosen with

R(M(a,b,n)) = 1z/n®ez/n®éz/n® az/n
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where lux-=x ey & =g

1]
c
(1]

i

rn(6a + b)e
Pl(M(a,b,n)) = rn(bb)é

and 1f n's 0 mod 3

P3(e) = r3n(6a + b) Gy

84,2 SURGERY ON DOUBLE WALL MANIFOLDS
Let N be the double Wall manifold determined by the framed knots

(albl), (a2,b2) € ch with linking coefficients c1 = x, c2 = x+2y. From

2 1
£ HA(N;Z) can be chosen so

-

2 A A
E -
chapter 2,84, generators el,e2 H™(N;Z) el,e2

that the cup product structure of N is given by

e, u éj = sij Qo where <a, [M] > =1
e U e = (6al + bl)él + ci éz
e, U e, = c2 g, + c1 g
1 2 11 2 72
e U e, = c 24 (6a, + b, )8
2V & T o & T (bay Hbye,

and the first Pontrjagin class is given by pl(M) = éblél + Abzéz.

The homology grodb HZ(N;Z) =7®7 is generated by two classes

ol

Si and S; which are Poincaré duals of the classes el and e2 in HA(N;Z):
- 2 -
The classes S1 and S; are represented in N by the 2-spheres
3 4 3 ‘ ) 3 4 3
0 x BDl C D1 X D1 and 0 x 302 C D2 by D2

where the Di X Di are the handles attached to D7 along the knots (ai’bi)

to form the handlebody whose boundary is N, Surgery on these two
classes in N would yield the 6~sphere 86.

Now let m and n be'relatively prime integers. \The class

mSi + nsg in HZ(N;Z) can be represented by an embedded 2-sphere by
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thearem 1.2 and since WZ(N) = 0 it will have trivial normal bundle.

Again by theorem 1.2 and the fact that ﬂz(SOA) = 0 the isotopy class of
2 2

the resulting embedding £ : S x D"—>N is completely determinéd by the
2 N “
class mSl + nsi. Let N' = x(N,f) be the result of surgery on the embedded
! 82 X DA.- Since (m,n) = 1 the manifold N' will have the same homology as

Sz,x S&. Moreover N' is simply~connected and by the argument used in the

proof of theorem 3.1, wz(N') = 0. Thus N' is g Wall manifold and is
3
3‘

section is devoted to the proof of the following theorem.

therefore determined by a framed knot (a,b) € FC The remainder of this

THEOREM 4.2 Let N and N' be as above. Then N' is determined by the

5 . framed knot (a,b) € ch where e

:

( a=a m3'+‘b (m3—m) + nm(n-m) x + n2 - a ad ; £ 623:23
2 2V 6 0 T 2 A | 156

ané. b = bzm -~ bln.

. . ’
Proof: Let W= N x Il% D3 x v where £ : Szx Da———>N x {1}

is an embedding representing ‘'the class msi + nsg. Let 1 and j be the

inclusions £ : N—»3WC W, j : N'—>HWC W of N and N' into W.

From the exact sequence-of the pair (W,N)

0—> 1, (W, 1) —> nz(N)—i-’;uz(w)——»uz(w,m

n " 13 . "

z - 474 z 0

we have i*(msi + nsg) = 0. Since (m,m) = 1 then there exist'integers

k,i'with kq +%n =1 énd then'{hsi + nsg, - ﬂsi + ksg} form a basls for
HZ(N;Z). Let Vi, Vg € HA(Ngi) be classes dual to Si and Si respectively:
fhat is Vi-sj = 6ij where * is the intersection number (cf. Dold [4]).
Then the classes kVi + lv; and —ﬂVi + mvg‘in HA(N;Z) form a dual base tQ

2
9"

2 2 2
mS1 + n52 and —QSl + kS
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.
¢

;
For the pair (W,N') we have
*
0—>H, (W,N))—> H,(4") ~L5H, (1) —>H, (4,N")
" " n "
0 z VA 0
: ' 2 2 =2
and hence j* is an isomorphism.” If we set i*(—281 + kSZ) = 5" g HZ(W)
and 82 = j*~1(§2)’ then S2 is a generator for the group HZ(N') = 2.
Again from the exact sequences of the pairs (W, N) and (W,N")
. i
0——-!>H4 (N)_>H(4 W) ——-»Hl‘ (W,N)
." 1" 1"t ‘ . .
z®z z®z. 0 - . ~ -

0—>H&(N')—j—f>H4(W)-ELHA(W,N')——»H:;(W)
" 1" " 11)

z z®z oz 0

we obtain HQ(N').F z. If V4 € HQ(N') is the generator dual to S2 € HZ(N')

) : .
(that is VA'S" = 41 in N' where N" is oriented by way of the cobordism W)

' 4, _ b =4 =4 4 - . .
,thén j*(V ) = nVl - sz where Vi = i*(Vi), i=1,2. To see this notlFe
that with this choice of sign for the image of V4 under j; we obtain
R R A S SRS ST S N .
i, J*(y ) = nVl sz e ga(N). On, the other hand»j*. i*( 251+k52) S FHz(N )

« . w0
Since N and N' have opposite local orientations the two classes

‘gsi'+ ksg and ﬂVi - ng ﬁqsé have intersection number -1 in N. Since
.' . 2 . 2 . 4 _ ’ 4 L .._ . 4 _ -4 '_a.
(=48] + kS3) * (aV, - a¥,) fr - ki = -1, 3.V = nVy = mv,.

Thus we have the following maps
I i * w
1, () -5 1, (<L w, ()
* x
o, X w, )

2
1 L

2, =2 2, =
with 4, (A5 +ksp) = 57, g,68h) = §,

\
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2 2
i*(mSl.+ nSz) =0,
Cohy b 4y _ =4 A =4 =4
'i*(Vl) = Vl Py i*(VZ) = V2 N j*(V ) = nvl - sz o
which implies i*(Si) - —n8® and 1*(53) - m32,

Since the homology groups of N, W and N' are torsion free, the universal
coefficient theorem iﬁplies that we have the following maps for the dual

groups

Hi(K) = Hom(Hi(K),Z) for K= N, N', W
* *
e DMLt i LR TL YO
* * 4
gty vt oy et ey
2 2 - 2-
Let e1 9 € H (N) be a dual base in cohomology to S1 and SZ’
e € H (W) dual to Sz, e € H (N) dual to 52 l,e2 € H (N) dual to V? Vg
,e € H (W) dual to V4 VA and € ¢ H (N ) dual to Va. A
1 2 1’ 2 . ‘

. . oL .
Then the maps i* and j* are determined by applying the functor Hom(-,2).

fney are given by:

i*(e) = -ne, + me

1 2?
(&) = &, 1xE)) =&, , ;
j*(@@) =e , §*(@) =n€ , 3*@E,) = -mé .

‘The maps i* and j* in coholeogy are multiplicative,thus

-'i*(éz) = (i*(g))2l=,(-nel + mez)2 = nzez1 - 2nme1e2 + mze2
2., A 24 2. . 1a
= n ((6al + bl)e1 + CIQZ). 2nm(c + cle.)

1%1 272

2, 1. A T
+m-(cy€, + (6a, +D,)8,) .



P iaattca S UM il i e

ko R A e L

Bo 444

AT

S

35

Applying i*_l to both sides of this equation gives

-2 2 ~ 2 2~ 2. 1.
e = n (6a1 + bl)e1 + n ciey ~ 2nmc1e1 2nmc2e2

2 1. 2 ~
+ m 58 +m (6a2 + bz)e2 .

Therefore e2 = (j*g)2 = j*(zz) '

2

= n296a + bl)ng +‘n2ci(—m§) - 2nmc1n§

1

- 2nmc;(—m€) + m2el e+ m2(6a2 + b,) (-ud)

[SC I NSRS

3 2 21 3 : A
n (6a1 + bl) - 3n mey + 3nm c, - m (6a2 + bz)}e .

The Pontrjagin class of W gatisfies i*(pl(W)) = pl(N) giving pl(W) = i*-lpl(N)

l ~ ~ ~ ~
= 4% + = 4 +
1 (Ablel dbzez) blel 4b262 .

' = * = P 5 = R 2
Thus pl(N ) =3 (pl(W)) j*(4b1e1 + 4b2e2) (Anbl Ambz)e .

A gs 12 4 . ~
The classes e and e in H (N') and H (N') have cup product e u & = «
where o is the orientation class of N' determined by the orientation on the
cobordism W between N and N', chosen so that the induced orientation on N

is the given one. Thus ‘the invariants of N', with the orientation induced

from N by surgery, are given in the basis e € Hz(g') and @ € HA(N') by
. ' - [

<eueé, [N']>=1 |

ey e = lﬁn3(6a2 + b2) - 3nm2é1

2 2 3 C1a
2 + 3n me, - n (631 + Pl)}e r

[N

S ) .
Pl(N ) .(ﬁmbz Anbi)e .

Now N' is a Wall manifold and is therefore determined by a framed

knot ké,b) € chl From chapter 2, §4,the cup product and Pontrjagin ¢lass

of N' -are given by

eue= (ba+bH) é and pl(U') = 4b3 . -
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Setting c;

= x and c2

3 3 2
a,m + bz(m —m> + nm(n-@)x +nomy - a

mb2 - b

x

1

.

x + 2y and solving for a and b we obtain:

n3 —(n3—-n)bl

1 6

b}

6 2

-~

36
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CHAPTER 5

. 85.1 A DIFFEOMORPHISM CRITERION
In section 4.2 surgery was done on the double Wall manifold'N
determined by the framed knots (al,bl), (az,bz) and linking coefficients

% = x and ci = x + 2y. If,.in the same manifold N, we do surgery on the

disjoint 2-spheres Si and nsg then the resulting manifold will be a torsion

manifold. In fact surgery on the 2-sphere Si just cancels the surgery on

[

the S3 in S6 corresponding to the framed knot (al’bl)’ and the result is
the Wall manifold determined by the framed knot (az,bz). Following this by

surgery on the class n82

> in this Wall manifold yields the ctorsion

manifold M(az,bz,n).
Now let m be relatively prime to n and consider surgery on the

following cl&sses in N;

22 2

Sl = SL ’

=2 _ 2 2
82 = mS1 + nSz.

By the handle addition theorem (see §1.2), the result of this surgery is
diffeomorphic to the torsion manifold Mkaz,bz,n) obtained by surgery

on the classes Si and nsg. Thus we can write

=2 =2, . <2 2\ = vees .
x(‘N, S Sz) 2 x(N; 81> nSz) M(az,bz,n).

2
- l’
. we see that the intermediate manifold M = Y(N; gg) is a Wall manifeld

Performing the sutgery y(N; S §§), first on-§§, and then on S

1

which, by theorem 4.2, is determined by the framed knot (a,b) where

37
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3 m -m
a,m + bz( 3

Y]
1]

n-m 2 3 n_ -n
) + nm( 2 ) Xx +nmy - an” - bl( 3 )

(*)

o
1]

and b.,m - bln.

2

2

The image of the class §1

in HZ(M) = Z is, by the previous
section, n-times a generator of this group, and surgery on this class

yields the torsion manifold M{(a,b,n).

This proves the fsllowing

THEGREM 5.1 If the frdmed knots (a,b) and (a2,b2) satisfy equations (%)

for integers n,m,a,,b.,x and y with (m,p) = 1, then the torsion mantfolds

1
M(a,b,n) and M(aQ,bz,n) are diffeomorphic.

1

In the next section we apply theorem 5.1 to classify certain

6-dimensional torsion manifolds.

§5.2 CLASSIFICATION OF TORSION MANIFOLDS
Before proving our ciassiiication theorem we prove a number of

lemmas which follow directly from theorem 5.1,

L

LEMMA 1. Let k be any integer, then

/

(a) if nis odd M(a,b,n) is diffeomorphic to M(a + kn,b,n),
(b) if n is even M(a,b,n) ﬁﬁodifféombrphic to M(a + k%,b,n).

=0and b, = 0

Proof: Writing equations (*) with m = 1,a 1

1
we have,

...1 .
a=a, + n(%i—) x + n2y N

b = b2 .



If n is odd then

a=a, + n[(gél) x + ny]

2

and since g.c.d. KE%l),-n} = 1 we can choose x and y so that

(_n'z'l.) )‘( + ny = —'k- Then With a.=a + kn part (a) follows.

2

If n-is even then

a=a +-% [(n-1) x + 2ny]

2
and again g.c.d. {(n-1), 2n} = 1 so we can choose x and y witht
(n-1) x + 2ny = -k .

. _ n
Setting a, = a + kE gives part (b). []

LEMMA 2.. If n¥0 mod 3 then for any integer %,M(a,b,n) is

. diffeomorphic to .M(a,b + %n,n).

Proof: 1In equations (*) take b, = £, a, = 0; m =1 éndhy =0=

1 1
to obtain N
nz—l
a, = 2( Y n "if n is odd
a=a - g(n —n) - 6
2 6 n2—1 n
a, - 2( 3 ) 7 if n is-even .
b = b2 - fn
n2_1 )
Thus M(a,b,n) = M(a + L( Z Y n, b + £n,n) if n is odd
; -~ n“-1. n ’ .
and M(a,b,n) = M(g + 2(-3——)‘5 , b+ n,n) if n is even.

—

In either case by- lemma

"

M(a,b,n) M(a, b + &n,n). []'



LEMMA 3. If m is relatively prime to n and

\ 3 m3-—m ‘
a=ma' +.~—g— b,
b=mb',
then M(a,b,n) = M(a',b',n).
Proof: Write equations (¥*) with a, = a' , b2 =b',
al'—"b1=x=y=0. D
LEMMA 4. Suppose n is odd and n= 0 mod 3.
If a=a'+z-’3l and 2% + &' 20 mod 3,
b=>b"+ n,
then M(a,b,n) = M(a',b"',n). .

Proof: Since 22 + £'=Z O mod 3 then £= 2 mod 3.

Let £ =2' + 3k. Then the equations above become

a=a'+kn +£"%_,
b=>b"+2n, .
In equations (*) let m = 1, b1 = ="', a, = 0 and choose x and y so that

2
. (%) x+ny = k - 2‘(2_6;"—3{) yielding (with a, = a', b, = b")

2 2-

[
[}

i n2-3 3-n
al ta(k - ' ES) + U ESD

b=>sb"+%'n

[}

and thus by theorem 5.1, M(a,b,n) = .M(a",lb',n') . D

LEMMA 5. Let nZ 2mod 4 and n = 0 mod 3.

|

If a=b"+ (3k -2) -’61

and b =b" + &n

" then M(a,b,n) s diffeornqrphic to M(a',b',n).
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)

Proof: We consider two cases depending on the parityrg?'Bk - 2.

Case 1: 3k =2 = 2r or %= 3k - 2r.

In equations (*) put m=1,b 2r - 3k,a

1 1

(n-1) x + 2ny = Z
=—3kn2 + 2rn2 + 3k

where Z 3 .
_Then equations (*) with a' = a, b' = b2,
become Y
. n —3kn2 + 2rn2 + 3k
a=a' + —( )
2 3
b=>5b"+ in

which are the equations of the lemma.

Therefore -M(a,b,n) = M(a',b’,n).

Case 2: 3k -2 =2r+1 or % =

In equations (*) put mgé 1, b1 = -3k + 2r +

aj = 0 and choose x and y so that

(n-1) x + 2ny = 2

3k = 3kn® + 2rn’ + n’

R Z =
where 3

= 0 and choose x and y so that

3
- (2r - 3G,

3k - 2r - 1.

1,

With a, a' and b2 = b' equations (*) become

n, 3k - 3kn2 + 2rn2 + n2

o n
a a' + 2( 3

n

+ (3k - 2r — 1)( 6'“),

b=b'+ fn

which reduce té the equations éf the lemma.

Thus M(a,b,n) = M(a',b',n). []

)
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‘To a given oriented torsion manifold M, we have associated the
augmented ring R(M) described in section 3.2, and if n is divisisle by 3
where Hz(M;Z) = Z2/n, we have the Pontrjagin cubing operation
P3:H2(M;Z/n)———>H6(M;Z/3n), which is Fetermined by its value on a
generator of HZ(M;Z/n). Our main theorem shows that these invariants

are sufficient to determine the oriented diffeomorphism class of M if

nf 0 mod 4.

THEOREM 5.2 If n0 mod 4 then lwo oriented torsion menifolds M and M'
are difféomorpﬁic by an orientation-preserving diffeomorphism tf and
only if, (a) there is an isomorphism between their augmented rings
f: R(M)—>R(M") and
(b) if n=0 mod 3 the Pontrjagin cubing operations of M and M'
satisfy
. <R, N> = < B, W]

. where e is a generator of HZ(M;Z/n).

Proof: Since the invariants described are invariants of oriented

¢

diffeomorphism type, these conditions are necessary.

Suppose now that f : R(M)—»RM"') is an isomorphisﬁ in the

©

sense of section 3.2. We.may assume by theorem 3.1, that M = M(a,b,n)
and M' =,M(a',ﬁ',n). Theorem 4.1 then implies that R(Mf is determined by

the reduced integers 'rn(6a 4+ b) and rn(éb) while k(M') 1s determined by
N

~

rn(6al +b') ~and rn(éb'). From theorem 3.2 the isomorphism f implies the
existence of an integer m, relatively %rime to n, such that
6ba + b = 1n3(6a' +b') mod n (1)

and 4b = m4b' mod 1 . (2) .
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Moreover if 3 divides n then the Pontrjagin cubing operation yields the
congruence 6a + b= m3(6a' + b') mod 3n. (3)
We complete our proof by showing that these modular relations
“imply integral relations which have the form of equations (*). It.then
follows from theorem 5.1 that M(a,b,n) is diffeomorphic to M(a',b',n)

We consider separately four cases.

Case 1: n odd and n ¥ 0 mod 3.
Then we have from (1) and (2)

6a + b + kn m3(6a' +b"),

4b + fn = mbb'

]

Since n is odd, 4|%,say 2= 42"
thus b+ 2'n=mb".
Substituting gives

6a + (k -~ ') n = 6m3a' + b'(m3—m).

Now 6 |m3—m so 6[|{k - £') yielding
3
— ‘1 -
a + @i—&—)n = m3a' + b (D,
6 6
b+ 2 n = mb'.
k"Q" 1 -~ t t
By lemma 3,M(a + ( A Jn, b+ 2'n,n) = M(a',b',n) and
by lemmas 1 and 2
) nd k -2’ [} '
M(a,b,n) = M(a + ( p )n, b+ ¢'n,n).
Therefore“//”h(a,b,n) = M(a',b',n).



Case 2: nZ2 mod 4 and n£0 ﬁod 3,

6a + b + kn m3(6a' +b'),

4b + n 4b' .

Since n is even the first equation yields b Zb' mod 2, which implies

4(b' + 2h) + n = m4b',
8h + &n = 4b' (m-1) ,
4h + 2121 = 2b' (m-1),

from which it follows that 20 mod 4,
say & = 4%'.

Therefore b + 2'n = b' and- substituting in (1) gives
' 3, . v 3
6a + (k - £')n = m6a' + b'(m ~m)

whence k - %' is divisible by 3

k- 2'.n

yielding a+ ("—3'—" )5 = m3a' + b'(ﬂ,—ﬂ) -
b+ 2'nan = b'.
- ' -~
Thus M(a + (kBR )%, b + ﬁ'n,n) = M(a',b',n)
by: lemma 3,and by lemmas I and 2 _ \\&
0!
M(a,b,n) = M(a + ‘(%3—)%, b+ 2'n,n) .

"

Therefore M(a,b,n) M(a',b',n).

Case-3: nodd, nZ0 mod 3.
As in the first case equation (2).becomes

b+ 2n=5%'m.



From the congruence (3) (since n=0 mod 3) we have
6a + b + k3n’f‘m3(6a' +b').

Substituting for b yields ‘

6a + n(3k - ') = m3 6a' + b'(m3 - m)

which implies that 3k - &' = 28.

We have
3 .
L 3 -
a + % =ma'+ b'(m6 m),
b+ 2'n = mb'
and 204 2'F Omod 3.

M(a + =&23 b+ 2'n,n)

e

By lemma 4, M(a,b,n)

and lemma 3 implies .

M(a + %r—l, b+ 2'a,n) = M(a',b',n)
thus M(a,b,n) . = M(a',b',n).
Case 4: n=2 mod 4 and n=0 mod 3.

Equations (3) and (2) become

6a + b + k3n = m3(6a' +b'),

4b + &n = m4b'.
As in case 2 we obtain l
b+ 2&n = mb',

Substituting for b in the first equation, we obtain

6a + (3k - 2")n = mBQa' + b'(m3’- m),
a+ (k- 2R = nla o+ bt &,
76 6
b+ 2'n=m" .
By lemma 3

M(a + (3k - &' %; b+ 2'n,n) = M@a',b',n)

45
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and by lemma 5

m

M(a + (3k - £')2, b + 2'n,n) M(a,b,n),

ne

yielding M(a,b,n) M(a',b',n). []

-
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